Science.gov

Sample records for affect prey populations

  1. Predator functional response and prey survival: Direct and indirect interactions affecting a marked prey population

    USGS Publications Warehouse

    Miller, David A.; Grand, J.B.; Fondell, T.F.; Anthony, M.

    2006-01-01

    determine the mechanisms responsible for variation in observed survival rates. The relationship between predator functional response and prey survival offers a flexible and robust method to advance our understanding of predator-prey interactions in many complex natural systems where prey populations are marked and regularly visited. ?? 2006 British Ecological Society.

  2. Predator functional response and prey survival: direct and indirect interactions affecting a marked prey population.

    PubMed

    Miller, David A; Grand, James B; Fondell, Thomas F; Anthony, Michael

    2006-01-01

    determine the mechanisms responsible for variation in observed survival rates. The relationship between predator functional response and prey survival offers a flexible and robust method to advance our understanding of predator-prey interactions in many complex natural systems where prey populations are marked and regularly visited.

  3. Alternative prey use affects helminth parasite infections in grey wolves.

    PubMed

    Friesen, Olwyn C; Roth, James D

    2016-09-01

    Predators affect prey populations not only through direct predation, but also by acting as definitive hosts for their parasites and completing parasite life cycles. Understanding the affects of parasitism on prey population dynamics requires knowing how their predators' parasite community is affected by diet and prey availability. Ungulates, such as moose (Alces americanus) and white-tailed deer (Odocoileus virginianus), are often important prey for wolves (Canis lupus), but wolves also consume a variety of alternative prey, including beaver (Castor canadensis) and snowshoe hare (Lepus americanus). The use of alternative prey, which may host different or fewer parasites than ungulates, could potentially reduce overall abundance of ungulate parasites within the ecosystem, benefiting both wolves and ungulate hosts. We examined parasites in wolf carcasses from eastern Manitoba and estimated wolf diet using stable isotope analysis. Taeniidae cestodes were present in most wolves (75%), reflecting a diet primarily comprised of ungulates, but nematodes were unexpectedly rare. Cestode abundance was negatively related to the wolf's δ(13) C value, indicating diet affects parasite abundance. Wolves that consumed a higher proportion of beaver and caribou (Rangifer tarandus), estimated using Bayesian mixing models, had lower cestode abundance, suggesting the use of these alternative prey can reduce parasite loads. Long-term consumption of beavers may lower the abundance of adult parasites in wolves, eventually lowering parasite density in the region and ultimately benefiting ungulates that serve as intermediate hosts. Thus, alternative prey can affect both predator-prey and host-parasite interactions and potentially affect food web dynamics.

  4. How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses.

    PubMed

    Boukal, David S; Sabelis, Maurice W; Berec, Ludek

    2007-08-01

    In Rosenzweig-MacArthur models of predator-prey dynamics, Allee effects in prey usually destabilize interior equilibria and can suppress or enhance limit cycles typical of the paradox of enrichment. We re-evaluate these conclusions through a complete classification of a wide range of Allee effects in prey and predator's functional response shapes. We show that abrupt and deterministic system collapses not preceded by fluctuating predator-prey dynamics occur for sufficiently steep type III functional responses and strong Allee effects (with unstable lower equilibrium in prey dynamics). This phenomenon arises as type III functional responses greatly reduce cyclic dynamics and strong Allee effects promote deterministic collapses. These collapses occur with decreasing predator mortality and/or increasing susceptibility of the prey to fall below the threshold Allee density (e.g. due to increased carrying capacity or the Allee threshold itself). On the other hand, weak Allee effects (without unstable equilibrium in prey dynamics) enlarge the range of carrying capacities for which the cycles occur if predators exhibit decelerating functional responses. We discuss the results in the light of conservation strategies, eradication of alien species, and successful introduction of biocontrol agents.

  5. Prey selectivity affects reproductive success of a corallivorous reef fish.

    PubMed

    Brooker, Rohan M; Jones, Geoffrey P; Munday, Philip L

    2013-06-01

    Most animals consume a narrower range of food resources than is potentially available in the environment, but the underlying basis for these preferences is often poorly understood. Foraging theory predicts that prey selection should represent a trade-off between prey preferences based on nutritional value and prey availability. That is, species should consume preferred prey when available, but select less preferred prey when preferred prey is rare. We employed both field observation and laboratory experiments to examine the relationship between prey selection and preferences in the obligate coral-feeding filefish, Oxymonacanthus longirostris. To determine the drivers of prey selection, we experimentally established prey preferences in choice arenas and tested the consequences of prey preferences for key fitness-related parameters. Field studies showed that individuals fed almost exclusively on live corals from the genus Acropora. While diet was dominated by the most abundant species, Acropora nobilis, fish appeared to preferentially select rarer acroporids, such as A. millepora and A. hyacinthus. Prey choice experiments confirmed strong preferences for these corals, suggesting that field consumption is constrained by availability. In a longer-term feeding experiment, reproductive pairs fed on non-preferred corals exhibited dramatic reductions to body weight, and in hepatic and gonad condition, compared with those fed preferred corals. The majority of pairs fed preferred corals spawned frequently, while no spawning was observed for any pairs fed a non-preferred species of coral. These experiments suggest that fish distinguish between available corals based on their intrinsic value as prey, that reproductive success is dependent on the presence of particular coral species, and that differential loss of preferred corals could have serious consequences for the population success of these dietary specialists.

  6. Prey dispersal rate affects prey species composition and trait diversity in response to multiple predators in metacommunities.

    PubMed

    Howeth, Jennifer G; Leibold, Mathew A

    2010-09-01

    1. Recent studies indicate that large-scale spatial processes can alter local community structuring mechanisms to determine local and regional assemblages of predators and their prey. In metacommunities, this may occur when the functional diversity represented in the regional predator species pool interacts with the rate of prey dispersal among local communities to affect prey species diversity and trait composition at multiple scales. 2. Here, we test for effects of prey dispersal rate and spatially and temporally heterogeneous predation from functionally dissimilar predators on prey structure in pond mesocosm metacommunities. An experimental metacommunity consisted of three pond mesocosm communities supporting two differentially size-selective invertebrate predators and their zooplankton prey. In each metacommunity, two communities maintained constant predation and supported either Gyrinus sp. (Coleoptera) or Notonecta ungulata (Hemiptera) predators generating a spatial prey refuge while the third community supported alternating predation from Gyrinus sp. and N. ungulata generating a temporal prey refuge. Mesocosm metacommunities were connected at either low (0.7% day(-1)) or high (10% day(-1)) planktonic prey dispersal. The diversity, composition and body size of zooplankton prey were measured at local and regional (metacommunity) scales. 3. Metacommunities experiencing the low prey dispersal rate supported the greatest regional prey species diversity (H') and evenness (J'). Neither dispersal rate nor predation regime affected local prey diversity or evenness. The spatial prey refuge at low dispersal maintained the largest difference in species composition and body size diversity between communities under Gyrinus and Notonecta predation, suggesting that species sorting was operating at the low dispersal rate. There was no effect of dispersal rate on species diversity or body size distribution in the temporal prey refuge. 4. The frequency distribution, but not

  7. Cues of intraguild predators affect the distribution of intraguild prey.

    PubMed

    Choh, Yasuyuki; van der Hammen, Tessa; Sabelis, Maurice W; Janssen, Arne

    2010-06-01

    Theory on intraguild (IG) predation predicts that coexistence of IG-predators and IG-prey is only possible for a limited set of parameter values, suggesting that IG-predation would not be common in nature. This is in conflict with the observation that IG-predation occurs in many natural systems. One possible explanation for this difference might be antipredator behaviour of the IG-prey, resulting in decreased strength of IG-predation. We studied the distribution of an IG-prey, the predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae), in response to cues of its IG-predator, the predatory mite Iphiseius degenerans. Shortly after release, the majority of IG-prey was found on the patch without cues of IG-predators, suggesting that they can rapidly assess predation risk. IG-prey also avoided patches where conspecific juveniles had been killed by IG-predators. Because it is well known that antipredator behaviour in prey is affected by the diet of the predator, we also tested whether IG-prey change their distribution in response to the food of the IG-predators (pollen or conspecific juveniles), but found no evidence for this. The IG-prey laid fewer eggs on patches with cues of IG-predators than on patches without cues. Hence, IG-prey changed their distribution and oviposition in response to cues of IG-predators. This might weaken the strength of IG-predation, possibly providing more opportunities for IG-prey and IG-predators to co-exist.

  8. Environmental toxicology: population modeling of cod larvae shows high sensitivity to loss of zooplankton prey.

    PubMed

    Stige, Leif Christian; Ottersen, Geir; Hjermann, Dag Ø; Dalpadado, Padmini; Jensen, Louise K; Stenseth, Nils Chr

    2011-02-01

    Two factors determine whether pollution is likely to affect a population indirectly through loss of prey: firstly, the sensitivity of the prey to the pollutants, and secondly, the sensitivity of the predator population to loss of prey at the given life stage. We here apply a statistical recruitment model for Northeast Arctic cod to evaluate the sensitivity of cod cohorts to loss of zooplankton prey, for example following an oil spill. The calculations show that cod cohorts are highly sensitive to possible zooplankton biomass reductions in the distribution area of the cod larvae, and point to a need for more knowledge about oil-effects on zooplankton. Our study illustrates how knowledge about population dynamics may guide which indirect effects to consider in environmental impact studies.

  9. Colour Polymorphism Protects Prey Individuals and Populations Against Predation.

    PubMed

    Karpestam, Einat; Merilaita, Sami; Forsman, Anders

    2016-02-23

    Colour pattern polymorphism in animals can influence and be influenced by interactions between predators and prey. However, few studies have examined whether polymorphism is adaptive, and there is no evidence that the co-occurrence of two or more natural prey colour variants can increase survival of populations. Here we show that visual predators that exploit polymorphic prey suffer from reduced performance, and further provide rare evidence in support of the hypothesis that prey colour polymorphism may afford protection against predators for both individuals and populations. This protective effect provides a probable explanation for the longstanding, evolutionary puzzle of the existence of colour polymorphisms. We also propose that this protective effect can provide an adaptive explanation for search image formation in predators rather than search image formation explaining polymorphism.

  10. Relative Preference and Localized Food Affect Predator Space Use and Consumption of Incidental Prey.

    PubMed

    Schartel, Tyler E; Schauber, Eric M

    2016-01-01

    Abundant, localized foods can concentrate predators and their foraging efforts, thus altering both the spatial distribution of predation risk and predator preferences for prey that are encountered incidentally. However, few investigations have quantified the spatial scale over which localized foods affect predator foraging behavior and consumption of incidental prey. In spring 2010, we experimentally tested how point-source foods altered how generalist predators (white-footed mice, Peromyscus leucopus) utilized space and depredated two incidental prey items: almonds (Prunus dulcis; highly profitable) and maple seeds (Acer saccharum; less profitable). We estimated mouse population densities with trapping webs, quantified mouse consumption rates of these incidental prey items, and measured local mouse activity with track plates. We predicted that 1) mouse activity would be elevated near full feeders, but depressed at intermediate distances from the feeder, 2) consumption of both incidental prey would be high near feeders providing less-preferred food and, 3) consumption of incidental prey would be contingent on predator preference for prey relative to feeders providing more-preferred food. Mouse densities increased significantly from pre- to post-experiment. Mean mouse activity was unexpectedly greatest in control treatments, particularly <15 m from the control (empty) feeder. Feeders with highly preferred food (sunflower seeds) created localized refuges for incidental prey at intermediate distances (15 to 25m) from the feeder. Feeders with less-preferred food (corn) generated localized high risk for highly preferred almonds <10 m of the feeder. Our findings highlight the contingent but predictable effects of locally abundant food on risk experienced by incidental prey, which can be positive or negative depending on both spatial proximity and relative preference.

  11. Relative Preference and Localized Food Affect Predator Space Use and Consumption of Incidental Prey

    PubMed Central

    Schartel, Tyler E.; Schauber, Eric M.

    2016-01-01

    Abundant, localized foods can concentrate predators and their foraging efforts, thus altering both the spatial distribution of predation risk and predator preferences for prey that are encountered incidentally. However, few investigations have quantified the spatial scale over which localized foods affect predator foraging behavior and consumption of incidental prey. In spring 2010, we experimentally tested how point-source foods altered how generalist predators (white-footed mice, Peromyscus leucopus) utilized space and depredated two incidental prey items: almonds (Prunus dulcis; highly profitable) and maple seeds (Acer saccharum; less profitable). We estimated mouse population densities with trapping webs, quantified mouse consumption rates of these incidental prey items, and measured local mouse activity with track plates. We predicted that 1) mouse activity would be elevated near full feeders, but depressed at intermediate distances from the feeder, 2) consumption of both incidental prey would be high near feeders providing less-preferred food and, 3) consumption of incidental prey would be contingent on predator preference for prey relative to feeders providing more-preferred food. Mouse densities increased significantly from pre- to post-experiment. Mean mouse activity was unexpectedly greatest in control treatments, particularly <15 m from the control (empty) feeder. Feeders with highly preferred food (sunflower seeds) created localized refuges for incidental prey at intermediate distances (15 to 25m) from the feeder. Feeders with less-preferred food (corn) generated localized high risk for highly preferred almonds <10 m of the feeder. Our findings highlight the contingent but predictable effects of locally abundant food on risk experienced by incidental prey, which can be positive or negative depending on both spatial proximity and relative preference. PMID:26978659

  12. Effects of a disease affecting a predator on the dynamics of a predator-prey system.

    PubMed

    Auger, Pierre; McHich, Rachid; Chowdhury, Tanmay; Sallet, Gauthier; Tchuente, Maurice; Chattopadhyay, Joydev

    2009-06-07

    We study the effects of a disease affecting a predator on the dynamics of a predator-prey system. We couple an SIRS model applied to the predator population, to a Lotka-Volterra model. The SIRS model describes the spread of the disease in a predator population subdivided into susceptible, infected and removed individuals. The Lotka-Volterra model describes the predator-prey interactions. We consider two time scales, a fast one for the disease and a comparatively slow one for predator-prey interactions and for predator mortality. We use the classical "aggregation method" in order to obtain a reduced equivalent model. We show that there are two possible asymptotic behaviors: either the predator population dies out and the prey tends to its carrying capacity, or the predator and prey coexist. In this latter case, the predator population tends either to a "disease-free" or to a "disease-endemic" state. Moreover, the total predator density in the disease-endemic state is greater than the predator density in the "disease-free" equilibrium (DFE).

  13. Inducible offences affect predator-prey interactions and life-history plasticity in both predators and prey.

    PubMed

    Kishida, Osamu; Costa, Zacharia; Tezuka, Ayumi; Michimae, Hirofumi

    2014-07-01

    Phenotypic plasticity can have strong impacts on predator-prey interactions. Although much work has examined the effects of inducible defences, less understood is how inducible offences in predators affect predator-prey interactions and predator and prey phenotypes. Here, we examine the impacts of an inducible offence on the interactions and life histories of a cohort of predatory Hynobius retardatus salamander larvae and their prey, Rana pirica tadpoles. We examined larval (duration, survival) and post-metamorphic (size) traits of both species after manipulating the presence/absence of tadpoles and salamanders with offensive (broadened gape width) or non-offensive phenotypes in pond enclosures. Offensive phenotype salamanders reduced tadpole survival and metamorph emergence by 58% compared to tadpole-only treatments, and by over 30% compared to non-offensive phenotypes. Average time to metamorphosis of frogs was delayed by 30% in the presence of salamanders, although this was independent of salamander phenotype. Thus, offensive phenotype salamanders reduced the number of tadpoles remaining in the pond over time by reducing tadpole survival, not by altering patterns of metamorph emergence. Offensive phenotypes also caused tadpoles to metamorphose 19% larger than no salamander treatments and 6% larger than non-offensive phenotype treatments. Pooled across salamander treatments, tadpoles caused salamanders to reach metamorphosis faster and larger. Moreover, in the presence of tadpoles, offensive phenotype salamanders metamorphosed 25% faster and 5% larger than non-offensive phenotype salamanders, but in their absence, neither their size nor larval period differed from non-offensive phenotype individuals. To our knowledge, this study is the first to demonstrate that inducible offences in predators can have strong impacts on predator and prey phenotypes across multiple life stages. Since early metamorphosis at a larger size has potential fitness advantages, the impacts

  14. Insect prey characteristics affecting regional variation in chimpanzee tool use.

    PubMed

    Sanz, Crickette M; Deblauwe, Isra; Tagg, Nikki; Morgan, David B

    2014-06-01

    It is an ongoing interdisciplinary pursuit to identify the factors shaping the emergence and maintenance of tool technology. Field studies of several primate taxa have shown that tool using behaviors vary within and between populations. While similarity in tools over spatial and temporal scales may be the product of socially learned skills, it may also reflect adoption of convergent strategies that are tailored to specific prey features. Much has been claimed about regional variation in chimpanzee tool use, with little attention to the ecological circumstances that may have shaped such differences. This study examines chimpanzee tool use in termite gathering to evaluate the extent to which the behavior of insect prey may dictate chimpanzee technology. More specifically, we conducted a systematic comparison of chimpanzee tool use and termite prey between the Goualougo Triangle in the Republic of Congo and the La Belgique research site in southeast Cameroon. Apes at both of these sites are known to use tool sets to gather several species of termites. We collected insect specimens and measured the characteristics of their nests. Associated chimpanzee tool assemblages were documented at both sites and video recordings were conducted in the Goualougo Triangle. Although Macrotermitinae assemblages were identical, we found differences in the tools used to gather these termites. Based on measurements of the chimpanzee tools and termite nests at each site, we concluded that some characteristics of chimpanzee tools were directly related to termite nest structure. While there is a certain degree of uniformity within approaches to particular tool tasks across the species range, some aspects of regional variation in hominoid technology are likely adaptations to subtle environmental differences between populations or groups. Such microecological differences between sites do not negate the possibility of cultural transmission, as social learning may be required to transmit

  15. Reciprocity in predator-prey interactions: exposure to defended prey and predation risk affects intermediate predator life history and morphology.

    PubMed

    Hammill, Edd; Beckerman, Andrew P

    2010-05-01

    A vast body of literature exists documenting the morphological, behavioural and life history changes that predators induce in prey. However, little attention has been paid to how these induced changes feed back and affect the predators' life history and morphology. Larvae of the phantom midge Chaoborus flavicans are intermediate predators in a food web with Daphnia pulex as the basal resource and planktivorous fish as the top predator. C. flavicans prey on D. pulex and are themselves prey for fish; as D. pulex induce morphological defences in the presence of C. flavicans this is an ideal system in which to evaluate the effects of defended prey and top predators on an intermediate consumer. We assessed the impact on C. flavicans life history and morphology of foraging on defended prey while also being exposed to the non-lethal presence of a top fish predator. We tested the basic hypothesis that the effects of defended prey will depend on the presence or absence of top predator predation risk. Feeding rate was significantly reduced and time to pupation was significantly increased by defended morph prey. Gut size, development time, fecundity, egg size and reproductive effort respond to fish chemical cues directly or significantly alter the relationship between a trait and body size. We found no significant interactions between prey morph and the non-lethal presence of a top predator, suggesting that the effects of these two biological factors were additive or singularly independent. Overall it appears that C. flavicans is able to substantially modify several aspects of its biology, and while some changes appear mere consequences of resource limitation others appear facultative in nature.

  16. Prey community structure affects how predators select for Mullerian mimicry.

    PubMed

    Ihalainen, Eira; Rowland, Hannah M; Speed, Michael P; Ruxton, Graeme D; Mappes, Johanna

    2012-06-07

    Müllerian mimicry describes the close resemblance between aposematic prey species; it is thought to be beneficial because sharing a warning signal decreases the mortality caused by sampling by inexperienced predators learning to avoid the signal. It has been hypothesized that selection for mimicry is strongest in multi-species prey communities where predators are more prone to misidentify the prey than in simple communities. In this study, wild great tits (Parus major) foraged from either simple (few prey appearances) or complex (several prey appearances) artificial prey communities where a specific model prey was always present. Owing to slower learning, the model did suffer higher mortality in complex communities when the birds were inexperienced. However, in a subsequent generalization test to potential mimics of the model prey (a continuum of signal accuracy), only birds that had foraged from simple communities selected against inaccurate mimics. Therefore, accurate mimicry is more likely to evolve in simple communities even though predator avoidance learning is slower in complex communities. For mimicry to evolve, prey species must have a common predator; the effective community consists of the predator's diet. In diverse environments, the limited diets of specialist predators could create 'simple community pockets' where accurate mimicry is selected for.

