Science.gov

Sample records for affect population structure

  1. Earthworm ecology affects the population structure of their Verminephrobacter symbionts.

    PubMed

    Viana, Flávia; Jensen, Christopher Erik; Macey, Michael; Schramm, Andreas; Lund, Marie Braad

    2016-05-01

    Earthworms carry species-specific Verminephrobacter symbionts in their nephridia (excretory organs). The symbionts are vertically transmitted via the cocoon, can only colonize the host during early embryonic development, and have co-speciated with their host for about 100 million years. Although several studies have addressed Verminephrobacter diversity between worm species, the intra-species diversity of the symbiont population has never been investigated. In this study, symbiont population structure was examined by using a multi-locus sequence typing (MLST) approach on Verminephrobacter isolated from two contrasting ecological types of earthworm hosts: the high population density, fast reproducing compost worms, Eisenia andrei and Eisenia fetida, and the low-density, slow reproducing Aporrectodea tuberculata, commonly found in garden soils. Three distinct populations were investigated for both types and, according to MLST analysis of 193 Verminephrobacter isolates, the symbiont community in each worm individual was very homogeneous. The more solitary A. tuberculata carried unique symbiont populations in 9 out of 10 host individuals, whereas the symbiont populations in the social compost worms were homogeneous across host individuals from the same population. These data suggested that host ecology shaped the population structure of Verminephrobacter symbionts. The homogeneous symbiont populations in the compost worms led to the hypothesis that Verminephrobacter could be transferred bi-parentally or via leaky horizontal transmission in high-density, frequently mating worm populations. PMID:27040820

  2. Cyanobacteria Affect Fitness and Genetic Structure of Experimental Daphnia Populations.

    PubMed

    Drugă, Bogdan; Turko, Patrick; Spaak, Piet; Pomati, Francesco

    2016-04-01

    Zooplankton communities can be strongly affected by cyanobacterial blooms, especially species of genus Daphnia, which are key-species in lake ecosystems. Here, we explored the effect of microcystin/nonmicrocystin (MC/non-MC) producing cyanobacteria in the diet of experimental Daphnia galeata populations composed of eight genotypes. We used D. galeata clones hatched from ephippia 10 to 60 years old, which were first tested in monocultures, and then exposed for 10 weeks as mixed populations to three food treatments consisting of green algae combined with cyanobacteria able/unable of producing MC. We measured the expression of nine genes potentially involved in Daphnia acclimation to cyanobacteria: six protease genes, one ubiquitin-conjugating enzyme gene, and two rRNA genes, and then we tracked the dynamics of the genotypes in mixed populations. The expression pattern of one protease and the ubiquitin-conjugating enzyme genes was positively correlated with the increased fitness of competing clones in the presence of cyanobacteria, suggesting physiological plasticity. The genotype dynamics in mixed populations was only partially related to the growth rates of clones in monocultures and varied strongly with the food. Our results revealed strong intraspecific differences in the tolerance of D. galeata clones to MC/non-MC-producing cyanobacteria in their diet, suggesting microevolutionary effects. PMID:26943751

  3. Spatial and spatiotemporal variation in metapopulation structure affects population dynamics in a passively dispersing arthropod.

    PubMed

    De Roissart, Annelies; Wang, Shaopeng; Bonte, Dries

    2015-11-01

    The spatial and temporal variation in the availability of suitable habitat within metapopulations determines colonization-extinction events, regulates local population sizes and eventually affects local population and metapopulation stability. Insights into the impact of such a spatiotemporal variation on the local population and metapopulation dynamics are principally derived from classical metapopulation theory and have not been experimentally validated. By manipulating spatial structure in artificial metapopulations of the spider mite Tetranychus urticae, we test to which degree spatial (mainland-island metapopulations) and spatiotemporal variation (classical metapopulations) in habitat availability affects the dynamics of the metapopulations relative to systems where habitat is constantly available in time and space (patchy metapopulations). Our experiment demonstrates that (i) spatial variation in habitat availability decreases variance in metapopulation size and decreases density-dependent dispersal at the metapopulation level, while (ii) spatiotemporal variation in habitat availability increases patch extinction rates, decreases local population and metapopulation sizes and decreases density dependence in population growth rates. We found dispersal to be negatively density dependent and overall low in the spatial variable mainland-island metapopulation. This demographic variation subsequently impacts local and regional population dynamics and determines patterns of metapopulation stability. Both local and metapopulation-level variabilities are minimized in mainland-island metapopulations relative to classical and patchy ones. PMID:25988264

  4. Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape

    USGS Publications Warehouse

    Funk, W.C.; Blouin, M.S.; Corn, P.S.; Maxell, B.A.; Pilliod, D.S.; Amish, S.; Allendorf, F.W.

    2005-01-01

    Landscape features such as mountains, rivers, and ecological gradients may strongly affect patterns of dispersal and gene flow among populations and thereby shape population dynamics and evolutionary trajectories. The landscape may have a particularly strong effect on patterns of dispersal and gene flow in amphibians because amphibians are thought to have poor dispersal abilities. We examined genetic variation at six microsatellite loci in Columbia spotted frogs (Rana luteiventris) from 28 breeding ponds in western Montana and Idaho, USA, in order to investigate the effects of landscape structure on patterns of gene flow. We were particularly interested in addressing three questions: (i) do ridges act as barriers to gene flow? (ii) is gene flow restricted between low and high elevation ponds? (iii) does a pond equal a 'randomly mating population' (a deme)? We found that mountain ridges and elevational differences were associated with increased genetic differentiation among sites, suggesting that gene flow is restricted by ridges and elevation in this species. We also found that populations of Columbia spotted frogs generally include more than a single pond except for very isolated ponds. There was also evidence for surprisingly high levels of gene flow among low elevation sites separated by large distances. Moreover, genetic variation within populations was strongly negatively correlated with elevation, suggesting effective population sizes are much smaller at high elevation than at low elevation. Our results show that landscape features have a profound effect on patterns of genetic variation in Columbia spotted frogs.

  5. Ontogenetic shifts in plant interactions vary with environmental severity and affect population structure.

    PubMed

    le Roux, Peter C; Shaw, Justine D; Chown, Steven L

    2013-10-01

    Environmental conditions and plant size may both alter the outcome of inter-specific plant-plant interactions, with seedlings generally facilitated more strongly than larger individuals in stressful habitats. However, the combined impact of plant size and environmental severity on interactions is poorly understood. Here, we tested explicitly for the first time the hypothesis that ontogenetic shifts in interactions are delayed under increasingly severe conditions by examining the interaction between a grass, Agrostis magellanica, and a cushion plant, Azorella selago, along two severity gradients. The impact of A. selago on A. magellanica abundance, but not reproductive effort, was related to A. magellanica size, with a trend for delayed shifts towards more negative interactions under greater environmental severity. Intermediate-sized individuals were most strongly facilitated, leading to differences in the size-class distribution of A. magellanica on the soil and on A. selago. The A. magellanica size-class distribution was more strongly affected by A. selago than by environmental severity, demonstrating that the plant-plant interaction impacts A. magellanica population structure more strongly than habitat conditions. As ontogenetic shifts in plant-plant interactions cannot be assumed to be constant across severity gradients and may impact species population structure, studies examining the outcome of interactions need to consider the potential for size- or age-related variation in competition and facilitation. PMID:23738758

  6. Historical and anthropogenic factors affecting the population genetic structure of Ontario's inland lake populations of Walleye (Sander vitreus).

    PubMed

    Walter, Ryan P; Cena, Christopher J; Morgan, George E; Heath, Daniel D

    2012-01-01

    Populations existing in formerly glaciated areas often display composite historical and contemporary patterns of genetic structure. For Canadian freshwater fishes, population genetic structure is largely reflective of dispersal from glacial refugia and isolation within drainage basins across a range of scales. Enhancement of sport fisheries via hatchery stocking programs and other means has the potential to alter signatures of natural evolutionary processes. Using 11 microsatellite loci genotyped from 2182 individuals, we analyzed the genetic structure of 46 inland lake walleye (Sander vitreus) populations spanning five major drainage basins within the province of Ontario, Canada. Population genetic analyses coupled with genotype assignment allowed us to: 1) characterize broad- and fine-scale genetic structure among Ontario walleye populations; and 2) determine if the observed population divergence is primarily due to natural or historical processes, or recent anthropogenic events. The partitioning of genetic variation revealed higher genetic divergence among lakes than among drainage basins or proposed ancestries-indicative of relatively high isolation among lakes, study-wide. Walleye genotypes were clustered into three major groups, likely reflective of Missourian, Mississippian, and Atlantic glacial refugial ancestry. Despite detectable genetic signatures indicative of anthropogenic influences, province-wide spatial genetic structure remains consistent with the hypothesis of dispersal from distinct glacial refugia and subsequent isolation of lakes within primary drainage basins. Our results provide a novel example of minimal impacts from fishery enhancement to the broad-scale genetic structure of inland fish populations. PMID:23125407

  7. Mining-caused changes to habitat structure affect amphibian and reptile population ecology more than metal pollution.

    PubMed

    Sasaki, Kiyoshi; Lesbarrères, David; Watson, Glen; Litzgus, Jacqueline

    2015-12-01

    Emissions from smelting not only contaminate water and soil with metals, but also induce extensive forest dieback and changes in resource availability and microclimate. The relative effects of such co-occurring stressors are often unknown, but this information is imperative in developing targeted restoration strategies. We assessed the role and relative effects of structural alterations of terrestrial habitat and metal pollution caused by century-long smelting operations on amphibian and reptile communities by collecting environmental and time- and area-standardized multivariate abundance data along three spatially replicated impact gradients. Overall, species richness, diversity, and abundance declined progressively with increasing levels of metals (As, Cu, and Ni) and soil temperature (T(s)) and decreasing canopy cover, amount of coarse woody debris (CWD), and relative humidity (RH). The composite habitat variable (which included canopy cover, CWD, T(s), and RH) was more strongly associated with most response metrics than the composite metal variable (As, Cu, and Ni), and canopy cover alone explained 19-74% of the variance. Moreover, species that use terrestrial habitat for specific behaviors (e.g., hibernation, dispersal), especially forest-dependent species, were more severely affected than largely aquatic species. These results suggest that structural alterations of terrestrial habitat and concomitant changes in the resource availability and microclimate have stronger effects than metal pollution per se. Furthermore, much of the variation in response metrics was explained by the joint action of several environmental variables, implying synergistic effects (e.g., exacerbation of metal toxicity by elevated temperatures in sites with reduced canopy cover). We thus argue that the restoration of terrestrial habitat conditions is a key to successful recovery of herpetofauna communities in smelting-altered landscapes. PMID:26910952

  8. Evolutionary dynamics in structured populations

    PubMed Central

    Nowak, Martin A.; Tarnita, Corina E.; Antal, Tibor

    2010-01-01

    Evolutionary dynamics shape the living world around us. At the centre of every evolutionary process is a population of reproducing individuals. The structure of that population affects evolutionary dynamics. The individuals can be molecules, cells, viruses, multicellular organisms or humans. Whenever the fitness of individuals depends on the relative abundance of phenotypes in the population, we are in the realm of evolutionary game theory. Evolutionary game theory is a general approach that can describe the competition of species in an ecosystem, the interaction between hosts and parasites, between viruses and cells, and also the spread of ideas and behaviours in the human population. In this perspective, we review the recent advances in evolutionary game dynamics with a particular emphasis on stochastic approaches in finite sized and structured populations. We give simple, fundamental laws that determine how natural selection chooses between competing strategies. We study the well-mixed population, evolutionary graph theory, games in phenotype space and evolutionary set theory. We apply these results to the evolution of cooperation. The mechanism that leads to the evolution of cooperation in these settings could be called ‘spatial selection’: cooperators prevail against defectors by clustering in physical or other spaces. PMID:20008382

  9. Ordering structured populations in multiplayer cooperation games

    PubMed Central

    Peña, Jorge; Wu, Bin; Traulsen, Arne

    2016-01-01

    Spatial structure greatly affects the evolution of cooperation. While in two-player games the condition for cooperation to evolve depends on a single structure coefficient, in multiplayer games the condition might depend on several structure coefficients, making it difficult to compare different population structures. We propose a solution to this issue by introducing two simple ways of ordering population structures: the containment order and the volume order. If population structure is greater than population structure in the containment or the volume order, then can be considered a stronger promoter of cooperation. We provide conditions for establishing the containment order, give general results on the volume order, and illustrate our theory by comparing different models of spatial games and associated update rules. Our results hold for a large class of population structures and can be easily applied to specific cases once the structure coefficients have been calculated or estimated. PMID:26819335

  10. Evolutionary dynamics in set structured populations

    PubMed Central

    Tarnita, Corina E.; Antal, Tibor; Ohtsuki, Hisashi; Nowak, Martin A.

    2009-01-01

    Evolutionary dynamics are strongly affected by population structure. The outcome of an evolutionary process in a well-mixed population can be very different from that in a structured population. We introduce a powerful method to study dynamical population structure: evolutionary set theory. The individuals of a population are distributed over sets. Individuals interact with others who are in the same set. Any 2 individuals can have several sets in common. Some sets can be empty, whereas others have many members. Interactions occur in terms of an evolutionary game. The payoff of the game is interpreted as fitness. Both the strategy and the set memberships change under evolutionary updating. Therefore, the population structure itself is a consequence of evolutionary dynamics. We construct a general mathematical approach for studying any evolutionary game in set structured populations. As a particular example, we study the evolution of cooperation and derive precise conditions for cooperators to be selected over defectors. PMID:19433793

  11. Association mapping in structured populations.

    PubMed

    Pritchard, J K; Stephens, M; Rosenberg, N A; Donnelly, P

    2000-07-01

    The use, in association studies, of the forthcoming dense genomewide collection of single-nucleotide polymorphisms (SNPs) has been heralded as a potential breakthrough in the study of the genetic basis of common complex disorders. A serious problem with association mapping is that population structure can lead to spurious associations between a candidate marker and a phenotype. One common solution has been to abandon case-control studies in favor of family-based tests of association, such as the transmission/disequilibrium test (TDT), but this comes at a considerable cost in the need to collect DNA from close relatives of affected individuals. In this article we describe a novel, statistically valid, method for case-control association studies in structured populations. Our method uses a set of unlinked genetic markers to infer details of population structure, and to estimate the ancestry of sampled individuals, before using this information to test for associations within subpopulations. It provides power comparable with the TDT in many settings and may substantially outperform it if there are conflicting associations in different subpopulations. PMID:10827107

  12. Genotyping-by-sequencing approach indicates geographic distance as the main factor affecting genetic structure and gene flow in Brazilian populations of Grapholita molesta (Lepidoptera, Tortricidae).

    PubMed

    Silva-Brandão, Karina Lucas; Silva, Oscar Arnaldo Batista Neto E; Brandão, Marcelo Mendes; Omoto, Celso; Sperling, Felix A H

    2015-06-01

    The oriental fruit moth Grapholita molesta is one of the major pests of stone and pome fruit species in Brazil. Here, we applied 1226 SNPs obtained by genotyping-by-sequencing to test whether host species associations or other factors such as geographic distance structured populations of this pest. Populations from the main areas of occurrence of G. molesta were sampled principally from peach and apple orchards. Three main clusters were recovered by neighbor-joining analysis, all defined by geographic proximity between sampling localities. Overall genetic structure inferred by a nonhierarchical amova resulted in a significant ΦST value = 0.19109. Here, we demonstrate for the first time that SNPs gathered by genotyping-by-sequencing can be used to infer genetic structure of a pest insect in Brazil; moreover, our results indicate that those markers are very informative even over a restricted geographic scale. We also demonstrate that host plant association has little effect on genetic structure among Brazilian populations of G. molesta; on the other hand, reduced gene flow promoted by geographic isolation has a stronger impact on population differentiation. PMID:26029261

  13. Genotyping-by-sequencing approach indicates geographic distance as the main factor affecting genetic structure and gene flow in Brazilian populations of Grapholita molesta (Lepidoptera, Tortricidae)

    PubMed Central

    Silva-Brandão, Karina Lucas; Silva, Oscar Arnaldo Batista Neto e; Brandão, Marcelo Mendes; Omoto, Celso; Sperling, Felix A H

    2015-01-01

    The oriental fruit moth Grapholita molesta is one of the major pests of stone and pome fruit species in Brazil. Here, we applied 1226 SNPs obtained by genotyping-by-sequencing to test whether host species associations or other factors such as geographic distance structured populations of this pest. Populations from the main areas of occurrence of G. molesta were sampled principally from peach and apple orchards. Three main clusters were recovered by neighbor-joining analysis, all defined by geographic proximity between sampling localities. Overall genetic structure inferred by a nonhierarchical amova resulted in a significant ΦST value = 0.19109. Here, we demonstrate for the first time that SNPs gathered by genotyping-by-sequencing can be used to infer genetic structure of a pest insect in Brazil; moreover, our results indicate that those markers are very informative even over a restricted geographic scale. We also demonstrate that host plant association has little effect on genetic structure among Brazilian populations of G. molesta; on the other hand, reduced gene flow promoted by geographic isolation has a stronger impact on population differentiation. PMID:26029261

  14. Past climate change and recent anthropogenic activities affect genetic structure and population demography of the greater long-tailed hamster in northern China.

    PubMed

    Ye, Junbin; Xiao, Zhenlong; Li, Chuanhai; Wang, Fusheng; Liao, Jicheng; Fu, Jinzhong; Zhang, Zhibin

    2015-09-01

    The genetic diversity and the spatial structure of a species are likely consequences of both past and recent evolutionary processes, but relevant studies are still rare in East Asia where the Pleistocene climate has unique influences. In this study, we examined the impact of past climate change and recent anthropogenic activities on the genetic structure and population size of the greater long-tailed hamster (Tscherskia triton), an agricultural rodent pest species in northern China. DNA sequence data of 2 mitochondrial genes and genotypic data of 11 microsatellite DNA loci from 41 populations (545 individuals) were gathered. Phylogenetic and population genetic analyses, as well as species distribution modeling and coalescent simulations, were conducted to infer its historical and demographic patterns and processes. Two deeply diverged mitochondrial clades were recovered. A small one was restricted to the Shandong Peninsula while the main clade was further divided into 3 geographic clusters by their microsatellite DNA genotypes: Northwest, North-center and Northeast. Divergence dating indicated a Middle-to-Late Pleistocene divergence between the 2 clades. Demographic analysis indicated that all 3 and pooled populations showed consistent long-period expansions during last glacial period; but not during the Holocene, probably due to the impact of climate warming and human disturbances. Conflicting patterns between mtDNA and microsatellite markers imply an anthropogenic impact on North-center populations due to intensified agricultural cultivation in this region. Our study demonstrated that the impact of past glaciation on organisms in East Asia significantly differs from that of Europe and North America, and human activity is an important factor in determining the genetic diversity of a species, as well as its spatial structure. PMID:26202859

  15. Structural dynamics and ecology of flatfish populations

    NASA Astrophysics Data System (ADS)

    Bailey, Kevin M.

    1997-11-01

    The concept of structure in populations of marine fishes is fundamental to how we manage and conduct research on these resources. The degree of population structure ranges widely among flatfishes. Although we know that large populations tend to be subdivided into local populations, based on morphological, meristic and reproductive characteristics, these data often conflict with evidence on genetic stock structure, due to the scale and organization of movement within the metapopulation. Movement of individuals between local subpopulations and colonization events on a macroecological scale are probably important to some flatfish populations. Dispersal of larvae is known to be a major factor affecting population mixing. Some flatfishes have planktonic stages of long duration and for these species there is often, but not always, little population structure; gene flow sometimes may be limited by oceanographic features, such as eddies and fronts. At the juvenile stage dispersal can result in colonization of under-utilized habitats; however, for flatfishes with strong habitat requirements, this type of event may be less likely when suitable habitats are fragmented. Complex population structure has major implications for management, e.g. lumping harvested populations with little gene flow can have detrimental local effects. Moreover, the issue of population structure and movement influences the interpretation of research data, where populations are generally treated as closed systems. There is currently a strong need for a multidisciplinary approach to study fish population dynamics and the structure of their populations. This research should involve molecular geneticists, population geneticists, animal behaviourists and ecologists. Migration mechanisms, colonization and extinction events, gene flow and density-dependent movements are subject areas of great importance to managing large harvested populations, but our understanding of them at ecological scales, at least for

  16. Effective population size and population subdivision in demographically structured populations.

    PubMed Central

    Laporte, Valérie; Charlesworth, Brian

    2002-01-01

    A fast-timescale approximation is applied to the coalescent process in a single population, which is demographically structured by sex and/or age. This provides a general expression for the probability that a pair of alleles sampled from the population coalesce in the previous time interval. The effective population size is defined as the reciprocal of twice the product of generation time and the coalescence probability. Biologically explicit formulas for effective population size with discrete generations and separate sexes are derived for a variety of different modes of inheritance. The method is also applied to a nuclear gene in a population of partially self-fertilizing hermaphrodites. The effects of population subdivision on a demographically structured population are analyzed, using a matrix of net rates of movement of genes between different local populations. This involves weighting the migration probabilities of individuals of a given age/sex class by the contribution of this class to the leading left eigenvector of the matrix describing the movements of genes between age/sex classes. The effects of sex-specific migration and nonrandom distributions of offspring number on levels of genetic variability and among-population differentiation are described for different modes of inheritance in an island model. Data on DNA sequence variability in human and plant populations are discussed in the light of the results. PMID:12242257

  17. Thlaspi caerulescens (Brassicaceae) population genetics in western Switzerland: is the genetic structure affected by natural variation of soil heavy metal concentrations?

    PubMed

    Besnard, Guillaume; Basic, Nevena; Christin, Pascal-Antoine; Savova-Bianchi, Dessislava; Galland, Nicole

    2009-03-01

    Thlaspi caerulescens (Brassicaceae) is a promising plant model with which to study heavy metal hyperaccumulation. Population genetics studies are necessary for a better understanding of its history, which will be useful for further genomic studies on the evolution of heavy metal hyperaccumulation.The genetic structure of 24 natural Swiss locations was investigated using nuclear and plastid loci. Population genetics parameters were estimated and genetic pools were identified using Bayesian inference on eight putatively neutral nuclear loci.Finally, the effect of cadmium (Cd) and zinc (Zn) soil concentrations on genetic differentiation at loci located in genes putatively involved in heavy metal responses was examined using partial Mantel tests in Jura, western Switzerland.Four main genetic clusters were recognized based on nuclear and plastid loci,which gave mostly congruent signals. In Jura, genetic differentiation linked to heavy metal concentrations in soil was shown at some candidate loci, particularly for genes encoding metal transporters. This suggests that natural selection limits gene flow between metalliferous and non metalliferous locations at such loci.Strong historical factors explain the present genetic structure of Swiss T. caerulescens populations, which has to be considered in studies testing for relationships between environmental and genetic variations. Linking of genetic differentiation at candidate genes with soil characteristics offers new perspectives in the study of heavy metal hyperaccumulation. PMID:19076982

  18. Individual difference variables, affective differentiation, and the structures of affect.

    PubMed

    Terracciano, Antonio; McCrae, Robert R; Hagemann, Dirk; Costa, Paul T

    2003-10-01

    Methodological arguments are usually invoked to explain variations in the structure of affect. Using self-rated affect from Italian samples (N=600), we show that individual difference variables related to affective differentiation can moderate the observed structure. Indices of circumplexity and congruence coefficients to the hypothesized target were used to quantify the observed structures. Results did not support the circumplex model as a universal structure. A circular structure with axes of activation and valence was approximated only among more affectively differentiated groups: students and respondents with high scores on Openness to Feelings and measures of negative emotionality. A different structure, with unipolar Positive Affect and Negative Affect factors, was observed among adults and respondents with low Openness to Feelings and negative emotionality. The observed structure of affect will depend in part on the nature of the sample studied. PMID:12932207

  19. Individual Difference Variables, Affective Differentiation, and the Structures of Affect

    PubMed Central

    Terracciano, Antonio; McCrae, Robert R.; Hagemann, Dirk; Costa, Paul T.

    2008-01-01

    Methodological arguments are usually invoked to explain variations in the structure of affect. Using self-rated affect from Italian samples (N = 600), we show that individual difference variables related to affective differentiation can moderate the observed structure. Indices of circumplexity (Browne, 1992) and congruence coefficients to the hypothesized target were used to quantify the observed structures. Results did not support the circumplex model as a universal structure. A circular structure with axes of activation and valence was approximated only among more affectively differentiated groups: students and respondents with high scores on Openness to Feelings and measures of negative emotionality. A different structure, with unipolar Positive Affect and Negative Affect factors, was observed among adults and respondents with low Openness to Feelings and negative emotionality. The observed structure of affect will depend in part on the nature of the sample studied. PMID:12932207

  20. Between-Population Outbreeding Affects Plant Defence

    PubMed Central

    Leimu, Roosa; Fischer, Markus

    2010-01-01

    Between-population crosses may replenish genetic variation of populations, but may also result in outbreeding depression. Apart from direct effects on plant fitness, these outbreeding effects can also alter plant-herbivore interactions by influencing plant tolerance and resistance to herbivory. We investigated effects of experimental within- and between-population outbreeding on herbivore resistance, tolerance and plant fitness using plants from 13 to 19 Lychnis flos-cuculi populations. We found no evidence for outbreeding depression in resistance reflected by the amount of leaf area consumed. However, herbivore performance was greater when fed on plants from between-population compared to within-population crosses. This can reflect outbreeding depression in resistance and/or outbreeding effects on plant quality for the herbivores. The effects of type of cross on the relationship between herbivore damage and plant fitness varied among populations. This demonstrates how between-population outbreeding effects on tolerance range from outbreeding depression to outbreeding benefits among plant populations. Finally, herbivore damage strengthened the observed outbreeding effects on plant fitness in several populations. These results raise novel considerations on the impact of outbreeding on the joint evolution of resistance and tolerance, and on the evolution of multiple defence strategies. PMID:20838662

  1. How Population Growth Affects Linkage Disequilibrium

    PubMed Central

    Rogers, Alan R.

    2014-01-01

    The “LD curve” relates the linkage disequilibrium (LD) between pairs of nucleotide sites to the distance that separates them along the chromosome. The shape of this curve reflects natural selection, admixture between populations, and the history of population size. This article derives new results about the last of these effects. When a population expands in size, the LD curve grows steeper, and this effect is especially pronounced following a bottleneck in population size. When a population shrinks, the LD curve rises but remains relatively flat. As LD converges toward a new equilibrium, its time path may not be monotonic. Following an episode of growth, for example, it declines to a low value before rising toward the new equilibrium. These changes happen at different rates for different LD statistics. They are especially slow for estimates of σd2, which therefore allow inferences about ancient population history. For the human population of Europe, these results suggest a history of population growth. PMID:24907258

  2. How Resource Phenology Affects Consumer Population Dynamics.

    PubMed

    Bewick, Sharon; Cantrell, R Stephen; Cosner, Chris; Fagan, William F

    2016-02-01

    Climate change drives uneven phenology shifts across taxa, and this can result in changes to the phenological match between interacting species. Shifts in the relative phenology of partner species are well documented, but few studies have addressed the effects of such changes on population dynamics. To explore this, we develop a phenologically explicit model describing consumer-resource interactions. Focusing on scenarios for univoltine insects, we show how changes in resource phenology can be reinterpreted as transformations in the year-to-year recursion relationships defining consumer population dynamics. This perspective provides a straightforward path for interpreting the long-term population consequences of phenology change. Specifically, by relating the outcome of phenological shifts to species traits governing recursion relationships (e.g., consumer fecundity or competitive scenario), we demonstrate how changes in relative phenology can force systems into different dynamical regimes, with major implications for resource management, conservation, and other areas of applied dynamics. PMID:26807744

  3. How Colored Environmental Noise Affects Population Extinction

    NASA Astrophysics Data System (ADS)

    Kamenev, Alex; Meerson, Baruch; Shklovskii, Boris

    2008-12-01

    Environmental noise can cause an exponential reduction in the mean time to extinction (MTE) of an isolated population. We study this effect on an example of a stochastic birth-death process with rates modulated by a colored (that is, correlated) Gaussian noise. A path integral formulation yields a transparent way of evaluating the MTE and finding the optimal realization of the environmental noise that determines the most probable path to extinction. The population-size dependence of the MTE changes from exponential in the absence of the environmental noise to a power law for a short-correlated noise and to no dependence for long-correlated noise. We also establish the validity domains of the white-noise limit and adiabatic limit.

  4. Strategy selection in structured populations

    PubMed Central

    Tarnita, Corina E.; Ohtsuki, Hisashi; Antal, Tibor; Fu, Feng; Nowak, Martin A.

    2009-01-01

    Evolutionary game theory studies frequency dependent selection. The fitness of a strategy is not constant, but depends on the relative frequencies of strategies in the population. This type of evolutionary dynamics occurs in many settings of ecology, infectious disease dynamics, animal behavior and social interactions of humans. Traditionally evolutionary game dynamics are studied in well-mixed populations, where the interaction between any two individuals is equally likely. There have also been several approaches to study evolutionary games in structured populations. In this paper we present a simple result that holds for a large variety of population structures. We consider the game between two strategies, A and B, described by the payoff matrix (abcd). We study a mutation and selection process. If the payoffs are linear in a, b, c, d, then for weak selection strategy A is favored over B if and only if σa + b > c + σd. This means the effect of population structure on strategy selection can be described by a single parameter, σ. We present the values of σ for various examples including the well-mixed population, games on graphs and games in phenotype space. We give a proof for the existence of such a σ, which holds for all population structures and update rules that have certain (natural) properties. We assume weak selection, but allow any mutation rate. We discuss the relationship between σ and the critical benefit to cost ratio for the evolution of cooperation. The single parameter, σ, allows us to quantify the ability of a population structure to promote the evolution of cooperation or to choose efficient equilibria in coordination games. PMID:19358858

  5. Strategy selection in structured populations.

    PubMed

    Tarnita, Corina E; Ohtsuki, Hisashi; Antal, Tibor; Fu, Feng; Nowak, Martin A

    2009-08-01

    Evolutionary game theory studies frequency dependent selection. The fitness of a strategy is not constant, but depends on the relative frequencies of strategies in the population. This type of evolutionary dynamics occurs in many settings of ecology, infectious disease dynamics, animal behavior and social interactions of humans. Traditionally evolutionary game dynamics are studied in well-mixed populations, where the interaction between any two individuals is equally likely. There have also been several approaches to study evolutionary games in structured populations. In this paper we present a simple result that holds for a large variety of population structures. We consider the game between two strategies, A and B, described by the payoff matrix(abcd). We study a mutation and selection process. For weak selection strategy A is favored over B if and only if sigma a+b>c+sigma d. This means the effect of population structure on strategy selection can be described by a single parameter, sigma. We present the values of sigma for various examples including the well-mixed population, games on graphs, games in phenotype space and games on sets. We give a proof for the existence of such a sigma, which holds for all population structures and update rules that have certain (natural) properties. We assume weak selection, but allow any mutation rate. We discuss the relationship between sigma and the critical benefit to cost ratio for the evolution of cooperation. The single parameter, sigma, allows us to quantify the ability of a population structure to promote the evolution of cooperation or to choose efficient equilibria in coordination games. PMID:19358858

  6. Genealogical histories in structured populations.

    PubMed

    Kumagai, Seiji; Uyenoyama, Marcy K

    2015-06-01

    In genealogies of genes sampled from structured populations, lineages coalesce at rates dependent on the states of the lineages. For migration and coalescence events occurring on comparable time scales, for example, only lineages residing in the same deme of a geographically subdivided population can have descended from a common ancestor in the immediately preceding generation. Here, we explore aspects of genealogical structure in a population comprising two demes, between which migration may occur. We use generating functions to obtain exact densities and moments of coalescence time, number of mutations, total tree length, and age of the most recent common ancestor of the sample. We describe qualitative features of the distribution of gene genealogies, including factors that influence the geographical location of the most recent common ancestor and departures of the distribution of internode lengths from exponential. PMID:25770971

  7. Genetic structure of forensic populations.

    PubMed Central

    Morton, N E

    1992-01-01

    DNA-based identification depends on the probability that two different individuals have the same phenotype, which is given by kinship theory. Together with the large and consistent body of evidence on human population structure, kinship theory provides a sound basis for forensic use of DNA markers. PMID:1557360

  8. Resveratrol Does Not Affect Health, Longevity in Population Study

    MedlinePlus

    ... You are here Home Resveratrol does not affect health, longevity in population study May 16, 2014 Resveratrol, ... disease. Researchers have found it to improve the health (and in some cases, longevity) of animals, including ...

  9. Spatial population structure of Yellowstone bison

    USGS Publications Warehouse

    Olexa, E.M.; Gogan, P.J.P.

    2007-01-01

    Increases in Yellowstone National Park, USA, bison (Bison bison) numbers and shifts in seasonal distribution have resulted in more frequent movements of bison beyond park boundaries and development of an interagency management plan for the Yellowstone bison population. Implementation of the plan under the adaptive management paradigm requires an understanding of the spatial and temporal structure of the population. We used polythetic agglomerative hierarchical cluster analysis of radiolocations obtained from free-ranging bison to investigate seasonal movements and aggregations. We classified radiolocations into 4 periods: annual, peak rut (15 Jul-15 Sep), extended rut (1 Jun-31 Oct), and winter (1 Nov-31 May). We documented spatial separation of Yellowstone bison into 2 segments, the northern and central herds, during all periods. The estimated year-round exchange rate (4.85-5.83%) of instrumented bison varied with the fusion strategy employed. We did not observe exchange between the 2 segments during the peak rut and it varied during the extended rut (2.15-3.23%). We estimated a winter exchange of 4.85-7.77%. The outcome and effectiveness of management actions directed at Yellowstone bison may be affected by spatial segregation and herd affinity within the population. Reductions based on total population size, but not applied to the entire population, may adversely affect one herd while having little effect on the other. Similarly, management actions targeting a segment of the population may benefit from the spatial segregation exhibited.

  10. The influence of gender and self-efficacy on healthy eating in a low-income urban population affected by structural changes to the food environment.

    PubMed

    Robles, Brenda; Smith, Lisa V; Ponce, Mirna; Piron, Jennifer; Kuo, Tony

    2014-01-01

    Although U.S. obesity prevention efforts have begun to implement a variety of system and environmental change strategies to address the underlying socioecological barriers to healthy eating, factors which can impede or facilitate community acceptance of such interventions are often poorly understood. This is due, in part, to the paucity of subpopulation health data that are available to help guide local planning and decision-making. We contribute to this gap in practice by examining area-specific health data for a population targeted by federally funded nutrition interventions in Los Angeles County. Using data from a local health assessment that collected information on sociodemographics, self-reported health behaviors, and objectively measured height, weight, and blood pressure for a subset of low-income adults (n = 720), we compared health risks and predictors of healthy eating across at-risk groups using multivariable modeling analyses. Our main findings indicate being a woman and having high self-efficacy in reading Nutrition Facts labels were strong predictors of healthy eating (P < 0.05). These findings suggest that intervening with women may help increase the reach of these nutrition interventions, and that improving self-efficacy in healthy eating through public education and/or by other means can help prime at-risk groups to accept and take advantage of these food environment changes. PMID:24800064

  11. Multiple strategies in structured populations

    PubMed Central

    Tarnita, Corina E.; Wage, Nicholas; Nowak, Martin A.

    2011-01-01

    Many specific models have been proposed to study evolutionary game dynamics in structured populations, but most analytical results so far describe the competition of only two strategies. Here we derive a general result that holds for any number of strategies, for a large class of population structures under weak selection. We show that for the purpose of strategy selection any evolutionary process can be characterized by two key parameters that are coefficients in a linear inequality containing the payoff values. These structural coefficients, σ1 and σ2, depend on the particular process that is being studied, but not on the number of strategies, n, or the payoff matrix. For calculating these structural coefficients one has to investigate games with three strategies, but more are not needed. Therefore, n = 3 is the general case. Our main result has a geometric interpretation: Strategy selection is determined by the sum of two terms, the first one describing competition on the edges of the simplex and the second one in the center. Our formula includes all known weak selection criteria of evolutionary games as special cases. As a specific example we calculate games on sets and explore the synergistic interaction between direct reciprocity and spatial selection. We show that for certain parameter values both repetition and space are needed to promote evolution of cooperation. PMID:21257906

  12. Pseudomonas aeruginosa Population Structure Revisited

    PubMed Central

    Pirnay, Jean-Paul; Bilocq, Florence; Pot, Bruno; Cornelis, Pierre; Zizi, Martin; Van Eldere, Johan; Deschaght, Pieter; Vaneechoutte, Mario; Jennes, Serge; Pitt, Tyrone; De Vos, Daniel

    2009-01-01

    At present there are strong indications that Pseudomonas aeruginosa exhibits an epidemic population structure; clinical isolates are indistinguishable from environmental isolates, and they do not exhibit a specific (disease) habitat selection. However, some important issues, such as the worldwide emergence of highly transmissible P. aeruginosa clones among cystic fibrosis (CF) patients and the spread and persistence of multidrug resistant (MDR) strains in hospital wards with high antibiotic pressure, remain contentious. To further investigate the population structure of P. aeruginosa, eight parameters were analyzed and combined for 328 unrelated isolates, collected over the last 125 years from 69 localities in 30 countries on five continents, from diverse clinical (human and animal) and environmental habitats. The analysed parameters were: i) O serotype, ii) Fluorescent Amplified-Fragment Length Polymorphism (FALFP) pattern, nucleotide sequences of outer membrane protein genes, iii) oprI, iv) oprL, v) oprD, vi) pyoverdine receptor gene profile (fpvA type and fpvB prevalence), and prevalence of vii) exoenzyme genes exoS and exoU and viii) group I pilin glycosyltransferase gene tfpO. These traits were combined and analysed using biological data analysis software and visualized in the form of a minimum spanning tree (MST). We revealed a network of relationships between all analyzed parameters and non-congruence between experiments. At the same time we observed several conserved clones, characterized by an almost identical data set. These observations confirm the nonclonal epidemic population structure of P. aeruginosa, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise. One of these clones is the renown and widespread MDR serotype O12 clone. On the other hand, we found no evidence for a widespread CF transmissible clone. All but one of the 43 analysed CF strains belonged to a ubiquitous P

  13. Predicting when climate-driven phenotypic change affects population dynamics.

    PubMed

    McLean, Nina; Lawson, Callum R; Leech, Dave I; van de Pol, Martijn

    2016-06-01

    Species' responses to climate change are variable and diverse, yet our understanding of how different responses (e.g. physiological, behavioural, demographic) relate and how they affect the parameters most relevant for conservation (e.g. population persistence) is lacking. Despite this, studies that observe changes in one type of response typically assume that effects on population dynamics will occur, perhaps fallaciously. We use a hierarchical framework to explain and test when impacts of climate on traits (e.g. phenology) affect demographic rates (e.g. reproduction) and in turn population dynamics. Using this conceptual framework, we distinguish four mechanisms that can prevent lower-level responses from impacting population dynamics. Testable hypotheses were identified from the literature that suggest life-history and ecological characteristics which could predict when these mechanisms are likely to be important. A quantitative example on birds illustrates how, even with limited data and without fully-parameterized population models, new insights can be gained; differences among species in the impacts of climate-driven phenological changes on population growth were not explained by the number of broods or density dependence. Our approach helps to predict the types of species in which climate sensitivities of phenotypic traits have strong demographic and population consequences, which is crucial for conservation prioritization of data-deficient species. PMID:27062059

  14. Rate of language evolution is affected by population size.

    PubMed

    Bromham, Lindell; Hua, Xia; Fitzpatrick, Thomas G; Greenhill, Simon J

    2015-02-17

    The effect of population size on patterns and rates of language evolution is controversial. Do languages with larger speaker populations change faster due to a greater capacity for innovation, or do smaller populations change faster due to more efficient diffusion of innovations? Do smaller populations suffer greater loss of language elements through founder effects or drift, or do languages with more speakers lose features due to a process of simplification? Revealing the influence of population size on the tempo and mode of language evolution not only will clarify underlying mechanisms of language change but also has practical implications for the way that language data are used to reconstruct the history of human cultures. Here, we provide, to our knowledge, the first empirical, statistically robust test of the influence of population size on rates of language evolution, controlling for the evolutionary history of the populations and formally comparing the fit of different models of language evolution. We compare rates of gain and loss of cognate words for basic vocabulary in Polynesian languages, an ideal test case with a well-defined history. We demonstrate that larger populations have higher rates of gain of new words whereas smaller populations have higher rates of word loss. These results show that demographic factors can influence rates of language evolution and that rates of gain and loss are affected differently. These findings are strikingly consistent with general predictions of evolutionary models. PMID:25646448

  15. Rate of language evolution is affected by population size

    PubMed Central

    Bromham, Lindell; Hua, Xia; Fitzpatrick, Thomas G.; Greenhill, Simon J.

    2015-01-01

    The effect of population size on patterns and rates of language evolution is controversial. Do languages with larger speaker populations change faster due to a greater capacity for innovation, or do smaller populations change faster due to more efficient diffusion of innovations? Do smaller populations suffer greater loss of language elements through founder effects or drift, or do languages with more speakers lose features due to a process of simplification? Revealing the influence of population size on the tempo and mode of language evolution not only will clarify underlying mechanisms of language change but also has practical implications for the way that language data are used to reconstruct the history of human cultures. Here, we provide, to our knowledge, the first empirical, statistically robust test of the influence of population size on rates of language evolution, controlling for the evolutionary history of the populations and formally comparing the fit of different models of language evolution. We compare rates of gain and loss of cognate words for basic vocabulary in Polynesian languages, an ideal test case with a well-defined history. We demonstrate that larger populations have higher rates of gain of new words whereas smaller populations have higher rates of word loss. These results show that demographic factors can influence rates of language evolution and that rates of gain and loss are affected differently. These findings are strikingly consistent with general predictions of evolutionary models. PMID:25646448

  16. Population structure and the rate of evolution.

    PubMed

    Wei, Xinzhu; Zhao, Lei; Lascoux, Martin; Waxman, David

    2015-01-21

    The way population size, population structure (with migration), and spatially dependent selection (where there is no globally optimal allele), combine to affect the substitution rate is poorly understood. Here, we consider a two patch model where mutant alleles are beneficial in one patch and deleterious in the other patch. We assume that the spatial average of selection on mutant alleles is zero. We take each patch to maintain a finite number of N adults each generation, hence random genetic drift can independently occur in each patch. We show that the principal way the population size, N, when large, affects the substitution rate, R∞, is through its dependence on two composite parameters. These are the scaled migration rate M (∝ population size × migration rate), and the scaled selection intensity S (∝population size × beneficial effect of a mutant). Any relation between S and M that arises for ecological/evolutionary reasons can strongly influence the way the substitution rate, R∞, depends on the population size, N. In the simplest situation, both M and S are proportional to N, and this is shown to lead to R∞ increasing with N when S is not large. The behaviour, that R∞ increases with N, is not inevitable; a more complex relation between S and M can lead to the opposite or other behaviours. In particular, let us assume that dM/dN is positive, as would occur if the migration rate were constant, S is not large, and S depends on M (i.e., S=S(M)). We then find that if S(M) satisfies S(M)>((1+M)/1+2M)S(0) then the substitution rate, R∞, increases with N, but if S(M)<((1+M)/1+2M)S(0) then R∞ decreases with N. PMID:25451534

  17. Direct reciprocity in structured populations

    PubMed Central

    van Veelen, Matthijs; García, Julián; Rand, David G.; Nowak, Martin A.

    2012-01-01

    Reciprocity and repeated games have been at the center of attention when studying the evolution of human cooperation. Direct reciprocity is considered to be a powerful mechanism for the evolution of cooperation, and it is generally assumed that it can lead to high levels of cooperation. Here we explore an open-ended, infinite strategy space, where every strategy that can be encoded by a finite state automaton is a possible mutant. Surprisingly, we find that direct reciprocity alone does not lead to high levels of cooperation. Instead we observe perpetual oscillations between cooperation and defection, with defection being substantially more frequent than cooperation. The reason for this is that “indirect invasions” remove equilibrium strategies: every strategy has neutral mutants, which in turn can be invaded by other strategies. However, reciprocity is not the only way to promote cooperation. Another mechanism for the evolution of cooperation, which has received as much attention, is assortment because of population structure. Here we develop a theory that allows us to study the synergistic interaction between direct reciprocity and assortment. This framework is particularly well suited for understanding human interactions, which are typically repeated and occur in relatively fluid but not unstructured populations. We show that if repeated games are combined with only a small amount of assortment, then natural selection favors the behavior typically observed among humans: high levels of cooperation implemented using conditional strategies. PMID:22665767

  18. FACTORS ADVERSELY AFFECTING AMPHIBIAN POPULATIONS IN THE US

    EPA Science Inventory

    Factors known or suspected to be adversely affecting native amphibian populations in the US were identified using information from species accounts written in a standardized format by multiple authors in a forthcoming book. Specific adverse factors were identified for 53 (58%) of...

  19. 75 FR 51273 - Expanded Human Immunodeficiency Virus (HIV) Testing for Disproportionately Affected Populations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ... (HIV) Testing for Disproportionately Affected Populations AGENCY: Centers for Disease Control and... Affected Populations''. Additional funding from the Patient Protection and Affordable Care Act has been... (HIV) Testing for Disproportionately Affected Populations'' to make awards to state and county...

  20. Can coyotes affect deer populations in Southeastern North America?

    SciTech Connect

    Kilgo, J., C.; Ray, H., Scott; Ruth, Charles; Miller, Karl, V.

    2010-07-01

    ABSTRACT The coyote (Canis latrans) is a recent addition to the fauna of eastern North America, and in many areas coyote populations have been established for only a decade or two. Although coyotes are known predators of white-tailed deer (Odocoileus virginianus) in their historic range, effects this new predator may have on eastern deer populations have received little attention. We speculated that in the southeastern United States, coyotes may be affecting deer recruitment, and we present 5 lines of evidence that suggest this possibility. First, the statewide deer population in South Carolina has declined coincident with the establishment and increase in the coyote population. Second, data sets from the Savannah River Site (SRS) in South Carolina indicate a new mortality source affecting the deer population concurrent with the increase in coyotes. Third, an index of deer recruitment at SRS declined during the period of increase in coyotes. Fourth, food habits data from SRS indicate that fawns are an important food item for coyotes during summer. Finally, recent research from Alabama documented significant coyote predation on fawns there. Although this evidence does not establish cause and effect between coyotes and observed declines in deer recruitment, we argue that additional research should proactively address this topic in the region. We identified several important questions on the nature of the deer–coyote relationship in the East.

  1. Statistical validation of structured population models for Daphnia magna

    PubMed Central

    Adoteye, Kaska; Banks, H.T.; Cross, Karissa; Eytcheson, Stephanie; Flores, Kevin B.; LeBlanc, Gerald A.; Nguyen, Timothy; Ross, Chelsea; Smith, Emmaline; Stemkovski, Michael; Stokely, Sarah

    2016-01-01

    In this study we use statistical validation techniques to verify density-dependent mechanisms hypothesized for populations of Daphnia magna. We develop structured population models that exemplify specific mechanisms, and use multi-scale experimental data in order to test their importance. We show that fecundity and survival rates are affected by both time-varying density-independent factors, such as age, and density-dependent factors, such as competition. We perform uncertainty analysis and show that our parameters are estimated with a high degree of confidence. Further, we perform a sensitivity analysis to understand how changes in fecundity and survival rates affect population size and age-structure. PMID:26092608

  2. Evolution in Stage-Structured Populations

    PubMed Central

    Barfield, Michael; Holt, Robert D.; Gomulkiewicz, Richard

    2016-01-01

    For many organisms, stage is a better predictor of demographic rates than age. Yet no general theoretical framework exists for understanding or predicting evolution in stage-structured populations. Here, we provide a general modeling approach that can be used to predict evolution and demography of stage-structured populations. This advances our ability to understand evolution in stage-structured populations to a level previously available only for populations structured by age. We use this framework to provide the first rigorous proof that Lande’s theorem, which relates adaptive evolution to population growth, applies to stage-classified populations, assuming only normality and that evolution is slow relative to population dynamics. We extend this theorem to allow for different means or variances among stages. Our next major result is the formulation of Price’s theorem, a fundamental law of evolution, for stage-structured populations. In addition, we use data from Trillium grandiflorum to demonstrate how our models can be applied to a real-world population and thereby show their practical potential to generate accurate projections of evolutionary and population dynamics. Finally, we use our framework to compare rates of evolution in age- versus stage-structured populations, which shows how our methods can yield biological insights about evolution in stage-structured populations. PMID:21460563

  3. The impact of population structure on genomic prediction in stratified populations.

    PubMed

    Guo, Zhigang; Tucker, Dominic M; Basten, Christopher J; Gandhi, Harish; Ersoz, Elhan; Guo, Baohong; Xu, Zhanyou; Wang, Daolong; Gay, Gilles

    2014-03-01

    Impacts of population structure on the evaluation of genomic heritability and prediction were investigated and quantified using high-density markers in diverse panels in rice and maize. Population structure is an important factor affecting estimation of genomic heritability and assessment of genomic prediction in stratified populations. In this study, our first objective was to assess effects of population structure on estimations of genomic heritability using the diversity panels in rice and maize. Results indicate population structure explained 33 and 7.5% of genomic heritability for rice and maize, respectively, depending on traits, with the remaining heritability explained by within-subpopulation variation. Estimates of within-subpopulation heritability were higher than that derived from quantitative trait loci identified in genome-wide association studies, suggesting 65% improvement in genetic gains. The second objective was to evaluate effects of population structure on genomic prediction using cross-validation experiments. When population structure exists in both training and validation sets, correcting for population structure led to a significant decrease in accuracy with genomic prediction. In contrast, when prediction was limited to a specific subpopulation, population structure showed little effect on accuracy and within-subpopulation genetic variance dominated predictions. Finally, effects of genomic heritability on genomic prediction were investigated. Accuracies with genomic prediction increased with genomic heritability in both training and validation sets, with the former showing a slightly greater impact. In summary, our results suggest that the population structure contribution to genomic prediction varies based on prediction strategies, and is also affected by the genetic architectures of traits and populations. In practical breeding, these conclusions may be helpful to better understand and utilize the different genetic resources in genomic

  4. Factors affecting levels of genetic diversity in natural populations.

    PubMed Central

    Amos, W; Harwood, J

    1998-01-01

    Genetic variability is the clay of evolution, providing the base material on which adaptation and speciation depend. It is often assumed that most interspecific differences in variability are due primarily to population size effects, with bottlenecked populations carrying less variability than those of stable size. However, we show that population bottlenecks are unlikely to be the only factor, even in classic case studies such as the northern elephant seal and the cheetah, where genetic polymorphism is virtually absent. Instead, we suggest that the low levels of variability observed in endangered populations are more likely to result from a combination of publication biases, which tend to inflate the level of variability which is considered 'normal', and inbreeding effects, which may hasten loss of variability due to drift. To account for species with large population sizes but low variability we advance three hypotheses. First, it is known that certain metapopulation structures can result in effective population sizes far below the census size. Second, there is increasing evidence that heterozygous sites mutate more frequently than equivalent homozygous sites, plausibly because mismatch repair between homologous chromosomes during meiosis provides extra opportunities to mutate. Such a mechanism would undermine the simple relationship between heterozygosity and effective population size. Third, the fact that related species that differ greatly in variability implies that large amounts of variability can be gained or lost rapidly. We argue that such cases are best explained by rapid loss through a genome-wide selective sweep, and suggest a mechanism by which this could come about, based on forced changes to a control gene inducing coevolution in the genes it controls. Our model, based on meiotic drive in mammals, but easily extended to other systems, would tend to facilitate population isolation by generating molecular incompatabilities. Circumstances can even be

  5. Evolutionary dynamics of general group interactions in structured populations.

    PubMed

    Li, Aming; Broom, Mark; Du, Jinming; Wang, Long

    2016-02-01

    The evolution of populations is influenced by many factors, and the simple classical models have been developed in a number of important ways. Both population structure and multiplayer interactions have been shown to significantly affect the evolution of important properties, such as the level of cooperation or of aggressive behavior. Here we combine these two key factors and develop the evolutionary dynamics of general group interactions in structured populations represented by regular graphs. The traditional linear and threshold public goods games are adopted as models to address the dynamics. We show that for linear group interactions, population structure can favor the evolution of cooperation compared to the well-mixed case, and we see that the more neighbors there are, the harder it is for cooperators to persist in structured populations. We further show that threshold group interactions could lead to the emergence of cooperation even in well-mixed populations. Here population structure sometimes inhibits cooperation for the threshold public goods game, where depending on the benefit to cost ratio, the outcomes are bistability or a monomorphic population of defectors or cooperators. Our results suggest, counterintuitively, that structured populations are not always beneficial for the evolution of cooperation for nonlinear group interactions. PMID:26986362

  6. Evolutionary dynamics of general group interactions in structured populations

    NASA Astrophysics Data System (ADS)

    Li, Aming; Broom, Mark; Du, Jinming; Wang, Long

    2016-02-01

    The evolution of populations is influenced by many factors, and the simple classical models have been developed in a number of important ways. Both population structure and multiplayer interactions have been shown to significantly affect the evolution of important properties, such as the level of cooperation or of aggressive behavior. Here we combine these two key factors and develop the evolutionary dynamics of general group interactions in structured populations represented by regular graphs. The traditional linear and threshold public goods games are adopted as models to address the dynamics. We show that for linear group interactions, population structure can favor the evolution of cooperation compared to the well-mixed case, and we see that the more neighbors there are, the harder it is for cooperators to persist in structured populations. We further show that threshold group interactions could lead to the emergence of cooperation even in well-mixed populations. Here population structure sometimes inhibits cooperation for the threshold public goods game, where depending on the benefit to cost ratio, the outcomes are bistability or a monomorphic population of defectors or cooperators. Our results suggest, counterintuitively, that structured populations are not always beneficial for the evolution of cooperation for nonlinear group interactions.

  7. A shift from exploitation to interference competition with increasing density affects population and community dynamics.

    PubMed

    Holdridge, Erica M; Cuellar-Gempeler, Catalina; terHorst, Casey P

    2016-08-01

    Intraspecific competition influences population and community dynamics and occurs via two mechanisms. Exploitative competition is an indirect effect that occurs through use of a shared resource and depends on resource availability. Interference competition occurs by obstructing access to a resource and may not depend on resource availability. Our study tested whether the strength of interference competition changes with protozoa population density. We grew experimental microcosms of protozoa and bacteria under different combinations of protozoan density and basal resource availability. We then solved a dynamic predator-prey model for parameters of the functional response using population growth rates measured in our experiment. As population density increased, competition shifted from exploitation to interference, and competition was less dependent on resource levels. Surprisingly, the effect of resources was weakest when competition was the most intense. We found that at low population densities, competition was largely exploitative and resource availability had a large effect on population growth rates, but the effect of resources was much weaker at high densities. This shift in competitive mechanism could have implications for interspecific competition, trophic interactions, community diversity, and natural selection. We also tested whether this shift in the mechanism of competition with protozoa density affected the structure of the bacterial prey community. We found that both resources and protozoa density affected the structure of the bacterial prey community, suggesting that competitive mechanism may also affect trophic interactions. PMID:27551386

  8. How Predation and Landscape Fragmentation Affect Vole Population Dynamics

    PubMed Central

    Dalkvist, Trine; Sibly, Richard M.; Topping, Chris J.

    2011-01-01

    Background Microtine species in Fennoscandia display a distinct north-south gradient from regular cycles to stable populations. The gradient has often been attributed to changes in the interactions between microtines and their predators. Although the spatial structure of the environment is known to influence predator-prey dynamics of a wide range of species, it has scarcely been considered in relation to the Fennoscandian gradient. Furthermore, the length of microtine breeding season also displays a north-south gradient. However, little consideration has been given to its role in shaping or generating population cycles. Because these factors covary along the gradient it is difficult to distinguish their effects experimentally in the field. The distinction is here attempted using realistic agent-based modelling. Methodology/Principal Findings By using a spatially explicit computer simulation model based on behavioural and ecological data from the field vole (Microtus agrestis), we generated a number of repeated time series of vole densities whose mean population size and amplitude were measured. Subsequently, these time series were subjected to statistical autoregressive modelling, to investigate the effects on vole population dynamics of making predators more specialised, of altering the breeding season, and increasing the level of habitat fragmentation. We found that fragmentation as well as the presence of specialist predators are necessary for the occurrence of population cycles. Habitat fragmentation and predator assembly jointly determined cycle length and amplitude. Length of vole breeding season had little impact on the oscillations. Significance There is good agreement between our results and the experimental work from Fennoscandia, but our results allow distinction of causation that is hard to unravel in field experiments. We hope our results will help understand the reasons for cycle gradients observed in other areas. Our results clearly demonstrate the

  9. Intraspecific competition delays recovery of population structure.

    PubMed

    Liess, Matthias; Foit, Kaarina

    2010-04-01

    Ecotoxicological field studies have shown that total abundance and biomass often recover shortly after pulsed toxicant stress. In contrast, population structure showed comparatively long-term alterations before reaching pre-treatment conditions. We investigated two mechanisms that may explain the prolonged recovery of population structure: latent toxicant effects on life-history traits on the individual level and competition on the population level. To test these hypotheses we exposed populations of Daphnia magna to a pulse of the pyrethroid Fenvalerate. For several generations the populations were kept at two different degrees of competition: strong competition at carrying capacity and reduced competition maintained by simulated predation. After disturbance due to Fenvalerate exposure, biomass recovered after 14-17 days. In contrast, size structure characterised by a lack of large and dominance of small organisms recovered after 43 days in populations with strong competition. Size structure recovered twice faster in populations with reduced competition. We explain this as follows: due to toxicant induced mortality, food availability and consequently birth rate increased and populations were dominated by small individuals. In populations without predation, these cohorts grew and eventually exerted high intraspecific competition that (i) stopped further growth of juveniles and (ii) increased mortality of adults. These demographic processes were mainly responsible for the prolonged recovery of size structure. In contrast, for populations with predation, the regular harvest of individuals reduced competition. Juveniles developed continuously, allowing a fast recovery of size structure in these dynamic populations. In risk assessment the duration for populations to recover from (toxicant) stress, is crucial for the determination of ecological acceptable effects. We conclude that competition needs to be considered in order to understand and predict recovery of size

  10. On the Apportionment of Population Structure

    PubMed Central

    Granot, Yaron; Tal, Omri; Rosset, Saharon; Skorecki, Karl

    2016-01-01

    Measures of population differentiation, such as FST, are traditionally derived from the partition of diversity within and between populations. However, the emergence of population clusters from multilocus analysis is a function of genetic structure (departures from panmixia) rather than of diversity. If the populations are close to panmixia, slight differences between the mean pairwise distance within and between populations (low FST) can manifest as strong separation between the populations, thus population clusters are often evident even when the vast majority of diversity is partitioned within populations rather than between them. For any given FST value, clusters can be tighter (more panmictic) or looser (more stratified), and in this respect higher FST does not always imply stronger differentiation. In this study we propose a measure for the partition of structure, denoted EST, which is more consistent with results from clustering schemes. Crucially, our measure is based on a statistic of the data that is a good measure of internal structure, mimicking the information extracted by unsupervised clustering or dimensionality reduction schemes. To assess the utility of our metric, we ranked various human (HGDP) population pairs based on FST and EST and found substantial differences in ranking order. EST ranking seems more consistent with population clustering and classification and possibly with geographic distance between populations. Thus, EST may at times outperform FST in identifying evolutionary significant differentiation. PMID:27505172

  11. Microsatellite analysis of genetic diversity and population structure of Arabian horse populations.

    PubMed

    Khanshour, Anas; Conant, Eleanore; Juras, Rytis; Cothran, Ernest Gus

    2013-01-01

    The Arabian horse ignites imagination throughout the world. Populations of this breed exist in many countries, and recent genetic work has examined the diversity and ancestry of a few of these populations in isolation. Here, we explore 7 different populations of Arabians represented by 682 horses. Three of these are Middle Eastern populations from near the historical origin of the breed, including Syrian, Persian, and Saudi Arabian. The remaining Western populations are found in Europe (the Shagya Arabian and Polish Arabian) and in America (American Arabian). Analysis of genetic structure was carried out using 15 microsatellite loci. Genetic distances, analysis of molecular variance, factorial correspondence analysis, and a Bayesian method were applied. The results consistently show higher level of diversity within the Middle Eastern populations than the Western populations. The Western Arabian populations were the main source among population variation. Genetic differentiation was not strong among all Middle Eastern populations, but all American Arabians showed differentiation from Middle Eastern populations and were somewhat uniform among themselves. Here, we explore the diversities of many different populations of Arabian horses and find that populations not from the Middle East have noticeably lower levels of diversity, which may adversely affect the health of these populations. PMID:23450090

  12. Simulation of population growth and structure of the population

    NASA Astrophysics Data System (ADS)

    Maksymowicz, A. Z.

    2002-08-01

    A computer study of population growth and biological ageing in the Penna model is presented. The stress is put on the analysis of the age structure and the distribution of 'bad' mutations m in the population. Results of computer simulation are compared with the simplest logistic model approach which ignores genetic contribution to the life game and accounts only for death due to limited environmental capacity, the Verhulst factor. The Penna model accounts also for genetic load and results of the simulation show that the final population essentially consists of the fittest individuals, as is expected. A more detailed analysis of the genome structure Δ( m) discloses significant marks of the history. The main conclusions are: (a) there is a clear correlation between population n, age a and the number m of bad mutations and (b) there is no correlation between particular configurations Δ( m) of genomes of the same m and the fraction of the population of this characteristics Δ( m). A typical run takes a couple of hours on an HP EXEMPLAR machine, and for a population of about n=10 6.

  13. Population structure of Atlantic mackerel (Scomber scombrus).

    PubMed

    Jansen, Teunis; Gislason, Henrik

    2013-01-01

    Atlantic mackerel (Scomber scombrus) occurs on both sides of the north Atlantic and has traditionally been grouped into 5 spawning components, some of which were thought to be isolated natal homing stocks. Previous studies have provided no evidence for cross Atlantic migration and no or weak support for isolated spawning components within either side of the North Atlantic. We question the de-facto accepted hypothesis of isolation between spawning components on the basis of spawning and age distribution data. The spawning intensities, proxied by larval abundances, are negatively correlated between the North Sea and Celtic Sea, which indicates that the two spawning components may be connected by straying individuals. This finding is based on unique larvae samples collected before the collapse of North Sea component, thus showing that the exchange is not a recent phenomenon due to the collapse. The analyses of old as well as more recent age distributions show that strong year classes spread into other areas where they spawn as adults ("twinning"). Our findings are in accordance with the lack of solid evidence for stock separation from previous analyses of tagging data, genetics, ectoparasite infections, otolith shapes, and blood phenotypes. Because no method has been able to identify the origin of spawning mackerel unequivocally from any of the traditional spawning components, and in the light of our results, we conclude that straying outweighs spatial segregation. We propose a new model where the population structure of mackerel is described as a dynamic cline, rather than as connected contingents. Temporal changes in hydrography and mackerel behavior may affect the steepness of the cline at various locations. The new interpretation of the population structure of Atlantic mackerel has important implications for research, assessment and management. PMID:23741381

  14. Population Structure in Nontypeable Haemophilus influenzae

    PubMed Central

    LaCross, Nathan C.; Marrs, Carl F.; Gilsdorf, Janet R.

    2013-01-01

    Nontypeable Haemophilus influenzae (NTHi) frequently colonize the human pharynx asymptomatically, and are an important cause of otitis media in children. Past studies have identified typeable H. influenzae as being clonal, but the population structure of NTHi has not been extensively characterized. The research presented here investigated the diversity and population structure in a well-characterized collection of NTHi isolated from the middle ears of children with otitis media or the pharynges of healthy children in three disparate geographic regions. Multilocus sequence typing identified 109 unique sequence types among 170 commensal and otitis media-associated NTHi isolates from Finland, Israel, and the US. The largest clonal complex contained only five sequence types, indicating a high level of genetic diversity. The eBURST v3, ClonalFrame 1.1, and structure 2.3.3 programs were used to further characterize diversity and population structure from the sequence typing data. Little clustering was apparent by either disease state (otitis media or commensalism) or geography in the ClonalFrame phylogeny. Population structure was clearly evident, with support for eight populations when all 170 isolates were analyzed. Interestingly, one population contained only commensal isolates, while two others consisted solely of otitis media isolates, suggesting associations between population structure and disease. PMID:23266487

  15. (Genetic structure of natural populations)

    SciTech Connect

    Not Available

    1988-01-01

    Our efforts in the first eight months were concentrated in obtaining a genomic clone of the copper-zinc superoxide dismutase (SOD) in Drosophila melanogaster and other Drosophila species. This we have now successfully accomplished. We seek to understand the role of SOD in radioresistance; how genetic variation in this enzyme is maintained in populations; and relevant aspects of its evolution that may contribute to these goals as well as to an understanding of molecular evolution in general. To accomplish these goals we are undertaking the following experiments: cloning and sequencing of (at least) one F allele, one S allele, and the null allele for SOD; cloning and sequencing SOD from species related to D. melanogaster; and cloning and sequencing the SOD gene from several independently sampled S and F alleles in D. melanogaster. We are also preparing to test the radioprotective effects of SOD. 67 refs.

  16. The model of fungal population dynamics affected by nystatin

    NASA Astrophysics Data System (ADS)

    Voychuk, Sergei I.; Gromozova, Elena N.; Sadovskiy, Mikhail G.

    Fungal diseases are acute problems of the up-to-day medicine. Significant increase of resistance of microorganisms to the medically used antibiotics and a lack of new effective drugs follows in a growth of dosage of existing chemicals to solve the problem. Quite often such approach results in side effects on humans. Detailed study of fungi-antibiotic dynamics can identify new mechanisms and bring new ideas to overcome the microbial resistance with a lower dosage of antibiotics. In this study, the dynamics of the microbial population under antibiotic treatment was investigated. The effects of nystatin on the population of Saccharomyces cerevisiae yeasts were used as a model system. Nystatin effects were investigated both in liquid and solid media by viability tests. Dependence of nystatin action on osmotic gradient was evaluated in NaCl solutions. Influences of glucose and yeast extract were additionally analyzed. A "stepwise" pattern of the cell death caused by nystatin was the most intriguing. This pattern manifested in periodical changes of the stages of cell death against stages of resistance to the antibiotic. The mathematical model was proposed to describe cell-antibiotic interactions and nystatin viability effects in the liquid medium. The model implies that antibiotic ability to cause a cells death is significantly affected by the intracellular compounds, which came out of cells after their osmotic barriers were damaged

  17. Population Structure of Francisella tularensis†

    PubMed Central

    Nübel, Ulrich; Reissbrodt, Rolf; Weller, Annette; Grunow, Roland; Porsch-Özcürümez, Mustafa; Tomaso, Herbert; Hofer, Erwin; Splettstoesser, Wolf; Finke, Ernst-Jürgen; Tschäpe, Helmut; Witte, Wolfgang

    2006-01-01

    We have sequenced fragments of five metabolic housekeeping genes and two genes encoding outer membrane proteins from 81 isolates of Francisella tularensis, representing all four subspecies. Phylogenetic clustering of gene sequences from F. tularensis subsp. tularensis and F. tularensis subsp. holarctica aligned well with subspecies affiliations. In contrast, F. tularensis subsp. novicida and F. tularensis subsp. mediasiatica were indicated to be phylogenetically incoherent taxa. Incongruent gene trees and mosaic structures of housekeeping genes provided evidence for genetic recombination in F. tularensis. PMID:16816208

  18. Population Structure of Phytophthora ramorum in Oregon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora ramorum is infecting plants in Oregon forests and nurseries. In this study, we analyzed the population structure of P. ramorum in Oregon from 2001 to 2004, using microsatellites. The P. ramorum population in Oregon is characterized by low genetic diversity, significant genetic differenc...

  19. How spatio-temporal habitat connectivity affects amphibian genetic structure

    PubMed Central

    Watts, Alexander G.; Schlichting, Peter E.; Billerman, Shawn M.; Jesmer, Brett R.; Micheletti, Steven; Fortin, Marie-Josée; Funk, W. Chris; Hapeman, Paul; Muths, Erin; Murphy, Melanie A.

    2015-01-01

    Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations. PMID:26442094

  20. How spatio-temporal habitat connectivity affects amphibian genetic structure

    USGS Publications Warehouse

    Watts, Alexander G.; Schlichting, P; Billerman, S; Jesmer, B; Micheletti, S; Fortin, M.-J.; Funk, W.C.; Hapeman, P; Muths, Erin L.; Murphy, M.A.

    2015-01-01

    Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations.