  17. The Nutritional Content of Prey Affects the Foraging of a Generalist Arthropod Predator

    PubMed Central

    Schmidt, Jason M.; Sebastian, Peter; Wilder, Shawn M.; Rypstra, Ann L.

    2012-01-01

    While foraging theory predicts that predatory responses should be determined by the energy content and size of prey, it is becoming increasingly clear that carnivores regulate their intake of specific nutrients. We tested the hypothesis that prey nutrient composition and predator nutritional history affects foraging intensity, consumption, and prey selection by the wolf spider, Pardosa milvina. By altering the rearing environment for fruit flies, Drosophila melanogaster, we produced high quality flies containing more nitrogen and protein and less lipid than low quality fruit flies. In one experiment, we quantified the proportion of flies taken and consumption across a range of densities of either high or low quality flies and, in a second experiment, we determined the prey capture and consumption of spiders that had been maintained on contrasting diets prior to testing. In both cases, the proportion of prey captured declined with increasing prey density, which characterizes the Type II functional response that is typical of wolf spiders. Spiders with similar nutritional histories killed similar numbers of each prey type but consumed more of the low quality prey. Spiders provided high quality prey in the weeks prior to testing killed more prey than those on the low quality diet but there was no effect of prior diet on consumption. In the third experiment, spiders were maintained on contrasting diets for three weeks and then allowed to select from a mixture of high and low quality prey. Interestingly, feeding history affected prey preferences: spiders that had been on a low quality diet showed no preference but those on the high quality diet selected high quality flies from the mixture. Our results suggest that, even when prey size and species identity are controlled, the nutritional experience of the predator as well as the specific content of the prey shapes predator-prey interactions. PMID:23145130

  18. Density-dependent dispersal and relative dispersal affect the stability of predator-prey metacommunities.

    PubMed

    Hauzy, Céline; Gauduchon, Mathias; Hulot, Florence D; Loreau, Michel

    2010-10-07

    Although density-dependent dispersal and relative dispersal (the difference in dispersal rates between species) have been documented in natural systems, their effects on the stability of metacommunities are poorly understood. Here we investigate the effects of intra- and interspecific density-dependent dispersal on the regional stability in a predator-prey metacommunity model. We show that, when the dynamics of the populations reach equilibrium, the stability of the metacommunity is not affected by density-dependent dispersal. However, the regional stability, measured as the regional variability or the persistence, can be modified by density-dependent dispersal when local populations fluctuate over time. Moreover these effects depend on the relative dispersal of the predator and the prey. Regional stability is modified through changes in spatial synchrony. Interspecific density-dependent dispersal always desynchronizses local dynamics, whereas intraspecific density-dependent dispersal may either synchronize or desynchronize it depending on dispersal rates. Moreover, intra- and interspecific density-dependent dispersal strengthen the top-down control of the prey by the predator at intermediate dispersal rates. As a consequence the regional stability of the metacommunity is increased at intermediate dispersal rates. Our results show that density-dependent dispersal and relative dispersal of species are keys to understanding the response of ecosystems to fragmentation.

  19. Elevated CO2 affects predator-prey interactions through altered performance.

    PubMed

    Allan, Bridie J M; Domenici, Paolo; McCormick, Mark I; Watson, Sue-Ann; Munday, Philip L

    2013-01-01

    Recent research has shown that exposure to elevated carbon dioxide (CO2) affects how fishes perceive their environment, affecting behavioral and cognitive processes leading to increased prey mortality. However, it is unclear if increased mortality results from changes in the dynamics of predator-prey interactions or due to prey increasing activity levels. Here we demonstrate that ocean pCO2 projected to occur by 2100 significantly effects the interactions of a predator-prey pair of common reef fish: the planktivorous damselfish Pomacentrus amboinensis and the piscivorous dottyback Pseudochromis fuscus. Prey exposed to elevated CO2 (880 µatm) or a present-day control (440 µatm) interacted with similarly exposed predators in a cross-factored design. Predators had the lowest capture success when exposed to elevated CO2 and interacting with prey exposed to present-day CO2. Prey exposed to elevated CO2 had reduced escape distances and longer reaction distances compared to prey exposed to present-day CO2 conditions, but this was dependent on whether the prey was paired with a CO2 exposed predator or not. This suggests that the dynamics of predator-prey interactions under future CO2 environments will depend on the extent to which the interacting species are affected and can adapt to the adverse effects of elevated CO2.

  20. Elevated CO2 Affects Predator-Prey Interactions through Altered Performance

    PubMed Central

    Allan, Bridie J. M.; Domenici, Paolo; McCormick, Mark I.; Watson, Sue-Ann; Munday, Philip L.

    2013-01-01

    Recent research has shown that exposure to elevated carbon dioxide (CO2) affects how fishes perceive their environment, affecting behavioral and cognitive processes leading to increased prey mortality. However, it is unclear if increased mortality results from changes in the dynamics of predator-prey interactions or due to prey increasing activity levels. Here we demonstrate that ocean pCO2 projected to occur by 2100 significantly effects the interactions of a predator-prey pair of common reef fish: the planktivorous damselfish Pomacentrus amboinensis and the piscivorous dottyback Pseudochromis fuscus. Prey exposed to elevated CO2 (880 µatm) or a present-day control (440 µatm) interacted with similarly exposed predators in a cross-factored design. Predators had the lowest capture success when exposed to elevated CO2 and interacting with prey exposed to present-day CO2. Prey exposed to elevated CO2 had reduced escape distances and longer reaction distances compared to prey exposed to present-day CO2 conditions, but this was dependent on whether the prey was paired with a CO2 exposed predator or not. This suggests that the dynamics of predator-prey interactions under future CO2 environments will depend on the extent to which the interacting species are affected and can adapt to the adverse effects of elevated CO2. PMID:23484032

  1. Predicting prey population dynamics from kill rate, predation rate and predator-prey ratios in three wolf-ungulate systems.

    PubMed

    Vucetich, John A; Hebblewhite, Mark; Smith, Douglas W; Peterson, Rolf O

    2011-11-01

    1. Predation rate (PR) and kill rate are both fundamental statistics for understanding predation. However, relatively little is known about how these statistics relate to one another and how they relate to prey population dynamics. We assess these relationships across three systems where wolf-prey dynamics have been observed for 41 years (Isle Royale), 19 years (Banff) and 12 years (Yellowstone). 2. To provide context for this empirical assessment, we developed theoretical predictions of the relationship between kill rate and PR under a broad range of predator-prey models including predator-dependent, ratio-dependent and Lotka-Volterra dynamics. 3. The theoretical predictions indicate that kill rate can be related to PR in a variety of diverse ways (e.g. positive, negative, unrelated) that depend on the nature of predator-prey dynamics (e.g. structure of the functional response). These simulations also suggested that the ratio of predator-to-prey is a good predictor of prey growth rate. That result motivated us to assess the empirical relationship between the ratio and prey growth rate for each of the three study sites. 4. The empirical relationships indicate that PR is not well predicted by kill rate, but is better predicted by the ratio of predator-to-prey. Kill rate is also a poor predictor of prey growth rate. However, PR and ratio of predator-to-prey each explained significant portions of variation in prey growth rate for two of the three study sites. 5. Our analyses offer two general insights. First, Isle Royale, Banff and Yellowstone are similar insomuch as they all include wolves preying on large ungulates. However, they also differ in species diversity of predator and prey communities, exploitation by humans and the role of dispersal. Even with the benefit of our analysis, it remains difficult to judge whether to be more impressed by the similarities or differences. This difficulty nicely illustrates a fundamental property of ecological

  2. Form of an evolutionary tradeoff affects eco-evolutionary dynamics in a predator-prey system.

    PubMed

    Kasada, Minoru; Yamamichi, Masato; Yoshida, Takehito

    2014-11-11

    Evolution on a time scale similar to ecological dynamics has been increasingly recognized for the last three decades. Selection mediated by ecological interactions can change heritable phenotypic variation (i.e., evolution), and evolution of traits, in turn, can affect ecological interactions. Hence, ecological and evolutionary dynamics can be tightly linked and important to predict future dynamics, but our understanding of eco-evolutionary dynamics is still in its infancy and there is a significant gap between theoretical predictions and empirical tests. Empirical studies have demonstrated that the presence of genetic variation can dramatically change ecological dynamics, whereas theoretical studies predict that eco-evolutionary dynamics depend on the details of the genetic variation, such as the form of a tradeoff among genotypes, which can be more important than the presence or absence of the genetic variation. Using a predator-prey (rotifer-algal) experimental system in laboratory microcosms, we studied how different forms of a tradeoff between prey defense and growth affect eco-evolutionary dynamics. Our experimental results show for the first time to our knowledge that different forms of the tradeoff produce remarkably divergent eco-evolutionary dynamics, including near fixation, near extinction, and coexistence of algal genotypes, with quantitatively different population dynamics. A mathematical model, parameterized from completely independent experiments, explains the observed dynamics. The results suggest that knowing the details of heritable trait variation and covariation within a population is essential for understanding how evolution and ecology will interact and what form of eco-evolutionary dynamics will result.

  3. Interactions between benthic predators and zooplanktonic prey are affected by turbulent waves.

    PubMed

    Robinson, H E; Finelli, C M; Koehl, M A R

    2013-11-01

    Predators capture prey in complex and variable environments. In the ocean, bottom-dwelling (benthic) organisms are subjected to water currents, waves, and turbulent eddies. For benthic predators that feed on small animals carried in the water (zooplankton), flow not only delivers prey, but can also shape predator-prey interactions. Benthic passive suspension feeders collect prey delivered by movement of ambient water onto capture-surfaces, whereas motile benthic predators, such as burrow-dwelling fish, dart out to catch passing zooplankton. How does the flow of ambient water affect these contrasting modes of predation by benthic zooplanktivores? We studied the effects of turbulent, wavy flow on the encounter, capture, and retention of motile zooplanktonic prey (copepods, Acartia spp.) by passive benthic suspension feeders (sea anemones, Anthopleura elegantissima). Predator-prey interactions were video-recorded in a wave-generating flume under two regimes of oscillating flow with different peak wave velocities and levels of turbulent kinetic energy ("weak" and "strong" waves). Rates of encounter (number of prey passing through a sea anemone's capture zone per time), capture (prey contacting and sticking to tentacles per time), and retention (prey retained on tentacles, without struggling free or washing off, per time) were measured at both strengths of waves. Strong waves enhanced encounter rates both for dead copepods and for actively swimming copepods, but there was so much variability in the behavior of the live prey that the effect of wave strength on encounter rates was not significant. Trapping efficiency (number of prey retained per number encountered) was the same in both flow regimes because, although fewer prey executed maneuvers to escape capture in strong waves, more of the captured prey was washed off the predators' tentacles. Although peak water velocities and turbulence of waves did not affect feeding rates of passive suspension-feeding sea anemones

  4. Nonlinearities Lead to Qualitative Differences in Population Dynamics of Predator-Prey Systems

    PubMed Central

    Ameixa, Olga M. C. C.; Messelink, Gerben J.; Kindlmann, Pavel

    2013-01-01

    Since typically there are many predators feeding on most herbivores in natural communities, understanding multiple predator effects is critical for both community and applied ecology. Experiments of multiple predator effects on prey populations are extremely demanding, as the number of treatments and the amount of labour associated with these experiments increases exponentially with the number of species in question. Therefore, researchers tend to vary only presence/absence of the species and use only one (supposedly realistic) combination of their numbers in experiments. However, nonlinearities in density dependence, functional responses, interactions between natural enemies etc. are typical for such systems, and nonlinear models of population dynamics generally predict qualitatively different results, if initial absolute densities of the species studied differ, even if their relative densities are maintained. Therefore, testing combinations of natural enemies without varying their densities may not be sufficient. Here we test this prediction experimentally. We show that the population dynamics of a system consisting of 2 natural enemies (aphid predator Adalia bipunctata (L.), and aphid parasitoid, Aphidius colemani Viereck) and their shared prey (peach aphid, Myzus persicae Sulzer) are strongly affected by the absolute initial densities of the species in question. Even if their relative densities are kept constant, the natural enemy species or combination thereof that most effectively suppresses the prey may depend on the absolute initial densities used in the experiment. Future empirical studies of multiple predator – one prey interactions should therefore use a two-dimensional array of initial densities of the studied species. Varying only combinations of natural enemies without varying their densities is not sufficient and can lead to misleading results. PMID:23638107

  5. Incorporating prey refuge in a prey-predator model with a Holling type I functional response: random dynamics and population outbreaks.

    PubMed

    Gkana, Amalia; Zachilas, Loukas

    2013-09-01

    A prey-predator discrete-time model with a Holling type I functional response is investigated by incorporating a prey refuge. It is shown that a refuge does not always stabilize prey-predator interactions. A prey refuge in some cases produces even more chaotic, random-like dynamics than without a refuge and prey population outbreaks appear. Stability analysis was performed in order to investigate the local stability of fixed points as well as the several local bifurcations they undergo. Numerical simulations such as parametric basins of attraction, bifurcation diagrams, phase plots and largest Lyapunov exponent diagrams are executed in order to illustrate the complex dynamical behavior of the system.

  6. Feeding behaviour of an intertidal snail: Does past environmental stress affect predator choices and prey vulnerability?

    NASA Astrophysics Data System (ADS)

    Gestoso, Ignacio; Arenas, Francisco; Olabarria, Celia

    2015-03-01

    Predation is one of the most important factors in determining structure and dynamics of communities on intertidal rocky shores. Such regulatory role may be of special relevance in novel communities resulting from biological invasions. Non-indigenous species frequently escape natural predators that limit their distribution and abundance in the native range. However, biological interactions also can limit the establishment and spread of non-native populations. There is a growing concern that climate change might affect predator-prey interactions exacerbating the ecological impacts of non-indigenous species. However, mechanisms underlying such interactions are poorly understood in marine ecosystems. Here, we explored if past environmental stress, i.e., increasing temperature and decreasing pH, could affect the vulnerability of two mussel prey, the native Mytilus galloprovincialis and the non-indigenous Xenostrobus securis, to predation by the native dogwhelk Nucella lapillus. In addition, we evaluated the consequences on the feeding behaviour of N. lapillus. First, we exposed monospecific assemblages of each mussel species to combined experimental conditions of increasing temperature and decreasing pH in mesocosms for 3 weeks. Then assemblages were placed on a rocky shore and were enclosed in cages with dogwhelks where they remained for 3 weeks. Despite the lack of preference, consumption was much greater on the native than on the invasive mussels, which barely were consumed by dogwhelks. However, this trend was diverted when temperature increased. Thus, under a coastal warming scenario shifts in dogwhelks feeding behaviour may help to contain invader's populations, especially in estuarine areas where these predators are abundant.

  7. Habitat requirements of weasels Mustela nivalis constrain their impact on prey populations in complex ecosystems of the temperate zone.

    PubMed

    Zub, K; Sönnichsen, L; Szafrańska, P A

    2008-10-01

    Differences in habitat use by prey and predator may lead to a shift of occupied niches and affect dynamics of their populations. The weasel Mustela nivalis specializes in hunting rodents, therefore habitat preferences of this predator may have important consequences for the population dynamics of its prey. We investigated habitat selection by weasels in the Białowieza Forest in different seasons at the landscape and local scales, and evaluated possible consequences for the population dynamics of their prey. At the landscape scale, weasels preferred open habitats (both dry and wet) and avoided forest. In open areas they selected habitats with higher prey abundance, except during the low-density phase of the vole cycle, when the distribution of these predators was more uniform. Also in winter, the distribution of weasels at the landscape scale was proportional to available resources. In summer, within open dry and wet habitats, weasels preferred areas characterised by dense vegetation, but avoided poor plant cover. In winter, weasels used wet open areas proportionally to availability of habitats when hunting, but in contrast to summer, they rested only in habitats characterized by a lower water level, which offered better thermal conditions. At the local scale, the abundance of voles was a less important factor affecting the distribution of these predators. Although we were not able to provide direct evidence for the existence of refuges for voles, our results show that they may be located within habitat patches, where availability of dense plant cover and physiological constraints limit the activity of weasels. Our results indicate that in complex ecosystems of the temperate zone, characterized by a mosaic pattern of vegetation types and habitat specific dynamics of rodents, impact of weasels on prey populations might be limited.

  8. Adaptive changes in prey vulnerability shape the response of predator populations to mortality.

    PubMed

    Abrams, Peter A

    2009-11-21

    Simple models are used to explore how adaptive changes in prey vulnerability alter the population response of their predator to increased mortality. If the mortality is an imposed harvest, the change in prey vulnerability also influences the relationship between harvest effort and yield of the predator. The models assume that different prey phenotypes share a single resource, but have different vulnerabilities to the predator. Decreased vulnerability is assumed to decrease resource consumption rate. Adaptive change may occur by phenotypic changes in the traits of a single species or by shifts in the abundances of a pair of coexisting species or morphs. The response of the predator population is influenced by the shape of the predator's functional response, the shape of resource density dependence, and the shape of the tradeoff between vulnerability and food intake in the prey. Given a linear predator functional response, adaptive prey defense tends to produce a decelerating decline in predator population size with increased mortality. Prey defense may also greatly increase the range of mortality rates that allow predator persistence. If the predator has a type-2 response with a significant handling time, adaptive prey defense may have a greater variety of effects on the predator's response to mortality, sometimes producing alternative attractors, population cycles, or increased mean predator density. Situations in which there is disruptive selection on prey defense often imply a bimodal change in yield as a function of harvesting effort, with a minimum at intermediate effort. These results argue against using single-species models of density dependent growth to manage predatory species, and illustrate the importance of incorporating anti-predator behavior into models in applied population ecology.

  9. Foraging patterns and prey selection in an increasing and expanding sea otter population

    USGS Publications Warehouse

    Laidre, K.L.; Jameson, R.J.

    2006-01-01

    Focal observations of sea otter (Enhydra lutris kenyoni) foraging patterns and prey selection were collected in coastal Washington between 1993 and 1999. Records consisted of 13,847 individual dives from 841 feeding bouts ranging from 1 min to >4 h. Average dive time was 55 s ?? 0.9 SE and average surface time was 45 s ?? 2.3 SE, irrespective of dive success. At least 77% of all dives (n = 10,636) were successful prey captures (dives in low light or of undetermined success were excluded). Prey capture success was significantly lower for subadults (63% ?? 5 SE) than adults (82% ?? 1 SE; P 60% red urchins (Strongylocentrotus franciscanus), with only 2 other prey species comprising >10% of their diet. Prey size and prey category were dominant predictor variables in generalized linear models of dive duration and postdive surface duration on successful dives. Significant increases in areal extent of surface canopy of giant kelp (Macrocystis integrifolia) and bull kelp (Nereocystis leutkeana) were found both in the outer coast and the Strait of Juan de Fuca (0.4-0.5 km2 per year, P < 0.05) and suggest increasing suitable habitat for a growing population. The growth and expansion of a small and isolated sea otter population provides a unique opportunity to examine the relationship between dietary diversity and population status and explore similarities and differences between trophic paradigms established for sea otter populations at other localities. ?? 2006 American Society of Mammalogists.