  1. Subjective quality of life in war-affected populations

    PubMed Central

    2013-01-01

    Background Exposure to traumatic war events may lead to a reduction in quality of life for many years. Research suggests that these impairments may be associated with posttraumatic stress symptoms; however, wars also have a profound impact on social conditions. Systematic studies utilising subjective quality of life (SQOL) measures are particularly rare and research in post-conflict settings is scarce. Whether social factors independently affect SQOL after war in addition to symptoms has not been explored in large scale studies. Method War-affected community samples were recruited through a random-walk technique in five Balkan countries and through registers and networking in three Western European countries. The interviews were carried out on average 8 years after the war in the Balkans. SQOL was assessed on Manchester Short Assessment of Quality of Life - MANSA. We explored the impact of war events, posttraumatic stress symptoms and post-war environment on SQOL. Results We interviewed 3313 Balkan residents and 854 refugees in Western Europe. The MANSA mean score was 4.8 (SD = 0.9) for the Balkan sample and 4.7 (SD = 0.9) for refugees. In both samples participants were explicitly dissatisfied with their employment and financial situation. Posttraumatic stress symptoms had a strong negative impact on SQOL. Traumatic war events were directly linked with lower SQOL in Balkan residents. The post-war environment influenced SQOL in both groups: unemployment was associated with lower SQOL and recent contacts with friends with higher SQOL. Experiencing more migration-related stressors was linked to poorer SQOL in refugees. Conclusion Both posttraumatic stress symptoms and aspects of the post-war environment independently influence SQOL in war-affected populations. Aid programmes to improve wellbeing following the traumatic war events should include both treatment of posttraumatic symptoms and social interventions. PMID:23819629

  2. Genetic diversity and population structure in contemporary house sparrow populations along an urbanization gradient

    PubMed Central

    Vangestel, C; Mergeay, J; Dawson, D A; Callens, T; Vandomme, V; Lens, L

    2012-01-01

    House sparrow (Passer domesticus) populations have suffered major declines in urban as well as rural areas, while remaining relatively stable in suburban ones. Yet, to date no exhaustive attempt has been made to examine how, and to what extent, spatial variation in population demography is reflected in genetic population structuring along contemporary urbanization gradients. Here we use putatively neutral microsatellite loci to study if and how genetic variation can be partitioned in a hierarchical way among different urbanization classes. Principal coordinate analyses did not support the hypothesis that urban/suburban and rural populations comprise two distinct genetic clusters. Comparison of FST values at different hierarchical scales revealed drift as an important force of population differentiation. Redundancy analyses revealed that genetic structure was strongly affected by both spatial variation and level of urbanization. The results shown here can be used as baseline information for future genetic monitoring programmes and provide additional insights into contemporary house sparrow dynamics along urbanization gradients. PMID:22588131

  3. Stage-Structured Population Dynamics of AEDES AEGYPTI

    NASA Astrophysics Data System (ADS)

    Yusoff, Nuraini; Budin, Harun; Ismail, Salemah

    Aedes aegypti is the main vector in the transmission of dengue fever, a vector-borne disease affecting world population living in tropical and sub-tropical countries. Better understanding of the dynamics of its population growth will help in the efforts of controlling the spread of this disease. In looking at the population dynamics of Aedes aegypti, this paper explored the stage-structured modeling of the population growth of the mosquito using the matrix population model. The life cycle of the mosquito was divided into five stages: eggs, larvae, pupae, adult1 and adult2. Developmental rates were obtained for the average Malaysian temperature and these were used in constructing the transition matrix for the matrix model. The model, which was based only on temperature, projected that the population of Aedes aegypti will blow up with time, which is not realistic. For further work, other factors need to be taken into account to obtain a more realistic result.

  4. COULD ETHINYL ESTRADIOL AFFECT THE POPULATION BIOLOGY OF CUNNER, TAUTOGOLABRUS ADSPERSUS

    EPA Science Inventory

    Endocrine disrupting chemicals in the environment may disturb the population dynamics of wildlife by affecting reproductive output and embryonic development of organisms. This study used a population model to evaluate whether ethinyl estradiol (EE2 could affect cunner Tautogolabr...

  5. Landscape structure and the genetic effects of a population collapse

    PubMed Central

    Caplins, Serena A.; Gilbert, Kimberly J.; Ciotir, Claudia; Roland, Jens; Matter, Stephen F.; Keyghobadi, Nusha

    2014-01-01

    Both landscape structure and population size fluctuations influence population genetics. While independent effects of these factors on genetic patterns and processes are well studied, a key challenge is to understand their interaction, as populations are simultaneously exposed to habitat fragmentation and climatic changes that increase variability in population size. In a population network of an alpine butterfly, abundance declined 60–100% in 2003 because of low over-winter survival. Across the network, mean microsatellite genetic diversity did not change. However, patch connectivity and local severity of the collapse interacted to determine allelic richness change within populations, indicating that patch connectivity can mediate genetic response to a demographic collapse. The collapse strongly affected spatial genetic structure, leading to a breakdown of isolation-by-distance and loss of landscape genetic pattern. Our study reveals important interactions between landscape structure and temporal demographic variability on the genetic diversity and genetic differentiation of populations. Projected future changes to both landscape and climate may lead to loss of genetic variability from the studied populations, and selection acting on adaptive variation will likely occur within the context of an increasing influence of genetic drift. PMID:25320176

  6. Plasmodium vivax Diversity and Population Structure across Four Continents.

    PubMed

    Koepfli, Cristian; Rodrigues, Priscila T; Antao, Tiago; Orjuela-Sánchez, Pamela; Van den Eede, Peter; Gamboa, Dionicia; van Hong, Nguyen; Bendezu, Jorge; Erhart, Annette; Barnadas, Céline; Ratsimbasoa, Arsène; Menard, Didier; Severini, Carlo; Menegon, Michela; Nour, Bakri Y M; Karunaweera, Nadira; Mueller, Ivo; Ferreira, Marcelo U; Felger, Ingrid

    2015-01-01

    Plasmodium vivax is the geographically most widespread human malaria parasite. To analyze patterns of microsatellite diversity and population structure across countries of different transmission intensity, genotyping data from 11 microsatellite markers was either generated or compiled from 841 isolates from four continents collected in 1999-2008. Diversity was highest in South-East Asia (mean allelic richness 10.0-12.8), intermediate in the South Pacific (8.1-9.9) Madagascar and Sudan (7.9-8.4), and lowest in South America and Central Asia (5.5-7.2). A reduced panel of only 3 markers was sufficient to identify approx. 90% of all haplotypes in South Pacific, African and SE-Asian populations, but only 60-80% in Latin American populations, suggesting that typing of 2-6 markers, depending on the level of endemicity, is sufficient for epidemiological studies. Clustering analysis showed distinct clusters in Peru and Brazil, but little sub-structuring was observed within Africa, SE-Asia or the South Pacific. Isolates from Uzbekistan were exceptional, as a near-clonal parasite population was observed that was clearly separated from all other populations (FST>0.2). Outside Central Asia FST values were highest (0.11-0.16) between South American and all other populations, and lowest (0.04-0.07) between populations from South-East Asia and the South Pacific. These comparisons between P. vivax populations from four continents indicated that not only transmission intensity, but also geographical isolation affect diversity and population structure. However, the high effective population size results in slow changes of these parameters. This persistency must be taken into account when assessing the impact of control programs on the genetic structure of parasite populations. PMID:26125189

  7. Plasmodium vivax Diversity and Population Structure across Four Continents

    PubMed Central

    Koepfli, Cristian; Rodrigues, Priscila T.; Antao, Tiago; Orjuela-Sánchez, Pamela; Van den Eede, Peter; Gamboa, Dionicia; van Hong, Nguyen; Bendezu, Jorge; Erhart, Annette; Barnadas, Céline; Ratsimbasoa, Arsène; Menard, Didier; Severini, Carlo; Menegon, Michela; Nour, Bakri Y. M.; Karunaweera, Nadira; Mueller, Ivo; Ferreira, Marcelo U.; Felger, Ingrid

    2015-01-01

    Plasmodium vivax is the geographically most widespread human malaria parasite. To analyze patterns of microsatellite diversity and population structure across countries of different transmission intensity, genotyping data from 11 microsatellite markers was either generated or compiled from 841 isolates from four continents collected in 1999–2008. Diversity was highest in South-East Asia (mean allelic richness 10.0–12.8), intermediate in the South Pacific (8.1–9.9) Madagascar and Sudan (7.9–8.4), and lowest in South America and Central Asia (5.5–7.2). A reduced panel of only 3 markers was sufficient to identify approx. 90% of all haplotypes in South Pacific, African and SE-Asian populations, but only 60–80% in Latin American populations, suggesting that typing of 2–6 markers, depending on the level of endemicity, is sufficient for epidemiological studies. Clustering analysis showed distinct clusters in Peru and Brazil, but little sub-structuring was observed within Africa, SE-Asia or the South Pacific. Isolates from Uzbekistan were exceptional, as a near-clonal parasite population was observed that was clearly separated from all other populations (FST>0.2). Outside Central Asia FST values were highest (0.11–0.16) between South American and all other populations, and lowest (0.04–0.07) between populations from South-East Asia and the South Pacific. These comparisons between P. vivax populations from four continents indicated that not only transmission intensity, but also geographical isolation affect diversity and population structure. However, the high effective population size results in slow changes of these parameters. This persistency must be taken into account when assessing the impact of control programs on the genetic structure of parasite populations. PMID:26125189

  8. Ocean currents help explain population genetic structure

    PubMed Central

    White, Crow; Selkoe, Kimberly A.; Watson, James; Siegel, David A.; Zacherl, Danielle C.; Toonen, Robert J.

    2010-01-01

    Management and conservation can be greatly informed by considering explicitly how environmental factors influence population genetic structure. Using simulated larval dispersal estimates based on ocean current observations, we demonstrate how explicit consideration of frequency of exchange of larvae among sites via ocean advection can fundamentally change the interpretation of empirical population genetic structuring as compared with conventional spatial genetic analyses. Both frequency of larval exchange and empirical genetic difference were uncorrelated with Euclidean distance between sites. When transformed into relative oceanographic distances and integrated into a genetic isolation-by-distance framework, however, the frequency of larval exchange explained nearly 50 per cent of the variance in empirical genetic differences among sites over scales of tens of kilometres. Explanatory power was strongest when we considered effects of multiple generations of larval dispersal via intermediary locations on the long-term probability of exchange between sites. Our results uncover meaningful spatial patterning to population genetic structuring that corresponds with ocean circulation. This study advances our ability to interpret population structure from complex genetic data characteristic of high gene flow species, validates recent advances in oceanographic approaches for assessing larval dispersal and represents a novel approach to characterize population connectivity at small spatial scales germane to conservation and fisheries management. PMID:20133354

  9. Factors affecting outdoor exposure in winter: population-based study

    NASA Astrophysics Data System (ADS)

    Mäkinen, Tiina M.; Raatikka, Veli-Pekka; Rytkönen, Mika; Jokelainen, Jari; Rintamäki, Hannu; Ruuhela, Reija; Näyhä, Simo; Hassi, Juhani

    2006-09-01

    The extent of outdoor exposure during winter and factors affecting it were examined in a cross-sectional population study in Finland. Men and women aged 25-74 years from the National FINRISK 2002 sub-study ( n=6,591) were queried about their average weekly occupational, leisure-time and total cold exposure during the past winter. The effects of gender, age, area of residence, occupation, ambient temperature, self-rated health, physical activity and education on cold exposure were analysed. The self-reported median total cold exposure time was 7 h/week (8 h men, 6 h women),<1 h/week (2 h men, 0 h women) at work, 4 h/week (5 h men, 4 h women) during leisure time and 1 h/week (1 h men, 1.5 h women) while commuting to work. Factors associated with increased occupational cold exposure among men were: being employed in agriculture, forestry and industry/mining/construction or related occupations, being less educated and being aged 55-64 years. Factors associated with increased leisure-time cold exposure among men were: employment in industry/mining/construction or related occupations, being a pensioner or unemployed, reporting at least average health, being physically active and having college or vocational education. Among women, being a housewife, pensioner or unemployed and engaged in physical activity increased leisure-time cold exposure, and young women were more exposed than older ones. Self-rated health was positively associated with leisure time cold exposure in men and only to a minor extent in women. In conclusion, the subjects reported spending 4% of their total time under cold exposure, most of it (71%) during leisure time. Both occupational and leisure-time cold exposure is greater among men than women.

  10. Hyperinsulinemia adversely affects lung structure and function.

    PubMed

    Singh, Suchita; Bodas, Manish; Bhatraju, Naveen K; Pattnaik, Bijay; Gheware, Atish; Parameswaran, Praveen Kolumam; Thompson, Michael; Freeman, Michelle; Mabalirajan, Ulaganathan; Gosens, Reinoud; Ghosh, Balaram; Pabelick, Christina; Linneberg, Allan; Prakash, Y S; Agrawal, Anurag

    2016-05-01

    There is limited knowledge regarding the consequences of hyperinsulinemia on the lung. Given the increasing prevalence of obesity, insulin resistance, and epidemiological associations with asthma, this is a critical lacuna, more so with inhaled insulin on the horizon. Here, we demonstrate that insulin can adversely affect respiratory health. Insulin treatment (1 μg/ml) significantly (P < 0.05) increased the proliferation of primary human airway smooth muscle (ASM) cells and induced collagen release. Additionally, ASM cells showed a significant increase in calcium response and mitochondrial respiration upon insulin exposure. Mice administered intranasal insulin showed increased collagen deposition in the lungs as well as a significant increase in airway hyperresponsiveness. PI3K/Akt mediated activation of β-catenin, a positive regulator of epithelial-mesenchymal transition and fibrosis, was observed in the lungs of insulin-treated mice and lung cells. Our data suggests that hyperinsulinemia may have adverse effects on airway structure and function. Insulin-induced activation of β-catenin in lung tissue and the contractile effects on ASM cells may be causally related to the development of asthma-like phenotype. PMID:26919895

  11. The Challenges and Recommendations of Accessing to Affected Population for Humanitarian Assistance: A Narrative Review

    PubMed Central

    Moslehi, Shandiz; Fatemi, Farin; Mahboubi, Mohammad; Mozafarsaadati, Hossein; Karami, Shirzad

    2015-01-01

    Objective: Access to affected people pays an important role in United Nation Organization for Coordination and Humanitarian Affairs (OCHA). The aim of this article is to identify the main obstacles of humanitarian access and the humanitarian organization responses to these obstacles and finally suggest some recommendations and strategies. Methods: In this narrative study the researchers searched in different databases. This study focused on the data from five countries in the following areas: access challenges and constraints to affected population and response strategies selected for operations in the affected countries by humanitarian organizations. Results: Three main issues were studied: security threats, bureaucratic restrictions and indirect constraint, which each of them divided to three subcategories. Finally, nine related subcategories emerged from this analysis. Conclusion: Most of these constraints relate to political issues. Changes in policy structures, negotiations and advocacy can be recommended to solve most of the problems in access issues. PMID:25948440

  12. Familial Identification: Population Structure and Relationship Distinguishability

    PubMed Central

    Rohlfs, Rori V.; Fullerton, Stephanie Malia; Weir, Bruce S.

    2012-01-01

    With the expansion of offender/arrestee DNA profile databases, genetic forensic identification has become commonplace in the United States criminal justice system. Implementation of familial searching has been proposed to extend forensic identification to family members of individuals with profiles in offender/arrestee DNA databases. In familial searching, a partial genetic profile match between a database entrant and a crime scene sample is used to implicate genetic relatives of the database entrant as potential sources of the crime scene sample. In addition to concerns regarding civil liberties, familial searching poses unanswered statistical questions. In this study, we define confidence intervals on estimated likelihood ratios for familial identification. Using these confidence intervals, we consider familial searching in a structured population. We show that relatives and unrelated individuals from population samples with lower gene diversity over the loci considered are less distinguishable. We also consider cases where the most appropriate population sample for individuals considered is unknown. We find that as a less appropriate population sample, and thus allele frequency distribution, is assumed, relatives and unrelated individuals become more difficult to distinguish. In addition, we show that relationship distinguishability increases with the number of markers considered, but decreases for more distant genetic familial relationships. All of these results indicate that caution is warranted in the application of familial searching in structured populations, such as in the United States. PMID:22346758

  13. Maximizing the benefits of antiretroviral therapy for key affected populations

    PubMed Central

    Grubb, Ian R; Beckham, Sarah W; Kazatchkine, Michel; Thomas, Ruth M; Albers, Eliot R; Cabral, Mauro; Lange, Joep; Vella, Stefano; Kurian, Manoj; Beyrer, Chris

    2014-01-01

    Introduction Scientific research has demonstrated the clinical benefits of earlier initiation of antiretroviral treatment (ART), and that ART can markedly reduce HIV transmission to sexual partners. Ensuring universal access to ART for those who need it has long been a core principle of the HIV response, and extending the benefits of ART to key populations is critical to increasing the impact of ART and the overall effectiveness of the HIV response. However, this can only be achieved through coordinated efforts to address political, social, legal and economic barriers that key populations face in accessing HIV services. Discussion Recent analyses show that HIV prevalence levels among key populations are far higher than among the general population, and they experience a range of biological and behavioural factors, and social, legal and economic barriers that increase their vulnerability to HIV and have resulted in alarmingly low ART coverage. World Health Organization 2014 consolidated guidance on HIV among key populations offers the potential for increased access to ART by key populations, following the same principles as for the general adult population. However, it should not be assumed that key populations will achieve greater access to ART unless stigma, discrimination and punitive laws, policies and practices that limit access to ART and other HIV interventions in many countries are addressed. Conclusions Rights-based approaches and investments in critical enablers, such as supportive legal and policy environments, are essential to enable wider access to ART and other HIV interventions for key populations. The primary objective of ART should always be to treat the person living with HIV; prevention is an important, additional benefit. ART should be provided only with informed consent. The preventive benefits of treatment must not be used as a pretext for failure to provide other necessary HIV programming for key populations, including comprehensive harm

  14. The mutation-drift balance in spatially structured populations.

    PubMed

    Schneider, David M; Martins, Ayana B; de Aguiar, Marcus A M

    2016-08-01

    In finite populations the action of neutral mutations is balanced by genetic drift, leading to a stationary distribution of alleles that displays a transition between two different behaviors. For small mutation rates most individuals will carry the same allele at equilibrium, whereas for high mutation rates of the alleles will be randomly distributed with frequencies close to one half for a biallelic gene. For well-mixed haploid populations the mutation threshold is μc=1/2N, where N is the population size. In this paper we study how spatial structure affects this mutation threshold. Specifically, we study the stationary allele distribution for populations placed on regular networks where connected nodes represent potential mating partners. We show that the mutation threshold is sensitive to spatial structure only if the number of potential mates is very small. In this limit, the mutation threshold decreases substantially, increasing the diversity of the population at considerably low mutation rates. Defining kc as the degree of the network for which the mutation threshold drops to half of its value in well-mixed populations we show that kc grows slowly as a function of the population size, following a power law. Our calculations and simulations are based on the Moran model and on a mapping between the Moran model with mutations and the voter model with opinion makers. PMID:27132184

  15. Haemoglobin polymorphisms affect the oxygen-binding properties in Atlantic cod populations

    PubMed Central

    Andersen, Øivind; Wetten, Ola Frang; De Rosa, Maria Cristina; Andre, Carl; Carelli Alinovi, Cristiana; Colafranceschi, Mauro; Brix, Ole; Colosimo, Alfredo

    2008-01-01

    A major challenge in evolutionary biology is to identify the genes underlying adaptation. The oxygen-transporting haemoglobins directly link external conditions with metabolic needs and therefore represent a unique system for studying environmental effects on molecular evolution. We have discovered two haemoglobin polymorphisms in Atlantic cod populations inhabiting varying temperature and oxygen regimes in the North Atlantic. Three-dimensional modelling of the tetrameric haemoglobin structure demonstrated that the two amino acid replacements Met55β1Val and Lys62β1Ala are located at crucial positions of the α1β1 subunit interface and haem pocket, respectively. The replacements are proposed to affect the oxygen-binding properties by modifying the haemoglobin quaternary structure and electrostatic feature. Intriguingly, the same molecular mechanism for facilitating oxygen binding is found in avian species adapted to high altitudes, illustrating convergent evolution in water- and air-breathing vertebrates to reduction in environmental oxygen availability. Cod populations inhabiting the cold Arctic waters and the low-oxygen Baltic Sea seem well adapted to these conditions by possessing the high oxygen affinity Val55–Ala62 haplotype, while the temperature-insensitive Met55–Lys62 haplotype predominates in the southern populations. The distinct distributions of the functionally different haemoglobin variants indicate that the present biogeography of this ecologically and economically important species might be seriously affected by global warming. PMID:19033139

  16. How a trend towards a stationary population affects consumer demand.

    PubMed

    Espenshade, T J

    1978-03-01

    Abstract During the great depression of the 1930seconomists in both the United States and Europe tried to analyse the economic consequences of declining rates of population growth. Not only were birth rates in many industrial countries at the lowest levels ever, but they coincided with high rates of unemployment. Of the many economists who held that demographic trends were partly responsible for the adverse economic conditions, a prominent example was John Maynard Keynes. According to his so-called stagnation thesis, population growth stimulates investment demand in two ways: more people need more goods and services and, hence, more investment in factories and machinery; and with population growing, businessmen are more likely to regard their investment misallocations as less serious than when the growth is slow or nil.(1)A minority of writers were more optimistic about the economic consequences of slower rates of population growth. For example, Thompson argued that with a lower ratio of consumers to producers the population would enjoy a higher standard of living and the education of children should improve.(2). PMID:22091937

  17. Patterns and localized structures in population dynamics

    NASA Astrophysics Data System (ADS)

    Clerc, M. G.; Escaff, D.; Kenkre, V. M.

    2005-11-01

    Patterns, fronts, and localized structures of a prototypical model for population dynamics interaction are studied. The physical content of the model is the coexistence of a simple random walk for the motion of the individuals with a nonlinearity in the competitive struggle for resources which simultaneously stresses the Allee effect and interaction at a distance. Mathematically, the model is variational and exhibits coexistence between different stable extended states. Solutions are obtained, the phase diagram is constructed, and the emergence of localized structures is investigated.

  18. Trading stages: life expectancies in structured populations.

    PubMed

    Steiner, Ulrich K; Tuljapurkar, Shripad; Coulson, Tim; Horvitz, Carol

    2012-10-01

    Interest in stage-and age structured models has recently increased because they can describe quantitative traits such as size that are left out of age-only demography. Available methods for the analysis of effects of vital rates on lifespan in stage-structured models have not been widely applied because they are hard to use and interpret, and tools for age and stage structured populations are missing. We present easily interpretable expressions for the sensitivities and elasticities of life expectancy to vital rates in age-stage models, and illustrate their application with two biological examples. Much of our approach relies on trading of time and mortality risk in one stage for time and risk in others. Our approach contributes to the new framework of the study of age- and stage-structured biodemography. PMID:22664576

  19. Microsatellite and Wolbachia analysis in Rhagoletis cerasi natural populations: population structuring and multiple infections

    PubMed Central

    Augustinos, Antonios A; Asimakopoulou, Anastasia K; Moraiti, Cleopatra A; Mavragani-Tsipidou, Penelope; Papadopoulos, Nikolaos T; Bourtzis, Kostas

    2014-01-01

    Rhagoletis cerasi (Diptera: Tephritidae) is a major pest of sweet and sour cherries in Europe and parts of Asia. Despite its economic significance, there is a lack of studies on the genetic structure of R. cerasi populations. Elucidating the genetic structure of insects of economic importance is crucial for developing phenological-predictive models and environmental friendly control methods. All natural populations of R. cerasi have been found to harbor the endosymbiont Wolbachia pipientis, which widely affects multiple biological traits contributing to the evolution of its hosts, and has been suggested as a tool for the biological control of insect pests and disease vectors. In the current study, the analysis of 18 R. cerasi populations collected in Greece, Germany, and Russia using 13 microsatellite markers revealed structuring of R. cerasi natural populations, even at close geographic range. We also analyzed the Wolbachia infection status of these populations using 16S rRNA-, MLST- and wsp-based approaches. All 244 individuals screened were positive for Wolbachia. Our results suggest the fixation of the wCer1 strain in Greece while wCer2, wCer4, wCer5, and probably other uncharacterized strains were also detected in multiply infected individuals. The role of Wolbachia and its potential extended phenotypes needs a thorough investigation in R. cerasi. Our data suggest an involvement of this symbiont in the observed restriction in the gene flow in addition to a number of different ecological factors. PMID:24963388

  20. The relationship between Baylisascaris procyonis prevalence and raccoon population structure.

    PubMed

    Page, L Kristen; Gehrt, Stanley D; Cascione, Andrea; Kellner, Kenneth F

    2009-12-01

    Parasite transmission is a dynamic process that can be affected by factors including host and parasite population dynamics. Raccoons ( Procyon lotor ) are the definitive host of Baylisascaris procyonis , an intestinal roundworm. Transmission of this parasite has been linked to raccoon behavior and human land-use patterns; however, we do not know the importance of host population structure. Therefore, the objective of this study was to determine the relationship between raccoon population attributes and prevalence of B. procyonis. We necropsied 307 trapped or road-killed raccoons collected during 2000-2006 from the Chicago area. In addition, we examined, via fecal samples (n  =  433), the patterns of B. procyonis prevalence as they relate to population dynamics among 3 subpopulations within the larger study. Baylisascaris procyonis was seen in 39% of 307 necropsied raccoons. There were differences in prevalence as a function of host age and sex. Baylisascaris procyonis was observed in 18% of 433 fecal samples obtained from live-trapped raccoons, and there were differences according to age, but not by sex. We found that the host populations consistently differed in density across study areas, but were similar regarding sex and age structure. Differences in host density were associated with differences in prevalence, suggesting that possible differences between populations, as well as ecological differences in sites and raccoon behavior, may have influenced parasite prevalence. PMID:19480537

  1. Adaptive dynamics for physiologically structured population models.

    PubMed

    Durinx, Michel; Metz, J A J Hans; Meszéna, Géza

    2008-05-01

    We develop a systematic toolbox for analyzing the adaptive dynamics of multidimensional traits in physiologically structured population models with point equilibria (sensu Dieckmann et al. in Theor. Popul. Biol. 63:309-338, 2003). Firstly, we show how the canonical equation of adaptive dynamics (Dieckmann and Law in J. Math. Biol. 34:579-612, 1996), an approximation for the rate of evolutionary change in characters under directional selection, can be extended so as to apply to general physiologically structured population models with multiple birth states. Secondly, we show that the invasion fitness function (up to and including second order terms, in the distances of the trait vectors to the singularity) for a community of N coexisting types near an evolutionarily singular point has a rational form, which is model-independent in the following sense: the form depends on the strategies of the residents and the invader, and on the second order partial derivatives of the one-resident fitness function at the singular point. This normal form holds for Lotka-Volterra models as well as for physiologically structured population models with multiple birth states, in discrete as well as continuous time and can thus be considered universal for the evolutionary dynamics in the neighbourhood of singular points. Only in the case of one-dimensional trait spaces or when N = 1 can the normal form be reduced to a Taylor polynomial. Lastly we show, in the form of a stylized recipe, how these results can be combined into a systematic approach for the analysis of the (large) class of evolutionary models that satisfy the above restrictions. PMID:17943289

  2. Host Mobility Drives Pathogen Competition in Spatially Structured Populations

    PubMed Central

    Poletto, Chiara; Meloni, Sandro; Colizza, Vittoria; Moreno, Yamir; Vespignani, Alessandro

    2013-01-01

    Interactions among multiple infectious agents are increasingly recognized as a fundamental issue in the understanding of key questions in public health regarding pathogen emergence, maintenance, and evolution. The full description of host-multipathogen systems is, however, challenged by the multiplicity of factors affecting the interaction dynamics and the resulting competition that may occur at different scales, from the within-host scale to the spatial structure and mobility of the host population. Here we study the dynamics of two competing pathogens in a structured host population and assess the impact of the mobility pattern of hosts on the pathogen competition. We model the spatial structure of the host population in terms of a metapopulation network and focus on two strains imported locally in the system and having the same transmission potential but different infectious periods. We find different scenarios leading to competitive success of either one of the strain or to the codominance of both strains in the system. The dominance of the strain characterized by the shorter or longer infectious period depends exclusively on the structure of the population and on the the mobility of hosts across patches. The proposed modeling framework allows the integration of other relevant epidemiological, environmental and demographic factors, opening the path to further mathematical and computational studies of the dynamics of multipathogen systems. PMID:23966843

  3. [Factors affecting access to health care institutions by the internally displaced population in Colombia].

    PubMed

    Mogollón-Pérez, Amparo Susana; Vázquez, María Luisa

    2008-04-01

    In Colombia, the on-going armed conflict causes displacement of thousands of persons that suffer its economic, social, and health consequences. Despite government regulatory efforts, displaced people still experience serious problems in securing access to health care. In order to analyze the institutional factors that affect access to health care by the internally displaced population, a qualitative, exploratory, and descriptive study was carried out by means of semi-structured individual interviews with a criterion sample of stakeholders (81). A narrative content analysis was performed, with mixed generation of categories and segmentation of data by themes and informants. Inadequate funding, providers' problems with reimbursement by insurers, and lack of clear definition as to coverage under the Social Security System in Health pose barriers to access to health care by the internally displaced population. Bureaucratic procedures, limited inter- and intra-sector coordination, and scarce available resources for public health service providers also affect access. Effective government action is required to ensure the right to health care for this population. PMID:18392351

  4. Temperament Affects Sympathetic Nervous Function in a Normal Population

    PubMed Central

    Kim, Bora; Lee, Jae-Hon; Kang, Eun-Ho

    2012-01-01

    Objective Although specific temperaments have been known to be related to autonomic nervous function in some psychiatric disorders, there are few studies that have examined the relationship between temperaments and autonomic nervous function in a normal population. In this study, we examined the effect of temperament on the sympathetic nervous function in a normal population. Methods Sixty eight healthy subjects participated in the present study. Temperament was assessed using the Korean version of the Cloninger Temperament and Character Inventory (TCI). Autonomic nervous function was determined by measuring skin temperature in a resting state, which was recorded for 5 minutes from the palmar surface of the left 5th digit using a thermistor secured with a Velcro® band. Pearson's correlation analysis and multiple linear regression were used to examine the relationship between temperament and skin temperature. Results A higher harm avoidance score was correlated with a lower skin temperature (i.e. an increased sympathetic tone; r=-0.343, p=0.004) whereas a higher persistence score was correlated with a higher skin temperature (r=0.433, p=0.001). Hierarchical linear regression analysis revealed that harm avoidance was able to predict the variance of skin temperature independently, with a variance of 7.1% after controlling for sex, blood pressure and state anxiety and persistence was the factor predicting the variance of skin temperature with a variance of 5.0%. Conclusion These results suggest that high harm avoidance is related to an increased sympathetic nervous function whereas high persistence is related to decreased sympathetic nervous function in a normal population. PMID:22993530

  5. Population Structure, Genetic Variation, and Linkage Disequilibrium in Perennial Ryegrass Populations Divergently Selected for Freezing Tolerance

    PubMed Central

    Kovi, Mallikarjuna Rao; Fjellheim, Siri; Sandve, Simen R.; Larsen, Arild; Rudi, Heidi; Asp, Torben; Kent, Matthew Peter; Rognli, Odd Arne

    2015-01-01

    Low temperature is one of the abiotic stresses seriously affecting the growth of perennial ryegrass (Lolium perenne L.), and freezing tolerance is a complex trait of major agronomical importance in northern and central Europe. Understanding the genetic control of freezing tolerance would aid in the development of cultivars of perennial ryegrass with improved adaptation to frost. The plant material investigated in this study was an experimental synthetic population derived from pair-crosses among five European perennial ryegrass genotypes, representing adaptations to a range of climatic conditions across Europe. A total number of 80 individuals (24 of High frost [HF]; 29 of Low frost [LF], and 27 of Unselected [US]) from the second generation of the two divergently selected populations and an unselected (US) control population were genotyped using 278 genome-wide SNPs derived from perennial ryegrass transcriptome sequences. Our studies investigated the genetic diversity among the three experimental populations by analysis of molecular variance and population structure, and determined that the HF and LF populations are very divergent after selection for freezing tolerance, whereas the HF and US populations are more similar. Linkage disequilibrium (LD) decay varied across the seven chromosomes and the conspicuous pattern of LD between the HF and LF population confirmed their divergence in freezing tolerance. Furthermore, two Fst outlier methods; finite island model (fdist) by LOSITAN and hierarchical structure model using ARLEQUIN, both detected six loci under directional selection. These outlier loci are most probably linked to genes involved in freezing tolerance, cold adaptation, and abiotic stress. These six candidate loci under directional selection for freezing tolerance might be potential marker resources for breeding perennial ryegrass cultivars with improved freezing tolerance. PMID:26617611

  6. Origin and population structure of the Icelanders.

    PubMed

    Williams, J T

    1993-04-01

    The Norse and Celtic contributions to the founding population of Iceland have been estimated previously on a pan-Icelandic basis using gene frequency data for the entire island. Accounts of the settlement of Iceland, however, suggest that different regions received different proportions of Norse and Celtic settlers, indicating the need to incorporate geographic variation into Icelandic admixture studies. A formal likelihood ratio test rejects the null hypothesis of regional homogeneity in admixture proportions. Here, regional admixture estimates for Iceland are reported; they are in agreement with the settlement pattern inferred from historical accounts. The western, northern, and southern regions of Iceland exhibit a moderate Celtic component, consistent with historical indications that these regions were settled by Norse Vikings from the British Isles, accompanied by Celtic wives and slaves. Eastern Iceland, believed to have been settled chiefly by Vikings from Scandinavia, is characterized by a large Norse component of admixture. The northwestern peninsula is also found to be predominantly Norse. Regional genetic data are used to elucidate the contemporary population structure of Iceland. The observed structure correlates well with patterns of Icelandic geography, history, economy, marriage, urbanization, and internal migration. The northeastern region is strongly isolated, the urbanized areas of the north and southwest are representative of the overall population, and the remaining regions exhibit small-scale variation about the genetic central tendency. A high level of genetic homogeneity is indicated (RST = 0.0005), consistent with the high internal migration rate of the Icelanders. A regression of mean per-locus heterozygosity on distance from the gene frequency centroid reveals a greater than average external gene flow into the eastern region, whereas the northwestern peninsula has received less than average external gene flow. Iceland is compared with

  7. Is climate change affecting wolf populations in the high Arctic?

    USGS Publications Warehouse

    Mech, L.D.

    2004-01-01

    Global climate change may affect wolves in Canada's High Arctic (80DG N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena.

  8. Is climate change affecting wolf populations in the high Arctic?

    USGS Publications Warehouse

    Mech, L.D.

    2004-01-01

    Gobal climate change may affect wolves in Canada's High Arctic (80?? N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However, when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena. ?? 2004 Kluwer Academic Publishers.

  9. Latin America: native populations affected by early onset periodontal disease.

    PubMed

    Nowzari, Hessam; Botero, Javier Enrique

    2011-06-01

    Millions of individuals are affected by early onset periodontal disease in Latin America, a continent that includes more than 20 countries. The decision-makers claim that the disease is not commonly encountered. In 2009, 280,919 authorized immigrants were registered in the United States versus 5,460,000 unauthorized (2,600,000 in California). The objective of the present article is to raise awareness about the high prevalence of the disease among Latin Americans and the good prognosis of preventive measures associated with minimal financial cost. PMID:21823496

  10. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  11. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  12. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  13. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  14. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... populations. 230.75 Section 230.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  15. Factors affecting minority population proximity to hazardous facilities

    SciTech Connect

    Nieves, L.A.; Nieves, A.L. |

    1995-04-01

    Disproportionate exposure of minority groups to environmental hazards has been attributed to ``environmental racism`` by some authors, without systematic investigation of the factors underlying this exposure pattern. This study examines regional differences in the proximity of African-Americans, Hispanics, Asians, and non-Hispanic Whites to a broad range of facility types and explores the effects of urban and income factors. A statistically significant inverse relationship is found between the percentage of non-Hispanic Whites and virtually all facility categories in all regions. Except for Hispanics in the South, all such associations for minority groups show a direct relationship, though some are nonsignificant. The geographic concentration of facilities is more closely tied to urbanization than to economic factors. Controlling for both urban and economic factors, minority population concentration is still a significant explanatory variable for some facility types in some regions. This finding is most consistent for African-Americans.

  16. Protein crowding affects hydration structure and dynamics

    PubMed Central

    Harada, Ryuhei; Sugita, Yuji; Feig, Michael

    2012-01-01

    The effect of protein crowding on the structure and dynamics of water was examined from explicit solvent molecular dynamics simulations of a series of protein G and protein G/villin systems at different protein concentrations. Hydration structure was analyzed in terms of radial distribution functions, three-dimensional hydration sites, and preservation of tetrahedral coordination. Analysis of hydration dynamics focused on self-diffusion rates and dielectric constants as a function of crowding. The results show significant changes in both structure and dynamics of water under highly crowded conditions. The structure of water is altered mostly beyond the first solvation shell. Diffusion rates and dielectric constants are significantly reduced following linear trends as a function of crowding reflecting highly constrained water in crowded environments. The reduced dynamics of diffusion is expected to be strongly related to hydrodynamic properties of crowded cellular environments while the reduced dielectric constant under crowded conditions has implications for the stability of biomolecules in crowded environments. The results from this study suggest a prescription for modeling solvation in simulations of cellular environments. PMID:22352398

  17. Source population characteristics affect heterosis following genetic rescue of fragmented plant populations

    PubMed Central

    Pickup, M.; Field, D. L.; Rowell, D. M.; Young, A. G.

    2013-01-01

    Understanding the relative importance of heterosis and outbreeding depression over multiple generations is a key question in evolutionary biology and is essential for identifying appropriate genetic sources for population and ecosystem restoration. Here we use 2455 experimental crosses between 12 population pairs of the rare perennial plant Rutidosis leptorrhynchoides (Asteraceae) to investigate the multi-generational (F1, F2, F3) fitness outcomes of inter-population hybridization. We detected no evidence of outbreeding depression, with inter-population hybrids and backcrosses showing either similar fitness or significant heterosis for fitness components across the three generations. Variation in heterosis among population pairs was best explained by characteristics of the foreign source or home population, and was greatest when the source population was large, with high genetic diversity and low inbreeding, and the home population was small and inbred. Our results indicate that the primary consideration for maximizing progeny fitness following population augmentation or restoration is the use of seed from large, genetically diverse populations. PMID:23173202

  18. How population structure shapes neighborhood segregation.

    PubMed

    Bruch, Elizabeth E

    2014-03-01

    This study provides a framework for understanding how population composition conditions the relationship between individuals' choices about group affiliation and aggregate patterns of social separation or integration. The substantive focus is the role of income inequality in racial residential segregation. The author identifies three population parameters--between-group inequality, within-group inequality, and relative group size--that determine how income inequality between race groups affects racial segregation. She uses data from the Panel Study of Income Dynamics to estimate models of individual-level residential mobility and incorporates these estimates into agent-based models. She then simulates segregation dynamics under alternative assumptions about (1) the relative size of minority groups and (2) the degree of correlation between race and income among individuals. The author finds that income inequality can have offsetting effects at the high and low ends of the income distribution. She demonstrates the empirical relevance of the simulation results using fixed-effects, metro-level regressions applied to 1980-2000 U.S. census data. PMID:25009360

  19. Recent Experience Affects the Strength of Structural Priming

    ERIC Educational Resources Information Center

    Kaschak, Michael P.; Loney, Renrick A.; Borreggine, Kristin L.

    2006-01-01

    In two experiments, we explore how recent experience with particular syntactic constructions affects the strength of the structural priming observed for those constructions. The results suggest that (1) the strength of structural priming observed for double object and prepositional object constructions is affected by the relative frequency with…

  20. Inter-population variability of DEFA3 gene absence: correlation with haplotype structure and population variability

    PubMed Central

    Ballana, Ester; González, Juan Ramón; Bosch, Nina; Estivill, Xavier

    2007-01-01

    Background Copy number variants (CNVs) account for a significant proportion of normal phenotypic variation and may have an important role in human pathological variation. The α-defensin cluster on human chromosome 8p23.1 is one of the better-characterized CNVs, in which high copy number variability affecting the DEFA1 and DEFA3 genes has been reported. Moreover, the DEFA3 gene has been found to be absent in a significant proportion of control population subjects. CNVs involving immune genes, such as α-defensins, are possibly contributing to innate immunity differences observed between individuals and influence predisposition and susceptibility to disease. Results We have tested the DEFA3 absence in 697 samples from different human populations. The proportion of subjects lacking DEFA3 has been found to vary from 10% to 37%, depending on the population tested, suggesting differences in innate immune function between populations. Absence of DEFA3 was correlated with the region's haplotype block structure. African samples showed a higher intra-populational variability together with the highest proportion of subjects without DEFA3 (37%). Association analysis of DEFA3 absence with 136 SNPs from a 100-kb region identified a conserved haplotype in the Caucasian population, extending for the whole region. Conclusion Complexity and variability are essential genomic features of the α-defensin cluster at the 8p23.1 region. The identification of population differences in subjects lacking the DEFA3 gene may be suggestive of population-specific selective pressures with potential impact on human health. PMID:17214878

  1. Population inertia and its sensitivity to changes in vital rates and population structure

    USGS Publications Warehouse

    Koons, D.N.; Holmes, R.R.; Grand, J.B.

    2007-01-01

    Because the (st)age structure of a population may rarely be stable, studies of transient population dynamics and population momentum are becoming ever more popular. Yet, studies of "population momentum" are restricted in the sense that they describe the inertia of population size resulting from a demographic transition to the stationary population growth rate. Although rarely mentioned, inertia in population size is a general phenomenon and can be produced by any demographic transition or perturbation. Because population size is of central importance in demography, conservation, and management, formulas relating the sensitivity of population inertia to changes in underlying vital rates and population structure could provide much-needed insight into the dynamics of populations with unstable (st)age structure. Here, we derive such formulas, which are readily computable, and provide examples of their potential use in studies of life history and applied arenas of population study. ?? 2007 by the Ecological Society of America.

  2. Have historical climate changes affected Gentoo penguin (Pygoscelis papua) populations in Antarctica?

    PubMed

    Peña M, Fabiola; Poulin, Elie; Dantas, Gisele P M; González-Acuña, Daniel; Petry, Maria Virginia; Vianna, Juliana A

    2014-01-01

    The West Antarctic Peninsula (WAP) has been suffering an increase in its atmospheric temperature during the last 50 years, mainly associated with global warming. This increment of temperature trend associated with changes in sea-ice dynamics has an impact on organisms, affecting their phenology, physiology and distribution range. For instance, rapid demographic changes in Pygoscelis penguins have been reported over the last 50 years in WAP, resulting in population expansion of sub-Antarctic Gentoo penguin (P. papua) and retreat of Antarctic Adelie penguin (P. adeliae). Current global warming has been mainly associated with human activities; however these climate trends are framed in a historical context of climate changes, particularly during the Pleistocene, characterized by an alternation between glacial and interglacial periods. During the last maximal glacial (LGM∼21,000 BP) the ice sheet cover reached its maximum extension on the West Antarctic Peninsula (WAP), causing local extinction of Antarctic taxa, migration to lower latitudes and/or survival in glacial refugia. We studied the HRVI of mtDNA and the nuclear intron βfibint7 of 150 individuals of the WAP to understand the demographic history and population structure of P. papua. We found high genetic diversity, reduced population genetic structure and a signature of population expansion estimated around 13,000 BP, much before the first paleocolony fossil records (∼1,100 BP). Our results suggest that the species may have survived in peri-Antarctic refugia such as South Georgia and North Sandwich islands and recolonized the Antarctic Peninsula and South Shetland Islands after the ice sheet retreat. PMID:24759777

  3. Have Historical Climate Changes Affected Gentoo Penguin (Pygoscelis papua) Populations in Antarctica?

    PubMed Central

    Peña M., Fabiola; Poulin, Elie; Dantas, Gisele P. M.; González-Acuña, Daniel; Petry, Maria Virginia; Vianna, Juliana A.

    2014-01-01

    The West Antarctic Peninsula (WAP) has been suffering an increase in its atmospheric temperature during the last 50 years, mainly associated with global warming. This increment of temperature trend associated with changes in sea-ice dynamics has an impact on organisms, affecting their phenology, physiology and distribution range. For instance, rapid demographic changes in Pygoscelis penguins have been reported over the last 50 years in WAP, resulting in population expansion of sub-Antarctic Gentoo penguin (P. papua) and retreat of Antarctic Adelie penguin (P. adeliae). Current global warming has been mainly associated with human activities; however these climate trends are framed in a historical context of climate changes, particularly during the Pleistocene, characterized by an alternation between glacial and interglacial periods. During the last maximal glacial (LGM∼21,000 BP) the ice sheet cover reached its maximum extension on the West Antarctic Peninsula (WAP), causing local extinction of Antarctic taxa, migration to lower latitudes and/or survival in glacial refugia. We studied the HRVI of mtDNA and the nuclear intron βfibint7 of 150 individuals of the WAP to understand the demographic history and population structure of P. papua. We found high genetic diversity, reduced population genetic structure and a signature of population expansion estimated around 13,000 BP, much before the first paleocolony fossil records (∼1,100 BP). Our results suggest that the species may have survived in peri-Antarctic refugia such as South Georgia and North Sandwich islands and recolonized the Antarctic Peninsula and South Shetland Islands after the ice sheet retreat. PMID:24759777

  4. Structural Factors Affecting Health Examination Behavioral Intention.

    PubMed

    Huang, Hui-Ting; Kuo, Yu-Ming; Wang, Shiang-Ru; Wang, Chia-Fen; Tsai, Chung-Hung

    2016-04-01

    Disease screening instruments used for secondary prevention can facilitate early determination and treatment of pathogenic factors, effectively reducing disease incidence, mortality rates, and health complications. Therefore, people should be encouraged to receive health examinations for discovering potential pathogenic factors before symptoms occur. Here, we used the health belief model as a foundation and integrated social psychological factors and investigated the factors influencing health examination behavioral intention among the public in Taiwan. In total, 388 effective questionnaires were analyzed through structural model analysis. Consequently, this study yielded four crucial findings: (1) The established extended health belief model could effectively predict health examination behavioral intention; (2) Self-efficacy was the factor that most strongly influenced health examination behavioral intention, followed by health knowledge; (3) Self-efficacy substantially influenced perceived benefits and perceived barriers; (4) Health knowledge and social support indirectly influenced health examination behavioral intention. The preceding results can effectively increase the acceptance and use of health examination services among the public, thereby facilitating early diagnosis and treatment and ultimately reducing disease and mortality rates. PMID:27043606

  5. Structural Factors Affecting Health Examination Behavioral Intention

    PubMed Central

    Huang, Hui-Ting; Kuo, Yu-Ming; Wang, Shiang-Ru; Wang, Chia-Fen; Tsai, Chung-Hung

    2016-01-01

    Disease screening instruments used for secondary prevention can facilitate early determination and treatment of pathogenic factors, effectively reducing disease incidence, mortality rates, and health complications. Therefore, people should be encouraged to receive health examinations for discovering potential pathogenic factors before symptoms occur. Here, we used the health belief model as a foundation and integrated social psychological factors and investigated the factors influencing health examination behavioral intention among the public in Taiwan. In total, 388 effective questionnaires were analyzed through structural model analysis. Consequently, this study yielded four crucial findings: (1) The established extended health belief model could effectively predict health examination behavioral intention; (2) Self-efficacy was the factor that most strongly influenced health examination behavioral intention, followed by health knowledge; (3) Self-efficacy substantially influenced perceived benefits and perceived barriers; (4) Health knowledge and social support indirectly influenced health examination behavioral intention. The preceding results can effectively increase the acceptance and use of health examination services among the public, thereby facilitating early diagnosis and treatment and ultimately reducing disease and mortality rates. PMID:27043606

  6. Genetic structure of populations of Legionella pneumophila.

    PubMed Central

    Selander, R K; McKinney, R M; Whittam, T S; Bibb, W F; Brenner, D J; Nolte, F S; Pattison, P E

    1985-01-01

    The genetic structure of populations of Legionella pneumophila was defined by an analysis of electrophoretically demonstrable allelic variation at structural genes encoding 22 enzymes in 292 isolates from clinical and environmental sources. Nineteen of the loci were polymorphic, and 62 distinctive electrophoretic types (ETs), representing multilocus genotypes, were identified. Principal coordinates and clustering analyses demonstrated that isolates received as L. pneumophila were a heterogeneous array of genotypes that included two previously undescribed species. For 50 ETs of L. pneumophila (strict sense), mean genetic diversity per locus was 0.312, and diversity was equivalent in ETs represented by isolates recovered from clinical sources and those collected from environmental sources. Cluster analysis revealed four major groups or lineages of ETs in L. pneumophila. Genetic diversity among ETs of the same serotype was, on average, 93% of that in the total sample of ETs. Isolates marked by particular patterns of reactivity to a panel of nine monoclonal antibodies were also genetically heterogeneous, mean diversity within patterns being about 75% of the total. Both Pontiac fever and the pneumonic form of legionellosis may be caused by isolates of the same ET. The genetic structure of L. pneumophila is clonal, and many clones apparently are worldwide in distribution. The fact that L. pneumophila is only 60% as variable as Escherichia coli raises the possibility that isolates recovered from clinical cases and man-made environments are a restricted subset of all clones in the species as a whole. PMID:4030689

  7. Demographic History, Population Structure, and Local Adaptation in Alpine Populations of Cardamine impatiens and Cardamine resedifolia

    PubMed Central

    Ometto, Lino; Li, Mingai; Bresadola, Luisa; Barbaro, Enrico; Neteler, Markus; Varotto, Claudio

    2015-01-01

    Species evolution depends on numerous and distinct forces, including demography and natural selection. For example, local adaptation and population structure affect the evolutionary history of species living along environmental clines. This is particularly relevant in plants, which are often characterized by limited dispersal ability and the need to respond to abiotic and biotic stress factors specific to the local environment. Here we study the demographic history and the possible existence of local adaptation in two related species of Brassicaceae, Cardamine impatiens and Cardamine resedifolia, which occupy separate habitats along the elevation gradient. Previous genome-wide analyses revealed the occurrence of distinct selective pressures in the two species, with genes involved in cold response evolving particularly fast in C. resedifolia. In this study we surveyed patterns of molecular evolution and genetic variability in a set of 19 genes, including neutral and candidate genes involved in cold response, across 10 populations each of C. resedifolia and C. impatiens from the Italian Alps (Trentino). We inferred the population structure and demographic history of the two species, and tested the occurrence of signatures of local adaptation in these genes. The results indicate that, despite a slightly higher population differentiation in C. resedifolia than in C. impatiens, both species are only weakly structured and that populations sampled at high altitude experience less gene flow than low-altitude ones. None of the genes showed signatures of positive selection, suggesting that they do not seem to play relevant roles in the current evolutionary processes of adaptation to alpine environments of these species. PMID:25933225

  8. HOW POPULATION STRUCTURE SHAPES NEIGHBORHOOD SEGREGATION*

    PubMed Central

    Bruch, Elizabeth E.

    2014-01-01

    This study investigates how choices about social affiliation based on one attribute can exacerbate or attenuate segregation on another correlated attribute. The specific application is the role of racial and economic factors in generating patterns of racial residential segregation. I identify three population parameters—between-group inequality, within-group inequality, and relative group size—that determine how income inequality between race groups affects racial segregation. I use data from the Panel Study of Income Dynamics to estimate models of individual-level residential mobility, and incorporate these estimates into agent-based models. I then simulate segregation dynamics under alternative assumptions about: (1) the relative size of minority groups; and (2) the degree of correlation between race and income among individuals. I find that income inequality can have offsetting effects at the high and low ends of the income distribution. I demonstrate the empirical relevance of the simulation results using fixed-effects, metro-level regressions applied to 1980-2000 U.S. Census data. PMID:25009360

  9. Urban habitat fragmentation and genetic population structure of bobcats in coastal southern California

    USGS Publications Warehouse

    Ruell, E.W.; Riley, S.P.D.; Douglas, M.R.; Antolin, M.F.; Pollinger, J.R.; Tracey, J.A.; Lyren, L.M.; Boydston, E.E.; Fisher, R.N.; Crooks, K.R.

    2012-01-01

    Although habitat fragmentation is recognized as a primary threat to biodiversity, the effects of urban development on genetic population structure vary among species and landscapes and are not yet well understood. Here we use non-invasive genetic sampling to compare the effects of fragmentation by major roads and urban development on levels of dispersal, genetic diversity, and relatedness between paired bobcat populations in replicate landscapes in coastal southern California. We hypothesized that bobcat populations in sites surrounded by urbanization would experience reduced functional connectivity relative to less isolated nearby populations. Our results show that bobcat genetic population structure is affected by roads and development but not always as predicted by the degree that these landscape features surround fragments. Instead, we suggest that urban development may affect functional connectivity between bobcat populations more by limiting the number and genetic diversity of source populations of migrants than by creating impermeable barriers to dispersal.

  10. Location of odor sources and the affected population in Imperial County, California

    SciTech Connect

    Hahn, J.L.

    1981-08-01

    This report is divided into four sections. The first two sections contain general background information on Imperial County. The third section is a general discussion of odor sources in Imperial County, and the fourth maps the specific odor sources, the expected areas of perception, and the affected populations. this mapping is done for the Imperial Valley and each of the four Imperial County KGRA's (Known Geothermal Resource Areas) where odor from the development of the geothermal energy may affect population.

  11. Effects of Sample Selection Bias on the Accuracy of Population Structure and Ancestry Inference

    PubMed Central

    Shringarpure, Suyash; Xing, Eric P.

    2014-01-01

    Population stratification is an important task in genetic analyses. It provides information about the ancestry of individuals and can be an important confounder in genome-wide association studies. Public genotyping projects have made a large number of datasets available for study. However, practical constraints dictate that of a geographical/ethnic population, only a small number of individuals are genotyped. The resulting data are a sample from the entire population. If the distribution of sample sizes is not representative of the populations being sampled, the accuracy of population stratification analyses of the data could be affected. We attempt to understand the effect of biased sampling on the accuracy of population structure analysis and individual ancestry recovery. We examined two commonly used methods for analyses of such datasets, ADMIXTURE and EIGENSOFT, and found that the accuracy of recovery of population structure is affected to a large extent by the sample used for analysis and how representative it is of the underlying populations. Using simulated data and real genotype data from cattle, we show that sample selection bias can affect the results of population structure analyses. We develop a mathematical framework for sample selection bias in models for population structure and also proposed a correction for sample selection bias using auxiliary information about the sample. We demonstrate that such a correction is effective in practice using simulated and real data. PMID:24637351

  12. Use of Population Genetics to Assess the Ecology, Evolution, and Population Structure of Coccidioides

    PubMed Central

    Teixeira, Marcus M.

    2016-01-01

    During the past 20 years, a general picture of the genetic diversity and population structure of Coccidioides, the causal agent of coccidioidomycosis (Valley fever), has emerged. The genus consists of 2 genetically diverse species, C. immitis and C. posadasii, each of which contains 1 or more distinct populations with limited gene flow. Genotypic data indicate that C. immitis is divided into 2 subpopulations (central and southern California populations) and C. posadasii is divided into 3 subpopulations (Arizona, Mexico, and Texas/South America populations). However, admixture within and among these populations and the current paucity of environmental isolates limit our understanding of the population genetics of Coccidioides. We assessed population structure of Coccidioides in Arizona by analyzing 495 clinical and environmental isolates. Our findings confirm the population structure as previously described and indicate a finer scale population structure in Arizona. Environmental isolates appear to have higher genetic diversity than isolates from human patients. PMID:27191589

  13. Use of Population Genetics to Assess the Ecology, Evolution, and Population Structure of Coccidioides.

    PubMed

    Teixeira, Marcus M; Barker, Bridget M

    2016-06-01

    During the past 20 years, a general picture of the genetic diversity and population structure of Coccidioides, the causal agent of coccidioidomycosis (Valley fever), has emerged. The genus consists of 2 genetically diverse species, C. immitis and C. posadasii, each of which contains 1 or more distinct populations with limited gene flow. Genotypic data indicate that C. immitis is divided into 2 subpopulations (central and southern California populations) and C. posadasii is divided into 3 subpopulations (Arizona, Mexico, and Texas/South America populations). However, admixture within and among these populations and the current paucity of environmental isolates limit our understanding of the population genetics of Coccidioides. We assessed population structure of Coccidioides in Arizona by analyzing 495 clinical and environmental isolates. Our findings confirm the population structure as previously described and indicate a finer scale population structure in Arizona. Environmental isolates appear to have higher genetic diversity than isolates from human patients. PMID:27191589

  14. Effects of spatial structure of population size on the population dynamics of barnacles across their elevational range.

    PubMed

    Fukaya, Keiichi; Okuda, Takehiro; Nakaoka, Masahiro; Noda, Takashi

    2014-11-01

    Explanations for why population dynamics vary across the range of a species reflect two contrasting hypotheses: (i) temporal variability of populations is larger in the centre of the range compared to the margins because overcompensatory density dependence destabilizes population dynamics and (ii) population variability is larger near the margins, where populations are more susceptible to environmental fluctuations. In both of these hypotheses, positions within the range are assumed to affect population variability. In contrast, the fact that population variability is often related to mean population size implies that the spatial structure of the population size within the range of a species may also be a useful predictor of the spatial variation in temporal variability of population size over the range of the species. To explore how population temporal variability varies spatially and the underlying processes responsible for the spatial variation, we focused on the intertidal barnacle Chthamalus dalli and examined differences in its population dynamics along the tidal levels it inhabits. Changes in coverage of barnacle populations were monitored for 10.5 years at 25 plots spanning the elevational range of this species. Data were analysed by fitting a population dynamics model to estimate the effects of density-dependent and density-independent processes on population growth. We also examined the temporal mean-variance relationship of population size with parameters estimated from the population dynamics model. We found that the relative variability of populations tended to increase from the centre of the elevational range towards the margins because of an increase in the magnitude of stochastic fluctuations of growth rates. Thus, our results supported hypothesis (2). We also found that spatial variations in temporal population variability were well characterized by Taylor's power law, the relative population variability being inversely related to the mean

  15. Identification of genetic and epigenetic marks involved in population structure.

    PubMed

    Liu, Jingyu; Hutchison, Kent; Perrone-Bizzozero, Nora; Morgan, Marilee; Sui, Jing; Calhoun, Vince

    2010-01-01

    Population structure is well known as a prevalent and important factor in genetic studies, but its relevance in epigenetics is unclear. Very little is known about the affected epigenetic markers and their connections with genetics. In this study we assessed the impact of population diversity on genome wide single nucleotide polymorphisms (SNPs) and DNA methylation levels in 196 participants from five ethnic groups, using principle and independent component analyses. Three population stratification factors (PSFs) were identified in the genomic SNP dataset, accounting for a relatively large portion of total variance (6%). In contrast, only one PSF was identified in genomic methylation dataset accounting for 0.2% of total variance. This methylation PSF, however, was significantly correlated with the largest SNP PSF (r = 0.72, p<1E-23). We then investigated the top contributing markers in these two linked PSFs. The SNP PSF predominantly consists of 8 SNPs from three genes, SLC45A2, HERC2 and CTNNA2, known to encode skin/hair/eye color. The methylation PSF includes 48 methylated sites in 44 genes coding for basic molecular functions, including transcription regulation, DNA binding, cytokine, and transferase activity. Among them, 8 sites are either hypo- or hyper-methylated correlating to minor alleles of SNPs in the SNP PSF. We found that the genes in SNP and methylation PSFs share common biological processes including sexual/multicellular organism reproduction, cell-cell signaling and cytoskeleton organization. We further investigated the transcription regulatory network operating at these genes and identified that most of genes closely interact with ID2, which encodes for a helix-loop-helix inhibitor of DNA binding. Overall, our results show a significant correlation between genetic and epigenetic population stratification, and suggest that the interrelationship between genetic and epigenetic population structure is mediated via complex multiple gene interactions

  16. Understanding cooperative behavior in structurally disordered populations

    NASA Astrophysics Data System (ADS)

    Xu, C.; Zhang, W.; Du, P.; Choi, C. W.; Hui, P. M.

    2016-06-01

    The effects of an inhomogeneous competing environment on the extent of cooperation are studied within the context of a site-diluted evolutionary snowdrift game on a square lattice, with the occupied sites representing the players, both numerically and analytically. The frequency of cooperation ℱC generally shows a non-monotonic dependence on the fraction of occupied sites ρ, for different values of the payoff parameter r. Slightly diluting a lattice leads to a lower cooperation for small and high values of r. For a range of r, however, dilution leads to an enhanced cooperation. An analytic treatment is developed for ℱCI + ℱCII, with ℱCI emphasizing the importance of the small clusters of players especially for ℱCII from the other players is shown to be inadequate. A local configuration approximation (LCA) that treats the local competing configurations as the variables and amounts to include spatial correlation up to the neighborhood of a player's neighbors is developed. Results of ℱC (ρ) and the number of different local configurations from LCA are in good agreement with simulation results. A transparent physical picture of the dynamics stemming from LCA is also presented. The theoretical approach provides a framework that can be readily applied to competing agent-based models in structurally ordered and disordered populations.

  17. Understanding cooperative behavior in structurally disordered populations

    NASA Astrophysics Data System (ADS)

    Xu, C.; Zhang, W.; Du, P.; Choi, C. W.; Hui, P. M.

    2016-06-01

    The effects of an inhomogeneous competing environment on the extent of cooperation are studied within the context of a site-diluted evolutionary snowdrift game on a square lattice, with the occupied sites representing the players, both numerically and analytically. The frequency of cooperation ℱ C generally shows a non-monotonic dependence on the fraction of occupied sites ρ, for different values of the payoff parameter r. Slightly diluting a lattice leads to a lower cooperation for small and high values of r. For a range of r, however, dilution leads to an enhanced cooperation. An analytic treatment is developed for ℱC I + ℱC II, with ℱC I emphasizing the importance of the small clusters of players especially for ℱC II from the other players is shown to be inadequate. A local configuration approximation (LCA) that treats the local competing configurations as the variables and amounts to include spatial correlation up to the neighborhood of a player's neighbors is developed. Results of ℱ C ( ρ) and the number of different local configurations from LCA are in good agreement with simulation results. A transparent physical picture of the dynamics stemming from LCA is also presented. The theoretical approach provides a framework that can be readily applied to competing agent-based models in structurally ordered and disordered populations.

  18. [Comparative chromosomal analysis of populations of phytophilous chironomidae Glyptotendipes glaucus (Mg.) from Chernobyl-affected territory].

    PubMed

    Belianina, S I

    2014-09-01

    The karyopools of the phytophilous chiromomid species of Glyptotendipes glaucus (Mg.) were studied. Chironomids originated from a number of reservoirs located in the Novozybkovsky rayon of the Bryansk region, which was affected by the Chernobyl radioactive release, and two reservoirs located in the Saratov region. Differences in the inversion spectrum and frequencies, both among Bryansk and between Bryansk and Saratov populations, were found. There were no new inversions in the Novozybkovsky populations; however, structurally small rearrangements in long chromosomes were noted. Typical abnormalities included mosaicism of the chromosome morphotypes in cells of the same saline gland, which was especially distinctive in the larvae from the forbidden zone; decondensation of the telomere regions of chromosomes; and mosaic asynapsis of the chromosome IV homologs (up to complete disjunction). Also, several larvae were polyploids. Other species of Glyptotendipes inhabiting the Novozybkovsky reservoirs were represented by the single species of G. paripes (near the Korchy settlement). The karyotypes of its several larvae were represented by an unorganized chromosomal substance. The other Glyptotendipes species seem to have lower adaptive abilities under the conditions in question and were eliminated from precatastrophe biotopes, while G. glaucus succeeded in adaptating to the new environment. PMID:25735132

  19. Genetic variation and structure of house sparrow populations: is there an island effect?

    PubMed

    Jensen, Henrik; Moe, Rune; Hagen, Ingerid Julie; Holand, Anna Marie; Kekkonen, Jaana; Tufto, Jarle; Saether, Bernt-Erik

    2013-04-01

    Population genetic structure and intrapopulation levels of genetic variation have important implications for population dynamics and evolutionary processes. Habitat fragmentation is one of the major threats to biodiversity. It leads to smaller population sizes and reduced gene flow between populations and will thus also affect genetic structure. We use a natural system of island and mainland populations of house sparrows along the coast of Norway to characterize the different population genetic properties of fragmented populations. We genotyped 636 individuals distributed across 14 populations at 15 microsatellite loci. The level of genetic differentiation was estimated using F-statistics and specially designed Mantel tests were conducted to study the influence of population type (i.e. mainland or island) and geographic distance on the genetic population structure. Furthermore, the effects of population type, population size and latitude on the level of genetic variation within populations were examined. Our results suggest that genetic processes on islands and mainland differed in two important ways. First, the intrapopulation level of genetic variation tended to be lower and the occurrence of population bottlenecks more frequent on islands than the mainland. Second, although the general level of genetic differentiation was low to moderate, it was higher between island populations than between mainland populations. However, differentiation increased in mainland populations somewhat faster with geographical distance. These results suggest that population bottleneck events and genetic drift have been more important in shaping the genetic composition of island populations compared with populations on the mainland. Such knowledge is relevant for a better understanding of evolutionary processes and conservation of threatened populations. PMID:23379682

  20. Inferring population structure and demographic history using Y-STR data from worldwide populations.

    PubMed

    Xu, Hongyang; Wang, Chuan-Chao; Shrestha, Rukesh; Wang, Ling-Xiang; Zhang, Manfei; He, Yungang; Kidd, Judith R; Kidd, Kenneth K; Jin, Li; Li, Hui

    2015-02-01

    The Y chromosome is one of the best genetic materials to explore the evolutionary history of human populations. Global analyses of Y chromosomal short tandem repeats (STRs) data can reveal very interesting world population structures and histories. However, previous Y-STR works tended to focus on small geographical ranges or only included limited sample sizes. In this study, we have investigated population structure and demographic history using 17 Y chromosomal STRs data of 979 males from 44 worldwide populations. The largest genetic distances have been observed between pairs of African and non-African populations. American populations with the lowest genetic diversities also showed large genetic distances and coancestry coefficients with other populations, whereas Eurasian populations displayed close genetic affinities. African populations tend to have the oldest time to the most recent common ancestors (TMRCAs), the largest effective population sizes and the earliest expansion times, whereas the American, Siberian, Melanesian, and isolated Atayal populations have the most recent TMRCAs and expansion times, and the smallest effective population sizes. This clear geographic pattern is well consistent with serial founder model for the origin of populations outside Africa. The Y-STR dataset presented here provides the most detailed view of worldwide population structure and human male demographic history, and additionally will be of great benefit to future forensic applications and population genetic studies. PMID:25159112

  1. Factors Affecting the Distribution Pattern of Wild Plants with Extremely Small Populations in Hainan Island, China

    PubMed Central

    Chen, Yukai; Yang, Xiaobo; Yang, Qi; Li, Donghai; Long, Wenxing; Luo, Wenqi

    2014-01-01

    Understanding which factors affect the distribution pattern of extremely small populations is essential to the protection and propagation of rare and endangered plant species. In this study, we established 108 plots covering the entire Hainan Island, and measured the appearance frequency and species richness of plant species with extremely small populations, as well as the ecological environments and human disturbances during 2012–2013. We explored how the ecological environments and human activities affected the distribution pattern of these extremely small populations. Results showed that the extremely small populations underwent human disturbances and threats, and they were often found in fragmental habitats. The leading factors changing the appearance frequency of extremely small populations differed among plant species, and the direct factors making them susceptible to extinction were human disturbances. The peak richness of extremely small populations always occurred at the medium level across environmental gradients, and their species richness always decreased with increasing human disturbances. However, the appearance frequencies of three orchid species increased with the increasing human disturbances. Our study thus indicate that knowledge on how the external factors, such as the ecological environment, land use type, roads, human activity, etc., affect the distribution of the extremely small populations should be taken for the better protecting them in the future. PMID:24830683

  2. Factors affecting the distribution pattern of wild plants with extremely small populations in Hainan Island, China.

    PubMed

    Chen, Yukai; Yang, Xiaobo; Yang, Qi; Li, Donghai; Long, Wenxing; Luo, Wenqi

    2014-01-01

    Understanding which factors affect the distribution pattern of extremely small populations is essential to the protection and propagation of rare and endangered plant species. In this study, we established 108 plots covering the entire Hainan Island, and measured the appearance frequency and species richness of plant species with extremely small populations, as well as the ecological environments and human disturbances during 2012-2013. We explored how the ecological environments and human activities affected the distribution pattern of these extremely small populations. Results showed that the extremely small populations underwent human disturbances and threats, and they were often found in fragmental habitats. The leading factors changing the appearance frequency of extremely small populations differed among plant species, and the direct factors making them susceptible to extinction were human disturbances. The peak richness of extremely small populations always occurred at the medium level across environmental gradients, and their species richness always decreased with increasing human disturbances. However, the appearance frequencies of three orchid species increased with the increasing human disturbances. Our study thus indicate that knowledge on how the external factors, such as the ecological environment, land use type, roads, human activity, etc., affect the distribution of the extremely small populations should be taken for the better protecting them in the future. PMID:24830683

  3. Population Structure and Genetic Diversity of Native and Invasive Populations of Solanum rostratum (Solanaceae)

    PubMed Central

    Zhao, Jiali; Solís-Montero, Lislie; Lou, Anru; Vallejo-Marín, Mario

    2013-01-01

    Aims We investigate native and introduced populations of Solanum rostratum, an annual, self-compatible plant that has been introduced around the globe. This study is the first to compare the genetic diversity of Solanum rostratum between native and introduced populations. We aim to (1) determine the level of genetic diversity across the studied regions; (2) explore the likely origins of invasive populations in China; and (3) investigate whether there is the evidence of multiple introductions into China. Methods We genotyped 329 individuals at 10 microsatellite loci to determine the levels of genetic diversity and to investigate population structure of native and introduced populations of S. rostratum. We studied five populations in each of three regions across two continents: Mexico, the U.S.A. and China. Important Findings We found the highest genetic diversity among Mexican populations of S. rostratum. Genetic diversity was significantly lower in Chinese and U.S.A. populations, but we found no regional difference in inbreeding coefficients (FIS) or population differentiation (FST). Population structure analyses indicate that Chinese and U.S.A. populations are more closely related to each other than to sampled Mexican populations, revealing that introduced populations in China share an origin with the sampled U.S.A. populations. The distinctiveness between some introduced populations indicates multiple introductions of S. rostratum into China. PMID:24224008

  4. Genetic diversity affects the strength of population regulation in a marine fish.

    PubMed

    Johnson, D W; Freiwald, J; Bernardi, G

    2016-03-01

    Variation is an essential feature of biological populations, yet much of ecological theory treats individuals as though they are identical. This simplifying assumption is often justified by the perception that variation among individuals does not have significant effects on the dynamics of whole populations. However, this perception may be skewed by a historic focus on studying single populations. A true evaluation of the extent to which among-individual variation affects the dynamics of populations requires the study of multiple populations. In this study, we examined variation in the dynamics of populations of a live-bearing, marine fish (black surfperch; Embiotoca jacksoni). In collaboration with an organization of citizen scientists (Reef Check California), we were able to examine the dynamics of eight populations that were distributed throughout approximately 700 km of coastline, a distance that encompasses much of this species' range. We hypothesized that genetic variation within a local population would be related to the intensity of competition and to the strength of population regulation. To test this hypothesis, we examined whether genetic diversity (measured by the diversity of mitochondrial DNA haplotypes) was related to the strength of population regulation. Low-diversity populations experienced strong density dependence in population growth rates and population sizes were regulated much more tightly than they were in high-diversity populations. Mechanisms that contributed to this pattern include links between genetic diversity, habitat use, and spatial crowding. On average, low-diversity populations used less of the available habitat and exhibited greater spatial clustering (and more intense competition) for a given level of density (measured at the scale of the reef). Although the populations we studied also varied with respect to exogenous characteristics (habitat complexity, densities of predators, and interspecific competitors), none of these

  5. Genetic structure of Tribolium castaneum (Coleptera: Tenebrionidae) populations in mills

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The red flour beetle, Tribolium castaneum, is primarily found associated with human structures such as wheat and rice mills, which are spatially isolated resource patches with apparently limited immigration that could produce genetically structured populations. We investigated genetic diversity and...

  6. Population structure and genetic diversity of moose in Alaska.

    PubMed

    Schmidt, Jennifer I; Hundertmark, Kris J; Bowyer, R Terry; McCracken, Kevin G

    2009-01-01

    Moose (Alces alces) are highly mobile mammals that occur across arboreal regions of North America, Europe, and Asia. Alaskan moose (Alces alces gigas) range across much of Alaska and are primary herbivore consumers, exerting a prominent influence on ecosystem structure and functioning. Increased knowledge gained from population genetics provides insights into their population dynamics, history, and dispersal of these unique large herbivores and can aid in conservation efforts. We examined the genetic diversity and population structure of moose (n = 141) with 8 polymorphic microsatellites from 6 regions spanning much of Alaska. Expected heterozygosity was moderate (H(E) = 0.483-0.612), and private alleles ranged from 0 to 6. Both F(ST) and R(ST) indicated significant population structure (P < 0.001) with F(ST) < 0.109 and R(ST) < 0.125. Results of analyses from STRUCTURE indicated 2 prominent population groups, a mix of moose from the Yakutat and Tetlin regions versus all other moose, with slight substructure observed among the second population. Estimates of dispersal differed between analytical approaches, indicating a high level of historical or current gene flow. Mantel tests indicated that isolation-by-distance partially explained observed structure among moose populations (R(2) = 0.45, P < 0.01). Finally, there was no evidence of bottlenecks either at the population level or overall. We conclude that weak population structure occurs among moose in Alaska with population expansion from interior Alaska westward toward the coast. PMID:18836148

  7. How Archiving by Freezing Affects the Genome-Scale Diversity of Escherichia coli Populations.

    PubMed

    Sprouffske, Kathleen; Aguilar-Rodríguez, José; Wagner, Andreas

    2016-01-01

    In the experimental evolution of microbes such as Escherichia coli, many replicate populations are evolved from a common ancestor. Freezing a population sample supplemented with the cryoprotectant glycerol permits later analysis or restarting of an evolution experiment. Typically, each evolving population, and thus each sample archived in this way, consists of many unique genotypes and phenotypes. The effect of archiving on such a heterogeneous population is unknown. Here, we identified optimal archiving conditions for E. coli. We also used genome sequencing of archived samples to study the effects that archiving has on genomic population diversity. We observed no allele substitutions and mostly small changes in allele frequency. Nevertheless, principal component analysis of genome-scale allelic diversity shows that archiving affects diversity across many loci. We showed that this change in diversity is due to selection rather than drift. In addition, ∼1% of rare alleles that occurred at low frequencies were lost after treatment. Our observations imply that archived populations may be used to conduct fitness or other phenotypic assays of populations, in which the loss of a rare allele may have negligible effects. However, caution is appropriate when sequencing populations restarted from glycerol stocks, as well as when using glycerol stocks to restart or replay evolution. This is because the loss of rare alleles can alter the future evolutionary trajectory of a population if the lost alleles were strongly beneficial. PMID:26988250

  8. How Archiving by Freezing Affects the Genome-Scale Diversity of Escherichia coli Populations

    PubMed Central

    Sprouffske, Kathleen; Aguilar-Rodríguez, José; Wagner, Andreas

    2016-01-01

    In the experimental evolution of microbes such as Escherichia coli, many replicate populations are evolved from a common ancestor. Freezing a population sample supplemented with the cryoprotectant glycerol permits later analysis or restarting of an evolution experiment. Typically, each evolving population, and thus each sample archived in this way, consists of many unique genotypes and phenotypes. The effect of archiving on such a heterogeneous population is unknown. Here, we identified optimal archiving conditions for E. coli. We also used genome sequencing of archived samples to study the effects that archiving has on genomic population diversity. We observed no allele substitutions and mostly small changes in allele frequency. Nevertheless, principal component analysis of genome-scale allelic diversity shows that archiving affects diversity across many loci. We showed that this change in diversity is due to selection rather than drift. In addition, ∼1% of rare alleles that occurred at low frequencies were lost after treatment. Our observations imply that archived populations may be used to conduct fitness or other phenotypic assays of populations, in which the loss of a rare allele may have negligible effects. However, caution is appropriate when sequencing populations restarted from glycerol stocks, as well as when using glycerol stocks to restart or replay evolution. This is because the loss of rare alleles can alter the future evolutionary trajectory of a population if the lost alleles were strongly beneficial. PMID:26988250

  9. Mussels of a marginal population affect the patterns of ambient macrofauna: A case study from the Baltic Sea.

    PubMed

    Lauringson, Velda; Kotta, Jonne

    2016-05-01

    In contemporary ecosystems, organisms are increasingly confronted with suboptimal living conditions. We aimed to understand the role of ecosystem engineering species in suboptimal habitats from a population inhabiting the species range margin in naturally stressful conditions. We determined the impact of 2-4 cm sized patches of dwarfed mussels Mytilus trossulus close to its lower salinity limit in the North-Eastern Baltic Sea, on epibenthic community patterns. Mussels affected total macrofaunal abundance and biomass and the taxonomic and functional community structure based on abundances, as well as the species composition of macrofauna. Mussels did not affect ephemeral algae or sediment chlorophyll content, but increased the abundance, biomass, richness, and diversity of grazers, within a radius approximately twelve times the size of mussel patches. We can expect marginal populations of ecosystem engineers in suboptimal habitats to contribute to spatial heterogeneity in biotic patterns and eventual ecosystem stability. PMID:26970684

  10. Community structure, population structure and topographical specialisation of Gyrodactylus (monogenea) ectoparasites living on sympatric stickleback species.

    PubMed

    Raeymaekers, Joost A M; Huyse, Tine; Maelfait, Hannelore; Hellemans, Bart; Volckaert, Filip A M

    2008-09-01

    In order to disentangle the contribution of host and parasite biology to host specificity, we compared the structure and population dynamics of the Gyrodactylus (von Nordmann, 1832) flatworm community living on sympatric three-spined Gasterosteus aculeatus L. and nine-spined Pungitius pungitius (L.) stickleback. Between April 2002 and March 2003, a small lowland creek was sampled monthly. Species identity of about 75% of the worms per host was determined with a genetic nuclear marker (ITS1). Each stickleback species hosted a characteristic gill- and fin-parasitic Gyrodactylus: G. arcuatus Bychowsky, 1933 and G. gasterostei Gläser, 1974 respectively infecting the three-spined stickleback, with G. rarus Wegener, 1910 and G. pungitii Malmberg, 1964 infecting the nine-spined stickleback. Host size and seasonal dynamics were strong determinants of parasite abundance. A strong interaction between host and parasite species determined infection levels and affected three levels of parasite organisation: community structure, population structure and topographical specialisation. Community and population structure were shaped by asymmetric cross-infections, resulting in a net transmission of the Gyro-dactylus species typical of the nine-spined stickleback towards the three-spined stickleback. Host density was not a major determinant of parasite exchange. Aggregation and topographical specialisation of the Gyrodactylus species of the three-spined stickleback were more pronounced than that of the nine-spined stickleback. PMID:19202677

  11. Factors Affecting Soil Microbial Community Structure in Tomato Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil and rhizosphere microbial communities in agroecosystems may be affected by soil, climate, plant species, and management. We identified some of the most important factors controlling microbial biomass and community structure in an agroecosystem utilizing tomato plants with the following nine tre...

  12. Web Intervention for Adolescents Affected by Disaster: Population-Based Randomized Controlled Trial

    PubMed Central

    Ruggiero, Kenneth J.; Price, Matthew; Adams, Zachary; Stauffacher, Kirstin; McCauley, Jenna; Danielson, Carla Kmett; Knapp, Rebecca; Hanson, Rochelle F.; Davidson, Tatiana M.; Amstadter, Ananda B.; Carpenter, Matthew J.; Saunders, Benjamin E.; Kilpatrick, Dean G.; Resnick, Heidi S.

    2015-01-01

    Objective To assess the efficacy of Bounce Back Now (BBN), a modular, web-based intervention for disaster-affected adolescents and their parents. Method A population-based randomized controlled trial used address-based sampling to enroll 2,000 adolescents and parents from communities affected by tornadoes in Joplin, MO, and Alabama. Data collection via baseline and follow-up semi-structured telephone interviews was completed between September 2011 and August 2013. All families were invited to access the BBN study web portal irrespective of mental health status at baseline. Families who accessed the web portal were assigned randomly to 3 groups: (1) BBN, which featured modules for adolescents and parents targeting adolescents’ mental health symptoms; (2) BBN plus additional modules targeting parents’ mental health symptoms; or (3) assessment only. The primary outcomes were adolescent symptoms of posttraumatic stress disorder (PTSD) and depression. Results Nearly 50% of families accessed the web portal. Intent-to-treat analyses revealed time × condition interactions for PTSD symptoms (B=−0.24, SE=0.08, p<.01) and depressive symptoms (B=−0.23, SE=0.09, p<.01). Post-hoc comparisons revealed fewer PTSD and depressive symptoms for adolescents in the experimental vs. control conditions at 12-month follow-up (PTSD: B=−0.36, SE=0.19, p=.06; depressive symptoms: B=−0.42, SE=0.19, p=0.03). A time × condition interaction also was found favoring the BBN vs. BBN + parent self-help condition for PTSD symptoms (B=0.30, SE=0.12, p=.02), but not depressive symptoms (B=0.12, SE=0.12, p=.33). Conclusion Results supported the feasibility and initial efficacy of BBN as a scalable disaster mental health intervention for adolescents. Technology-based solutions have tremendous potential value if found to reduce the mental health burden of disasters. PMID:26299292

  13. Selection of Cooperation in Spatially Structured Populations

    NASA Astrophysics Data System (ADS)

    Yang, Hyunmo; Ghim, Cheol-Min

    The social dilemma games give rise to an emergence of cooperation in which altruistic individuals survive the natural selection at higher rate than random chance. We try to extend our understanding of this spatial reciprocity by including the impact of degree-degree correlation on the propensity toward prosocial behaviour in an otherwise well-mixed population. In a stochastic death-birth process with weak selection, we find that the disassortative degree mixing, or negative correlation between the degrees of neighbouring nodes significantly promotes the fixation of cooperators whereas the assortative mixing acts to suppress it. This is consistent with the fact that the spatial heterogeneity weakens the average tendency of a population to cooperate, which we describe in a unified scheme of the effective isothermality in coarse-grained networks. We also discuss the individual-level incentives that indirectly foster restructuring the social networks toward the more cooperative topologies.

  14. [Marriage structure of Yakut populations: migrations].

    PubMed

    Kucher, A I; Danilova, A L; Koneva, L A; Nogovitsina, A N

    2010-05-01

    Rural and urban settlements of the Republic of Sakha (Yakutia) are characterized by intense marriage migrations: both indigenous residents of different uluses (districts) of the republic (7-30%) and migrants from outside Yakutia (7-29%) contract marriages in five administrative centers analyzed in this respect. All the populations studied are characterized by a wide geographic range of the birthplaces of persons contracted marriages there (from 14 to 24 uluses of Yakutia), without any predominant migration flow from one district to another. The proportion of homolocal marriages among indigenous ethnic groups (Evenks, Evens, and Yukagirs) is as high as 75-100%; this proportion among Yakuts varies from 26 to 68%; heterolocal marriages are more characteristic of Russian immigrants (41-95%). Positive assortative marriages among persons with the same birthplaces have been found in all populations except for Momsky ulus. PMID:20583606

  15. The population genomics of begomoviruses: global scale population structure and gene flow

    PubMed Central

    2010-01-01

    Background The rapidly growing availability of diverse full genome sequences from across the world is increasing the feasibility of studying the large-scale population processes that underly observable pattern of virus diversity. In particular, characterizing the genetic structure of virus populations could potentially reveal much about how factors such as geographical distributions, host ranges and gene flow between populations combine to produce the discontinuous patterns of genetic diversity that we perceive as distinct virus species. Among the richest and most diverse full genome datasets that are available is that for the dicotyledonous plant infecting genus, Begomovirus, in the Family Geminiviridae. The begomoviruses all share the same whitefly vector, are highly recombinogenic and are distributed throughout tropical and subtropical regions where they seriously threaten the food security of the world's poorest people. Results We focus here on using a model-based population genetic approach to identify the genetically distinct sub-populations within the global begomovirus meta-population. We demonstrate the existence of at least seven major sub-populations that can further be sub-divided into as many as thirty four significantly differentiated and genetically cohesive minor sub-populations. Using the population structure framework revealed in the present study, we further explored the extent of gene flow and recombination between genetic populations. Conclusions Although geographical barriers are apparently the most significant underlying cause of the seven major population sub-divisions, within the framework of these sub-divisions, we explore patterns of gene flow to reveal that both host range differences and genetic barriers to recombination have probably been major contributors to the minor population sub-divisions that we have identified. We believe that the global Begomovirus population structure revealed here could facilitate population genetics studies

  16. Population structure of three Psammodromus species in the Iberian Peninsula

    PubMed Central

    Fitze, Patrick

    2015-01-01

    The knowledge of a species’ population structure is essential for the development of adequate conservation actions as well as for the understanding of its evolution. The population structure is unknown in all species of the Genus Psammodromus, including the Western Sand Racer (Psammodromus occidentalis; a recently described species), the Edward’s Sand Racer (P. edwardsianus) and the Spanish Sand Racer (P. hispanicus). In this article, the genetic variability and population structure of Psammodromus edwardsianus, P. hispanicus, and P. occidentalis were studied in the Iberian Peninsula covering their natural geographic distribution. Mitochondrial DNA showed genetically different units in all species with higher genetic variability in their southern populations (latitudinal variation). Genetic differentiation was different among species and contrasted to those of species with similar characteristics. Our results therefore highlight the importance of species-specific studies analysing population structure. PMID:26056622

  17. Multiplicative and Additive Modulation of Neuronal Tuning with Population Activity Affects Encoded Information.

    PubMed

    Arandia-Romero, Iñigo; Tanabe, Seiji; Drugowitsch, Jan; Kohn, Adam; Moreno-Bote, Rubén

    2016-03-16

    Numerous studies have shown that neuronal responses are modulated by stimulus properties and also by the state of the local network. However, little is known about how activity fluctuations of neuronal populations modulate the sensory tuning of cells and affect their encoded information. We found that fluctuations in ongoing and stimulus-evoked population activity in primate visual cortex modulate the tuning of neurons in a multiplicative and additive manner. While distributed on a continuum, neurons with stronger multiplicative effects tended to have less additive modulation and vice versa. The information encoded by multiplicatively modulated neurons increased with greater population activity, while that of additively modulated neurons decreased. These effects offset each other so that population activity had little effect on total information. Our results thus suggest that intrinsic activity fluctuations may act as a "traffic light" that determines which subset of neurons is most informative. PMID:26924437

  18. Population genetic structure of traditional populations in the Peruvian Central Andes and implications for South American population history.

    PubMed

    Cabana, Graciela S; Lewis, Cecil M; Tito, Raúl Y; Covey, R Alan; Cáceres, Angela M; Cruz, Augusto F De La; Durand, Diana; Housman, Genevieve; Hulsey, Brannon I; Iannacone, Gian Carlo; López, Paul W; Martínez, Rolando; Medina, Ángel; Dávila, Olimpio Ortega; Pinto, Karla Paloma Osorio; Santillán, Susan I Polo; Domínguez, Percy Rojas; Rubel, Meagan; Smith, Heather F; Smith, Silvia E; Massa, Verónica Rubín de Celis; Lizárraga, Beatriz; Stone, Anne C

    2014-01-01

    Molecular-based characterizations of Andean peoples are traditionally conducted in the service of elucidating continent-level evolutionary processes in South America. Consequently, genetic variation among "western" Andean populations is often represented in relation to variation among "eastern" Amazon and Orinoco River Basin populations. This west-east contrast in patterns of population genetic variation is typically attributed to large-scale phenomena, such as dual founder colonization events or differing long-term microevolutionary histories. However, alternative explanations that consider the nature and causes of population genetic diversity within the Andean region remain underexplored. Here we examine population genetic diversity in the Peruvian Central Andes using data from the mtDNA first hypervariable region and Y-chromosome short tandem repeats among 17 newly sampled populations and 15 published samples. Using this geographically comprehensive data set, we first reassessed the currently accepted pattern of western versus eastern population genetic structure, which our results ultimately reject: mtDNA population diversities were lower, rather than higher, within Andean versus eastern populations, and only highland Y-chromosomes exhibited significantly higher within-population diversities compared with eastern groups. Multiple populations, including several highland samples, exhibited low genetic diversities for both genetic systems. Second, we explored whether the implementation of Inca state and Spanish colonial policies starting at about ad 1400 could have substantially restructured population genetic variation and consequently constitute a primary explanation for the extant pattern of population diversity in the Peruvian Central Andes. Our results suggest that Peruvian Central Andean population structure cannot be parsimoniously explained as the sole outcome of combined Inca and Spanish policies on the region's population demography: highland populations

  19. Population structure and genetic diversity of black redhorse (Moxostoma duquesnei) in a highly fragmented watershed

    USGS Publications Warehouse

    Reid, S.M.; Wilson, C.C.; Mandrak, N.E.; Carl, L.M.

    2008-01-01

    Dams have the potential to affect population size and connectivity, reduce genetic diversity, and increase genetic differences among isolated riverine fish populations. Previous research has reported adverse effects on the distribution and demographics of black redhorse (Moxostoma duquesnei), a threatened fish species in Canada. However, effects on genetic diversity and population structure are unknown. We used microsatellite DNA markers to assess the number of genetic populations in the Grand River (Ontario) and to test whether dams have resulted in a loss of genetic diversity and increased genetic differentiation among populations. Three hundred and seventy-seven individuals from eight Grand River sites were genotyped at eight microsatellite loci. Measures of genetic diversity were moderately high and not significantly different among populations; strong evidence of recent population bottlenecks was not detected. Pairwise FST and exact tests identified weak (global FST = 0.011) but statistically significant population structure, although little population structuring was detected using either genetic distances or an individual-based clustering method. Neither geographic distance nor the number of intervening dams were correlated with pairwise differences among populations. Tests for regional equilibrium indicate that Grand River populations were either in equilibrium between gene flow and genetic drift or that gene flow is more influential than drift. While studies on other species have identified strong dam-related effects on genetic diversity and population structure, this study suggests that barrier permeability, river fragment length and the ecological characteristics of affected species can counterbalance dam-related effects. ?? 2007 Springer Science+Business Media B.V.

  20. Stable isotopes indicate population structuring in the southwest Atlantic population of right whales (Eubalaena australis).

    PubMed

    Vighi, Morgana; Borrell, Asunción; Crespo, Enrique A; Oliveira, Larissa R; Simões-Lopes, Paulo C; Flores, Paulo A C; García, Néstor A; Aguilar, Alex; Aguilar, Alejandro

    2014-01-01

    From the early 17th century to the 1970s southern right whales, Eubalaena australis, were subject to intense exploitation along the Atlantic coast of South America. Catches along this coast recorded by whalers originally formed a continuum from Brazil to Tierra del Fuego. Nevertheless, the recovery of the population has apparently occurred fragmentarily, and with two main areas of concentration, one off southern Brazil (Santa Catarina) and another off central Argentina (Peninsula Valdés). This pattern suggests some level of heterogeneity amongst the population, which is apparently contradicted by records that traced individuals moving throughout the whole geographical extension covered by the species in the Southwest Atlantic. To test the hypothesis of the potential occurrence of discrete subpopulations exploiting specific habitats, we investigated N, C and O isotopic values in 125 bone samples obtained from whaling factories operating in the early 1970s in southern Brazil (n=72) and from contemporary and more recent strandings occurring in central Argentina (n=53). Results indicated significant differences between the two sampling areas, being δ13C and δ18O values significantly higher in samples from southern Brazil than in those from central Argentina. This variation was consistent with isotopic baselines from the two areas, indicating the occurrence of some level of structure in the Southwest Atlantic right whale population and equally that whales more likely feed in areas commonly thought to exclusively serve as nursing grounds. Results aim at reconsidering of the units currently used in the management of the southern right whale in the Southwest Atlantic Ocean. In the context of the current die-off affecting the species in Peninsula Valdés, these results also highlight the necessity to better understand movements of individuals and precisely identify their feeding areas. PMID:24598539

  1. Stable Isotopes Indicate Population Structuring in the Southwest Atlantic Population of Right Whales (Eubalaena australis)

    PubMed Central

    Vighi, Morgana; Borrell, Asunción; Crespo, Enrique A.; Oliveira, Larissa R.; Simões-Lopes, Paulo C.; Flores, Paulo A. C.; García, Néstor A.; Aguilar, Alejandro

    2014-01-01

    From the early 17th century to the 1970s southern right whales, Eubalaena australis, were subject to intense exploitation along the Atlantic coast of South America. Catches along this coast recorded by whalers originally formed a continuum from Brazil to Tierra del Fuego. Nevertheless, the recovery of the population has apparently occurred fragmentarily, and with two main areas of concentration, one off southern Brazil (Santa Catarina) and another off central Argentina (Peninsula Valdés). This pattern suggests some level of heterogeneity amongst the population, which is apparently contradicted by records that traced individuals moving throughout the whole geographical extension covered by the species in the Southwest Atlantic. To test the hypothesis of the potential occurrence of discrete subpopulations exploiting specific habitats, we investigated N, C and O isotopic values in 125 bone samples obtained from whaling factories operating in the early 1970s in southern Brazil (n = 72) and from contemporary and more recent strandings occurring in central Argentina (n = 53). Results indicated significant differences between the two sampling areas, being δ13C and δ18O values significantly higher in samples from southern Brazil than in those from central Argentina. This variation was consistent with isotopic baselines from the two areas, indicating the occurrence of some level of structure in the Southwest Atlantic right whale population and equally that whales more likely feed in areas commonly thought to exclusively serve as nursing grounds. Results aim at reconsidering of the units currently used in the management of the southern right whale in the Southwest Atlantic Ocean. In the context of the current die-off affecting the species in Peninsula Valdés, these results also highlight the necessity to better understand movements of individuals and precisely identify their feeding areas. PMID:24598539

  2. Population size and relatedness affect fitness of a self-incompatible invasive plant.

    PubMed

    Elam, Diane R; Ridley, Caroline E; Goodell, Karen; Ellstrand, Norman C

    2007-01-01

    One of the lingering paradoxes in invasion biology is how founder populations of an introduced species are able to overcome the limitations of small size and, in a "reversal of fortune," proliferate in a new habitat. The transition from colonist to invader is especially enigmatic for self-incompatible species, which must find a mate to reproduce. In small populations, the inability to find a mate can result in the Allee effect, a positive relationship between individual fitness and population size or density. Theoretically, the Allee effect should be common in founder populations of self-incompatible colonizing species and may account for the high rate of failed introductions, but little supporting evidence exists. We created a field experiment to test whether the Allee effect affects the maternal fitness of a self-incompatible invasive species, wild radish (Raphanus sativus). We created populations of varying size and relatedness. We measured maternal fitness in terms of both fruit set per flower and seed number per fruit. We found that both population size and the level of genetic relatedness among individuals influence maternal reproductive success. Our results explicitly define an ecological genetic obstacle faced by populations of an exotic species on its way to becoming invasive. Such a mechanistic understanding of the invasions of species that require a mate can and should be exploited for both controlling current outbreaks and reducing their frequency in the future. PMID:17197422

  3. Population Genetic Structure of Aedes fluviatilis (Diptera: Culicidae).

    PubMed

    Multini, Laura Cristina; Wilke, André Barretto Bruno; Suesdek, Lincoln; Marrelli, Mauro Toledo

    2016-01-01

    Although Aedes fluviatilis is an anthropophilic mosquito found abundantly in urban environments, its biology, epidemiological potential and genetic characteristics are poorly understood. Climate change and urbanization processes that result in environmental modifications benefit certain anthropophilic mosquito species such as Ae. fluviatilis, greatly increasing their abundance in urban areas. To gain a better understanding of whether urbanization processes modulate the genetic structure of this species in the city of São Paulo, we used eight microsatellite loci to genetically characterize Ae. fluviatilis populations collected in nine urban parks in the city of São Paulo. Our results show that there is high gene flow among the populations of this species, heterozygosity deficiency and low genetic structure and that the species may have undergone a recent population expansion. There are two main hypotheses to explain these findings: (i) Ae. fluviatilis populations have undergone a population expansion as a result of urbanization; and (ii) as urbanization of the city of São Paulo occurred recently and was quite intense, the structuring of these populations cannot be observed yet, apart from in the populations of Ibirapuera and Piqueri parks, where the first signs of structuring have appeared. We believe that the expansion found in Ae. fluviatilis populations is probably correlated with the unplanned urbanization of the city of São Paulo, which transformed green areas into urbanized areas, as well as the increasing population density in the city. PMID:27598889

  4. Host genetics and population structure effects on parasitic disease

    PubMed Central

    Williams-Blangero, Sarah; Criscione, Charles D.; VandeBerg, John L.; Correa-Oliveira, Rodrigo; Williams, Kimberly D.; Subedi, Janardan; Kent, Jack W.; Williams, Jeff; Kumar, Satish; Blangero, John

    2012-01-01

    Host genetic factors exert significant influences on differential susceptibility to many infectious diseases. In addition, population structure of both host and parasite may influence disease distribution patterns. In this study, we assess the effects of population structure on infectious disease in two populations in which host genetic factors influencing susceptibility to parasitic disease have been extensively studied. The first population is the Jirel population of eastern Nepal that has been the subject of research on the determinants of differential susceptibility to soil-transmitted helminth infections. The second group is a Brazilian population residing in an area endemic for Trypanosoma cruzi infection that has been assessed for genetic influences on differential disease progression in Chagas disease. For measures of Ascaris worm burden, within-population host genetic effects are generally more important than host population structure factors in determining patterns of infectious disease. No significant influences of population structure on measures associated with progression of cardiac disease in individuals who were seropositive for T. cruzi infection were found. PMID:22312056

  5. Determining population structure and hybridization for two iris species

    PubMed Central

    Hamlin, Jennafer A P; Arnold, Michael L

    2014-01-01

    Identifying processes that promote or limit gene flow can help define the ecological and evolutionary history of a species. Furthermore, defining those factors that make up “species boundaries” can provide a definition of the independent evolutionary trajectories of related taxa. For many species, the historic processes that account for their distribution of genetic variation remain unresolved. In this study, we examine the geographic distribution of genetic diversity for two species of Louisiana Irises, Iris brevicaulis and Iris fulva. Specifically, we asked how populations are structured and if population structure coincides with potential barriers to gene flow. We also asked whether there is evidence of hybridization between these two species outside Louisiana hybrid zones. We used a genotyping-by-sequencing approach and sampled a large number of single nucleotide polymorphisms across these species' genomes. Two different population assignment methods were used to resolve population structure in I. brevicaulis; however, there was considerably less population structure in I. fulva. We used a species tree approach to infer phylogenies both within and between populations and species. For I. brevicaulis, the geography of the collection locality was reflected in the phylogeny. The I. fulva phylogeny reflected much less structure than detected for I. brevicaulis. Lastly, combining both species into a phylogenetic analysis resolved two of six populations of I. brevicaulis that shared alleles with I. fulva. Taken together, our results suggest major differences in the level and pattern of connectivity among populations of these two Louisiana Iris species. PMID:24683457

  6. Isonymy and the genetic structure of Albanian populations.

    PubMed

    Mikerezi, Ilia; Pizzetti, Paola; Lucchetti, Enzo; Ekonomi, Milva

    2003-12-01

    It is well known that in systems of surname transmission through the paternal line, surnames simulate neutral gene alleles belonging to the Y chromosome. This property of surnames was used to analyze the genetic structure of Albanian populations. Two large samples of surnames belonging to two different periods of time were analyzed. The analysis of indicators of population structure showed that geographical distance has an important effect on surname distribution. It seems that isolation by distance and genetic drift have been still important factors in the determination of the genetic structure of the Albanian population. PMID:14746137

  7. Evolution of extortion in structured populations

    NASA Astrophysics Data System (ADS)

    Szolnoki, Attila; Perc, Matjaž

    2014-02-01

    Extortion strategies can dominate any opponent in an iterated prisoner's dilemma game. But if players are able to adopt the strategies performing better, extortion becomes widespread and evolutionary unstable. It may sometimes act as a catalyst for the evolution of cooperation, and it can also emerge in interactions between two populations, yet it is not the evolutionarily stable outcome. Here we revisit these results in the realm of spatial games. We find that pairwise imitation and birth-death dynamics return known evolutionary outcomes. Myopic best response strategy updating, on the other hand, reveals counterintuitive solutions. Defectors and extortioners coarsen spontaneously, which allows cooperators to prevail even at prohibitively high temptations to defect. Here extortion strategies play the role of a Trojan horse. They may emerge among defectors by chance, and once they do, cooperators become viable as well. These results are independent of the interaction topology, and they highlight the importance of coarsening, checkerboard ordering, and best response updating in evolutionary games.

  8. Population Size, Structural Differentiation, and Human Behavior

    ERIC Educational Resources Information Center

    Sadalla, Edward K.

    1978-01-01

    Reviews evidence which indicates that the sheer size of an urban center has important social and psychological consequences. Available literature suggests that size combined with structural differentiation is related to psychological and behavioral variables such as anomymity, deindividuation, deviance, personality development, and…

  9. Human population structure detection via multilocus genotype clustering

    PubMed Central

    Gao, Xiaoyi; Starmer, Joshua

    2007-01-01

    Background We describe a hierarchical clustering algorithm for using Single Nucleotide Polymorphism (SNP) genetic data to assign individuals to populations. The method does not assume Hardy-Weinberg equilibrium and linkage equilibrium among loci in sample population individuals. Results We show that the algorithm can assign sample individuals highly accurately to their corresponding ethnic groups in our tests using HapMap SNP data and it is also robust to admixed populations when tested with Perlegen SNP data. Moreover, it can detect fine-scale population structure as subtle as that between Chinese and Japanese by using genome-wide high-diversity SNP loci. Conclusion The algorithm provides an alternative approach to the popular STRUCTURE program, especially for fine-scale population structure detection in genome-wide association studies. This is the first successful separation of Chinese and Japanese samples using random SNP loci with high statistical support. PMID:17592628

  10. Agroecosystems shape population genetic structure of the greenhouse whitefly in Northern and Southern Europe

    PubMed Central

    2014-01-01

    Background To predict further invasions of pests it is important to understand what factors contribute to the genetic structure of their populations. Cosmopolitan pest species are ideal for studying how different agroecosystems affect population genetic structure within a species at different climatic extremes. We undertook the first population genetic study of the greenhouse whitefly (Trialeurodes vaporariorum), a cosmopolitan invasive herbivore, and examined the genetic structure of this species in Northern and Southern Europe. In Finland, cold temperatures limit whiteflies to greenhouses and prevent them from overwintering in nature, and in Greece, milder temperatures allow whiteflies to inhabit both fields and greenhouses year round, providing a greater potential for connectivity among populations. Using nine microsatellite markers, we genotyped 1274 T. vaporariorum females collected from 18 greenhouses in Finland and eight greenhouses as well as eight fields in Greece. Results Populations from Finland were less diverse than those from Greece, suggesting that Greek populations are larger and subjected to fewer bottlenecks. Moreover, there was significant population genetic structure in both countries that was explained by different factors. Habitat (field vs. greenhouse) together with longitude explained genetic structure in Greece, whereas in Finland, genetic structure was explained by host plant species. Furthermore, there was no temporal genetic structure among populations in Finland, suggesting that year-round populations are able to persist in greenhouses. Conclusions Taken together our results show that greenhouse agroecosystems can limit gene flow among populations in both climate zones. Fragmented populations in greenhouses could allow for efficient pest management. However, pest persistence in both climate zones, coupled with increasing opportunities for naturalization in temperate latitudes due to climate change, highlight challenges for the

  11. Population structure among octocoral adults and recruits identifies scale dependent patterns of population isolation in The Bahamas.

    PubMed

    Lasker, Howard R; Porto-Hannes, Isabel

    2015-01-01

    Patterns of dispersal and connectivity of the Caribbean gorgonian Antillogorgia elisabethae in The Bahamas were assessed in both adults and recently settled recruits from 13 sites using microsatellite loci. Adult populations along the Little Bahama Bank (LBB) exhibited a clear pattern of isolation by distance (IBD) which described 86% of the variance in pairwise genetic distances. Estimates of dispersal based on the IBD model suggested dispersal distances along the LBB on the order of 100 m. Increasing the spatial scale to include sites separated by open ocean generated an apparent IBD signal but the relationship had a greater slope and explained less of the variance. This relationship with distance reflected both stepping stone based IBD and regional differentiation probably created by ocean currents and barriers to dispersal that are correlated with geographic distance. Analysis of recruits from 4 sites on the LBB from up to 6 years did not detect differences between years nor differences with adult populations. The result suggests that neither selection on recruits nor inter-annual variation in dispersal affected adult population structure. Assignment tests of recruits indicated the most likely sources of the recruits were the local or adjacent populations. Most of the patterning in population structure in the northern Bahamas can be explained by geographic distance and oceanographic connectivity. Recognition of these complex patterns is important in developing management plans for A. elisabethae and in understanding the effects of disturbance to adult populations of A. elisabethae and similar species with limited dispersal. PMID:26157606

  12. Population structure among octocoral adults and recruits identifies scale dependent patterns of population isolation in The Bahamas

    PubMed Central

    Porto-Hannes, Isabel

    2015-01-01

    Patterns of dispersal and connectivity of the Caribbean gorgonian Antillogorgia elisabethae in The Bahamas were assessed in both adults and recently settled recruits from 13 sites using microsatellite loci. Adult populations along the Little Bahama Bank (LBB) exhibited a clear pattern of isolation by distance (IBD) which described 86% of the variance in pairwise genetic distances. Estimates of dispersal based on the IBD model suggested dispersal distances along the LBB on the order of 100 m. Increasing the spatial scale to include sites separated by open ocean generated an apparent IBD signal but the relationship had a greater slope and explained less of the variance. This relationship with distance reflected both stepping stone based IBD and regional differentiation probably created by ocean currents and barriers to dispersal that are correlated with geographic distance. Analysis of recruits from 4 sites on the LBB from up to 6 years did not detect differences between years nor differences with adult populations. The result suggests that neither selection on recruits nor inter-annual variation in dispersal affected adult population structure. Assignment tests of recruits indicated the most likely sources of the recruits were the local or adjacent populations. Most of the patterning in population structure in the northern Bahamas can be explained by geographic distance and oceanographic connectivity. Recognition of these complex patterns is important in developing management plans for A. elisabethae and in understanding the effects of disturbance to adult populations of A. elisabethae and similar species with limited dispersal. PMID:26157606

  13. Stochasticity and Determinism: How Density-Independent and Density-Dependent Processes Affect Population Variability

    PubMed Central

    Ohlberger, Jan; Rogers, Lauren A.; Stenseth, Nils Chr.

    2014-01-01

    A persistent debate in population ecology concerns the relative importance of environmental stochasticity and density dependence in determining variability in adult year-class strength, which contributes to future reproduction as well as potential yield in exploited populations. Apart from the strength of the processes, the timing of density regulation may affect how stochastic variation, for instance through climate, translates into changes in adult abundance. In this study, we develop a life-cycle model for the population dynamics of a large marine fish population, Northeast Arctic cod, to disentangle the effects of density-independent and density-dependent processes on early life-stages, and to quantify the strength of compensatory density dependence in the population. The model incorporates information from scientific surveys and commercial harvest, and dynamically links multiple effects of intrinsic and extrinsic factors on all life-stages, from eggs to spawners. Using a state-space approach we account for observation error and stochasticity in the population dynamics. Our findings highlight the importance of density-dependent survival in juveniles, indicating that this period of the life cycle largely determines the compensatory capacity of the population. Density regulation at the juvenile life-stage dampens the impact of stochastic processes operating earlier in life such as environmental impacts on the production of eggs and climate-dependent survival of larvae. The timing of stochastic versus regulatory processes thus plays a crucial role in determining variability in adult abundance. Quantifying the contribution of environmental stochasticity and compensatory mechanisms in determining population abundance is essential for assessing population responses to climate change and exploitation by humans. PMID:24893001

  14. Stochasticity and determinism: how density-independent and density-dependent processes affect population variability.

    PubMed

    Ohlberger, Jan; Rogers, Lauren A; Stenseth, Nils Chr

    2014-01-01

    A persistent debate in population ecology concerns the relative importance of environmental stochasticity and density dependence in determining variability in adult year-class strength, which contributes to future reproduction as well as potential yield in exploited populations. Apart from the strength of the processes, the timing of density regulation may affect how stochastic variation, for instance through climate, translates into changes in adult abundance. In this study, we develop a life-cycle model for the population dynamics of a large marine fish population, Northeast Arctic cod, to disentangle the effects of density-independent and density-dependent processes on early life-stages, and to quantify the strength of compensatory density dependence in the population. The model incorporates information from scientific surveys and commercial harvest, and dynamically links multiple effects of intrinsic and extrinsic factors on all life-stages, from eggs to spawners. Using a state-space approach we account for observation error and stochasticity in the population dynamics. Our findings highlight the importance of density-dependent survival in juveniles, indicating that this period of the life cycle largely determines the compensatory capacity of the population. Density regulation at the juvenile life-stage dampens the impact of stochastic processes operating earlier in life such as environmental impacts on the production of eggs and climate-dependent survival of larvae. The timing of stochastic versus regulatory processes thus plays a crucial role in determining variability in adult abundance. Quantifying the contribution of environmental stochasticity and compensatory mechanisms in determining population abundance is essential for assessing population responses to climate change and exploitation by humans. PMID:24893001

  15. Environmental and Climatic Determinants of Molecular Diversity and Genetic Population Structure in a Coenagrionid Damselfly

    PubMed Central

    Wellenreuther, Maren; Sánchez-Guillén, Rosa A.; Cordero-Rivera, Adolfo; Svensson, Erik I.; Hansson, Bengt

    2011-01-01

    Identifying environmental factors that structure intraspecific genetic diversity is of interest for both habitat preservation and biodiversity conservation. Recent advances in statistical and geographical genetics make it possible to investigate how environmental factors affect geographic organisation and population structure of molecular genetic diversity within species. Here we present a study on a common and wide ranging insect, the blue tailed damselfly Ischnuraelegans, which has been the target of many ecological and evolutionary studies. We addressed the following questions: (i) Is the population structure affected by longitudinal or latitudinal gradients?; (ii) Do geographic boundaries limit gene flow?; (iii) Does geographic distance affect connectivity and is there a signature of past bottlenecks?; (iv) Is there evidence of a recent range expansion and (vi) what is the effect of geography and climatic factors on population structure? We found low to moderate genetic sub-structuring between populations (mean FST = 0.06, Dest = 0.12), and an effect of longitude, but not latitude, on genetic diversity. No significant effects of geographic boundaries (e.g. water bodies) were found. FST-and Dest-values increased with geographic distance; however, there was no evidence for recent bottlenecks. Finally, we did not detect any molecular signatures of range expansions or an effect of geographic suitability, although local precipitation had a strong effect on genetic differentiation. The population structure of this small insect has probably been shaped by ecological factors that are correlated with longitudinal gradients, geographic distances, and local precipitation. The relatively weak global population structure and high degree of genetic variation within populations suggest that I. elegans has high dispersal ability, which is consistent with this species being an effective and early coloniser of new habitats. PMID:21655216

  16. Linkage disequilibrium and population structure in wild and domesticated populations of Phaseolus vulgaris L.

    PubMed Central

    Rossi, Monica; Bitocchi, Elena; Bellucci, Elisa; Nanni, Laura; Rau, Domenico; Attene, Giovanna; Papa, Roberto

    2009-01-01

    Together with the knowledge of the population structure, a critical aspect for the planning of association and/or population genomics studies is the level of linkage disequilibrium (LD) that characterizes the species and the population used for such an analysis. We have analyzed the population structure and LD in wild and domesticated populations of Phaseolus vulgaris L. using amplified fragment length polymorphism markers, most of which were genetically mapped in two recombinant inbred populations. Our results reflect the previous knowledge of the occurrence of two major wild gene pools of P. vulgaris, from which two independent domestication events originated, one in the Andes and one in Mesoamerica. The high level of LD in the whole sample was mostly due to the gene pool structure, with a much higher LD in domesticated compared to wild populations. In relation to association studies, our results also suggest that whole-genome-scan approaches are feasible in the common bean. Interestingly, an excess of inter-chromosomal LD was found in the domesticated populations, which suggests an important role for epistatic selection during domestication. Moreover, our results indicate the occurrence of a strong bottleneck in the Andean wild population before domestication, suggesting a Mesoamerican origin of P. vulgaris. Finally, our data support the occurrence of a single domestication event in Mesoamerica, and the same scenario in the Andes. PMID:25567895

  17. Dynamics of a feline retrovirus (FeLV) in host populations with variable spatial structure.

    PubMed Central

    Fromont, E; Pontier, D; Langlais, M

    1998-01-01

    The predictions of epidemic models are remarkably affected by the underlying assumptions concerning host population dynamics and the relation between host density and disease transmission. Furthermore, hypotheses underlying distinct models are rarely tested. Domestic cats (Felis catus) can be used to compare models and test their predictions, because cat populations show variable spatial structure that probably results in variability in the relation between density and disease transmission. Cat populations also exhibit various dynamics. We compare four epidemiological models of Feline Leukaemia Virus (FeLV). We use two different incidence terms, i.e. proportionate mixing and pseudo-mass action. Population dynamics are modelled as logistic or exponential growth. Compared with proportionate mixing, mass action incidence with logistic growth results in a threshold population size under which the virus cannot persist in the population. Exponential growth of host populations results in systems where FeLV persistence at a steady prevalence and depression of host population growth are biologically unlikely to occur. Predictions of our models account for presently available data on FeLV dynamics in various populations of cats. Thus, host population dynamics and spatial structure can be determinant parameters in parasite transmission, host population depression, and disease control. PMID:9684375

  18. Social and population structure in the ant Cataglyphis emmae.

    PubMed

    Jowers, Michael J; Leniaud, Laurianne; Cerdá, Xim; Alasaad, Samer; Caut, Stephane; Amor, Fernando; Aron, Serge; Boulay, Raphaël R

    2013-01-01

    Dispersal has consequences not only for individual fitness, but also for population dynamics, population genetics and species distribution. Social Hymenoptera show two contrasting colony reproductive strategies, dependent and independent colony foundation modes, and these are often associated to the population structures derived from inter and intra-population gene flow processes conditioned by alternative dispersal strategies. Here we employ microsatellite and mitochondrial markers to investigate the population and social genetic structure and dispersal patterns in the ant Cataglyphis emmae at both, local and regional scales. We find that C. emmae is monogynous and polyandrous. Lack of detection of any population viscosity and population structure with nuclear markers at the local scale suggests efficient dispersal, in agreement with a lack of inbreeding. Contrasting demographic differences before and during the mating seasons suggest that C. emmae workers raise sexuals in peripheric nest chambers to reduce intracolonial conflicts. The high genetic differentiation recovered from the mtDNA haplotypes, together with the significant correlation of such to geographic distance, and presence of new nuclear alleles between areas (valleys) suggest long-term historical isolation between these regions, indicative of limited dispersal at the regional scale. Our findings on the ecological, social and population structure of this species increases our understanding of the patterns and processes involved under independent colony foundation. PMID:24039827

  19. Social and Population Structure in the Ant Cataglyphis emmae

    PubMed Central

    Jowers, Michael J.; Leniaud, Laurianne; Cerdá, Xim; Alasaad, Samer; Caut, Stephane; Amor, Fernando; Aron, Serge; Boulay, Raphaël R.

    2013-01-01

    Dispersal has consequences not only for individual fitness, but also for population dynamics, population genetics and species distribution. Social Hymenoptera show two contrasting colony reproductive strategies, dependent and independent colony foundation modes, and these are often associated to the population structures derived from inter and intra-population gene flow processes conditioned by alternative dispersal strategies. Here we employ microsatellite and mitochondrial markers to investigate the population and social genetic structure and dispersal patterns in the ant Cataglyphis emmae at both, local and regional scales. We find that C. emmae is monogynous and polyandrous. Lack of detection of any population viscosity and population structure with nuclear markers at the local scale suggests efficient dispersal, in agreement with a lack of inbreeding. Contrasting demographic differences before and during the mating seasons suggest that C. emmae workers raise sexuals in peripheric nest chambers to reduce intracolonial conflicts. The high genetic differentiation recovered from the mtDNA haplotypes, together with the significant correlation of such to geographic distance, and presence of new nuclear alleles between areas (valleys) suggest long-term historical isolation between these regions, indicative of limited dispersal at the regional scale. Our findings on the ecological, social and population structure of this species increases our understanding of the patterns and processes involved under independent colony foundation. PMID:24039827

  20. Host resistance reflected in differential nematode population structures.

    PubMed

    Viglierchio, D R; Croll, N A

    1968-07-19

    Relative efficiency of host plants to support reproduction of the garlic race of Ditylenchus dipsaci can be partially explained by diflerential population structures. If axenic cultures of callus tissue from onion, white clover, red clover, and alfalfa are arranged in order of decreasing host suitability, the nematode populations are simultaneously arranged in order of increasing maleness. PMID:5657331

  1. Ecological context and metapopulation dynamics affect sex-ratio variation among dioecious plant populations

    PubMed Central

    Field, David L.; Pickup, Melinda; Barrett, Spencer C. H.

    2013-01-01

    Background and Aims Populations of dioecious flowering plants commonly exhibit heterogeneity in sex ratios and deviations from the equilibrium expectation of equal numbers of females and males. Yet the role of ecological and demographic factors in contributing towards biased sex ratios is currently not well understood. Methods Species-level studies from the literature were analysed to investigate ecological correlates of among-population sex-ratio variation and metapopulation models and empirical data were used to explore the influence of demography and non-equilibrium conditions on flowering sex ratios. Key Results The survey revealed significant among-population heterogeneity in sex ratios and this was related to the degree of sampling effort. For some species, sex-ratio bias was associated with the proportion of non-reproductive individuals, with greater male bias in populations with a lower proportion of individuals that were flowering. Male-biased ratios were also found at higher altitudes and latitudes, and in more xeric sites. Simulations and empirical data indicated that clonal species exhibited greater heterogeneity in sex ratios than non-clonal species as a result of their slower approach to equilibrium. The simulations also indicated the importance of interactions between reproductive mode and founder effects, with greater departures from equilibrium in clonal populations with fewer founding individuals. Conclusions The results indicate that sex-based differences in costs of reproduction and non-equilibrium conditions can each play important roles in affecting flowering sex ratios in populations of dioecious plants. PMID:23444124

  2. Genetic variation and population structure in native Americans.

    PubMed

    Wang, Sijia; Lewis, Cecil M; Jakobsson, Mattias; Ramachandran, Sohini; Ray, Nicolas; Bedoya, Gabriel; Rojas, Winston; Parra, Maria V; Molina, Julio A; Gallo, Carla; Mazzotti, Guido; Poletti, Giovanni; Hill, Kim; Hurtado, Ana M; Labuda, Damian; Klitz, William; Barrantes, Ramiro; Bortolini, Maria Cátira; Salzano, Francisco M; Petzl-Erler, Maria Luiza; Tsuneto, Luiza T; Llop, Elena; Rothhammer, Francisco; Excoffier, Laurent; Feldman, Marcus W; Rosenberg, Noah A; Ruiz-Linares, Andrés

    2007-11-01

    We examined genetic diversity and population structure in the American landmass using 678 autosomal microsatellite markers genotyped in 422 individuals representing 24 Native American populations sampled from North, Central, and South America. These data were analyzed jointly with similar data available in 54 other indigenous populations worldwide, including an additional five Native American groups. The Native American populations have lower genetic diversity and greater differentiation than populations from other continental regions. We observe gradients both of decreasing genetic diversity as a function of geographic distance from the Bering Strait and of decreasing genetic similarity to Siberians--signals of the southward dispersal of human populations from the northwestern tip of the Americas. We also observe evidence of: (1) a higher level of diversity and lower level of population structure in western South America compared to eastern South America, (2) a relative lack of differentiation between Mesoamerican and Andean populations, (3) a scenario in which coastal routes were easier for migrating peoples to traverse in comparison with inland routes, and (4) a partial agreement on a local scale between genetic similarity and the linguistic classification of populations. These findings offer new insights into the process of population dispersal and differentiation during the peopling of the Americas. PMID:18039031

  3. Genetic Variation and Population Structure in Native Americans

    PubMed Central

    Ramachandran, Sohini; Ray, Nicolas; Bedoya, Gabriel; Rojas, Winston; Parra, Maria V; Molina, Julio A; Gallo, Carla; Mazzotti, Guido; Poletti, Giovanni; Hill, Kim; Hurtado, Ana M; Labuda, Damian; Klitz, William; Barrantes, Ramiro; Bortolini, Maria Cátira; Salzano, Francisco M; Petzl-Erler, Maria Luiza; Tsuneto, Luiza T; Llop, Elena; Rothhammer, Francisco; Excoffier, Laurent; Feldman, Marcus W; Rosenberg, Noah A; Ruiz-Linares, Andrés

    2007-01-01

    We examined genetic diversity and population structure in the American landmass using 678 autosomal microsatellite markers genotyped in 422 individuals representing 24 Native American populations sampled from North, Central, and South America. These data were analyzed jointly with similar data available in 54 other indigenous populations worldwide, including an additional five Native American groups. The Native American populations have lower genetic diversity and greater differentiation than populations from other continental regions. We observe gradients both of decreasing genetic diversity as a function of geographic distance from the Bering Strait and of decreasing genetic similarity to Siberians—signals of the southward dispersal of human populations from the northwestern tip of the Americas. We also observe evidence of: (1) a higher level of diversity and lower level of population structure in western South America compared to eastern South America, (2) a relative lack of differentiation between Mesoamerican and Andean populations, (3) a scenario in which coastal routes were easier for migrating peoples to traverse in comparison with inland routes, and (4) a partial agreement on a local scale between genetic similarity and the linguistic classification of populations. These findings offer new insights into the process of population dispersal and differentiation during the peopling of the Americas. PMID:18039031

  4. Evolution of extortion in structured populations.

    PubMed

    Szolnoki, Attila; Perc, Matjaž

    2014-02-01

    Extortion strategies can dominate any opponent in an iterated prisoner's dilemma game. But if players are able to adopt the strategies performing better, extortion becomes widespread and evolutionary unstable. It may sometimes act as a catalyst for the evolution of cooperation, and it can also emerge in interactions between two populations, yet it is not the evolutionarily stable outcome. Here we revisit these results in the realm of spatial games. We find that pairwise imitation and birth-death dynamics return known evolutionary outcomes. Myopic best response strategy updating, on the other hand, reveals counterintuitive solutions. Defectors and extortioners coarsen spontaneously, which allows cooperators to prevail even at prohibitively high temptations to defect. Here extortion strategies play the role of a Trojan horse. They may emerge among defectors by chance, and once they do, cooperators become viable as well. These results are independent of the interaction topology, and they highlight the importance of coarsening, checkerboard ordering, and best response updating in evolutionary games. PMID:25353531

  5. Population variation affects interactions between two California salt marsh plant species more than precipitation.

    PubMed

    Noto, Akana E; Shurin, Jonathan B

    2016-02-01

    Species that occur along broad environmental gradients often vary in phenotypic traits that make them better adapted to local conditions. Variation in species interactions across gradients could therefore be due to either phenotypic differences among populations or environmental conditions that shift the balance between competition and facilitation. To understand how the environment (precipitation) and variation among populations affect species interactions, we conducted a common garden experiment using two common salt marsh plant species, Salicornia pacifica and Jaumea carnosa, from six salt marshes along the California coast encompassing a large precipitation gradient. Plants were grown alone or with an individual of the opposite species from the same site and exposed to one of three precipitation regimes. J. carnosa was negatively affected in the presence of S. pacifica, while S. pacifica was facilitated by J. carnosa. The strength of these interactions varied by site of origin but not by precipitation treatment. These results suggest that phenotypic variation among populations can affect interaction strength more than environment, despite a threefold difference in precipitation. Geographic intraspecific variation may therefore play an important role in determining the strength of interactions in communities. PMID:26481794

  6. Gene flow and population structure of a solitary top carnivore in a human-dominated landscape

    PubMed Central

    McManus, Jeannine S; Dalton, Desiré L; Kotzé, Antoinette; Smuts, Bool; Dickman, Amy; Marshal, Jason P; Keith, Mark

    2015-01-01

    While African leopard populations are considered to be continuous as demonstrated by their high genetic variation, the southernmost leopard population exists in the Eastern and Western Cape, South Africa, where anthropogenic activities may be affecting this population's structure. Little is known about the elusive, last free-roaming top predator in the region and this study is the first to report on leopard population structuring using nuclear DNA. By analyzing 14 microsatellite markers from 40 leopard tissue samples, we aimed to understand the populations' structure, genetic distance, and gene flow (Nm). Our results, based on spatially explicit analysis with Bayesian methods, indicate that leopards in the region exist in a fragmented population structure with lower than expected genetic diversity. Three population groups were identified, between which low to moderate levels of gene flow were observed (Nm 0.5 to 3.6). One subpopulation exhibited low genetic differentiation, suggesting a continuous population structure, while the remaining two appear to be less connected, with low emigration and immigration between these populations. Therefore, genetic barriers are present between the subpopulations, and while leopards in the study region may function as a metapopulation, anthropogenic activities threaten to decrease habitat and movement further. Our results indicate that the leopard population may become isolated within a few generations and suggest that management actions should aim to increase habitat connectivity and reduce human–carnivore conflict. Understanding genetic diversity and connectivity of populations has important conservation implications that can highlight management of priority populations to reverse the effects of human-caused extinctions. PMID:25691961

  7. An analysis of the social space structure of population in the Shanghai municipality.

    PubMed

    Zhu, J

    1996-01-01

    This article constructs a typology of the spatial distribution of urban population in Shanghai municipality in China. Chinese research follows in the traditions of Western ecological and social spatial theories of urban population distribution. Xu Wei and Yu Wei discovered that Shanghai's social space was affected by population clustering and the structure of population culture and occupation. Xu Xueqiang analyzed the social space structure of Guangzhou City using 67 variables. Data for this analysis were obtained from the neighborhood census area for 1982 and 1990 in Shanghai. Land utility data pertained to 1988. The geological information system techniques of Zhu Junming were used to establish the 119 spatial units. Urban social space structure is characterized by 14 factors generated from 113 variables: degree of population density, household registration structure, natural and mechanical changes of population, zoning, sex, age, education, employment, occupation, marital status, land utility, residential conditions, and housing typology. Principal components factor analysis, which was based on the principal components factor score matrix, and systematic cluster analysis were used to categorize spatial units and assign typologies. Ward statistics for distance coefficients were used to determine appropriate categorization. Findings indicate that 69.4% of the total variance in spatial units could be characterized by six principal components: educational structure (26.1%), degree of population density (17.11%), gender and occupational structure (11.3%), immigrant population (6.1%), living conditions (5.23%), and marital status (3.5%). Five social region typologies were constructed: a high density commercial residential area, a medium density cultural residential area, an industrial mixed residential area, newly erected residential areas, and outlying science and technology, cultural, and educational areas. The Shanghai social space structure was affected by history

  8. Famine-affected, refugee, and displaced populations: recommendations for public health issues.

    PubMed

    1992-07-24

    During the past three decades, the most common emergencies affecting the health of large populations in developing countries have involved famine and forced migrations. The public health consequences of mass population displacement have been extensively documented. On some occasions, these migrations have resulted in extremely high rates of mortality, morbidity, and malnutrition. The most severe consequences of population displacement have occurred during the acute emergency phase, when relief efforts are in the early stage. During this phase, deaths--in some cases--were 60 times the crude mortality rate (CMR) among non-refugee populations in the country of origin (1). Although the quality of international disaster response efforts has steadily improved, the human cost of forced migration remains high. Since the early 1960s, most emergencies involving refugees and displaced persons have taken place in less developed countries where local resources have been insufficient for providing prompt and adequate assistance. The international community's response to the health needs of these populations has been at times inappropriate, relying on teams of foreign medical personnel with little or no training. Hospitals, clinics, and feeding centers have been set up without assessment of preliminary needs, and essential prevention programs have been neglected. More recent relief programs, however, emphasize a primary health care (PHC) approach, focusing on preventive programs such as immunization and oral rehydration therapy (ORT), promoting involvement by the refugee community in the provision of health services, and stressing more effective coordination and information gathering. The PHC approach offers long-term advantages, not only for the directly affected population, but also for the country hosting the refugees. A PHC strategy is sustainable and strengthens the national health development program. PMID:1326713

  9. Little effect of seasonal constraints on population genetic structure in eusocial paper wasps

    PubMed Central

    Lengronne, Thibault; Leadbeater, Ellouise; Patalano, Solenn; Dreier, Stephanie; Field, Jeremy; Sumner, Seirian; Keller, Laurent

    2012-01-01

    Climate has long been suggested to affect population genetic structures of eusocial insect societies. For instance, Hamilton [Journal of Theoretical Biology 7 (1964) 17] discusses whether temperate and tropical eusocial insects may show differences in population-level genetic structure and viscosity, and how this might relate to differences in the degree of synchrony in their life cycles or modes of nest founding. Despite the importance of Hamilton's 1964 papers, this specific idea has not been tested in actual populations of wasps, probably due to the paucity of studies on tropical species. Here, we compare colony and population genetic structures in two species of primitively eusocial paper wasps with contrasting ecologies: the tropical species Polistes canadensis and the temperate species P. dominulus. Our results provide important clarifications of Hamilton's discussion. Specifically, we show that the genetic structures of the temperate and tropical species were very similar, indicating that seasonality does not greatly affect population viscosity or inbreeding. For both species, the high genetic differentiation between nests suggests strong selection at the nest level to live with relatives, whereas low population viscosity and low genetic differentiation between nest aggregations might reflect balancing selection to disperse, avoiding competition with relatives. Overall, our study suggests no prevalence of seasonal constraints of the life cycle in affecting the population genetic structure of eusocial paper wasps. These conclusions are likely to apply also to other primitively eusocial insects, such as halictine bees. They also highlight how selection for a kin structure that promotes altruism can override potential effects of ecology in eusocial insects. PMID:23145345

  10. Population structure and genetic diversity in natural populations of Theobroma speciosum Willd. Ex Spreng (Malvaceae).

    PubMed

    Giustina, L D; Luz, L N; Vieira, F S; Rossi, F S; Soares-Lopes, C R A; Pereira, T N S; Rossi, A A B

    2014-01-01

    The genus Theobroma found in the Amazon region is composed of 22 species, including Theobroma speciosum, better known as cacauí. These species are constantly threatened by forest fragmentation caused by human activities and require conservation strategies and management aimed at preserving them in their natural environments. The main objective of this study was to analyze the population structure and genetic diversity within and between natural populations of T. speciosum by using ISSR molecular markers to understand the population structure of the species. Four natural populations belonging to the Amazon rainforest (BAC, CRO, FLA, and PNA), located in the State of Mato Grosso, were selected. Amplification reactions were performed using 15 ISSR primers. A total of 101 loci were found, of which 54.46% were polymorphic at the species level. The BAC population showed higher genetic diversity (H=0.095 and I=0.144) and higher percentage of polymorphism (28.71%). The populations showed an FST value of 0.604, indicating marked genetic differentiation. The highest genetic variation was found between populations. Gene flow was low between populations, indicating genetic isolation between populations. PMID:24615108

  11. Spatial structuring within a reservoir fish population: implications for management

    USGS Publications Warehouse

    Stewart, David R.; Long, James M.; Shoup, Daniel E.

    2014-01-01

    Spatial structuring in reservoir fish populations can exist because of environmental gradients, species-specific behaviour, or even localised fishing effort. The present study investigated whether white crappie exhibited evidence of improved population structure where the northern more productive half of a lake is closed to fishing to provide waterfowl hunting opportunities. Population response to angling was modelled for each substock of white crappie (north (protected) and south (unprotected) areas), the entire lake (single-stock model) and by combining simulations of the two independent substock models (additive model). White crappie in the protected area were more abundant, consisting of larger, older individuals, and exhibited a lower total annual mortality rate than in the unprotected area. Population modelling found that fishing mortality rates between 0.1 and 0.3 resulted in sustainable populations (spawning potential ratios (SPR) >0.30). The population in the unprotected area appeared to be more resilient (SPR > 0.30) at the higher fishing intensities (0.35–0.55). Considered additively, the whole-lake fishery appeared more resilient than when modelled as a single-panmictic stock. These results provided evidence of spatial structuring in reservoir fish populations, and we recommend model assessments used to guide management decisions should consider those spatial differences in other populations where they exist.

  12. Beyond trauma-focused psychiatric epidemiology: bridging research and practice with war-affected populations.

    PubMed

    Miller, Kenneth E; Kulkarni, Madhur; Kushner, Hallie

    2006-10-01

    This article examines the centrality of trauma-focused psychiatric epidemiology (TFPE) in research with war-affected populations. The authors question the utility of the dominant focus on posttraumatic stress disorder and other disorders of Western psychiatry, and they identify a set of critical research foci related to mental health work with communities affected by political violence. Core assumptions of TFPE and its roots in logical positivism and the biomedical model of contemporary psychiatry are explored. The authors suggest that an alternative framework--social constructivism--can serve as a bridge between researchers and practitioners by helping to refocus research efforts in ways that are conceptually and methodologically more attuned to the needs of war-affected communities and those working to address their mental health needs. PMID:17209709

  13. Regional and Temporal Population Structure of Pseudoperonospora cubensis in Michigan and Ontario.

    PubMed

    Naegele, R P; Quesada-Ocampo, L M; Kurjan, J D; Saude, C; Hausbeck, M K

    2016-04-01

    Cucurbit downy mildew (CDM), caused by the oomycete pathogen Pseudoperonospora cubensis, is a devastating disease that affects cucurbit species worldwide. This obligate, wind-dispersed pathogen does not overwinter in Michigan or other northern regions and new isolates can enter the state throughout the growing season. To evaluate the regional and temporal population structure of P. cubensis, sporangia from CDM lesions were collected from cucurbit foliage grown in Michigan and Ontario field locations in 2011. Population structure and genetic diversity were assessed in 257 isolates using nine simple sequence repeat markers. Genetic diversity was high for isolates from Michigan and Canada (0.6627 and 0.6131, respectively). Five genetic clusters were detected and changes in population structure varied by site and sampling date within a growing season. The Michigan and Canada populations were significantly differentiated, and a unique genetic cluster was detected in Michigan. PMID:26735060

  14. Population genetic structure of Theileria parva field isolates from indigenous cattle populations of Uganda.

    PubMed

    Muwanika, Vincent; Kabi, Fredrick; Masembe, Charles

    2016-03-01

    Theileria parva causes East Coast Fever (ECF) a protozoan infection which manifests as a non-symptomatic syndrome among endemically stable indigenous cattle populations. Knowledge of the current genetic diversity and population structure of T. parva is critical for predicting pathogen evolutionary trends to inform development of effective control strategies. In this study the population genetic structure of 78 field isolates of T. parva from indigenous cattle (Ankole, n=41 and East African shorthorn Zebu (EASZ), n=37) sampled from the different agro ecological zones (AEZs) of Uganda was investigated. A total of eight mini- and micro-satellite markers encompassing the four chromosomes of T. parva were used to genotype the study field isolates. The genetic diversity of the surveyed T. parva populations was observed to range from 0.643±0.55 to 0.663±0.41 among the Central and Western AEZs respectively. The overall Wright's F index showed significant genetic variation between the surveyed T. parva populations based on the different AEZs and indigenous cattle breeds (FST=0.133, p<0.01) and (FST=0.101, p<0.01) respectively. Significant pairwise population genetic differentiations (p<0.05) were observed with FST values ranging from 0.048 to 0.173 between the eastern and northern, eastern and western populations respectively. The principal component analysis (PCA) showed a high level of genetic and geographic sub-structuring among populations. Linkage disequilibrium was observed when populations from all the study AEZs were treated as a single population and when analysed separately. On the overall, the significant genetic diversity and geographic sub-structuring exhibited among the study T. parva isolates has critical implications for ECF control. PMID:26613662

  15. Detecting Heterogeneity in Population Structure Across the Genome in Admixed Populations.

    PubMed

    McHugh, Caitlin; Brown, Lisa; Thornton, Timothy A

    2016-09-01

    The genetic structure of human populations is often characterized by aggregating measures of ancestry across the autosomal chromosomes. While it may be reasonable to assume that population structure patterns are similar genome-wide in relatively homogeneous populations, this assumption may not be appropriate for admixed populations, such as Hispanics and African-Americans, with recent ancestry from two or more continents. Recent studies have suggested that systematic ancestry differences can arise at genomic locations in admixed populations as a result of selection and nonrandom mating. Here, we propose a method, which we refer to as the chromosomal ancestry differences (CAnD) test, for detecting heterogeneity in population structure across the genome. CAnD can incorporate either local or chromosome-wide ancestry inferred from SNP genotype data to identify chromosomes harboring genomic regions with ancestry contributions that are significantly different than expected. In simulation studies with real genotype data from phase III of the HapMap Project, we demonstrate the validity and power of CAnD. We apply CAnD to the HapMap Mexican-American (MXL) and African-American (ASW) population samples; in this analysis the software RFMix is used to infer local ancestry at genomic regions, assuming admixing from Europeans, West Africans, and Native Americans. The CAnD test provides strong evidence of heterogeneity in population structure across the genome in the MXL sample ([Formula: see text]), which is largely driven by elevated Native American ancestry and deficit of European ancestry on the X chromosomes. Among the ASW, all chromosomes are largely African derived and no heterogeneity in population structure is detected in this sample. PMID:27440868

  16. Dioecy, more than monoecy, affects plant spatial genetic structure: the case study of Ficus

    PubMed Central

    Nazareno, Alison G; Alzate-Marin, Ana L; Pereira, Rodrigo Augusto S

    2013-01-01

    In this analysis, we attempt to understand how monoecy and dioecy drive spatial genetic structure (SGS) in plant populations. For this purpose, plants of the genus Ficus were used as a comparative model due to their particular characteristics, including high species diversity, variation in life histories, and sexual systems. One of the main issues we assessed is whether dioecious fig tree populations are more spatially genetically structured than monoecious populations. Using the Sp statistic, which allows for quantitative comparisons among different studies, we compared the extent of SGS between monoecious and dioecious Ficus species. To broaden our conclusions we used published data on an additional 27 monoecious and dioecious plant species. Furthermore, genetic diversity analyses were performed for two monoecious Ficus species using 12 microsatellite markers in order to strengthen our conclusions about SGS. Our results show that dioecy, more than monoecy, significantly contributes to SGS in plant populations. On average, the estimate of Sp was six times higher for dioecious Ficus species than monoecious Ficus species and it was two times higher in dioecious than monoecious plant species. Considering these results, we emphasize that the long-distance pollen dispersal mechanism in monoecious Ficus species seems to be the dominant factor in determining weak spatial genetic structure, high levels of genetic diversity, and lack of inbreeding. Although Ficus constitute a model species to study SGS, a more general comparison encompassing a wider range of plants is required in order to better understand how sexual systems affect genetic structure. PMID:24223285

  17. Continuous and discrete extreme climatic events affecting the dynamics of a high-arctic reindeer population.

    PubMed

    Chan, Kung-Sik; Mysterud, Atle; Øritsland, Nils Are; Severinsen, Torbjørn; Stenseth, Nils Chr

    2005-10-01

    Climate at northern latitudes are currently changing both with regard to the mean and the temporal variability at any given site, increasing the frequency of extreme events such as cold and warm spells. Here we use a conceptually new modelling approach with two different dynamic terms of the climatic effects on a Svalbard reindeer population (the Brøggerhalvøya population) which underwent an extreme icing event ("locked pastures") with 80% reduction in population size during one winter (1993/94). One term captures the continuous and linear effect depending upon the Arctic Oscillation and another the discrete (rare) "event" process. The introduction of an "event" parameter describing the discrete extreme winter resulted in a more parsimonious model. Such an approach may be useful in strongly age-structured ungulate populations, with young and very old individuals being particularly prone to mortality factors during adverse conditions (resulting in a population structure that differs before and after extreme climatic events). A simulation study demonstrates that our approach is able to properly detect the ecological effects of such extreme climate events. PMID:16010537

  18. Matching Strategies for Genetic Association Studies in Structured Populations

    PubMed Central

    Hinds, David A.; Stokowski, Renee P.; Patil, Nila; Konvicka, Karel; Kershenobich, David; Cox, David R.; Ballinger, Dennis G.