  10. Management intensity and vegetation complexity affect web-building spiders and their prey.

    PubMed

    Diehl, Eva; Mader, Viktoria L; Wolters, Volkmar; Birkhofer, Klaus

    2013-10-01

    Agricultural management and vegetation complexity affect arthropod diversity and may alter trophic interactions between predators and their prey. Web-building spiders are abundant generalist predators and important natural enemies of pests. We analyzed how management intensity (tillage, cutting of the vegetation, grazing by cattle, and synthetic and organic inputs) and vegetation complexity (plant species richness, vegetation height, coverage, and density) affect rarefied richness and composition of web-building spiders and their prey with respect to prey availability and aphid predation in 12 habitats, ranging from an uncut fallow to a conventionally managed maize field. Spiders and prey from webs were collected manually and the potential prey were quantified using sticky traps. The species richness of web-building spiders and the order richness of prey increased with plant diversity and vegetation coverage. Prey order richness was lower at tilled compared to no-till sites. Hemipterans (primarily aphids) were overrepresented, while dipterans, hymenopterans, and thysanopterans were underrepresented in webs compared to sticky traps. The per spider capture efficiency for aphids was higher at tilled than at no-till sites and decreased with vegetation complexity. After accounting for local densities, 1.8 times more aphids were captured at uncut compared to cut sites. Our results emphasize the functional role of web-building spiders in aphid predation, but suggest negative effects of cutting or harvesting. We conclude that reduced management intensity and increased vegetation complexity help to conserve local invertebrate diversity, and that web-building spiders at sites under low management intensity (e.g., semi-natural habitats) contribute to aphid suppression at the landscape scale.

  11. Role of seasonality on predator-prey-subsidy population dynamics.

    PubMed

    Levy, Dorian; Harrington, Heather A; Van Gorder, Robert A

    2016-05-07

    The role of seasonality on predator-prey interactions in the presence of a resource subsidy is examined using a system of non-autonomous ordinary differential equations (ODEs). The problem is motivated by the Arctic, inhabited by the ecological system of arctic foxes (predator), lemmings (prey), and seal carrion (subsidy). We construct two nonlinear, nonautonomous systems of ODEs named the Primary Model, and the n-Patch Model. The Primary Model considers spatial factors implicitly, and the n-Patch Model considers space explicitly as a "Stepping Stone" system. We establish the boundedness of the dynamics, as well as the necessity of sufficiently nutritional food for the survival of the predator. We investigate the importance of including the resource subsidy explicitly in the model, and the importance of accounting for predator mortality during migration. We find a variety of non-equilibrium dynamics for both systems, obtaining both limit cycles and chaotic oscillations. We were then able to discuss relevant implications for biologically interesting predator-prey systems including subsidy under seasonal effects. Notably, we can observe the extinction or persistence of a species when the corresponding autonomous system might predict the opposite.

  12. Forest structure affects trophic linkages: How silvicultural disturbance impacts bats and their insect prey

    USGS Publications Warehouse

    Dodd, L.E.; Lacki, M.J.; Britzke, E.R.; Buehler, D.A.; Keyser, P.D.; Larkin, J.L.; Rodewald, A.D.; Wigley, T.B.; Wood, P.B.; Rieske, L.K.

    2012-01-01

    Vertebrate insectivores such as bats are a pervasive top-down force on prey populations in forest ecosystems. Conservation focusing on forest-dwelling bats requires understanding of community-level interactions between these predators and their insect prey. Our study assessed bat activity and insect occurrence (abundance and diversity) across a gradient of forest disturbance and structure (silvicultural treatments) in the Central Appalachian region of North America. We conducted acoustic surveys of bat echolocation concurrent with insect surveys using blacklight and malaise traps over 2 years. Predator activity, prey occurrence and prey biomass varied seasonally and across the region. The number of bat echolocation pulses was positively related with forest disturbance, whereas prey demonstrated varied trends. Lepidopteran abundance was negatively related with disturbance, while dipteran abundance and diversity was positively related with disturbance. Coleoptera were unaffected. Neither bat nor insect response variables differed between plot interiors and edges. Correlations between bat activity and vegetative structure reflected differences in foraging behavior among ensembles. Activity of myotine bats was correlated with variables describing sub-canopy vegetation, whereas activity of lasiurine bats was more closely correlated with canopy-level vegetation. Lepidopteran abundance was correlated with variables describing canopy and sub-canopy vegetation, whereas coleopteran and dipteran occurrence were more closely correlated with canopy-level vegetative structure. Our study demonstrates regional variation in bat activity and prey occurrence across a forested disturbance gradient. Land management and conservation efforts should consider the importance of vegetation structure and plant species richness to sustain forest-dwelling bats and their insect prey.

  13. Role of prey and intraspecific density dependence on the population growth of an avian top predator

    NASA Astrophysics Data System (ADS)

    Fernandez-de-Simon, Javier; Díaz-Ruiz, Francisco; Cirilli, Francesca; Tortosa, Francisco S.; Villafuerte, Rafael; Ferreras, Pablo

    2014-10-01

    Exploring predator-prey systems in diverse ecosystems increases our knowledge about ecological processes. Predator population growth may be positive when conspecific density is low but predators also need areas with prey availability, associated with competition, which increases the risk of suffering losses but stabilises populations. We studied relationships between European rabbits Oryctolagus cuniculus (prey) and adult eagle owls Bubo bubo (predators) in south-western Europe. We assessed models explaining the predator population growth and stability. We estimated the abundance of rabbits and adult eagle owls during three years in eight localities of central-southern Spain. We explored models including rabbit and adult eagle owl abundance, accounting for yearly variations and including the locality as a random variable. We found that population growth of adult eagle owls was positive in situations with low conspecific abundance and tended to be negative but approaching equilibrium in situations of higher conspecific abundance. Population growth was also positively related to previous summer rabbit density when taking into account eagle owl conspecific abundance, possibly indicating that rabbits may support recruitment. Furthermore, abundance stability of adult eagle owls was positively related to previous winter-spring rabbit density, which could suggest predator population stabilisation through quick territory occupation in high-quality areas. These results exemplify the trade-off between prey availability and abundance of adult predators related to population growth and abundance stability in the eagle owl-rabbit system in south-western Europe. Despite rabbits have greatly declined during the last decades and eagle owls locally specialise on them, eagle owls currently have a favourable conservation status. As eagle owls are the only nocturnal raptor with such dependence on rabbits, this could point out that predators may overcome prey decreases in areas with

  14. Factors Affecting Growth of Tengmalm's Owl (Aegolius funereus) Nestlings: Prey Abundance, Sex and Hatching Order.

    PubMed

    Zárybnická, Markéta; Riegert, Jan; Brejšková, Lucie; Šindelář, Jiří; Kouba, Marek; Hanel, Jan; Popelková, Alena; Menclová, Petra; Tomášek, Václav; Šťastný, Karel

    2015-01-01

    In altricial birds, energy supply during growth is a major predictor of the physical condition and survival prospects of fledglings. A number of experimental studies have shown that nestling body mass and wing length can vary with particular extrinsic factors, but between-year observational data on this topic are scarce. Based on a seven-year observational study in a central European Tengmalm's owl population we examine the effect of year, brood size, hatching order, and sex on nestling body mass and wing length, as well as the effect of prey abundance on parameters of growth curve. We found that nestling body mass varied among years, and parameters of growth curve, i.e. growth rate and inflection point in particular, increased with increasing abundance of the owl's main prey (Apodemus mice, Microtus voles), and pooled prey abundance (Apodemus mice, Microtus voles, and Sorex shrews). Furthermore, nestling body mass varied with hatching order and between sexes being larger for females and for the first-hatched brood mates. Brood size had no effect on nestling body mass. Simultaneously, we found no effect of year, brood size, hatching order, or sex on the wing length of nestlings. Our findings suggest that in this temperate owl population, nestling body mass is more sensitive to prey abundance than is wing length. The latter is probably more limited by the physiology of the species.

  15. The economics of protecting tiger populations: Linking household behavior to poaching and prey depletion

    USGS Publications Warehouse

    Damania, R.; Stringer, R.; Karanth, K.U.; Stith, B.

    2003-01-01

    The tiger (Panthera tigris) is classified as endangered and populations continue to decline. This paper presents a formal economic analysis of the two most imminent threats to the survival of wild tigers: poaching tigers and hunting their prey. A model is developed to examine interactions between tigers and farm households living in and around tiger habitats. The analysis extends the existing literature on tiger demography, incorporating predator-prey interactions and exploring the sensitivity of tiger populations to key economic parameters. The analysis aims to contribute to policy debates on how best to protect one of the world's most endangered wild cats.

  16. Predator-Prey-Subsidy Population Dynamics on Stepping-Stone Domains.

    PubMed

    Shen, Lulan; Van Gorder, Robert A

    2017-03-16

    Predator-prey-subsidy dynamics on stepping-stone domains are examined using a variety of network configurations. Our problem is motivated by the interactions between arctic foxes (predator) and lemmings (prey) in the presence of seal carrion (subsidy) provided by polar bears. We use the n-Patch Model, which considers space explicitly as a "Stepping Stone" system. We consider the role that the carrying capacity, predator migration rate, input subsidy rate, predator mortality rate, and proportion of predators surviving migration play in the predator-prey-subsidy population dynamics. We find that for certain types of networks, added mobility will help predator populations, allowing them to survive or coexist when they would otherwise go extinct if confined to one location, while in other situations (such as when sparsely distributed nodes in the network have few resources available) the added mobility will hurt the predator population. We also find that a combination of favorable conditions for the prey and subsidy can lead to the formation of limit cycles (boom and bust dynamic) from stable equilibrium states. These modifications to the dynamics vary depending on the specific network structure employed, highlighting the fact that network structure can strongly influence the predator-prey-subsidy dynamics in stepping-stone domains.

  17. Reproductive responses to spatial and temporal prey availability in a coastal Arctic fox population.

    PubMed

    Eide, Nina E; Stien, Audun; Prestrud, Pål; Yoccoz, Nigel G; Fuglei, Eva

    2012-05-01

    1. Input of external subsidies in the Arctic may have substantial effects on predator populations that otherwise would have been limited by low local primary productivity. 2. We explore life-history traits, age-specific fecundity, litter sizes and survival, and the population dynamics of an Arctic fox (Vulpes lagopus) population to explore the influence of the spatial distribution and temporal availability of its main prey; including both resident and migrating (external) prey resources. 3. This study reveals that highly predictable cross-boundary subsidies from the marine food web, acting through seasonal access to seabirds, sustain larger local Arctic fox populations. Arctic fox dens located close to the coast in Svalbard were found to have higher occupancy rates, as expected from both high availability and high temporal and spatial predictability of prey resources (temporally stable external subsidies). Whereas the occupancy rate of inland dens varied between years in relation to the abundance of reindeer carcasses (temporally varying resident prey). 4. With regard to demography, juvenile Arctic foxes in Svalbard have lower survival rates and a high age of first reproduction compared with other populations. We suggest this may be caused by a lack of unoccupied dens and a saturated population.

  18. Predator-prey model for the self-organization of stochastic oscillators in dual populations

    NASA Astrophysics Data System (ADS)

    Moradi, Sara; Anderson, Johan; Gürcan, Ozgür D.

    2015-12-01

    A predator-prey model of dual populations with stochastic oscillators is presented. A linear cross-coupling between the two populations is introduced following the coupling between the motions of a Wilberforce pendulum in two dimensions: one in the longitudinal and the other in torsional plain. Within each population a Kuramoto-type competition between the phases is assumed. Thus, the synchronization state of the whole system is controlled by these two types of competitions. The results of the numerical simulations show that by adding the linear cross-coupling interactions predator-prey oscillations between the two populations appear, which results in self-regulation of the system by a transfer of synchrony between the two populations. The model represents several important features of the dynamical interplay between the drift wave and zonal flow turbulence in magnetically confined plasmas, and a novel interpretation of the coupled dynamics of drift wave-zonal flow turbulence using synchronization of stochastic oscillator is discussed.

  19. Predator-prey model for the self-organization of stochastic oscillators in dual populations.

    PubMed

    Moradi, Sara; Anderson, Johan; Gürcan, Ozgür D

    2015-12-01

    A predator-prey model of dual populations with stochastic oscillators is presented. A linear cross-coupling between the two populations is introduced following the coupling between the motions of a Wilberforce pendulum in two dimensions: one in the longitudinal and the other in torsional plain. Within each population a Kuramoto-type competition between the phases is assumed. Thus, the synchronization state of the whole system is controlled by these two types of competitions. The results of the numerical simulations show that by adding the linear cross-coupling interactions predator-prey oscillations between the two populations appear, which results in self-regulation of the system by a transfer of synchrony between the two populations. The model represents several important features of the dynamical interplay between the drift wave and zonal flow turbulence in magnetically confined plasmas, and a novel interpretation of the coupled dynamics of drift wave-zonal flow turbulence using synchronization of stochastic oscillator is discussed.

  20. A mathematical ecogenetic predator-prey model where both populations are genetically distinguishable

    NASA Astrophysics Data System (ADS)

    Castellino, Luisa; Peretti, Sabrina; Rivoira, Stella; Venturino, Ezio

    2016-10-01

    A mathematical ecogenetic predator-prey model with both populations genetically distinguishable is introduced. Equilibria are investigated for feasibility and stability and are numerically found to be related via a transcritical bifurcation. These results are in line with parallel studies on related models. A sensitivity analysis in terms of pairs of model parameters is performed.

  1. Does small mammal prey guild affect the exposure of predators to anticoagulant rodenticides?

    PubMed

    Tosh, D G; McDonald, R A; Bearhop, S; Lllewellyn, N R; Fee, S; Sharp, E A; Barnett, E A; Shore, R F

    2011-10-01

    Ireland has a restricted small mammal prey guild but still includes species most likely to consume anticoagulant rodenticide (AR) baits. This may enhance secondary exposure of predators to ARs. We compared liver AR residues in foxes (Vulpes vulpes) in Northern Ireland (NI) with those in foxes from Great Britain which has a more diverse prey guild but similar agricultural use of ARs. Liver ARs were detected in 84% of NI foxes, more than in a comparable sample of foxes from Scotland and similar to that of suspected AR poisoned animals from England and Wales. High exposure in NI foxes is probably due to greater predation of commensal rodents and non-target species most likely to take AR baits, and may also partly reflect greater exposure to highly persistent brodifacoum and flocoumafen. High exposure is likely to enhance risk and Ireland may be a sentinel for potential effects on predator populations.

  2. Impacts of biotic resource enrichment on a predator-prey population.

    PubMed

    Safuan, H M; Sidhu, H S; Jovanoski, Z; Towers, I N

    2013-10-01

    The environmental carrying capacity is usually assumed to be fixed quantity in the classical predator-prey population growth models. However, this assumption is not realistic as the environment generally varies with time. In a bid for greater realism, functional forms of carrying capacities have been widely applied to describe varying environments. Modelling carrying capacity as a state variable serves as another approach to capture the dynamical behavior between population and its environment. The proposed modified predator-prey model is based on the ratio-dependent models that have been utilized in the study of food chains. Using a simple non-linear system, the proposed model can be linked to an intra-guild predation model in which predator and prey share the same resource. Distinct from other models, we formulate the carrying capacity proportional to a biotic resource and both predator and prey species can directly alter the amount of resource available by interacting with it. Bifurcation and numerical analyses are presented to illustrate the system's dynamical behavior. Taking the enrichment parameter of the resource as the bifurcation parameter, a Hopf bifurcation is found for some parameter ranges, which generate solutions that posses limit cycle behavior.

  3. Interacting Populations: Hosts and Pathogens, Prey and Predators

    DTIC Science & Technology

    2007-06-01

    The incidence cases can only have integer values. Rounding of the series to thlie nearest integer introduces the possibility that the number of the...total individuals infected is larger than the initial susceptible population size. Therefore. to keep J. series in integer form, I round the right...of bias is in the round -off error in the reconstruction of the incidence series, equation (2.30). Rounding off x to the nearest integer towards minus

  4. Familiarity affects social network structure and discovery of prey patch locations in foraging stickleback shoals

    PubMed Central

    Atton, N.; Galef, B. J.; Hoppitt, W.; Webster, M. M.; Laland, K. N.

    2014-01-01

    Numerous factors affect the fine-scale social structure of animal groups, but it is unclear how important such factors are in determining how individuals encounter resources. Familiarity affects shoal choice and structure in many social fishes. Here, we show that familiarity between shoal members of sticklebacks (Gasterosteus aculeatus) affects both fine-scale social organization and the discovery of resources. Social network analysis revealed that sticklebacks remained closer to familiar than to unfamiliar individuals within the same shoal. Network-based diffusion analysis revealed that there was a strong untransmitted social effect on patch discovery, with individuals tending to discover a task sooner if a familiar individual from their group had previously done so than if an unfamiliar fish had done so. However, in contrast to the effect of familiarity, the frequency with which individuals had previously associated with one another had no effect upon the likelihood of prey patch discovery. This may have been due to the influence of fish on one another's movements; the effect of familiarity on discovery of an empty ‘control’ patch was as strong as for discovery of an actual prey patch. Our results demonstrate that factors affecting fine-scale social interactions can also influence how individuals encounter and exploit resources. PMID:25009061

  5. Do predator-prey relationships on the river bed affect fine sediment ingress?

    NASA Astrophysics Data System (ADS)

    Mathers, Kate; Rice, Stephen; Wood, Paul

    2016-04-01

    Ecosystem engineers are organisms that alter their physical environment and thereby influence the flow of resources through ecosystems. In rivers, several ecosystem engineers are also important geomorphological agents that modify fluvial sediment dynamics. By altering channel morphology and bed material characteristics, such modifications can affect the availability of habitats for other organisms, with implications for ecosystem health and wider community composition. In this way geomorphological and ecological systems are intimately interconnected. This paper focuses on one element of this intricate abiotic-biotic coupling: the interaction between fine sediment ingress into the river bed and the predator-prey relationships of aquatic organisms living on and in the river bed. Signal crayfish (Pacifastacus leniusculus) have been shown to modify fine sediment fluxes in rivers, but their effect on fine sediment ingress into riverbeds remains unclear. Many macroinvertebrate taxa have adapted avoidance strategies to avoid predation by crayfish, with one example being the freshwater shrimp (Gammarus pulex) which relies on open interstitial spaces within subsurface sediments as a refuge from crayfish predation. Fine sedimentation that fills gravelly frameworks may preclude access to those spaces, therefore leaving freshwater shrimp susceptible to predation. Ex-situ experiments were conducted which sought to examine: i) if freshwater shrimps and signal crayfish, alone and in combination, influenced fine sediment infiltration rates; and ii) whether modifications to substratum composition, specifically the introduction of fine sediment, modified predator-prey interactions. The results demonstrate that crayfish are significant geomorphic agents and that fine sediment ingress rates were significantly enhanced in their presence compared to control conditions or the presence of only freshwater shrimps. The combination of both organisms (i.e. allowing the interaction between

  6. Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey.

    PubMed

    Kooi, Bob W; Venturino, Ezio

    2016-04-01

    In this paper we analyse a predator-prey model where the prey population shows group defense and the prey individuals are affected by a transmissible disease. The resulting model is of the Rosenzweig-MacArthur predator-prey type with an SI (susceptible-infected) disease in the prey. Modeling prey group defense leads to a square root dependence in the Holling type II functional for the predator-prey interaction term. The system dynamics is investigated using simulations, classical existence and asymptotic stability analysis and numerical bifurcation analysis. A number of bifurcations, such as transcritical and Hopf bifurcations which occur commonly in predator-prey systems will be found. Because of the square root interaction term there is non-uniqueness of the solution and a singularity where the prey population goes extinct in a finite time. This results in a collapse initiated by extinction of the healthy or susceptible prey and thereafter the other population(s). When also a positive attractor exists this leads to bistability similar to what is found in predator-prey models with a strong Allee effect. For the two-dimensional disease-free (i.e. the purely demographic) system the region in the parameter space where bistability occurs is marked by a global bifurcation. At this bifurcation a heteroclinic connection exists between saddle prey-only equilibrium points where a stable limit cycle together with its basin of attraction, are destructed. In a companion paper (Gimmelli et al., 2015) the same model was formulated and analysed in which the disease was not in the prey but in the predator. There we also observed this phenomenon. Here we extend its analysis using a phase portrait analysis. For the three-dimensional ecoepidemic predator-prey system where the prey is affected by the disease, also tangent bifurcations including a cusp bifurcation and a torus bifurcation of limit cycles occur. This leads to new complex dynamics. Continuation by varying one parameter

  7. Climatic amplification of the numerical response of a predator population to its prey.

    PubMed

    Bowler, Berlinda; Krebs, Charles; O'Donoghue, Mark; Hone, Jim

    2014-05-01

    We evaluated evidence of an effect of climate on the numerical response of a coyote (Canis latrans) population to their keystone prey, snowshoe hares (Lepus americanus), in a Canadian boreal forest. Six a priori hypotheses of the coyote numerical response were developed that postulated linear, nonlinear, additive, and interactive effects of prey and climate. Model selection procedures showed the North Atlantic Oscillation (NAO) had the strongest effect on the coyote numerical response via its interaction with snowshoe hare density, while other large-scale climate indices had very weak effects. For a given snowshoe hare density, a negative value of the NAO amplified the abundance of coyote and a positive NAO decreased coyote abundance. We hypothesize that the coyote numerical response is ultimately determined by the coyote functional response influenced by winter conditions determined by the NAO.