    2004-01-01

    Association studies in populations that are genetically heterogeneous can yield large numbers of spurious associations if population subgroups are unequally represented among cases and controls. This problem is particularly acute for studies involving pooled genotyping of very large numbers of single-nucleotide–polymorphism (SNP) markers, because most methods for analysis of association in structured populations require individual genotyping data. In this study, we present several strategies for matching case and control pools to have similar genetic compositions, based on ancestry information inferred from genotype data for ∼300 SNPs tiled on an oligonucleotide-based genotyping array. We also discuss methods for measuring the impact of population stratification on an association study. Results for an admixed population and a phenotype strongly confounded with ancestry show that these simple matching strategies can effectively mitigate the impact of population stratification. PMID:14740319

  19. A hyperparasite affects the population dynamics of a wild plant pathogen

    PubMed Central

    Tollenaere, C; Pernechele, B; Mäkinen, H S; Parratt, S R; Németh, M Z; Kovács, G M; Kiss, L; Tack, A J M; Laine, A-L

    2014-01-01

    Assessing the impact of natural enemies of plant and animal pathogens on their host's population dynamics is needed to determine the role of hyperparasites in affecting disease dynamics, and their potential for use in efficient control strategies of pathogens. Here, we focus on the long-term study describing metapopulation dynamics of an obligate pathogen, the powdery mildew (Podosphaera plantaginis) naturally infecting its wild host plant (Plantago lanceolata) in the fragmented landscape of the Åland archipelago (southwest Finland). Regionally, the pathogen persists through a balance of extinctions and colonizations, yet factors affecting extinction rates remain poorly understood. Mycoparasites of the genus Ampelomyces appear as good candidates for testing the role of a hyperparasite, i.e. a parasite of other parasites, in the regulation of their fungal hosts' population dynamics. For this purpose, we first designed a quantitative PCR assay for detection of Ampelomyces spp. in field-collected samples. This newly developed molecular test was then applied to a large-scale sampling within the Åland archipelago, revealing that Ampelomyces is a widespread hyperparasite in this system, with high variability in prevalence among populations. We found that the hyperparasite was more common on leaves where multiple powdery mildew strains coexist, a pattern that may be attributed to differential exposure. Moreover, the prevalence of Ampelomyces at the plant level negatively affected the overwinter survival of its fungal host. We conclude that this hyperparasite may likely impact on its host population dynamics and argue for increased focus on the role of hyperparasites in disease dynamics. PMID:25204419

  20. A hyperparasite affects the population dynamics of a wild plant pathogen.

    PubMed

    Tollenaere, C; Pernechele, B; Mäkinen, H S; Parratt, S R; Németh, M Z; Kovács, G M; Kiss, L; Tack, A J M; Laine, A-L

    2014-12-01

    Assessing the impact of natural enemies of plant and animal pathogens on their host's population dynamics is needed to determine the role of hyperparasites in affecting disease dynamics, and their potential for use in efficient control strategies of pathogens. Here, we focus on the long-term study describing metapopulation dynamics of an obligate pathogen, the powdery mildew (Podosphaera plantaginis) naturally infecting its wild host plant (Plantago lanceolata) in the fragmented landscape of the Åland archipelago (southwest Finland). Regionally, the pathogen persists through a balance of extinctions and colonizations, yet factors affecting extinction rates remain poorly understood. Mycoparasites of the genus Ampelomyces appear as good candidates for testing the role of a hyperparasite, i.e. a parasite of other parasites, in the regulation of their fungal hosts' population dynamics. For this purpose, we first designed a quantitative PCR assay for detection of Ampelomyces spp. in field-collected samples. This newly developed molecular test was then applied to a large-scale sampling within the Åland archipelago, revealing that Ampelomyces is a widespread hyperparasite in this system, with high variability in prevalence among populations. We found that the hyperparasite was more common on leaves where multiple powdery mildew strains coexist, a pattern that may be attributed to differential exposure. Moreover, the prevalence of Ampelomyces at the plant level negatively affected the overwinter survival of its fungal host. We conclude that this hyperparasite may likely impact on its host population dynamics and argue for increased focus on the role of hyperparasites in disease dynamics. PMID:25204419

  1. Population sex-ratio affecting behavior and physiology of overwintering bank voles (Myodes glareolus).

    PubMed

    Sipari, Saana; Haapakoski, Marko; Klemme, Ines; Palme, Rupert; Sundell, Janne; Ylönen, Hannu

    2016-05-15

    Many boreal rodents are territorial during the breeding season but during winter become social and aggregate for more energy efficient thermoregulation. Communal winter nesting and social interactions are considered to play an important role for the winter survival of these species, yet the topic is relatively little explored. Females are suggested to be the initiators of winter aggregations and sometimes reported to survive better than males. This could be due to the higher social tolerance observed in overwintering females than males. Hormonal status could also affect winter behavior and survival. For instance, chronic stress can have a negative effect on survival, whereas high gonadal hormone levels, such as testosterone, often induce aggressive behavior. To test if the winter survival of females in a boreal rodent is better than that of males, and to assess the role of females in the winter aggregations, we generated bank vole (Myodes glareolus) populations of three different sex ratios (male-biased, female-biased and even density) under semi-natural conditions. We monitored survival, spatial behavior and hormonal status (stress and testosterone) during two winter months. We observed no significant differences in survival between the sexes or among populations with differing sex-ratios. The degree of movement area overlap was used as an indicator of social tolerance and potential communal nesting. Individuals in male biased populations showed a tendency to be solitary, whereas in female biased populations there was an indication of winter aggregation. Females living in male-biased populations had higher stress levels than the females from the other populations. The female-biased sex-ratio induced winter breeding and elevated testosterone levels in males. Thus, our results suggest that the sex-ratio of the overwintering population can lead to divergent overwintering strategies in bank voles. PMID:26976741

  2. The genetic structure of the Kuwaiti population: mtDNA Inter- and intra-population variation.

    PubMed

    Theyab, Jasem B; Al-Bustan, Suzanne; Crawford, Michael H

    2012-08-01

    This study investigated: (1) the mitochondrial DNA (mtDNA) genetic variation in 116 unrelated individuals who originated from the Arabian Peninsula, Iran, or were of Bedouin ethnicity and (2) the genetic structure of Kuwaiti populations and compared it to their neighboring populations. These subpopulations were tested for genetic homogeneity and shown to be heterogeneous. Restriction fragment length polymorphism (RFLP) and mtDNA sequencing analyses of HVRI were used to reconstruct the genetic structure of Kuwait. The results indicated that the combined Kuwaiti population has a high frequency of haplogroup R0 (17%), J (12%), and U (12%) similar to other Arabian populations. In addition, contemporary African gene flow was detected through the presence of sub-haplogroup L (L1 and L2) (2%) and the absence of L3 which is reflective of an earlier migration. Furthermore, the multidimensional scaling (MDS) plot showed that the Kuwaiti population clusters with neighboring populations, including Iran and Saudi Arabia indicating gene flow into Kuwait. According to this study, the Kuwaiti population may be undergoing an expansion in a relatively short period of time, and the maternal genetic structure of Kuwait resembles both Saudi Arabia and Iran. PMID:23249314

  3. Can microcystins affect zooplankton structure community in tropical eutrophic reservoirs?

    PubMed

    Paes, T A S V; Costa, I A S; Silva, A P C; Eskinazi-Sant'Anna, E M

    2016-06-01

    The aim of our study was to assess whether cyanotoxins (microcystins) can affect the composition of the zooplankton community, leading to domination of microzooplankton forms (protozoans and rotifers). Temporal variations in concentrations of microcystins and zooplankton biomass were analyzed in three eutrophic reservoirs in the semi-arid northeast region of Brazil. The concentration of microcystins in water proved to be correlated with the cyanobacterial biovolume, indicating the contributions from colonial forms such as Microcystis in the production of cyanotoxins. At the community level, the total biomass of zooplankton was not correlated with the concentration of microcystin (r2 = 0.00; P > 0.001), but in a population-level analysis, the biomass of rotifers and cladocerans showed a weak positive correlation. Cyclopoid copepods, which are considered to be relatively inefficient in ingesting cyanobacteria, were negatively correlated (r2 = - 0.01; P > 0.01) with the concentration of cyanotoxins. Surprisingly, the biomass of calanoid copepods was positively correlated with the microcystin concentration (r2 = 0.44; P > 0.001). The results indicate that allelopathic control mechanisms (negative effects of microcystin on zooplankton biomass) do not seem to substantially affect the composition of mesozooplankton, which showed a constant and high biomass compared to the microzooplankton (rotifers). These results may be important to better understand the trophic interactions between zooplankton and cyanobacteria and the potential effects of allelopathic compounds on zooplankton. PMID:26959954

  4. Reproductive interference between Rana dalmatina and Rana temporaria affects reproductive success in natural populations.

    PubMed

    Hettyey, Attila; Vági, Balázs; Kovács, Tibor; Ujszegi, János; Katona, Patrik; Szederkényi, Márk; Pearman, Peter B; Griggio, Matteo; Hoi, Herbert

    2014-10-01

    Experimental evidence suggests that reproductive interference between heterospecifics can seriously affect individual fitness; support from field studies for such an effect has, however, remained scarce. We studied reproductive interference in 25 natural breeding ponds in an area where two ranid frogs, Rana dalmatina and Rana temporaria, co-occur. The breeding seasons of the two species usually overlap and males of both species are often found in amplexus with heterospecific females, even though matings between heterospecifics produce no viable offspring. We estimated species abundance ratios based on the number of clutches laid and evaluated fertilization success. In ponds with low spatial complexity and a species abundance ratio biased towards R. temporaria, the average fertilization success of R. dalmatina eggs decreased, while this relationship was not detectable in spatially more complex ponds. Fertilization success of R. temporaria did not decrease with increasing relative numbers of heterospecifics. This asymmetry in fitness effects of reproductive interference may be attributed to R. temporaria males being more competitive in scramble competition for females than R. dalmatina males. Our study is among the first to demonstrate that in natural breeding populations of vertebrates interference among heterospecifics has the potential to substantially lower reproductive success at the population level, which may in turn affect population dynamics. PMID:25138258

  5. Population structure and landscape genetics of two endangered frog species of genus Odorrana: different scenarios on two islands

    PubMed Central

    Igawa, T; Oumi, S; Katsuren, S; Sumida, M

    2013-01-01

    Isolation by distance and landscape connectivity are fundamental factors underlying speciation and evolution. To understand how landscapes affect gene flow and shape population structures, island species provide intrinsic study objects. We investigated the effects of landscapes on the population structure of the endangered frog species, Odorrana ishikawae and O. splendida, which each inhabit an island in southwest Japan. This was done by examining population structure, gene flow and demographic history of each species by analyzing 12 microsatellite loci and exploring causal environmental factors through ecological niche modeling (ENM) and the cost-distance approach. Our results revealed that the limited gene flow and multiple-population structure in O. splendida and the single-population structure in O. ishikawae were maintained after divergence of the species through ancient vicariance between islands. We found that genetic distance correlated with geographic distance between populations of both species. Our landscape genetic analysis revealed that the connectivity of suitable habitats influences gene flow and leads to the formation of specific population structures. In particular, different degrees of topographical complexity between islands are the major determining factor for shaping contrasting population structures of two species. In conclusion, our results illustrate the diversification mechanism of organisms through the interaction with space and environment. Our results also present an ENM approach for identifying the key factors affecting demographic history and population structures of target species, especially endangered species. PMID:22990312

  6. Comparative population structure of cavity-nesting sea ducks

    USGS Publications Warehouse

    Pearce, John M.; Eadie, John M.; Savard, Jean-Pierre L.; Christensen, Thomas K.; Berdeen, James; Taylor, Eric J.; Boyd, Sean; Einarsson, Árni

    2014-01-01

    A growing collection of mtDNA genetic information from waterfowl species across North America suggests that larger-bodied cavity-nesting species exhibit greater levels of population differentiation than smaller-bodied congeners. Although little is known about nest-cavity availability for these species, one hypothesis to explain differences in population structure is reduced dispersal tendency of larger-bodied cavity-nesting species due to limited abundance of large cavities. To investigate this hypothesis, we examined population structure of three cavity-nesting waterfowl species distributed across much of North America: Barrow's Goldeneye (Bucephala islandica), Common Goldeneye (B. clangula), and Bufflehead (B. albeola). We compared patterns of population structure using both variation in mtDNA control-region sequences and band-recovery data for the same species and geographic regions. Results were highly congruent between data types, showing structured population patterns for Barrow's and Common Goldeneye but not for Bufflehead. Consistent with our prediction, the smallest cavity-nesting species, the Bufflehead, exhibited the lowest level of population differentiation due to increased dispersal and gene flow. Results provide evidence for discrete Old and New World populations of Common Goldeneye and for differentiation of regional groups of both goldeneye species in Alaska, the Pacific Northwest, and the eastern coast of North America. Results presented here will aid management objectives that require an understanding of population delineation and migratory connectivity between breeding and wintering areas. Comparative studies such as this one highlight factors that may drive patterns of genetic diversity and population trends.

  7. Genetic structure of the Newfoundland and Labrador population: founder effects modulate variability.

    PubMed

    Zhai, Guangju; Zhou, Jiayi; Woods, Michael O; Green, Jane S; Parfrey, Patrick; Rahman, Proton; Green, Roger C

    2016-07-01

    The population of the province of Newfoundland and Labrador (NL) has been a resource for genetic studies because of its historical isolation and increased prevalence of several monogenic disorders. Controversy remains regarding the genetic substructure and the extent of genetic homogeneity, which have implications for disease gene mapping. Population substructure has been reported from other isolated populations such as Iceland, Finland and Sardinia. We undertook this study to further our understanding of the genetic architecture of the NL population. We enrolled 494 individuals randomly selected from NL. Genome-wide SNP data were analyzed together with that from 14 other populations including HapMap3, Ireland, Britain and Native American samples from the Human Genome Diversity Project. Using multidimensional scaling and admixture analysis, we observed that the genetic structure of the NL population resembles that of the British population but can be divided into three clusters that correspond to religious/ethnic origins: Protestant English, Roman Catholic Irish and North American aboriginals. We observed reduced heterozygosity and an increased inbreeding coefficient (mean=0.005), which corresponds to that expected in the offspring of third-cousin marriages. We also found that the NL population has a significantly higher number of runs of homozygosity (ROH) and longer lengths of ROH segments. These results are consistent with our understanding of the population history and indicate that the NL population may be ideal for identifying recessive variants for complex diseases that affect populations of European origin. PMID:26669659

  8. Population connectivity and genetic structure of burbot (Lota lota) populations in the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Underwood, Zachary E.; Mandeville, Elizabeth G.; Walters, Annika W.

    2016-01-01

    Burbot (Lota lota) occur in the Wind River Basin in central Wyoming, USA, at the southwestern extreme of the species’ native range in North America. The most stable and successful of these populations occur in six glacially carved mountain lakes on three different tributary streams and one large main stem impoundment (Boysen Reservoir) downstream from the tributary populations. Burbot are rarely found in connecting streams and rivers, which are relatively small and high gradient, with a variety of potential barriers to upstream movement of fish. We used high-throughput genomic sequence data for 11,197 SNPs to characterize the genetic diversity, population structure, and connectivity among burbot populations on the Wind River system. Fish from Boysen Reservoir and lower basin tributary populations were genetically differentiated from those in the upper basin tributary populations. In addition, fish within the same tributary streams fell within the same genetic clusters, suggesting there is movement of fish between lakes on the same tributaries but that populations within each tributary system are isolated and genetically distinct from other populations. Observed genetic differentiation corresponded to natural and anthropogenic barriers, highlighting the importance of barriers to fish population connectivity and gene flow in human-altered linked lake-stream habitats.

  9. Why are some animal populations unaffected or positively affected by roads?

    PubMed

    Rytwinski, Trina; Fahrig, Lenore

    2013-11-01

    In reviews on effects of roads on animal population abundance we found that most effects are negative; however, there are also many neutral and positive responses [Fahrig and Rytwinski (Ecol Soc 14:21, 2009; Rytwinski and Fahrig (Biol Conserv 147:87-98, 2012)]. Here we use an individual-based simulation model to: (1) confirm predictions from the existing literature of the combinations of species traits and behavioural responses to roads that lead to negative effects of roads on animal population abundance, and (2) improve prediction of the combinations of species traits and behavioural responses to roads that lead to neutral and positive effects of roads on animal population abundance. Simulations represented a typical situation in which road mitigation is contemplated, i.e. rural landscapes containing a relatively low density (up to 1.86 km/km(2)) of high-traffic roads, with continuous habitat between the roads. In these landscapes, the simulations predict that populations of species with small territories and movement ranges, and high reproductive rates, i.e. many small mammals and birds, should not be reduced by roads. Contrary to previous suggestions, the results also predict that populations of species that obtain a resource from roads (e.g. vultures) do not increase with increasing road density. In addition, our simulations support the predation release hypothesis for positive road effects on prey (both small- and large-bodied prey), whereby abundance of a prey species increased with increasing road density due to reduced predation by generalist road-affected predators. The simulations also predict an optimal road density for the large-bodied prey species if it avoids roads or traffic emissions. Overall, the simulation results suggest that in rural landscapes containing high-traffic roads, there are many species for which road mitigation may not be necessary; mitigation efforts should be tailored to the species that show negative population responses to roads

  10. Effects of grazer presence on genetic structure of a phenotypically diverse diatom population.

    PubMed

    Sjöqvist, C; Kremp, A; Lindehoff, E; Båmstedt, U; Egardt, J; Gross, S; Jönsson, M; Larsson, H; Pohnert, G; Richter, H; Selander, E; Godhe, A

    2014-01-01

    Studies of predator-prey systems in both aquatic and terrestrial environments have shown that grazers structure the intraspecific diversity of prey species, given that the prey populations are phenotypically variable. Populations of phytoplankton have traditionally considered comprising only low intraspecific variation, hence selective grazing as a potentially structuring factor of both genetic and phenotypic diversity has not been comprehensively studied. In this study, we compared strain specific growth rates, production of polyunsaturated aldehydes, and chain length of the marine diatom Skeletonema marinoi in both grazer and non-grazer conditions by conducting monoclonal experiments. Additionally, a mesocosm experiment was performed with multiclonal experimental S. marinoi populations exposed to grazers at different levels of copepod concentration to test effects of grazer presence on diatom diversity in close to natural conditions. Our results show that distinct genotypes of a geographically restricted population exhibit variable phenotypic traits relevant to grazing interactions such as chain length and growth rates. Grazer presence affected clonal richness and evenness of multiclonal Skeletonema populations in the mesocosms, likely in conjunction with intrinsic interactions among the diatom strains. Only the production of polyunsaturated aldehydes was not affected by grazer presence. Our findings suggest that grazing can be an important factor structuring diatom population diversity in the sea and emphasize the importance of considering clonal differences when characterizing species and their role in nature. PMID:24272280

  11. Population genetic structure of economically important Tortricidae (Lepidoptera) in South Africa: a comparative analysis.

    PubMed

    Timm, A E; Geertsema, H; Warnich, L

    2010-08-01

    Comparative studies of the population genetic structures of agricultural pests can elucidate the factors by which their population levels are affected, which is useful for designing pest management programs. This approach was used to provide insight into the six Tortricidae of major economic importance in South Africa. The population genetic structure of the carnation worm E. acerbella and the false codling moth T. leucotreta, analyzed using amplified fragment length polymorphism (AFLP) analysis, is presented here for the first time. These results were compared with those obtained previously for the codling moth Cydia pomonella, the oriental fruit moth Grapholita molesta, the litchi moth Cryptophlebia peltastica and the macadamia nut borer T. batrachopa. Locally adapted populations were detected over local geographic areas for all species. No significant differences were found among population genetic structures as result of population history (whether native or introduced) although host range (whether oligophagous or polyphagous) had a small but significant effect. It is concluded that factors such as dispersal ability and agricultural practices have the most important effects on genetically structuring populations of the economically important Tortricidae in South Africa. PMID:19941674

  12. How differentiated do children experience affect? An investigation of the within- and between-person structure of children's affect.

    PubMed

    Leonhardt, Anja; Könen, Tanja; Dirk, Judith; Schmiedek, Florian

    2016-05-01

    Research on the structure of children's affect is limited. It is possible that children's perception of their own affect might be less differentiated than that of adults. Support for the 2-factor model of positive and negative affect and the pleasure-arousal model suggests that children in middle childhood can distinguish positive and negative affect as well as valence and arousal. Whether children are able to differentiate further aspects of affect, as proposed by the 3-dimensional model of affect (good-bad mood, alertness-tiredness, calmness-tension), is an unresolved issue. The aim of our study was the comparison of these 3 affect models to establish how differentiated children experience their affect and which model best describes affect in children. We examined affect structures on the between- and within-person level, acknowledging that affect varies across time and that no valid interpretation of either level is feasible if both are confounded. For this purpose, 214 children (age 8-11 years) answered affect items once a day for 5 consecutive days on smartphones. We tested all affect models by means of 2-level confirmatory factor analysis. Although all affect models had an acceptable fit, the 3-dimensional model best described affect in children on both the within- and between-person level. Thus, children in middle childhood can already describe affect in a differentiated way. Also, affect structures were similar on the within- and between-person level. We conclude that in order to acquire a thorough picture of children's affect, measures for children should include items of all 3 affect dimensions. (PsycINFO Database Record PMID:26280488

  13. Correlations in the population structure of music, genes and language

    PubMed Central

    Brown, Steven; Savage, Patrick E.; Ko, Albert Min-Shan; Stoneking, Mark; Ko, Ying-Chin; Loo, Jun-Hun; Trejaut, Jean A.

    2014-01-01

    We present, to our knowledge, the first quantitative evidence that music and genes may have coevolved by demonstrating significant correlations between traditional group-level folk songs and mitochondrial DNA variation among nine indigenous populations of Taiwan. These correlations were of comparable magnitude to those between language and genes for the same populations, although music and language were not significantly correlated with one another. An examination of population structure for genetics showed stronger parallels to music than to language. Overall, the results suggest that music might have a sufficient time-depth to retrace ancient population movements and, additionally, that it might be capturing different aspects of population history than language. Music may therefore have the potential to serve as a novel marker of human migrations to complement genes, language and other markers. PMID:24225453

  14. Sharp gene pool transition in a population affected by phenotype-based selective hunting

    NASA Astrophysics Data System (ADS)

    Brigatti, E.; Sá Martins, J. S.; Roditi, I.

    2005-06-01

    We use a microscopic model of population dynamics, a modified version of the well known Penna model, to study some aspects of microevolution. This research is motivated by recent reports on the effect of selective hunting on the gene pool of bighorn sheep living in the Ram Mountain region, in Canada. Our model finds a sharp transition in the structure of the gene pool as some threshold for the number of animals hunted is reached.

  15. Plasmodium vivax Populations Are More Genetically Diverse and Less Structured than Sympatric Plasmodium falciparum Populations

    PubMed Central

    Jennison, Charlie; Arnott, Alicia; Tessier, Natacha; Tavul, Livingstone; Koepfli, Cristian; Felger, Ingrid; Siba, Peter M.; Reeder, John C.; Bahlo, Melanie; Mueller, Ivo; Barry, Alyssa E.

    2015-01-01

    Introduction The human malaria parasite, Plasmodium vivax, is proving more difficult to control and eliminate than Plasmodium falciparum in areas of co-transmission. Comparisons of the genetic structure of sympatric parasite populations may provide insight into the mechanisms underlying the resilience of P. vivax and can help guide malaria control programs. Methodology/Principle findings P. vivax isolates representing the parasite populations of four areas on the north coast of Papua New Guinea (PNG) were genotyped using microsatellite markers and compared with previously published microsatellite data from sympatric P. falciparum isolates. The genetic diversity of P. vivax (He = 0.83–0.85) was higher than that of P. falciparum (He = 0.64–0.77) in all four populations. Moderate levels of genetic differentiation were found between P. falciparum populations, even over relatively short distances (less than 50 km), with 21–28% private alleles and clear geospatial genetic clustering. Conversely, very low population differentiation was found between P. vivax catchments, with less than 5% private alleles and no genetic clustering observed. In addition, the effective population size of P. vivax (30353; 13043–69142) was larger than that of P. falciparum (18871; 8109–42986). Conclusions/Significance Despite comparably high prevalence, P. vivax had higher diversity and a panmictic population structure compared to sympatric P. falciparum populations, which were fragmented into subpopulations. The results suggest that in comparison to P. falciparum, P. vivax has had a long-term large effective population size, consistent with more intense and stable transmission, and limited impact of past control and elimination efforts. This underlines suggestions that more intensive and sustained interventions will be needed to control and eventually eliminate P. vivax. This research clearly demonstrates how population genetic analyses can reveal deeper insight into transmission

  16. Can the structure of an explosive caldera affect eruptive behaviour?

    NASA Astrophysics Data System (ADS)

    Willcox, C. P.; Branney, M.; Carrasco-Nuñez, G.; Barford, D.

    2010-12-01

    Explosive caldera volcanoes cause catastrophic events at the Earth’s surface, yet we know little about how their internal structures evolve with time, and whether this can affect both differentiation and eruptive behaviour. Distinguishing how structural evolution impacts upon eruption behaviour and periodicity is challenging because the resolution of eruption frequencies can be difficult at ancient exhumed calderas, whereas at young volcanoes, most of the caldera floor faults and associated conduits are hidden. Some exhumed calderas reveal caldera floor faults and conduits; some of these apparently underwent a single collapse event that was piecemeal, i.e. fragmentation into several, variously subsided fault-blocks (e.g. Scafell caldera, UK). In contrast, the present study tests whether some caldera volcanoes may become more intensely fractured with time as a result of successive distinct caldera-collapse eruptions (“multi-cyclic calderas”). It has been proposed that this scenario could lead to an increase in eruption frequency, with smaller eruptions over time. Magma leakage through the increasingly fractured volcano might also lead to less evolved compositions with time due to shorter residence times. We have returned to the volcano where this hypothesis was formulated, the ~ 20 km diameter, hydrothermally active Los Humeros caldera in eastern central México. We aim to see how well the structural evolution of this modern caldera can be reconstructed, and whether changes in structure affected the styles and periodicity of large explosive eruptions. How a caldera evolves structurally could have important implications for predicting future catastrophic eruptions. Detailed structural mapping (e.g. of fault scarps, vent positions, and tilted strata), documentation of draping and cross-cutting field relations, together with logging, optical and SEM petrography, XRF major and trace element geochemistry and new 40Ar-39Ar and radiocarbon dating of the pyroclastic

  17. Genetic structure among continental and island populations of gyrfalcons.

    PubMed

    Johnson, Jeff A; Burnham, Kurt K; Burnham, William A; Mindell, David P

    2007-08-01

    Little is known about the possible influence that past glacial events have had on the phylogeography and population structure of avian predators in the Arctic and sub-Arctic. In this study, we use microsatellite and mitochondrial control region DNA variation to investigate the population genetic structure of gyrfalcons (Falco rusticolus) throughout a large portion of their circumpolar distribution. In most locations sampled, the mtDNA data revealed little geographic structure; however, five out of eight mtDNA haplotypes were unique to a particular geographic area (Greenland, Iceland, or Alaska) and the Iceland population differed from others based on haplotype frequency differences (F(ST)). With the microsatellite results, significant population structure (F(ST), principal components analysis, and cluster analysis) was observed identifying Greenland and Iceland as separate populations, while Norway, Alaska and Canada were identified as a single population consistent with contemporary gene flow across Russia. Within Greenland, differing levels of gene flow between western and eastern sampling locations was indicated with apparent asymmetric dispersal in western Greenland from north to south. This dispersal bias is in agreement with the distribution of plumage colour variants with white gyrfalcons in much higher proportion in northern Greenland. Lastly, because the mtDNA control region sequence differed by only one to four nucleotides from a common haplotype among all gyrfalcons, we infer that the observed microsatellite population genetic structure has developed since the last glacial maximum. This conclusion is further supported by our finding that a closely related species, the saker falcon (Falco cherrug), has greater genetic heterogeneity, including mtDNA haplotypes differing by 1-16 nucleotide substitutions from a common gyrfalcon haplotype. This is consistent with gyrfalcons having expanded rapidly from a single glacial-age refugium to their current

  18. Genetic Population Structure of Tectura paleacea: Implications for the Mechanisms Regulating Population Structure in Patchy Coastal Habitats

    PubMed Central

    Begovic, Emina; Lindberg, David R.

    2011-01-01

    The seagrass limpet Tectura paleacea (Gastropoda; Patellogastropoda) belongs to a seagrass obligate lineage that has shifted from the Caribbean in the late Miocene, across the Isthmus of Panama prior to the closing of the Panamanian seaway, and then northward to its modern Baja California – Oregon distribution. To address whether larval entrainment by seagrass beds contributes to population structuring, populations were sampled at six California/Oregon localities approximately 2 degrees latitude apart during two post-settlement periods in July 2002 and June 2003. Partial cytochrome oxidase b (Cytb) sequences were obtained from 20 individuals (10 per year) from each population in order to determine the levels of population subdivision/connectivity. From the 120 individuals sequenced, there were eighty-one unique haplotypes, with the greatest haplotype diversity occurring in southern populations. The only significant genetic break detected was consistent with a peri-Point Conception (PPC) biogeographic boundary while populations north and south of Point Conception were each panmictic. The data further indicate that populations found south of the PPC biogeographic boundary originated from northern populations. This pattern of population structure suggests that seagrass patches are not entraining the larvae of T. paleacea by altering flow regimes within their environment; a process hypothesized to produce extensive genetic subdivision on fine geographic scales. In contrast to the haplotype data, morphological patterns vary significantly over very fine geographic scales that are inconsistent with the observed patterns of genetic population structure, indicating that morphological variation in T. paleacea might be attributed to differential ecophenotypic expression in response to local habitat variability throughout its distribution. These results suggest that highly localized conservation efforts may not be as effective as large-scale conservation efforts in near

  19. Genotypic structure of a Drosophila population for adult locomotor activity

    SciTech Connect

    Grechanyi, G.V.; Korzun, V.M.

    1995-01-01

    Analysis of the variation of adult locomotor activity in four samples taken at different times from a natural population of Drosophila melanogaster showed that the total variation of this trait is relatively stable in time and has a substantial genetic component. Genotypic structure of the population for locomotor activity is characterized by the presence of large groups of genotypes with high and low values of this trait. A possible explanation for the presence of such groups in a population is cyclic density-dependent selection.

  20. Modeling structured population dynamics using data from unmarked individuals

    USGS Publications Warehouse

    Grant, Evan H. Campbell; Zipkin, Elise; Thorson, James T.; See, Kevin; Lynch, Heather J.; Kanno, Yoichiro; Chandler, Richard; Letcher, Benjamin H.; Royle, J. Andrew

    2014-01-01

    The study of population dynamics requires unbiased, precise estimates of abundance and vital rates that account for the demographic structure inherent in all wildlife and plant populations. Traditionally, these estimates have only been available through approaches that rely on intensive mark–recapture data. We extended recently developed N-mixture models to demonstrate how demographic parameters and abundance can be estimated for structured populations using only stage-structured count data. Our modeling framework can be used to make reliable inferences on abundance as well as recruitment, immigration, stage-specific survival, and detection rates during sampling. We present a range of simulations to illustrate the data requirements, including the number of years and locations necessary for accurate and precise parameter estimates. We apply our modeling framework to a population of northern dusky salamanders (Desmognathus fuscus) in the mid-Atlantic region (USA) and find that the population is unexpectedly declining. Our approach represents a valuable advance in the estimation of population dynamics using multistate data from unmarked individuals and should additionally be useful in the development of integrated models that combine data from intensive (e.g., mark–recapture) and extensive (e.g., counts) data sources.

  1. Fixed point sensitivity analysis of interacting structured populations.

    PubMed

    Barabás, György; Meszéna, Géza; Ostling, Annette

    2014-03-01

    Sensitivity analysis of structured populations is a useful tool in population ecology. Historically, methodological development of sensitivity analysis has focused on the sensitivity of eigenvalues in linear matrix models, and on single populations. More recently there have been extensions to the sensitivity of nonlinear models, and to communities of interacting populations. Here we derive a fully general mathematical expression for the sensitivity of equilibrium abundances in communities of interacting structured populations. Our method yields the response of an arbitrary function of the stage class abundances to perturbations of any model parameters. As a demonstration, we apply this sensitivity analysis to a two-species model of ontogenetic niche shift where each species has two stage classes, juveniles and adults. In the context of this model, we demonstrate that our theory is quite robust to violating two of its technical assumptions: the assumption that the community is at a point equilibrium and the assumption of infinitesimally small parameter perturbations. Our results on the sensitivity of a community are also interpreted in a niche theoretical context: we determine how the niche of a structured population is composed of the niches of the individual states, and how the sensitivity of the community depends on niche segregation. PMID:24368160

  2. Into the depth of population genetics: pattern of structuring in mesophotic red coral populations

    NASA Astrophysics Data System (ADS)

    Costantini, Federica; Abbiati, Marco

    2016-03-01

    Deep-sea reef-building corals are among the most conspicuous invertebrates inhabiting the hard-bottom habitats worldwide and are particularly susceptible to human threats. The precious red coral ( Corallium rubrum, L. 1758) has a wide bathymetric distribution, from shallow up to 800 m depth, and represents a key species in the Mediterranean mesophotic reefs. Several studies have investigated genetic variability in shallow-water red coral populations, while geographic patterns in mesophotic habitats are largely unknown. This study investigated genetic variability of C. rubrum populations dwelling between 55 and 120 m depth, from the Ligurian to the Ionian Sea along about 1500 km of coastline. A total of 18 deep rocky banks were sampled. Colonies were analyzed by means of a set of microsatellite loci and the putative control region of the mitochondrial DNA. Collected data were compared with previous studies. Both types of molecular markers showed high genetic similarity between populations within the northern (Ligurian Sea and Tuscan Archipelago) and the southern (Tyrrhenian and Ionian seas) study areas. Variability in habitat features between the sampling sites did not affect the genetic variability of the populations. Conversely, the patchy distribution of suitable habitats affected populations' connectivity within and among deep coral banks. Based on these results and due to the emphasis on red coral protection in the Mediterranean Sea by international institutions, red coral could be promoted as a `focal species' to develop management plans for the conservation of deep coralligenous reefs, a reservoir of marine biodiversity.

  3. Thermoregulatory behaviour affects prevalence of chytrid fungal infection in a wild population of Panamanian golden frogs.

    PubMed

    Richards-Zawacki, Corinne L

    2010-02-22

    Predicting how climate change will affect disease dynamics requires an understanding of how the environment affects host-pathogen interactions. For amphibians, global declines and extinctions have been linked to a pathogenic chytrid fungus, Batrachochytrium dendrobatidis. Using a combination of body temperature measurements and disease assays conducted before and after the arrival of B. dendrobatidis, this study tested the hypothesis that body temperature affects the prevalence of infection in a wild population of Panamanian golden frogs (Atelopus zeteki). The timing of first detection of the fungus was consistent with that of a wave of epidemic infections spreading south and eastward through Central America. During the epidemic, many golden frogs modified their thermoregulatory behaviour, raising body temperatures above their normal set point. Odds of infection decreased with increasing body temperature, demonstrating that even slight environmental or behavioural changes have the potential to affect an individual's vulnerability to infection. The thermal dependency of the relationship between B. dendrobatidis and its amphibian hosts demonstrates how the progression of an epidemic can be influenced by complex interactions between host and pathogen phenotypes and the environments in which they are found. PMID:19864287

  4. Effects of ocean acidification on population dynamics and community structure of crustose coralline algae.

    PubMed

    Ordoñez, Alexandra; Doropoulos, Christopher; Diaz-Pulido, Guillermo

    2014-06-01

    Calcification and growth of crustose coralline algae (CCA) are affected by elevated seawater pCO2 and associated changes in carbonate chemistry. However, the effects of ocean acidification (OA) on population and community-level responses of CCA have barely been investigated. We explored changes in community structure and population dynamics (size structure and reproduction) of CCA in response to OA. Recruited from an experimental flow-through system, CCA settled onto the walls of plastic aquaria and developed under exposure to one of three pCO2 treatments (control [present day, 389±6 ppm CO2], medium [753±11 ppm], and high [1267±19 ppm]). Elevated pCO2 reduced total CCA abundance and affected community structure, in particular the density of the dominant species Pneophyllum sp. and Porolithon onkodes. Meanwhile, the relative abundance of P. onkodes declined from 24% under control CO2 to 8.3% in high CO2 (65% change), while the relative abundance of Pneophyllum sp. remained constant. Population size structure of P. onkodes differed significantly across treatments, with fewer larger individuals under high CO2. In contrast, the population size structure and number of reproductive structures (conceptacles) per crust of Pneophyllum sp. was similar across treatments. The difference in the magnitude of the response of species abundance and population size structure between species may have the potential to induce species composition changes in the future. These results demonstrate that the impacts of OA on key coral reef builders go beyond declines in calcification and growth, and suggest important changes to aspects of population dynamics and community ecology. PMID:25070869

  5. Population dynamics of dechlorinators and factors affecting the level and products of PCB dechlorination in sediments

    SciTech Connect

    Kim, J.S.; Sokol, R.C.; Liu, X.; Bethoney, C.M.; Rhee, G.Y.

    1996-12-31

    Microbial dechlorination of polychlorinated biphenyls (PCBs) often stops although a significant number of removable chlorines remain. To determine the reason for the cessation, we investigated the limitation of organic carbon, PCB bioavailability, and inhibition by metabolic products. Enrichment with carbon sources did not induce additional chlorination, indicating the plateau was not due to depletion of organic carbon. The bioavailability was not limiting, since a subcritical micelle concentration of the surfactant, which enhanced desorption without inhibiting dechlorinating microorganisms, failed to lower the plateau. Neither was it due to accumulation of metabolites, since no additional dechlorination was detected when plateau sediments were incubated with fresh medium. Similarly, dechlorination was not inhibited in freshly spiked sediment slurries. Dechlorination ended up at the same level with nearly identical congener profiles, regardless of treatment. These results indicate that cessation of dechlorination was due to the accumulation of daughter congeners, which cannot be used as electron acceptors by microbes. To determine whether the decreasing availability affected the microorganisms, we determined the population dynamics of dechlorinators using the most probable number technique. The growth dynamics of the dechlorinators mirrored the time course of dechlorination. It started when the population increased by two orders of magnitude. Once dechlorination stopped the dechlorinating population also began to decrease. When dechlorinators were inoculated into PCB-free sediments, the population decreased over time. The decrease of the population as dechlorination ceased confirms that the diminishing availability of congeners was the reason for the incomplete dechlorination. Recent findings have shown that a second phase of dechlorination of certain congeners can occur after a long lag. 45 refs., 8 figs.

  6. Does Question Structure Affect Exam Performance in the Geosciences?

    NASA Astrophysics Data System (ADS)

    Day, E. A.; D'Arcy, M. K.; Craig, L.; Streule, M. J.; Passmore, E.; Irving, J. C. E.

    2015-12-01

    The jump to university level exams can be challenging for some students, often resulting in poor marks, which may be detrimental to their confidence and ultimately affect their overall degree class. Previous studies have found that question structure can have a strong impact on the performance of students in college level exams (see Gibson et al., 2015, for a discussion of its impact on physics undergraduates). Here, we investigate the effect of question structure on the exam results of geology and geophysics undergraduate students. Specifically, we analyse the performance of students in questions that have a 'scaffolded' framework and compare them to their performance in open-ended questions and coursework. We also investigate if observed differences in exam performance are correlated with the educational background and gender of students, amongst other factors. It is important for all students to be able to access their degree courses, no matter what their backgrounds may be. Broadening participation in the geosciences relies on removing systematic barriers to achievement. Therefore we recommend that exams are either structured with scaffolding in questions at lower levels, or students are explicitly prepared for this transition. We also recommend that longitudinal studies of exam performance are conducted within individual departments, and this work outlines one approach to analysing performance data.

  7. Population models for passerine birds: structure, parameterization, and analysis

    USGS Publications Warehouse

    Noon, B.R.; Sauer, J.R.

    1992-01-01

    Population models have great potential as management tools, as they use infonnation about the life history of a species to summarize estimates of fecundity and survival into a description of population change. Models provide a framework for projecting future populations, determining the effects of management decisions on future population dynamics, evaluating extinction probabilities, and addressing a variety of questions of ecological and evolutionary interest. Even when insufficient information exists to allow complete identification of the model, the modelling procedure is useful because it forces the investigator to consider the life history of the species when determining what parameters should be estimated from field studies and provides a context for evaluating the relative importance of demographic parameters. Models have been little used in the study of the population dynamics of passerine birds because of: (1) widespread misunderstandings of the model structures and parameterizations, (2) a lack of knowledge of life histories of many species, (3) difficulties in obtaining statistically reliable estimates of demographic parameters for most passerine species, and (4) confusion about functional relationships among demographic parameters. As a result, studies of passerine demography are often designed inappropriately and fail to provide essential data. We review appropriate models for passerine bird populations and illustrate their possible uses in evaluating the effects of management or other environmental influences on population dynamics. We identify environmental influences on population dynamics. We identify parameters that must be estimated from field data, briefly review existing statistical methods for obtaining valid estimates, and evaluate the present status of knowledge of these parameters.

  8. Temporal Changes in Population Structure of a Marine Planktonic Diatom

    PubMed Central

    Tesson, Sylvie V. M.; Montresor, Marina; Procaccini, Gabriele; Kooistra, Wiebe H. C. F.

    2014-01-01

    A prevailing question in phytoplankton research addresses changes of genetic diversity in the face of huge population sizes and apparently unlimited dispersal capabilities. We investigated population genetic structure of the pennate planktonic marine diatom Pseudo-nitzschia multistriata at the LTER station MareChiara in the Gulf of Naples (Italy) over four consecutive years and explored possible changes over seasons and from year to year. A total of 525 strains were genotyped using seven microsatellite markers, for a genotypic diversity of 75.05%, comparable to that found in other Pseudo-nitzschia species. Evidence from Bayesian clustering analysis (BA) identified two genetically distinct clusters, here interpreted as populations, and several strains that could not be assigned with ≥90% probability to either population, here interpreted as putative hybrids. Principal Component Analysis (PCA) recovered these two clusters in distinct clouds with most of the putative hybrids located in-between. Relative proportions of the two populations and the putative hybrids remained similar within years, but changed radically between 2008 and 2009 and between 2010 and 2011, when the 2008-population apparently became the dominant one again. Strains from the two populations are inter-fertile, and so is their offspring. Inclusion of genotypes of parental strains and their offspring shows that the majority of the latter could not be assigned to any of the two parental populations. Therefore, field strains classified by BA as the putative hybrids could be biological hybrids. We hypothesize that P. multistriata population dynamics in the Gulf of Naples follows a meta-population-like model, including establishment of populations by cell inocula at the beginning of each growth season and remixing and dispersal governed by moving and mildly turbulent water masses. PMID:25506926

  9. Structural Drift: The Population Dynamics of Sequential Learning

    PubMed Central

    Crutchfield, James P.; Whalen, Sean

    2012-01-01

    We introduce a theory of sequential causal inference in which learners in a chain estimate a structural model from their upstream “teacher” and then pass samples from the model to their downstream “student”. It extends the population dynamics of genetic drift, recasting Kimura's selectively neutral theory as a special case of a generalized drift process using structured populations with memory. We examine the diffusion and fixation properties of several drift processes and propose applications to learning, inference, and evolution. We also demonstrate how the organization of drift process space controls fidelity, facilitates innovations, and leads to information loss in sequential learning with and without memory. PMID:22685387

  10. Population genetic structure and long-distance dispersal among seabird populations: implications for colony persistence.

    PubMed

    Bicknell, A W J; Knight, M E; Bilton, D; Reid, J B; Burke, T; Votier, S C

    2012-06-01

    Dramatic local population decline brought about by anthropogenic-driven change is an increasingly common threat to biodiversity. Seabird life history traits make them particularly vulnerable to such change; therefore, understanding population connectivity and dispersal dynamics is vital for successful management. Our study used a 357-base pair mitochondrial control region locus sequenced for 103 individuals and 18 nuclear microsatellite loci genotyped for 245 individuals to investigate population structure in the Atlantic and Pacific populations of the pelagic seabird, Leach's storm-petrel Oceanodroma leucorhoa leucorhoa. This species is under intense predation pressure at one regionally important colony on St Kilda, Scotland, where a disparity between population decline and predation rates hints at immigration from other large colonies. AMOVA, F(ST), Φ(ST) and Bayesian cluster analyses revealed no genetic structure among Atlantic colonies (Global Φ(ST) = -0.02 P > 0.05, Global F(ST) = 0.003, P > 0.05, STRUCTURE K = 1), consistent with either contemporary gene flow or strong historical association within the ocean basin. The Pacific and Atlantic populations are genetically distinct (Global Φ(ST) = 0.32 P < 0.0001, Global F(ST) = 0.04, P < 0.0001, STRUCTURE K = 2), but evidence for interocean exchange was found with individual exclusion/assignment and population coalescent analyses. These findings highlight the importance of conserving multiple colonies at a number of different sites and suggest that management of this seabird may be best viewed at an oceanic scale. Moreover, our study provides an illustration of how long-distance movement may ameliorate the potentially deleterious impacts of localized environmental change, although direct measures of dispersal are still required to better understand this process. PMID:22548276

  11. Ethnicity and Population Structure in Personal Naming Networks

    PubMed Central

    Mateos, Pablo; Longley, Paul A.; O'Sullivan, David

    2011-01-01

    Personal naming practices exist in all human groups and are far from random. Rather, they continue to reflect social norms and ethno-cultural customs that have developed over generations. As a consequence, contemporary name frequency distributions retain distinct geographic, social and ethno-cultural patterning that can be exploited to understand population structure in human biology, public health and social science. Previous attempts to detect and delineate such structure in large populations have entailed extensive empirical analysis of naming conventions in different parts of the world without seeking any general or automated methods of population classification by ethno-cultural origin. Here we show how ‘naming networks’, constructed from forename-surname pairs of a large sample of the contemporary human population in 17 countries, provide a valuable representation of cultural, ethnic and linguistic population structure around the world. This innovative approach enriches and adds value to automated population classification through conventional national data sources such as telephone directories and electoral registers. The method identifies clear social and ethno-cultural clusters in such naming networks that extend far beyond the geographic areas in which particular names originated, and that are preserved even after international migration. Moreover, one of the most striking findings of this approach is that these clusters simply ‘emerge’ from the aggregation of millions of individual decisions on parental naming practices for their children, without any prior knowledge introduced by the researcher. Our probabilistic approach to community assignment, both at city level as well as at a global scale, helps to reveal the degree of isolation, integration or overlap between human populations in our rapidly globalising world. As such, this work has important implications for research in population genetics, public health, and social science adding new

  12. Structure of the New England herring gull population

    USGS Publications Warehouse

    Kadlec, J.A.; Drury, W.H.

    1968-01-01

    Measurements of the rates of population increase, reproduction, and mortality together with an observed age ratio, were used to analyze the population of the Herring Gull in New England. Data from sporadic censuses prior to this study, aerial censuses by the authors, and National Audubon Society Christmas Bird Count indicated that the New England breeding population has been doubling every 12 to 15 years since the early 1900's. This increase has involved founding new colonies and expanding the breeding range There is evidence that 15 to 30% of the adults do not breed in any given year. Sixty-one productivity measurements on 43 islands from 1963 through 1966, involving almost 13,000 nests, showed that from 0.8 to 1.4 young/breeding pair/year is the usual range of rate of production. The age distribution in the population was determined by classifying Herring Gulls by plumage category on an aerial census of the coast from Tampico, Mexico, to Cape Sable, Nova Scotia. Of the 622,000 gulls observed, 68% were adults, 17% were second- and third-year birds, and 15% were first-year birds. Mortality rates derived from band recovery data were too high to be consistent with the observed rate of population growth, productivity, and age structure. Loss of bands increasing to the rate of about 20%/year 5 years after banding eliminates most of the discrepancy. The age structure and rate of population increase indicate a mortality rate of 4 to 9% for gulls 2 years old or older, compared with the 25 to 30% indicated by band recoveries. The population structure we have developed fits everything we have observed about Herring Gull population dynamics, except mortality based on band recoveries.

  13. Oral impacts affecting daily performance in a low dental disease Thai population.

    PubMed

    Adulyanon, S; Vourapukjaru, J; Sheiham, A

    1996-12-01

    The aim of the study was to measure incidence of oral impacts on daily performances and their related features in a low dental disease population. 501 people aged 35-44 years in 16 rural villages in Ban Phang district, Khon Kaen, Thailand, were interviewed about oral impacts on nine physical, psychological and social aspects of performance during the past 6 months, and then had an oral examination. The clinical and behavioural data showed that the sample had low caries (DMFT = 2.7) and a low utilization of dental services. 73.6% of all subjects had at least one daily performance affected by an oral impact. The highest incidence of performances affected were Eating (49.7%), Emotional stability (46.5%) and Smiling (26.1%). Eating, Emotional stability and Cleaning teeth performances had a high frequency or long duration of impacts, but a low severity. The low frequency performances; Physical activities, Major role activity and Sleeping were rated as high severity. Pain and discomfort were mainly perceived as the causes of impacts (40.1%) for almost every performance except Smiling. Toothache was the major causal oral condition (32.7%) of almost all aspects of performance. It was concluded that this low caries people have as high an incidence of oral impacts as industrialized, high dental disease populations. Frequency and severity presented the paradoxical effect on different performances and should both be taken into account for overall estimation of impacts. PMID:9007354

  14. Hyperlipidemia affects multiscale structure and strength of murine femur

    PubMed Central

    Ascenzi, Maria-Grazia; Lutz, Andre; Du, Xia; Klimecky, Laureen; Kawas, Neal; Hourany, Talia; Jahng, Joelle; Chin, Jesse; Tintut, Yin; Nackenhors, Udo; Keyak, Joyce

    2014-01-01

    To improve bone strength prediction beyond limitations of assessment founded solely on the bone mineral component, we investigated the effect of hyperlipidemia, present in more than 40% of osteoporotic patients, on multiscale structure of murine bone. Our overarching purpose is to estimate bone strength accurately, to facilitate mitigating fracture morbidity and mortality in patients. Because i) orientation of collagen type I affects, independently of degree of mineralization, cortical bone’s micro-structural strength; and, ii) hyperlipidemia affects collagen orientation and µCT volumetric tissue mineral density (vTMD) in murine cortical bone, we have constructed the first multiscale finite element (mFE), mouse-specific femoral model to study the effect of collagen orientation and vTMD on strength in Ldlr−/−, a mouse model of hyperlipidemia, and its control wild type, on either high fat diet or normal diet. Each µCT scan-based mFE model included either element-specific elastic orthotropic properties calculated from collagen orientation and vTMD (collagen-density model) by experimentally validated formulation, or usual element-specific elastic isotropic material properties dependent on vTMD-only (density-only model). We found that collagen orientation, assessed by circularly polarized light and confocal microscopies, and vTMD, differed among groups; and that microindentation results strongly correlate with elastic modulus of collagen-density models (r2=0.85, p=10−5). Collagen-density models yielded 1) larger strains, and therefore lower strength, in simulations of 3-point bending and physiological loading; and 2) higher correlation between mFE-predicted strength and 3-point bending experimental strength, than density-only models. This novel method supports ongoing translational research to achieve the as yet elusive goal of accurate bone strength prediction. PMID:24795172

  15. Hyperlipidemia affects multiscale structure and strength of murine femur.

    PubMed

    Ascenzi, Maria-Grazia; Lutz, Andre; Du, Xia; Klimecky, Laureen; Kawas, Neal; Hourany, Talia; Jahng, Joelle; Chin, Jesse; Tintut, Yin; Nackenhors, Udo; Keyak, Joyce

    2014-07-18

    To improve bone strength prediction beyond limitations of assessment founded solely on the bone mineral component, we investigated the effect of hyperlipidemia, present in more than 40% of osteoporotic patients, on multiscale structure of murine bone. Our overarching purpose is to estimate bone strength accurately, to facilitate mitigating fracture morbidity and mortality in patients. Because (i) orientation of collagen type I affects, independently of degree of mineralization, cortical bone׳s micro-structural strength; and, (ii) hyperlipidemia affects collagen orientation and μCT volumetric tissue mineral density (vTMD) in murine cortical bone, we have constructed the first multiscale finite element (mFE), mouse-specific femoral model to study the effect of collagen orientation and vTMD on strength in Ldlr(-/-), a mouse model of hyperlipidemia, and its control wild type, on either high fat diet or normal diet. Each µCT scan-based mFE model included either element-specific elastic orthotropic properties calculated from collagen orientation and vTMD (collagen-density model) by experimentally validated formulation, or usual element-specific elastic isotropic material properties dependent on vTMD-only (density-only model). We found that collagen orientation, assessed by circularly polarized light and confocal microscopies, and vTMD, differed among groups and that microindentation results strongly correlate with elastic modulus of collagen-density models (r(2)=0.85, p=10(-5)). Collagen-density models yielded (1) larger strains, and therefore lower strength, in simulations of 3-point bending and physiological loading; and (2) higher correlation between mFE-predicted strength and 3-point bending experimental strength, than density-only models. This novel method supports ongoing translational research to achieve the as yet elusive goal of accurate bone strength prediction. PMID:24795172

  16. Designing transthyretin mutants affecting tetrameric structure: implications in amyloidogenicity.

    PubMed Central

    Redondo, C; Damas, A M; Saraiva, M J

    2000-01-01

    The molecular mechanisms that convert soluble transthyretin (TTR) tetramers into insoluble amyloid fibrils are still unknown; dissociation of the TTR tetramer is a pre-requisite for amyloid formation in vitro and involvement of monomers and/or dimers in fibril formation has been suggested by structural studies. We have designed four mutated proteins with the purpose of stabilizing [Ser(117)-->Cys (S117C) and Glu(92)-->Cys (E92C)] or destabilizing [Asp(18)-->Asn (D18N) and Leu(110)-->Ala (D110A)] the dimer/tetramer interactions in TTR, aiming at elucidating structural determinants in amyloidogenesis. The resistance of the mutated proteins to dissociation was analysed by HPLC studies of diluted TTR preparations. Both 'stabilized' mutants migrated as tetramers and, upon dilution, no other TTR species was observed, confirming the increased resistance to dissociation. For the 'destabilized' mutants, a mixture of tetrameric and monomeric forms co-existed at low dilution and the latter increased upon 10-fold dilution. Both of the destabilizing mutants formed amyloid in vitro when acidified. This result indicated that both the AB loop of TTR, destabilized in D18N, and the hydrophobic interactions affecting the dimer-dimer interfaces in L110A are implicated in the stability of the tetrameric structure. The stabilized mutants, which were dimeric in nature through disulphide bonding, were unable to polymerize into amyloid, even at pH 3.2. When the amyloid formation assay was repeated in the presence of 2-mercaptoethanol, upon disruption of the S-S bridges of these stable dimers, amyloid fibril formation was observed. This experimental evidence suggests that monomers, rather than dimers, are the repeating structural subunit comprising the amyloid fibrils. PMID:10794728

  17. An indication of major genes affecting hip and elbow dysplasia in four Finnish dog populations.

    PubMed

    Mäki, K; Janss, L L G; Groen, A F; Liinamo, A-E; Ojala, M

    2004-05-01

    The aim of the study was to assess the possible existence of major genes influencing hip and elbow dysplasia in four dog populations. A Bayesian segregation analysis was performed separately on each population. In total, 34 140 dogs were included in the data set. Data were analysed with both a polygenic and a mixed inheritance model. Polygenic models included fixed and random environmental effects and additive genetic effects. To apply mixed inheritance models, the effect of a major gene was added to the polygenic models. The major gene was modelled as an autosomal biallelic locus with Mendelian transmission probabilities. Gibbs sampling and a Monte Carlo Markov Chain algorithm were used. The goodness-of-fit of the different models were compared using the residual sum-of-squares. The existence of a major gene was considered likely for hip dysplasia in all the breeds and for elbow dysplasia in one breed. Several procedures were followed to exclude the possible false detection of major genes based on non-normality of data: permuted datasets were analysed, data-transformations were applied, and residuals were judged for normality. Allelic effects at the major gene locus showed nearly to complete dominance, with a recessive, unfavourable allele in both traits. Relatively high estimates of the frequencies of unfavourable alleles in each breed suggest that considerable genetic progress would be possible by selection against major genes. However, the major genes that are possibly affecting hip and elbow dysplasia in these populations will require further study. PMID:14997179

  18. Histopathology of growth anomaly affecting the coral, Montipora capitata: implications on biological functions and population viability.

    PubMed

    Burns, John H R; Takabayashi, Misaki

    2011-01-01

    Growth anomalies (GAs) affect the coral, Montipora capitata, at Wai'ōpae, southeast Hawai'i Island. Our histopathological analysis of this disease revealed that the GA tissue undergoes changes which compromise anatomical machinery for biological functions such as defense, feeding, digestion, and reproduction. GA tissue exhibited significant reductions in density of ova (66.1-93.7%), symbiotic dinoflagellates (38.8-67.5%), mesenterial filaments (11.2-29.0%), and nematocytes (28.8-46.0%). Hyperplasia of the basal body wall but no abnormal levels of necrosis and algal or fungal invasion was found in GA tissue. Skeletal density along the basal body wall was significantly reduced in GAs compared to healthy or unaffected sections. The reductions in density of the above histological features in GA tissue were collated with disease severity data to quantify the impact of this disease at the colony and population level. Resulting calculations showed this disease reduces the fecundity of M. capitata colonies at Wai'ōpae by 0.7-49.6%, depending on GA severity, and the overall population fecundity by 2.41±0.29%. In sum, GA in this M. capitata population reduces the coral's critical biological functions and increases susceptibility to erosion, clearly defining itself as a disease and an ecological threat. PMID:22205976

  19. Local divergence of thermal reaction norms among amphibian populations is affected by pond temperature variation.

    PubMed

    Richter-Boix, Alex; Katzenberger, Marco; Duarte, Helder; Quintela, María; Tejedo, Miguel; Laurila, Anssi

    2015-08-01

    Although temperature variation is known to cause large-scale adaptive divergence, its potential role as a selective factor over microgeographic scales is less well-understood. Here, we investigated how variation in breeding pond temperature affects divergence in multiple physiological (thermal performance curve and critical thermal maximum [CTmax]) and life-history (thermal developmental reaction norms) traits in a network of Rana arvalis populations. The results supported adaptive responses to face two main constraints limiting the evolution of thermal adaptation. First, we found support for the faster-slower model, indicating an adaptive response to compensate for the thermodynamic constraint of low temperatures in colder environments. Second, we found evidence for the generalist-specialist trade-off with populations from colder and less thermally variable environments exhibiting a specialist phenotype performing at higher rates but over a narrower range of temperatures. By contrast, the local optimal temperature for locomotor performance and CTmax did not match either mean or maximum pond temperatures. These results highlight the complexity of the adaptive multiple-trait thermal responses in natural populations, and the role of local thermal variation as a selective force driving diversity in life-history and physiological traits in the presence of gene flow. PMID:26118477

  20. Retrospective analysis of lung function abnormalities of Bhopal gas tragedy affected population

    PubMed Central

    De, Sajal

    2012-01-01

    Background & objectives: A large numbers of subjects were exposed to the aerosol of methyl isocyanate (MIC) during Bhopal gas disaster and lung was one of the most commonly affected organs. The aim of the present study was to analyze retrospectively the lung function abnormalities among the surviving MIC exposed population (gas victims) and to compare it with the non-MIC exposed (non gas exposed) population. Methods: The spirometry data of both gas victims and non gas exposed population who attended the Bhopal Memorial Hospital & Research Centre for evaluation of their respiratory complaints from August 2001 to December 2009, were retrospectively evaluated and compared. Results: A total 4782 gas victims and 1190 non gas exposed individuals performed spirometry during the study period. Among the gas victims, obstructive pattern was the commonest (50.8%) spirometric abnormality followed by restrictive pattern (13.3%). The increased relative risk of developing restrictive abnormality among gas victims was observed in 20-29 yr age group only (adjusted relative risk: 2.94, P<0.001). Male gas victims were more affected by severe airflow obstruction than females and the overall increased relative risk (1.33 to 1.45, P<0.001) of developing obstructive pattern among gas victims was observed. Interpretation & conclusions: The present study showed that the relative risk for pulmonary function abnormalities in gas victims was significantly more among those who were young at the time of disaster. Increased smoking habit among gas victims might have played an additive effect on predominance of obstructive pattern in spirometry. PMID:22446861

  1. Globalization and the population structure of Toxoplasma gondii.

    PubMed

    Lehmann, Tovi; Marcet, Paula L; Graham, Doug H; Dahl, Erica R; Dubey, J P

    2006-07-25

    Toxoplasma gondii is a protozoan parasite that infects nearly all mammal and bird species worldwide. Usually asymptomatic, toxoplasmosis can be severe and even fatal to many hosts, including people. Elucidating the contribution of genetic variation among parasites to patterns of disease transmission and manifestations has been the goal of many studies. Focusing on the geographic component of this variation, we show that most genotypes are locale-specific, but some are found across continents and are closely related to each other, indicating a recent radiation of a pandemic genotype. Furthermore, we show that the geographic structure of T. gondii is extraordinary in having one population that is found in all continents except South America, whereas other populations are generally confined to South America, and yet another population is found worldwide. Our evidence suggests that South American and Eurasian populations have evolved separately until recently, when ships populated by rats, mice, and cats provided T. gondii with unprecedented migration opportunities, probably during the transatlantic slave trade. Our results explain several enigmatic features of the population structure of T. gondii and demonstrate how pervasive, prompt, and elusive the impact of human globalization is on nature. PMID:16849431

  2. Population Structure and Inbreeding From Pedigree Analysis of Purebred Dogs

    PubMed Central

    Calboli, Federico C. F.; Sampson, Jeff; Fretwell, Neale; Balding, David J.

    2008-01-01

    Dogs are of increasing interest as models for human diseases, and many canine population-association studies are beginning to emerge. The choice of breeds for such studies should be informed by a knowledge of factors such as inbreeding, genetic diversity, and population structure, which are likely to depend on breed-specific selective breeding patterns. To address the lack of such studies we have exploited one of the world's most extensive resources for canine population-genetics studies: the United Kingdom (UK) Kennel Club registration database. We chose 10 representative breeds and analyzed their pedigrees since electronic records were established around 1970, corresponding to about eight generations before present. We find extremely inbred dogs in each breed except the greyhound and estimate an inbreeding effective population size between 40 and 80 for all but 2 breeds. For all but 3 breeds, >90% of unique genetic variants are lost over six generations, indicating a dramatic effect of breeding patterns on genetic diversity. We introduce a novel index Ψ for measuring population structure directly from the pedigree and use it to identify subpopulations in several breeds. As well as informing the design of canine population genetics studies, our results have implications for breeding practices to enhance canine welfare. PMID:18493074

  3. Genetic structure of the world's polar bear populations

    USGS Publications Warehouse

    Paetkau, David; Amstrup, Steven C.; Born, E.W.; Calvert, W.; Derocher, A.E.; Garner, G.W.; Messier, F.; Stirling, I.; Taylor, M.K.; Wiig, O.; Strobeck, C.

    1999-01-01

    We studied genetic structure in polar bear (Ursus maritimus) populations by typing a sample of 473 individuals spanning the species distribution at 16 highly variable microsatellite loci. No genetic discontinuities were found that would be consistent with evolutionarily significant periods of isolation between groups. Direct comparison of movement data and genetic data from the Canadian Arctic revealed a highly significant correlation. Genetic data generally supported existing population (management unit) designations, although there were two cases where genetic data failed to differentiate between pairs of populations previously resolved by movement data. A sharp contrast was found between the minimal genetic structure observed among populations surrounding the polar basin and the presence of several marked genetic discontinuities in the Canadian Arctic. The discontinuities in the Canadian Arctic caused the appearance of four genetic clusters of polar bear populations. These clusters vary in total estimated population size from 100 to over 10 000, and the smallest may merit a relatively conservative management strategy in consideration of its apparent isolation. We suggest that the observed pattern of genetic discontinuities has developed in response to differences in the seasonal distribution and pattern of sea ice habitat and the effects of these differences on the distribution and abundance of seals.

  4. Genetic structure of the world's polar bear populations.

    PubMed

    Paetkau, D; Amstrup, S C; Born, E W; Calvert, W; Derocher, A E; Garner, G W; Messier, F; Stirling, I; Taylor, M K; Wiig, O; Strobeck, C

    1999-10-01

    We studied genetic structure in polar bear (Ursus maritimus) populations by typing a sample of 473 individuals spanning the species distribution at 16 highly variable microsatellite loci. No genetic discontinuities were found that would be consistent with evolutionarily significant periods of isolation between groups. Direct comparison of movement data and genetic data from the Canadian Arctic revealed a highly significant correlation. Genetic data generally supported existing population (management unit) designations, although there were two cases where genetic data failed to differentiate between pairs of populations previously resolved by movement data. A sharp contrast was found between the minimal genetic structure observed among populations surrounding the polar basin and the presence of several marked genetic discontinuities in the Canadian Arctic. The discontinuities in the Canadian Arctic caused the appearance of four genetic clusters of polar bear populations. These clusters vary in total estimated population size from 100 to over 10 000, and the smallest may merit a relatively conservative management strategy in consideration of its apparent isolation. We suggest that the observed pattern of genetic discontinuities has developed in response to differences in the seasonal distribution and pattern of sea ice habitat and the effects of these differences on the distribution and abundance of seals. PMID:10583821

  5. The genetic structure of a relict population of wood frogs

    USGS Publications Warehouse

    Scherer, Rick; Muths, Erin; Noon, Barry; Oyler-McCance, Sara

    2012-01-01

    Habitat fragmentation and the associated reduction in connectivity between habitat patches are commonly cited causes of genetic differentiation and reduced genetic variation in animal populations. We used eight microsatellite markers to investigate genetic structure and levels of genetic diversity in a relict population of wood frogs (Lithobates sylvatica) in Rocky Mountain National Park, Colorado, where recent disturbances have altered hydrologic processes and fragmented amphibian habitat. We also estimated migration rates among subpopulations, tested for a pattern of isolation-by-distance, and looked for evidence of a recent population bottleneck. The results from the clustering algorithm in Program STRUCTURE indicated the population is partitioned into two genetic clusters (subpopulations), and this result was further supported by factorial component analysis. In addition, an estimate of FST (FST = 0.0675, P value \\0.0001) supported the genetic differentiation of the two clusters. Estimates of migration rates among the two subpopulations were low, as were estimates of genetic variability. Conservation of the population of wood frogs may be improved by increasing the spatial distribution of the population and improving gene flow between the subpopulations. Construction or restoration of wetlands in the landscape between the clusters has the potential to address each of these objectives.

  6. Hamilton's inclusive fitness in finite-structured populations

    PubMed Central

    Taylor, Peter D.; Maciejewski, Wes

    2014-01-01

    Hamilton's formulation of inclusive fitness has been with us for 50 years. During the first 20 of those years attention was largely focused on the evolutionary trajectories of different behaviours, but over the past 20 years interest has been growing in the effect of population structure on the evolution of behaviour and that is our focus here. We discuss the evolutionary journey of the inclusive-fitness effect over this epoch, nurtured as it was in an essentially homogeneous environment (that of ‘transitive’ structures) having to adapt in different ways to meet the expectations of heterogeneous structures. We pay particular attention to the way in which the theory has managed to adapt the original constructs of relatedness and reproductive value to provide a formulation of inclusive fitness that captures a precise measure of allele-frequency change in finite-structured populations. PMID:24686932

  7. Turkish Population Structure and Genetic Ancestry Reveal Relatedness among Eurasian Populations

    PubMed Central

    Hodoğlugil, Uğur; Mahley, Robert W.

    2013-01-01

    Summary Turkey connects the Middle East, Europe, and Asia and has experienced major population movements. We examined the population structure and genetic relatedness of samples from three regions of Turkey using over 500,000 SNP genotypes. The data were analyzed together with Human Genome Diversity Panel data. To obtain a more representative sampling from Central Asia, Kyrgyz samples (Bishkek, Kyrgyzstan) were genotyped and analyzed. Principal component (PC) analysis reveals a significant overlap between Turks and Middle Easterners and a relationship with Europeans and South and Central Asians; however, the Turkish genetic structure is unique. FRAPPE, STRUCTURE, and phylogenetic analyses support the PC analysis depending upon the number of parental ancestry components chosen. For example, supervised STRUCTURE (K = 3) illustrates a genetic ancestry for the Turks of 45% Middle Eastern (95% CI, 42–49), 40% European (95% CI, 36–44), and 15% Central Asian (95% CI, 13–16), whereas at K = 4 the genetic ancestry of the Turks was 38% European (95% CI, 35–42), 35% Middle Eastern (95% CI, 33–38), 18% South Asian (95% CI, 16–19), and 9% Central Asian (95% CI, 7–11). PC analysis and FRAPPE/STRUCTURE results from three regions in Turkey (Aydin, Istanbul, and Kayseri) were superimposed, without clear subpopulation structure, suggesting the selected samples were rather homogeneous. Thus, this study demonstrates admixture of Turkish people reflecting the population migration patterns. PMID:22332727

  8. Genetic Structure of Daphnia galeata Populations in Eastern China

    PubMed Central

    Wolinska, Justyna; Ma, Xiaolin; Yang, Zhong; Hu, Wei; Yin, Mingbo

    2015-01-01

    This study presents the first examination of the genetic structure of Daphnia longispina complex populations in Eastern China. Only one species, D. galeata, was present across the eight investigated lakes; as identified by taxon assignment using allelic variation at 15 microsatellite loci. Three genetically differentiated D. galeata subgroups emerged independent of the type of statistical analysis applied. Thus, Bayesian clustering, discriminant analysis based on results from factorial correspondence analysis, and UPGMA clustering consistently showed that populations from two neighbouring lakes were genetically separated from a mixture of genotypes found in other lakes, which formed another two subgroups. Clonal diversity was high in all D. galeata populations, and most samples showed no deviation from Hardy-Weinberg equilibrium, indicating that clonal selection had little effect on the genetic diversity. Overall, populations did not cluster by geographical origin. Further studies will show if the observed pattern can be explained by natural colonization processes or by recent anthropogenic impact on predominantly artificial lakes. PMID:25768727

  9. Genetic structure of Daphnia galeata populations in Eastern China.

    PubMed

    Wei, Wenzhi; Gießler, Sabine; Wolinska, Justyna; Ma, Xiaolin; Yang, Zhong; Hu, Wei; Yin, Mingbo

    2015-01-01

    This study presents the first examination of the genetic structure of Daphnia longispina complex populations in Eastern China. Only one species, D. galeata, was present across the eight investigated lakes; as identified by taxon assignment using allelic variation at 15 microsatellite loci. Three genetically differentiated D. galeata subgroups emerged independent of the type of statistical analysis applied. Thus, Bayesian clustering, discriminant analysis based on results from factorial correspondence analysis, and UPGMA clustering consistently showed that populations from two neighbouring lakes were genetically separated from a mixture of genotypes found in other lakes, which formed another two subgroups. Clonal diversity was high in all D. galeata populations, and most samples showed no deviation from Hardy-Weinberg equilibrium, indicating that clonal selection had little effect on the genetic diversity. Overall, populations did not cluster by geographical origin. Further studies will show if the observed pattern can be explained by natural colonization processes or by recent anthropogenic impact on predominantly artificial lakes. PMID:25768727

  10. Genetics in geographically structured populations: defining, estimating and interpreting FST

    PubMed Central

    Holsinger, Kent E.; Weir, Bruce S.

    2015-01-01

    Wright’s F-statistics, and especially FST, provide important insights into the evolutionary processes that influence the structure of genetic variation within and among populations, and they are among the most widely used descriptive statistics in population and evolutionary genetics. Estimates of FST can identify regions of the genome that have been the target of selection, and comparisons of FST from different parts of the genome can provide insights into the demographic history of populations. For these reasons and others, FST has a central role in population and evolutionary genetics and has wide applications in fields that range from disease association mapping to forensic science. This Review clarifies how FST is defined, how it should be estimated, how it is related to similar statistics and how estimates of FST should be interpreted. PMID:19687804

  11. Population genetic structure, linkage disequilibrium and effective population size of conserved and extensively raised village chicken populations of Southern Africa

    PubMed Central

    Khanyile, Khulekani S.; Dzomba, Edgar F.; Muchadeyi, Farai C.

    2015-01-01

    Extensively raised village chickens are considered a valuable source of biodiversity, with genetic variability developed over thousands of years that ought to be characterized and utilized. Surveys that can reveal a population's genetic structure and provide an insight into its demographic history will give valuable information that can be used to manage and conserve important indigenous animal genetic resources. This study reports population diversity and structure, linkage disequilibrium and effective population sizes of Southern African village chickens and conservation flocks from South Africa. DNA samples from 312 chickens from South African village and conservation flocks (n = 146), Malawi (n = 30) and Zimbabwe (n = 136) were genotyped using the Illumina iSelect chicken SNP60K BeadChip. Population genetic structure analysis distinguished the four conservation flocks from the village chicken populations. Of the four flocks, the Ovambo clustered closer to the village chickens particularly those sampled from South Africa. Clustering of the village chickens followed a geographic gradient whereby South African chickens were closer to those from Zimbabwe than to chickens from Malawi. Different conservation flocks seemed to have maintained different components of the ancestral genomes with a higher proportion of village chicken diversity found in the Ovambo population. Overall population LD averaged over chromosomes ranged from 0.03 ± 0.07 to 0.58 ± 0.41 and averaged 0.15 ± 0.16. Higher LD, ranging from 0.29 to 0.36, was observed between SNP markers that were less than 10 kb apart in the conservation flocks. LD in the conservation flocks steadily decreased to 0.15 (PK) and 0.24 (VD) at SNP marker interval of 500 kb. Genomewide LD decay in the village chickens from Malawi, Zimbabwe and South Africa followed a similar trend as the conservation flocks although the mean LD values for the investigated SNP intervals were lower. The results suggest low effective

  12. Genetic structure of the indigenous populations of Siberia.

    PubMed

    Crawford, M H; Williams, J T; Duggirala, R

    1997-10-01

    This study explores the genetic structure of Siberian indigenous populations on the basis of standard blood group and protein markers and DNA variable number of tandem repeats (VNTR) variation. Four analytical methods were utilized in this study: Harpending and Jenkin's R-matrix; Harpending and Ward's method of correlating genetic heterozygosity (H) to the distance from the centroid of the gene frequency array (rii); spatial autocorrelation, and Mantel tests. Because of the underlying assumptions of the various methods, the numbers of populations used in the analyses varied from 15 to 62. Since spatial autocorrelation is based upon separate correlations between alleles, a larger number of standard blood markers and populations were used. Fewest Siberian populations have been sampled for VNTRs, thus, only a limited comparison was possible. The four analytical procedures employed in this study yielded complementary results suggestive of the effects of unique historical events, evolutionary forces, and geography on the distribution of alleles in Siberian indigenous populations. The principal components analysis of the R-matrix demonstrated the presence of populational clusters that reflect their phylogenetic relationship. Mantel comparisons of matrices indicate that an intimate relationship exists between geography, languages, and genetics of Siberian populations. Spatial autocorrelation patterns reflect the isolation-by-distance model of Malecot and the possible effects of long-distance migration. PMID:9386825

  13. Reproducibility of Vibrionaceae population structure in coastal bacterioplankton.

    PubMed

    Szabo, Gitta; Preheim, Sarah P; Kauffman, Kathryn M; David, Lawrence A; Shapiro, Jesse; Alm, Eric J; Polz, Martin F

    2013-03-01

    How reproducibly microbial populations assemble in the wild remains poorly understood. Here, we assess evidence for ecological specialization and predictability of fine-scale population structure and habitat association in coastal ocean Vibrionaceae across years. We compare Vibrionaceae lifestyles in the bacterioplankton (combinations of free-living, particle, or zooplankton associations) measured using the same sampling scheme in 2006 and 2009 to assess whether the same groups show the same environmental association year after year. This reveals complex dynamics with populations falling primarily into two categories: (i) nearly equally represented in each of the two samplings and (ii) highly skewed, often to an extent that they appear exclusive to one or the other sampling times. Importantly, populations recovered at the same abundance in both samplings occupied highly similar habitats suggesting predictable and robust environmental association while skewed abundances of some populations may be triggered by shifts in ecological conditions. The latter is supported by difference in the composition of large eukaryotic plankton between years, with samples in 2006 being dominated by copepods, and those in 2009 by diatoms. Overall, the comparison supports highly predictable population-habitat linkage but highlights the fact that complex, and often unmeasured, environmental dynamics in habitat occurrence may have strong effects on population dynamics. PMID:23178668

  14. Large-scale natural disturbance alters genetic population structure of the sailfin molly, Poecilia latipinna.

    PubMed

    Apodaca, Joseph J; Trexler, Joel C; Jue, Nathaniel K; Schrader, Matthew; Travis, Joseph

    2013-02-01

    Many inferences about contemporary rates of gene flow are based on the assumption that the observed genetic structure among populations is stable. Recent studies have uncovered several cases in which this assumption is tenuous. Most of those studies have focused on the effects that regular environmental fluctuations can have on genetic structure and gene flow patterns. Occasional catastrophic disturbances could also alter either the distribution of habitat or the spatial distribution of organisms in a way that affects population structure. However, evidence of such effects is sparse in the literature because it is difficult to obtain. Hurricanes, in particular, have the potential to exert dramatic effects on population structure of organisms found on islands or coral reefs or in near shore and coastal habitats. Here we draw on a historic genetic data set and new data to suggest that the genetic structure of sailfin molly (Poecilia latipinna) populations in north Florida was altered dramatically by an unusually large and uncommon type of storm surge associated with Hurricane Dennis in 2005. We compare the spatial pattern of genetic variation in these populations after Hurricane Dennis to the patterns described in an earlier study in this same area. We use comparable genetic data from another region of Florida, collected in the same two periods, to estimate the amount of change expected from typical temporal variation in population structure. The comparative natural history of sailfin mollies in these two regions indicates that the change in population structure produced by the storm surge is not the result of many local extinctions with recolonization from a few refugia but emerged from a pattern of mixing and redistribution. PMID:23348779

  15. Latent structure of dermatoglyphs in the population of Selska Valley.

    PubMed

    Milicić, J; Vidovic, M

    2005-01-01

    The historical records of Selska Valley reveal that the eastern part of this area was first settled by Slovene agrarian colonists, the western part by German colonists and the central part by Friulians. These were later followed by Slovene and Slovenized settlers, who penetrated the valley from north to south. Because of its reproductive isolation, the population of Selska Valley is highly suitable for the study of population structures. The quantitative traits of the digital and palmar dermatoglyphs are polygenetically determined characteristics, which, due to their selective inertness to changes, may provide an insight into microevolutionary processes. The purpose of our study was to identify the possible differences between the populations of villages in the valley and the mountain villages attributable to various migration flows through history. Altogether 340 finger and palm prints of 163 males and 177 females were collected in two groups of villages: (1) the lowland villages (Praprotno, Bukovica, Sevlje, Dolenja vas, Selca, Zelezniki and Zali log), and (2) the mountain villages (Podlonk, Prtovc, Spodnje Danje, Zgornja Sorica and Spodnja Sorica). The 18 dermatoglyphic variables were analyzed. A statistical analysis using standard methods was performed and the latent structure evaluated using factor analysis. The discriminant analysis and latent structure of the quantitative properties of dermatoglyphs suggest the presence of certain differences in gene pools of two studied populations (the group of villages in the valley and the group of mountain villages). It is highly probable that these differences can be attributed to low migration in the Selska Valley and to the 'selective inertness' of quantitative dermatoglyphic traits. In a previous study, no significant biological differences between the studied populations were found in qualitative dermatoglyphic traits. This indicates that Selska Valley and its village populations represent a specific isolate, and

  16. Population Structure Shapes Copy Number Variation in Malaria Parasites.

    PubMed

    Cheeseman, Ian H; Miller, Becky; Tan, John C; Tan, Asako; Nair, Shalini; Nkhoma, Standwell C; De Donato, Marcos; Rodulfo, Hectorina; Dondorp, Arjen; Branch, Oralee H; Mesia, Lastenia Ruiz; Newton, Paul; Mayxay, Mayfong; Amambua-Ngwa, Alfred; Conway, David J; Nosten, François; Ferdig, Michael T; Anderson, Tim J C

    2016-03-01

    If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen. PMID:26613787

  17. Population Structure Shapes Copy Number Variation in Malaria Parasites

    PubMed Central

    Cheeseman, Ian H.; Miller, Becky; Tan, John C.; Tan, Asako; Nair, Shalini; Nkhoma, Standwell C.; De Donato, Marcos; Rodulfo, Hectorina; Dondorp, Arjen; Branch, Oralee H.; Mesia, Lastenia Ruiz; Newton, Paul; Mayxay, Mayfong; Amambua-Ngwa, Alfred; Conway, David J.; Nosten, François; Ferdig, Michael T.; Anderson, Tim J. C.

    2016-01-01

    If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen. PMID:26613787

  18. Evolutionary dynamics for persistent cooperation in structured populations

    NASA Astrophysics Data System (ADS)

    Li, Yan; Liu, Xinsheng; Claussen, Jens Christian; Guo, Wanlin

    2015-06-01

    The emergence and maintenance of cooperative behavior is a fascinating topic in evolutionary biology and social science. The public goods game (PGG) is a paradigm for exploring cooperative behavior. In PGG, the total resulting payoff is divided equally among all participants. This feature still leads to the dominance of defection without substantially magnifying the public good by a multiplying factor. Much effort has been made to explain the evolution of cooperative strategies, including a recent model in which only a portion of the total benefit is shared by all the players through introducing a new strategy named persistent cooperation. A persistent cooperator is a contributor who is willing to pay a second cost to retrieve the remaining portion of the payoff contributed by themselves. In a previous study, this model was analyzed in the framework of well-mixed populations. This paper focuses on discussing the persistent cooperation in lattice-structured populations. The evolutionary dynamics of the structured populations consisting of three types of competing players (pure cooperators, defectors, and persistent cooperators) are revealed by theoretical analysis and numerical simulations. In particular, the approximate expressions of fixation probabilities for strategies are derived on one-dimensional lattices. The phase diagrams of stationary states, and the evolution of frequencies and spatial patterns for strategies are illustrated on both one-dimensional and square lattices by simulations. Our results are consistent with the general observation that, at least in most situations, a structured population facilitates the evolution of cooperation. Specifically, here we find that the existence of persistent cooperators greatly suppresses the spreading of defectors under more relaxed conditions in structured populations compared to that obtained in well-mixed populations.

  19. Scale of Severe Channel Disturbances Relative to the Structure of Fish Populations

    NASA Astrophysics Data System (ADS)

    Luce, C. H.; Rieman, B. E.; King, J. G.; Dunham, J. B.

    2002-12-01

    Stream temperature and channel disturbance are two potentially important controls on the distribution and persistence of fish populations. Temperature regulates primary physiological processes that constrain the demographic response of populations to their environments. Ultimately temperature may be a first order determinant of the patterns of potential habitat and occurrence for many species. Stream temperature can be estimated from locally derived empirical relationships with elevation or based on detailed energy balances and thus used to model the distribution of potential habitats for fishes across whole landscapes. The role of disturbance is more hypothetical. Metapopulation theory proposes that environmental variation may have an important influence on the dynamics of populations. Disturbances may depress or even eliminate local populations, but a regional population may persist because other populations are not affected. Demographic support or recolonization may occur through dispersal among populations. Clearly the scale of disturbance and population structure can be important. If the characteristic size of disturbances is larger than the extent of a local population, then adjacent populations may decline simultaneously and metapopulation structure will offer little benefit. Conversely, if the characteristic size is smaller the benefit of structure could be important. In this paper we examine the spatial scale of large disturbances in the Boise River catchment over the last 50 years. We compare that to the scale of habitat patches for bull trout defined by stream temperature and the patterns of genetic variation detected by molecular techniques. Implications for species conservation are discussed in the context of climate change (influencing habitat patch size) and fire and fuels management (influencing the scale of disturbance).

  20. Population genetic structure of the abyssal grenadier (Coryphaenoides armatus) around the mid-Atlantic ridge

    NASA Astrophysics Data System (ADS)

    Ritchie, H.; Cousins, N. J.; Cregeen, S. J.; Piertney, S. B.

    2013-12-01

    Understanding the factors that affect the levels and distribution of genetic diversity in oceanic and deep sea environments is a central focus in marine population genetics. Whilst it has been considered that the oceans represent a homogenous environment that would facilitate dispersal and minimise population structure, it is now clear that topographical features and current patterns can influence the extent of spatial gene flow and promote significant population genetic divergence even at local scales. Here we examine patterns of population genetic structure among N. Atlantic populations of the cosmopolitan abyssal grenadier Coryphaenoides armatus in relation to two hypothesised barriers to gene flow-the mid-Atlantic Ridge and the Charlie-Gibbs Fracture Zone/Sub-Polar Front. A suite of microsatellite markers were developed to examine the spatial pattern of allelic variation among 210 individuals from ten sampling locations encompassing sites east and west of the MAR and north and south of the CGFZ, plus a geographically distinct sample of individuals from the Crozet Islands in the Indian Ocean. Considerable genetic diversity was detected among individuals (na=5-13 and HO=0.46-0.69 across populations) but with an overall lack of genetic divergence between populations. Pairwise estimates of divergence among NE Atlantic samples were small and non-significant (max FST=0.04) and Structure-based Bayesian analysis of genetic clusters returned no distinct population structure. The only indication of genetic structure was between the Atlantic and Indian Oceans, with FST estimates of ca. 0.05. Patterns of genetic diversity and divergence are discussed in relation to what has been resolved in Coryphaenoides congeners, and what is known about the life history and ecology of C. armatus.

  1. Identification and synthetic modeling of factors affecting American black duck populations

    USGS Publications Warehouse

    Conroy, Michael J.; Miller, Mark W.; Hines, James E.

    2002-01-01

    We reviewed the literature on factors potentially affecting the population status of American black ducks (Anas rupribes). Our review suggests that there is some support for the influence of 4 major, continental-scope factors in limiting or regulating black duck populations: 1) loss in the quantity or quality of breeding habitats; 2) loss in the quantity or quality of wintering habitats; 3) harvest, and 4) interactions (competition, hybridization) with mallards (Anas platyrhychos) during the breeding and/or wintering periods. These factors were used as the basis of an annual life cycle model in which reproduction rates and survival rates were modeled as functions of the above factors, with parameters of the model describing the strength of these relationships. Variation in the model parameter values allows for consideration of scientific uncertainty as to the degree each of these factors may be contributing to declines in black duck populations, and thus allows for the investigation of the possible effects of management (e.g., habitat improvement, harvest reductions) under different assumptions. We then used available, historical data on black duck populations (abundance, annual reproduction rates, and survival rates) and possible driving factors (trends in breeding and wintering habitats, harvest rates, and abundance of mallards) to estimate model parameters. Our estimated reproduction submodel included parameters describing negative density feedback of black ducks, positive influence of breeding habitat, and negative influence of mallard densities; our survival submodel included terms for positive influence of winter habitat on reproduction rates, and negative influences of black duck density (i.e., compensation to harvest mortality). Individual models within each group (reproduction, survival) involved various combinations of these factors, and each was given an information theoretic weight for use in subsequent prediction. The reproduction model with highest

  2. Surprisingly little population genetic structure in a fungus-associated beetle despite its exploitation of multiple hosts

    PubMed Central

    Wood, Corlett W; Donald, Hannah M; Formica, Vincent A; Brodie, Edmund D

    2013-01-01

    In heterogeneous environments, landscape features directly affect the structure of genetic variation among populations by functioning as barriers to gene flow. Resource-associated population genetic structure, in which populations that use different resources (e.g., host plants) are genetically distinct, is a well-studied example of how environmental heterogeneity structures populations. However, the pattern that emerges in a given landscape should depend on its particular combination of resources. If resources constitute barriers to gene flow, population differentiation should be lowest in homogeneous landscapes, and highest where resources exist in equal proportions. In this study, we tested whether host community diversity affects population genetic structure in a beetle (Bolitotherus cornutus) that exploits three sympatric host fungi. We collected B. cornutus from plots containing the three host fungi in different proportions and quantified population genetic structure in each plot using a panel of microsatellite loci. We found no relationship between host community diversity and population differentiation in this species; however, we also found no evidence of resource-associated differentiation, suggesting that host fungi are not substantial barriers to gene flow. Moreover, we detected no genetic differentiation among B. cornutus populations separated by several kilometers, even though a previous study demonstrated moderate genetic structure on the scale of a few hundred meters. Although we found no effect of community diversity on population genetic structure in this study, the role of host communities in the structuring of genetic variation in heterogeneous landscapes should be further explored in a species that exhibits resource-associated population genetic structure. PMID:23789061

  3. Social Structure of Lions (Panthera leo) Is Affected by Management in Pendjari Biosphere Reserve, Benin

    PubMed Central

    Sogbohossou, Etotépé A.; Bauer, Hans; Loveridge, Andrew; Funston, Paul J.; De Snoo, Geert R.; Sinsin, Brice; De Iongh, Hans H.

    2014-01-01

    Lion populations have undergone a severe decline in West Africa. As baseline for conservation management, we assessed the group structure of lions in the Pendjari Biosphere Reserve in Benin. This reserve, composed of one National Park and two Hunting Zones, is part of the WAP transboundary complex of protected areas. Overall mean group size was 2.6±1.7 individuals (n = 296), it was significantly higher in the National Park (2.7±1.7, n = 168) than in the Hunting Zones (2.2±1.5, n = 128). Overall adult sex ratio was even, but significantly biased towards females (0.67) in the National Park and towards males (1.67) in the Hunting Zones. Our results suggest that the Pendjari lion population is affected by perturbations, such as trophy hunting. PMID:24416263

  4. Genetic structure and phylogeography of European catfish (Silurus glanis) populations.

    PubMed

    Triantafyllidis, A; Krieg, F; Cottin, C; Abatzopoulos, T J; Triantaphyllidis, C; Guyomard, R

    2002-06-01

    The genetic structure of Silurus glanis (Europe's largest freshwater fish species) across most of its natural distribution was investigated using 10 microsatellite loci. The revealed levels of genetic diversity were much higher than previous allozyme and restriction fragment length polymorphism mitochondrial DNA analyses had shown; relative levels of variability among populations were however, in good agreement with the previous studies. Populations from large basins (Volga and Danube rivers) were the most polymorphic, while samples from the smaller Greek rivers, which are more prone to genetic bottleneck, exhibited the lowest levels of genetic diversity. Microsatellite multilocus genotyping permitted the assignment of individual fish to their population of origin with a score as high as 98.3%. Despite the great genetic differentiation of S. glanis populations, no consistent pattern of geographical structuring was revealed, in contrast to previous studies of European freshwater fish species. A model of isolation by distance seems more probable and a hypothesis of recent dispersion from only one glacial refugium is proposed. The discovery of the highest levels of microsatellite and mitochondrial diversity in the Volga sample and the presence of river connections, during the Pleistocene, between this area and all major areas of the present catfish distribution, place this refugium around the Ponto-Caspian region. Combining these data with those from previous studies, a number of markers are now available to monitor wild and hatchery populations even at the individual level. PMID:12030981

  5. Genetic structure of a lotic population of Burkholderia (Pseudomonas) cepacia

    SciTech Connect

    Wise, M.G.; Shimkets, L.J.; McArthur, J.V.

    1995-05-01

    The genetic structure of a population of Burkholderia (Pseudomonas) cepacia isolated from a southeastern blackwater stream was investigated by using multilocus enzyme electrophoresis to examine the allelic variation in eight structural gene loci. Overall, 213 isolates were collected at transect points along the stream continuum, from both the sediments along the bank and the water column. Multilocus enzyme electrophoresis analysis revealed 164 distinct electrophoretic types, and the mean genetic diversity of the entire population was 0.574. Genetic diversity values did not vary spatially along the stream continuum. From a canonical discriminant analysis, Mahalonobis distances (measurements of genetic similarity between populations) revealed significant differences among the subpopulations at the sediment sampling points, suggesting bacterial adaptation to a heterogeneous (or patchy) microgeographical environment. Multilocus linkage disequilibrium analysis of the isolates revealed only limited association between alleles, suggesting frequent recombination, relative to binary fission, in this population. Furthermore, the dendrogram created from the data of this study and the allele mismatch distribution are typical of a population characterized by extensive genetic mixing. We suggest that B. cepacia be added to the growing list of bacteria that are not obligatorily clonal. 41 refs., 5 figs., 3 tabs.

  6. New Mexico and the southwestern US are affected by a unique population of tomato spotted wilt virus (TSWV) strains.

    PubMed

    French, J M; Goldberg, N P; Randall, J J; Hanson, S F

    2016-04-01

    Tomato spotted wilt virus (TSWV) is an important pathogen of many ornamental, greenhouse and agronomic crops worldwide. TSWV also causes sporadic problems in a number of crops in New Mexico (NM). Nucleocapsid gene sequences obtained from six different crop species across the state over four different years were used to characterize the NM TSWV population. This analysis shows that NM is affected by a unique TSWV population that is part of larger independent population present in the southwestern US. This population likely arose due to geographic isolation and is related to other TSWV populations from the US, Spain, and Italy. PMID:26721573

  7. The protective function of personal growth initiative among a genocide-affected population in Rwanda.

    PubMed

    Blackie, Laura E R; Jayawickreme, Eranda; Forgeard, Marie J C; Jayawickreme, Nuwan

    2015-07-01

    The aim of the current study was to investigate the extent to which individual differences in personal growth initiative (PGI) were associated with lower reports of functional impairment of daily activities among a genocide-affected population in Rwanda. PGI measures an individual's motivation to develop as a person and the extent to which he or she is active in setting goals that work toward achieving self-improvement. We found that PGI was negatively associated with functional impairment when controlling for depression, posttraumatic stress disorder, and other demographic factors. Our results suggest that PGI may constitute an important mindset for facilitating adaptive functioning in the aftermath of adversity and in the midst of psychological distress, and as such they might have practical applications for the development of intervention programs. PMID:26147518

  8. Molecular Population Genetic Structure in the Piping Plover

    USGS Publications Warehouse

    Miller, Mark P.; Haig, Susan M.; Gratto-Trevor, Cheri L.; Mullins, Thomas D.

    2009-01-01

    The Piping Plover (Charadrius melodus) is a migratory shorebird currently listed as Endangered in Canada and the U.S. Great Lakes, and threatened throughout the remainder of its U.S. breeding and winter range. In this study, we undertook the first comprehensive molecular genetic-based investigation of Piping Plovers. Our primary goals were to (1) address higher level subspecific taxonomic issues, (2) characterize population genetic structure, and (3) make inferences regarding past bottlenecks or population expansions that have occurred within this species. Our analyses included samples of individuals from 23 U.S. States and Canadian Provinces, and were based on mitochondrial DNA sequences (580 bp, n = 245 individuals) and eight nuclear microsatellite loci (n = 229 individuals). Our findings illustrate strong support for separate Atlantic and Interior Piping Plover subspecies (C. m. melodus and C. m. circumcinctus, respectively). Birds from the Great Lakes region were allied with the Interior subspecies group and should be taxonomically referred to as C. m. circumcinctus. Population genetic analyses suggested that genetic structure was stronger among Atlantic birds relative to the Interior group. This pattern indicates that natal and breeding site fidelity may be reduced among Interior birds. Furthermore, analyses suggested that Interior birds have previously experienced genetic bottlenecks, whereas no evidence for such patterns existed among the Atlantic subspecies. Likewise, genetic analyses indicated that the Great Lakes region has experienced a population expansion. This finding may be interpreted as population growth following a previous bottleneck event. No genetic evidence for population expansions was found for Atlantic, Prairie Canada, or U.S. Northern Great Plains individuals. We interpret our population history insights in light of 25 years of Piping Plover census data. Overall, differences observed between Interior and Atlantic birds may reflect

  9. Host-dependent genetic structure of parasite populations: differential dispersal of seabird tick host races.

    PubMed

    McCoy, Karen D; Boulinier, Thierry; Tirard, Claire; Michalakis, Yannis

    2003-02-01

    Despite the fact that parasite dispersal is likely to be one of the most important processes influencing the dynamics and coevolution of host-parasite interactions, little information is available on the factors that affect it. In most cases, opportunities for parasite dispersal should be closely linked to host biology. Here we use microsatellite genetic markers to compare the population structure and dispersal of two host races of the seabird tick Ixodes uriae at the scale of the North Atlantic. Interestingly, tick populations showed high within-population genetic variation and relatively low population differentiation. However, gene flow at different spatial scales seemed to depend on the host species exploited. The black-legged kittiwake (Rissa tridactyla) had structured tick populations showing patterns of isolation by distance, whereas tick populations of the Atlantic puffin (Fratercula arctica) were only weakly structured at the largest scale considered. Host-dependent rates of tick dispersal between colonies will alter infestation probabilities and local dynamics and may thus modify the adaptation potential of ticks to local hosts. Moreover, as I. uriae is a vector of the Lyme disease agent Borrelia burgdorferi sensu lato in both hemispheres, the large-scale movements of birds and the subsequent dispersal of ticks will have important consequences for the dynamics and coevolutionary interactions of this microparasite with its different vertebrate and invertebrate hosts. PMID:12683525

  10. Estimation of genetic structure of a Mycosphaerella musicola population using inter-simple sequence repeat markers.

    PubMed

    Peixouto, Y S; Dórea Bragança, C A; Andrade, W B; Ferreira, C F; Haddad, F; Oliveira, S A S; Darosci Brito, F S; Miller, R N G; Amorim, E P

    2015-01-01

    Among the diseases affecting banana (Musa sp), yellow Sigatoka, caused by the fungal pathogen Mycosphaerella musicola Leach, is considered one of the most important in Brazil, causing losses throughout the year. Understanding the genetic structure of pathogen populations will provide insight into the life history of pathogens, including the evolutionary processes occurring in agrosystems. Tools for estimating the possible emergence of pathogen variants with altered pathogenicity, virulence, or aggressiveness, as well as resistance to systemic fungicides, can also be developed from such data. The objective of this study was to analyze the genetic diversity and population genetics of M. musicola in the main banana-producing regions in Brazil. A total of 83 isolates collected from different banana cultivars in the Brazilian states of Bahia, Rio Grande do Norte, and Minas Gerais were evaluated using inter-simple sequence repeat markers. High variability was detected between the isolates, and 85.5% of the haplotypes were singletons in the populations. The highest source of genetic diversity (97.22%) was attributed to variations within populations. Bayesian cluster analysis revealed the presence of 2 probable ancestral groups, however, showed no relationship to population structure in terms of collection site, state of origin, or cultivar. Similarly, we detected noevidence of genetic recombination between individuals within different states, indicating that asexual cycles play a major role in M. musicola reproduction and that long-distance dispersal of the pathogen is the main factor contributing to the lack of population structure in the fungus. PMID:26214487

  11. Genealogical lineage sorting leads to significant, but incorrect Bayesian multilocus inference of population structure

    PubMed Central

    OROZCO-terWENGEL, PABLO; CORANDER, JUKKA; SCHLÖTTERER, CHRISTIAN

    2011-01-01

    Over the past decades, the use of molecular markers has revolutionized biology and led to the foundation of a new research discipline—phylogeography. Of particular interest has been the inference of population structure and biogeography. While initial studies focused on mtDNA as a molecular marker, it has become apparent that selection and genealogical lineage sorting could lead to erroneous inferences. As it is not clear to what extent these forces affect a given marker, it has become common practice to use the combined evidence from a set of molecular markers as an attempt to recover the signals that approximate the true underlying demography. Typically, the number of markers used is determined by either budget constraints or by statistical power required to recognize significant population differentiation. Using microsatellite markers from Drosophila and humans, we show that even large numbers of loci (>50) can frequently result in statistically well-supported, but incorrect inference of population structure using the software baps. Most importantly, genomic features, such as chromosomal location, variability of the markers, or recombination rate, cannot explain this observation. Instead, it can be attributed to sampling variation among loci with different realizations of the stochastic lineage sorting. This phenomenon is particularly pronounced for low levels of population differentiation. Our results have important implications for ongoing studies of population differentiation, as we unambiguously demonstrate that statistical significance of population structure inferred from a random set of genetic markers cannot necessarily be taken as evidence for a reliable demographic inference. PMID:21244537

  12. A Spatial Framework for Understanding Population Structure and Admixture.

    PubMed

    Bradburd, Gideon S; Ralph, Peter L; Coop, Graham M

    2016-01-01

    Geographic patterns of genetic variation within modern populations, produced by complex histories of migration, can be difficult to infer and visually summarize. A general consequence of geographically limited dispersal is that samples from nearby locations tend to be more closely related than samples from distant locations, and so genetic covariance often recapitulates geographic proximity. We use genome-wide polymorphism data to build "geogenetic maps," which, when applied to stationary populations, produces a map of the geographic positions of the populations, but with distances distorted to reflect historical rates of gene flow. In the underlying model, allele frequency covariance is a decreasing function of geogenetic distance, and nonlocal gene flow such as admixture can be identified as anomalously strong covariance over long distances. This admixture is explicitly co-estimated and depicted as arrows, from the source of admixture to the recipient, on the geogenetic map. We demonstrate the utility of this method on a circum-Tibetan sampling of the greenish warbler (Phylloscopus trochiloides), in which we find evidence for gene flow between the adjacent, terminal populations of the ring species. We also analyze a global sampling of human populations, for which we largely recover the geography of the sampling, with support for significant histories of admixture in many samples. This new tool for understanding and visualizing patterns of population structure is implemented in a Bayesian framework in the program SpaceMix. PMID:26771578

  13. Population structure of the giant garter snake, Thamnophis gigas

    USGS Publications Warehouse

    Paquin, M.M.; Wylie, G.D.; Routman, E.J.

    2006-01-01

    The giant garter snake, Thamnophis gigas, is a threatened species endemic to California's Central Valley. We tested the hypothesis that current watershed boundaries have caused genetic differentiation among populations of T. gigas. We sampled 14 populations throughout the current geographic range of T. gigas and amplified 859 bp from the mitochondrial gene ND4 and one nuclear microsatellite locus. DNA sequence variation from the mitochondrial gene indicates there is some genetic structuring of the populations, with high F ST values and unique haplotypes occurring at high frequency in several populations. We found that clustering populations by watershed boundary results in significant between-region genetic variance for mtDNA. However, analysis of allele frequencies at the microsatellite locus NSU3 reveals very low F ST values and little between-region variation in allele frequencies. The discordance found between mitochondrial and microsatellite data may be explained by aspects of molecular evolution and/or T. gigas life history characteristics. Differences in effective population size between mitochondrial and nuclear DNA, or male-biased gene flow, result in a lower migration rate of mitochondrial haplotypes relative to nuclear alleles. However, we cannot exclude homoplasy as one explanation for homogeneity found for the single microsatellite locus. The mitochondrial nucleotide sequence data supports conservation practices that identify separate management units for T. gigas. ?? Springer 2006.

  14. A Spatial Framework for Understanding Population Structure and Admixture

    PubMed Central

    Bradburd, Gideon S.; Ralph, Peter L.; Coop, Graham M.

    2016-01-01

    Geographic patterns of genetic variation within modern populations, produced by complex histories of migration, can be difficult to infer and visually summarize. A general consequence of geographically limited dispersal is that samples from nearby locations tend to be more closely related than samples from distant locations, and so genetic covariance often recapitulates geographic proximity. We use genome-wide polymorphism data to build “geogenetic maps,” which, when applied to stationary populations, produces a map of the geographic positions of the populations, but with distances distorted to reflect historical rates of gene flow. In the underlying model, allele frequency covariance is a decreasing function of geogenetic distance, and nonlocal gene flow such as admixture can be identified as anomalously strong covariance over long distances. This admixture is explicitly co-estimated and depicted as arrows, from the source of admixture to the recipient, on the geogenetic map. We demonstrate the utility of this method on a circum-Tibetan sampling of the greenish warbler (Phylloscopus trochiloides), in which we find evidence for gene flow between the adjacent, terminal populations of the ring species. We also analyze a global sampling of human populations, for which we largely recover the geography of the sampling, with support for significant histories of admixture in many samples. This new tool for understanding and visualizing patterns of population structure is implemented in a Bayesian framework in the program SpaceMix. PMID:26771578

  15. Coalescent approximation for structured populations in a stationary random environment.

    PubMed

    Sagitov, S; Jagers, P; Vatutin, V

    2010-11-01

    We establish convergence to the Kingman coalescent for the genealogy of a geographically-or otherwise-structured version of the Wright-Fisher population model with fast migration. The new feature is that migration probabilities may change in a random fashion. This brings a novel formula for the coalescent effective population size (EPS). We call it a quenched EPS to emphasize the key feature of our model - random environment. The quenched EPS is compared with an annealed (mean-field) EPS which describes the case of constant migration probabilities obtained by averaging the random migration probabilities over possible environments. PMID:20619285

  16. Ovarian Stimulation Affects the Population of Mouse Uterine NK Cells at Early Pregnancy

    PubMed Central

    Dorfeshan, Parvin; Moazzeni, Seyed Mohammad

    2013-01-01

    The aim of this study was to determine the influence of ovarian stimulation on endometrial mouse NK cell population. For superovulation, the female adult NMRI mice were injected i.p. with 10 IU of the pregnant mare serum gonadotropin followed 48 h later by an i.p. injection of 10 IU human chorionic gonadotropin hormone. Ovarian stimulated and nonstimulated mice were mated with fertile male. The presence of vaginal plug proved natural pregnancy, and this day was considered as day one of pregnancy. Tissue samples were prepared from the uterine horn and spleen of both groups of study on 7th day of pregnancy. Serum estradiol-17β and progesterone were measured at the same time. The tissue cryosections were prepared and double stained for CD 161 and CD3 markers, and NK cells population was analyzed. Relative frequency of NK cells was significantly lower in stroma and myometrium in hyperstimulated mice compared with the control group. However, no difference was seen in percentage of NK cells in spleen. The ovarian stimulation influences the proportion of uterine NK cells and may affect the embryo implantation. PMID:24350248

  17. Factors Enabling Access to HIV Voluntary Counseling and Testing for Key Affected Populations in Thailand.

    PubMed

    Thepthien, Bang-on; Srivanichakorn, Supattra; Apipornchaisakul, Kanya

    2015-10-01

    The objective was to study the factors that enabled persons at risk of HIV to obtain voluntary counseling and testing (VCT) in Thailand. This research was a cross-sectional study and data were collected during May to July 2013 in 8, purposively selected provinces. The method for selecting respondents used time-location quota sampling to achieve a total sample of 751 persons. The proportion who had VCT in the year prior to the survey was 56%.The significant enabling factors associated with VCT were having someone encourage them to go for testing and receiving information about VCT In addition, other significant factors for female sex workers were self-assessed risk for HIV and having had risk behavior, and for men who have sex with men the factors were awareness of eligibility for VCT. Thus, in order to achieve the VCT target for higher risk populations by 2016, there should be special mechanisms to inform the different groups, along with improvements in outreach services to make VCT more convenient for key affected populations. PMID:26069165

  18. Moroccan Leishmania infantum: Genetic Diversity and Population Structure as Revealed by Multi-Locus Microsatellite Typing

    PubMed Central

    Lemrani, Meryem; Mouna, Idrissi; Mohammed, Hida; Mostafa, Sabri; Rhajaoui, Mohamed; Hamarsheh, Omar; Schönian, Gabriele

    2013-01-01

    Leishmania infantum causes Visceral and cutaneous leishmaniasis in northern Morocco. It predominantly affects children under 5 years with incidence of 150 cases/year. Genetic variability and population structure have been investigated for 33 strains isolated from infected dogs and humans in Morocco. A multilocus microsatellite typing (MLMT) approach was used in which a MLMtype based on size variation in 14 independent microsatellite markers was compiled for each strain. MLMT profiles of 10 Tunisian, 10 Algerian and 21 European strains which belonged to zymodeme MON-1 and non-MON-1 according to multilocus enzyme electrophoresis (MLEE) were included for comparison. A Bayesian model-based approach and phylogenetic analysis inferred two L.infantum sub-populations; Sub-population A consists of 13 Moroccan strains grouped with all European strains of MON-1 type; and sub-population B consists of 15 Moroccan strains grouped with the Tunisian and Algerian MON-1 strains. Theses sub-populations were significantly different from each other and from the Tunisian, Algerian and European non MON-1 strains which constructed one separate population. The presence of these two sub-populations co-existing in Moroccan endemics suggests multiple introduction of L. infantum from/to Morocco; (1) Introduction from/to the neighboring North African countries, (2) Introduction from/to the Europe. These scenarios are supported by the presence of sub-population B and sub-population A respectively. Gene flow was noticed between sub-populations A and B. Five strains showed mixed A/B genotypes indicating possible recombination between the two populations. MLMT has proven to be a powerful tool for eco-epidemiological and population genetic investigations of Leishmania. PMID:24147078

  19. Demographic analysis from summaries of an age-structured population

    USGS Publications Warehouse

    Link, W.A.; Royle, J. Andrew; Hatfield, J.S.

    2003-01-01

    Demographic analyses of age-structured populations typically rely on life history data for individuals, or when individual animals are not identified, on information about the numbers of individuals in each age class through time. While it is usually difficult to determine the age class of a randomly encountered individual, it is often the case that the individual can be readily and reliably assigned to one of a set of age classes. For example, it is often possible to distinguish first-year from older birds. In such cases, the population age structure can be regarded as a latent variable governed by a process prior, and the data as summaries of this latent structure. In this article, we consider the problem of uncovering the latent structure and estimating process parameters from summaries of age class information. We present a demographic analysis for the critically endangered migratory population of whooping cranes (Grus americana), based only on counts of first-year birds and of older birds. We estimate age and year-specific survival rates. We address the controversial issue of whether management action on the breeding grounds has influenced recruitment, relating recruitment rates to the number of seventh-year and older birds, and examining the pattern of variation through time in this rate.

  20. Campylobacter jejuni colonization and population structure in urban populations of ducks and starlings in New Zealand

    PubMed Central

    Mohan, Vathsala; Stevenson, Mark; Marshall, Jonathan; Fearnhead, Paul; Holland, Barbara R; Hotter, Grant; French, Nigel P

    2013-01-01

    Abstract A repeated cross-sectional study was conducted to determine the prevalence of Campylobacter spp. and the population structure of C. jejuni in European starlings and ducks cohabiting multiple public access sites in an urban area of New Zealand. The country's geographical isolation and relatively recent history of introduction of wild bird species, including the European starling and mallard duck, create an ideal setting to explore the impact of geographical separation on the population biology of C. jejuni, as well as potential public health implications. A total of 716 starling and 720 duck fecal samples were collected and screened for C. jejuni over a 12 month period. This study combined molecular genotyping, population genetics and epidemiological modeling and revealed: (i) higher Campylobacter spp. isolation in starlings (46%) compared with ducks (30%), but similar isolation of C. jejuni in ducks (23%) and starlings (21%), (ii) significant associations between the isolation of Campylobacter spp. and host species, sampling location and time of year using logistic regression, (iii) evidence of population differentiation, as indicated by FST, and host-genotype association with clonal complexes CC ST-177 and CC ST-682 associated with starlings, and clonal complexes CC ST-1034, CC ST-692, and CC ST-1332 associated with ducks, and (iv) greater genetic diversity and genotype richness in ducks compared with starlings. These findings provide evidence that host-associated genotypes, such as the starling-associated ST-177 and ST-682, represent lineages that were introduced with the host species in the 19th century. The isolation of sequence types associated with human disease in New Zealand indicate that wild ducks and starlings need to be considered as a potential public health risk, particularly in urban areas. We applied molecular epidemiology and population genetics to obtain insights in to the population structure, host-species relationships, gene flow and

  1. Visualizing spatial population structure with estimated effective migration surfaces

    PubMed Central

    Petkova, Desislava; Novembre, John; Stephens, Matthew

    2015-01-01

    Genetic data often exhibit patterns broadly consistent with “isolation by distance” – a phenomenon where genetic similarity decays with geographic distance. In a heterogeneous habitat this may occur more quickly in some regions than others: for example, barriers to gene flow can accelerate differentiation between neighboring groups. We use the concept of “effective migration” to model the relationship between genetics and geography: in this paradigm, effective migration is low in regions where genetic similarity decays quickly. We present a method to visualize variation in effective migration across the habitat from geographically indexed genetic data. Our approach uses a population genetic model to relate effective migration rates to expected genetic dissimilarities. We illustrate its potential and limitations using simulations and data from elephant, human and A. thaliana populations. The resulting visualizations highlight important spatial features of population structure that are difficult to discern using existing methods for summarizing genetic variation. PMID:26642242

  2. Visualizing spatial population structure with estimated effective migration surfaces.

    PubMed

    Petkova, Desislava; Novembre, John; Stephens, Matthew

    2016-01-01

    Genetic data often exhibit patterns broadly consistent with 'isolation by distance'-a phenomenon where genetic similarity decays with geographic distance. In a heterogeneous habitat, this may occur more quickly in some regions than in others: for example, barriers to gene flow can accelerate differentiation between neighboring groups. We use the concept of 'effective migration' to model the relationship between genetics and geography. In this paradigm, effective migration is low in regions where genetic similarity decays quickly. We present a method to visualize variation in effective migration across a habitat from geographically indexed genetic data. Our approach uses a population genetic model to relate effective migration rates to expected genetic dissimilarities. We illustrate its potential and limitations using simulations and data from elephant, human and Arabidopsis thaliana populations. The resulting visualizations highlight important spatial features of population structure that are difficult to discern using existing methods for summarizing genetic variation. PMID:26642242

  3. Soil microbes and plant invasions—how soil-borne pathogens regulate plant populations and affect plant invasions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exotic plant invaders are a major global threat to biodiversity and ecosystem function. Here I present multiple lines of evidence suggesting that soil microbial communities affect the population growth rates of Prunus serotina in its native range and affect its invasiveness abroad. Research often ...

  4. Economic consequences of population size, structure and growth.

    PubMed

    Lee, R

    1983-01-01

    There seems to be 4 major approaches to conceptualizing and modeling demographic influences on economic and social welfare. These approaches are combined in various ways to construct richer and more comprehensive models. The basic approaches are: demographic influences on household or family behavior; population growth and reproducible capital; population size and fixed factors; and population and advantages of scale. These 4 models emphasize the supply side effects of population. A few of the ways in which these theories have been combined are sketched. Neoclassical growth models often have been combined with age distributed populations of individuals (or households), assumed to pursue optimal life cycle consumption and saving. In some well known development models, neoclassical growth models for the modern sector are linked by labor markets and migration to fixed factor (land) models of the traditional (agricultural) sector. A whole series of macro simulation models for developed and developing countries was based on single sector neoclassical growth models with age distributed populations. Yet, typically the household level foundations of assumed age distribution effects were not worked out. Simon's (1977) simulation models are in a class by themselves, for they are the only models that attempt to incorporate all the kinds of effects discussed. The economic demography of the individual and family cycle, as it is affected by regimes of fertility, mortality, and nuptiality, taken as given, are considered. The examination touches on many of the purported consequences of aggregate population growth and age composition, since so many of these are based implicitly or explicitly on assertions about micro level behavior. Demographic influences on saving and consumption, on general labor supply and female labor supply, and on problems of youth and old age dependency frequently fall in this category. Finally, attention is focused specifically on macro economic issues in

  5. Argentine Population Genetic Structure: Large Variance in Amerindian Contribution

    PubMed Central

    Seldin, Michael F.; Tian, Chao; Shigeta, Russell; Scherbarth, Hugo R.; Silva, Gabriel; Belmont, John W.; Kittles, Rick; Gamron, Susana; Allevi, Alberto; Palatnik, Simon A.; Alvarellos, Alejandro; Paira, Sergio; Caprarulo, Cesar; Guillerón, Carolina; Catoggio, Luis J.; Prigione, Cristina; Berbotto, Guillermo A.; García, Mercedes A.; Perandones, Carlos E.; Pons-Estel, Bernardo A.; Alarcon-Riquelme, Marta E.

    2011-01-01

    Argentine population genetic structure was examined using a set of 78 ancestry informative markers (AIMs) to assess the contributions of European, Amerindian, and African ancestry in 94 individuals members of this population. Using the Bayesian clustering algorithm STRUCTURE, the mean European contribution was 78%, the Amerindian contribution was 19.4%, and the African contribution was 2.5%. Similar results were found using weighted least mean square method: European, 80.2%; Amerindian, 18.1%; and African, 1.7%. Consistent with previous studies the current results showed very few individuals (four of 94) with greater than 10% African admixture. Notably, when individual admixture was examined, the Amerindian and European admixture showed a very large variance and individual Amerindian contribution ranged from 1.5 to 84.5% in the 94 individual Argentine subjects. These results indicate that admixture must be considered when clinical epidemiology or case control genetic analyses are studied in this population. Moreover, the current study provides a set of informative SNPs that can be used to ascertain or control for this potentially hidden stratification. In addition, the large variance in admixture proportions in individual Argentine subjects shown by this study suggests that this population is appropriate for future admixture mapping studies. PMID:17177183

  6. Different perceptions of social dilemmas: Evolutionary multigames in structured populations

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Szolnoki, Attila; Perc, Matjaž

    2014-09-01

    Motivated by the fact that the same social dilemma can be perceived differently by different players, we here study evolutionary multigames in structured populations. While the core game is the weak prisoner's dilemma, a fraction of the population adopts either a positive or a negative value of the sucker's payoff, thus playing either the traditional prisoner's dilemma or the snowdrift game. We show that the higher the fraction of the population adopting a different payoff matrix the more the evolution of cooperation is promoted. The microscopic mechanism responsible for this outcome is unique to structured populations, and it is due to the payoff heterogeneity, which spontaneously introduces strong cooperative leaders that give rise to an asymmetric strategy imitation flow in favor of cooperation. We demonstrate that the reported evolutionary outcomes are robust against variations of the interaction network, and they also remain valid if players are allowed to vary which game they play over time. These results corroborate existing evidence in favor of heterogeneity-enhanced network reciprocity, and they reveal how different perceptions of social dilemmas may contribute to their resolution.

  7. The strong-migration limit in geographically structured populations.

    PubMed

    Nagylaki, T

    1980-04-01

    Some strong-migration limits are established for geographically structured populations. A diploid monoecious population is subdivided into a finite number of colonies, which exchange migrants. The migration pattern is fixed and ergodic, but otherwise arbitrary. Generations are discrete and nonoverlapping; the analysis is restricted to a single locus. In all the limiting results, an effective population number Ne (less than or equal to NT) appears instead of the actual total population number NT. 1. If there is no selection, every allele mutates at rate u to types not preexisting in the population, and the (finite) subpopulation numbers Ni are very large, then the ultimate rate and pattern of convergence of the probabilities of allelic identity are approximately the same as for panmixia. If, in addition, the Ni are proportional to 1/u, as NT leads to infinity, the equilibrium probabilities of identity converge to the panmictic value. 2. With a finite number of alleles, any mutation pattern, an arbitrary selection scheme for each colony, and the mutation rates and selection of coefficients proportional to 1/NT, let Pj be the frequency of the allele Aj in the entire population, averaged with respect to the stationary distribution of the backward migration matrix M. As NT leads to infinity, the deviations of the allelic frequencies in each of the subpopulations from Pj converge to zero; the usual panmictic mutation-selection diffusion is obtained for Pj, with the selection intensities averaged with respect to the stationary distribution of M. In both models, Ne = NT and all effects of population subdivision disappear in the limit if, and only if, migration does not alter the subpopulation numbers. PMID:7365330

  8. Development of paradigms for the dynamics of structured populations

    SciTech Connect

    Not Available

    1994-10-01

    This is a technical progress report on the dynamics of predator-prey systems in a patchy environment. A new phenomenon that might contribute to outbreaks in systems of discrete patches has been determined using a discrete time model with both spatial and age structure. A model for a single species in a patchy environment with migration, local population growth and disasters with in patches has been formulated and a brief description is included.

  9. Population structure and minimum core genome typing of Legionella pneumophila

    PubMed Central

    Qin, Tian; Zhang, Wen; Liu, Wenbin; Zhou, Haijian; Ren, Hongyu; Shao, Zhujun; Lan, Ruiting; Xu, Jianguo

    2016-01-01

    Legionella pneumophila is an important human pathogen causing Legionnaires’ disease. In this study, whole genome sequencing (WGS) was used to study the characteristics and population structure of L. pneumophila strains. We sequenced and compared 53 isolates of L. pneumophila covering different serogroups and sequence-based typing (SBT) types (STs). We found that 1,896 single-copy orthologous genes were shared by all isolates and were defined as the minimum core genome (MCG) of L. pneumophila. A total of 323,224 single-nucleotide polymorphisms (SNPs) were identified among the 53 strains. After excluding 314,059 SNPs which were likely to be results of recombination, the remaining 9,165 SNPs were referred to as MCG SNPs. Population Structure analysis based on MCG divided the 53 L. pneumophila into nine MCG groups. The within-group distances were much smaller than the between-group distances, indicating considerable divergence between MCG groups. MCG groups were also supplied by phylogenetic analysis and may be considered as robust taxonomic units within L. pneumophila. Among the nine MCG groups, eight showed high intracellular growth ability while one showed low intracellular growth ability. Furthermore, MCG typing also showed high resolution in subtyping ST1 strains. The results obtained in this study provided significant insights into the evolution, population structure and pathogenicity of L. pneumophila. PMID:26888563

  10. Population structure and minimum core genome typing of Legionella pneumophila.

    PubMed

    Qin, Tian; Zhang, Wen; Liu, Wenbin; Zhou, Haijian; Ren, Hongyu; Shao, Zhujun; Lan, Ruiting; Xu, Jianguo

    2016-01-01

    Legionella pneumophila is an important human pathogen causing Legionnaires' disease. In this study, whole genome sequencing (WGS) was used to study the characteristics and population structure of L. pneumophila strains. We sequenced and compared 53 isolates of L. pneumophila covering different serogroups and sequence-based typing (SBT) types (STs). We found that 1,896 single-copy orthologous genes were shared by all isolates and were defined as the minimum core genome (MCG) of L. pneumophila. A total of 323,224 single-nucleotide polymorphisms (SNPs) were identified among the 53 strains. After excluding 314,059 SNPs which were likely to be results of recombination, the remaining 9,165 SNPs were referred to as MCG SNPs. Population Structure analysis based on MCG divided the 53 L. pneumophila into nine MCG groups. The within-group distances were much smaller than the between-group distances, indicating considerable divergence between MCG groups. MCG groups were also supplied by phylogenetic analysis and may be considered as robust taxonomic units within L. pneumophila. Among the nine MCG groups, eight showed high intracellular growth ability while one showed low intracellular growth ability. Furthermore, MCG typing also showed high resolution in subtyping ST1 strains. The results obtained in this study provided significant insights into the evolution, population structure and pathogenicity of L. pneumophila. PMID:26888563

  11. Density but not climate affects the population growth rate of guanacos ( Lama guanicoe) (Artiodactyla, Camelidae).

    PubMed

    Zubillaga, María; Skewes, Oscar; Soto, Nicolás; Rabinovich, Jorge E

    2013-01-01

    We analyzed the effects of population density and climatic variables on the rate of population growth in the guanaco ( Lama guanicoe), a wild camelid species in South America. We used a time series of 36 years (1977-2012) of population sampling in Tierra del Fuego, Chile. Individuals were grouped in three age-classes: newborns, juveniles, and adults; for each year a female population transition matrix was constructed, and the population growth rate (λ) was estimated for each year as the matrix highest positive eigenvalue. We applied a regression analysis with finite population growth rate (λ) as dependent variable, and total guanaco population, sheep population, annual mean precipitation, and winter mean temperature as independent variables, with and without time lags. The effect of guanaco population size was statistically significant, but the effects of the sheep population and the climatic variables on guanaco population growth rate were not statistically significant. PMID:25187878

  12. Density but not climate affects the population growth rate of guanacos ( Lama guanicoe) (Artiodactyla, Camelidae)

    PubMed Central

    Zubillaga, María; Skewes, Oscar; Soto, Nicolás; Rabinovich, Jorge E

    2014-01-01

    We analyzed the effects of population density and climatic variables on the rate of population growth in the guanaco ( Lama guanicoe), a wild camelid species in South America. We used a time series of 36 years (1977-2012) of population sampling in Tierra del Fuego, Chile. Individuals were grouped in three age-classes: newborns, juveniles, and adults; for each year a female population transition matrix was constructed, and the population growth rate (λ) was estimated for each year as the matrix highest positive eigenvalue. We applied a regression analysis with finite population growth rate (λ) as dependent variable, and total guanaco population, sheep population, annual mean precipitation, and winter mean temperature as independent variables, with and without time lags. The effect of guanaco population size was statistically significant, but the effects of the sheep population and the climatic variables on guanaco population growth rate were not statistically significant. PMID:25187878

  13. Use of epidemiological data and direct bioassay for prioritization of affected populations in a large-scale radiation emergency.

    PubMed

    Miller, Charles W; Ansari, Armin; Martin, Colleen; Chang, Art; Buzzell, Jennifer; Whitcomb, Robert C

    2011-08-01

    Following a radiation emergency, evacuated, sheltered or other members of the public would require monitoring for external and/or internal contamination and, if indicated, decontamination. In addition, the potentially-impacted population would be identified for biodosimetry/bioassay or needed medical treatment (chelation therapy, cytokine treatment, etc.) and prioritized for follow-up. Expeditious implementation of these activities presents many challenges, especially when a large population is affected. Furthermore, experience from previous radiation incidents has demonstrated that the number of people seeking monitoring for radioactive contamination (both external and internal) could be much higher than the actual number of contaminated individuals. In the United States, the Department of Health and Human Services is the lead agency to coordinate federal support for population monitoring activities. Population monitoring includes (1) monitoring people for external contamination; (2) monitoring people for internal contamination; (3) population decontamination; (4) collecting epidemiologic data regarding potentially exposed and/or contaminated individuals to prioritize the affected population for limited medical resources; (5) administering available pharmaceuticals for internal decontamination as deemed necessary by appropriate health officials; (6) performing dose reconstruction; and (7) establishing a registry to conduct long-term monitoring of this population for potential long-term health effects. This paper will focus on screening for internal contamination and will describe the use of early epidemiologic data as well as direct bioassay techniques to rapidly identify and prioritize the affected population for further analysis and medical attention. PMID:21709510

  14. Population genetic structure of the prairie dog flea and plague vector, Oropsylla hirsuta.

    PubMed

    Brinkerhoff, R Jory; Martin, Andrew P; Jones, Ryan T; Collinge, Sharon K

    2011-01-01

    Oropsylla hirsuta is the primary flea of the black-tailed prairie dog and is a vector of the plague bacterium, Yersinia pestis. We examined the population genetic structure of O. hirsuta fleas collected from 11 prairie dog colonies, 7 of which had experienced a plague-associated die-off in 1994. In a sample of 332 O. hirsuta collected from 226 host individuals, we detected 24 unique haplotype sequences in a 480 nucleotide segment of the cytochrome oxidase II gene. We found significant overall population structure but we did not detect a signal of isolation by distance, suggesting that O. hirsuta may be able to disperse relatively quickly at the scale of this study. All 7 colonies that were recently decimated by plague showed signs of recent population expansion, whereas 3 of the 4 plague-negative colonies showed haplotype patterns consistent with stable populations. These results suggest that O. hirsuta populations are affected by plague-induced prairie dog die-offs and that flea dispersal among prairie dog colonies may not be dependent exclusively on dispersal of prairie dogs. Re-colonization following plague events from plague-free refugia may allow for rapid flea population expansion following plague epizootics. PMID:20696095

  15. Diversity and population structure of a dominant deciduous tree based on morphological and genetic data.

    PubMed

    Zhang, Qin-di; Jia, Rui-Zhi; Meng, Chao; Ti, Chao-Wen; Wang, Yi-Ling

    2015-01-01

    Knowledge of the genetic diversity and structure of tree species across their geographic ranges is essential for sustainable use and management of forest ecosystems. Acer grosseri Pax., an economically and ecologically important maple species, is mainly distributed in North China. In this study, the genetic diversity and population differentiation of 24 natural populations of this species were evaluated using sequence-related amplified polymorphism markers and morphological characters. The results show that highly significant differences occurred in 32 morphological traits. The coefficient of variation of 34 characters was 18.19 %. Principal component analysis indicated that 18 of 34 traits explained 60.20 % of the total variance. The phenotypic differentiation coefficient (VST) was 36.06 % for all morphological traits. The Shannon-Wiener index of 34 morphological characters was 6.09, while at the population level, it was 1.77. The percentage of polymorphic bands of all studied A. grosseri populations was 82.14 %. Nei's gene diversity (He) and Shannon's information index (I) were 0.35 and 0.50, respectively. Less genetic differentiation was detected among the natural populations (GST = 0.20, ΦST = 0.10). Twenty-four populations of A. grosseri formed two main clusters, which is consistent with morphological cluster analysis. Principal coordinates analysis and STRUCTURE analysis supported the UPGMA-cluster dendrogram. There was no significant correlation between genetic and geographical distances among populations. Both molecular and morphological data suggested that A. grosseri is rich in genetic diversity. The high level of genetic variation within populations could be affected by the biological characters, mating system and lifespan of A. grosseri, whereas the lower genetic diversity among populations could be caused by effective gene exchange, selective pressure from environmental heterogeneity and the species' geographical range. PMID:26311734

  16. Diversity and population structure of a dominant deciduous tree based on morphological and genetic data

    PubMed Central

    Zhang, Qin-di; Jia, Rui-Zhi; Meng, Chao; Ti, Chao-Wen; Wang, Yi-Ling

    2015-01-01

    Knowledge of the genetic diversity and structure of tree species across their geographic ranges is essential for sustainable use and management of forest ecosystems. Acer grosseri Pax., an economically and ecologically important maple species, is mainly distributed in North China. In this study, the genetic diversity and population differentiation of 24 natural populations of this species were evaluated using sequence-related amplified polymorphism markers and morphological characters. The results show that highly significant differences occurred in 32 morphological traits. The coefficient of variation of 34 characters was 18.19 %. Principal component analysis indicated that 18 of 34 traits explained 60.20 % of the total variance. The phenotypic differentiation coefficient (VST) was 36.06 % for all morphological traits. The Shannon–Wiener index of 34 morphological characters was 6.09, while at the population level, it was 1.77. The percentage of polymorphic bands of all studied A. grosseri populations was 82.14 %. Nei's gene diversity (He) and Shannon's information index (I) were 0.35 and 0.50, respectively. Less genetic differentiation was detected among the natural populations (GST = 0.20, ΦST = 0.10). Twenty-four populations of A. grosseri formed two main clusters, which is consistent with morphological cluster analysis. Principal coordinates analysis and STRUCTURE analysis supported the UPGMA-cluster dendrogram. There was no significant correlation between genetic and geographical distances among populations. Both molecular and morphological data suggested that A. grosseri is rich in genetic diversity. The high level of genetic variation within populations could be affected by the biological characters, mating system and lifespan of A. grosseri, whereas the lower genetic diversity among populations could be caused by effective gene exchange, selective pressure from environmental heterogeneity and the species' geographical range. PMID:26311734

  17. Impacts of breeder loss on social structure, reproduction and population growth in a social canid.

    PubMed

    Borg, Bridget L; Brainerd, Scott M; Meier, Thomas J; Prugh, Laura R

    2015-01-01

    The importance of individuals to the dynamics of populations may depend on reproductive status, especially for species with complex social structure. Loss of reproductive individuals in socially complex species could disproportionately affect population dynamics by destabilizing social structure and reducing population growth. Alternatively, compensatory mechanisms such as rapid replacement of breeders may result in little disruption. The impact of breeder loss on the population dynamics of social species remains poorly understood. We evaluated the effect of breeder loss on social stability, recruitment and population growth of grey wolves (Canis lupus) in Denali National Park and Preserve, Alaska using a 26-year dataset of 387 radiocollared wolves. Harvest of breeding wolves is a highly contentious conservation and management issue worldwide, with unknown population-level consequences. Breeder loss preceded 77% of cases (n = 53) of pack dissolution from 1986 to 2012. Packs were more likely to dissolve if a female or both breeders were lost and pack size was small. Harvest of breeders increased the probability of pack dissolution, likely because the timing of harvest coincided with the breeding season of wolves. Rates of denning and successful recruitment were uniformly high for packs that did not experience breeder loss; however, packs that lost breeders exhibited lower denning and recruitment rates. Breeder mortality and pack dissolution had no significant effects on immediate or longer term population dynamics. Our results indicate the importance of breeding individuals is context dependent. The impact of breeder loss on social group persistence, reproduction and population growth may be greatest when average group sizes are small and mortality occurs during the breeding season. This study highlights the importance of reproductive individuals in maintaining group cohesion in social species, but at the population level socially complex species may be resilient

  18. The influence of childhood abuse, adult life events, and affective temperaments on the well-being of the general, nonclinical adult population

    PubMed Central

    Kanai, Yoshiaki; Takaesu, Yoshikazu; Nakai, Yukiei; Ichiki, Masahiko; Sato, Mitsuhiko; Matsumoto, Yasunori; Ishikawa, Jun; Ono, Yasuyuki; Murakoshi, Akiko; Tanabe, Hajime; Kusumi, Ichiro; Inoue, Takeshi

    2016-01-01

    Background Previous studies have shown the effects of childhood abuse, life events, and temperaments on well-being (positive affect) and ill-being (negative affect). We hypothesized that childhood abuse, affective temperaments, and adult life events interact with one another and influence positive and negative affects in the general adult population and tested this hypothesis using structural equation modeling. Methods A total of 415 participants from the general, nonclinical adult population were studied using the following self-administered questionnaires: the Subjective Well-Being Inventory (SUBI); Life Experiences Survey (LES); Temperament Evaluation of the Memphis, Pisa, Paris, and San Diego Auto-questionnaire (TEMPS-A); and the Child Abuse and Trauma Scale (CATS). The data were analyzed with single and multiple regression analyses and structural equation modeling (Mplus). Results Childhood abuse indirectly predicted the worsening of positive and negative affects through cyclothymic, anxious, and irritable temperaments as measured by the TEMPS-A in the structural equation model. The cyclothymic, anxious, and irritable temperaments directly worsened the positive and negative affects and the negative appraisal of life events that occurred during the past year, while the hyperthymic temperament had the opposite effects. Limitations The subjects of this study were nonclinical volunteers. The findings might not be generalizable to psychiatric patients. Conclusion This study demonstrated that childhood abuse, particularly neglect, indirectly worsened the well-being of individuals through cyclothymic, anxious, and irritable affective temperaments. An important “mediator” role of affective temperaments in the effect of childhood abuse on well-being was suggested. PMID:27110116

  19. Microsatellite variation in ringed seals (Phoca hispida): genetic structure and history of the Baltic Sea population.

    PubMed

    Palo, J U; Mäkinen, H S; Helle, E; Stenman, O; Väinölä, R

    2001-05-01

    Genetic variability and population structure of Baltic ringed seals and an Arctic reference population were assessed using eight microsatellite loci. Ringed seals colonized the Baltic Sea basin soon after deglaciation 11 500 years ago and are supposed to have remained largely isolated from the main Arctic stock since then, approximately 1000 generations. In the 1900s the Baltic population declined rapidly, and is now confined to three distinct breeding areas, with N < 6000 seals altogether. Microsatellite heterozygosity in ringed seals was higher than that in the closely related, boreal harbour seal and grey seal, for which the markers were initially developed. This is plausibly attributed to an overall greater population (species) size of ringed seals during the Quaternary. Allele frequency differentiation between the Baltic and Arctic ringed seals, conventionally treated as different subspecies, was weak. Assuming complete isolation, the divergence (FST=0.023) would imply a notably high postglacial effective population size, approximately 20 000 for the Baltic population. The isolation assumption however, seems unrealistic in the light of the data: a coalescent-based simulation approach to the likelihood of alternative demographic histories clearly favoured a scenario with recurrent gene flow to the Baltic, over one of complete isolation (drift only). Within the Baltic Sea, no differentiation was found between the Gulf of Finland and the Gulf of Bothnia breeding areas; the recent population decline and split have not yet affected the inbreeding levels of the disjunct breeding stocks. PMID:11554977

  20. Cannibals in space: the coevolution of cannibalism and dispersal in spatially structured populations.

    PubMed

    Rudolf, Volker H W; Kamo, Masashi; Boots, Mike

    2010-05-01

    The propensity for cannibalism varies considerably both within and between species. Currently we have little understanding of both the causes of this variation and its evolutionary consequences for other life-history traits. We examine how different levels of spatial structure affect the evolution of cannibalism and how cannibalism in turn drives the evolution of dispersal. Using pair approximations and simulations, we show that cannibalism can easily evolve in spatially structured populations as long as some dispersal exists. Furthermore, for a wide range of intermediate levels of spatial structure, we find the possibility of evolutionary branching leading to polymorphism in cannibalism. We also show that cannibalism itself can have important evolutionary consequences and select for increased dispersal rates, thus helping to determine the spatial structure of populations. The coevolution of cannibalism and dispersal results in the evolution of various alternative life-history strategies with different dispersal and cannibalism regimes. Which strategy evolves depends on the environmental conditions that determine initial cannibalism rates. Our results therefore suggest that differences in spatial structure could explain variation in the propensity for cannibalism and cannibalistic polyphenism. Furthermore, results emphasize that cannibalism can drive the evolution of other life-history traits and determine the spatial structure of natural populations. PMID:20302421

  1. Evolutionary dynamics of collective action in spatially structured populations.

    PubMed

    Peña, Jorge; Nöldeke, Georg; Lehmann, Laurent

    2015-10-01

    Many models proposed to study the evolution of collective action rely on a formalism that represents social interactions as n-player games between individuals adopting discrete actions such as cooperate and defect. Despite the importance of spatial structure in biological collective action, the analysis of n-player games games in spatially structured populations has so far proved elusive. We address this problem by considering mixed strategies and by integrating discrete-action n-player games into the direct fitness approach of social evolution theory. This allows to conveniently identify convergence stable strategies and to capture the effect of population structure by a single structure coefficient, namely, the pairwise (scaled) relatedness among interacting individuals. As an application, we use our mathematical framework to investigate collective action problems associated with the provision of three different kinds of collective goods, paradigmatic of a vast array of helping traits in nature: "public goods" (both providers and shirkers can use the good, e.g., alarm calls), "club goods" (only providers can use the good, e.g., participation in collective hunting), and "charity goods" (only shirkers can use the good, e.g., altruistic sacrifice). We show that relatedness promotes the evolution of collective action in different ways depending on the kind of collective good and its economies of scale. Our findings highlight the importance of explicitly accounting for relatedness, the kind of collective good, and the economies of scale in theoretical and empirical studies of the evolution of collective action. PMID:26151588

  2. Recombination affects accumulation of damaging and disease-associated mutations in human populations.

    PubMed

    Hussin, Julie G; Hodgkinson, Alan; Idaghdour, Youssef; Grenier, Jean-Christophe; Goulet, Jean-Philippe; Gbeha, Elias; Hip-Ki, Elodie; Awadalla, Philip

    2015-04-01

    Many decades of theory have demonstrated that, in non-recombining systems, slightly deleterious mutations accumulate non-reversibly, potentially driving the extinction of many asexual species. Non-recombining chromosomes in sexual organisms are thought to have degenerated in a similar fashion; however, it is not clear the extent to which damaging mutations accumulate along chromosomes with highly variable rates of crossing over. Using high-coverage sequencing data from over 1,400 individuals in the 1000 Genomes and CARTaGENE projects, we show that recombination rate modulates the distribution of putatively deleterious variants across the entire human genome. Exons in regions of low recombination are significantly enriched for deleterious and disease-associated variants, a signature varying in strength across worldwide human populations with different demographic histories. Regions with low recombination rates are enriched for highly conserved genes with essential cellular functions and show an excess of mutations with demonstrated effects on health, a phenomenon likely affecting disease susceptibility in humans. PMID:25685891

  3. The burden of acute respiratory infections in crisis-affected populations: a systematic review

    PubMed Central

    2010-01-01

    Crises due to armed conflict, forced displacement and natural disasters result in excess morbidity and mortality due to infectious diseases. Historically, acute respiratory infections (ARIs) have received relatively little attention in the humanitarian sector. We performed a systematic review to generate evidence on the burden of ARI in crises, and inform prioritisation of relief interventions. We identified 36 studies published since 1980 reporting data on the burden (incidence, prevalence, proportional morbidity or mortality, case-fatality, attributable mortality rate) of ARI, as defined by the International Classification of Diseases, version 10 and as diagnosed by a clinician, in populations who at the time of the study were affected by natural disasters, armed conflict, forced displacement, and nutritional emergencies. We described studies and stratified data by age group, but did not do pooled analyses due to heterogeneity in case definitions. The published evidence, mainly from refugee camps and surveillance or patient record review studies, suggests very high excess morbidity and mortality (20-35% proportional mortality) and case-fatality (up to 30-35%) due to ARI. However, ARI disease burden comparisons with non-crisis settings are difficult because of non-comparability of data. Better epidemiological studies with clearer case definitions are needed to provide the evidence base for priority setting and programme impact assessments. Humanitarian agencies should include ARI prevention and control among infants, children and adults as priority activities in crises. Improved data collection, case management and vaccine strategies will help to reduce disease burden. PMID:20181220

  4. Evolution of complex dynamics in spatially structured populations

    PubMed Central

    Johst, K.; Doebeli, M.; Brandl, R.