  8. Predator-prey model for the self-organization of stochastic oscillators in dual populations

    NASA Astrophysics Data System (ADS)

    Moradi, Sara; Anderson, Johan; Gürcan, Ozgur D.

    A predator-prey model of dual populations with stochastic oscillators is presented. A linear cross-coupling between the two populations is introduced that follows the coupling between the motions of a Wilberforce pendulum in two dimensions: one in the longitudinal and the other in torsional plain. Within each population a Kuramoto type competition between the phases is assumed. Thus, the synchronization state of the whole system is controlled by these two types of competitions. The results of the numerical simulations show that by adding the linear cross-coupling interactions predator-prey oscillations between the two populations appear which results in self-regulation of the system by a transfer of synchrony between the two populations. The model represents several important features of the dynamical interplay between the drift wave and zonal flow turbulence in magnetically confined plasmas, and a novel interpretation of the coupled dynamics of drift wave-zonal flow turbulence using synchronization of stochastic oscillator is discussed. Sara Moradi has benefited from a mobility grant funded by the Belgian Federal Science Policy Office and the MSCA of the European Commission (FP7-PEOPLE-COFUND-2008 nº 246540).

  9. Dampening prey cycle overrides the impact of climate change on predator population dynamics: a long-term demographic study on tawny owls.

    PubMed

    Millon, Alexandre; Petty, Steve J; Little, Brian; Gimenez, Olivier; Cornulier, Thomas; Lambin, Xavier

    2014-06-01

    Predicting the dynamics of animal populations with different life histories requires careful understanding of demographic responses to multifaceted aspects of global changes, such as climate and trophic interactions. Continent-scale dampening of vole population cycles, keystone herbivores in many ecosystems, has been recently documented across Europe. However, its impact on guilds of vole-eating predators remains unknown. To quantify this impact, we used a 27-year study of an avian predator (tawny owl) and its main prey (field vole) collected in Kielder Forest (UK) where vole dynamics shifted from a high- to a low-amplitude fluctuation regime in the mid-1990s. We measured the functional responses of four demographic rates to changes in prey dynamics and winter climate, characterized by wintertime North Atlantic Oscillation (wNAO). First-year and adult survival were positively affected by vole density in autumn but relatively insensitive to wNAO. The probability of breeding and number of fledglings were higher in years with high spring vole densities and negative wNAO (i.e. colder and drier winters). These functional responses were incorporated into a stochastic population model. The size of the predator population was projected under scenarios combining prey dynamics and winter climate to test whether climate buffers or alternatively magnifies the impact of changes in prey dynamics. We found the observed dampening vole cycles, characterized by low spring densities, drastically reduced the breeding probability of predators. Our results illustrate that (i) change in trophic interactions can override direct climate change effect; and (ii) the demographic resilience entailed by longevity and the occurrence of a floater stage may be insufficient to buffer hypothesized environmental changes. Ultimately, dampened prey cycles would drive our owl local population towards extinction, with winter climate regimes only altering persistence time. These results suggest that other

  10. Dampening prey cycle overrides the impact of climate change on predator population dynamics: a long-term demographic study on tawny owls

    PubMed Central

    Millon, Alexandre; Petty, Steve J; Little, Brian; Gimenez, Olivier; Cornulier, Thomas; Lambin, Xavier

    2014-01-01

    Predicting the dynamics of animal populations with different life histories requires careful understanding of demographic responses to multifaceted aspects of global changes, such as climate and trophic interactions. Continent-scale dampening of vole population cycles, keystone herbivores in many ecosystems, has been recently documented across Europe. However, its impact on guilds of vole-eating predators remains unknown. To quantify this impact, we used a 27-year study of an avian predator (tawny owl) and its main prey (field vole) collected in Kielder Forest (UK) where vole dynamics shifted from a high- to a low-amplitude fluctuation regime in the mid-1990s. We measured the functional responses of four demographic rates to changes in prey dynamics and winter climate, characterized by wintertime North Atlantic Oscillation (wNAO). First-year and adult survival were positively affected by vole density in autumn but relatively insensitive to wNAO. The probability of breeding and number of fledglings were higher in years with high spring vole densities and negative wNAO (i.e. colder and drier winters). These functional responses were incorporated into a stochastic population model. The size of the predator population was projected under scenarios combining prey dynamics and winter climate to test whether climate buffers or alternatively magnifies the impact of changes in prey dynamics. We found the observed dampening vole cycles, characterized by low spring densities, drastically reduced the breeding probability of predators. Our results illustrate that (i) change in trophic interactions can override direct climate change effect; and (ii) the demographic resilience entailed by longevity and the occurrence of a floater stage may be insufficient to buffer hypothesized environmental changes. Ultimately, dampened prey cycles would drive our owl local population towards extinction, with winter climate regimes only altering persistence time. These results suggest that other

  11. Seasonal forcing and multi-year cycles in interacting populations: lessons from a predator-prey model.

    PubMed

    Taylor, Rachel A; Sherratt, Jonathan A; White, Andrew

    2013-12-01

    Many natural systems are subject to seasonal environmental change. As a consequence many species exhibit seasonal changes in their life history parameters--such as a peak in the birth rate in spring. It is important to understand how this seasonal forcing affects the population dynamics. The main way in which seasonal models have been studied is through a two dimensional bifurcation approach. We augment this bifurcation approach with extensive simulation in order to understand the potential solution behaviours for a predator-prey system with a seasonally forced prey growth rate. We consider separately how forcing influences the system when the unforced dynamics have either monotonic decay to the coexistence steady state, or oscillatory decay, or stable limit cycles. The range of behaviour the system can exhibit includes multi-year cycles of different periodicities, parameter ranges with coexisting multi-year cycles of the same or different period as well as quasi-periodicity and chaos. We show that the level of oscillation in the unforced system has a large effect on the range of behaviour when the system is seasonally forced. We discuss how the methods could be extended to understand the dynamics of a wide range of ecological and epidemiological systems that are subject to seasonal changes.

  12. Distinguishing the impacts of inadequate prey and vessel traffic on an endangered killer whale (Orcinus orca) population.

    PubMed

    Ayres, Katherine L; Booth, Rebecca K; Hempelmann, Jennifer A; Koski, Kari L; Emmons, Candice K; Baird, Robin W; Balcomb-Bartok, Kelley; Hanson, M Bradley; Ford, Michael J; Wasser, Samuel K

    2012-01-01

    Managing endangered species often involves evaluating the relative impacts of multiple anthropogenic and ecological pressures. This challenge is particularly formidable for cetaceans, which spend the majority of their time underwater. Noninvasive physiological approaches can be especially informative in this regard. We used a combination of fecal thyroid (T3) and glucocorticoid (GC) hormone measures to assess two threats influencing the endangered southern resident killer whales (SRKW; Orcinus orca) that frequent the inland waters of British Columbia, Canada and Washington, U.S.A. Glucocorticoids increase in response to nutritional and psychological stress, whereas thyroid hormone declines in response to nutritional stress but is unaffected by psychological stress. The inadequate prey hypothesis argues that the killer whales have become prey limited due to reductions of their dominant prey, Chinook salmon (Oncorhynchus tshawytscha). The vessel impact hypothesis argues that high numbers of vessels in close proximity to the whales cause disturbance via psychological stress and/or impaired foraging ability. The GC and T3 measures supported the inadequate prey hypothesis. In particular, GC concentrations were negatively correlated with short-term changes in prey availability. Whereas, T3 concentrations varied by date and year in a manner that corresponded with more long-term prey availability. Physiological correlations with prey overshadowed any impacts of vessels since GCs were lowest during the peak in vessel abundance, which also coincided with the peak in salmon availability. Our results suggest that identification and recovery of strategic salmon populations in the SRKW diet are important to effectively promote SRKW recovery.

  13. Effect of resource subsidies on predator-prey population dynamics: a mathematical model.

    PubMed

    Nevai, Andrew L; Van Gorder, Robert A

    2012-01-01

    The influence of a resource subsidy on predator-prey interactions is examined using a mathematical model. The model arises from the study of a biological system involving arctic foxes (predator), lemmings (prey), and seal carcasses (subsidy). In one version of the model, the predator, prey and subsidy all occur in the same location; in a second version, the predator moves between two patches, one containing only the prey and the other containing only the subsidy. Criteria for feasibility and stability of the different equilibrium states are studied both analytically and numerically. At small subsidy input rates, there is a minimum prey carrying capacity needed to support both predator and prey. At intermediate subsidy input rates, the predator and prey can always coexist. At high subsidy input rates, the prey cannot persist even at high carrying capacities. As predator movement increases, the dynamic stability of the predator-prey-subsidy interactions also increases.

  14. Parental prey selection affects risk-taking behaviour and spatial learning in avian offspring.

    PubMed

    Arnold, Kathryn E; Ramsay, Scot L; Donaldson, Christine; Adam, Aileen

    2007-10-22

    Early nutrition shapes life history. Parents should, therefore, provide a diet that will optimize the nutrient intake of their offspring. In a number of passerines, there is an often observed, but unexplained, peak in spider provisioning during chick development. We show that the proportion of spiders in the diet of nestling blue tits, Cyanistes caeruleus, varies significantly with the age of chicks but is unrelated to the timing of breeding or spider availability. Moreover, this parental prey selection supplies nestlings with high levels of taurine particularly at younger ages. This amino acid is known to be both vital and limiting for mammalian development and consequently found in high concentrations in placenta and milk. Based on the known roles of taurine in mammalian brain development and function, we then asked whether by supplying taurine-rich spiders, avian parents influence the stress responsiveness and cognitive function of their offspring. To test this, we provided wild blue tit nestlings with either a taurine supplement or control treatment once daily from the ages of 2-14 days. Then pairs of size- and sex-matched siblings were brought into captivity for behavioural testing. We found that juveniles that had received additional taurine as neonates took significantly greater risks when investigating novel objects than controls. Taurine birds were also more successful at a spatial learning task than controls. Additionally, those individuals that succeeded at a spatial learning task had shown intermediate levels of risk taking. Non-learners were generally very risk-averse controls. Early diet therefore has downstream impacts on behavioural characteristics that could affect fitness via foraging and competitive performance. Fine-scale prey selection is a mechanism by which parents can manipulate the behavioural phenotype of offspring.

  15. Factors Affecting Growth of Tengmalm’s Owl (Aegolius funereus) Nestlings: Prey Abundance, Sex and Hatching Order

    PubMed Central

    Zárybnická, Markéta; Riegert, Jan; Brejšková, Lucie; Šindelář, Jiří; Kouba, Marek; Hanel, Jan; Popelková, Alena; Menclová, Petra; Tomášek, Václav; Šťastný, Karel

    2015-01-01

    In altricial birds, energy supply during growth is a major predictor of the physical condition and survival prospects of fledglings. A number of experimental studies have shown that nestling body mass and wing length can vary with particular extrinsic factors, but between-year observational data on this topic are scarce. Based on a seven-year observational study in a central European Tengmalm’s owl population we examine the effect of year, brood size, hatching order, and sex on nestling body mass and wing length, as well as the effect of prey abundance on parameters of growth curve. We found that nestling body mass varied among years, and parameters of growth curve, i.e. growth rate and inflection point in particular, increased with increasing abundance of the owl’s main prey (Apodemus mice, Microtus voles), and pooled prey abundance (Apodemus mice, Microtus voles, and Sorex shrews). Furthermore, nestling body mass varied with hatching order and between sexes being larger for females and for the first-hatched brood mates. Brood size had no effect on nestling body mass. Simultaneously, we found no effect of year, brood size, hatching order, or sex on the wing length of nestlings. Our findings suggest that in this temperate owl population, nestling body mass is more sensitive to prey abundance than is wing length. The latter is probably more limited by the physiology of the species. PMID:26444564

  16. Relevance of intracellular partitioning of metals in prey to differential metal bioaccumulation among populations of mummichogs (Fundulus heteroclitus).

    PubMed

    Goto, Daisuke; Wallace, William G

    2009-12-01

    Intracellular partitioning of trace metals is critical to metal tolerance in aquatic organisms and may also influence metal trophic transfer in ecosystems. In this study, we tested the relevance of metal (Cd, Cu, Pb, and Zn) intracellular partitioning in prey as an indicator of metal trophic availability to benthic forage fish, mummichogs (Fundulus heteroclitus), in chronically metal-polluted salt marshes in New York, USA. Two common prey of mummichogs in the study area, Palaemonetes pugio and Nereis acuminata, generally stored increasingly higher proportions of non-essential metals (particularly Pb) in insoluble (less trophically available) cellular components, as the whole body burdens increased. In contrast, intracellular partitioning of essential metals (Cu and Zn) in invertebrate prey varied relatively little among sites. Differential Cd and Pb intracellular partitioning patterns within P. pugio among sites were significantly associated with Cd and Pb whole body burdens in mummichogs, respectively (i.e., prey-driven bioreduction of metals), while bioaccumulation of Cu and Zn in mummichogs was similar among populations. The findings in this study suggest that metal intracellular partitioning within prey may be partially responsible for metal trophic availability to a predator in metal-polluted habitats, while there was also evidence that some predator-dependent processes may offset differential trophic availabilities from prey.

  17. Ecological conditions affect evolutionary trajectory in a predator-prey system.

    PubMed

    Gallet, Romain; Tully, Thomas; Evans, Margaret E K

    2009-03-01

    The arms race of adaptation and counter adaptation in predator-prey interactions is a fascinating evolutionary dynamic with many consequences, including local adaptation and the promotion or maintenance of diversity. Although such antagonistic coevolution is suspected to be widespread in nature, experimental documentation of the process remains scant, and we have little understanding of the impact of ecological conditions. Here, we present evidence of predator-prey coevolution in a long-term experiment involving the predatory bacterium Bdellovibrio bacteriovorus and the prey Pseudomonas fluorescens, which has three morphs (SM, FS, and WS). Depending on experimentally applied disturbance regimes, the predator-prey system followed two distinct evolutionary trajectories, where the prey evolved to be either super-resistant to predation (SM morph) without counter-adaptation by the predator, or moderately resistant (FS morph), specialized to and coevolving with the predator. Although predation-resistant FS morphs suffer a cost of resistance, the evolution of extreme resistance to predation by the SM morph was apparently unconstrained by other traits (carrying capacity, growth rate). Thus we demonstrate empirically that ecological conditions can shape the evolutionary trajectory of a predator-prey system.

  18. Predator functional response changed by induced defenses in prey.

    PubMed

    Hammill, Edd; Petchey, Owen L; Anholt, Bradley R

    2010-12-01

    Functional responses play a central role in the nature and stability of predator-prey population dynamics. Here we investigate how induced defenses affect predator functional responses. In experimental communities, prey (Paramecium) expressed two previously undocumented inducible defenses--a speed reduction and a width increase--in response to nonlethal exposure to predatory Stenostomum. Nonlethal exposure also changed the shape of the predator's functional response from Type II to Type III, consistent with changes in the density dependence of attack rates. Handling times were also affected by prey defenses, increasing at least sixfold. These changes show that induced changes in prey have a real defensive function. At low prey densities, induction led to lower attack success; at high prey densities, attack rates were actually higher for induced prey. However, induction increased handling times sufficiently that consumption rates of defended prey were lower than those of undefended prey. Modification of attack rate and handling time has important potential consequences for population dynamics; Type III functional responses can increase the stability of population dynamics and persistence because predation on small populations is low, allowing a relict population to survive. Simulations of a predator-prey population dynamic model revealed the stabilizing potential of the Type III response.

  19. Predator-prey coevolution driven by size selective predation can cause anti-synchronized and cryptic population dynamics.

    PubMed

    Mougi, Akihiko

    2012-03-01

    Population dynamics and evolutionary dynamics can occur on similar time scales, and a coupling of these two processes can lead to novel population dynamics. Recent theoretical studies of coevolving predator-prey systems have concentrated more on the stability of such systems than on the characteristics of cycles when they are unstable. Here I explore the characteristics of the cycles that arise due to coevolution in a system in which prey can increase their ability to escape from predators by becoming either significantly larger or significantly smaller in trait value (i.e., a bidirectional trait axis). This is a reasonable model of body size evolution in some systems. The results show that antiphase population cycles and cryptic cycles (large population fluctuation in one species but almost no change in another species) can occur in the coevolutionary system but not systems where only a single species evolves. Previously, those dynamical patterns have only been theoretically shown to occur in single species evolutionary models and the coevolutionary model which do not involve a bi-directional axis of adaptation. These unusual dynamics may be observed in predator-prey interactions when the density dependence in the prey species is strong.

  20. Distinguishing the Impacts of Inadequate Prey and Vessel Traffic on an Endangered Killer Whale (Orcinus orca) Population

    PubMed Central

    Ayres, Katherine L.; Booth, Rebecca K.; Hempelmann, Jennifer A.; Koski, Kari L.; Emmons, Candice K.; Baird, Robin W.; Balcomb-Bartok, Kelley; Hanson, M. Bradley; Ford, Michael J.; Wasser, Samuel K.

    2012-01-01

    Managing endangered species often involves evaluating the relative impacts of multiple anthropogenic and ecological pressures. This challenge is particularly formidable for cetaceans, which spend the majority of their time underwater. Noninvasive physiological approaches can be especially informative in this regard. We used a combination of fecal thyroid (T3) and glucocorticoid (GC) hormone measures to assess two threats influencing the endangered southern resident killer whales (SRKW; Orcinus orca) that frequent the inland waters of British Columbia, Canada and Washington, U.S.A. Glucocorticoids increase in response to nutritional and psychological stress, whereas thyroid hormone declines in response to nutritional stress but is unaffected by psychological stress. The inadequate prey hypothesis argues that the killer whales have become prey limited due to reductions of their dominant prey, Chinook salmon (Oncorhynchus tshawytscha). The vessel impact hypothesis argues that high numbers of vessels in close proximity to the whales cause disturbance via psychological stress and/or impaired foraging ability. The GC and T3 measures supported the inadequate prey hypothesis. In particular, GC concentrations were negatively correlated with short-term changes in prey availability. Whereas, T3 concentrations varied by date and year in a manner that corresponded with more long-term prey availability. Physiological correlations with prey overshadowed any impacts of vessels since GCs were lowest during the peak in vessel abundance, which also coincided with the peak in salmon availability. Our results suggest that identification and recovery of strategic salmon populations in the SRKW diet are important to effectively promote SRKW recovery. PMID:22701560

  1. Interactions between size-structured predator and prey populations: Experimental test and model comparison

    SciTech Connect

    Rice, J.A.; Crowder, L.B. ); Rose, K.A. )

    1993-05-01

    Because predation mortality is often size-dependent, the survival and size structure of prey populations may vary substantially depending on the size structure of the predator assemblage. We tested this hypothesis in a replicated pond experiment in which a bimodal size distribution of young-of-year spot Leiostomus xanthurus was exposed to two sizes of southern flounder Paralichthys lethostigma, each predator size-group present alone or together, at densities providing equal predation pressure. After 3 weeks, we examined cohort survival and size distributions of remaining spot. In the non-predator controls, spot size-frequency distributions were essentially unchanged, and survival of the large- and small-spot cohorts was similar. However, the size distribution of survivors, and the relative survival of large- and small-spot cohorts, differed markedly with the size structure of the predator assemblage. In the presence of small southern flounders, the large-spot cohort survived 4 times better than the small-spot cohort. In the large-flounder-only treatment, small spot survived 2.4 times better than large spot. When both large and small southern flounders were present, large spot had a net advantage, exceeding small spot survival by 2.4 times. We developed an individual-based model of the flounder-spot size-dependent predation interaction based on data from independent laboratory observations on size-based prey profit-ability, and used it to simulate the results of our experimental treatments. Model predictions of spot survival and size distributions agreed well with the pond experimental results when encounter rates were assumed to scale with spot size and density and with southern flounder density. 37 refs., 5 figs., 2 tabs.