    1999-01-01

    Dynamics of populations depend on demographic parameters which may change during evolution. In simple ecological models given by one-dimensional difference equations, the evolution of demographic parameters generally leads to equilibrium population dynamics. Here we show that this is not true in spatially structured ecological models. Using a multi-patch metapopulation model, we study the evolutionary dynamics of phenotypes that differ both in their response to local crowding, i.e. in their competitive behaviour within a habitat, and in their rate of dispersal between habitats. Our simulation results show that evolution can favour phenotypes that have the intrinsic potential for very complex dynamics provided that the environment is spatially structured and temporally variable. These phenotypes owe their evolutionary persistence to their large dispersal rates. They typically coexist with phenotypes that have low dispersal rates and that exhibit equilibrium dynamics when alone. This coexistence is brought about through the phenomenon of evolutionary branching, during which an initially uniform population splits into the two phenotypic classes.

  5. An analysis of the basic population structure of Shanghai Municipality.

    PubMed

    Shen, A

    1984-01-01

    This paper analyzes the changes in Shanghai's population structure over the last 30 years in the 4 aspects of age structure, sex composition, urban and rural composition, and labor and employment structure. In 1953 those of the 0 to 6 age group accounted for 21.2% of the total population; in 1957 the group represented a proportion of 24.6%. Since the 1960s, especially after the 1970s, the family planning program gradually took effect, and the birthrate of the entire municipality fell drastically. The number of school-age children in 1979 was 1 1/2 times more than the same age group in 1953; there should be no worry that population control may result in a shortage of manpower to meet the needs of the work force and the armed forces either toward the end of this century or at the beginning of the next. The economy in China is underdeveloped, production and technology remain at a low level, average wages for employees are low, and for a long time the low living standard of the people has shown little sign of improvement. The problem is mainly manifest in the following areas: 1) distribution of the work force in heavy and light industries is not sufficiently rational, 2) the distribution of the work force between captial construction and transport and communications on the 1 hand and the national economy on the other is out of proportion, 3) the distribution of the work force between commerce, service trades, and public utilities on the 1 hand and the national economy on the other is disproportionated, and 4) the distribution of the work force between undertakings of culture, education, scientific research, health, and medical care on the 1 hand and economic construction on the other is improper. How to control population growth and adjust parts of the population structure to suit the national economic development poses a problem that calls for further in-depth study and analysis to resolve it step by step. PMID:12314770

  6. Efficient control of population structure in model organism association mapping.

    PubMed

    Kang, Hyun Min; Zaitlen, Noah A; Wade, Claire M; Kirby, Andrew; Heckerman, David; Daly, Mark J; Eskin, Eleazar

    2008-03-01

    Genomewide association mapping in model organisms such as inbred mouse strains is a promising approach for the identification of risk factors related to human diseases. However, genetic association studies in inbred model organisms are confronted by the problem of complex population structure among strains. This induces inflated false positive rates, which cannot be corrected using standard approaches applied in human association studies such as genomic control or structured association. Recent studies demonstrated that mixed models successfully correct for the genetic relatedness in association mapping in maize and Arabidopsis panel data sets. However, the currently available mixed-model methods suffer from computational inefficiency. In this article, we propose a new method, efficient mixed-model association (EMMA), which corrects for population structure and genetic relatedness in model organism association mapping. Our method takes advantage of the specific nature of the optimization problem in applying mixed models for association mapping, which allows us to substantially increase the computational speed and reliability of the results. We applied EMMA to in silico whole-genome association mapping of inbred mouse strains involving hundreds of thousands of SNPs, in addition to Arabidopsis and maize data sets. We also performed extensive simulation studies to estimate the statistical power of EMMA under various SNP effects, varying degrees of population structure, and differing numbers of multiple measurements per strain. Despite the limited power of inbred mouse association mapping due to the limited number of available inbred strains, we are able to identify significantly associated SNPs, which fall into known QTL or genes identified through previous studies while avoiding an inflation of false positives. An R package implementation and webserver of our EMMA method are publicly available. PMID:18385116

  7. Both population size and patch quality affect local extinctions and colonizations.

    PubMed

    Franzén, Markus; Nilsson, Sven G

    2010-01-01

    Currently, the habitat of many species is fragmented, resulting in small local populations with individuals occasionally dispersing between the remaining habitat patches. In a solitary bee metapopulation, extinction probability was related to both local bee population sizes and pollen resources measured as host plant population size. Patch size, on the other hand, had no additional predictive power. The turnover rate of local bee populations in 63 habitat patches over 4 years was high, with 72 extinction events and 31 colonization events, but the pollen plant population was stable with no extinctions or colonizations. Both pollen resources and bee populations had strong and independent effects on extinction probability, but connectivity was not of importance. Colonizations occurred more frequently within larger host plant populations. For metapopulation survival of the bee, large pollen plant populations are essential, independent of current bee population size. PMID:19793747

  8. Ecological connectivity assessment in a strongly structured fire salamander (Salamandra salamandra) population

    PubMed Central

    Bani, Luciano; Pisa, Giulia; Luppi, Massimiliano; Spilotros, Giulia; Fabbri, Elena; Randi, Ettore; Orioli, Valerio

    2015-01-01

    Small populations are more prone to extinction if the dispersal among them is not adequately maintained by ecological connections. The degree of isolation between populations could be evaluated measuring their genetic distance, which depends on the respective geographic (isolation by distance, IBD) and/or ecological (isolation by resistance, IBR) distances. The aim of this study was to assess the ecological connectivity of fire salamander Salamandra salamandra populations by means of a landscape genetic approach. The species lives in broad-leaved forest ecosystems and is particularly affected by fragmentation due to its habitat selectivity and low dispersal capability. We analyzed 477 biological samples collected in 47 sampling locations (SLs) in the mainly continuous populations of the Prealpine and Eastern foothill lowland (PEF) and 10 SLs in the fragmented populations of the Western foothill (WF) lowland of Lombardy (northern Italy). Pairwise genetic distances (Chord distance, DC) were estimated from allele frequencies of 16 microsatellites loci. Ecological distances were calculated using one of the most promising methodology in landscape genetics studies, the circuit theory, applied to habitat suitability maps. We realized two habitat suitability models: one without barriers (EcoD) and a second one accounting for the possible barrier effect of main roads (EcoDb). Mantel tests between distance matrices highlighted how the Log-DC in PEF populations was related to log-transformed geographic distance (confirming a prevalence of IBD), while it was explained by the Log-EcoD, and particularly by the Log-EcoDb, in WF populations, even when accounting for the confounding effect of geographic distance (highlighting a prevalence of IBR). Moreover, we also demonstrated how considering the overall population, the effect of Euclidean or ecological distances on genetic distances acting at the level of a single group (PEF or WF populations) could not be detected, when

  9. Ecological connectivity assessment in a strongly structured fire salamander (Salamandra salamandra) population.

    PubMed

    Bani, Luciano; Pisa, Giulia; Luppi, Massimiliano; Spilotros, Giulia; Fabbri, Elena; Randi, Ettore; Orioli, Valerio

    2015-08-01

    Small populations are more prone to extinction if the dispersal among them is not adequately maintained by ecological connections. The degree of isolation between populations could be evaluated measuring their genetic distance, which depends on the respective geographic (isolation by distance, IBD) and/or ecological (isolation by resistance, IBR) distances. The aim of this study was to assess the ecological connectivity of fire salamander Salamandra salamandra populations by means of a landscape genetic approach. The species lives in broad-leaved forest ecosystems and is particularly affected by fragmentation due to its habitat selectivity and low dispersal capability. We analyzed 477 biological samples collected in 47 sampling locations (SLs) in the mainly continuous populations of the Prealpine and Eastern foothill lowland (PEF) and 10 SLs in the fragmented populations of the Western foothill (WF) lowland of Lombardy (northern Italy). Pairwise genetic distances (Chord distance, DC) were estimated from allele frequencies of 16 microsatellites loci. Ecological distances were calculated using one of the most promising methodology in landscape genetics studies, the circuit theory, applied to habitat suitability maps. We realized two habitat suitability models: one without barriers (EcoD) and a second one accounting for the possible barrier effect of main roads (EcoDb). Mantel tests between distance matrices highlighted how the Log-DC in PEF populations was related to log-transformed geographic distance (confirming a prevalence of IBD), while it was explained by the Log-EcoD, and particularly by the Log-EcoDb, in WF populations, even when accounting for the confounding effect of geographic distance (highlighting a prevalence of IBR). Moreover, we also demonstrated how considering the overall population, the effect of Euclidean or ecological distances on genetic distances acting at the level of a single group (PEF or WF populations) could not be detected, when

  10. Time series analysis of fine particulate matter and asthma reliever dispensations in populations affected by forest fires

    PubMed Central

    2013-01-01

    Background Several studies have evaluated the association between forest fire smoke and acute exacerbations of respiratory diseases, but few have examined effects on pharmaceutical dispensations. We examine the associations between daily fine particulate matter (PM2.5) and pharmaceutical dispensations for salbutamol in forest fire-affected and non-fire-affected populations in British Columbia (BC), Canada. Methods We estimated PM2.5 exposure for populations in administrative health areas using measurements from central monitors. Remote sensing data on fires were used to classify the populations as fire-affected or non-fire-affected, and to identify extreme fire days. Daily counts of salbutamol dispensations between 2003 and 2010 were extracted from the BC PharmaNet database. We estimated rate ratios (RR) and 95% confidence intervals (CIs) for each population during all fire seasons and on extreme fire days, adjusted for temperature, humidity, and temporal trends. Overall effects for fire-affected and non-fire-affected populations were estimated via meta-regression. Results Fire season PM2.5 was positively associated with salbutamol dispensations in all fire-affected populations, with a meta-regression RR (95% CI) of 1.06 (1.04-1.07) for a 10 ug/m3 increase. Fire season PM2.5 was not significantly associated with salbutamol dispensations in non-fire-affected populations, with a meta-regression RR of 1.00 (0.98-1.01). On extreme fire days PM2.5 was positively associated with salbutamol dispensations in both population types, with a global meta-regression RR of 1.07 (1.04 - 1.09). Conclusions Salbutamol dispensations were clearly associated with fire-related PM2.5. Significant associations were observed in smaller populations (range: 8,000 to 170,000 persons, median: 26,000) than those reported previously, suggesting that salbutamol dispensations may be a valuable outcome for public health surveillance during fire events. PMID:23356966

  11. Evolutionary dynamics of group interactions on structured populations: a review

    PubMed Central

    Perc, Matjaž; Gómez-Gardeñes, Jesús; Szolnoki, Attila; Floría, Luis M.; Moreno, Yamir

    2013-01-01

    Interactions among living organisms, from bacteria colonies to human societies, are inherently more complex than interactions among particles and non-living matter. Group interactions are a particularly important and widespread class, representative of which is the public goods game. In addition, methods of statistical physics have proved valuable for studying pattern formation, equilibrium selection and self-organization in evolutionary games. Here, we review recent advances in the study of evolutionary dynamics of group interactions on top of structured populations, including lattices, complex networks and coevolutionary models. We also compare these results with those obtained on well-mixed populations. The review particularly highlights that the study of the dynamics of group interactions, like several other important equilibrium and non-equilibrium dynamical processes in biological, economical and social sciences, benefits from the synergy between statistical physics, network science and evolutionary game theory. PMID:23303223

  12. Population structure of humpback whales in the western and central South Pacific Ocean as determined by vocal exchange among populations.

    PubMed

    Garland, Ellen C; Goldizen, Anne W; Lilley, Matthew S; Rekdahl, Melinda L; Garrigue, Claire; Constantine, Rochelle; Hauser, Nan Daeschler; Poole, M Michael; Robbins, Jooke; Noad, Michael J

    2015-08-01

    For cetaceans, population structure is traditionally determined by molecular genetics or photographically identified individuals. Acoustic data, however, has provided information on movement and population structure with less effort and cost than traditional methods in an array of taxa. Male humpback whales (Megaptera novaeangliae) produce a continually evolving vocal sexual display, or song, that is similar among all males in a population. The rapid cultural transmission (the transfer of information or behavior between conspecifics through social learning) of different versions of this display between distinct but interconnected populations in the western and central South Pacific region presents a unique way to investigate population structure based on the movement dynamics of a song (acoustic) display. Using 11 years of data, we investigated an acoustically based population structure for the region by comparing stereotyped song sequences among populations and years. We used the Levenshtein distance technique to group previously defined populations into (vocally based) clusters based on the overall similarity of their song display in space and time. We identified the following distinct vocal clusters: western cluster, 1 population off eastern Australia; central cluster, populations around New Caledonia, Tonga, and American Samoa; and eastern region, either a single cluster or 2 clusters, one around the Cook Islands and the other off French Polynesia. These results are consistent with the hypothesis that each breeding aggregation represents a distinct population (each occupied a single, terminal node) in a metapopulation, similar to the current understanding of population structure based on genetic and photo-identification studies. However, the central vocal cluster had higher levels of song-sharing among populations than the other clusters, indicating that levels of vocal connectivity varied within the region. Our results demonstrate the utility and value of

  13. Diversification and Population Structure in Common Beans (Phaseolus vulgaris L.)

    PubMed Central

    Blair, Matthew W.; Soler, Alvaro; Cortés, Andrés J.

    2012-01-01

    Wild accessions of crops and landraces are valuable genetic resources for plant breeding and for conserving alleles and gene combinations in planta. The primary genepool of cultivated common beans includes wild accessions of Phaseolus vulgaris. These are of the same species as the domesticates and therefore are easily crossable with cultivated accessions. Molecular marker assessment of wild beans and landraces is important for the proper utilization and conservation of these important genetic resources. The goal of this research was to evaluate a collection of wild beans with fluorescent microsatellite or simple sequence repeat markers and to determine the population structure in combination with cultivated beans of all known races. Marker diversity in terms of average number of alleles per marker was high (13) for the combination of 36 markers and 104 wild genotypes that was similar to the average of 14 alleles per marker found for the 606 cultivated genotypes. Diversity in wild beans appears to be somewhat higher than in cultivated beans on a per genotype basis. Five populations or genepools were identified in structure analysis of the wild beans corresponding to segments of the geographical range, including Mesoamerican (Mexican), Guatemalan, Colombian, Ecuadorian-northern Peruvian and Andean (Argentina, Bolivia and Southern Peru). The combined analysis of wild and cultivated accessions showed that the first and last of these genepools were related to the cultivated genepools of the same names and the penultimate was found to be distinct but not ancestral to the others. The Guatemalan genepool was very novel and perhaps related to cultivars of race Guatemala, while the Colombian population was also distinct. Results suggest geographic isolation, founder effects or natural selection could have created the different semi-discrete populations of wild beans and that multiple domestications and introgression were involved in creating the diversity of cultivated beans

  14. Age and Gender Affect the Composition of Fungal Population of the Human Gastrointestinal Tract.

    PubMed

    Strati, Francesco; Di Paola, Monica; Stefanini, Irene; Albanese, Davide; Rizzetto, Lisa; Lionetti, Paolo; Calabrò, Antonio; Jousson, Olivier; Donati, Claudio; Cavalieri, Duccio; De Filippo, Carlotta

    2016-01-01

    The fungal component of the human gut microbiota has been neglected for long time due to the low relative abundance of fungi with respect to bacteria, and only recently few reports have explored its composition and dynamics in health or disease. The application of metagenomics methods to the full understanding of fungal communities is currently limited by the under representation of fungal DNA with respect to the bacterial one, as well as by the limited ability to discriminate passengers from colonizers. Here, we investigated the gut mycobiota of a cohort of healthy subjects in order to reduce the gap of knowledge concerning fungal intestinal communities in the healthy status further screening for phenotypical traits that could reflect fungi adaptation to the host. We studied the fecal fungal populations of 111 healthy subjects by means of cultivation on fungal selective media and by amplicon-based ITS1 metagenomics analysis on a subset of 57 individuals. We then characterized the isolated fungi for their tolerance to gastrointestinal (GI) tract-like challenges and their susceptibility to antifungals. A total of 34 different fungal species were isolated showing several phenotypic characteristics associated with intestinal environment such as tolerance to body temperature (37°C), to acidic and oxidative stress, and to bile salts exposure. We found a high frequency of azoles resistance in fungal isolates, with potential and significant clinical impact. Analyses of fungal communities revealed that the human gut mycobiota differs in function of individuals' life stage in a gender-related fashion. The combination of metagenomics and fungal cultivation allowed an in-depth understanding of the fungal intestinal community structure associated to the healthy status and the commensalism-related traits of isolated fungi. We further discussed comparatively the results of sequencing and cultivation to critically evaluate the application of metagenomics-based approaches to

  15. Age and Gender Affect the Composition of Fungal Population of the Human Gastrointestinal Tract

    PubMed Central

    Strati, Francesco; Di Paola, Monica; Stefanini, Irene; Albanese, Davide; Rizzetto, Lisa; Lionetti, Paolo; Calabrò, Antonio; Jousson, Olivier; Donati, Claudio; Cavalieri, Duccio; De Filippo, Carlotta

    2016-01-01

    The fungal component of the human gut microbiota has been neglected for long time due to the low relative abundance of fungi with respect to bacteria, and only recently few reports have explored its composition and dynamics in health or disease. The application of metagenomics methods to the full understanding of fungal communities is currently limited by the under representation of fungal DNA with respect to the bacterial one, as well as by the limited ability to discriminate passengers from colonizers. Here, we investigated the gut mycobiota of a cohort of healthy subjects in order to reduce the gap of knowledge concerning fungal intestinal communities in the healthy status further screening for phenotypical traits that could reflect fungi adaptation to the host. We studied the fecal fungal populations of 111 healthy subjects by means of cultivation on fungal selective media and by amplicon-based ITS1 metagenomics analysis on a subset of 57 individuals. We then characterized the isolated fungi for their tolerance to gastrointestinal (GI) tract-like challenges and their susceptibility to antifungals. A total of 34 different fungal species were isolated showing several phenotypic characteristics associated with intestinal environment such as tolerance to body temperature (37°C), to acidic and oxidative stress, and to bile salts exposure. We found a high frequency of azoles resistance in fungal isolates, with potential and significant clinical impact. Analyses of fungal communities revealed that the human gut mycobiota differs in function of individuals' life stage in a gender-related fashion. The combination of metagenomics and fungal cultivation allowed an in-depth understanding of the fungal intestinal community structure associated to the healthy status and the commensalism-related traits of isolated fungi. We further discussed comparatively the results of sequencing and cultivation to critically evaluate the application of metagenomics-based approaches to

  16. Complex Transition to Cooperative Behavior in a Structured Population Model

    PubMed Central

    Miranda, Luciano; de Souza, Adauto J. F.; Ferreira, Fernando F.; Campos, Paulo R. A.

    2012-01-01

    Cooperation plays an important role in the evolution of species and human societies. The understanding of the emergence and persistence of cooperation in those systems is a fascinating and fundamental question. Many mechanisms were extensively studied and proposed as supporting cooperation. The current work addresses the role of migration for the maintenance of cooperation in structured populations. This problem is investigated in an evolutionary perspective through the prisoner's dilemma game paradigm. It is found that migration and structure play an essential role in the evolution of the cooperative behavior. The possible outcomes of the model are extinction of the entire population, dominance of the cooperative strategy and coexistence between cooperators and defectors. The coexistence phase is obtained in the range of large migration rates. It is also verified the existence of a critical level of structuring beyond that cooperation is always likely. In resume, we conclude that the increase in the number of demes as well as in the migration rate favor the fixation of the cooperative behavior. PMID:22761736

  17. Decompositions of Price's formula in an inhomogeneous population structure.

    PubMed

    Taylor, P

    2009-01-01

    The central tool for the study of allele frequency change due to selection is the remarkably simple but powerful formula of Price [Nature 227 (1970) 520]. Here, I provide what might be called a structural analysis of this formula. The formula essentially accumulates the average allele frequency change over many instances of a fitness-determining interaction, but there are different ways of organizing this average and these lead to quite different computational algorithms. I present three of these: an analysis by population state, an analysis by recipient and an analysis by actor. A comparison of these can lead to a heightened understanding of the different factors behind selective allele frequency change. In particular, I pay attention to the effects of structural inhomogeneity on reproductive value (RV) and emphasize that Price's formula measures RV-weighted allele frequency change. I examine in detail a simple example as a crucial way of cementing the different theoretical pathways. My aim was to produce a simple transparent presentation and therefore I work with a simple population structure and have omitted a number of technical details that are found elsewhere. PMID:19120820

  18. New Nuclear SNP Markers Unravel the Genetic Structure and Effective Population Size of Albacore Tuna (Thunnus alalunga)

    PubMed Central

    Laconcha, Urtzi; Iriondo, Mikel; Arrizabalaga, Haritz; Manzano, Carmen; Markaide, Pablo; Montes, Iratxe; Zarraonaindia, Iratxe; Velado, Igor; Bilbao, Eider; Goñi, Nicolas; Santiago, Josu; Domingo, Andrés; Karakulak, Saadet; Oray, Işık; Estonba, Andone

    2015-01-01

    In the present study we have investigated the population genetic structure of albacore (Thunnus alalunga, Bonnaterre 1788) and assessed the loss of genetic diversity, likely due to overfishing, of albacore population in the North Atlantic Ocean. For this purpose, 1,331 individuals from 26 worldwide locations were analyzed by genotyping 75 novel nuclear SNPs. Our results indicated the existence of four genetically homogeneous populations delimited within the Mediterranean Sea, the Atlantic Ocean, the Indian Ocean and the Pacific Ocean. Current definition of stocks allows the sustainable management of albacore since no stock includes more than one genetic entity. In addition, short- and long-term effective population sizes were estimated for the North Atlantic Ocean albacore population, and results showed no historical decline for this population. Therefore, the genetic diversity and, consequently, the adaptive potential of this population have not been significantly affected by overfishing. PMID:26090851

  19. New Nuclear SNP Markers Unravel the Genetic Structure and Effective Population Size of Albacore Tuna (Thunnus alalunga).

    PubMed

    Laconcha, Urtzi; Iriondo, Mikel; Arrizabalaga, Haritz; Manzano, Carmen; Markaide, Pablo; Montes, Iratxe; Zarraonaindia, Iratxe; Velado, Igor; Bilbao, Eider; Goñi, Nicolas; Santiago, Josu; Domingo, Andrés; Karakulak, Saadet; Oray, Işık; Estonba, Andone

    2015-01-01

    In the present study we have investigated the population genetic structure of albacore (Thunnus alalunga, Bonnaterre 1788) and assessed the loss of genetic diversity, likely due to overfishing, of albacore population in the North Atlantic Ocean. For this purpose, 1,331 individuals from 26 worldwide locations were analyzed by genotyping 75 novel nuclear SNPs. Our results indicated the existence of four genetically homogeneous populations delimited within the Mediterranean Sea, the Atlantic Ocean, the Indian Ocean and the Pacific Ocean. Current definition of stocks allows the sustainable management of albacore since no stock includes more than one genetic entity. In addition, short- and long-term effective population sizes were estimated for the North Atlantic Ocean albacore population, and results showed no historical decline for this population. Therefore, the genetic diversity and, consequently, the adaptive potential of this population have not been significantly affected by overfishing. PMID:26090851

  20. Age, phylogeography and population structure of the microendemic banded spring snail, Mexipyrgus churinceanus.

    PubMed

    Johnson, Steven G

    2005-07-01

    Recent theoretical and empirical studies of phylogeography and population structure indicate that many processes influence intraspecific evolutionary history. The present study represents the first examination of various forces influencing the spatial and temporal patterns of sequence variation in the freshwater Mexican banded spring snail, Mexipyrgus churinceanus. This snail occurs in one of the most critically endangered centres of freshwater endemism, the desert ecosystem of Cuatro Ciénegas. From cytochrome b mtDNA sequence variation, there is strong evidence of long-term isolation of three regions, suggesting that these regions represent evolutionarily distinct lineages. Molecular clock estimates of clade age indicate a time to most recent common ancestor of approximately 2.5 million years ago (Ma). The three regions differ considerably in the historical and demographic forces affecting population structure. The western populations have extremely low mtDNA diversity consistent with a severe bottleneck dating to 50,000 years before present (bp). The nearby Rio Mesquites drainage is characterized by fragmentation events, restricted gene flow with isolation by distance, and higher levels of mtDNA polymorphism. These patterns are consistent with the long-term stability of this drainage along with habitat heterogeneity and brooding contributing to population isolation and restricted gene flow. Southeastern populations show evidence of range expansion and a strong influence of genetic drift. Migration rates between drainages indicate very little gene flow between drainages except for asymmetric migration from the Rio Mesquites into both western and southeastern drainages. PMID:15969715

  1. Genetic Drift Suppresses Bacterial Conjugation in Spatially Structured Populations

    NASA Astrophysics Data System (ADS)

    Freese, Peter D.; Korolev, Kirill S.; Jiménez, José I.; Chen, Irene A.

    2014-02-01

    Conjugation is the primary mechanism of horizontal gene transfer that spreads antibiotic resistance among bacteria. Although conjugation normally occurs in surface-associated growth (e.g., biofilms), it has been traditionally studied in well-mixed liquid cultures lacking spatial structure, which is known to affect many evolutionary and ecological processes. Here we visualize spatial patterns of gene transfer mediated by F plasmid conjugation in a colony of Escherichia coli growing on solid agar, and we develop a quantitative understanding by spatial extension of traditional mass-action models. We found that spatial structure suppresses conjugation in surface-associated growth because strong genetic drift leads to spatial isolation of donor and recipient cells, restricting conjugation to rare boundaries between donor and recipient strains. These results suggest that ecological strategies, such as enforcement of spatial structure and enhancement of genetic drift, could complement molecular strategies in slowing the spread of antibiotic resistance genes.

  2. Genetic Diversity and Population Structure of Theileria annulata in Oman

    PubMed Central

    Al-Hamidhi, Salama; H. Tageldin, Mohammed.; Weir, William; Al-Fahdi, Amira; Johnson, Eugene H.; Bobade, Patrick; Alqamashoui, Badar; Beja-Pereira, Albano; Thompson, Joanne; Kinnaird, Jane; Shiels, Brian; Tait, Andy; Babiker, Hamza

    2015-01-01

    Background Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle. Methods Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites) representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman. Results We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia). A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST

  3. Genetic structure and diversity of animal populations exposed to metal pollution.

    PubMed

    Mussali-Galante, Patricia; Tovar-Sánchez, Efraín; Valverde, Mahara; Rojas, Emilio

    2014-01-01

    Studying the genetic diversity of wild populations that are affected by pollution provides a basis for estimating the risks of environmental contamination to both wildlife, and indirectly to humans. Such research strives to produce both a better understanding of the underlying mechanisms by which genetic diversity is affected,and the long-term effects of the pollutants involved.In this review, we summarize key aspects of the field of genetic ecotoxicology that encompasses using genetic patterns to examine metal pollutants as environmental stressors of natural animal populations. We address genetic changes that result from xenobiotic exposure versus genetic alterations that result from natural ecological processes. We also describe the relationship between metal exposure and changes in the genetic diversity of chronically exposed populations, and how the affected populations respond to environmental stress. Further, we assess the genetic diversity of animal populations that were exposed to metals, focusing on the literature that has been published since the year 2000.Our review disclosed that the most common metals found in aquatic and terrestrial ecosystems were Cd, Zn, Cu and Pb; however, differences in the occurrence between aquatic (Cd=Zn>Cu>Pb>Hg) and terrestrial (Cu>Cd>Pb>Zn>Ni)environments were observed. Several molecular markers were used to assess genetic diversity in impacted populations, the order of the most common ones of which were SSR's > allozyme > RAPD's > mtDNA sequencing> other molecular markers.Genetic diversity was reduced for nearly all animal populations that were exposed to a single metal, or a mixture of metals in aquatic ecosystems (except in Hyalella azteca, Littorina littorea, Salmo trutta, and Gobio gobio); however, the pattern was less clear when terrestrial ecosystems were analyzed.We propose that future research in the topic area of this paper emphasizes seven key areas of activity that pertain to the methodological design of genetic

  4. The contribution of age structure to cell population responses to targeted therapeutics

    PubMed Central

    Gabriel, Pierre; Garbett, Shawn P.; Quaranta, Vito; Tyson, Darren R.; Webb, Glenn F.

    2013-01-01

    Cells grown in culture act as a model system for analyzing the effects of anticancer compounds, which may affect cell behavior in a cell cycle position-dependent manner. Cell synchronization techniques have been generally employed to minimize the variation in cell cycle position. However, synchronization techniques are cumbersome and imprecise and the agents used to synchronize the cells potentially have other unknown effects on the cells. An alternative approach is to determine the age structure in the population and account for the cell cycle positional effects post hoc. Here we provide a formalism to use quantifiable lifespans from live cell microscopy experiments to parameterize an age-structured model of cell population response. PMID:22796330

  5. The effects of management and environmental variation on population stage structure in three river-corridor violets

    NASA Astrophysics Data System (ADS)

    Eckstein, R. Lutz; Danihelka, Jiří; Hölzel, Norbert; Otte, Annette

    2004-03-01

    Population stage structure of plants, i.e., the density and frequency of individuals in different stages of the life cycle, is a crucial aspect of population viability that depends on a variety of factors. In this paper, we evaluated the effects of (i) management and year, (ii) location (population) and time (year) and (iii) of local habitat quality and population factors on population stage structure of three morphologically similar, closely related violets from floodplains, Viola elatior, V. pumila and V. stagnina. We hypothesised that owing to similar life cycles there should be no significant differences in population stage structure among species. We analysed population stage structure in managed vs. abandoned populations to test whether a proposed effect of management acts through the creation of regeneration niches. We further tried to identify which habitat factors are responsible for possible management effects. We established permanent plots (0.25 m 2) in 27 populations of the species in two different regions (Rhine floodplains, Germany; Dyje River floodplains, Czech Republic) and recorded frequency and density of seedlings, small and large vegetative plants and small and large flowering plants during 2 years. There were significant differences among species, indicating that the species have different life histories. Furthermore, there was a significant effect of management on population stage structure in two of the species. Management significantly increased the proportion of seedlings, over and above possible differences between regions. In our data set, the effects of spatial variation among populations were generally larger than the effects of temporal variation. The only factor that affected the density of life-cycle stages was the cover of bryophytes, while the cover of higher plants, litter or soil (local habitat quality), or isolation and population size (population factors) had no effects.

  6. Successional stage, fragmentation and exposure to extraction influence the population structure of Euterpe precatoria (Arecaeae).

    PubMed

    Avalos, Gerardo; Otárola, Mauricio Fernández; Engeln, James Theodore

    2013-09-01

    The neotropical palm Euterpeprecatoria is subject to extraction for its valuable palm heart. The development of management and conservation practices for this species requires understanding of its population structure, dynamics, and traditional use across the range of environments it inhabits, from different successional stages in continuous forest to forest fragments. Here, we analyzed how the population structure of E. precatoria varies with successional stage, fragmentation, and exposure to extraction, Since E. precatoria recruitment increases with disturbance, we expected seedling density to be higher in secondary forests and fragments relative to primary forests. The study was conducted from 2007-2008 in the Caribbean Slope of Costa Rica at Braulio Carrillo National Park (BCNP), La Selva Biological Station (LSBS), Manú Center, and Finca El Progreso (FEP). The first two sites had continuous primary and secondary forests (BCNP had one extracted primary forest); the last two consisted of primary forest fragments. Population structure was variable, with greater densities in the extracted primary forest, and in the secondary forests, as compared to primary forests and fragments. Palms < 5 m across all sites represented 50-90% of the total number of individuals. In sites that suffered historical over-extraction, local communities have lost the tradition of consuming this species. Understanding how population dynamics is affected by extraction and succession is essential to the design of sustainable management programs rooted in community participation. PMID:24027932

  7. Does population size affect genetic diversity? A test with sympatric lizard species.

    PubMed

    Hague, M T J; Routman, E J

    2016-01-01

    Genetic diversity is a fundamental requirement for evolution and adaptation. Nonetheless, the forces that maintain patterns of genetic variation in wild populations are not completely understood. Neutral theory posits that genetic diversity will increase with a larger effective population size and the decreasing effects of drift. However, the lack of compelling evidence for a relationship between genetic diversity and population size in comparative studies has generated some skepticism over the degree that neutral sequence evolution drives overall patterns of diversity. The goal of this study was to measure genetic diversity among sympatric populations of related lizard species that differ in population size and other ecological factors. By sampling related species from a single geographic location, we aimed to reduce nuisance variance in genetic diversity owing to species differences, for example, in mutation rates or historical biogeography. We compared populations of zebra-tailed lizards and western banded geckos, which are abundant and short-lived, to chuckwallas and desert iguanas, which are less common and long-lived. We assessed population genetic diversity at three protein-coding loci for each species. Our results were consistent with the predictions of neutral theory, as the abundant species almost always had higher levels of haplotype diversity than the less common species. Higher population genetic diversity in the abundant species is likely due to a combination of demographic factors, including larger local population sizes (and presumably effective population sizes), faster generation times and high rates of gene flow with other populations. PMID:26306730

  8. Local Cattle and Badger Populations Affect the Risk of Confirmed Tuberculosis in British Cattle Herds

    PubMed Central

    Vial, Flavie; Johnston, W. Thomas; Donnelly, Christl A.

    2011-01-01

    Background The control of bovine tuberculosis (bTB) remains a priority on the public health agenda in Great Britain, after launching in 1998 the Randomised Badger Culling Trial (RBCT) to evaluate the effectiveness of badger (Meles meles) culling as a control strategy. Our study complements previous analyses of the RBCT data (focusing on treatment effects) by presenting analyses of herd-level risks factors associated with the probability of a confirmed bTB breakdown in herds within each treatment: repeated widespread proactive culling, localized reactive culling and no culling (survey-only). Methodology/Principal Findings New cases of bTB breakdowns were monitored inside the RBCT areas from the end of the first proactive badger cull to one year after the last proactive cull. The risk of a herd bTB breakdown was modeled using logistic regression and proportional hazard models adjusting for local farm-level risk factors. Inside survey-only and reactive areas, increased numbers of active badger setts and cattle herds within 1500 m of a farm were associated with an increased bTB risk. Inside proactive areas, the number of M. bovis positive badgers initially culled within 1500 m of a farm was the strongest predictor of the risk of a confirmed bTB breakdown. Conclusions/Significance The use of herd-based models provide insights into how local cattle and badger populations affect the bTB breakdown risks of individual cattle herds in the absence of and in the presence of badger culling. These measures of local bTB risks could be integrated into a risk-based herd testing programme to improve the targeting of interventions aimed at reducing the risks of bTB transmission. PMID:21464920

  9. How Knowledge Management Is Affected by Organizational Structure

    ERIC Educational Resources Information Center

    Mahmoudsalehi, Mehdi; Moradkhannejad, Roya; Safari, Khalil

    2012-01-01

    Purpose: Identifying the impact of organizational structure on knowledge management (KM) is the aim of this study, as well as recognizing the importance of each variable indicator in creating, sharing and utility of knowledge. Design/methodology/approach: For understanding relationships between the main variables (organizational structure-KM), the…

  10. Electronic tagging and population structure of Atlantic bluefin tuna.

    PubMed

    Block, Barbara A; Teo, Steven L H; Walli, Andreas; Boustany, Andre; Stokesbury, Michael J W; Farwell, Charles J; Weng, Kevin C; Dewar, Heidi; Williams, Thomas D

    2005-04-28

    Electronic tags that archive or transmit stored data to satellites have advanced the mapping of habitats used by highly migratory fish in pelagic ecosystems. Here we report on the electronic tagging of 772 Atlantic bluefin tuna in the western Atlantic Ocean in an effort to identify population structure. Reporting electronic tags provided accurate location data that show the extensive migrations of individual fish (n = 330). Geoposition data delineate two populations, one using spawning grounds in the Gulf of Mexico and another from the Mediterranean Sea. Transatlantic movements of western-tagged bluefin tuna reveal site fidelity to known spawning areas in the Mediterranean Sea. Bluefin tuna that occupy western spawning grounds move to central and eastern Atlantic foraging grounds. Our results are consistent with two populations of bluefin tuna with distinct spawning areas that overlap on North Atlantic foraging grounds. Electronic tagging locations, when combined with US pelagic longline observer and logbook catch data, identify hot spots for spawning bluefin tuna in the northern slope waters of the Gulf of Mexico. Restrictions on the time and area where longlining occurs would reduce incidental catch mortalities on western spawning grounds. PMID:15858572

  11. Campylobacter jejuni colonization and population structure in urban populations of ducks and starlings in New Zealand.

    PubMed

    Mohan, Vathsala; Stevenson, Mark; Marshall, Jonathan; Fearnhead, Paul; Holland, Barbara R; Hotter, Grant; French, Nigel P

    2013-08-01

    A repeated cross-sectional study was conducted to determine the prevalence of Campylobacter spp. and the population structure of C. jejuni in European starlings and ducks cohabiting multiple public access sites in an urban area of New Zealand. The country's geographical isolation and relatively recent history of introduction of wild bird species, including the European starling and mallard duck, create an ideal setting to explore the impact of geographical separation on the population biology of C. jejuni, as well as potential public health implications. A total of 716 starling and 720 duck fecal samples were collected and screened for C. jejuni over a 12 month period. This study combined molecular genotyping, population genetics and epidemiological modeling and revealed: (i) higher Campylobacter spp. isolation in starlings (46%) compared with ducks (30%), but similar isolation of C. jejuni in ducks (23%) and starlings (21%), (ii) significant associations between the isolation of Campylobacter spp. and host species, sampling location and time of year using logistic regression, (iii) evidence of population differentiation, as indicated by FST , and host-genotype association with clonal complexes CC ST-177 and CC ST-682 associated with starlings, and clonal complexes CC ST-1034, CC ST-692, and CC ST-1332 associated with ducks, and (iv) greater genetic diversity and genotype richness in ducks compared with starlings. These findings provide evidence that host-associated genotypes, such as the starling-associated ST-177 and ST-682, represent lineages that were introduced with the host species in the 19th century. The isolation of sequence types associated with human disease in New Zealand indicate that wild ducks and starlings need to be considered as a potential public health risk, particularly in urban areas. PMID:23873654

  12. Global population structure and migration patterns suggest significant population differentiation among isolates of Pyrenophora tritici-repentis.

    PubMed

    Gurung, S; Short, D P G; Adhikari, T B

    2013-03-01

    The global population structure and migration patterns of foliar wheat pathogen Pyrenophora tritici-repentis (PTR) were determined using 12 microsatellite loci. Analysis of 439 single-spore isolates of PTR from five continents (18 wheat-producing countries) showed high level of genetic diversity, and moderate to high population differentiation between continents. A high level of gene diversity (H(S)=0.31 to 0.56) was observed within each population. Allelic richness indicated the European and the North American population have a high effective population size. Bayesian analyses showed five clusters where the inferred clusters did not represent geographical populations. Corrected standardized fixation index (G(ST)(″)) estimates ranged from 0.042 to 0.265 between populations, indicating low to high genetic differentiation exists between populations. We found migration (gene flow) between old world (Europe) and new world (Americas) population; however, little migration was observed among other continents. The European population was the major source of immigrants for the North American, South American, Australian and the Asian populations. Significant (P<0.001) linkage disequilibrium (LD) was detected in the Australian and the South American populations. In contrast, non-significant (P<0.001) LD values were observed in the Asian, European and the North American populations. Overall, our findings demonstrate the population differentiation exits among the global populations and strict quarantine measures should be applied to prevent the accelerated global spread of this pathogen. PMID:23376549

  13. The genetic structure of wild Orobanche cumana Wallr. (Orobanchaceae) populations in eastern Bulgaria reflects introgressions from weedy populations.

    PubMed

    Pineda-Martos, Rocío; Pujadas-Salvà, Antonio J; Fernández-Martínez, José M; Stoyanov, Kiril; Velasco, Leonardo; Pérez-Vich, Begoña

    2014-01-01

    Orobanche cumana is a holoparasitic plant naturally distributed from central Asia to south-eastern Europe, where it parasitizes wild Asteraceae species. It is also an important parasitic weed of sunflower crops. The objective of this research was to investigate genetic diversity, population structure, and virulence on sunflower of O. cumana populations parasitizing wild plants in eastern Bulgaria. Fresh tissue of eight O. cumana populations and mature seeds of four of them were collected in situ on wild hosts. Genetic diversity and population structure were studied with SSR markers and compared to weedy populations. Two main gene pools were identified in Bulgarian populations, with most of the populations having intermediate characteristics. Cross-inoculation experiments revealed that O. cumana populations collected on wild species possessed similar ability to parasitize sunflower to those collected on sunflower. The results were explained on the basis of an effective genetic exchange between populations parasitizing sunflower crops and those parasitizing wild species. The occurrence of bidirectional gene flow may have an impact on wild populations, as new physiological races continuously emerge in weedy populations. Also, genetic variability of wild populations may favour the ability of weedy populations to overcome sunflower resistance mechanisms. PMID:25143963

  14. Population Structure of Staphylococcus aureus from Trinidad & Tobago

    PubMed Central

    Monecke, Stefan; Stieber, Bettina; Roberts, Rashida; Akpaka, Patrick Eberechi; Slickers, Peter; Ehricht, Ralf

    2014-01-01

    It has been shown previously that high rates of methicillin- and mupirocin-resistant Staphylococcus aureus exist in the Caribbean islands of Trinidad and Tobago, as well as a high prevalence of Panton-Valentine leukocidin-positive S. aureus. Beyond these studies, limited typing data have been published. In order to obtain insight into the population structure not only of MRSA but also of methicillin-susceptible S. aureus, 294 clinical isolates collected in 2012/2013 were typed by microarray hybridisation. A total of 15.31% of the tested isolates were MRSA and 50.00% were PVL-positive. The most common MSSA strains were PVL-positive CC8-MSSA (20.41% of all isolates tested), PVL-positive CC152-MSSA (9.52%) and PVL-positive CC30-MSSA (8.84%) while the most common MRSA were ST239-MRSA-III&SCCmer (9.18%) and ST8-MRSA-IV, “USA300” (5.78%). 2.38% of characterised isolates belonged to distinct strains likely to be related to “Staphylococcus argenteus” lineages. The population structure of S. aureus isolates suggests an importation of strains from Africa, endemicity of PVL-positive MSSA (mainly CC8) and of ST239-MRSA-III, and a recent emergence of the PVL-positive CC8-MRSA-IV strain “USA300”. PMID:24586536

  15. Population structure, migration, and diversifying selection in the Netherlands

    PubMed Central

    Abdellaoui, Abdel; Hottenga, Jouke-Jan; Knijff, Peter de; Nivard, Michel G; Xiao, Xiangjun; Scheet, Paul; Brooks, Andrew; Ehli, Erik A; Hu, Yueshan; Davies, Gareth E; Hudziak, James J; Sullivan, Patrick F; van Beijsterveldt, Toos; Willemsen, Gonneke; de Geus, Eco J; Penninx, Brenda W J H; Boomsma, Dorret I

    2013-01-01

    Genetic variation in a population can be summarized through principal component analysis (PCA) on genome-wide data. PCs derived from such analyses are valuable for genetic association studies, where they can correct for population stratification. We investigated how to capture the genetic population structure in a well-characterized sample from the Netherlands and in a worldwide data set and examined whether (1) removing long-range linkage disequilibrium (LD) regions and LD-based SNP pruning significantly improves correlations between PCs and geography and (2) whether genetic differentiation may have been influenced by migration and/or selection. In the Netherlands, three PCs showed significant correlations with geography, distinguishing between: (1) North and South; (2) East and West; and (3) the middle-band and the rest of the country. The third PC only emerged with minimized LD, which also significantly increased correlations with geography for the other two PCs. In addition to geography, the Dutch North–South PC showed correlations with genome-wide homozygosity (r=0.245), which may reflect a serial-founder effect due to northwards migration, and also with height (♂: r=0.142, ♀: r=0.153). The divergence between subpopulations identified by PCs is partly driven by selection pressures. The first three PCs showed significant signals for diversifying selection (545 SNPs - the majority within 184 genes). The strongest signal was observed between North and South for the functional SNP in HERC2 that determines human blue/brown eye color. Thus, this study demonstrates how to increase ancestry signals in a relatively homogeneous population and how those signals can reveal evolutionary history. PMID:23531865

  16. Population structure, migration, and diversifying selection in the Netherlands.

    PubMed

    Abdellaoui, Abdel; Hottenga, Jouke-Jan; de Knijff, Peter; Nivard, Michel G; Xiao, Xiangjun; Scheet, Paul; Brooks, Andrew; Ehli, Erik A; Hu, Yueshan; Davies, Gareth E; Hudziak, James J; Sullivan, Patrick F; van Beijsterveldt, Toos; Willemsen, Gonneke; de Geus, Eco J; Penninx, Brenda W J H; Boomsma, Dorret I

    2013-11-01

    Genetic variation in a population can be summarized through principal component analysis (PCA) on genome-wide data. PCs derived from such analyses are valuable for genetic association studies, where they can correct for population stratification. We investigated how to capture the genetic population structure in a well-characterized sample from the Netherlands and in a worldwide data set and examined whether (1) removing long-range linkage disequilibrium (LD) regions and LD-based SNP pruning significantly improves correlations between PCs and geography and (2) whether genetic differentiation may have been influenced by migration and/or selection. In the Netherlands, three PCs showed significant correlations with geography, distinguishing between: (1) North and South; (2) East and West; and (3) the middle-band and the rest of the country. The third PC only emerged with minimized LD, which also significantly increased correlations with geography for the other two PCs. In addition to geography, the Dutch North-South PC showed correlations with genome-wide homozygosity (r=0.245), which may reflect a serial-founder effect due to northwards migration, and also with height (♂: r=0.142, ♀: r=0.153). The divergence between subpopulations identified by PCs is partly driven by selection pressures. The first three PCs showed significant signals for diversifying selection (545 SNPs - the majority within 184 genes). The strongest signal was observed between North and South for the functional SNP in HERC2 that determines human blue/brown eye color. Thus, this study demonstrates how to increase ancestry signals in a relatively homogeneous population and how those signals can reveal evolutionary history. PMID:23531865

  17. Spatial structure of the spider crab, Maja brachydactyla population: Evidence of metapopulation structure

    NASA Astrophysics Data System (ADS)

    Corgos, Antonio; Bernárdez, Cristina; Sampedro, Paz; Verísimo, Patricia; Freire, Juan

    2011-08-01

    Distribution and spatial population structure of the spider crab, Maja brachydactyla, in the Ría de A Coruña (NW Spain) and adjacent coastal area was analysed. Sampling was done with experimental traps placed in three shallow bottom sampling stations and the central channel of the Ría, from December 1997 to November 1999. Crabs were tagged to study their movements on a small scale (1-10 km). Mean catches were substantially higher in the inner Ría station (Bastiagueiro) and were significantly higher in sandy substrates. Crabs inhabiting rocky bottoms moved to sandy bottoms from summer to autumn. Two local populations comprising mainly juveniles were identified —one located in Bastiagueiro and the other in Canide. There was no evidence of any major exchange between the juveniles of the two populations nor were juveniles observed to move towards deeper zones. Most of these juveniles reached maturity in summer and migrated to deeper waters. Adult catches and the recaptured specimens from both the experimental sampling and the commercial fishery indicate that the local Bastiagueiro population contributes a much greater number of individuals to the adult crab population in deep waters than does the Canide population. The spatial structure of the population of M. brachydactyla in the Ría de A Coruña may be defined as a part of a postlarval metapopulation made up of two shallow water local juvenile crab populations that migrate to deeper waters after attaining maturity. A pool of adults (and indirectly of larvae) from several local populations is formed in deeper waters. There is strong evidence that local populations are linked by larval dispersal.

  18. The presence of Bt-transgenic oilseed rape in wild mustard populations affects plant growth.

    PubMed

    Liu, Yongbo; Stewart, C Neal; Li, Junsheng; Huang, Hai; Zhang, Xitao

    2015-12-01

    The adventitious presence of transgenic plants in wild plant populations is of ecological and regulatory concern, but the consequences of adventitious presence are not well understood. Here, we introduced Bacillus thuringiensis Cry1Ac (Bt)-transgenic oilseed rape (Bt OSR, Brassica napus) with various frequencies into wild mustard (Brassica juncea) populations. We sought to better understand the adventitious presence of this transgenic insecticidal crop in a wild-relative plant population. We assessed the factors of competition, resource availability and diamondback moth (Plutella xylostella) infestation on plant population dynamics. As expected, Bt OSR performed better than wild mustard in mixed populations under herbivore attack in habitats with enough resources, whereas wild mustard had higher fitness when Bt OSR was rarer in habitats with limited resources. Results suggest that the presence of insect-resistant transgenic plants could decrease the growth of wild mustard and Bt OSR plants and their populations, especially under high herbivore pressure. PMID:26338267

  19. Persistence of black-tailed prairie-dog populations affected by plague in northern Colorado, USA.

    PubMed

    George, Dylan B; Webb, Colleen T; Pepin, Kim M; Savage, Lisa T; Antolini, Michael F

    2013-07-01

    The spatial distribution of prairie dog (Cynomys ludovicianus) colonies in North America has changed from large, contiguous populations to small, isolated colonies in metapopulations. One factor responsible for this drastic change in prairie-dog population structure is plague (caused by the bacterium Yersinia pestis). We fit stochastic patch occupancy models to 20 years of prairie-dog colony occupancy data from two discrete metapopulations (west and east) in the Pawnee National Grassland in Colorado, USA, that differ in connectivity among suitable habitat patches. We conducted model selection between two hypothesized modes of plague movement: independent of prairie-dog dispersal (colony-area) vs. plague movement consistent with prairie-dog dispersal (connectivity to extinct colonies). The best model, which fit the data well (area under the curve [AUC]: 0.94 west area; 0.79 east area), revealed that over time the proportion of extant colonies was better explained by colony size than by connectivity to extinct (plagued) colonies. The idea that prairie dogs are not likely to be the main vector that spreads Y. pestis across the landscape is supported by the observation that colony extinctions are primarily caused by plague, prairie-dog dispersal is short range, and connectivity to extinct colonies was not selected as a factor in the models. We also conducted simulations with the best model to examine long-term patterns of colony occupancy and persistence of prairie-dog metapopulations. In the case where the metapopulations persist, our model predicted that the western metapopulation would have a colony occupancy rate approximately 2.5 times higher than that of the eastern metapopulation (-50% occupied colonies vs. 20%) in 50 years, but that the western metapopulation has -80% chance of extinction in 100 years while the eastern metapopulation has a less than 25% chance. Extinction probability of individual colonies depended on the frequency with which colonies of the

  20. Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species.

    PubMed

    Young, Emma F; Belchier, Mark; Hauser, Lorenz; Horsburgh, Gavin J; Meredith, Michael P; Murphy, Eugene J; Pascoal, Sonia; Rock, Jennifer; Tysklind, Niklas; Carvalho, Gary R

    2015-06-01

    Understanding the key drivers of population connectivity in the marine environment is essential for the effective management of natural resources. Although several different approaches to evaluating connectivity have been used, they are rarely integrated quantitatively. Here, we use a 'seascape genetics' approach, by combining oceanographic modelling and microsatellite analyses, to understand the dominant influences on the population genetic structure of two Antarctic fishes with contrasting life histories, Champsocephalus gunnari and Notothenia rossii. The close accord between the model projections and empirical genetic structure demonstrated that passive dispersal during the planktonic early life stages is the dominant influence on patterns and extent of genetic structuring in both species. The shorter planktonic phase of C. gunnari restricts direct transport of larvae between distant populations, leading to stronger regional differentiation. By contrast, geographic distance did not affect differentiation in N. rossii, whose longer larval period promotes long-distance dispersal. Interannual variability in oceanographic flows strongly influenced the projected genetic structure, suggesting that shifts in circulation patterns due to climate change are likely to impact future genetic connectivity and opportunities for local adaptation, resilience and recovery from perturbations. Further development of realistic climate models is required to fully assess such potential impacts. PMID:26029262

  1. Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species

    PubMed Central

    Young, Emma F; Belchier, Mark; Hauser, Lorenz; Horsburgh, Gavin J; Meredith, Michael P; Murphy, Eugene J; Pascoal, Sonia; Rock, Jennifer; Tysklind, Niklas; Carvalho, Gary R

    2015-01-01

    Understanding the key drivers of population connectivity in the marine environment is essential for the effective management of natural resources. Although several different approaches to evaluating connectivity have been used, they are rarely integrated quantitatively. Here, we use a ‘seascape genetics’ approach, by combining oceanographic modelling and microsatellite analyses, to understand the dominant influences on the population genetic structure of two Antarctic fishes with contrasting life histories, Champsocephalus gunnari and Notothenia rossii. The close accord between the model projections and empirical genetic structure demonstrated that passive dispersal during the planktonic early life stages is the dominant influence on patterns and extent of genetic structuring in both species. The shorter planktonic phase of C. gunnari restricts direct transport of larvae between distant populations, leading to stronger regional differentiation. By contrast, geographic distance did not affect differentiation in N. rossii, whose longer larval period promotes long-distance dispersal. Interannual variability in oceanographic flows strongly influenced the projected genetic structure, suggesting that shifts in circulation patterns due to climate change are likely to impact future genetic connectivity and opportunities for local adaptation, resilience and recovery from perturbations. Further development of realistic climate models is required to fully assess such potential impacts. PMID:26029262

  2. Population structure of a vector-borne plant parasite.

    PubMed

    Yule, Kelsey M; Koop, Jennifer A H; Alexandre, Nicolas M; Johnston, Lauren R; Whiteman, Noah K

    2016-07-01

    Parasites are among the most diverse groups of life on Earth, yet complex natural histories often preclude studies of their speciation processes. The biology of parasitic plants facilitates in situ collection of data on both genetic structure and the mechanisms responsible for that structure. Here, we studied the role of mating, dispersal and establishment in host race formation of a parasitic plant. We investigated the population genetics of a vector-borne desert mistletoe (Phoradendron californicum) across two legume host tree species (Senegalia greggii and Prosopis velutina) in the Sonoran desert using microsatellites. Consistent with host race formation, we found strong host-associated genetic structure in sympatry, little genetic variation due to geographic site and weak isolation by distance. We hypothesize that genetic differentiation results from differences in the timing of mistletoe flowering by host species, as we found initial flowering date of individual mistletoes correlated with genetic ancestry. Hybrids with intermediate ancestry were detected genetically. Individuals likely resulting from recent, successful establishment events following dispersal between the host species were detected at frequencies similar to hybrids between host races. Therefore, barriers to gene flow between the host races may have been stronger at mating than at dispersal. We also found higher inbreeding and within-host individual relatedness values for mistletoes on the more rare and isolated host species (S. greggii). Our study spanned spatial scales to address how interactions with both vectors and hosts influence parasitic plant structure with implications for parasite virulence evolution and speciation. PMID:27154249

  3. How Supernova Feedback Affects Observed Galaxy Sizes and Structures

    NASA Astrophysics Data System (ADS)

    Joung, M. K. Ryan; Cen, R.; Bryan, G. L.

    2009-01-01

    Feedback from massive stars is perhaps the least understood aspect of galaxy formation. Based on adaptive mesh refinement (AMR) cosmological simulations and stellar population synthesis models, we compute half-light radii of high redshift galaxies and use them to compare simulated and observed size-mass and size-luminosity relations in the rest-frame UV/optical. The sizes of the simulated galaxies depend on the assumed strength of supernova feedback; we investigate the origin of this relation. We discuss minimum requirements for correct numerical modeling of supernova feedback in starburst galaxies.

  4. Networks and Models with Heterogeneous Population Structure in Epidemiology

    NASA Astrophysics Data System (ADS)

    Kao, R. R.

    Heterogeneous population structure can have a profound effect on infectious disease dynamics, and is particularly important when investigating “tactical” disease control questions. At times, the nature of the network involved in the transmission of the pathogen (bacteria, virus, macro-parasite, etc.) appears to be clear; however, the nature of the network involved is dependent on the scale (e.g. within-host, between-host, or between-population), the nature of the contact, which ranges from the highly specific (e.g. sexual acts or needle sharing at the person-to-person level) to almost completely non-specific (e.g. aerosol transmission, often over long distances as can occur with the highly infectious livestock pathogen foot-and-mouth disease virus—FMDv—at the farm-to-farm level, e.g. Schley et al. in J. R. Soc. Interface 6:455-462, 2008), and the timescale of interest (e.g. at the scale of the individual, the typical infectious period of the host). Theoretical approaches to examining the implications of particular network structures on disease transmission have provided critical insight; however, a greater challenge is the integration of network approaches with data on real population structures. In this chapter, some concepts in disease modelling will be introduced, the relevance of selected network phenomena discussed, and then results from real data and their relationship to network analyses summarised. These include examinations of the patterns of air traffic and its relation to the spread of SARS in 2003 (Colizza et al. in BMC Med., 2007; Hufnagel et al. in Proc. Natl. Acad. Sci. USA 101:15124-15129, 2004), the use of the extensively documented Great Britain livestock movements network (Green et al. in J. Theor. Biol. 239:289-297, 2008; Robinson et al. in J. R. Soc. Interface 4:669-674, 2007; Vernon and Keeling in Proc. R. Soc. Lond. B, Biol. Sci. 276:469-476, 2009) and the growing interest in combining contact structure data with phylogenetics to

  5. Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f.sp. tritici.

    PubMed

    Ali, Sajid; Gladieux, Pierre; Leconte, Marc; Gautier, Angélique; Justesen, Annemarie F; Hovmøller, Mogens S; Enjalbert, Jérôme; de Vallavieille-Pope, Claude

    2014-01-01

    Analyses of large-scale population structure of pathogens enable the identification of migration patterns, diversity reservoirs or longevity of populations, the understanding of current evolutionary trajectories and the anticipation of future ones. This is particularly important for long-distance migrating fungal pathogens such as Puccinia striiformis f.sp. tritici (PST), capable of rapid spread to new regions and crop varieties. Although a range of recent PST invasions at continental scales are well documented, the worldwide population structure and the center of origin of the pathogen were still unknown. In this study, we used multilocus microsatellite genotyping to infer worldwide population structure of PST and the origin of new invasions based on 409 isolates representative of distribution of the fungus on six continents. Bayesian and multivariate clustering methods partitioned the set of multilocus genotypes into six distinct genetic groups associated with their geographical origin. Analyses of linkage disequilibrium and genotypic diversity indicated a strong regional heterogeneity in levels of recombination, with clear signatures of recombination in the Himalayan (Nepal and Pakistan) and near-Himalayan regions (China) and a predominant clonal population structure in other regions. The higher genotypic diversity, recombinant population structure and high sexual reproduction ability in the Himalayan and neighboring regions suggests this area as the putative center of origin of PST. We used clustering methods and approximate Bayesian computation (ABC) to compare different competing scenarios describing ancestral relationship among ancestral populations and more recently founded populations. Our analyses confirmed the Middle East-East Africa as the most likely source of newly spreading, high-temperature-adapted strains; Europe as the source of South American, North American and Australian populations; and Mediterranean-Central Asian populations as the origin of

  6. Origin, Migration Routes and Worldwide Population Genetic Structure of the Wheat Yellow Rust Pathogen Puccinia striiformis f.sp. tritici

    PubMed Central

    Ali, Sajid; Gladieux, Pierre; Leconte, Marc; Gautier, Angélique; Justesen, Annemarie F.; Hovmøller, Mogens S.; Enjalbert, Jérôme; de Vallavieille-Pope, Claude

    2014-01-01

    Analyses of large-scale population structure of pathogens enable the identification of migration patterns, diversity reservoirs or longevity of populations, the understanding of current evolutionary trajectories and the anticipation of future ones. This is particularly important for long-distance migrating fungal pathogens such as Puccinia striiformis f.sp. tritici (PST), capable of rapid spread to new regions and crop varieties. Although a range of recent PST invasions at continental scales are well documented, the worldwide population structure and the center of origin of the pathogen were still unknown. In this study, we used multilocus microsatellite genotyping to infer worldwide population structure of PST and the origin of new invasions based on 409 isolates representative of distribution of the fungus on six continents. Bayesian and multivariate clustering methods partitioned the set of multilocus genotypes into six distinct genetic groups associated with their geographical origin. Analyses of linkage disequilibrium and genotypic diversity indicated a strong regional heterogeneity in levels of recombination, with clear signatures of recombination in the Himalayan (Nepal and Pakistan) and near-Himalayan regions (China) and a predominant clonal population structure in other regions. The higher genotypic diversity, recombinant population structure and high sexual reproduction ability in the Himalayan and neighboring regions suggests this area as the putative center of origin of PST. We used clustering methods and approximate Bayesian computation (ABC) to compare different competing scenarios describing ancestral relationship among ancestral populations and more recently founded populations. Our analyses confirmed the Middle East-East Africa as the most likely source of newly spreading, high-temperature-adapted strains; Europe as the source of South American, North American and Australian populations; and Mediterranean-Central Asian populations as the origin of

  7. Four types of interference competition and their impacts on the ecology and evolution of size-structured populations and communities.

    PubMed

    Zhang, Lai; Andersen, Ken H; Dieckmann, Ulf; Brännström, Åke

    2015-09-01

    We investigate how four types of interference competition - which alternatively affect foraging, metabolism, survival, and reproduction - impact the ecology and evolution of size-structured populations. Even though all four types of interference competition reduce population biomass, interference competition at intermediate intensity sometimes significantly increases the abundance of adult individuals and the population׳s reproduction rate. We find that foraging and metabolic interference evolutionarily favor smaller maturation size when interference is weak and larger maturation size when interference is strong. The evolutionary response to survival interference and reproductive interference is always larger maturation size. We also investigate how the four types of interference competition impact the evolutionary dynamics and resultant diversity and trophic structure of size-structured communities. Like other types of trait-mediated competition, all four types of interference competition can induce disruptive selection and thus promote initial diversification. Even though foraging interference and reproductive interference are more potent in promoting initial diversification, they catalyze the formation of diverse communities with complex trophic structure only at high levels of interference intensity. By contrast, survival interference does so already at intermediate levels, while reproductive interference can only support relatively smaller communities with simpler trophic structure. Taken together, our results show how the type and intensity of interference competition jointly affect coexistence patterns in structured population models. PMID:26025318

  8. Selection pressure, cropping system and rhizosphere proximity affect atrazine degrader populations and activity in s-triazine adapted soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atrazine degrader populations and activity in s-triazine adapted soils are likely affected by interactions among and (or) between s-triazine application frequency, crop production system, and proximity to the rhizosphere. A field study was conducted on an s-triazine adapted soil to determine the ef...

  9. Population genetic structure and demographic history of Atrina pectinata based on mitochondrial DNA and microsatellite markers.

    PubMed

    Xue, Dong-Xiu; Wang, Hai-Yan; Zhang, Tao; Liu, Jin-Xian

    2014-01-01

    The pen shell, Atrina pectinata, is one of the commercial bivalves in East Asia and thought to be recently affected by anthropogenic pressure (habitat destruction and/or fishing pressure). Information on its population genetic structure is crucial for the conservation of A. pectinata. Considering its long pelagic larval duration and iteroparity with high fecundity, the genetic structure for A. pectinata could be expected to be weak at a fine scale. However, the unusual oceanography in the coasts of China and Korea suggests potential for restricted dispersal of pelagic larvae and geographical differentiation. In addition, environmental changes associated with Pleistocene sea level fluctuations on the East China Sea continental shelf may also have strongly influenced historical population demography and genetic diversity of marine organisms. Here, partial sequences of the mitochondrial Cytochrome c oxidase subunit I (COI) gene and seven microsatellite loci were used to estimate population genetic structure and demographic history of seven samples from Northern China coast and one sample from North Korea coast. Despite high levels of genetic diversity within samples, there was no genetic differentiation among samples from Northern China coast and low but significant genetic differentiation between some of the Chinese samples and the North Korean sample. A late Pleistocene population expansion, probably after the Last Glacial Maximum, was also demonstrated for A. pectinata samples. No recent genetic bottleneck was detected in any of the eight samples. We concluded that both historical recolonization (through population range expansion and demographic expansion in the late Pleistocene) and current gene flow (through larval dispersal) were responsible for the weak level of genetic structure detected in A. pectinata. PMID:24789175

  10. Population Genetic Structure and Demographic History of Atrina pectinata Based on Mitochondrial DNA and Microsatellite Markers

    PubMed Central

    Xue, Dong-Xiu; Wang, Hai-Yan; Zhang, Tao; Liu, Jin-Xian

    2014-01-01

    The pen shell, Atrina pectinata, is one of the commercial bivalves in East Asia and thought to be recently affected by anthropogenic pressure (habitat destruction and/or fishing pressure). Information on its population genetic structure is crucial for the conservation of A. pectinata. Considering its long pelagic larval duration and iteroparity with high fecundity, the genetic structure for A. pectinata could be expected to be weak at a fine scale. However, the unusual oceanography in the coasts of China and Korea suggests potential for restricted dispersal of pelagic larvae and geographical differentiation. In addition, environmental changes associated with Pleistocene sea level fluctuations on the East China Sea continental shelf may also have strongly influenced historical population demography and genetic diversity of marine organisms. Here, partial sequences of the mitochondrial Cytochrome c oxidase subunit I (COI) gene and seven microsatellite loci were used to estimate population genetic structure and demographic history of seven samples from Northern China coast and one sample from North Korea coast. Despite high levels of genetic diversity within samples, there was no genetic differentiation among samples from Northern China coast and low but significant genetic differentiation between some of the Chinese samples and the North Korean sample. A late Pleistocene population expansion, probably after the Last Glacial Maximum, was also demonstrated for A. pectinata samples. No recent genetic bottleneck was detected in any of the eight samples. We concluded that both historical recolonization (through population range expansion and demographic expansion in the late Pleistocene) and current gene flow (through larval dispersal) were responsible for the weak level of genetic structure detected in A. pectinata. PMID:24789175

  11. Access and completion of a Web-based treatment in a population-based sample of tornado-affected adolescents.

    PubMed

    Price, Matthew; Yuen, Erica K; Davidson, Tatiana M; Hubel, Grace; Ruggiero, Kenneth J

    2015-08-01

    Although Web-based treatments have significant potential to assess and treat difficult-to-reach populations, such as trauma-exposed adolescents, the extent that such treatments are accessed and used is unclear. The present study evaluated the proportion of adolescents who accessed and completed a Web-based treatment for postdisaster mental health symptoms. Correlates of access and completion were examined. A sample of 2,000 adolescents living in tornado-affected communities was assessed via structured telephone interview and invited to a Web-based treatment. The modular treatment addressed symptoms of posttraumatic stress disorder, depression, and alcohol and tobacco use. Participants were randomized to experimental or control conditions after accessing the site. Overall access for the intervention was 35.8%. Module completion for those who accessed ranged from 52.8% to 85.6%. Adolescents with parents who used the Internet to obtain health-related information were more likely to access the treatment. Adolescent males were less likely to access the treatment. Future work is needed to identify strategies to further increase the reach of Web-based treatments to provide clinical services in a postdisaster context. PMID:25622071

  12. Access and Completion of a Web-Based Treatment in a Population-Based Sample of Tornado-Affected Adolescents

    PubMed Central

    Price, Matthew; Yuen, Erica; Davidson, Tatiana M.; Hubel, Grace; Ruggiero, Kenneth J.