  2. A shift from exploitation to interference competition with increasing density affects population and community dynamics.

    PubMed

    Holdridge, Erica M; Cuellar-Gempeler, Catalina; terHorst, Casey P

    2016-08-01

    Intraspecific competition influences population and community dynamics and occurs via two mechanisms. Exploitative competition is an indirect effect that occurs through use of a shared resource and depends on resource availability. Interference competition occurs by obstructing access to a resource and may not depend on resource availability. Our study tested whether the strength of interference competition changes with protozoa population density. We grew experimental microcosms of protozoa and bacteria under different combinations of protozoan density and basal resource availability. We then solved a dynamic predator-prey model for parameters of the functional response using population growth rates measured in our experiment. As population density increased, competition shifted from exploitation to interference, and competition was less dependent on resource levels. Surprisingly, the effect of resources was weakest when competition was the most intense. We found that at low population densities, competition was largely exploitative and resource availability had a large effect on population growth rates, but the effect of resources was much weaker at high densities. This shift in competitive mechanism could have implications for interspecific competition, trophic interactions, community diversity, and natural selection. We also tested whether this shift in the mechanism of competition with protozoa density affected the structure of the bacterial prey community. We found that both resources and protozoa density affected the structure of the bacterial prey community, suggesting that competitive mechanism may also affect trophic interactions.

  3. Effects of the prey refuge distribution on a predator-prey system

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hee; Kwon, Ohsung; Song, Hark-Soo

    2016-03-01

    The existence of prey refuges in a predator-prey system is known to be strongly related to the ecosystem's stability. In this study, we explored how the prey refuge distribution affects the predator-prey system. To do so, we constructed a spatial lattice model to simulate an integrative predator (wolf) - prey (rabbit) - plant (grass) relationship. When a wolf (rabbit) encountered a rabbit (grass), the wolf (rabbit) tended to move to the rabbit (grass) for foraging while the rabbit tended to escape from the wolf. These behaviors were mathematically described by the degrees of willingness for hunting ( H) and escaping ( E). Initially, n refuges for prey were heterogeneously distributed in the lattice space. The heterogeneity was characterized as variable A. Higher values of A equate to higher aggregation in the refuge. We investigated the mean population density for different values of H, E, and A. To simply characterize the refuge distribution effect, we built an H-E grid map containing the population density for each species. Then, we counted the number of grids, N, with a population density ≥ 0.25. Simulation results showed that an appropriate value of A positively affected prey survival while values of A were too high had a negative effect on prey survival. The results were explained by using the trade-off between the staying time of the prey in the refuge and the cluster size of the refuge.

  4. Seasonally Varying Predation Behavior and Climate Shifts Are Predicted to Affect Predator-Prey Cycles.

    PubMed

    Tyson, Rebecca; Lutscher, Frithjof

    2016-11-01

    The functional response of some predator species changes from a pattern characteristic for a generalist to that for a specialist according to seasonally varying prey availability. Current theory does not address the dynamic consequences of this phenomenon. Since season length correlates strongly with altitude and latitude and is predicted to change under future climate scenarios, including this phenomenon in theoretical models seems essential for correct prediction of future ecosystem dynamics. We develop and analyze a two-season model for the great horned owl (Bubo virginialis) and snowshoe hare (Lepus americanus). These species form a predator-prey system in which the generalist to specialist shift in predation pattern has been documented empirically. We study the qualitative behavior of this predator-prey model community as summer season length changes. We find that relatively small changes in summer season length can have a profound impact on the system. In particular, when the predator has sufficient alternative resources available during the summer season, it can drive the prey to extinction, there can be coexisting stable states, and there can be stable large-amplitude limit cycles coexisting with a stable steady state. Our results illustrate that the impacts of global change on local ecosystems can be driven by internal system dynamics and can potentially have catastrophic consequences.

  5. The stabilizing effects of genetic diversity on predator-prey dynamics.

    PubMed

    Steiner, Christopher F; Masse, Jordan

    2013-01-01

    Heterogeneity among prey in their susceptibility to predation is a potentially important stabilizer of predator-prey interactions, reducing the magnitude of population oscillations and enhancing total prey population abundance. When microevolutionary responses of prey populations occur at time scales comparable to population dynamics, adaptive responses in prey defense can, in theory, stabilize predator-prey dynamics and reduce top-down effects on prey abundance. While experiments have tested these predictions, less explored are the consequences of the evolution of prey phenotypes that can persist in both vulnerable and invulnerable classes. We tested this experimentally using a laboratory aquatic system composed of the rotifer Brachionus calyciflorus as a predator and the prey Synura petersenii, a colony-forming alga that exhibits genetic variation in its propensity to form colonies and colony size (larger colonies are a defense against predators). Prey populations of either low initial genetic diversity and low adaptive capacity or high initial genetic diversity and high adaptive capacity were crossed with predator presence and absence. Dynamics measured over the last 127 days of the 167-day experiment revealed no effects of initial prey genetic diversity on the average abundance or temporal variability of predator populations. However, genetic diversity and predator presence/absence interactively affected prey population abundance and stability; diversity of prey had no effects in the absence of predators but stabilized dynamics and increased total prey abundance in the presence of predators. The size structure of the genetically diverse prey populations diverged from single strain populations in the presence of predators, showing increases in colony size and in the relative abundance of cells found in colonies. Our work sheds light on the adaptive value of colony formation and supports the general view that genetic diversity and intraspecific trait variation of

  6. Ecoepidemics with Two Strains: Diseased Prey.

    NASA Astrophysics Data System (ADS)

    Elena, Elisa; Grammauro, Maria; Venturino, Ezio

    2011-09-01

    In this work we present a minimal model for an ecoepidemic situation with two diseases affecting the prey population. The main assumptions are the following ones. The predators recognize and hunt only the healthy prey. An infected prey of one strain becomes immune to the other one. The major finding shows that the two strains cannot simultaneously thrive in the system, contrary to the standard assumptions in epidemiology. But this rather unexpected and remarkable result, paralleling another one when the epidemics affects the predators, is most likely due to the assumptions made.

  7. Biotic structure indirectly affects associated prey in a predator-specific manner via changes in the sensory environment.

    PubMed

    Wilson, Miranda L; Weissburg, Marc J

    2013-02-01

    Indirect effects, which can be either positive or negative, may be important in areas containing biotic structure, because such structure can provide refuge and habitat, produce additional sensory cues that may attract predators, and modify the sensory landscape in which predator-prey interactions occur. To determine the indirect effects of biotic structure on prey populations, we assessed predation on patches of hard clams (Mercenaria mercenaria) by large odor-mediated blue crab (Callinectes sapidus) and knobbed whelk (Busycon carica) predators at 0, 5, and 10 m from oyster reefs in intertidal salt marshes. Oyster reefs had an overall indirect negative effect on hard clams, with higher predation rates closer to the reef than farther away. Predator-specific patterns of predation showed that blue crabs consumed more clams very close to the reef, whereas whelks consumed more clams at intermediate distances. Laboratory flume experiments suggest that the oyster reef structure creates turbulence that diminishes predator foraging efficiency, particularly in rapidly mobile predators such as blue crabs, but that oyster reef chemicals ameliorate the negative impact of turbulence on foraging success for both predators. Changes in the sensory landscape, in combination with predator perceptual ability, will determine the positive and/or negative impacts of biotic structure on associated prey. Gaining an understanding of the context specificity of positive and negative sensory effects of biotic structure provides insights that are important for developing a predictive framework to assess the magnitude and distribution of indirect interactions in natural communities.

  8. Does Intraspecific Size Variation in a Predator Affect Its Diet Diversity and Top-Down Control of Prey?

    PubMed Central

    Ingram, Travis; Stutz, William E.; Bolnick, Daniel I.

    2011-01-01

    It has long been known that intraspecific variation impacts evolutionary processes, but only recently have its potential ecological effects received much attention. Theoretical models predict that genetic or phenotypic variance within species can alter interspecific interactions, and experiments have shown that genotypic diversity in clonal species can impact a wide range of ecological processes. To extend these studies to quantitative trait variation within populations, we experimentally manipulated the variance in body size of threespine stickleback in enclosures in a natural lake environment. We found that body size of stickleback in the lake is correlated with prey size and (to a lesser extent) composition, and that stickleback can exert top-down control on their benthic prey in enclosures. However, a six-fold contrast in body size variance had no effect on the degree of diet variation among individuals, or on the abundance or composition of benthic or pelagic prey. Interestingly, post-hoc analyses revealed suggestive correlations between the degree of diet variation and the strength of top-down control by stickleback. Our negative results indicate that, unless the correlation between morphology and diet is very strong, ecological variation among individuals may be largely decoupled from morphological variance. Consequently we should be cautious in our interpretation both of theoretical models that assume perfect correlations between morphology and diet, and of empirical studies that use morphological variation as a proxy for resource use diversity. PMID:21687670

  9. Does intraspecific size variation in a predator affect its diet diversity and top-down control of prey?

    PubMed

    Ingram, Travis; Stutz, William E; Bolnick, Daniel I

    2011-01-01

    It has long been known that intraspecific variation impacts evolutionary processes, but only recently have its potential ecological effects received much attention. Theoretical models predict that genetic or phenotypic variance within species can alter interspecific interactions, and experiments have shown that genotypic diversity in clonal species can impact a wide range of ecological processes. To extend these studies to quantitative trait variation within populations, we experimentally manipulated the variance in body size of threespine stickleback in enclosures in a natural lake environment. We found that body size of stickleback in the lake is correlated with prey size and (to a lesser extent) composition, and that stickleback can exert top-down control on their benthic prey in enclosures. However, a six-fold contrast in body size variance had no effect on the degree of diet variation among individuals, or on the abundance or composition of benthic or pelagic prey. Interestingly, post-hoc analyses revealed suggestive correlations between the degree of diet variation and the strength of top-down control by stickleback. Our negative results indicate that, unless the correlation between morphology and diet is very strong, ecological variation among individuals may be largely decoupled from morphological variance. Consequently we should be cautious in our interpretation both of theoretical models that assume perfect correlations between morphology and diet, and of empirical studies that use morphological variation as a proxy for resource use diversity.

  10. Study of a tri-trophic prey-dependent food chain model of interacting populations.

    PubMed

    Haque, Mainul; Ali, Nijamuddin; Chakravarty, Santabrata

    2013-11-01

    The current paper accounts for the influence of intra-specific competition among predators in a prey dependent tri-trophic food chain model of interacting populations. We offer a detailed mathematical analysis of the proposed food chain model to illustrate some of the significant results that has arisen from the interplay of deterministic ecological phenomena and processes. Biologically feasible equilibria of the system are observed and the behaviours of the system around each of them are described. In particular, persistence, stability (local and global) and bifurcation (saddle-node, transcritical, Hopf-Andronov) analysis of this model are obtained. Relevant results from previous well known food chain models are compared with the current findings. Global stability analysis is also carried out by constructing appropriate Lyapunov functions. Numerical simulations show that the present system is capable enough to produce chaotic dynamics when the rate of self-interaction is very low. On the other hand such chaotic behaviour disappears for a certain value of the rate of self interaction. In addition, numerical simulations with experimented parameters values confirm the analytical results and shows that intra-specific competitions bears a potential role in controlling the chaotic dynamics of the system; and thus the role of self interactions in food chain model is illustrated first time. Finally, a discussion of the ecological applications of the analytical and numerical findings concludes the paper.

  11. Counteracting effects of a non-native prey on the demography of a native predator culminate in positive population growth.

    PubMed

    Cattau, Christopher E; Fletcher, Robert J; Reichert, Brian E; Kitchens, Wiley M

    2016-10-01

    Identifying impacts of non-native species on native populations is central to conservation and ecology. While effects of non-native predators on native prey populations have recently received much attention, impacts of introduced prey on native predator populations are less understood. Non-native prey can influence predator behavior and demography through direct and indirect pathways, yet quantitative assessments of the relative impacts of multiple, potentially counteracting, effects on native predator population growth remain scarce. Using ≈20 years of range-wide monitoring data, we tested for effects of a recently introduced, rapidly spreading non-native prey species (Pomacea maculata) on the behavior and demography of the endangered Snail Kite (Rostrhamus sociabilis). Previous studies found that food-handling difficulties caused by the large size of P. maculata (relative to the native P. paludosa) can lead to energetic deficiencies in juvenile kites, suggesting the potential for evolutionary traps to occur. However, high densities of P. maculata populations could facilitate kites by providing supplemental food resources. Contrary to prior hypotheses, we found that juvenile apparent survival increased ≈50% in wetlands invaded by non-native snails. Breeding rates and number of young fledged/successful nests were also positively associated with non-native snail presence, suggesting direct trophic benefits to kites. We found no direct effects of the invasive snail on adult survival or daily nest survival rates. Kite movements and breeding distribution closely tracked the spread of non-native snail populations. Since 2005, kites have been heavily concentrated in northern regions where non-native snails have established. This geographic shift has had hidden costs, as use of northern regions is associated with lower adult survival. Despite negative impacts to this key vital rate, matrix population modeling indicated that the multifarious effects of the non

  12. Predators with multiple ontogenetic niche shifts have limited potential for population growth and top-down control of their prey.

    PubMed

    van Leeuwen, Anieke; Huss, Magnus; Gårdmark, Anna; Casini, Michele; Vitale, Francesca; Hjelm, Joakim; Persson, Lennart; de Roos, André M

    2013-07-01

    Catastrophic collapses of top predators have revealed trophic cascades and community structuring by top-down control. When populations fail to recover after a collapse, this may indicate alternative stable states in the system. Overfishing has caused several of the most compelling cases of these dynamics, and in particular Atlantic cod stocks exemplify such lack of recovery. Often, competition between prey species and juvenile predators is hypothesized to explain the lack of recovery of predator populations. The predator is then considered to compete with its prey for one resource when small and to subsequently shift to piscivory. Yet predator life history is often more complex than that, including multiple ontogenetic diet shifts. Here we show that no alternative stable states occur when predators in an intermediate life stage feed on an additional resource (exclusive to the predator) before switching to piscivory, because predation and competition between prey and predator do not simultaneously structure community dynamics. We find top-down control by the predator only when there is no feedback from predator foraging on the additional resource. Otherwise, the predator population dynamics are governed by a bottleneck in individual growth occurring in the intermediate life stage. Therefore, additional resources for predators may be beneficial or detrimental for predator population growth and strongly influence the potential for top-down community control.

  13. Waves affect predator-prey interactions between fish and benthic invertebrates.

    PubMed

    Gabel, Friederike; Stoll, Stefan; Fischer, Philipp; Pusch, Martin T; Garcia, Xavier-François

    2011-01-01

    Little is known about the effects of waves on predator-prey interactions in the littoral zones of freshwaters. We conducted a set of mesocosm experiments to study the differential effects of ship- and wind-induced waves on the foraging success of littoral fish on benthic invertebrates. Experiments were conducted in a wave tank with amphipods (Gammarus roeseli) as prey, and age-0 bream (Abramis brama, B0), age-0 and age-1 dace (Leuciscus leuciscus, D0 and D1) as predators. The number of gammarids suspended in the water column was higher in the wave treatments compared to a no-wave control treatment, especially during pulse waves mimicking ship-induced waves in comparison to continuous waves mimicking wind-induced waves. The resulting higher prey accessibility in the water column was differently exploited by the three types of predatory fish. D0 and D1 showed significantly higher foraging success in the pulse wave treatment than in the continuous and control treatments. The foraging success of D0 appears to be achieved more easily, since significantly higher swimming activity and more foraging attempts were recorded only for D1 under the wave treatments. In contrast, B0 consumed significantly fewer gammarids in both wave treatments than in the control. Hence, waves influenced predator-prey interactions differently depending on wave type and fish type. It is expected that regular exposure to ship-induced waves can alter littoral invertebrate and fish assemblages by increasing the predation risk for benthic invertebrates that are suspended in the water column, and by shifting fish community compositions towards species that benefit from waves.

  14. Population properties affect inbreeding avoidance in moose.

    PubMed

    Herfindal, Ivar; Haanes, Hallvard; Røed, Knut H; Solberg, Erling J; Markussen, Stine S; Heim, Morten; Sæther, Bernt-Erik

    2014-12-01

    Mechanisms reducing inbreeding are thought to have evolved owing to fitness costs of breeding with close relatives. In small and isolated populations, or populations with skewed age- or sex distributions, mate choice becomes limited, and inbreeding avoidance mechanisms ineffective. We used a unique individual-based dataset on moose from a small island in Norway to assess whether inbreeding avoidance was related to population structure and size, expecting inbreeding avoidance to be greater in years with larger populations and even adult sex ratios. The probability that a potential mating event was realized was negatively related to the inbreeding coefficient of the potential offspring, with a stronger relationship in years with a higher proportion or number of males in the population. Thus, adult sex ratio and population size affect the degree of inbreeding avoidance. Consequently, conservation managers should aim for sex ratios that facilitate inbreeding avoidance, especially in small and isolated populations.

  15. Eight pairs of descending visual neurons in the dragonfly give wing motor centers accurate population vector of prey direction.

    PubMed

    Gonzalez-Bellido, Paloma T; Peng, Hanchuan; Yang, Jinzhu; Georgopoulos, Apostolos P; Olberg, Robert M

    2013-01-08

    Intercepting a moving object requires prediction of its future location. This complex task has been solved by dragonflies, who intercept their prey in midair with a 95% success rate. In this study, we show that a group of 16 neurons, called target-selective descending neurons (TSDNs), code a population vector that reflects the direction of the target with high accuracy and reliability across 360°. The TSDN spatial (receptive field) and temporal (latency) properties matched the area of the retina where the prey is focused and the reaction time, respectively, during predatory flights. The directional tuning curves and morphological traits (3D tracings) for each TSDN type were consistent among animals, but spike rates were not. Our results emphasize that a successful neural circuit for target tracking and interception can be achieved with few neurons and that in dragonflies this information is relayed from the brain to the wing motor centers in population vector form.

  16. Eight pairs of descending visual neurons in the dragonfly give wing motor centers accurate population vector of prey direction

    PubMed Central

    Gonzalez-Bellido, Paloma T.; Peng, Hanchuan; Yang, Jinzhu; Georgopoulos, Apostolos P.; Olberg, Robert M.

    2013-01-01

    Intercepting a moving object requires prediction of its future location. This complex task has been solved by dragonflies, who intercept their prey in midair with a 95% success rate. In this study, we show that a group of 16 neurons, called target-selective descending neurons (TSDNs), code a population vector that reflects the direction of the target with high accuracy and reliability across 360°. The TSDN spatial (receptive field) and temporal (latency) properties matched the area of the retina where the prey is focused and the reaction time, respectively, during predatory flights. The directional tuning curves and morphological traits (3D tracings) for each TSDN type were consistent among animals, but spike rates were not. Our results emphasize that a successful neural circuit for target tracking and interception can be achieved with few neurons and that in dragonflies this information is relayed from the brain to the wing motor centers in population vector form. PMID:23213224

  17. On the solution of system of fractional nonlinear predator-prey population model via homotopy decomposition method

    NASA Astrophysics Data System (ADS)

    Atangana, Abdon

    2013-10-01

    We exploit a relatively new analytical technique, the Homotopy Decomposition Method (HDM), for solving nonlinear fractional partial differential equations arising in prey-predator biological population dynamics system. Numerical solutions are provided and they have certain properties which exhibit biologically significant dependence on the parameter values. The fractional derivatives are described in the Caputo sense. The HDM is reliable and reduces the number of computations. This gives the HDM a wider applicability. In addition, the method is very easy to use.

  18. Visibility conditions and diel period affect small-scale spatio-temporal behaviour of pike Esox lucius in the absence of prey and conspecifics.

    PubMed

    Nilsson, P A; Baktoft, H; Boel, M; Meier, K; Jacobsen, L; Rokkjaer, E M; Clausen, T; Skov, C

    2012-05-01

    Pike Esox lucius in the absence of prey and conspecifics were shown to have the highest habitat-change activity during dusk and to decrease preference for complex habitats in turbid water. As the behaviours indicate routine responses in the absence of behavioural interactions, E. lucius spatio-temporal distributions should be directly affected and thereby more easily assessed and avoided by prey, with potential consequences for encounter rates.

  19. Seasonal patterns in tree swallow prey (Diptera) abundance are affected by agricultural intensification.

    PubMed

    Paquette, Sébastien Rioux; Garant, Dany; Pelletier, Fanie; Bélisle, Marc

    2013-01-01

    In many parts of the world, farmland bird species are declining at faster rates than other birds. For aerial insectivores, this decline has been related to a parallel reduction in the abundance of their invertebrate prey in agricultural landscapes. While the effects of agricultural intensification (AI) on arthropod communities at the landscape level have been substantially studied in recent years, seasonal variation in these impacts has not been investigated. To assess the contention that intensive cultures negatively impact food resources for aerial insectivorous birds, we analyzed the spatiotemporal distribution patterns of Diptera, the main food resource for breeding tree swallows Tachycineta bicolor), across a gradient of AI in southeastern Quebec, Canada. Linear mixed models computed from a data set of 5000 samples comprising >150,000 dipterans collected over three years (2006-2008) suggest that both Diptera abundance and biomass varied greatly during swallow breeding season, following a quadratic curve. Globally, AI had a negative effect on Diptera abundance (but not biomass), but year-by-year analyses showed that in one of three years (2008), dipterans were more abundant in agro-intensive landscapes. Analyses also revealed a significant interaction between the moment in the season and AI: In early June, Diptera abundances were similar regardless of the landscape, but differences increased as the season progressed, with highly intensive landscapes harboring fewer prey, possibly creating an "ecological trap" for aerial insectivores. While global trends in our results are in agreement with expectations (negative impact of Al on insect abundance), strong discrepancies in 2008 highlight the difficulty of predicting the abundance of insect communities. Our study indicates that predicting the effects of AI may prove more challenging than generally assumed, even when large data sets are collected, and that temporal variation within a season is important to take into

  20. Wind speed affects prey-catching behaviour in an orb web spider.

    PubMed

    Turner, Joe; Vollrath, Fritz; Hesselberg, Thomas

    2011-12-01

    Wind has previously been shown to influence the location and orientation of spider web sites and also the geometry and material composition of constructed orb webs. We now show that wind also influences components of prey-catching behaviour within the web. A small wind tunnel was used to generate different wind speeds. Araneus diadematus ran more slowly towards entangled Drosophila melanogaster in windy conditions, which took less time to escape the web. This indicates a lower capture probability and a diminished overall predation efficiency for spiders at higher wind speeds. We conclude that spiders' behaviour of taking down their webs as wind speed increases may therefore not be a response only to possible web damage.

  1. Wind speed affects prey-catching behaviour in an orb web spider

    NASA Astrophysics Data System (ADS)

    Turner, Joe; Vollrath, Fritz; Hesselberg, Thomas

    2011-12-01

    Wind has previously been shown to influence the location and orientation of spider web sites and also the geometry and material composition of constructed orb webs. We now show that wind also influences components of prey-catching behaviour within the web. A small wind tunnel was used to generate different wind speeds. Araneus diadematus ran more slowly towards entangled Drosophila melanogaster in windy conditions, which took less time to escape the web. This indicates a lower capture probability and a diminished overall predation efficiency for spiders at higher wind speeds. We conclude that spiders' behaviour of taking down their webs as wind speed increases may therefore not be a response only to possible web damage.

  2. Inducible defenses in prey intensify predator cannibalism.

    PubMed

    Kishida, Osamu; Trussell, Geoffrey C; Nishimura, Kinya; Ohgushi, Takayuki

    2009-11-01

    Trophic cascades are often a potent force in ecological communities, but abiotic and biotic heterogeneity can diffuse their influence. For example, inducible defenses in many species create variation in prey edibility, and size-structured interactions, such as cannibalism, can shift predator diets away from heterospecific prey. Although both factors diffuse cascade strength by adding heterogeneity to trophic interactions, the consequences of their interactioh remain poorly understood. We show that inducible defenses in tadpole prey greatly intensify cannibalism in predatory larval salamanders. The likelihood of cannibalism was also strongly influenced by asymmetries in salamander size that appear to be most important in the presence of defended prey. Hence, variation in prey edibility and the size structure of the predator may synergistically affect predator-prey population dynamics by reducing prey mortality and increasing predator mortality via cannibalism. We also suggest that the indirect effects of prey defenses may shape the evolution of predator traits that determine diet breadth and how trophic dynamics unfold in natural systems.

  3. The feeding ecology of the dingo : III. Dietary relationships with widely fluctuating prey populations in arid Australia: an hypothesis of alternation of predation.

    PubMed

    Corbett, L K; Newsome, A E

    1987-12-01

    Changes in the diet of dingoes (Canis familiaris dingo) in response to measured fluctuations of prey populations were followed over 7 years. The study began after great rains had broken a long drought. Eruptions of rodents and rabbits followed, but some prey were always either relatively abundant (live cattle) or scarce (red kangaroo, lizards, birds). Cattle carcasses were increasingly available during a subsequent drought. Small and medium-sized prey, rodents (26%), lizards (12%) and rabbits (56%) were preferred, probably because they were easily caught. Only rabbits were caten consistently regardless of density. By contrast, large prey were eaten in relatively large amounts only during drought, with initial emphasis on red kangaroos (15% overall) and then cattle (17%) mostly as carcasses. The diet was functionally related to the respective abundances of all major prey species, but the relationship shifted during drought when predation on low populations was most severe. There was evidence that growth of resurging prey populations were suppressed by predation. Diets of dingoes did not differ significantly with age or sex. An hypothesis of 'alternation of predation' is presented: dingoes feed sequentially on prey of increasing size (rodents, rabbits, red kangaroos, cattle) in response to rainy periods and subsequent droughts, meanwhile always concentrating on the staple prey (rabbits). The fluctuating abundances of small and medium-sized prey determined not only their own relative availabilities but also that of large prey, and hence determined the diet of the dingo at any time. Prey availability (catchability, accessability) appeared to be more important than prey abundance (numbers, biomass), and the dingo's flexible social organisation allowed versatility in hunting strategies and defence of resources. We conclude that dingoes do not always forage most efficiently as optimal foraging models predict because of the constraints imposed by the capricious environment

  4. Are all prey created equal? A review and synthesis of differential predation on prey in substandard condition

    USGS Publications Warehouse

    Mesa, Matthew G.; Poe, Thomas P.; Gadomski, Dena M.; Petersen, James H.

    1994-01-01

    Our understanding of predator-prey interactions in fishes has been influenced largely by research assuming that the condition of the participants is normal. However, fish populations today often reside in anthropogenically altered environments and are subjected to many kinds of stressors, which may reduce their ecological performance by adversely affecting their morphology, physiology, or behaviour. One consequence is that either the predator or prey, or both, may be in a substandard condition at the time of an interaction. We reviewed the literature on predator-prey interactions in fishes where substandard prey were used as experimental groups. Although most of this research indicates that such prey are significantly more vulnerable to predation, prey condition has rarely been considered in ecological theory regarding predator-prey interactions. The causal mechanisms for increased vulnerability of substandard prey to predation include a failure to detect predators, lapses in decision-making, poor fast-start performance, inability to shoal effectively, and increased prey conspicuousness. Despite some problems associated with empirical predator-prey studies using substandard prey, their results can have theoretical and applied uses, such as in ecological modelling or justification of corrective measures to be implemented in the wild. There is a need for more corroborative field experimentation, a better understanding of the causal mechanisms behind differential predation, and increased incorporation of prey condition into the research of predator-prey modellers and theoreticians. If the concept of prey condition is considered in predator-prey interactions, our understanding of how such interactions influence the structure and dynamics of fish communities is likely to change, which should prove beneficial to aquatic ecosystems.

  5. Comparative growth and development of spiders reared on live and dead prey.

    PubMed

    Peng, Yu; Zhang, Fan; Gui, Shaolan; Qiao, Huping; Hose, Grant C

    2013-01-01

    Scavenging (feeding on dead prey) has been demonstrated across a number of spider families, yet the implications of feeding on dead prey for the growth and development of individuals and population is unknown. In this study we compare the growth, development, and predatory activity of two species of spiders that were fed on live and dead prey. Pardosa astrigera (Lycosidae) and Hylyphantes graminicola (Lyniphiidae) were fed live or dead fruit flies, Drosophila melanogaster. The survival of P. astrigera and H. graminicola was not affected by prey type. The duration of late instars of P. astrigera fed dead prey were longer and mature spiders had less protein content than those fed live prey, whereas there were no differences in the rate of H. graminicola development, but the mass of mature spiders fed dead prey was greater than those fed live prey. Predation rates by P. astrigera did not differ between the two prey types, but H. graminicola had a higher rate of predation on dead than alive prey, presumably because the dead flies were easier to catch and handle. Overall, the growth, development and reproduction of H. graminicola reared with dead flies was better than those reared on live flies, yet for the larger P. astrigera, dead prey may suit smaller instars but mature spiders may be best maintained with live prey. We have clearly demonstrated that dead prey may be suitable for rearing spiders, although the success of the spiders fed such prey appears size- and species specific.

  6. Comparative Growth and Development of Spiders Reared on Live and Dead Prey

    PubMed Central

    Peng, Yu; Zhang, Fan; Gui, Shaolan; Qiao, Huping; Hose, Grant C.

    2013-01-01

    Scavenging (feeding on dead prey) has been demonstrated across a number of spider families, yet the implications of feeding on dead prey for the growth and development of individuals and population is unknown. In this study we compare the growth, development, and predatory activity of two species of spiders that were fed on live and dead prey. Pardosa astrigera (Lycosidae) and Hylyphantes graminicola (Lyniphiidae) were fed live or dead fruit flies, Drosophila melanogaster. The survival of P. astrigera and H. graminicola was not affected by prey type. The duration of late instars of P. astrigera fed dead prey were longer and mature spiders had less protein content than those fed live prey, whereas there were no differences in the rate of H. graminicola development, but the mass of mature spiders fed dead prey was greater than those fed live prey. Predation rates by P. astrigera did not differ between the two prey types, but H. graminicola had a higher rate of predation on dead than alive prey, presumably because the dead flies were easier to catch and handle. Overall, the growth, development and reproduction of H. graminicola reared with dead flies was better than those reared on live flies, yet for the larger P. astrigera, dead prey may suit smaller instars but mature spiders may be best maintained with live prey. We have clearly demonstrated that dead prey may be suitable for rearing spiders, although the success of the spiders fed such prey appears size- and species specific. PMID:24386248

  7. Patterns formations in a diffusive ratio-dependent predator-prey model of interacting populations

    NASA Astrophysics Data System (ADS)

    Camara, B. I.; Haque, M.; Mokrani, H.

    2016-11-01

    The present investigation deals with the analysis of the spatial pattern formation of a diffusive predator-prey system with ratio-dependent functional response involving the influence of intra-species competition among predators within two-dimensional space. The appropriate condition of Turing instability around the interior equilibrium point of the present model has been determined. The emergence of complex patterns in the diffusive predator-prey model is illustrated through numerical simulations. These results are based on the existence of bifurcations of higher codimension such as Turing-Hopf, Turing-Saddle-node, Turing-Transcritical bifurcation, and the codimension- 3 ​Turing-Takens-Bogdanov bifurcation. The paper concludes with discussions of our results in ecology.

  8. Low leopard populations in protected areas of Maputaland: a consequence of poaching, habitat condition, abundance of prey, and a top predator.

    PubMed

    Ramesh, Tharmalingam; Kalle, Riddhika; Rosenlund, Havard; Downs, Colleen T

    2017-03-01

    Identifying the primary causes affecting population densities and distribution of flagship species are necessary in developing sustainable management strategies for large carnivore conservation. We modeled drivers of spatial density of the common leopard (Panthera pardus) using a spatially explicit capture-recapture-Bayesian approach to understand their population dynamics in the Maputaland Conservation Unit, South Africa. We camera-trapped leopards in four protected areas (PAs) of varying sizes and disturbance levels covering 198 camera stations. Ours is the first study to explore the effects of poaching level, abundance of prey species (small, medium, and large), competitors (lion Panthera leo and spotted hyenas Crocuta crocuta), and habitat on the spatial distribution of common leopard density. Twenty-six male and 41 female leopards were individually identified and estimated leopard density ranged from 1.6 ± 0.62/100 km(2) (smallest PA-Ndumo) to 8.4 ± 1.03/100 km(2) (largest PA-western shores). Although dry forest thickets and plantation habitats largely represented the western shores, the plantation areas had extremely low leopard density compared to native forest. We found that leopard density increased in areas when low poaching levels/no poaching was recorded in dry forest thickets and with high abundance of medium-sized prey, but decreased with increasing abundance of lion. Because local leopard populations are vulnerable to extinction, particularly in smaller PAs, the long-term sustainability of leopard populations depend on developing appropriate management strategies that consider a combination of multiple factors to maintain their optimal habitats.

  9. Density-dependent prey mortality is determined by the spatial scale of predator foraging.

    PubMed

    McCarthy, Erin K; White, J Wilson

    2016-02-01

    Foraging theory predicts which prey patches predators should target. However, in most habitats, what constitutes a 'patch' and how prey density is calculated are subjective concepts and depend on the spatial scale at which the predator (or scientist) is observing. Moreover, the predator's 'foraging scale' affects prey population dynamics: predators should produce directly density-dependent (DDD) prey mortality at the foraging scale, but inversely density-dependent (IDD) mortality (safety-in-numbers) at smaller scales. We performed the first experimental test of these predictions using behavioral assays with guppies (Poecilia reticulata) feeding on bloodworm 'prey' patches. The guppy's foraging scale had already been estimated in a prior study. Our experimental results confirmed theoretical predictions: predation was IDD when prey were aggregated at a scale smaller than the foraging scale, but not when prey were aggregated at larger scales. These results could be used to predict outcomes of predator-prey interactions in continuous, non-discrete habitats in the field.

  10. L-shaped prey isocline in the Gause predator-prey experiments with a prey refuge.

    PubMed

    Křivan, Vlastimil; Priyadarshi, Anupam

    2015-04-07

    Predator and prey isoclines are estimated from data on yeast-protist population dynamics (Gause et al., 1936). Regression analysis shows that the prey isocline is best fitted by an L-shaped function that has a vertical and a horizontal part. The predator isocline is vertical. This shape of isoclines corresponds with the Lotka-Volterra and the Rosenzweig-MacArthur predator-prey models that assume a prey refuge. These results further support the idea that a prey refuge changes the prey isocline of predator-prey models from a horizontal to an L-shaped curve. Such a shape of the prey isocline effectively bounds amplitude of predator-prey oscillations, thus promotes species coexistence.

  11. Top-Predator Survivor Region Is Affected by Bottom-Prey Mortality Rate on the Monte-Carlo Simulation in Lattice Model

    NASA Astrophysics Data System (ADS)

    Nagata, Minori; Nagata, Hiroyasu

    This article is a continuance of [9] that study brings into focus on the n species systems food chain. Computer simulation is important today, and its results may be reflected to policy. Now, we change the mortality rate of the bottom-prey, in order to inspect the survivor region of the top-predator that is crucial for the conservation of the ecosystem. We carry out Monte-Carlo simulations on finite-size lattices composed of the species . The bottom-prey mortality rate is changed from 0 to the extinction value. Thereafter, we find the steady state densities against the species n and plot the predator survivor region. To realize the conservation of the top-predator population, substantial amount of hardship is anticipated, because the bottom-prey density gradually becomes a little.

  12. Functional responses: a question of alternative prey and predator density.

    PubMed

    Tschanz, Britta; Bersier, Louis-Felix; Bacher, Sven

    2007-05-01

    Throughout the study of ecology, there has been a growing realization that indirect effects among species cause complexity in food webs. Understanding and predicting the behavior of ecosystems consequently depends on our ability to identify indirect effects and their mechanisms. The present study experimentally investigates indirect interactions arising between two prey species that share a common predator. In a natural field experiment, we introduced different densities of mealworms (Tenebrio molitor), an alternative prey, to a previously studied predator-prey system in which paper wasps (Polistes dominulus) preyed on shield beetle larvae (Cassida rubiginosa). We tested if alternative prey affects predation on the first prey (i.e., the predator-dependent functional response of paper wasps) by modifying either interference among predators or the effective number of predators foraging on shield beetles. Presence of mealworms significantly reduced the effective number of predators, whereas predator interference was not affected. In this way, the experimentally introduced alternative prey altered the wasps' functional response and thereby indirectly influenced C. rubiginosa density. In all prey-density combinations offered, paper wasps constantly preferred T. molitor. This led to an asymmetrical, indirect interaction between both prey species: an increase in mealworm density significantly relaxed predation on C. rubiginosa, whereas an increase in C. rubiginosa density intensified predation on mealworms. Such asymmetrical outcomes of a fixed food preference can significantly affect the population dynamics of the species involved. In spite of the repeated finding of a Type III functional response in this system, our experiment did not reveal switching behavior in paper wasps. The variety of mechanisms underlying direct and indirect interactions within our study system exemplifies the importance of incorporating alternative prey when investigating the impact of a

  13. Prey availability affects daily torpor by free-ranging Australian owlet-nightjars (Aegotheles cristatus).

    PubMed

    Doucette, Lisa I; Brigham, R Mark; Pavey, Chris R; Geiser, Fritz

    2012-06-01

    Food availability, ambient temperatures (T(a)), and prevailing weather conditions have long been presumed to influence torpor use. To a large extent, this is based on measurements in the laboratory of animals placed on restricted diets and kept at low T (a). Information on the determinants of torpor employment in the field is limited. We assessed winter torpor by insectivorous, free-ranging Australian owlet-nightjars (Aegotheles cristatus; 22 birds, 834 bird-days over six winters). Birds in three habitats were investigated to test whether torpor use is affected by annual T(a), rainfall, and arthropod abundance. Owlet-nightjars entered daily torpor regularly at all sites. Torpor frequency, depth and bout duration were greatest during two periods with lower arthropod abundance, providing rare evidence of the link between food availability and torpor patterns of wild birds. Temporal organization of torpor was similar among sites, and nocturnal torpor was more frequent than previously reported. Our findings quantitatively demonstrate that reduced food resources affect torpor usage independently from T(a), and support the view that food availability is a primary ecological determinant of torpor use in the wild.