    2015-01-01

    Although web-based treatments have significant potential to assess and treat difficult to reach populations, such as trauma-exposed adolescents, the extent that such treatments are accessed and used is unclear. The present study evaluated the proportion of adolescents who accessed and completed a web-based treatment for post-disaster mental health symptoms. Correlates of access and completion were examined. A sample of 2,000 adolescents living in tornado-affected communities was assessed via structured telephone interview and invited to a web-based treatment. The modular treatment addressed symptoms of PTSD, depression, and alcohol and tobacco use. Participants were randomized to experimental or control conditions after accessing the site. Overall access for the intervention was 35.8%. Module completion for those who accessed ranged from 52.8% to 85.6%. Adolescents with parents who used the Internet to obtain health-related information were more likely to access the treatment. Adolescent males were less likely to access the treatment. Future work is needed to identify strategies to further increase the reach of web-based treatments to provide clinical services in a post-disaster context. PMID:25622071

  13. FUNGAL POPULATIONS ASSOCIATED TO NETTING TISSUE OF GALIA MELONS AFFECTING QUALITY DURING STORAGE.

    PubMed

    Parra, M A; Aguilar, F W; Martínez, J A

    2015-01-01

    Galia melons are produced in southeast Spain and exported to other European countries. The main problem of melons during transport and storage consists of the development of epiphytic populations of fungi living inside the netting areas located on fruit surface. These areas are natural wounds which are covered by local suberin and lignin secretion induced by the plant in response to the natural skin wounds which occurs during fruit growing. These fungi are growing from the scarce organic matter and nutrients that are either deposited or segregated from the fruit. Several genera of fungi have commonly been associated to those areas such as some species of Fusarium, Cladosporium sp. and Alternaria sp. and a few others. All microorganisms were living in an ecological equilibrium. However, when water was present inside the netting areas, the growth of Cladosporium sp. was exacerbated and then, the ecological equilibrium was broken, therefore these grey areas turned to green-dark colour due to hyphal development of this fungus. This process deteriorated visual quality of fruits, therefore the increase of losses during transport and storage were noticeable. A relative humidity very high, round 100% or a thinner layer of water condensed in these areas were sufficient to increase epiphytic development of Cladosporium without causing decay, even at refrigeration temperature. However, when relative humidity was lower than about 98%, no growth of aerial hyphae of Cladosporium was observed. In contrast, some brown stains round netting areas were developed due to the growth of the fungus through skin layers causing severe decay after 32 days of storage at 7 degrees C. When the affected fruits were transferred at ambient temperature, aerial mycelium of Cladosporium emerged from those brown skin areas exacerbating the losses. In conclusion, water condensation should be avoided to prevent epiphytic development of Cladosporium. If washing treatment of fruits is carried out during

  14. Historical contingency affects signaling strategies and competitive abilities in evolving populations of simulated robots.

    PubMed

    Wischmann, Steffen; Floreano, Dario; Keller, Laurent

    2012-01-17

    One of the key innovations during the evolution of life on earth has been the emergence of efficient communication systems, yet little is known about the causes and consequences of the great diversity within and between species. By conducting experimental evolution in 20 independently evolving populations of cooperatively foraging simulated robots, we found that historical contingency in the occurrence order of novel phenotypic traits resulted in the emergence of two distinct communication strategies. The more complex foraging strategy was less efficient than the simpler strategy. However, when the 20 populations were placed in competition with each other, the populations with the more complex strategy outperformed the populations with the less complex strategy. These results demonstrate a tradeoff between communication efficiency and robustness and suggest that stochastic events have important effects on signal evolution and the outcome of competition between distinct populations. PMID:22215591

  15. Genomic population structure of freshwater-resident and anadromous ide (Leuciscus idus) in north-western Europe.

    PubMed

    Skovrind, Mikkel; Olsen, Morten Tange; Vieira, Filipe Garrett; Pacheco, George; Carl, Henrik; Gilbert, M Thomas P; Møller, Peter Rask

    2016-02-01

    Climate change experts largely agree that future climate change and associated rises in oceanic water levels over the upcoming decades, will affect marine salinity levels. The subsequent effects on fish communities in estuarine ecosystems however, are less clear. One species that is likely to become increasingly affected by changes in salinity is the ide (Leuciscus idus). The ide is a stenohaline freshwater fish that primarily inhabits rivers, with frequent anadromous behavior when sea salinity does not exceed 15%. Unlike most other anadromous Baltic Sea fish species, the ide has yet to be subjected to large-scale stocking programs, and thus provides an excellent opportunity for studying the natural population structure across the current salinity gradient in the Danish Belts. To explore this, we used Genotyping-by-Sequencing to determine genomic population structure of both freshwater resident and anadromous ide populations in the western Baltic Sea region, and relate the results to the current salinity gradient and the demographic history of ide in the region. The sample sites separate into four clusters, with all anadromous populations in one cluster and the freshwater resident populations in the remaining three. Results demonstrate high level of differentiation between sites hosting freshwater resident populations, but little differentiation among anadromous populations. Thus ide exhibit the genomic population structure of both a typical freshwater species, and a typical anadromous species. In addition to providing a first insight into the population structure of north-western European ide, our data also (1) provide indications of a single illegal introduction by man; (2) suggest limited genetic effects of heavy pollution in the past; and (3) indicate possible historical anadromous behavior in a now isolated freshwater population. PMID:26941944

  16. Phosphate Ions Affect the Water Structure at Functionalized Membrane Surfaces.

    PubMed

    Barrett, Aliyah; Imbrogno, Joseph; Belfort, Georges; Petersen, Poul B

    2016-09-01

    Antifouling surfaces improve function, efficiency, and safety in products such as water filtration membranes, marine vehicle coatings, and medical implants by resisting protein and biofilm adhesion. Understanding the role of water structure at these materials in preventing protein adhesion and biofilm formation is critical to designing more effective coatings. Such fouling experiments are typically performed under biological conditions using isotonic aqueous buffers. Previous studies have explored the structure of pure water at a few different antifouling surfaces, but the effect of electrolytes and ionic strength (I) on the water structure at antifouling surfaces is not well studied. Here sum frequency generation (SFG) spectroscopy is used to characterize the interfacial water structure at poly(ether sulfone) (PES) and two surface-modified PES films in contact with 0.01 M phosphate buffer with high and low salt (Ionic strength, I= 0.166 and 0.025 M, respectively). Unmodified PES, commonly used as a filtration membrane, and modified PES with a hydrophobic alkane (C18) and with a poly(ethylene glycol) (PEG) were used. In the low ionic strength phosphate buffer, water was strongly ordered near the surface of the PEG-modified PES film due to exclusion of phosphate ions and the creation of a surface potential resulting from charge separation between phosphate anions and sodium cations. However, in the high ionic strength phosphate buffer, the sodium and potassium chloride (138 and 3 mM, respectively) in the phosphate buffered saline screened this charge and substantially reduced water ordering. A much smaller water ordering and subsequent reduction upon salt addition was observed for the C18-modified PES, and little water structure change was seen for the unmodified PES. The large difference in water structuring with increasing ionic strength between widely used phosphate buffer and phosphate buffered saline at the PEG interface demonstrates the importance of studying

  17. The Stellar Population Structure of the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Bovy, Jo; Rix, Hans-Walter; Schlafly, Edward F.; Nidever, David L.; Holtzman, Jon A.; Shetrone, Matthew; Beers, Timothy C.

    2016-05-01

    The spatial structure of stellar populations with different chemical abundances in the Milky Way (MW) contains a wealth of information on Galactic evolution over cosmic time. We use data on 14,699 red-clump stars from the APOGEE survey, covering 4 {kpc}≲ R≲ 15 {kpc}, to determine the structure of mono-abundance populations (MAPs)—stars in narrow bins in [α /{Fe}] and [{Fe}/{{H}}]—accounting for the complex effects of the APOGEE selection function and the spatially variable dust obscuration. We determine that all MAPs with enhanced [α /{Fe}] are centrally concentrated and are well-described as exponentials with a scale length of 2.2+/- 0.2 {kpc} over the whole radial range of the disk. We discover that the surface-density profiles of low-[α /{Fe}] MAPs are complex: they do not monotonically decrease outwards, but rather display a peak radius ranging from ≈ 5 to ≈ 13 {kpc} at low [{Fe}/{{H}}]. The extensive radial coverage of the data allows us to measure radial trends in the thickness of each MAP. While high-[α /{Fe}] MAPs have constant scale heights, low-[α /{Fe}] MAPs flare. We confirm, now with high-precision abundances, previous results that each MAP contains only a single vertical scale height and that low-[{Fe}/{{H}}], low-[α /{Fe}] and high-[{Fe}/{{H}}], high-[α /{Fe}] MAPs have intermediate ({h}Z≈ 300{--}600 {pc}) scale heights that smoothly bridge the traditional thin- and thick-disk divide. That the high-[α /{Fe}], thick disk components do not flare is strong evidence against their thickness being caused by radial migration. The correspondence between the radial structure and chemical-enrichment age of stellar populations is clear confirmation of the inside-out growth of galactic disks. The details of these relations will constrain the variety of physical conditions under which stars form throughout the MW disk.

  18. Diverse plasma populations and structures in Jupiter's magnetotail.

    PubMed

    McComas, D J; Allegrini, F; Bagenal, F; Crary, F; Ebert, R W; Elliott, H; Stern, A; Valek, P

    2007-10-12

    Jupiter's magnetotail is the largest cohesive structure in the solar system and marks the loss of vast numbers of heavy ions from the Jupiter system. The New Horizons spacecraft traversed the magnetotail to distances exceeding 2500 jovian radii (R(J)) and revealed a remarkable diversity of plasma populations and structures throughout its length. Ions evolve from a hot plasma disk distribution at approximately 100 R(J) to slower, persistent flows down the tail that become increasingly variable in flux and mean energy. The plasma is highly structured-exhibiting sharp breaks, smooth variations, and apparent plasmoids-and contains ions from both Io and Jupiter's ionosphere with intense bursts of H(+) and H(+)(3). Quasi-periodic changes were seen in flux at approximately 450 and approximately 1500 R(J) with a 10-hour period. Other variations in flow speed at approximately 600 to 1000 R(J) with a 3- to 4-day period may be attributable to plasmoids moving down the tail. PMID:17932282

  19. Population structure and dispersal of the coral-excavating sponge Cliona delitrix.

    PubMed

    Chaves-Fonnegra, Andia; Feldheim, Kevin A; Secord, Jesse; Lopez, Jose V

    2015-04-01

    Some excavating sponges of the genus Cliona compete with live reef corals, often killing and bioeroding entire colonies. Important aspects affecting distribution of these species, such as dispersal capability and population structure, remain largely unknown. Thus, the aim of this study was to determine levels of genetic connectivity and dispersal of Cliona delitrix across the Greater Caribbean (Caribbean Sea, Bahamas and Florida), to understand current patterns and possible future trends in their distribution and effects on coral reefs. Using ten species-specific microsatellite markers, we found high levels of genetic differentiation between six genetically distinct populations: one in the Atlantic (Florida-Bahamas), one specific to Florida and four in the South Caribbean Sea. In Florida, two independent breeding populations are likely separated by depth. Gene flow and ecological dispersal occur among other populations in the Florida reef tract, and between some Florida locations and the Bahamas. Similarly, gene flow occurs between populations in the South Caribbean Sea, but appears restricted between the Caribbean Sea and the Atlantic (Florida-Bahamas). Dispersal of C. delitrix was farther than expected for a marine sponge and favoured in areas where currents are strong enough to transport sponge eggs or larvae over longer distances. Our results support the influence of ocean current patterns on genetic connectivity, and constitute a baseline to monitor future C. delitrix trends under climate change. PMID:25732628

  20. Intimate Partner Violence and Its Health Impact on Disproportionately Affected Populations, Including Minorities and Impoverished Groups

    PubMed Central

    Hayashi, Hitomi; Campbell, Jacquelyn C.

    2015-01-01

    Abstract In the United States, intimate partner violence (IPV) against women disproportionately affects ethnic minorities. Further, disparities related to socioeconomic and foreign-born status impact the adverse physical and mental health outcomes as a result of IPV, further exacerbating these health consequences. This article reviews 36 U.S. studies on the physical (e.g., multiple injuries, disordered eating patterns), mental (e.g., depression, post-traumatic stress disorder), and sexual and reproductive health conditions (e.g., HIV/STIs, unintended pregnancy) resulting from IPV victimization among ethnic minority (i.e., Black/African American, Hispanic/Latina, Native American/Alaska Native, Asian American) women, some of whom are immigrants. Most studies either did not have a sufficient sample size of ethnic minority women or did not use adequate statistical techniques to examine differences among different racial/ethnic groups. Few studies focused on Native American/Alaska Native and immigrant ethnic minority women and many of the intra-ethnic group studies have confounded race/ethnicity with income and other social determinants of health. Nonetheless, of the available data, there is evidence of health inequities associated with both minority ethnicity and IPV. To appropriately respond to the health needs of these groups of women, it is necessary to consider social, cultural, structural, and political barriers (e.g., medical mistrust, historical racism and trauma, perceived discrimination, immigration status) to patient–provider communication and help-seeking behaviors related to IPV, which can influence health outcomes. This comprehensive approach will mitigate the racial/ethnic and socioeconomic disparities related to IPV and associated health outcomes and behaviors. PMID:25551432

  1. Stage structure alters how complexity affects stability of ecological networks

    USGS Publications Warehouse

    Rudolf, V.H.W.; Lafferty, Kevin D.

    2011-01-01

    Resolving how complexity affects stability of natural communities is of key importance for predicting the consequences of biodiversity loss. Central to previous stability analysis has been the assumption that the resources of a consumer are substitutable. However, during their development, most species change diets; for instance, adults often use different resources than larvae or juveniles. Here, we show that such ontogenetic niche shifts are common in real ecological networks and that consideration of these shifts can alter which species are predicted to be at risk of extinction. Furthermore, niche shifts reduce and can even reverse the otherwise stabilizing effect of complexity. This pattern arises because species with several specialized life stages appear to be generalists at the species level but act as sequential specialists that are hypersensitive to resource loss. These results suggest that natural communities are more vulnerable to biodiversity loss than indicated by previous analyses.

  2. Structural and leakage integrity of tubes affected by circumferential cracking

    SciTech Connect

    Hernalsteen, P.

    1997-02-01

    In this paper the author deals with the notion that circumferential cracks are generally considered unacceptable. He argues for the need to differentiate two facets of such cracks: the issue of the size and growth rate of a crack; and the issue of the structural strength and leakage potential of the tube in the presence of the crack. In this paper the author tries to show that the second point is not a major concern for such cracks. The paper presents data on the structural strength or burst pressure characteristics of steam generator tubes derived from models and data bases of experimental work. He also presents a leak rate model, and compares the performance of circumferential and axial cracks as far as burst strength and leak rate. The final conclusion is that subject to improvement in NDE capabilities (sizing, detection, growth), that Steam Generator Defect Specific Management can be used to allow circumferentially degraded tubes to remain in service.

  3. Local genetic structure in a white-bearded manakin population.

    PubMed

    Höglund, Jacob; Shorey, Lisa

    2003-09-01

    Local genetic structure was studied in lekking white-bearded manakins in a study area on northern Trinidad, West Indies. The study population consisted of nine leks, at which a total of 238 birds were caught. By genotyping the individuals at eight polymorphic microsatellite loci we inferred some males on leks to be related (r = 0.25) as we found an average number of 14.8 half-sib relationships and two full-sib relationships per lek. We found that the sampled birds belonged to one genetic population that was slightly inbred (FIS and FIT = 0.02). Kinship coefficients decreased with increasing geographical distance, indicating that related birds displayed at the same or nearby leks. However, leks did not consist of only one family group because the average genetic distance (aij) between males within leks was higher than when comparing males on leks within close proximity. These patterns suggest limited male dispersal, that some type of kin recognition process between individuals may exist in this species and that males on leks may be more likely to establish themselves as territory-holding birds if a relative is already present. PMID:12919483

  4. Late Chachapoya population structure prior to Inka conquest.

    PubMed

    Nystrom, Kenneth C

    2006-11-01

    Archaeological and ethnohistorical documents suggest that the Chachapoya region was inhabited by a number of distinct sociopolitical groups that only united in the face of their common enemy, the Inka. The purpose of this research is to quantify the amount of internal genetic differentiation and levels of extraregional gene flow during the Late Chachapoya period, in order to obtain a better understanding of the genetic relationship between these presumed ethnic groups. Craniometric data were collected from three Late Chachapoya samples (Laguna Huayabamba, Kuelap, and Laguna de los Cóndores), in order to understand the genetic relationships between the groups and facilitate our understanding of Late Chachapoya population structure. Genetic differentiation among these series ranged from 0.047 (heritability = 1.0) to 0.090 (heritability = 0.55). The Relethford-Blangero residuals indicate that the Laguna Huayabamba and Laguna de los Cóndores populations were receiving greater than average external gene flow, while Kuelap was receiving less than average external gene flow. The correspondence between biological and archaeological data in the investigation of prehistoric ethnic identity is discussed. PMID:16617430

  5. Latitudinal variation in population structure of wintering Pacific Black Brant

    USGS Publications Warehouse

    Schamber, J.L.; Sedinger, J.S.; Ward, D.H.; Hagmeier, K.R.

    2007-01-01

    Latitudinal variation in population structure during the winter has been reported in many migratory birds, but has been documented in few species of waterfowl. Variation in environmental and social conditions at wintering sites can potentially influence the population dynamics of differential migrants. We examined latitudinal variation in sex and age classes of wintering Pacific Black Brant (Branta bernicla nigricans). Brant are distributed along a wide latitudinal gradient from Alaska to Mexico during the winter. Accordingly, migration distances for brant using different wintering locations are highly variable and winter settlement patterns are likely associated with a spatially variable food resource. We used resightings of brant banded in southwestern Alaska to examine sex and age ratios of birds wintering at Boundary Bay in British Columbia, and at San Quintin Bay, Ojo de Liebre Lagoon, and San Ignacio Lagoon in Baja California from 1998 to 2000. Sex ratios were similar among wintering locations for adults and were consistent with the mating strategy of geese. The distribution of juveniles varied among wintering areas, with greater proportions of juveniles observed at northern (San Quintin Bay and Ojo de Liebre Lagoon) than at southern (San Ignacio Lagoon) locations in Baja California. We suggest that age-related variation in the winter distribution of Pacific Black Brant is mediated by variation in productivity among individuals at different wintering locations and by social interactions among wintering family groups.

  6. Genetic Diversity and Population Structure of Haemonchus contortus.

    PubMed

    Gilleard, J S; Redman, E

    2016-01-01

    Haemonchus contortus is one of the most successful and problematic livestock parasites worldwide. From its apparent evolutionary origins in sub-Saharan Africa, it is now found in small ruminants in almost all regions of the globe, and can infect a range of different domestic and wildlife artiodactyl hosts. It has a remarkably high propensity to develop resistance to anthelmintic drugs, making control increasingly difficult. The success of this parasite is, at least in part, due to its extremely high levels of genetic diversity that, in turn, provide a high adaptive capacity. Understanding this genetic diversity is important for many areas of research including anthelmintic resistance, epidemiology, control, drug/vaccine development and molecular diagnostics. In this article, we review the current knowledge of H. contortus genetic diversity and population structure for both field isolates and laboratory strains. We highlight the practical relevance of this knowledge with a particular emphasis on anthelmintic resistance research. PMID:27238002

  7. Intraspecific phytochemical variation shapes community and population structure for specialist caterpillars.

    PubMed

    Glassmire, Andrea E; Jeffrey, Christopher S; Forister, Matthew L; Parchman, Thomas L; Nice, Chris C; Jahner, Joshua P; Wilson, Joseph S; Walla, Thomas R; Richards, Lora A; Smilanich, Angela M; Leonard, Michael D; Morrison, Colin R; Simbaña, Wilmer; Salagaje, Luis A; Dodson, Craig D; Miller, Jim S; Tepe, Eric J; Villamarin-Cortez, Santiago; Dyer, Lee A

    2016-10-01

    Chemically mediated plant-herbivore interactions contribute to the diversity of terrestrial communities and the diversification of plants and insects. While our understanding of the processes affecting community structure and evolutionary diversification has grown, few studies have investigated how trait variation shapes genetic and species diversity simultaneously in a tropical ecosystem. We investigated secondary metabolite variation among subpopulations of a single plant species, Piper kelleyi (Piperaceae), using high-performance liquid chromatography (HPLC), to understand associations between plant phytochemistry and host-specialized caterpillars in the genus Eois (Geometridae: Larentiinae) and associated parasitoid wasps and flies. In addition, we used a genotyping-by-sequencing approach to examine the genetic structure of one abundant caterpillar species, Eois encina, in relation to host phytochemical variation. We found substantive concentration differences among three major secondary metabolites, and these differences in chemistry predicted caterpillar and parasitoid community structure among host plant populations. Furthermore, E. encina populations located at high elevations were genetically different from other populations. They fed on plants containing high concentrations of prenylated benzoic acid. Thus, phytochemistry potentially shapes caterpillar and wasp community composition and geographic variation in species interactions, both of which can contribute to diversification of plants and insects. PMID:27279551

  8. Memory and obesity affect the population dynamics of asexual freshwater planarians

    NASA Astrophysics Data System (ADS)

    Dunkel, Jörn; Talbot, Jared; Schötz, Eva-Maria

    2011-04-01

    Asexual reproduction in multicellular organisms is a complex biophysical process that is not yet well understood quantitatively. Here, we report a detailed population study for the asexual freshwater planarian Schmidtea mediterranea, which can reproduce via transverse fission due to a large stem cell contingent. Our long-term observations of isolated non-interacting planarian populations reveal that the characteristic fission waiting time distributions for head and tail fragments differ significantly from each other. The stochastic fission dynamics of tail fragments exhibits non-negligible memory effects, implying that an accurate mathematical description of future data should be based on non-Markovian tree models. By comparing the effective growth of non-interacting planarian populations with those of self-interacting populations, we are able to quantify the influence of interactions between flatworms and physical conditions on the population growth. A surprising result is the non-monotonic relationship between effective population growth rate and nutrient supply: planarians exhibit a tendency to become 'obese' if the feeding frequency exceeds a critical level, resulting in a decreased reproduction activity. This suggests that these flatworms, which possess many genes homologous to those of humans, could become a new model system for studying dietary effects on reproduction and regeneration in multicellular organisms.

  9. Does small scale structure significantly affect cosmological dynamics?

    PubMed

    Adamek, Julian; Clarkson, Chris; Durrer, Ruth; Kunz, Martin

    2015-02-01

    The large-scale homogeneity and isotropy of the Universe is generally thought to imply a well-defined background cosmological model. It may not. Smoothing over structure adds in an extra contribution, transferring power from small scales up to large. Second-order perturbation theory implies that the effect is small, but suggests that formally the perturbation series may not converge. The amplitude of the effect is actually determined by the ratio of the Hubble scales at matter-radiation equality and today-which are entirely unrelated. This implies that a universe with significantly lower temperature today could have significant backreaction from more power on small scales, and so provides the ideal testing ground for understanding backreaction. We investigate this using two different N-body numerical simulations-a 3D Newtonian and a 1D simulation which includes all relevant relativistic effects. We show that while perturbation theory predicts an increasing backreaction as more initial small-scale power is added, in fact the virialization of structure saturates the backreaction effect at the same level independently of the equality scale. This implies that backreaction is a small effect independently of initial conditions. Nevertheless, it may still contribute at the percent level to certain cosmological observables and therefore it cannot be neglected in precision cosmology. PMID:25699430

  10. Population structure and dynamics of Magnaporthe grisea in the Indian Himalayas.

    PubMed Central

    Kumar, J; Nelson, R J; Zeigler, R S

    1999-01-01

    The population genetics of Magnaporthe grisea, the rice blast pathogen, were analyzed in a center of rice diversity (the Uttar Pradesh hills of the Indian Himalayas) using multilocus and single-, or low-copy, DNA markers. Based on DNA fingerprinting with the multilocus probe MGR586 and single-locus probes, 157 haplotypes clustered into 56 lineages (at >/=70% MGR586 band similarity, each with unique single-locus profiles) and high diversity indices were detected among 458 isolates collected from 29 sites during 1992-1995. Most valleys sampled had distinct populations (73% of the lineages were site specific) with some containing one or a few lineages, confirming the importance of clonal propagation, and others were very diverse. Widely distributed lineages suggested that migration occurs across the region and into the Indo-Gangetic plains. Repeated sampling at one site, Matli, (170 isolates, 1992-1995) yielded 19 lineages and diversity significantly greater than that reported from similar samples from Colombia and the Philippines. Analysis of allelic associations using pairwise comparisons and multilocus variance analysis failed to reject the hypothesis of gametic phase equilibrium. The Matli population shifted from highly diverse in 1992 to almost complete dominance by one lineage in 1995. Such population dynamics are consistent with recombination followed by differential survival of clonal descendants of recombinant progeny. At another site, Ranichauri, population (n = 84) composition changed from 2 to 11 lineages over 2 yr and yielded additional evidence for equilibrium. Sexually fertile and hermaphrodite isolates of both mating types were recovered from rice in both Matli and Ranichauri. We demonstrate that Himalayan M. grisea populations are diverse and dynamic and conclude that the structure of some populations may be affected to some extent by sexual recombination. PMID:10388817

  11. Population structure of honey bees in the Carpathian Basin (Hungary) confirms introgression from surrounding subspecies.

    PubMed

    Péntek-Zakar, Erika; Oleksa, Andrzej; Borowik, Tomasz; Kusza, Szilvia

    2015-12-01

    Carniolan honey bees (Apis mellifera carnica) are considered as an indigenous subspecies in Hungary adapted to most of the ecological and climatic conditions in this area. However, during the last decades Hungarian beekeepers have recognized morphological signs of the Italian honey bee (Apis mellifera ligustica). As the natural distribution of the honey bee subspecies can be affected by the importation of honey bee queens or by natural gene flow, we aimed at determining the genetic structure and characteristics of the local honey bee population using molecular markers. All together, 48 Hungarian and 84 foreign (Italian, Polish, Spanish, Liberian) pupae and/or workers were used for mitochondrial DNA analysis. Additionally, 53 sequences corresponding to 10 subspecies and the Buckfast hybrid were downloaded from GenBank. For the nuclear analysis, 236 Hungarian and 106 foreign honey bees were genotyped using nine microsatellites. Heterozygosity values, population-specific alleles, FST values, principal coordinate analysis, assignment tests, structure analysis, and dendrograms were calculated. Haplotype and nucleotide diversity values showed moderate values. We found that one haplotype (H9) was dominant in Hungary. The presence of the black honey bee (Apis mellifera mellifera) was negligible, but a few individuals resembling other subspecies were identified. We proved that the Hungarian honey bee population is nearly homogeneous but also demonstrated introgression from the foreign subspecies. Both mitochondrial DNA and microsatellite analyses corroborated the observations of the beekeepers. Molecular analyses suggested that Carniolan honey bee in Hungary is slightly affected by Italian and black honey bee introgression. Genetic differences were detected between Polish and Hungarian Carniolan honey bee populations, suggesting the existence of at least two different gene pools within A. m. carnica. PMID:27069597

  12. Characterization of a population of Fusarium oxysporum, from sugar beet, using the population structure of putative pathogenicity genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    WEBB, KIMBERLY M.*, PAUL COVEY, BRETT KUWITZKY, AND MIA HANSON, USDA-ARS, Sugar Beet Research Unit, 1701 Centre Ave., Fort Collins, CO 80526. Characterization of a population of Fusarium oxysporum, from sugar beet, using the population structure of putative pathogenicity genes. Fusarium oxysp...

  13. Elasticity of vesicles affects hairless mouse skin structure and permeability.

    PubMed

    van den Bergh, B A; Bouwstra, J A; Junginger, H E; Wertz, P W

    1999-12-01

    One of the possibilities for increasing the penetration rate of drugs through the skin is the use of vesicular systems. Currently, special attention is paid to the elastic properties of liquid-state vesicles, which are supposed to have superior properties compared to gel-state vesicles with respect to skin interactions. In this study, the effects of vesicles on hairless mouse skin, both in vivo and in vitro, were studied in relation to the composition of vesicles. The interactions of elastic vesicles containing the single chain surfactant octaoxyethylene laurate-ester (PEG-8-L) and sucrose laurate-ester (L-595) with hairless mouse skin were studied, in vivo, after non-occlusive application for 1, 3 and 6 h. The skin ultrastructure was examined by ruthenium tetroxide electron microscopy (TEM) and histology. The extent, to which vesicle constituents penetrated into the stratum corneum, was quantified by thin layer chromatography (TLC). The interactions of the elastic vesicles containing PEG-8-L and L-595 surfactants were compared with those observed after treatment with rigid vesicles containing the surfactant sucrose stearate-ester (Wasag-7). Furthermore, skin permeability experiments were carried out to investigate the effect of treatment with PEG-8-L micelles, elastic vesicles (containing PEG-8-L and L-595 surfactants) or rigid Wasag-7 vesicles on the 3H(2)O transport through hairless mouse skin, in vitro, after non-occlusive application. Treatment of hairless mouse skin with the elastic vesicles affected the ultrastructure of the stratum corneum: distinct regions with lamellar stacks derived from the vesicles were observed in intercellular spaces of the stratum corneum. These stacks disrupted the organization of skin bilayers leading to an increased skin permeability, whereas no changes in the ultrastructure of the underlying viable epidermis were observed. Treatment with rigid Wasag-7 vesicles did not affect the skin ultrastructure or skin permeability. TLC

  14. Evaluation of genetic diversity and population structure in a commercially important freshwater fish Prochilodus costatus (Characiformes, Prochilodontidae) using complex hypervariable repeats.

    PubMed

    Barroca, T M; Santos, G B; Duarte, N V R; Kalapothakis, E

    2012-01-01

    We used complex hypervariable repeats to evaluate the genetic diversity and structure of Prochilodus costatus (Characiformes), an ecologically and economically important species endemic to the São Francisco River basin. Hydroelectric dams along the river have led to population fragmentation, which can limit gene flow. Restocking from hatcheries has been used to repopulate declining populations. To determine how fragmentation and hatchery supplementation affect P. costatus population structure, we studied populations from three sites up and downstream of the Gafanhoto Dam (Pará River, State of Minas Gerais). High levels of genetic diversity were found within populations (0.926 to 0.873); the three populations showed significant differentiation (F(ST) = 0.16), suggesting that populations from the three sites were affected by fragmentation of the river and by hatchery contributions. These results will be useful for developing a management and conservation plan for fish species in this area. PMID:23079996

  15. Coexistence of structured populations with size-based prey selection.

    PubMed

    Hartvig, Martin; Andersen, Ken Haste

    2013-11-01

    Species with a large adult-offspring size ratio and a preferred predator-prey mass ratio undergo ontogenetic trophic niche shift(s) throughout life. Trophic interactions between such species vary throughout life, resulting in different species-level interaction motifs depending on the maximum adult sizes and population size distributions. We explore the assembly and potential for coexistence of small communities where all species experience ontogenetic trophic niche shifts. The life-history of each species is described by a physiologically structured model and species identity is characterised by the trait: size at maturation. We show that a single species can exist in two different states: a 'resource driven state' and a 'cannibalistic state' with a large scope for emergent Allee effects and bistable states. Two species can coexist in two different configurations: in a 'competitive coexistence' state when the ratio between sizes at maturation of the two species is less than a predator-prey mass ratio and the resource level is low to intermediate, or in a 'trophic ladder' state if the ratio of sizes at maturation is larger than the predator-prey mass ratio at all resource levels. While there is a large scope for coexistence of two species, the scope for coexistence of three species is limited and we conclude that further trait differentiation is required for coexistence of more species-rich size-structured communities. PMID:23927897

  16. Variation and genetic structure of Tunisian Festuca arundinacea populations based on inter-simple sequence repeat pattern.

    PubMed

    Chtourou-Ghorbel, N; Elazreg, H; Ghariani, S; Ben Mheni, N; Sekmani, M; Chakroun, M; Trifi-Farah, N

    2015-01-01

    Tunisian tall fescue (Festuca arundinacea Schreb.) is an important grass for forages or soil conservation, particularly in marginal sites. Inter-simple sequence repeats were used to estimate genetic diversity within and among 8 natural populations and 1 cultivar from Northern Tunisia. A total of 181 polymorphic inter-simple sequence repeat markers were generated using 7 primers. Shannon's index and analysis of molecular variance evidenced a high molecular polymorphism at intra-specific levels for wild and cultivated accessions, showing that Tunisian tall fescue germplasm constitutes an important pool of diversity. Within-population variation accounted for 39.42% of the total variation, but no regional differentiation was discernible to designate close relationships between regions. Most of the variation (GST = 67%) occurred between populations, rather than within populations. The ɸST (0.60) revealed high population structuring. Additionally, the population structure was independent of the geographic origin and was not affected by environmental factors. The unweighted pair group method with arithmetic mean tree based on genetic similarity and principal coordinate analysis based on coefficient similarity illustrated that continental populations from the proximate localities of Beja and Jendouba were genetically closely related, while the wild Skalba population from the littoral Tunisian locality was the most diverse from the others. Moreover, great molecular similarity of the spontaneous population Sedjnane originated from the mountain areas was revealed with the local cultivar Mornag. The observed genetic diversity can be used to implement conservation strategies and breeding programs for improving forage crops in Tunisia. PMID:25966071

  17. Estimating the Size of HIV Key Affected Populations in Chongqing, China, Using the Network Scale-Up Method

    PubMed Central

    Lin, Wen; Wu, Guohui; Zhang, Wei; Hladik, Wolfgang; Abdul-Quader, Abu; Bulterys, Marc; Fuller, Serena; Wang, Lu

    2013-01-01

    Objectives To estimate the average social network size in the general population and the size of HIV key affected populations (KAPs) in Chongqing municipality using the network scale-up method (NSUM). Methods A general population survey was conducted in 2011 through a multistage random sampling method. Participants aged between 18 and 60 years were recruited. The average social network size (c) was estimated and adjusted by known population method. The size of HIV KAP in Chongqing municipality was estimated using the adjusted c value with adjustment for the transmission effect using the scaled respect factor. Results 3,026 inhabitants of Chongqing agreed to the survey, and 2,957 (97.7%) completed the questionnaire. The adjusted c value was 310. The estimated size of KAP was 28,418(95% Confidence Interval (CI):26,636∼30,201) for female sex workers (FSW), 163,199(95%CI:156,490∼169,908) for clients of FSW, 37,959(95%CI: 34,888∼41,030) for drug users (DU), 14,975(95%CI:13,047∼16,904) for injecting drug users (IDU) and 16,767(95%CI:14,602∼18,932) for men who have sex with men (MSM). The ratio of clients to FSW was 5.74∶1, and IDU accounted for 39.5% of the DU population. The estimates suggest that FSW account for 0.37% of the female population aged 15–49 years in Chongqing, and clients of FSW and MSM represent 2.09% and 0.21% of the male population aged 15–49 years in the city, respectively. Conclusion NSUM provides reasonable population size estimates for FSW, their clients, DU and IDU in Chongqing. However, it is likely to underestimate the population size of MSM even after adjusting for the transmission effect. PMID:23967246

  18. Wolf population dynamics in the U.S. Northern Rocky Mountains are affected by recruitment and human-caused mortality

    USGS Publications Warehouse

    Gude, J.A.; Mitchell, M.S.; Russell, R.E.; Sime, C.A.; Bangs, E.E.; Mech, L.D.; Ream, R.R.

    2012-01-01

    Reliable analyses can help wildlife managers make good decisions, which are particularly critical for controversial decisions such as wolf (Canis lupus) harvest. Creel and Rotella (2010) recently predicted substantial population declines in Montana wolf populations due to harvest, in contrast to predictions made by Montana Fish, Wildlife and Parks (MFWP). We replicated their analyses considering only those years in which field monitoring was consistent, and we considered the effect of annual variation in recruitment on wolf population growth. Rather than assuming constant rates, we used model selection methods to evaluate and incorporate models of factors driving recruitment and human-caused mortality rates in wolf populations in the Northern Rocky Mountains. Using data from 27 area-years of intensive wolf monitoring, we show that variation in both recruitment and human-caused mortality affect annual wolf population growth rates and that human-caused mortality rates have increased with the sizes of wolf populations. We document that recruitment rates have decreased over time, and we speculate that rates have decreased with increasing population sizes and/or that the ability of current field resources to document recruitment rates has recently become less successful as the number of wolves in the region has increased. Estimates of positive wolf population growth in Montana from our top models are consistent with field observations and estimates previously made by MFWP for 2008-2010, whereas the predictions for declining wolf populations of Creel and Rotella (2010) are not. Familiarity with limitations of raw data, obtained first-hand or through consultation with scientists who collected the data, helps generate more reliable inferences and conclusions in analyses of publicly available datasets. Additionally, development of efficient monitoring methods for wolves is a pressing need, so that analyses such as ours will be possible in future years when fewer resources

  19. Genetic changes from artificial propagation of Pacific salmon affect the productivity and viability of supplemented populations

    USGS Publications Warehouse

    Reisenbichler, R.R.; Rubin, S.P.

    1999-01-01

    Although several studies have shown genetic differences between hatchery and wild anadromous Pacific salmon (Oncorhynchus spp.), none has provided compelling evidence that artificial propagation poses a genetic threat to conservation of naturally spawning populations. When the published studies and three studies in progress are considered collectively, however, they provide strong evidence that the fitness for natural spawning and rearing can be rapidly and substantially reduced by artificial propagation. This issue takes on great importance in the Pacific Northwest where supplementation of wild salmon populations with hatchery fish has been identified as an important tool for restoring these populations. Recognition of negative aspects may lead to restricted use of supplementation, and better conservation, better evaluation, and greater benefits when supplementation is used.

  20. Microhabitat use affects brain size and structure in intertidal gobies.

    PubMed

    White, Gemma E; Brown, Culum

    2015-01-01

    The ecological cognition hypothesis poses that the brains and behaviours of individuals are largely shaped by the environments in which they live and the associated challenges they must overcome during their lives. Here we examine the effect of environmental complexity on relative brain size in 4 species of intertidal gobies from differing habitats. Two species were rock pool specialists that lived on spatially complex rocky shores, while the remainder lived on dynamic, but structurally simple, sandy shores. We found that rock pool-dwelling species had relatively larger brains and telencephalons in particular, while sand-dwelling species had a larger optic tectum and hypothalamus. In general, it appears that various fish species trade off neural investment in specific brain lobes depending on the environment in which they live. Our previous research suggests that rock pool species have greater spatial learning abilities, enabling them to navigate their spatially complex environment, which may account for their enlarged telencephalon, while sand-dwelling species likely have a reduced need for spatial learning, due to their spatially simple habitat, and a greater need for visual acuity. The dorsal medulla and cerebellum size was unaffected by the habitat in which the fish lived, but there were differences between species indicative of species-specific trade-offs in neural investment. PMID:25896449

  1. Country of birth affects blood pressure in the French hypertensive diabetic population

    PubMed Central

    Aoun Bahous, Sola; Thomas, Frédérique; Pannier, Bruno; Danchin, Nicolas; Safar, Michel E.

    2015-01-01

    In a population of 56,242 individuals living in France, we showed that individuals born in France have significantly different levels of blood pressure (BP) and cardiovascular (CV) risk factors than African and Asian populations born in their own country but living long-term in France (average duration of stay, 5–10 years). The objective of our study was to investigate the impact of country of birth on BP and CV risk factors in a subpopulation of 9245 patients selected solely on the diagnosis of hypertension, either alone or with simultaneous type 2 diabetes. In the subgroup of individuals with hypertension alone, brachial systolic, diastolic, mean and pulse pressure (PP), heart rate (HR), augmentation index and PP amplification were significantly higher in African-born than French- and Asian-born populations. In the subgroup of individuals with both hypertension and diabetes, only augmentation index, PP amplification and brachial and central PP, but not brachial systolic, diastolic, mean BP, and HR, were elevated when the African-born subgroup was compared to the French- and Asian-born populations. Increased body mass index (BMI), waist-hip ratio (WHR), and deprivation scores, but not increased plasma lipids or glycemia, were consistently associated with the African-born population. The combination of diabetes and hypertension in African populations was associated with increased aortic stiffness and PP, together with greater body weight and WHR. In individuals with increased PP and hence systolic hypertension, increased PP requires systolic BP to be reduced whereas notable reductions in diastolic BP may have deleterious consequences. PMID:26388785

  2. Genetic Diversity and Genetic Structure of Different Types of Natural Populations in Osmanthus fragrans Lour. and the Relationships with Sex Ratio, Population Structure, and Geographic Isolation

    PubMed Central

    Hu, Shaoqing; Wu, Shuai; Wang, Yiguang; Zhang, Yuanyan

    2014-01-01

    Osmanthus fragrans Lour., an evergreen small tree, has the rare sexual system of androdioecy (coexistence of males and hermaphrodites), once with wide-spread natural distribution in the areas of the South Yangzi river basin. However, due to excessive human utilization, natural distribution became fragmented and the number and size of natural populations reduced sharply. With four different types of natural populations from the same region as research object, we aim to provide a comparative analysis on the relationships among genetic diversity, sexual system, population structure and size, and geographic isolation by ISSR. In genetic parameters of Ne, He, and I, the LQGC population had the highest value and the LQZGQ population had the lowest value. These indicated that LQGC population showed the highest genetic diversity, followed by QDH and JN population, and LQZGQ population exhibited the lowest genetic diversity. Genetic diversity in populations is closely related to population structure, reproduction mode, and sex ratio. However, there seems to be no obvious correlation between genetic diversity and population size. The results of AMOVA showed that genetic variations mostly occurred within populations. It indicates that no significant genetic differentiation among populations occurs, and geographic isolation has no significant effect on genetic diversity. PMID:25436228

  3. Genetic diversity and genetic structure of different types of natural populations in Osmanthus fragrans Lour. and the relationships with sex ratio, population structure, and geographic isolation.

    PubMed

    Hu, Shaoqing; Wu, Shuai; Wang, Yiguang; Zhao, Hongbo; Zhang, Yuanyan

    2014-01-01

    Osmanthus fragrans Lour., an evergreen small tree, has the rare sexual system of androdioecy (coexistence of males and hermaphrodites), once with wide-spread natural distribution in the areas of the South Yangzi river basin. However, due to excessive human utilization, natural distribution became fragmented and the number and size of natural populations reduced sharply. With four different types of natural populations from the same region as research object, we aim to provide a comparative analysis on the relationships among genetic diversity, sexual system, population structure and size, and geographic isolation by ISSR. In genetic parameters of N e , H e , and I, the LQGC population had the highest value and the LQZGQ population had the lowest value. These indicated that LQGC population showed the highest genetic diversity, followed by QDH and JN population, and LQZGQ population exhibited the lowest genetic diversity. Genetic diversity in populations is closely related to population structure, reproduction mode, and sex ratio. However, there seems to be no obvious correlation between genetic diversity and population size. The results of AMOVA showed that genetic variations mostly occurred within populations. It indicates that no significant genetic differentiation among populations occurs, and geographic isolation has no significant effect on genetic diversity. PMID:25436228

  4. Genetic diversity and structure in two species of Leavenworthia with self-incompatible and self-compatible populations.

    PubMed

    Koelling, V A; Hamrick, J L; Mauricio, R

    2011-02-01

    Self-fertilization is a common mating system in plants and is known to reduce genetic diversity, increase genetic structure and potentially put populations at greater risk of extinction. In this study, we measured the genetic diversity and structure of two cedar glade endemic species, Leavenworthia alabamica and L. crassa. These species have self-incompatible (SI) and self-compatible (SC) populations and are therefore ideal for understanding how the mating system affects genetic diversity and structure. We found that L. alabamica and L. crassa had high species-level genetic diversity (H(e)=0.229 and 0.183, respectively) and high genetic structure among their populations (F(ST)=0.45 and 0.36, respectively), but that mean genetic diversity was significantly lower in SC compared with SI populations (SC vs SI, H(e) for L. alabamica was 0.065 vs 0.206 and for L. crassa was 0.084 vs 0.189). We also found significant genetic structure using maximum-likelihood clustering methods. These data indicate that the loss of SI leads to the loss of genetic diversity within populations. In addition, we examined genetic distance relationships between SI and SC populations to analyze possible population history and origins of self-compatibility. We find there may have been multiple origins of self-compatibility in L. alabamica and L. crassa. However, further work is required to test this hypothesis. Finally, given their high genetic structure and that individual populations harbor unique alleles, conservation strategies seeking to maximize species-level genetic diversity for these or similar species should protect multiple populations. PMID:20485327

  5. Ancient Humans Influenced the Current Spatial Genetic Structure of Common Walnut Populations in Asia.

    PubMed

    Pollegioni, Paola; Woeste, Keith E; Chiocchini, Francesca; Del Lungo, Stefano; Olimpieri, Irene; Tortolano, Virginia; Clark, Jo; Hemery, Gabriel E; Mapelli, Sergio; Malvolti, Maria Emilia

    2015-01-01

    Common walnut (Juglans regia L) is an economically important species cultivated worldwide for its wood and nuts. It is generally accepted that J. regia survived and grew spontaneously in almost completely isolated stands in its Asian native range after the Last Glacial Maximum. Despite its natural geographic isolation, J. regia evolved over many centuries under the influence of human management and exploitation. We evaluated the hypothesis that the current distribution of natural genetic resources of common walnut in Asia is, at least in part, the product of ancient anthropogenic dispersal, human cultural interactions, and afforestation. Genetic analysis combined with ethno-linguistic and historical data indicated that ancient trade routes such as the Persian Royal Road and Silk Road enabled long-distance dispersal of J. regia from Iran and Trans-Caucasus to Central Asia, and from Western to Eastern China. Ancient commerce also disrupted the local spatial genetic structure of autochthonous walnut populations between Tashkent and Samarkand (Central-Eastern Uzbekistan), where the northern and central routes of the Northern Silk Road converged. A significant association between ancient language phyla and the genetic structure of walnut populations is reported even after adjustment for geographic distances that could have affected both walnut gene flow and human commerce over the centuries. Beyond the economic importance of common walnut, our study delineates an alternative approach for understanding how the genetic resources of long-lived perennial tree species may be affected by the interaction of geography and human history. PMID:26332919

  6. Ancient Humans Influenced the Current Spatial Genetic Structure of Common Walnut Populations in Asia

    PubMed Central

    Pollegioni, Paola; Woeste, Keith E.; Chiocchini, Francesca; Del Lungo, Stefano; Olimpieri, Irene; Tortolano, Virginia; Clark, Jo; Hemery, Gabriel E.; Mapelli, Sergio; Malvolti, Maria Emilia

    2015-01-01

    Common walnut (Juglans regia L) is an economically important species cultivated worldwide for its wood and nuts. It is generally accepted that J. regia survived and grew spontaneously in almost completely isolated stands in its Asian native range after the Last Glacial Maximum. Despite its natural geographic isolation, J. regia evolved over many centuries under the influence of human management and exploitation. We evaluated the hypothesis that the current distribution of natural genetic resources of common walnut in Asia is, at least in part, the product of ancient anthropogenic dispersal, human cultural interactions, and afforestation. Genetic analysis combined with ethno-linguistic and historical data indicated that ancient trade routes such as the Persian Royal Road and Silk Road enabled long-distance dispersal of J. regia from Iran and Trans-Caucasus to Central Asia, and from Western to Eastern China. Ancient commerce also disrupted the local spatial genetic structure of autochthonous walnut populations between Tashkent and Samarkand (Central-Eastern Uzbekistan), where the northern and central routes of the Northern Silk Road converged. A significant association between ancient language phyla and the genetic structure of walnut populations is reported even after adjustment for geographic distances that could have affected both walnut gene flow and human commerce over the centuries. Beyond the economic importance of common walnut, our study delineates an alternative approach for understanding how the genetic resources of long-lived perennial tree species may be affected by the interaction of geography and human history. PMID:26332919

  7. Population Structure in Naegleria fowleri as Revealed by Microsatellite Markers

    PubMed Central

    Coupat-Goutaland, Bénédicte; Régoudis, Estelle; Besseyrias, Matthieu; Mularoni, Angélique; Binet, Marie; Herbelin, Pascaline; Pélandakis, Michel

    2016-01-01

    Naegleria sp. is a free living amoeba belonging to the Heterolobosea class. Over 40 species of Naegleria were identified and recovered worldwide in different habitats such as swimming pools, freshwater lakes, soil or dust. Among them, N. fowleri, is a human pathogen responsible for primary amoeboic meningoencephalitis (PAM). Around 300 cases were reported in 40 years worldwide but PAM is a fatal disease of the central nervous system with only 5% survival of infected patients. Since both pathogenic and non pathogenic species were encountered in the environment, detection and dispersal mode are crucial points in the fight against this pathogenic agent. Previous studies on identification and genotyping of N. fowleri strains were focused on RAPD analysis and on ITS sequencing and identified 5 variants: euro-american, south pacific, widespread, cattenom and chooz. Microsatellites are powerful markers in population genetics with broad spectrum of applications (such as paternity test, fingerprinting, genetic mapping or genetic structure analysis). They are characterized by a high degree of length polymorphism. The aim of this study was to genotype N. fowleri strains using microsatellites markers in order to track this population and to better understand its evolution. Six microsatellite loci and 47 strains from different geographical origins were used for this analysis. The microsatellite markers revealed a level of discrimination higher than any other marker used until now, enabling the identification of seven genetic groups, included in the five main genetic groups based on the previous RAPD and ITS analyses. This analysis also allowed us to go further in identifying private alleles highlighting intra-group variability. A better identification of the N. fowleri isolates could be done with this type of analysis and could allow a better tracking of the clinical and environmental N. fowleri strains. PMID:27035434

  8. Population Structure in Naegleria fowleri as Revealed by Microsatellite Markers.

    PubMed

    Coupat-Goutaland, Bénédicte; Régoudis, Estelle; Besseyrias, Matthieu; Mularoni, Angélique; Binet, Marie; Herbelin, Pascaline; Pélandakis, Michel

    2016-01-01

    Naegleria sp. is a free living amoeba belonging to the Heterolobosea class. Over 40 species of Naegleria were identified and recovered worldwide in different habitats such as swimming pools, freshwater lakes, soil or dust. Among them, N. fowleri, is a human pathogen responsible for primary amoeboic meningoencephalitis (PAM). Around 300 cases were reported in 40 years worldwide but PAM is a fatal disease of the central nervous system with only 5% survival of infected patients. Since both pathogenic and non pathogenic species were encountered in the environment, detection and dispersal mode are crucial points in the fight against this pathogenic agent. Previous studies on identification and genotyping of N. fowleri strains were focused on RAPD analysis and on ITS sequencing and identified 5 variants: euro-american, south pacific, widespread, cattenom and chooz. Microsatellites are powerful markers in population genetics with broad spectrum of applications (such as paternity test, fingerprinting, genetic mapping or genetic structure analysis). They are characterized by a high degree of length polymorphism. The aim of this study was to genotype N. fowleri strains using microsatellites markers in order to track this population and to better understand its evolution. Six microsatellite loci and 47 strains from different geographical origins were used for this analysis. The microsatellite markers revealed a level of discrimination higher than any other marker used until now, enabling the identification of seven genetic groups, included in the five main genetic groups based on the previous RAPD and ITS analyses. This analysis also allowed us to go further in identifying private alleles highlighting intra-group variability. A better identification of the N. fowleri isolates could be done with this type of analysis and could allow a better tracking of the clinical and environmental N. fowleri strains. PMID:27035434

  9. Octopus vulgaris (Cuvier, 1797) in the Mediterranean Sea: Genetic Diversity and Population Structure.

    PubMed

    De Luca, Daniele; Catanese, Gaetano; Procaccini, Gabriele; Fiorito, Graziano

    2016-01-01

    The common octopus, Octopus vulgaris Cuvier 1797, is a largely exploited cephalopod species in the Mediterranean Sea and the Atlantic Ocean, as well as along the coasts of Africa, Brazil and Japan, where its taxonomic identity is still debated. The assessment of its genetic structure is a pressing need to correctly manage the resource and to avoid overfishing and collapsing of local stocks. Here we analysed genetic variation and population structure of O. vulgaris using thirteen microsatellite loci in seven sampling localities from the Mediterranean Sea and one from the Atlantic Ocean. We also used a DNA barcoding approach by COI gene fragment to understand the phylogenetic relationships among the specimens here investigated and the ones whose sequences are available in literature. Our results reveal high levels of allelic richness and moderate heterozygosity in all samples investigated, and a pronounced differentiation of the Atlantic and Sicilian specimens. This latter aspect seems to support the isolation of the biota within the Strait of Messina. A certain degree of differentiation was detected among the other geographic samples within the Mediterranean Sea, which is more compatible with an island model than isolation by distance. The occurrence of null alleles affected more genetic diversity indices than population structure estimations. This study provides new insights about the genetic diversity and structure of O. vulgaris in the area of interest, which can be used as guidelines for a fisheries management perspective. PMID:26881847

  10. Octopus vulgaris (Cuvier, 1797) in the Mediterranean Sea: Genetic Diversity and Population Structure

    PubMed Central

    De Luca, Daniele; Catanese, Gaetano; Procaccini, Gabriele; Fiorito, Graziano

    2016-01-01

    The common octopus, Octopus vulgaris Cuvier 1797, is a largely exploited cephalopod species in the Mediterranean Sea and the Atlantic Ocean, as well as along the coasts of Africa, Brazil and Japan, where its taxonomic identity is still debated. The assessment of its genetic structure is a pressing need to correctly manage the resource and to avoid overfishing and collapsing of local stocks. Here we analysed genetic variation and population structure of O. vulgaris using thirteen microsatellite loci in seven sampling localities from the Mediterranean Sea and one from the Atlantic Ocean. We also used a DNA barcoding approach by COI gene fragment to understand the phylogenetic relationships among the specimens here investigated and the ones whose sequences are available in literature. Our results reveal high levels of allelic richness and moderate heterozygosity in all samples investigated, and a pronounced differentiation of the Atlantic and Sicilian specimens. This latter aspect seems to support the isolation of the biota within the Strait of Messina. A certain degree of differentiation was detected among the other geographic samples within the Mediterranean Sea, which is more compatible with an island model than isolation by distance. The occurrence of null alleles affected more genetic diversity indices than population structure estimations. This study provides new insights about the genetic diversity and structure of O. vulgaris in the area of interest, which can be used as guidelines for a fisheries management perspective. PMID:26881847

  11. The village/commune safety policy and HIV prevention efforts among key affected populations in Cambodia: finding a balance

    PubMed Central

    2012-01-01

    The Village/Commune Safety Policy was launched by the Ministry of Interior of the Kingdom of Cambodia in 2010 and, due to a priority focus on “cleaning the streets”, has created difficulties for HIV prevention programs attempting to implement programs that work with key affected populations including female sex workers and people who inject drugs. The implementation of the policy has forced HIV program implementers, the UN and various government counterparts to explore and develop collaborative ways of delivering HIV prevention services within this difficult environment. The following case study explores some of these efforts and highlights the promising development of a Police Community Partnership Initiative that it is hoped will find a meaningful balance between the Village/Commune Safety Policy and HIV prevention efforts with key affected populations in Cambodia. PMID:22770267

  12. The village/commune safety policy and HIV prevention efforts among key affected populations in Cambodia: finding a balance.

    PubMed

    Thomson, Nick; Leang, Supheap; Chheng, Kannarath; Weissman, Amy; Shaw, Graham; Crofts, Nick

    2012-01-01

    The Village/Commune Safety Policy was launched by the Ministry of Interior of the Kingdom of Cambodia in 2010 and, due to a priority focus on "cleaning the streets", has created difficulties for HIV prevention programs attempting to implement programs that work with key affected populations including female sex workers and people who inject drugs. The implementation of the policy has forced HIV program implementers, the UN and various government counterparts to explore and develop collaborative ways of delivering HIV prevention services within this difficult environment. The following case study explores some of these efforts and highlights the promising development of a Police Community Partnership Initiative that it is hoped will find a meaningful balance between the Village/Commune Safety Policy and HIV prevention efforts with key affected populations in Cambodia. PMID:22770267

  13. Genetic diversity, population structure and relationships in indigenous cattle populations of Ethiopia and Korean Hanwoo breeds using SNP markers

    PubMed Central

    Edea, Zewdu; Dadi, Hailu; Kim, Sang-Wook; Dessie, Tadelle; Lee, Taeheon; Kim, Heebal; Kim, Jong-Joo; Kim, Kwan-Suk

    2013-01-01

    In total, 166 individuals from five indigenous Ethiopian cattle populations – Ambo (n = 27), Borana (n = 35), Arsi (n = 30), Horro (n = 36), and Danakil (n = 38) – were genotyped for 8773 single nucleotide polymorphism (SNP) markers to assess genetic diversity, population structure, and relationships. As a representative of taurine breeds, Hanwoo cattle (n = 40) were also included in the study for reference. Among Ethiopian cattle populations, the proportion of SNPs with minor allele frequencies (MAFs) ≥0.05 ranged from 81.63% in Borana to 85.30% in Ambo, with a mean of 83.96% across all populations. The Hanwoo breed showed the highest proportion of polymorphism, with MAFs ≥0.05, accounting for 95.21% of total SNPs. The mean expected heterozygosity varied from 0.370 in Danakil to 0.410 in Hanwoo. The mean genetic differentiation (FST; 1%) in Ethiopian cattle revealed that within individual variation accounted for approximately 99% of the total genetic variation. As expected, FST and Reynold genetic distance were greatest between Hanwoo and Ethiopian cattle populations, with average values of 17.62 and 18.50, respectively. The first and second principal components explained approximately 78.33% of the total variation and supported the clustering of the populations according to their historical origins. At K = 2 and 3, a considerable source of variation among cattle is the clustering of the populations into Hanwoo (taurine) and Ethiopian cattle populations. The low estimate of genetic differentiation (FST) among Ethiopian cattle populations indicated that differentiation among these populations is low, possibly owing to a common historical origin and high gene flow. Genetic distance, phylogenic tree, principal component analysis, and population structure analyses clearly differentiated the cattle population according to their historical origins, and confirmed that Ethiopian cattle populations are genetically distinct from the Hanwoo breed. PMID:23518904

  14. Planting geometry and plant population affect dryland maize grain yield and harvest index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water for dryland grain production in the Texas panhandle is limited. Agronomic practices such as reduction in plant population or change in sowing time may help increase maize (Zea mays L.) yield potential. Tiller formation under dryland conditions leads to more vegetative growth and reduced yield....

  15. Widespread seed limitation affects plant density but not population trajectory in the invasive plant Centaurea solstitialis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In some plant populations, the availability of seeds strongly regulates recruitment. However, a scarcity of germination microsites, granivory or density dependent mortality can reduce the number of plants that germinate or survive to flowering. The relative strength of these controls is unknown for ...

  16. Social and Demographic Factors Affecting Psychopathology and Substance Abuse in a Spanish Family Clinic Population.

    ERIC Educational Resources Information Center

    Ladner, Robert A.

    This report presents findings on the social and demographic factors associated with drug abuse, alcoholism, and major psychological impairment in a population of Cuban American patients presenting at the Spanish Family Guidance Clinic (Miami, Florida) in 1974-75. The analysis indicates a number of factors operating to increase the likelihood of…

  17. Population structure and cryptic genetic variation in the mango fruit fly, Ceratitis cosyra (Diptera, Tephritidae)

    PubMed Central

    Virgilio, Massimiliano; Delatte, Hélène; Nzogela, Yasinta Beda; Simiand, Christophe; Quilici, Serge; De Meyer, Marc; Mwatawala, Maulid

    2015-01-01

    Abstract The fruit fly Ceratitis cosyra is an important agricultural pest negatively affecting the mango crop production throughout Africa and also feeding on a variety of other wild and cultivated hosts. The occurrence of deeply divergent haplotypes, as well as extensive morphological variability, previously suggested possible cryptic speciation within Ceratitis cosyra. Here we provide the first large-scale characterisation of the population structure of Ceratitis cosyra with the main objective of verifying cryptic genetic variation. A total of 348 specimens from 13 populations were genotyped at 16 polymorphic microsatellite loci. Hardy-Weinberg equilibrium (HWE) deviations were observed in 40.4% of locus-population combinations and suggested the occurrence of genetic substructuring within populations. Discriminant Analysis of Principal Components (DAPC) showed genetic divergence between the vast majority of vouchers from Burundi and Tanzania (plus a few outliers from other African countries) and all other specimens sampled. Individual Bayesian assignments confirmed the existence of two main genotypic groups also occurring in sympatry. These data provided further support to the hypothesis that Ceratitis cosyra might include cryptic species. However, additional integrative taxonomy, possibly combining morphological, ecological and physiological approaches, is required to provide the necessary experimental support to this model. PMID:26798276

  18. Does mating behaviour affect connectivity in marine fishes? Comparative population genetics of two protogynous groupers (Family Serranidae).

    PubMed

    Portnoy, D S; Hollenbeck, C M; Renshaw, M A; Cummings, N J; Gold, J R

    2013-01-01

    Pelagic larval duration (PLD) has been hypothesized to be the primary predictor of connectivity in marine fishes; however, few studies have examined the effects that adult reproductive behaviour may have on realized dispersal. We assessed gene flow (connectivity) by documenting variation in microsatellites and mitochondrial DNA sequences in two protogynous species of groupers, the aggregate spawning red hind, Epinephelus guttatus, and the single-male, harem-spawning coney, Cephalopholis fulva, to ask whether reproductive strategy affects connectivity. Samples of both species were obtained from waters off three islands (Puerto Rico, St. Thomas and St. Croix) in the Caribbean Sea. Despite the notion that aggregate spawning of red hind may facilitate larval retention, stronger signals of population structure were detected in the harem-spawning coney. Heterogeneity and/or inferred barriers, based on microsatellites, involved St. Croix (red hind and coney) and the west coast of Puerto Rico (coney). Heterogeneity and/or inferred barriers, based on mitochondrial DNA, involved St. Croix (coney only). Genetic divergence in both species was stronger for microsatellites than for mitochondrial DNA, suggesting sex-biased dispersal in both species. Long-term migration rates, based on microsatellites, indicated asymmetric gene flow for both species in the same direction as mean surface currents in the region. Red hind had higher levels of variation in microsatellites and lower levels of variation in mitochondrial DNA. Long-term effective size and effective number of breeders were greater for red hind; estimates of θ(f) , a proxy for long-term effective female size, were the same in both species. Patterns of gene flow in both species appear to stem in part from shared aspects of larval and adult biology, local bathymetry and surface current patterns. Differences in connectivity and levels of genetic variation between the species, however, likely stem from differences in behaviour

  19. Contrasting Genetic Structure among Populations of Two Amphidromous Fish Species (Sicydiinae) in the Central West Pacific

    PubMed Central

    Taillebois, Laura; Castelin, Magalie; Ovenden, Jennifer R.; Bonillo, Céline; Keith, Philippe

    2013-01-01

    Both present-day and past processes can shape connectivity of populations. Pleistocene vicariant events and dispersal have shaped the present distribution and connectivity patterns of aquatic species in the Indo-Pacific region. In particular, the processes that have shaped distribution of amphidromous goby species still remain unknown. Previous studies show that phylogeographic breaks are observed between populations in the Indian and Pacific Oceans where the shallow Sunda shelf constituted a geographical barrier to dispersal, or that the large spans of open ocean that isolate the Hawaiian or Polynesian Islands are also barriers for amphidromous species even though they have great dispersal capacity. Here we assess past and present genetic structure of populations of two amphidromous fish (gobies of the Sicydiinae) that are widely distributed in the Central West Pacific and which have similar pelagic larval durations. We analysed sections of mitochondrial COI, Cytb and nuclear Rhodospine genes in individuals sampled from different locations across their entire known range. Similar to other Sicydiinae fish, intraspecific mtDNA genetic diversity was high for all species (haplotype diversity between 0.9–0.96). Spatial analyses of genetic variation in Sicyopus zosterophorum demonstrated strong isolation across the Torres Strait, which was a geologically intermittent land barrier linking Australia to Papua New Guinea. There was a clear genetic break between the northwestern and the southwestern clusters in Si. zosterophorum (φST = 0.67502 for COI) and coalescent analyses revealed that the two populations split at 306 Kyr BP (95% HPD 79–625 Kyr BP), which is consistent with a Pleistocene separation caused by the Torres Strait barrier. However, this geographical barrier did not seem to affect Sm. fehlmanni. Historical and demographic hypotheses are raised to explain the different patterns of population structure and distribution between these species. Strategies

  20. Sympatric species distribution, genetic diversity and population structure of Haemonchus isolates from domestic ruminants in Pakistan.

    PubMed

    Hussain, Tanveer; Periasamy, Kathiravan; Nadeem, Asif; Babar, Masroor Ellahi; Pichler, Rudolf; Diallo, Adama

    2014-12-15

    Haemonchus species are major gastro-intestinal parasites affecting ruminants across the world. The present study aimed to assess the sympatric species distribution, genetic diversity, population structure and frequency of β-tubulin isotype 1 alleles associated with benzimidazole resistance. Internal transcribed spacer 2 (ITS2) sequences revealed three sympatric species of Haemonchus, H. contortus, H. placei and H. longistipes with 12 distinct genotypes circulating among ruminant hosts in Pakistan. High genetic variability was observed in Pakistani Haemonchus isolates at nicotine amide dehydrogenase subunit 4 (ND4) and cytochrome oxidase subunit 1 (COI) gene loci. Intra-population diversity parameters were higher in H. contortus isolates than H. placei. Phylogenetic analysis of ND4 and COI sequences did not reveal clustering of haplotypes originating from a particular host indicating high rate of gene flow among Haemonchus parasites infecting sheep, goat and cattle in Pakistan. ND4 and COI haplotypes from Pakistan were compared to sequences of Haemonchus isolates from 11 countries to elucidate the population structure. Multidimensional scaling (MDS) plot of pairwise FST derived from 531 ND4 haplotypes revealed clustering together of H. contortus from Pakistan, China, Malaysia and Italy while the isolates from Yemen and United States were found to be genetically distinct. With respect to H. placei, isolates from Pakistan were found to be genetically differentiated from isolates of other countries. The tests for selective neutrality revealed negative D statistics and did not reveal significant deviations in Pakistani Haemonchus populations while significant deviation (P < 0.05) was observed in Brazilian and Chinese H. contortus populations. Median Joining (MJ) network of ND4 haplotypes revealed Yemenese H. contortus being closer to H. placei cluster. β-tubulin isotype 1 genotyping revealed 7.86% frequency of Y allele associated with benzimidazole resistance at F200Y

  1. Contrasting genetic structure among populations of two amphidromous fish species (Sicydiinae) in the Central West Pacific.

    PubMed

    Taillebois, Laura; Castelin, Magalie; Ovenden, Jennifer R; Bonillo, Céline; Keith, Philippe

    2013-01-01

    Both present-day and past processes can shape connectivity of populations. Pleistocene vicariant events and dispersal have shaped the present distribution and connectivity patterns of aquatic species in the Indo-Pacific region. In particular, the processes that have shaped distribution of amphidromous goby species still remain unknown. Previous studies show that phylogeographic breaks are observed between populations in the Indian and Pacific Oceans where the shallow Sunda shelf constituted a geographical barrier to dispersal, or that the large spans of open ocean that isolate the Hawaiian or Polynesian Islands are also barriers for amphidromous species even though they have great dispersal capacity. Here we assess past and present genetic structure of populations of two amphidromous fish (gobies of the Sicydiinae) that are widely distributed in the Central West Pacific and which have similar pelagic larval durations. We analysed sections of mitochondrial COI, Cytb and nuclear Rhodospine genes in individuals sampled from different locations across their entire known range. Similar to other Sicydiinae fish, intraspecific mtDNA genetic diversity was high for all species (haplotype diversity between 0.9-0.96). Spatial analyses of genetic variation in Sicyopus zosterophorum demonstrated strong isolation across the Torres Strait, which was a geologically intermittent land barrier linking Australia to Papua New Guinea. There was a clear genetic break between the northwestern and the southwestern clusters in Si. zosterophorum (φST = 0.67502 for COI) and coalescent analyses revealed that the two populations split at 306 Kyr BP (95% HPD 79-625 Kyr BP), which is consistent with a Pleistocene separation caused by the Torres Strait barrier. However, this geographical barrier did not seem to affect Sm. fehlmanni. Historical and demographic hypotheses are raised to explain the different patterns of population structure and distribution between these species. Strategies

  2. Coevolution of genes and languages and high levels of population structure among the highland populations of Daghestan.

    PubMed

    Karafet, Tatiana M; Bulayeva, Kazima B; Nichols, Johanna; Bulayev, Oleg A; Gurgenova, Farida; Omarova, Jamilia; Yepiskoposyan, Levon; Savina, Olga V; Rodrigue, Barry H; Hammer, Michael F

    2016-03-01

    As a result of the combination of great linguistic and cultural diversity, the highland populations of Daghestan present an excellent opportunity to test the hypothesis of language-gene coevolution at a fine geographic scale. However, previous genetic studies generally have been restricted to uniparental markers and have not included many of the key populations of the region. To improve our understanding of the genetic structure of Daghestani populations and to investigate possible correlations between genetic and linguistic variation, we analyzed ~550,000 autosomal single nucleotide polymorphisms, phylogenetically informative Y chromosome markers and mtDNA haplotypes in 21 ethnic Daghestani groups. We found high levels of population structure in Daghestan consistent with the hypothesis of long-term isolation among populations of the highland Caucasus. Highland Daghestani populations exhibit extremely high levels of between-population diversity for all genetic systems tested, leading to some of the highest FST values observed for any region of the world. In addition, we find a significant positive correlation between gene and language diversity, suggesting that these two aspects of human diversity have coevolved as a result of historical patterns of social interaction among highland farmers at the community level. Finally, our data are consistent with the hypothesis that most Daghestanian-speaking groups descend from a common ancestral population (~6000-6500 years ago) that spread to the Caucasus by demic diffusion followed by population fragmentation and low levels of gene flow. PMID:26607180

  3. Peach genetic resources: diversity, population structure and linkage disequilibrium

    PubMed Central

    2013-01-01

    was considerable LD extension while no variation of LD with physical distance was observed in the landraces. From the first STRUCTURE result, LG1 had the greatest proportion of alleles in LD within all three subpopulations. Conclusions Our study demonstrates a high level of genetic diversity and relatively fast decay of LD in the Oriental peach breeding program. Inclusion of Chinese landraces will have a greater effect on increasing genetic diversity in Occidental breeding programs. Fingerprinting with genotype data for all 658 cultivars will be used for accession management in different germplasms. A higher density of markers are needed for association mapping in Oriental germplasm due to the low extension of LD. Population structure and evaluation of LD provides valuable information for GWAS experiment design in peach. PMID:24041442

  4. 15 CFR 50.10 - Fee structure for special population censuses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 1 2012-01-01 2012-01-01 false Fee structure for special population... § 50.10 Fee structure for special population censuses. The Bureau of the Census is authorized to conduct special population censuses at the request of and at the expense of the community concerned....