  14. Predator cannibalism can intensify negative impacts on heterospecific prey.

    PubMed

    Takatsu, Kunio; Kishida, Osamu

    2015-07-01

    Although natural populations consist of individuals with different traits, and the degree of phenotypic variation varies among populations, the impact of phenotypic variation on ecological interactions has received little attention, because traditional approaches to community ecology assume homogeneity of individuals within a population. Stage structure, which is a common way of generating size and developmental variation within predator populations, can drive cannibalistic interactions, which can affect the strength of predatory effects on the predator's heterospecific prey. Studies have shown that predator cannibalism weakens predatory effects on heterospecific prey by reducing the size of the predator population and by inducing less feeding activity of noncannibal predators. We predict, however, that predator cannibalism, by promoting rapid growth of the cannibals, can also intensify predation pressure on heterospecific prey, because large predators have large resource requirements and may utilize a wider variety of prey species. To test this hypothesis, we conducted an experiment in which we created carnivorous salamander (Hynobius retardatus) populations with different stage structures by manipulating the salamander's hatch timing (i.e., populations with large or small variation in the timing of hatching), and explored the resultant impacts on the abundance, behavior, morphology, and life history of the salamander's large heterospecific prey, Rana pirica frog tadpoles. Cannibalism was rare in salamander populations having small hatch-timing variation, but was frequent in those having large hatch-timing variation. Thus, giant salamander cannibals occurred only in the latter. We clearly showed that salamander giants exerted strong predation pressure on frog tadpoles, which induced large behavioral and morphological defenses in the tadpoles and caused them to metamorphose late at large size. Hence, predator cannibalism arising from large variation in the timing

  15. Preference and Prey Switching in a Generalist Predator Attacking Local and Invasive Alien Pests

    PubMed Central

    Jaworski, Coline C.; Bompard, Anaïs; Genies, Laure; Amiens-Desneux, Edwige; Desneux, Nicolas

    2013-01-01

    Invasive pest species may strongly affect biotic interactions in agro-ecosystems. The ability of generalist predators to prey on new invasive pests may result in drastic changes in the population dynamics of local pest species owing to predator-mediated indirect interactions among prey. On a short time scale, the nature and strength of such indirect interactions depend largely on preferences between prey and on predator behavior patterns. Under laboratory conditions we evaluated the prey preference of the generalist predator Macrolophus pygmaeus Rambur (Heteroptera: Miridae) when it encounters simultaneously the local tomato pest Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) and the invasive alien pest Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). We tested various ratios of local vs. alien prey numbers, measuring switching by the predator from one prey to the other, and assessing what conditions (e.g. prey species abundance and prey development stage) may favor such prey switching. The total predation activity of M. pygmaeus was affected by the presence of T. absoluta in the prey complex with an opposite effect when comparing adult and juvenile predators. The predator showed similar preference toward T. absoluta eggs and B. tabaci nymphs, but T. absoluta larvae were clearly less attacked. However, prey preference strongly depended on prey relative abundance with a disproportionately high predation on the most abundant prey and disproportionately low predation on the rarest prey. Together with the findings of a recent companion study (Bompard et al. 2013, Population Ecology), the insight obtained on M. pygmaeus prey switching may be useful for Integrated Pest Management in tomato crops, notably for optimal simultaneous management of B. tabaci and T. absoluta, which very frequently co-occur on tomato. PMID:24312646

  16. Preference and prey switching in a generalist predator attacking local and invasive alien pests.

    PubMed

    Jaworski, Coline C; Bompard, Anaïs; Genies, Laure; Amiens-Desneux, Edwige; Desneux, Nicolas

    2013-01-01

    Invasive pest species may strongly affect biotic interactions in agro-ecosystems. The ability of generalist predators to prey on new invasive pests may result in drastic changes in the population dynamics of local pest species owing to predator-mediated indirect interactions among prey. On a short time scale, the nature and strength of such indirect interactions depend largely on preferences between prey and on predator behavior patterns. Under laboratory conditions we evaluated the prey preference of the generalist predator Macrolophus pygmaeus Rambur (Heteroptera: Miridae) when it encounters simultaneously the local tomato pest Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) and the invasive alien pest Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). We tested various ratios of local vs. alien prey numbers, measuring switching by the predator from one prey to the other, and assessing what conditions (e.g. prey species abundance and prey development stage) may favor such prey switching. The total predation activity of M. pygmaeus was affected by the presence of T. absoluta in the prey complex with an opposite effect when comparing adult and juvenile predators. The predator showed similar preference toward T. absoluta eggs and B. tabaci nymphs, but T. absoluta larvae were clearly less attacked. However, prey preference strongly depended on prey relative abundance with a disproportionately high predation on the most abundant prey and disproportionately low predation on the rarest prey. Together with the findings of a recent companion study (Bompard et al. 2013, Population Ecology), the insight obtained on M. pygmaeus prey switching may be useful for Integrated Pest Management in tomato crops, notably for optimal simultaneous management of B. tabaci and T. absoluta, which very frequently co-occur on tomato.

  17. Continuous threshold prey harvesting with vulnerable infected prey

    NASA Astrophysics Data System (ADS)

    Abaas, S.; Abu-Hassn, Y.

    2013-04-01

    In this paper, we introduce a prey-predator model where the susceptible prey becomes infective. We consider the case where the predator will consume the unhealthy prey and at the same time the healthy prey will be harvested. Conditions for the stability of the equilibrium points were obtained. We show when the disease rate is increasing, the trajectories of the general model approach the equilibrium in which all population survive. Also we show that the threshold of harvesting is important because when it approach the size of prey this make the disease increasing so we must start the harvesting so early to control the disease and not become epidemic.

  18. Comparing isotope signatures of prey fish: does gut removal affect δ13C or δ15N?

    USGS Publications Warehouse

    Chipps, Steven R.; Fincel, Mark J.; VanDeHey, Justin A.; Wuestewald, Andrew

    2011-01-01

    Stable isotope analysis is a quick and inexpensive method to monitor the effects of food web changes on aquatic communities. Traditionally, whole specimens have been used when determining isotope composition of prey fish or age-0 recreational fishes. However, gut contents of prey fish could potentially alter isotope composition of the specimen, especially when recent foraging has taken place or when the gut contains non-assimilated material that would normally pass through fishes undigested. To assess the impacts of gut content on prey fish isotope signatures, we examined the differences in isotopic variation of five prey fish species using whole fish, whole fish with the gut contents removed, and dorsal muscle only. We found significant differences in both δ15N and δ13C between the three tissue treatments. In most cases, muscle tissue was enriched compared to whole specimens or gut-removed specimens. Moreover, differences in mean δ15N within a species were up to 2‰ among treatments. This would result in a change of over half a trophic position (TP) based on a 3.4‰ increase per trophic level. However, there were no apparent relationships between tissue isotope values in fish with increased gut fullness (more prey tissue present). We suggest that muscle tissue should be used as the standard tissue for determining isotope composition of prey fish or age-0 recreational fishes, especially when determining enrichment for mixing models, calculating TP, or constructing aquatic food webs.

  19. Long-term prairie falcon population changes in relation to prey abundance, weather, land uses, and habitat conditions

    USGS Publications Warehouse

    Steenhof, Karen; Kochert, Michael N.; Carpenter, L.B.; Lehman, Robert N.

    1999-01-01

    We studied a nesting population of Prairie Falcons( Falco mexicanus) in the Snake River Birds of Prey National Conservation Area (NCA) from 1974-1997 to identify factors that influence abundance and reproduction. Our sampling period included two major droughts and associated crashes in Townsenda??s ground squirrel (Spermophilus townsendii) populations. The number of Prairie Falcon pairs found on long-term survey segments declined significantly from 1976-1997. Early declines were most severe at the eastern end of the NCA, where fires and agriculture have changed native shrubsteppe habitat. More recent declines occurred in the portion of canyon near the Orchard Training Area (OTA), where the Idaho Army National Guard conducts artillery firing and tank maneuvers. Overall Prairie Falcon reproductive rates were tied closely to annual indexes of ground squirrel abundance, but precipitation before and during the breeding season was related inversely to some measures of reproduction. Most reproductive parameters showed no significant trends over time, but during the 199Os, nesting success and productivity were lower in the stretch of canyon near the OTA than in adjacent areas. Extensive shrub loss, by itself, did not explain the pattern of declines in abundance and reproduction that we observed. Recent military training activities likely have interacted with fire and livestock grazing to create less than favorable foraging opportunities for Prairie Falcons in a large part of the NCA. To maintain Prairie Falcon populations in the NCA, managers should suppress wildfires, restore native plant communities, and regulate potentially incompatible land uses.

  20. Long-term Prairie Falcon population changes in relation to prey abundance, weather, land uses, and habitat conditions

    USGS Publications Warehouse

    Steenhof, K.; Kochert, M.N.; Carpenter, L.B.; Lehman, R.N.

    1999-01-01

    We studied a nesting population of Prairie Falcons (Falco mexicanus) in the Snake River Birds of Prey National Conservation Area (NCA) from 1974-1997 to identify factors that influence abundance and reproduction. Our sampling period included two major droughts and associated crashes in Townsend's ground squirrel (Spermophilus townsendii) populations. The number of Prairie Falcon pairs found on long-term survey segments declined significantly from 1976-1997. Early declines were most severe at the eastern end of the NCA, where fires and agriculture have changed native shrubsteppe habitat. More recent declines occurred in the portion of canyon near the Orchard Training Area (OTA), where the Idaho Army National Guard conducts artillery firing and tank maneuvers. Overall Prairie Falcon reproductive rates were tied closely to annual indexes of ground squirrel abundance, but precipitation before and during the breeding season was related inversely to some measures of reproduction. Most reproductive parameters showed no significant trends over time, but during the 1990s, nesting success and productivity were lower in the stretch of canyon near the OTA than in adjacent areas. Extensive shrub loss, by itself, did not explain the pattern of declines in abundance and reproduction that we observed. Recent military training activities likely have interacted with fire and livestock grazing to create less than favorable foraging opportunities for Prairie Falcons in a large part of the NCA. To maintain Prairie Falcon populations in the NCA, managers should suppress wildfires, restore native plant communities, and regulate potentially incompatible land uses.

  1. Individual and Population Level Resource Selection Patterns of Mountain Lions Preying on Mule Deer along an Urban-Wildland Gradient

    PubMed Central

    Benson, John F.; Sikich, Jeff A.; Riley, Seth P. D.

    2016-01-01

    Understanding population and individual-level behavioral responses of large carnivores to human disturbance is important for conserving top predators in fragmented landscapes. However, previous research has not investigated resource selection at predation sites of mountain lions in highly urbanized areas. We quantified selection of natural and anthropogenic landscape features by mountain lions at sites where they consumed their primary prey, mule deer (Odocoileus hemionus), in and adjacent to urban, suburban, and rural areas in greater Los Angeles. We documented intersexual and individual-level variation in the environmental conditions present at mule deer feeding sites relative to their availability across home ranges. Males selected riparian woodlands and areas closer to water more than females, whereas females selected developed areas marginally more than males. Females fed on mule deer closer to developed areas and farther from riparian woodlands than expected based on the availability of these features across their home ranges. We suggest that mortality risk for females and their offspring associated with encounters with males may have influenced the different resource selection patterns between sexes. Males appeared to select mule deer feeding sites mainly in response to natural landscape features, while females may have made kills closer to developed areas in part because these are alternative sites where deer are abundant. Individual mountain lions of both sexes selected developed areas more strongly within home ranges where development occurred less frequently. Thus, areas near development may represent a trade-off for mountain lions such that they may benefit from foraging near development because of abundant prey, but as the landscape becomes highly urbanized these benefits may be outweighed by human disturbance. PMID:27411098

  2. Individual and Population Level Resource Selection Patterns of Mountain Lions Preying on Mule Deer along an Urban-Wildland Gradient.

    PubMed

    Benson, John F; Sikich, Jeff A; Riley, Seth P D

    2016-01-01

    Understanding population and individual-level behavioral responses of large carnivores to human disturbance is important for conserving top predators in fragmented landscapes. However, previous research has not investigated resource selection at predation sites of mountain lions in highly urbanized areas. We quantified selection of natural and anthropogenic landscape features by mountain lions at sites where they consumed their primary prey, mule deer (Odocoileus hemionus), in and adjacent to urban, suburban, and rural areas in greater Los Angeles. We documented intersexual and individual-level variation in the environmental conditions present at mule deer feeding sites relative to their availability across home ranges. Males selected riparian woodlands and areas closer to water more than females, whereas females selected developed areas marginally more than males. Females fed on mule deer closer to developed areas and farther from riparian woodlands than expected based on the availability of these features across their home ranges. We suggest that mortality risk for females and their offspring associated with encounters with males may have influenced the different resource selection patterns between sexes. Males appeared to select mule deer feeding sites mainly in response to natural landscape features, while females may have made kills closer to developed areas in part because these are alternative sites where deer are abundant. Individual mountain lions of both sexes selected developed areas more strongly within home ranges where development occurred less frequently. Thus, areas near development may represent a trade-off for mountain lions such that they may benefit from foraging near development because of abundant prey, but as the landscape becomes highly urbanized these benefits may be outweighed by human disturbance.

  3. Pregnancy persistently affects memory T cell populations.

    PubMed

    Kieffer, Tom E C; Faas, Marijke M; Scherjon, Sicco A; Prins, Jelmer R

    2017-02-01

    Pregnancy is an immune challenge to the maternal immune system. The effects of pregnancy on maternal immunity and particularly on memory T cells during and after pregnancy are not fully known. This observational study aims to show the short term and the long term effects of pregnancy on the constitution, size and activation status of peripheral human memory T-lymphocyte populations. Effector memory (EM) and central memory (CM) T-lymphocytes were analyzed using flow cytometry of peripheral blood from 14 nulligravid, 12 primigravid and 15 parous women that were on average 18 months postpartum. The short term effects were shown by the significantly higher CD4+ EM cell and activated CD4+ memory cell proportions in primigravid women compared to nulligravid women. The persistent effects found in this study were the significantly higher proportions of CD4+ EM, CD4+ CM and activated memory T cells in parous women compared to nulligravid women. In contrast to CD4+ cells, activation status of CD8+ memory cells did not differ between the groups. This study shows that pregnancy persistently affects the pre-pregnancy CD4+ memory cell pool in human peripheral blood. During pregnancy, CD4+ T-lymphocytes might differentiate into EM cells followed by persistent higher proportions of CD4+ CM and EM cells postpartum. The persistent effects of pregnancy on memory T cells found in this study support the hypothesis that memory T cells are generated during pregnancy and that these cells could be involved in the lower complication risks in multiparous pregnancies in humans.

  4. Behavioral refuges and predator-prey coexistence.

    PubMed

    Křivan, Vlastimil

    2013-12-21

    The effects of a behavioral refuge caused either by the predator optimal foraging or prey adaptive antipredator behavior on the Gause predator-prey model are studied. It is shown that both of these mechanisms promote predator-prey coexistence either at an equilibrium, or along a limit cycle. Adaptive prey refuge use leads to hysteresis in prey antipredator behavior which allows predator-prey coexistence along a limit cycle. Similarly, optimal predator foraging leads to sigmoidal functional responses with a potential to stabilize predator-prey population dynamics at an equilibrium, or along a limit cycle.

  5. How Resource Phenology Affects Consumer Population Dynamics.

    PubMed

    Bewick, Sharon; Cantrell, R Stephen; Cosner, Chris; Fagan, William F

    2016-02-01

    Climate change drives uneven phenology shifts across taxa, and this can result in changes to the phenological match between interacting species. Shifts in the relative phenology of partner species are well documented, but few studies have addressed the effects of such changes on population dynamics. To explore this, we develop a phenologically explicit model describing consumer-resource interactions. Focusing on scenarios for univoltine insects, we show how changes in resource phenology can be reinterpreted as transformations in the year-to-year recursion relationships defining consumer population dynamics. This perspective provides a straightforward path for interpreting the long-term population consequences of phenology change. Specifically, by relating the outcome of phenological shifts to species traits governing recursion relationships (e.g., consumer fecundity or competitive scenario), we demonstrate how changes in relative phenology can force systems into different dynamical regimes, with major implications for resource management, conservation, and other areas of applied dynamics.

  6. Using predator-prey theory to predict outcomes of broadscale experiments to reduce apparent competition.

    PubMed

    Serrouya, Robert; Wittmann, Meike J; McLellan, Bruce N; Wittmer, Heiko U; Boutin, Stan

    2015-05-01

    Apparent competition is an important process influencing many ecological communities. We used predator-prey theory to predict outcomes of ecosystem experiments aimed at mitigating apparent competition by reducing primary prey. Simulations predicted declines in secondary prey following reductions in primary prey because predators consumed more secondary prey until predator numbers responded to reduced prey densities. Losses were exacerbated by a higher carrying capacity of primary prey and a longer lag time of the predator's numerical response, but a gradual reduction in primary prey was less detrimental to the secondary prey. We compared predictions against two field experiments where endangered woodland caribou (Rangifer tarandus caribou) were victims of apparent competition. First, when deer (Odocoileus sp.) declined suddenly following a severe winter, cougar (Puma concolor) declined with a 1-2-year lag, yet in the interim more caribou were killed by cougars, and caribou populations declined by 40%. Second, when moose (Alces alces) were gradually reduced using a management experiment, wolf (Canis lupus) populations declined but did not shift consumption to caribou, and the largest caribou subpopulation stabilized. The observed contrasting outcomes of sudden versus gradual declines in primary prey supported theoretical predictions. Combining theory with field studies clarified how to manage communities to mitigate endangerment caused by apparent competition that affects many taxa.

  7. Predators, Prey and Habitat Structure: Can Key Conservation Areas and Early Signs of Population Collapse Be Detected in Neotropical Forests?

    PubMed Central

    de Thoisy, Benoit; Fayad, Ibrahim; Clément, Luc; Barrioz, Sébastien; Poirier, Eddy; Gond, Valéry

    2016-01-01

    Tropical forests with a low human population and absence of large-scale deforestation provide unique opportunities to study successful conservation strategies, which should be based on adequate monitoring tools. This study explored the conservation status of a large predator, the jaguar, considered an indicator of the maintenance of how well ecological processes are maintained. We implemented an original integrative approach, exploring successive ecosystem status proxies, from habitats and responses to threats of predators and their prey, to canopy structure and forest biomass. Niche modeling allowed identification of more suitable habitats, significantly related to canopy height and forest biomass. Capture/recapture methods showed that jaguar density was higher in habitats identified as more suitable by the niche model. Surveys of ungulates, large rodents and birds also showed higher density where jaguars were more abundant. Although jaguar density does not allow early detection of overall vertebrate community collapse, a decrease in the abundance of large terrestrial birds was noted as good first evidence of disturbance. The most promising tool comes from easily acquired LiDAR data and radar images: a decrease in canopy roughness was closely associated with the disturbance of forests and associated decreasing vertebrate biomass. This mixed approach, focusing on an apex predator, ecological modeling and remote-sensing information, not only helps detect early population declines in large mammals, but is also useful to discuss the relevance of large predators as indicators and the efficiency of conservation measures. It can also be easily extrapolated and adapted in a timely manner, since important open-source data are increasingly available and relevant for large-scale and real-time monitoring of biodiversity. PMID:27828993

  8. Predators, Prey and Habitat Structure: Can Key Conservation Areas and Early Signs of Population Collapse Be Detected in Neotropical Forests?

    PubMed

    de Thoisy, Benoit; Fayad, Ibrahim; Clément, Luc; Barrioz, Sébastien; Poirier, Eddy; Gond, Valéry

    2016-01-01

    Tropical forests with a low human population and absence of large-scale deforestation provide unique opportunities to study successful conservation strategies, which should be based on adequate monitoring tools. This study explored the conservation status of a large predator, the jaguar, considered an indicator of the maintenance of how well ecological processes are maintained. We implemented an original integrative approach, exploring successive ecosystem status proxies, from habitats and responses to threats of predators and their prey, to canopy structure and forest biomass. Niche modeling allowed identification of more suitable habitats, significantly related to canopy height and forest biomass. Capture/recapture methods showed that jaguar density was higher in habitats identified as more suitable by the niche model. Surveys of ungulates, large rodents and birds also showed higher density where jaguars were more abundant. Although jaguar density does not allow early detection of overall vertebrate community collapse, a decrease in the abundance of large terrestrial birds was noted as good first evidence of disturbance. The most promising tool comes from easily acquired LiDAR data and radar images: a decrease in canopy roughness was closely associated with the disturbance of forests and associated decreasing vertebrate biomass. This mixed approach, focusing on an apex predator, ecological modeling and remote-sensing information, not only helps detect early population declines in large mammals, but is also useful to discuss the relevance of large predators as indicators and the efficiency of conservation measures. It can also be easily extrapolated and adapted in a timely manner, since important open-source data are increasingly available and relevant for large-scale and real-time monitoring of biodiversity.