  5. 15 CFR 50.10 - Fee structure for special population censuses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Fee structure for special population... § 50.10 Fee structure for special population censuses. The Bureau of the Census is authorized to conduct special population censuses at the request of and at the expense of the community concerned....

  6. 15 CFR 50.10 - Fee structure for special population censuses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Fee structure for special population... § 50.10 Fee structure for special population censuses. The Bureau of the Census is authorized to conduct special population censuses at the request of and at the expense of the community concerned....

  7. 15 CFR 50.10 - Fee structure for special population censuses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 1 2014-01-01 2014-01-01 false Fee structure for special population... § 50.10 Fee structure for special population censuses. The Bureau of the Census is authorized to conduct special population censuses at the request of and at the expense of the community concerned....

  8. 15 CFR 50.10 - Fee structure for special population censuses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Fee structure for special population... § 50.10 Fee structure for special population censuses. The Bureau of the Census is authorized to conduct special population censuses at the request of and at the expense of the community concerned....

  9. Water availability and population origin affect the expression of the tradeoff between reproduction and growth in Plantago coronopus.

    PubMed

    Hansen, C F; García, M B; Ehlers, B K

    2013-05-01

    Investment in reproduction and growth represent a classic tradeoff with implication for life history evolution. The local environment can play a major role in the magnitude and evolutionary consequences of such a tradeoff. Here, we examined the investment in reproductive and vegetative tissue in 40 maternal half-sib families from four different populations of the herb Plantago coronopus growing in either a dry or wet greenhouse environment. Plants originated from populations with an annual or a perennial life form, with annuals prevailing in drier habitats with greater seasonal variation in both temperature and precipitation. We found that water availability affected the expression of the tradeoff (both phenotypic and genetic) between reproduction and growth, being most accentuated under dry condition. However, populations responded very differently to water treatments. Plants from annual populations showed a similar response to drought condition with little variation among maternal families, suggesting a history of selection favouring genotypes with high allocation to reproduction when water availability is low. Plants from annual populations also expressed the highest level of plasticity. For the perennial populations, one showed a large variation among maternal families in resource allocation and expressed significant negative genetic correlations between reproductive and vegetative biomass under drought. The other perennial population showed less variation in response to treatment and had trait values similar to those of the annuals, although it was significantly less plastic. We stress the importance of considering intraspecific variation in response to environmental change such as drought, as conspecific plants exhibited very different abilities and strategies to respond to high versus low water availability even among geographically close populations. PMID:23621367

  10. Evidence that disease-induced population decline changes genetic structure and alters dispersal patterns in the Tasmanian devil.

    PubMed

    Lachish, S; Miller, K J; Storfer, A; Goldizen, A W; Jones, M E

    2011-01-01

    Infectious disease has been shown to be a major cause of population declines in wild animals. However, there remains little empirical evidence on the genetic consequences of disease-mediated population declines, or how such perturbations might affect demographic processes such as dispersal. Devil facial tumour disease (DFTD) has resulted in the rapid decline of the Tasmanian devil, Sarcophilus harrisii, and threatens to cause extinction. Using 10 microsatellite DNA markers, we compared genetic diversity and structure before and after DFTD outbreaks in three Tasmanian devil populations to assess the genetic consequences of disease-induced population decline. We also used both genetic and demographic data to investigate dispersal patterns in Tasmanian devils along the east coast of Tasmania. We observed a significant increase in inbreeding (F(IS) pre/post-disease -0.030/0.012, P<0.05; relatedness pre/post-disease 0.011/0.038, P=0.06) in devil populations after just 2-3 generations of disease arrival, but no detectable change in genetic diversity. Furthermore, although there was no subdivision apparent among pre-disease populations (θ=0.005, 95% confidence interval (CI) -0.003 to 0.017), we found significant genetic differentiation among populations post-disease (θ=0.020, 0.010-0.027), apparently driven by a combination of selection and altered dispersal patterns of females in disease-affected populations. We also show that dispersal is male-biased in devils and that dispersal distances follow a typical leptokurtic distribution. Our results show that disease can result in genetic and demographic changes in host populations over few generations and short time scales. Ongoing management of Tasmanian devils must now attempt to maintain genetic variability in this species through actions designed to reverse the detrimental effects of inbreeding and subdivision in disease-affected populations. PMID:20216571

  11. Geographic population structure analysis of worldwide human populations infers their biogeographical origins

    PubMed Central

    Elhaik, Eran; Tatarinova, Tatiana; Chebotarev, Dmitri; Piras, Ignazio S.; Maria Calò, Carla; De Montis, Antonella; Atzori, Manuela; Marini, Monica; Tofanelli, Sergio; Francalacci, Paolo; Pagani, Luca; Tyler-Smith, Chris; Xue, Yali; Cucca, Francesco; Schurr, Theodore G.; Gaieski, Jill B.; Melendez, Carlalynne; Vilar, Miguel G.; Owings, Amanda C.; Gómez, Rocío; Fujita, Ricardo; Santos, Fabrício R.; Comas, David; Balanovsky, Oleg; Balanovska, Elena; Zalloua, Pierre; Soodyall, Himla; Pitchappan, Ramasamy; GaneshPrasad, ArunKumar; Hammer, Michael; Matisoo-Smith, Lisa; Wells, R. Spencer; Acosta, Oscar; Adhikarla, Syama; Adler, Christina J.; Bertranpetit, Jaume; Clarke, Andrew C.; Cooper, Alan; Der Sarkissian, Clio S. I.; Haak, Wolfgang; Haber, Marc; Jin, Li; Kaplan, Matthew E.; Li, Hui; Li, Shilin; Martínez-Cruz, Begoña; Merchant, Nirav C.; Mitchell, John R.; Parida, Laxmi; Platt, Daniel E.; Quintana-Murci, Lluis; Renfrew, Colin; Lacerda, Daniela R.; Royyuru, Ajay K.; Sandoval, Jose Raul; Santhakumari, Arun Varatharajan; Soria Hernanz, David F.; Swamikrishnan, Pandikumar; Ziegle, Janet S.

    2014-01-01

    The search for a method that utilizes biological information to predict humans’ place of origin has occupied scientists for millennia. Over the past four decades, scientists have employed genetic data in an effort to achieve this goal but with limited success. While biogeographical algorithms using next-generation sequencing data have achieved an accuracy of 700 km in Europe, they were inaccurate elsewhere. Here we describe the Geographic Population Structure (GPS) algorithm and demonstrate its accuracy with three data sets using 40,000–130,000 SNPs. GPS placed 83% of worldwide individuals in their country of origin. Applied to over 200 Sardinians villagers, GPS placed a quarter of them in their villages and most of the rest within 50 km of their villages. GPS’s accuracy and power to infer the biogeography of worldwide individuals down to their country or, in some cases, village, of origin, underscores the promise of admixture-based methods for biogeography and has ramifications for genetic ancestry testing. PMID:24781250

  12. Geographic population structure analysis of worldwide human populations infers their biogeographical origins.

    PubMed

    Elhaik, Eran; Tatarinova, Tatiana; Chebotarev, Dmitri; Piras, Ignazio S; Maria Calò, Carla; De Montis, Antonella; Atzori, Manuela; Marini, Monica; Tofanelli, Sergio; Francalacci, Paolo; Pagani, Luca; Tyler-Smith, Chris; Xue, Yali; Cucca, Francesco; Schurr, Theodore G; Gaieski, Jill B; Melendez, Carlalynne; Vilar, Miguel G; Owings, Amanda C; Gómez, Rocío; Fujita, Ricardo; Santos, Fabrício R; Comas, David; Balanovsky, Oleg; Balanovska, Elena; Zalloua, Pierre; Soodyall, Himla; Pitchappan, Ramasamy; Ganeshprasad, Arunkumar; Hammer, Michael; Matisoo-Smith, Lisa; Wells, R Spencer

    2014-01-01

    The search for a method that utilizes biological information to predict humans' place of origin has occupied scientists for millennia. Over the past four decades, scientists have employed genetic data in an effort to achieve this goal but with limited success. While biogeographical algorithms using next-generation sequencing data have achieved an accuracy of 700 km in Europe, they were inaccurate elsewhere. Here we describe the Geographic Population Structure (GPS) algorithm and demonstrate its accuracy with three data sets using 40,000-130,000 SNPs. GPS placed 83% of worldwide individuals in their country of origin. Applied to over 200 Sardinians villagers, GPS placed a quarter of them in their villages and most of the rest within 50 km of their villages. GPS's accuracy and power to infer the biogeography of worldwide individuals down to their country or, in some cases, village, of origin, underscores the promise of admixture-based methods for biogeography and has ramifications for genetic ancestry testing. PMID:24781250

  13. Marine Chemical Ecology: Chemical Signals and Cues Structure Marine Populations, Communities, and Ecosystems

    PubMed Central

    Hay, Mark E.

    2012-01-01

    Chemical cues constitute much of the language of life in the sea. Our understanding of biotic interactions and their effects on marine ecosystems will advance more rapidly if this language is studied and understood. Here, I review how chemical cues regulate critical aspects of the behavior of marine organisms from bacteria to phytoplankton to benthic invertebrates and water column fishes. These chemically mediated interactions strongly affect population structure, community organization, and ecosystem function. Chemical cues determine foraging strategies, feeding choices, commensal associations, selection of mates and habitats, competitive interactions, and transfer of energy and nutrients within and among ecosystems. In numerous cases, the indirect effects of chemical signals on behavior have as much or more effect on community structure and function as the direct effects of consumers and pathogens. Chemical cues are critical for understanding marine systems, but their omnipresence and impact are inadequately recognized. PMID:21141035

  14. Marine Chemical Ecology: Chemical Signals and Cues Structure Marine Populations, Communities, and Ecosystems

    NASA Astrophysics Data System (ADS)

    Hay, Mark E.

    2009-01-01

    Chemical cues constitute much of the language of life in the sea. Our understanding of biotic interactions and their effects on marine ecosystems will advance more rapidly if this language is studied and understood. Here, I review how chemical cues regulate critical aspects of the behavior of marine organisms from bacteria to phytoplankton to benthic invertebrates and water column fishes. These chemically mediated interactions strongly affect population structure, community organization, and ecosystem function. Chemical cues determine foraging strategies, feeding choices, commensal associations, selection of mates and habitats, competitive interactions, and transfer of energy and nutrients within and among ecosystems. In numerous cases, the indirect effects of chemical signals on behavior have as much or more effect on community structure and function as the direct effects of consumers and pathogens. Chemical cues are critical for understanding marine systems, but their omnipresence and impact are inadequately recognized.

  15. Genetic Population Structure and Gene Flow in the Atlantic Cod Gadus Morhua: A Comparison of Allozyme and Nuclear RFLP Loci

    PubMed Central

    Pogson, G. H.; Mesa, K. A.; Boutilier, R. G.

    1995-01-01

    High levels of gene flow have been implicated in producing uniform patterns of allozyme variation among populations of many marine fish species. We have examined whether gene flow is responsible for the limited population structure in the Atlantic cod, Gadus morhua L., by comparing the previously published patterns of variation at 10 allozyme loci to 17 nuclear restriction fragment length polymorphism (RFLP) loci scored by 11 anonymous cDNA clones. Unlike the allozyme loci, highly significant differences were observed among all populations at the DNA markers in a pattern consistent with an isolation-by-distance model of population structure. The magnitude of allele frequency variation at the nuclear RFLP loci significantly exceeded that observed at the protein loci (χ(2) = 24.6, d.f. = 5, P < 0.001). Estimates of gene flow from the private alleles method were similar for the allozymes and nuclear RFLPs. From the infinite island model, however, estimates of gene flow from the DNA markers were fivefold lower than indicated by the proteins. The discrepancy between gene flow estimates, combined with the observation of a large excess of rare RFLP alleles, suggests that the Atlantic cod has undergone a recent expansion in population size and that populations are significantly displaced from equilibrium. Because gene flow is a process that affects all loci equally, the heterogeneity observed among populations at the DNA level eliminates gene flow as the explanation for the homogeneous allozyme patterns. Our results suggest that a recent origin of cod populations has acted to constrain the extent of population differentiation observed at weakly polymorphic loci and implicate a role for selection in affecting the distribution of protein variation among natural populations in this species. PMID:7705638

  16. Facilitation as Attenuating of Environmental Stress among Structured Microbial Populations

    PubMed Central

    Santaella, Sandra Tédde; Martins, Claudia Miranda; Martins, Rogério Parentoni

    2016-01-01

    There is currently an intense debate in microbial societies on whether evolution in complex communities is driven by competition or cooperation. Since Darwin, competition for scarce food resources has been considered the main ecological interaction shaping population dynamics and community structure both in vivo and in vitro. However, facilitation may be widespread across several animal and plant species. This could also be true in microbial strains growing under environmental stress. Pure and mixed strains of Serratia marcescens and Candida rugosa were grown in mineral culture media containing phenol. Growth rates were estimated as the angular coefficients computed from linearized growth curves. Fitness index was estimated as the quotient between growth rates computed for lineages grown in isolation and in mixed cultures. The growth rates were significantly higher in associated cultures than in pure cultures and fitness index was greater than 1 for both microbial species showing that the interaction between Serratia marcescens and Candida rugosa yielded more efficient phenol utilization by both lineages. This result corroborates the hypothesis that facilitation between microbial strains can increase their fitness and performance in environmental bioremediation. PMID:26904719

  17. Deammonification in biofilm systems: population structure and function.

    PubMed

    Helmer-Madhok, C; Schmid, M; Filipov, E; Gaul, T; Hippen, A; Rosenwinkel, K H; Seyfried, C F; Wagner, M; Kunst, S

    2002-01-01

    For the development of alternative concepts for the cost effective treatment of wastewaters with high ammonium content and low C/N-ratio, autotrophic consortia of micro-organisms with the ability to convert ammonium directly into N2 are of particular interest. Several full-scale industrial biofilm plants eliminating nitrogen without carbon source for years in a stable process, are suspected for some time to harbor active anaerobic ammonium oxidizers in deeper, oxygen-limited biofilm layers. In order to identify the processes of the single-stage nitrogen elimination (deammonification) in biofilm systems and to allocate them to the responsible micro-organisms, a deammonifying moving-bed pilot plant was investigated in detail. 15N-labelled tracer compounds were used as well as 16S rDNA libraries and in situ identification of dominant organisms. The usage of rRNA-targeted oligonucleotide probes (FISH) was particularly emphasized on the ammonium oxidizers of the beta-subclass of Proteobacteria and on the members of the order Planctomycetales. The combined application of these methods led to a deeper insight into the population structure and function of a deammonifying biofilm. PMID:12216628

  18. Facilitation as Attenuating of Environmental Stress among Structured Microbial Populations.

    PubMed

    Martins, Suzana Cláudia Silveira; Santaella, Sandra Tédde; Martins, Claudia Miranda; Martins, Rogério Parentoni

    2016-01-01

    There is currently an intense debate in microbial societies on whether evolution in complex communities is driven by competition or cooperation. Since Darwin, competition for scarce food resources has been considered the main ecological interaction shaping population dynamics and community structure both in vivo and in vitro. However, facilitation may be widespread across several animal and plant species. This could also be true in microbial strains growing under environmental stress. Pure and mixed strains of Serratia marcescens and Candida rugosa were grown in mineral culture media containing phenol. Growth rates were estimated as the angular coefficients computed from linearized growth curves. Fitness index was estimated as the quotient between growth rates computed for lineages grown in isolation and in mixed cultures. The growth rates were significantly higher in associated cultures than in pure cultures and fitness index was greater than 1 for both microbial species showing that the interaction between Serratia marcescens and Candida rugosa yielded more efficient phenol utilization by both lineages. This result corroborates the hypothesis that facilitation between microbial strains can increase their fitness and performance in environmental bioremediation. PMID:26904719

  19. Recombination shapes the structure of an environmental Vibrio cholerae population.

    PubMed

    Keymer, Daniel P; Boehm, Alexandria B

    2011-01-01

    Vibrio cholerae consists of pathogenic strains that cause sporadic gastrointestinal illness or epidemic cholera disease and nonpathogenic strains that grow and persist in coastal aquatic ecosystems. Previous studies of disease-causing strains have shown V. cholerae to be a primarily clonal bacterial species, but isolates analyzed have been strongly biased toward pathogenic genotypes, while representing only a small sample of the vast diversity in environmental strains. In this study, we characterized homologous recombination and structure among 152 environmental V. cholerae isolates and 13 other putative Vibrio isolates from coastal waters and sediments in central California, as well as four clinical V. cholerae isolates, using multilocus sequence analysis of seven housekeeping genes. Recombinant regions were identified by at least three detection methods in 72% of our V. cholerae isolates. Despite frequent recombination, significant linkage disequilibrium was still detected among the V. cholerae sequence types. Incongruent but nonrandom associations were observed for maximum likelihood topologies from the individual loci. Overall, our estimated recombination rate in V. cholerae of 6.5 times the mutation rate is similar to those of other sexual bacteria and appears frequently enough to restrict selection from purging much of the neutral intraspecies diversity. These data suggest that frequent recombination among V. cholerae may hinder the identification of ecotypes in this bacterioplankton population. PMID:21075874

  20. Population Validity for Educational Data Mining Models: A Case Study in Affect Detection

    ERIC Educational Resources Information Center

    Ocumpaugh, Jaclyn; Baker, Ryan; Gowda, Sujith; Heffernan, Neil; Heffernan, Cristina

    2014-01-01

    Information and communication technology (ICT)-enhanced research methods such as educational data mining (EDM) have allowed researchers to effectively model a broad range of constructs pertaining to the student, moving from traditional assessments of knowledge to assessment of engagement, meta-cognition, strategy and affect. The automated…

  1. QTL affecting stress response to crowding in a rainbow trout broodstock population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background Genomic analyses have the potential to impact selective breeding programs by identifying markers that serve as proxies for traits which are expensive or difficult to measure. Also, identifying genes affecting traits of interest enhances our understanding of their underlying biochemical ...

  2. Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development.

    PubMed

    Shaw, W Robert; Marcenac, Perrine; Childs, Lauren M; Buckee, Caroline O; Baldini, Francesco; Sawadogo, Simon P; Dabiré, Roch K; Diabaté, Abdoulaye; Catteruccia, Flaminia

    2016-01-01

    The maternally inherited alpha-proteobacterium Wolbachia has been proposed as a tool to block transmission of devastating mosquito-borne infectious diseases like dengue and malaria. Here we study the reproductive manipulations induced by a recently identified Wolbachia strain that stably infects natural mosquito populations of a major malaria vector, Anopheles coluzzii, in Burkina Faso. We determine that these infections significantly accelerate egg laying but do not induce cytoplasmic incompatibility or sex-ratio distortion, two parasitic reproductive phenotypes that facilitate the spread of other Wolbachia strains within insect hosts. Analysis of 221 blood-fed A. coluzzii females collected from houses shows a negative correlation between the presence of Plasmodium parasites and Wolbachia infection. A mathematical model incorporating these results predicts that infection with these endosymbionts may reduce malaria prevalence in human populations. These data suggest that Wolbachia may be an important player in malaria transmission dynamics in Sub-Saharan Africa. PMID:27243367

  3. Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development

    PubMed Central

    Shaw, W. Robert; Marcenac, Perrine; Childs, Lauren M.; Buckee, Caroline O.; Baldini, Francesco; Sawadogo, Simon P.; Dabiré, Roch K.; Diabaté, Abdoulaye; Catteruccia, Flaminia

    2016-01-01

    The maternally inherited alpha-proteobacterium Wolbachia has been proposed as a tool to block transmission of devastating mosquito-borne infectious diseases like dengue and malaria. Here we study the reproductive manipulations induced by a recently identified Wolbachia strain that stably infects natural mosquito populations of a major malaria vector, Anopheles coluzzii, in Burkina Faso. We determine that these infections significantly accelerate egg laying but do not induce cytoplasmic incompatibility or sex-ratio distortion, two parasitic reproductive phenotypes that facilitate the spread of other Wolbachia strains within insect hosts. Analysis of 221 blood-fed A. coluzzii females collected from houses shows a negative correlation between the presence of Plasmodium parasites and Wolbachia infection. A mathematical model incorporating these results predicts that infection with these endosymbionts may reduce malaria prevalence in human populations. These data suggest that Wolbachia may be an important player in malaria transmission dynamics in Sub-Saharan Africa. PMID:27243367

  4. Fine-scale ecological and genetic population structure of two whitefish (Coregoninae) species in the vicinity of industrial thermal emissions

    DOE PAGESBeta

    Graham, Carly F.; Eberts, Rebecca L.; Morgan, Thomas D.; Boreham, Douglas R.; Lance, Stacey L.; Manzon, Richard G.; Martino, Jessica A.; Rogers, Sean M.; Wilson, Joanna Y.; Somers, Christopher M.; et al

    2016-01-25

    Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species (Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ13C and δ15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearby reference locations. Isotopicmore » niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (Fst, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Furthermore, future research should focus on the potential impacts of thermal emissions on development and recruitment.« less

  5. Fine-Scale Ecological and Genetic Population Structure of Two Whitefish (Coregoninae) Species in the Vicinity of Industrial Thermal Emissions

    PubMed Central

    Graham, Carly F.; Eberts, Rebecca L.; Morgan, Thomas D.; Boreham, Douglas R.; Lance, Stacey L.; Manzon, Richard G.; Martino, Jessica A.; Rogers, Sean M.; Wilson, Joanna Y.; Somers, Christopher M.

    2016-01-01

    Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species (Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ13C and δ15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearby reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (Fst, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Thus, future research should focus on the potential impacts of thermal emissions on development and recruitment. PMID:26807722

  6. Fine-Scale Ecological and Genetic Population Structure of Two Whitefish (Coregoninae) Species in the Vicinity of Industrial Thermal Emissions.

    PubMed

    Graham, Carly F; Eberts, Rebecca L; Morgan, Thomas D; Boreham, Douglas R; Lance, Stacey L; Manzon, Richard G; Martino, Jessica A; Rogers, Sean M; Wilson, Joanna Y; Somers, Christopher M

    2016-01-01

    Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species (Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ13C and δ15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearby reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (Fst, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Thus, future research should focus on the potential impacts of thermal emissions on development and recruitment. PMID:26807722

  7. Does cannibalism of larvae by adults affect settlement and connectivity of mussel populations?

    NASA Astrophysics Data System (ADS)

    Porri, Francesca; Jordaan, Tembisa; McQuaid, Christopher D.

    2008-09-01

    Intertidal population dynamics are driven by a complex series of processes, including larval supply and the possibility of larval predation by benthic animals such as filter-feeders. We hypothesised that cannibalism by adults could play a major role in the population connectivity of mussel populations by removing larvae as they attempt to settle in the adult habitat. Specifically, we tested hypotheses that consumption of mussel larvae by adults removes a significant proportion of potential settlers and is influenced by both settlement intensity and tidal state (flooding or ebbing). Predation of mussel larvae by adult mussels was investigated on incoming and ebbing tides during four spring tides by analysing the gut contents of adult Perna perna and Mytilus galloprovincialis collected from the low intertidal mussel zone between October 2005 and January 2006. Consumption rates were then compared with estimates of successful settler densities on natural beds. The results showed that mortality of competent mussel larvae through adult ingestion removes up to 77% a of potential settlers. Rates of larval consumption were highest during months of intense settlement, suggesting that mussels feed opportunistically, filtering a relatively fixed volume of water and removing particles, including larvae, in proportion to their densities in the water. Rates of larviphagy were also higher during receding than incoming tides. We suggest that this is due to changes in larval density or, more probably, in adult filtration efficiency that are related to the state of the tide. Despite significant effects of both tidal state and settlement intensity on rates of larval ingestion, neither had a significant effect on the proportion of potential settlers removed. During settlement more than half of all potential settlers are lost through cannibalism, with potentially serious consequences for population maintenance. The results highlight the paradoxical nature of the evolution of settlement

  8. Multiple factors affect a population of Agassiz's desert tortoise (Gopherus agassizii) in the Northwestern Mojave Desert

    USGS Publications Warehouse

    Berry, Kristin H.; Yee, Julie L.; Coble, Ashley A.; Perry, William M.; Shields, Timothy A.

    2013-01-01

    Numerous factors have contributed to declines in populations of the federally threatened Agassiz's Desert Tortoise (Gopherus agassizii) and continue to limit recovery. In 2010, we surveyed a low-density population on a military test facility in the northwestern Mojave Desert of California, USA, to evaluate population status and identify potential factors contributing to distribution and low densities. Estimated densities of live tortoises ranged spatially from 1.2/km2 to 15.1/km2. Although only one death of a breeding-age tortoise was recorded for the 4-yr period prior to the survey, remains of 16 juvenile and immature tortoises were found, and most showed signs of predation by Common Ravens (Corvus corax) and mammals. Predation may have limited recruitment of young tortoises into the adult size classes. To evaluate the relative importance of different types of impacts to tortoises, we developed predictive models for spatially explicit densities of tortoise sign and live tortoises using topography (i.e., slope), predators (Common Raven, signs of mammalian predators), and anthropogenic impacts (distances from paved road and denuded areas, density of ordnance fragments) as covariates. Models suggest that densities of tortoise sign increased with slope and signs of mammalian predators and decreased with Common Ravens, while also varying based on interaction effects involving these predictors as well as distances from paved roads, denuded areas, and ordnance. Similarly, densities of live tortoises varied by interaction effects among distances to denuded areas and paved roads, density of ordnance fragments, and slope. Thus multiple factors predict the densities and distribution of this population.

  9. Surgical Care Required for Populations Affected by Climate-related Natural Disasters: A Global Estimation

    PubMed Central

    Lee, Eugenia E.; Stewart, Barclay; Zha, Yuanting A.; Groen, Thomas A.; Burkle, Frederick M.; Kushner, Adam L.

    2016-01-01

    Background: Climate extremes will increase the frequency and severity of natural disasters worldwide.  Climate-related natural disasters were anticipated to affect 375 million people in 2015, more than 50% greater than the yearly average in the previous decade. To inform surgical assistance preparedness, we estimated the number of surgical procedures needed.   Methods: The numbers of people affected by climate-related disasters from 2004 to 2014 were obtained from the Centre for Research of the Epidemiology of Disasters database. Using 5,000 procedures per 100,000 persons as the minimum, baseline estimates were calculated. A linear regression of the number of surgical procedures performed annually and the estimated number of surgical procedures required for climate-related natural disasters was performed. Results: Approximately 140 million people were affected by climate-related natural disasters annually requiring 7.0 million surgical procedures. The greatest need for surgical care was in the People’s Republic of China, India, and the Philippines. Linear regression demonstrated a poor relationship between national surgical capacity and estimated need for surgical care resulting from natural disaster, but countries with the least surgical capacity will have the greatest need for surgical care for persons affected by climate-related natural disasters. Conclusion: As climate extremes increase the frequency and severity of natural disasters, millions will need surgical care beyond baseline needs. Countries with insufficient surgical capacity will have the most need for surgical care for persons affected by climate-related natural disasters. Estimates of surgical are particularly important for countries least equipped to meet surgical care demands given critical human and physical resource deficiencies. PMID:27617165

  10. Evaluating HIV prevention strategies for populations in key affected groups: The example of Cabo Verde

    PubMed Central

    Monteiro, João Filipe G.; Galea, Sandro; Flanigan, Timothy; Monteiro, Maria de Lourdes; Friedman, Samuel R.; Marshall, Brandon DL

    2015-01-01

    Objectives We used an individual-based model to evaluate the effects of hypothetical prevention interventions on HIV incidence trajectories in a concentrated, mixed epidemic setting from 2011 to 2021, and using Cabo Verde as an example. Methods Simulations were conducted to evaluate the extent to which early HIV treatment and optimization of care, HIV testing, condom distribution, and substance abuse treatment could eliminate new infections (i.e., reduce incidence to less than 10 cases per 10,000 person-years) among non-drug users, female sex workers (FSW), and people who use drugs (PWUD). Results Scaling up all four interventions resulted in the largest decreases in HIV, with estimates ranging from 1.4 (95%CI:1.36–1.44) per 10,000 person-years among non-drug users to 8.2 (95%CI:7.8–8.6) per 10,000 person-years among PWUD in 2021. Intervention scenarios targeting FWS and PWUD also resulted in HIV incidence estimates at or below 10 per 10,000 person-years by 2021 for all population sub-groups. Conclusions Our results suggest that scaling up multiple interventions among entire population is necessary to achieve elimination. However, prioritizing key populations with this combination prevention strategy may also result in a substantial decrease in total incidence. PMID:25838121

  11. Sunlight, season, snowmelt, storm, and source affect E. coli populations in an artificially ponded stream.

    PubMed

    Whitman, Richard L; Przybyla-Kelly, Katarzyna; Shively, Dawn A; Nevers, Meredith B; Byappanahalli, Muruleedhara N

    2008-02-15

    Reducing fecal indicator bacteria, such as Escherichia coli (E. coli), in streams is important for many downstream areas. E. coli concentrations within streams may be reduced by intervening ponds or wetlands through a number of physical and biological means. A section of Dunes Creek, a small coastal stream of southern Lake Michigan, was impounded and studied for 30 months from pre-through post-construction of the experimental pond. E. coli reduction became more predictable and effective with pond age. E. coli followed the hydrograph and increased several-fold during both rainfall and snowmelt events. Seasonally, the pond was more effective at reducing E. coli during summer than winter. Late summer, non-solar reduction or inactivation of E. coli in the pond was estimated at 72% and solar inactivation at 26%. E. coli DNA fingerprinting demonstrated that the winter population was genetically more homogeneous than the summer population. Detection of FRNA coliphages suggests that there was fecal contamination during heavy rain events. An understanding of how environmental factors interact with E. coli populations is important for assessing anticipated contaminant loading and the reduction of indicator bacteria in downstream reaches. PMID:18031792

  12. Dietary sodium intake deleteriously affects blood pressure in a normotensive population.

    PubMed

    Chateau-Degat, M L; Ferland, A; Déry, S; Dewailly, E

    2012-04-01

    Western dietary pattern, and particularly high dietary sodium intake (DSI), is recognized for its detrimental impact on blood pressure (BP). This paper examined the association of DSI with BP in Nunavik Inuit (Québec), a population known to have an optimal BP on average. In a population-based study, we recruited 421 normotensive participants aged 18-74 years from 14 coastal villages, situated north of the 55th parallel. BP, biochemistry and anthropometry were obtained. DSI was assessed by a 24-h dietary recall. Mean (s.e.) DSI was higher in men than in women (2358 (101) vs. 1702 (100) mg/d, P<0.0001). Similar gender difference was found in systolic BP (118 (0.7) vs. 111 (0.6) mm Hg; P<0.0001). After adjustment for confounders, we found a positive association between BP and DSI (all P<0.05). In a normotensive population, BP shows a linear relationship with DSI. Our results emphasize the potent deleterious impact of DSI on BP. PMID:22333870

  13. Recruitment and post-recruit immigration affect the local population size of coral reef fishes

    NASA Astrophysics Data System (ADS)

    Lewis, A. R.

    1997-07-01

    This study quantifies the contributions of larval recruitment and post-recruit (juvenile and adult) immigration to net increases in population size for 150 species of fishes found on ten isolated coral patches or `bommies' (108-267 m2) within a typical reef of the Great Barrier Reef system. At least one third of the total number of recruits and immigrants to all bommies were post-recruit fishes, and movement between bommies in 136 species was detected at some time during the 22 month sampling period. The relative numbers of recruits and post-recruit immigrants per species varied widely within the assemblage, and between the replicate bommies. Populations of 95 species received both types of immigrants, 41 species had only post-recruit immigrants, and 14 species received only larval recruitment. In most species, recruitment occurred over the austral summer between October and February, while post-recruit movements occurred in both summer and winter. Rates of post-recruit immigration varied temporally within bommies, and pulses of post-recruits were less temporally concordant between bommies than pulses of recruits. This study is further evidence that post-settlement processes can have a significant effect on the local population size of reef fishes.

  14. Sunlight, season, snowmelt, storm, and source affect E. coli populations in an artificially ponded stream

    USGS Publications Warehouse

    Whitman, R.L.; Przybyla-Kelly, K.; Shively, D.A.; Nevers, M.B.; Byappanahalli, M.N.

    2008-01-01

    Reducing fecal indicator bacteria, such as Escherichia coli (E. coli), in streams is important for many downstream areas. E. coli concentrations within streams may be reduced by intervening ponds or wetlands through a number of physical and biological means. A section of Dunes Creek, a small coastal stream of southern Lake Michigan, was impounded and studied for 30??months from pre-through post-construction of the experimental pond. E. coli reduction became more predictable and effective with pond age. E. coli followed the hydrograph and increased several-fold during both rainfall and snowmelt events. Seasonally, the pond was more effective at reducing E. coli during summer than winter. Late summer, non-solar reduction or inactivation of E. coli in the pond was estimated at 72% and solar inactivation at 26%. E. coli DNA fingerprinting demonstrated that the winter population was genetically more homogeneous than the summer population. Detection of FRNA coliphages suggests that there was fecal contamination during heavy rain events. An understanding of how environmental factors interact with E. coli populations is important for assessing anticipated contaminant loading and the reduction of indicator bacteria in downstream reaches. ?? 2007.

  15. Juvenile dispersal affects straying behaviors of adults in a migratory population.

    PubMed

    Hamann, Ellen J; Kennedy, Brian P

    2012-04-01

    The resilience of organisms to large-scale environmental and climatic change depends, in part, upon the ability to colonize and occupy new habitats. While previous efforts to describe homing, or natal site fidelity, of migratory organisms have been hindered by the confounding effects of fragmented landscapes and management practices, realistic conservation efforts must include considerations of the behavioral diversity represented by animal movements and dispersal. Herein, we quantify straying away from natal origins by adult chinook salmon (Oncorhynchus tshawytscha) in a wild population that inhabits a pristine wilderness basin. Using natural isotopic signatures (7Sr/86Sr) to reconstruct the migratory behaviors of unhandled individuals over their entire life cycle, we identified ecological and behavioral factors influencing the propensity to stray. Our results indicate that natal site fidelity is scale dependent, ranging from 55% at -1-km distances to 87% at longer (> 10-km scale) distances, and juvenile dispersal and sex highly influence straying occurrence. These findings lend support for the conservation of behavioral diversity for population persistence, and we propose straying as a mechanism for maintaining genetic diversity at low population densities. PMID:22690624

  16. Red-shouldered hawk broadcast surveys: Factors affecting detection of responses and population trends

    USGS Publications Warehouse

    McLeod, M.A.; Andersen, D.E.

    1998-01-01

    Forest-nesting raptors are often difficult to detect and monitor because they can be secretive, and their nests can be difficult to locate. Some species, however, respond to broadcasts of taped calls, and these responses may be useful both in monitoring population trends and in locating nests. We conducted broadcast surveys on roads and at active red-shouldered hawk (Buteo lineatus) nests in northcentral Minnesota to determine effects of type of call (conspecific or great horned owl [Bubo virginianus]), time of day, and phase of the breeding cycle on red-shouldered hawk response behavior and to evaluate usefulness of broadcasts as a population monitoring tool using area occupied-probability-of-detection techniques. During the breeding seasons of 1994 and 1995, we surveyed 4 10-station road transects 59 times and conducted 76 surveys at 24 active nests. Results of these surveys indicated conspecific calls broadcast prior to hatch and early in the day were the most effective method of detecting red-shouldered hawks. Probability of detection via conspecific calls averaged 0.25, and area occupied was 100%. Computer simulations using these field data indicated broadcast surveys have the potential to be used as a population monitoring tool.

  17. Population-related variation in plant defense more strongly affects survival of an herbivore than its solitary parasitoid wasp.

    PubMed

    Harvey, Jeffrey A; Gols, Rieta

    2011-10-01

    The performance of natural enemies, such as parasitoid wasps, is affected by differences in the quality of the host's diet, frequently mediated by species or population-related differences in plant allelochemistry. Here, we compared survival, development time, and body mass in a generalist herbivore, the cabbage moth, Mamestra brassicae, and its solitary endoparasitoid, Microplitis mediator, when reared on two cultivated (CYR and STH) and three wild (KIM, OH, and WIN) populations of cabbage, Brassica oleracea. Plants either were undamaged or induced by feeding of larvae of the cabbage butterfly, Pieris rapae. Development and biomass of M. brassicae and Mi. mediator were similar on both cultivated and one wild cabbage population (KIM), intermediate on the OH population, and significantly lower on the WIN population. Moreover, development was prolonged and biomass was reduced on herbivore-induced plants. However, only the survival of parasitized hosts (and not that of healthy larvae) was affected by induction. Analysis of glucosinolates in leaves of the cabbages revealed higher levels in the wild populations than cultivars, with the highest concentrations in WIN plants. Multivariate statistics revealed a negative correlation between insect performance and total levels of glucosinolates (GS) and levels of 3-butenyl GS. However, GS chemistry could not explain the reduced performance on induced plants since only indole GS concentrations increased in response to herbivory, which did not affect insect performance based on multivariate statistics. This result suggests that, in addition to aliphatic GS, other non-GS chemicals are responsible for the decline in insect performance, and that these chemicals affect the parasitoid more strongly than the host. Remarkably, when developing on WIN plants, the survival of Mi. mediator to adult eclosion was much higher than in its host, M. brassicae. This may be due to the fact that hosts parasitized by Mi. mediator pass through fewer

  18. Influence of El Niño-Southern Oscillation on the population structure of a sea lion breeding colony in the Gulf of California

    NASA Astrophysics Data System (ADS)

    Shirasago-Germán, Bernardo; Pérez-Lezama, Edgar L.; Chávez, Ernesto A.; García-Morales, Ricardo

    2015-03-01

    The El Niño-Southern Oscillation (ENSO) phenomenon has a significant influence on Pacific marine ecosystems from primary trophic levels to top predators that cause fluctuations in their populations. Based on this fact we analyzed the sea lion Zalophus californianus population structure variability using censuses performed from 1979 to 2004 in Los Islotes breeding colony located at La Paz Bay as well as concomitant the ENSO phenomenon variability. To discriminate variations in the population structure not ascribable to the population attributes, a virtual population was created and compared to the census population. The residuals obtained from this comparison were correlated with the MEI (Multivariate ENSO Index) and BEST (Bivariate ENSO Time Series) indices, descriptors of the ENSO variability. The results showed that the population structure is an adequate descriptor of the conditions of the population instead of the abundance, and the total population is affected by the ENSO. The adult, subadult and pup male groups were the most sensitive groups to this phenomenon due to their intrinsic development and behavior. Likewise the BEST index is a better descriptor than the MEI index of the ENSO influence in the region where the breeding colony Los Islotes resides. Therefore we demonstrate in this work that changes caused by the ENSO not directly affect the sea lion due to its homeothermic capacity but affects the habitat where this organism performs its biological functions, producing behavioral changes in the population.

  19. Genetic population structure of local populations of the endangered saltmarsh sesarmid crab Clistocoeloma sinense in Japan.

    PubMed

    Yuhara, Takeshi; Kawane, Masako; Furota, Toshio

    2014-01-01

    During recent decades, over 40% of Japanese estuarine tidal flats have been lost due to coastal developments. Local populations of the saltmarsh sesarmid crab Clistocoeloma sinense, designated as an endangered species due to the limited suitable saltmarsh habitat available, have decreased accordingly, being now represented as small remnant populations. Several such populations in Tokyo Bay, have been recognised as representing distributional limits of the species. To clarify the genetic diversity and connectivity among local coastal populations of Japanese Clistocoeloma sinense, including those in Tokyo Bay, mitochondrial DNA analyses were conducted in the hope of providing fundamental information for future conservation studies and an understanding of metapopulation dynamics through larval dispersal among local populations. All of the populations sampled indicated low levels of genetic diversity, which may have resulted from recent population bottlenecks or founder events. However, the results also revealed clear genetic differentiation between two enclosed-water populations in Tokyo Bay and Ise-Mikawa Bay, suggesting the existence of a barrier to larval transport between these two water bodies. Since the maintenance of genetic connectivity is a requirement of local population stability, the preservation of extant habitats and restoration of saltmarshes along the coast of Japan may be the most effective measures for conservation of this endangered species. PMID:24400112

  20. Genetic Population Structure of Local Populations of the Endangered Saltmarsh Sesarmid Crab Clistocoeloma sinense in Japan

    PubMed Central

    Yuhara, Takeshi; Kawane, Masako; Furota, Toshio

    2014-01-01

    During recent decades, over 40% of Japanese estuarine tidal flats have been lost due to coastal developments. Local populations of the saltmarsh sesarmid crab Clistocoeloma sinense, designated as an endangered species due to the limited suitable saltmarsh habitat available, have decreased accordingly, being now represented as small remnant populations. Several such populations in Tokyo Bay, have been recognised as representing distributional limits of the species. To clarify the genetic diversity and connectivity among local coastal populations of Japanese Clistocoeloma sinense, including those in Tokyo Bay, mitochondrial DNA analyses were conducted in the hope of providing fundamental information for future conservation studies and an understanding of metapopulation dynamics through larval dispersal among local populations. All of the populations sampled indicated low levels of genetic diversity, which may have resulted from recent population bottlenecks or founder events. However, the results also revealed clear genetic differentiation between two enclosed-water populations in Tokyo Bay and Ise-Mikawa Bay, suggesting the existence of a barrier to larval transport between these two water bodies. Since the maintenance of genetic connectivity is a requirement of local population stability, the preservation of extant habitats and restoration of saltmarshes along the coast of Japan may be the most effective measures for conservation of this endangered species. PMID:24400112

  1. Ert Applied to the Characterization of Subsidence in Mexico City: Ancient Structures Affecting Urban Utilities

    NASA Astrophysics Data System (ADS)

    Arango, C.; Chavez, R. E.; Cifuentes-Nava, G.; Hernández-Quintero, E.

    2013-05-01

    The problem of subsidence in Mexico City is basically due to the rapid extraction of groundwater for water supply in addition to the geological conditions. The most typical manifestations of the phenomena are presented as cracks and fractures due to compaction of ancient lake clayish sediments. This phenomenon has caused major affectations to city infrastructure because of the differential subsidence. Fractured buildings, sinkholes, among others manifestations, are potentially sources of collapses, which exposes the population to a serious risk. A small portion of Iztacalco County is being affected by this problem, specifically, in a crossroad formed by two important avenues: La Viga and Plutarco Elias Calles, where the area apparently increases its topographical level. The Electrical Resistivity Tomography technique was selected in order to obtain a resistivity image of the subsoil, which allows identify the main features associated to the terrain uprising. Three (ERT) profiles 200 m, were deployed on the mentioned crossroad in order to characterize the subsurface structures affecting the topographical level of the avenues. A big resistivity anomaly (~ 1000 ohm-m) could be observed towards the central part of the crossroad, coinciding with the major lifting level on surface. This feature appears at 15 m deep in all the profiles and depicts an approximate extension of 100 m in the E-W direction and 60 m in N-S axis. On the other hand, the surrounding material seems to correspond to a higher-saturated environment (lacustrine sediments <10 ohm-m). Shallow anomalies were also detected related to urban artifacts (pipes, sewers, etcetera). The apparently terrain uprising can be associated to a differential subsidence. However, the mentioned avenues were ancient water channels since pre-Hispanic times, where the caudal was enough to allow small steam boating at late nineteenth century. These waterways served as main routes for the exchange of goods during colonial times

  2. Clonal population structures are derived from various population processes in the protistan oyster parasite Perkinsus marinus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Population genetic analysis of genotypes comprised of seven microsatellite loci revealed clonal genetic patterns in each of four populations of the protistan estuarine parasite Perkinsus marinus. Each locus was amplified directly from DNA extracted from infected oysters collected from four geographi...

  3. Atrazine does not affect algal biomass or snail populations in microcosm communities at environmentally relevant concentrations.

    PubMed

    Baxter, Leilan R; Moore, Dana L; Sibley, Paul K; Solomon, Keith R; Hanson, Mark L

    2011-07-01

    The herbicide atrazine is a photosynthetic inhibitor used around the world in agricultural applications. Contamination of surface waters adjacent to treated areas can directly reduce growth of nontarget aquatic autotrophs, but the severity of impacts is highly dependent on species sensitivity and exposure concentration. Secondary effects resulting from macrophyte or phytoplankton decline may include an expansion of the more tolerant periphyton community. Recently, this shift in the autotrophic community has been proposed as a mechanism for increased rates of parasite infections in amphibians via augmented populations of aquatic snails which act as intermediate hosts to larval trematodes. To further clarify this relationship, an outdoor microcosm study was conducted to examine the effects of atrazine on primary production and snail populations over a range of environmentally relevant concentrations. In July 2009, 15 experimental ponds were treated to achieve initial concentrations of 0, 1, 10, 30, and 100 µg/L atrazine. Over a period of 73 d, measures were taken of macrophyte, phytoplankton, and periphyton biomass, growth, and fecundity of caged snails (Physella spp. and Stagnicola elodes) and free-living snails (Physella spp.). Except for declines in macrophyte biomass at the highest treatment level, no consistent relationships were found between atrazine concentration and any measured parameter. Comparison of these results with previous findings highlights the variability of responses to atrazine exposure between similarly constructed freshwater communities, even at concentrations up to 20 times higher than sustained environmental levels. PMID:21567448

  4. Factors affecting population of filamentous bacteria in wastewater treatment plants with nutrients removal.

    PubMed

    Miłobędzka, Aleksandra; Witeska, Anna; Muszyński, Adam

    2016-01-01

    Filamentous population in activated sludge and key operational parameters of full-scale municipal wastewater treatment plants (WWTPs) with bulking problems representative for Poland were investigated with quantitative fluorescence in situ hybridization. Statistical analyses revealed few relationships between operational parameters and biovolume of filamentous bacteria. Sludge age was not only positively correlated with abundance of Chloroflexi (parametric correlation and principal component analysis (PCA)), but also differentiated Microthrix population (analysis of variance (ANOVA)). Phylum Chloroflexi and pH presented a negative relation during the study (PCA). ANOVA showed that pH of influent and sludge volume index (SVI) differentiated abundance of types 0803 and 1851 of Chloroflexi and candidate division TM7. SVI increased along with higher abundance of Microthrix (positive parametric and non-parametric correlations and positive relation in PCA). Biovolumes of morphotypes 0803 and 1851 of Chloroflexi were differentiated by organic matter in influent, also by nutrients in the case of Chloroflexi type 1851. Chemical and biological oxygen demands (COD and BOD5, respectively) were negatively correlated with Microthrix. COD also differentiated the abundance of Haliscomenobacter hydrossis. Results of the study can be used to prevent WWTPs from excessive proliferation of filamentous bacteria and operational problems caused by them--bulking and foaming of activated sludge. PMID:26901721

  5. Seasonal timing of first rain storms affects rare plant population dynamics

    USGS Publications Warehouse

    Levine, J.M.; McEachern, A.K.; Cowan, C.

    2011-01-01

    A major challenge in forecasting the ecological consequences of climate change is understanding the relative importance of changes to mean conditions vs. changes to discrete climatic events, such as storms, frosts, or droughts. Here we show that the first major storm of the growing season strongly influences the population dynamics of three rare and endangered annual plant species in a coastal California (USA) ecosystem. In a field experiment we used moisture barriers and water addition to manipulate the timing and temperature associated with first major rains of the season. The three focal species showed two- to fivefold variation in per capita population growth rates between the different storm treatments, comparable to variation found in a prior experiment imposing eightfold differences in season-long precipitation. Variation in germination was a major demographic driver of how two of three species responded to the first rains. For one of these species, the timing of the storm was the most critical determinant of its germination, while the other showed enhanced germination with colder storm temperatures. The role of temperature was further supported by laboratory trials showing enhanced germination in cooler treatments. Our work suggests that, because of species-specific cues for demographic transitions such as germination, changes to discrete climate events may be as, if not more, important than changes to season-long variables.

  6. Biomedical research, a tool to address the health issues that affect African populations

    PubMed Central

    2013-01-01

    Traditionally, biomedical research endeavors in low to middle resources countries have focused on communicable diseases. However, data collected over the past 20 years by the World Health Organization (WHO) show a significant increase in the number of people suffering from non-communicable diseases (e.g. heart disease, diabetes, cancer and pulmonary diseases). Within the coming years, WHO predicts significant decreases in communicable diseases while non-communicable diseases are expected to double in low and middle income countries in sub-Saharan Africa. The predicted increase in the non-communicable diseases population could be economically burdensome for the basic healthcare infrastructure of countries that lack resources to address this emerging disease burden. Biomedical research could stimulate development of healthcare and biomedical infrastructure. If this development is sustainable, it provides an opportunity to alleviate the burden of both communicable and non-communicable diseases through diagnosis, prevention and treatment. In this paper, we discuss how research using biomedical technology, especially genomics, has produced data that enhances the understanding and treatment of both communicable and non-communicable diseases in sub-Saharan Africa. We further discuss how scientific development can provide opportunities to pursue research areas responsive to the African populations. We limit our discussion to biomedical research in the areas of genomics due to its substantial impact on the scientific community in recent years however, we also recognize that targeted investments in other scientific disciplines could also foster further development in African countries. PMID:24143865

  7. Population structure of Helicobacter pylori among ethnic groups in Malaysia: recent acquisition of the bacterium by the Malay population

    PubMed Central

    2009-01-01

    Background Helicobacter pylori is a major gastric bacterial pathogen. This pathogen has been shown to follow the routes of human migration by their geographical origin and currently the global H. pylori population has been divided into six ancestral populations, three from Africa, two from Asia and one from Europe. Malaysia is made up of three major ethnic populations, Malay, Chinese and Indian, providing a good population for studying recent H. pylori migration and admixture. Results Seventy eight H. pylori isolates, including 27 Chinese, 35 Indian and 16 Malay isolates from Malaysia were analysed by multilocus sequence typing (MLST) of seven housekeeping genes and compared with the global MLST data. STRUCTURE analysis assigned the isolates to previously identified H. pylori ancestral populations, hpEastAsia, hpAsia2 and hpEurope, and revealed a new subpopulation, hspIndia, within hpAsia2. Statistical analysis allowed us to identify population segregation sites that divide the H. pylori populations and the subpopulations. The majority of Malay isolates were found to be grouped together with Indian isolates. Conclusion The majority of the Malay and Indian H. pylori isolates share the same origin while the Malaysian Chinese H. pylori is distinctive. The Malay population, known to have a low infection rate of H. pylori, was likely to be initially H. pylori free and gained the pathogen only recently from cross infection from other populations. PMID:19538757

  8. Sexual Dimorphism and Population Differences in Structural Properties of Barn Swallow (Hirundo rustica) Wing and Tail Feathers

    PubMed Central

    Pap, Péter L.; Osváth, Gergely; Aparicio, José Miguel; Bărbos, Lőrinc; Matyjasiak, Piotr; Rubolini, Diego; Saino, Nicola; Vágási, Csongor I.; Vincze, Orsolya; Møller, Anders Pape

    2015-01-01

    Sexual selection and aerodynamic forces affecting structural properties of the flight feathers of birds are poorly understood. Here, we compared the structural features of the innermost primary wing feather (P1) and the sexually dimorphic outermost (Ta6) and monomorphic second outermost (Ta5) tail feathers of barn swallows (Hirundo rustica) from a Romanian population to investigate how sexual selection and resistance to aerodynamic forces affect structural differences among these feathers. Furthermore, we compared structural properties of Ta6 of barn swallows from six European populations. Finally, we determined the relationship between feather growth bars width (GBW) and the structural properties of tail feathers. The structure of P1 indicates strong resistance against aerodynamic forces, while the narrow rachis, low vane density and low bending stiffness of tail feathers suggest reduced resistance against airflow. The highly elongated Ta6 is characterized by structural modifications such as large rachis width and increased barbule density in relation to the less elongated Ta5, which can be explained by increased length and/or high aerodynamic forces acting at the leading tail edge. However, these changes in Ta6 structure do not allow for full compensation of elongation, as reflected by the reduced bending stiffness of Ta6. Ta6 elongation in males resulted in feathers with reduced resistance, as shown by the low barb density and reduced bending stiffness compared to females. The inconsistency in sexual dimorphism and in change in quality traits of Ta6 among six European populations shows that multiple factors may contribute to shaping population differences. In general, the difference in quality traits between tail feathers cannot be explained by the GBW of feathers. Our results show that the material and structural properties of wing and tail feathers of barn swallows change as a result of aerodynamic forces and sexual selection, although the result of these

  9. Sexual Dimorphism and Population Differences in Structural Properties of Barn Swallow (Hirundo rustica) Wing and Tail Feathers.

    PubMed

    Pap, Péter L; Osváth, Gergely; Aparicio, José Miguel; Bărbos, Lőrinc; Matyjasiak, Piotr; Rubolini, Diego; Saino, Nicola; Vágási, Csongor I; Vincze, Orsolya; Møller, Anders Pape

    2015-01-01

    Sexual selection and aerodynamic forces affecting structural properties of the flight feathers of birds are poorly understood. Here, we compared the structural features of the innermost primary wing feather (P1) and the sexually dimorphic outermost (Ta6) and monomorphic second outermost (Ta5) tail feathers of barn swallows (Hirundo rustica) from a Romanian population to investigate how sexual selection and resistance to aerodynamic forces affect structural differences among these feathers. Furthermore, we compared structural properties of Ta6 of barn swallows from six European populations. Finally, we determined the relationship between feather growth bars width (GBW) and the structural properties of tail feathers. The structure of P1 indicates strong resistance against aerodynamic forces, while the narrow rachis, low vane density and low bending stiffness of tail feathers suggest reduced resistance against airflow. The highly elongated Ta6 is characterized by structural modifications such as large rachis width and increased barbule density in relation to the less elongated Ta5, which can be explained by increased length and/or high aerodynamic forces acting at the leading tail edge. However, these changes in Ta6 structure do not allow for full compensation of elongation, as reflected by the reduced bending stiffness of Ta6. Ta6 elongation in males resulted in feathers with reduced resistance, as shown by the low barb density and reduced bending stiffness compared to females. The inconsistency in sexual dimorphism and in change in quality traits of Ta6 among six European populations shows that multiple factors may contribute to shaping population differences. In general, the difference in quality traits between tail feathers cannot be explained by the GBW of feathers. Our results show that the material and structural properties of wing and tail feathers of barn swallows change as a result of aerodynamic forces and sexual selection, although the result of these

  10. Population structure of Vitis rupestris, an important resource for viticulture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wild North American grapevine Vitis rupestris Scheele is an important genetic resource for viticulture, but its natural population has been severely depleted. We collected samples from seven V. rupestris populations from the Ozark Plateau in Missouri and Ouachita Mountains in Oklahoma and genoty...

  11. 28 CFR 0.191 - Changes which affect the overall structure of the Department.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Changes which affect the overall structure of the Department. 0.191 Section 0.191 Judicial Administration DEPARTMENT OF JUSTICE ORGANIZATION OF THE DEPARTMENT OF JUSTICE Sections and Subunits § 0.191 Changes which affect the overall...

  12. The Internal Structure of Positive and Negative Affect: A Confirmatory Factor Analysis of the PANAS

    ERIC Educational Resources Information Center

    Tuccitto, Daniel E.; Giacobbi, Peter R., Jr.; Leite, Walter L.

    2010-01-01

    This study tested five confirmatory factor analytic (CFA) models of the Positive Affect Negative Affect Schedule (PANAS) to provide validity evidence based on its internal structure. A sample of 223 club sport athletes indicated their emotions during the past week. Results revealed that an orthogonal two-factor CFA model, specifying error…

  13. Population Growth and Demographic Structure. Proceedings of the United Nations Expert Group Meeting on Population Growth and Demographic Structure (Paris, France, November 16-20, 1992).

    ERIC Educational Resources Information Center

    United Nations, New York, NY. Dept. of Economic and Social Affairs.

    This volume contains the report and recommendations of the United Nations-sponsored meeting on population growth and demographic structure which was held in Paris, November 1992. Materials in the volume can serve as useful tools for future research on the relations between population, environment, and development and further the work of the United…

  14. Climate change affects key nitrogen-fixing bacterial populations on coral reefs

    PubMed Central

    Santos, Henrique F; Carmo, Flávia L; Duarte, Gustavo; Dini-Andreote, Francisco; Castro, Clovis B; Rosado, Alexandre S; van Elsas, Jan Dirk; Peixoto, Raquel S

    2014-01-01

    Coral reefs are at serious risk due to events associated with global climate change. Elevated ocean temperatures have unpredictable consequences for the ocean's biogeochemical cycles. The nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation. This study investigated the effects of increased seawater temperature on bacteria able to fix nitrogen (diazotrophs) that live in association with the mussid coral Mussismilia harttii. Consistent increases in diazotroph abundances and diversities were found at increased temperatures. Moreover, gradual shifts in the dominance of particular diazotroph populations occurred as temperature increased, indicating a potential future scenario of climate change. The temperature-sensitive diazotrophs may provide useful bioindicators of the effects of thermal stress on coral reef health, allowing the impact of thermal anomalies to be monitored. In addition, our findings support the development of research on different strategies to improve the fitness of corals during events of thermal stress, such as augmentation with specific diazotrophs. PMID:24830827

  15. Water and sediment quality factors affecting unionid mussel populations in the Clinch River, Virginia, USA

    SciTech Connect

    Hassel, J.H Van; Cherry, D.S.; Yeager, M.M.; Farris, J.L.

    1995-12-31

    The Clinch River contains a very diverse unionid mussel fauna of 45 species, including 21 endemics and 11 federally listed endangered species. Recent surveys indicate that the mussel fauna is in decline in several areas of the river. To study this problem, differences in unionid mussel species-distribution, density, size demography, physiological condition, and contaminant body burden were quantified at sixteen sites encompassing 200 miles of the Clinch River in Virginia. These differences were associated with corresponding site differences in physical habitat and water and sediment contamination attributable to point (STPS, small industries) and nonpoint (abandoned mine lands, agriculture) discharge sources. Some of the documented impacts have been severe enough to prevent successful recruitment into local populations of several unionid species for several years. Validation of these sources of impact will allow evaluation of specific watershed management options for the protection and enhancement of unionid mussel resources of the Clinch River.

  16. Genetic Diversity Affects the Daily Transcriptional Oscillations of Marine Microbial Populations

    PubMed Central

    Shilova, Irina N.; Robidart, Julie C.; DeLong, Edward F.; Zehr, Jonathan P.

    2016-01-01

    Marine microbial communities are genetically diverse but have robust synchronized daily transcriptional patterns at the genus level that are similar across a wide variety of oceanic regions. We developed a microarray-inspired gene-centric approach to resolve transcription of closely-related but distinct strains/ecotypes in high-throughput sequence data. Applying this approach to the existing metatranscriptomics datasets collected from two different oceanic regions, we found unique and variable patterns of transcription by individual taxa within the abundant picocyanobacteria Prochlorococcus and Synechococcus, the alpha Proteobacterium Pelagibacter and the eukaryotic picophytoplankton Ostreococcus. The results demonstrate that marine microbial taxa respond differentially to variability in space and time in the ocean. These intra-genus individual transcriptional patterns underlie whole microbial community responses, and the approach developed here facilitates deeper insights into microbial population dynamics. PMID:26751368

  17. Herbivory by an introduced Asian weevil negatively affects population growth of an invasive Brazilian shrub in Florida.

    PubMed

    Stricker, Kerry Bohl; Stiling, Peter

    2012-08-01

    The enemy release hypothesis (ERH) is often cited to explain why some plants successfully invade natural communities while others do not. This hypothesis maintains that plant populations are regulated by coevolved enemies in their native range but are relieved of this pressure where their enemies have not been co-introduced. Some studies have shown that invasive plants sustain lower levels of herbivore damage when compared to native species, but how damage affects fitness and population dynamics remains unclear. We used a system of co-occurring native and invasive Eugenia congeners in south Florida (USA) to experimentally test the ERH, addressing deficiencies in our understanding of the role of natural enemies in plant invasion at the population level. Insecticide was used to experimentally exclude insect herbivores from invasive Eugenia uniflora and its native co-occurring congeners in the field for two years. Herbivore damage, plant growth, survival, and population growth rates for the three species were then compared for control and insecticide-treated plants. Our results contradict the ERH, indicating that E. uniflora sustains more herbivore damage than its native congeners and that this damage negatively impacts stem height, survival, and population growth. In addition, most damage to E. uniflora, a native of Brazil, is carried out by Myllocerus undatus, a recently introduced weevil from Sri Lanka, and M. undatus attacks a significantly greater proportion of E. uniflora leaves than those of its native congeners. This interaction is particularly interesting because M. undatus and E. uniflora share no coevolutionary history, having arisen on two separate continents and come into contact on a third. Our study is the first to document negative population-level effects for an invasive plant as a result of the introduction of a novel herbivore. Such inhibitory interactions are likely to become more prevalent as suites of previously noninteracting species continue to

  18. Population Structure and Evolution after Speciation of the Hokkaido Salamander (Hynobius retardatus)

    PubMed Central

    Matsunami, Masatoshi; Igawa, Takeshi; Michimae, Hirofumi; Miura, Toru; Nishimura, Kinya

    2016-01-01

    The Hokkaido salamander (Hynobius retardatus) is endemic to Hokkaido Island, Japan, and shows intriguing flexible phenotypic plasticity and regional morphological diversity. However, to date, allozymes and partial mitochondria DNA sequences have provided only an outline of its demographic histories and the pattern of its genetic diversification. To understand the finer details of the population structure of this species and its evolution since speciation, we genotyped five regional populations by using 12 recently developed microsatellite polymorphic markers. We found a clear population structure with low gene flow among the five populations, but a close genetic relationship between the Teshio and Kitami populations. Our demographic analysis suggested that Teshio and Erimo had the largest effective population sizes among the five populations. These findings regarding the population structure and demography of H. retardatus improve our understanding of the faunal phylogeography on Hokkaido Island and also provide fundamental genetic information that will be useful for future studies. PMID:27257807

  19. Population Structure and Evolution after Speciation of the Hokkaido Salamander (Hynobius retardatus).

    PubMed

    Matsunami, Masatoshi; Igawa, Takeshi; Michimae, Hirofumi; Miura, Toru; Nishimura, Kinya

    2016-01-01

    The Hokkaido salamander (Hynobius retardatus) is endemic to Hokkaido Island, Japan, and shows intriguing flexible phenotypic plasticity and regional morphological diversity. However, to date, allozymes and partial mitochondria DNA sequences have provided only an outline of its demographic histories and the pattern of its genetic diversification. To understand the finer details of the population structure of this species and its evolution since speciation, we genotyped five regional populations by using 12 recently developed microsatellite polymorphic markers. We found a clear population structure with low gene flow among the five populations, but a close genetic relationship between the Teshio and Kitami populations. Our demographic analysis suggested that Teshio and Erimo had the largest effective population sizes among the five populations. These findings regarding the population structure and demography of H. retardatus improve our understanding of the faunal phylogeography on Hokkaido Island and also provide fundamental genetic information that will be useful for future studies. PMID:27257807

  20. Factor structure of the Positive and Negative Affect Schedule (PANAS) in adult women with fibromyalgia from Southern Spain: the al-Ándalus project

    PubMed Central

    Pulido-Martos, Manuel; Armitage, Christopher J.; Wearden, Alison; Álvarez-Gallardo, Inmaculada C.; Arrayás-Grajera, Manuel Javier; Girela-Rejón, María J.; Carbonell-Baeza, Ana; Aparicio, Virginia A.; Geenen, Rinie; Delgado-Fernández, Manuel

    2016-01-01

    Background: Fibromyalgia is a syndrome characterized by the presence of widespread chronic pain. People with fibromyalgia report lower levels of Positive Affect and higher levels of Negative Affect than non-fibromyalgia peers. The Positive and Negative Affect Schedule (PANAS)–a widely used questionnaire to assess two core domains of affect; namely ‘Positive Affect’ and ‘Negative Affect’ –has a controversial factor structure varying across studies. The internal structure of a measurement instrument has an impact on the meaning and validity of its score. Therefore, the aim of the present study was to assess the structural construct validity of the PANAS in adult women with fibromyalgia. Methods: This population-based cross-sectional study included 442 adult women with fibromyalgia (age: 51.3 ± 7.4 years old) from Andalusia (Southern Spain). Confirmatory factor analyses were conducted to test the factor structure of the PANAS. Results: A structure with two correlated factors (Positive Affect and Negative Affect) obtained the best fit; S-B χ2 = 288.49, df = 155, p < .001; RMSEA = .04; 90% CI of RMSEA = (.036, .052); the best fit SRMR = .05; CFI = .96; CAIC = −810.66, respectively. Conclusions: The present study demonstrates that both Positive Affect and Negative Affect are core dimensions of affect in adult women with fibromyalgia. A structure with two correlated factors of the PANAS emerged from our sample of women with fibromyalgia from Andalusia (Southern Spain). In this model, the amount of variance shared by Positive Affect and Negative Affect was small. Therefore, our findings support to use and interpret the Positive Affect and Negative Affect subscales of the PANAS as separate factors that are associated but distinctive as well. PMID:27047704

  1. Objective Sleep Structure and Cardiovascular Risk Factors in the General Population: The HypnoLaus Study

    PubMed Central

    Haba-Rubio, José; Marques-Vidal, Pedro; Andries, Daniela; Tobback, Nadia; Preisig, Martin; Vollenweider, Peter; Waeber, Gérard; Luca, Gianina; Tafti, Mehdi; Heinzer, Raphaël

    2015-01-01

    Study Objectives: To evaluate the association between objective sleep measures and metabolic syndrome (MS), hypertension, diabetes, and obesity. Design: Cross-sectional study. Setting: General population sample. Participants: There were 2,162 patients (51.2% women, mean age 58.4 ± 11.1). Interventions: Patients were evaluated for hypertension, diabetes, overweight/obesity, and MS, and underwent a full polysomnography (PSG). Measurements and Results: PSG measured variables included: total sleep time (TST), percentage and time spent in slow wave sleep (SWS) and in rapid eye movement (REM) sleep, sleep efficiency and arousal index (ArI). In univariate analyses, MS was associated with decreased TST, SWS, REM sleep, and sleep efficiency, and increased ArI. After adjustment for age, sex, smoking, alcohol, physical activity, drugs that affect sleep and depression, the ArI remained significantly higher, but the difference disappeared in patients without significant sleep disordered breathing (SDB). Differences in sleep structure were also found according to the presence or absence of hypertension, diabetes, and overweight/obesity in univariate analysis. However, these differences were attenuated after multivariate adjustment and after excluding subjects with significant SDB. Conclusions: In this population-based sample we found significant associations between sleep structure and metabolic syndrome (MS), hypertension, diabetes, and obesity. However, these associations were cancelled after multivariate adjustment. We conclude that normal variations in sleep contribute little if any to MS and associated disorders. Citation: Haba-Rubio J, Marques-Vidal P, Andries D, Tobback N, Preisig M, Vollenweider P, Waeber G, Luca G, Tafti M, Heinzer R. Objective sleep structure and cardiovascular risk factors in the general population: the HypnoLaus study. SLEEP 2015;38(3):391–400. PMID:25325467

  2. Effects of Pleistocene glaciations on population structure of North American chestnut-backed chickadees.

    PubMed

    Burg, Theresa M; Gaston, Anthony J; Winker, Kevin; Friesen, Vicki L

    2006-08-01

    The postglacial recolonization of northern North America was heavily influenced by the Pleistocene glaciation. In the Pacific Northwest, there are two disjunct regions of mesic temperate forest, one coastal and the other interior. The chestnut-backed chickadee is one of the species associated with this distinctive ecosystem. Using seven microsatellite markers we found evidence of population structure among nine populations of chestnut-backed chickadees. High levels of allelic variation were found in each of the populations. Northern British Columbia and central Alaska populations contained a large number of private alleles compared to other populations, including those from unglaciated regions. The disjunct population in the interior was genetically distinct from the coastal population. Genetic and historical records indicate that the interior population originated from postglacial inland dispersal. Population structuring was found within the continuous coastal population, among which the peripheral populations, specifically those on the Queen Charlotte Islands and the central Alaska mainland, were genetically distinct. The pattern of population structure among contemporary chickadee populations is consistent with a pioneer model of recolonization. The persistence of genetic structure in western North American chestnut-backed chickadees may be aided by their sedentary behaviour, linear distribution, and dependence on cedar-hemlock forests. PMID:16842415

  3. Role of recent and old riverine barriers in fine-scale population genetic structure of Geoffroy's tamarin (Saguinus geoffroyi) in the Panama Canal watershed

    PubMed Central

    Díaz-Muñoz, Samuel L

    2012-01-01

    The role of physical barriers in promoting population divergence and genetic structuring is well known. While it is well established that animals can show genetic structuring at small spatial scales, less well-resolved is how the timing of the appearance of barriers affects population structure. This study uses the Panama Canal watershed as a test of the effects of old and recent riverine barriers in creating population structure in Saguinus geoffroyi, a small cooperatively breeding Neotropical primate. Mitochondrial sequences and microsatellite genotypes from three sampling localities revealed genetic structure across the Chagres River and the Panama Canal, suggesting that both waterways act as barriers to gene flow. F-statistics and exact tests of population differentiation suggest population structure on either side of both riverine barriers. Genetic differentiation across the Canal, however, was less than observed across the Chagres. Accordingly, Bayesian clustering algorithms detected between two and three populations, with localities across the older Chagres River always assigned as distinct populations. While conclusions represent a preliminary assessment of genetic structure of S. geoffroyi, this study adds to the evidence indicating that riverine barriers create genetic structure across a wide variety of taxa in the Panama Canal watershed and highlights the potential of this study area for discerning modern from historical influences on observed patterns of population genetic structure. PMID:22423325

  4. Role