  9. A predator-prey model with diseases in both prey and predator

    NASA Astrophysics Data System (ADS)

    Gao, Xubin; Pan, Qiuhui; He, Mingfeng; Kang, Yibin

    2013-12-01

    In this paper, we present and analyze a predator-prey model, in which both predator and prey can be infected. Each of the predator and prey is divided into two categories, susceptible and infected. The epidemics cannot be transmitted between prey and predator by predation. The predation ability of susceptible predators is stronger than infected ones. Likewise, it is more difficult to catch a susceptible prey than an infected one. And the diseases cannot be hereditary in both of the predator and prey populations. Based on the assumptions above, we find that there are six equilibrium points in this model. Using the base reproduction number, we discuss the stability of the equilibrium points qualitatively. Then both of the local and global stabilities of the equilibrium points are analyzed quantitatively by mathematical methods. We provide numerical results to discuss some interesting biological cases that our model exhibits. Lastly, we discuss how the infectious rates affect the stability, and how the other parameters work in the five possible cases within this model.

  10. The impact of environmental toxins on predator-prey dynamics.

    PubMed

    Huang, Qihua; Wang, Hao; Lewis, Mark A

    2015-08-07

    Predators and prey may be simultaneously exposed to environmental toxins, but one may be more susceptible than the other. To study the effects of environmental toxins on food web dynamics, we develop a toxin-dependent predator-prey model that combines both direct and indirect toxic effects on two trophic levels. The direct effects of toxins typically reduce organism abundance by increasing mortality or reducing fecundity. Such direct effects, therefore, alter both bottom-up food availability and top-down predatory ability. However, the indirect effects, when mediated through predator-prey interactions, may lead to counterintuitive effects. This study investigates how the balance of the classical predator-prey dynamics changes as a function of environmental toxin levels. While high toxin concentrations are shown to be harmful to both species, possibly leading to extirpation of both species, intermediate toxin concentrations may affect predators disproportionately through biomagnification, leading to reduced abundance of predators and increased abundance of the prey. This counterintuitive effect significantly increases biomass at the lower trophic level. Environmental toxins may also reduce population variability by preventing populations from fluctuating around a coexistence equilibrium. Finally, environmental toxins may induce bistable dynamics, in which different initial population levels produce different long-term outcomes. Since our toxin-dependent predator-prey model is general, the theory developed here not only provides a sound foundation for population or community effects of toxicity, but also could be used to help develop management strategies to preserve and restore the integrity of contaminated habitats.

  11. Unidirectional prey-predator facilitation: apparent prey enhance predators' foraging success on cryptic prey.

    PubMed

    Zhang, Yixin; Richardson, John S

    2007-06-22

    Food availability can strongly affect predator-prey dynamics. When change in habitat condition reduces the availability of one prey type, predators often search for other prey, perhaps in a different habitat. Interactions between behavioural and morphological traits of different prey may influence foraging success of visual predators through trait-mediated indirect interactions (TMIIs), such as prey activity and body coloration. We tested the hypothesis that foraging success of stream-dwelling cutthroat trout (Onchorhyncus clarki) on cryptically coloured, less-active benthic prey (larval mayfly; Paraleptophebia sp.) can be enhanced by the presence of distinctly coloured, active prey (larval stonefly shredder; Despaxia augusta). Cutthroat trout preyed on benthic insects when drifting invertebrates were unavailable. When stonefly larvae were present, the trout ate most of the stoneflies and also consumed a higher proportion of mayflies than under mayfly only treatment. The putative mechanism is that active stonefly larvae supplied visual cues to the predator that alerted trout to the mayfly larvae. Foraging success of visual predators on cryptic prey can be enhanced by distinctly coloured, active benthic taxa through unidirectional facilitation to the predators, which is a functional change of interspecific interaction caused by a third species. This study suggests that prey-predator facilitation through TMIIs can modify species interactions, affecting community dynamics.

  12. Great lakes prey fish populations: a cross-basin overview of status and trends based on bottom trawl surveys, 1978-2012

    USGS Publications Warehouse

    Gorman, Owen T.

    2012-01-01

    The assessment of prey fish stocks in the Great Lakes have been conducted annually with bottom trawls since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. These stock assessments provide data on the status and trends of prey fish that are consumed by important commercial and recreational fishes. Although all these annual surveys are conducted using bottom trawls, they differ among the lakes in the proportion of the lake covered, seasonal timing, bottom trawl gear used, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique in one or more important aspects, direct comparison of prey fish catches among lakes is not straightforward. However, all of the assessments produce indices of abundance or biomass that can be standardized to facilitate comparisons of status and trends across all the Great Lakes. In this report, population indices were standardized to the highest value for a time series within each lake for the following principal prey species: cisco (Coregonus artedi), bloater (C. hoyi), rainbow smelt (Osmerus mordax), and alewife (Alosa pseudoharengus). Indices were also provided for round goby (Neogobius melanostomus), an invasive fish that has proliferated throughout the basin over the past 18 years. These standardized indices represent the best available long-term indices of relative abundance for these fishes across all of the Great Lakes. In this report, standardized indices are presented in graphical form along with synopses to provide a short, informal cross-basin summary of the status and trends of principal prey fishes. In keeping with this intent, tables, references, and a detailed discussion were omitted.

  13. Modelling the fear effect in predator-prey interactions.

    PubMed

    Wang, Xiaoying; Zanette, Liana; Zou, Xingfu

    2016-11-01

    A recent field manipulation on a terrestrial vertebrate showed that the fear of predators alone altered anti-predator defences to such an extent that it greatly reduced the reproduction of prey. Because fear can evidently affect the populations of terrestrial vertebrates, we proposed a predator-prey model incorporating the cost of fear into prey reproduction. Our mathematical analyses show that high levels of fear (or equivalently strong anti-predator responses) can stabilize the predator-prey system by excluding the existence of periodic solutions. However, relatively low levels of fear can induce multiple limit cycles via subcritical Hopf bifurcations, leading to a bi-stability phenomenon. Compared to classic predator-prey models which ignore the cost of fear where Hopf bifurcations are typically supercritical, Hopf bifurcations in our model can be both supercritical and subcritical by choosing different sets of parameters. We conducted numerical simulations to explore the relationships between fear effects and other biologically related parameters (e.g. birth/death rate of adult prey), which further demonstrate the impact that fear can have in predator-prey interactions. For example, we found that under the conditions of a Hopf bifurcation, an increase in the level of fear may alter the direction of Hopf bifurcation from supercritical to subcritical when the birth rate of prey increases accordingly. Our simulations also show that the prey is less sensitive in perceiving predation risk with increasing birth rate of prey or increasing death rate of predators, but demonstrate that animals will mount stronger anti-predator defences as the attack rate of predators increases.

  14. Crisis-Affected Populations and Tuberculosis.

    PubMed

    Zenner, Dominik

    2017-01-01

    By definition, humanitarian crises can severely affect human health, directly through violence or indirectly through breakdown of infrastructure or lack of provision for basic human needs, such as safe shelter, food, clean water, and suitable clothing. After the initial phase, these indirect effects are the most important determinants of morbidity and mortality in humanitarian emergencies, and infectious diseases are among the most significant causes of ill health. Tuberculosis (TB) incidence in humanitarian emergencies varies depending on a number of factors, including the country background epidemiology, but will be elevated compared with precrisis levels. TB morbidity and mortality are associated with access to appropriate care and medications, and will also be elevated due to barriers to access to diagnosis and appropriate treatment, including robust TB drug supplies. While reestablishment of TB control is challenging in the early phases, successful treatment programs have been previously established, and the WHO has issued guidance on establishing such successful programs. Such programs should be closely linked to other health programs and established in close collaboration with the country's national treatment program. Individuals who flee the emergency also have a higher TB risk and can face difficulties accessing care en route to or upon arrival in host countries. These barriers, often associated with treatment delays and worse outcomes, can be the result of uncertainties around legal status, other practical challenges, or lack of health care worker awareness. It is important to recognize and mitigate these barriers with an increasing number of tools now available and described.

  15. Plastic Hatching Timing by Red-Eyed Treefrog Embryos Interacts with Larval Predator Identity and Sublethal Predation to Affect Prey Morphology but Not Performance

    PubMed Central

    Touchon, Justin C.; Wojdak, Jeremy M.

    2014-01-01

    Many animals respond to predation risk by altering their morphology, behavior, or life-history. We know a great deal about the cues prey respond to and the changes to prey that can be induced by predation risk, but less is known about how plastic responses to predators may be affected by separate plastic responses occurring earlier in life, particularly during the embryonic period. Embryos of a broad array of taxa can respond to egg- or larval-stage risks by altering hatching timing, which may alter the way organisms respond to future predators. Using the red-eyed treefrog (Agalychnis callidryas), a model for understanding the effects of plasticity across life-stages, we assessed how the combined effects of induced variation in the timing of embryo hatching and variation in the larval predator community impacted tadpole morphology, pigmentation and swimming performance. We found that A. callidryas tadpoles developed deeper tail muscles and fins and darker pigmentation in response to fish predators, either when alone or in diverse community with other predators. Tadpoles altered morphology much less so to dragonfly naiads or water bugs. Interestingly, morphological responses to predators were also affected by induced differences in hatching age, with early and late-hatched tadpoles exhibiting different allometric relationships between tail height and body length in different predator environments. Beyond induced morphological changes, fish predators often damaged tadpoles’ tails without killing them (i.e., sublethal predation), but these tadpoles swam equally quickly to those with fully intact tails. This was due to the fact that tadpoles with more damaged tails increased tail beats to achieve equal swimming speed. This study demonstrates that plastic phenotypic responses to predation risk can be influenced by a complex combination of responses to both the embryo and larval environments, but also that prey performance can be highly resilient to sublethal predation

  16. The effect of prey refuge in a patchy predator-prey system.

    PubMed

    Ma, Zhihui; Wang, Shufan; Li, Weide; Li, Zizhen

    2013-05-01

    In this work, we proposed a patchy predator-prey model with one patch as refuge and the other as open habitat, and incorporated prey refuge in the considered model explicitly. We applied an analytical approach to study the dynamic consequences of the simplest forms of refuge used by prey and the migration efficiency. The results have shown that the refuge used by prey and the migration efficiency play an important role in the dynamic consequences of the interacting populations and the equilibrium density of two interacting populations. This work also proposed a new approach which can incorporate prey refuge in predator-prey system explicitly.

  17. Predator dispersal determines the effect of connectivity on prey diversity.

    PubMed

    Limberger, Romana; Wickham, Stephen A

    2011-01-01

    Linking local communities to a metacommunity can positively affect diversity by enabling immigration of dispersal-limited species and maintenance of sink populations. However, connectivity can also negatively affect diversity by allowing the spread of strong competitors or predators. In a microcosm experiment with five ciliate species as prey and a copepod as an efficient generalist predator, we analysed the effect of connectivity on prey species richness in metacommunities that were either unconnected, connected for the prey, or connected for both prey and predator. Presence and absence of predator dispersal was cross-classified with low and high connectivity. The effect of connectivity on local and regional richness strongly depended on whether corridors were open for the predator. Local richness was initially positively affected by connectivity through rescue of species from stochastic extinctions. With predator dispersal, however, this positive effect soon turned negative as the predator spread over the metacommunity. Regional richness was unaffected by connectivity when local communities were connected only for the prey, while predator dispersal resulted in a pronounced decrease of regional richness. The level of connectivity influenced the speed of richness decline, with regional species extinctions being delayed for one week in weakly connected metacommunities. While connectivity enabled rescue of prey species from stochastic extinctions, deterministic extinctions due to predation were not overcome through reimmigration from predator-free refuges. Prey reimmigrating into these sink habitats appeared to be directly converted into increased predator abundance. Connectivity thus had a positive effect on the predator, even when the predator was not dispersing itself. Our study illustrates that dispersal of a species with strong negative effects on other community members shapes the dispersal-diversity relationship. When connections enable the spread of a

  18. Predator Dispersal Determines the Effect of Connectivity on Prey Diversity

    PubMed Central

    Limberger, Romana; Wickham, Stephen A.

    2011-01-01

    Linking local communities to a metacommunity can positively affect diversity by enabling immigration of dispersal-limited species and maintenance of sink populations. However, connectivity can also negatively affect diversity by allowing the spread of strong competitors or predators. In a microcosm experiment with five ciliate species as prey and a copepod as an efficient generalist predator, we analysed the effect of connectivity on prey species richness in metacommunities that were either unconnected, connected for the prey, or connected for both prey and predator. Presence and absence of predator dispersal was cross-classified with low and high connectivity. The effect of connectivity on local and regional richness strongly depended on whether corridors were open for the predator. Local richness was initially positively affected by connectivity through rescue of species from stochastic extinctions. With predator dispersal, however, this positive effect soon turned negative as the predator spread over the metacommunity. Regional richness was unaffected by connectivity when local communities were connected only for the prey, while predator dispersal resulted in a pronounced decrease of regional richness. The level of connectivity influenced the speed of richness decline, with regional species extinctions being delayed for one week in weakly connected metacommunities. While connectivity enabled rescue of prey species from stochastic extinctions, deterministic extinctions due to predation were not overcome through reimmigration from predator-free refuges. Prey reimmigrating into these sink habitats appeared to be directly converted into increased predator abundance. Connectivity thus had a positive effect on the predator, even when the predator was not dispersing itself. Our study illustrates that dispersal of a species with strong negative effects on other community members shapes the dispersal-diversity relationship. When connections enable the spread of a

  19. Predator-prey systems depend on a prey refuge.

    PubMed

    Chivers, W J; Gladstone, W; Herbert, R D; Fuller, M M

    2014-11-07

    Models of near-exclusive predator-prey systems such as that of the Canadian lynx and snowshoe hare have included factors such as a second prey species, a Holling Type II predator response and climatic or seasonal effects to reproduce sub-sets of six signature patterns in the empirical data. We present an agent-based model which does not require the factors or constraints of previous models to reproduce all six patterns in persistent populations. Our parsimonious model represents a generalised predator and prey species with a small prey refuge. The lack of the constraints of previous models, considered to be important for those models, casts doubt on the current hypothesised mechanisms of exclusive predator-prey systems. The implication for management of the lynx, a protected species, is that maintenance of an heterogeneous environment offering natural refuge areas for the hare is the most important factor for the conservation of this species.

  20. Predator-prey interactions mediated by prey personality and predator hunting mode.

    PubMed

    Belgrad, Benjamin A; Griffen, Blaine D

    2016-04-13

    Predator-prey interactions are important drivers in structuring ecological communities. However, despite widespread acknowledgement that individual behaviours and predator species regulate ecological processes, studies have yet to incorporate individual behavioural variations in a multipredator system. We quantified a prevalent predator avoidance behaviour to examine the simultaneous roles of prey personality and predator hunting mode in governing predator-prey interactions. Mud crabs, Panopeus herbstii, reduce their activity levels and increase their refuge use in the presence of predator cues. We measured mud crab mortality and consistent individual variations in the strength of this predator avoidance behaviour in the presence of predatory blue crabs, Callinectes sapidus, and toadfish, Opsanus tau We found that prey personality and predator species significantly interacted to affect mortality with blue crabs primarily consuming bold mud crabs and toadfish preferentially selecting shy crabs. Additionally, the strength of the predator avoidance behaviour depended upon the predation risk from the predator species. Consequently, the personality composition of populations and predator hunting mode may be valuable predictors of both direct and indirect predator-prey interaction strength. These findings support theories postulating mechanisms for maintaining intraspecies diversity and have broad implications for community dynamics.

  1. Giant wood spider Nephila pilipes alters silk protein in response to prey variation.

    PubMed

    Tso, I-Min; Wu, Hsuan-Chen; Hwang, In-Ru

    2005-03-01

    Recent studies have demonstrated that orb-weaving spiders may alter web structures, foraging localities or silk output in response to prey variations. In this study we conducted field surveys and food manipulations to examine whether orb-weaving spiders may also adjust the protein of silk to prey variations. A comparison of dragline silks collected from nine giant wood spider Nephila pilipes populations in Taiwan showed a spatial variation. The percentage of all amino acids (except alanine and glycine) exhibited significant differences among populations. A survey of prey composition also revealed a significant spatial variation among N. pilipes populations. To determine whether prey variation was responsible for silk protein variation, we fed N. pilipes with different types of prey (dipteran vs orthopteran) then compared the percentage of five major dragline amino acids and secondary structures. The results showed that dragline of N. pilipes fed with orthopteran prey contained significantly higher proline and glutamine but lower alanine. Congruent with this result were those from FTIR spectroscopy, which showed that dragline of N. pilipes fed with crickets exhibited significantly higher percentage of proline- and glutamine-containing beta turns, and lower percentage of alanine-containing beta sheet structures. Since the results of feeding manipulations showed that diet significantly affected the compositions of dragline silks, the observed spatial variation seemed to reflect the different types of prey these spiders had consumed. Results of this study thus indicated that orb-weaving spiders can alter dragline protein in response to prey variations.

  2. How will the greening of the Arctic affect an important prey species and disturbance agent? Vegetation effects on arctic ground squirrels.

    PubMed

    Wheeler, H C; Chipperfield, J D; Roland, C; Svenning, J-C

    2015-07-01

    Increases in terrestrial primary productivity across the Arctic and northern alpine ecosystems are leading to altered vegetation composition and stature. Changes in vegetation stature may affect predator-prey interactions via changes in the prey's ability to detect predators, changes in predation pressure, predator identity and predator foraging strategy. Changes in productivity and vegetation composition may also affect herbivores via effects on forage availability and quality. We investigated if height-dependent effects of forage and non-forage vegetation determine burrowing extent and activity of arctic ground squirrels (Urocitellus parryii). We collected data on burrow networks and activity of arctic ground squirrels across long-term vegetation monitoring sites in Denali National Park and Preserve, Alaska. The implications of height-specific cover of potential forage and non-forage vegetation on burrowing behaviour and habitat suitability for arctic ground squirrels were investigated using hierarchical Bayesian modelling. Increased cover of forbs was associated with more burrows and burrow systems, and higher activity of systems, for all forb heights. No other potential forage functional group was related to burrow distribution and activity. In contrast, height-dependent negative effects of non-forage vegetation were observed, with cover over 50-cm height negatively affecting the number of burrows, systems and system activity. Our results demonstrate that increases in vegetation productivity have dual, potentially counteracting effects on arctic ground squirrels via changes in forage and vegetation stature. Importantly, increases in tall-growing woody vegetation (shrubs and trees) have clear negative effects, whereas increases in forb should benefit arctic ground squirrels.

  3. The effect of alternative prey on the dynamics of imperfect Batesian and Müllerian mimicries.

    PubMed

    Lindström, Leena; Alatalo, Rauno V; Lyytinen, Anne; Mappes, Johanna

    2004-06-01

    Both Batesian and Müllerian mimicries are considered classical evidence of natural selection where predation pressure has, at times, created a striking similarity between unrelated prey species. Batesian mimicry, in which palatable mimics resemble unpalatable aposematic species, is parasitic and only beneficial to the mimics. By contrast, in classical Müllerian mimicry the cost of predators' avoidance learning is shared between similar unpalatable co-mimics, and therefore mimicry benefits all parties. Recent studies using mathematical modeling have questioned the dynamics of Müllerian mimicry, suggesting that fitness benefits should be calculated in a way similar to Batesian mimicry; that is, according to the relative unpalatability difference between co-mimics. Batesian mimicry is very sensitive to the availability of alternative prey, but the effects of alternative prey for Müllerian dynamics are not known and experiments are rare. We designed two experiments to test the effect of alternative prey on imperfect Batesian and Müllerian mimicry complexes. When alternative prey were scarce, imperfect Batesian mimics were selected out from the population, but abundantly available alternative prey relaxed selection against imperfect mimics. Birds learned to avoid both Müllerian models and mimics irrespective of the availability of alternative prey. However, the rate of avoidance learning of models increased when alternative prey were abundant. This experiment suggests that the availability of alternative prey affects the dynamics of both Müllerian and Batesian mimicry, but in different ways.

  4. Pulsed-resource dynamics constrain the evolution of predator-prey interactions.

    PubMed

    Friman, Ville-Petri; Laakso, Jouni

    2011-03-01

    Although temporal variability in the physical environment plays a major role in population fluctuations, little is known about how it drives the ecological and evolutionary dynamics of species interactions. We studied experimentally how extrinsic resource pulses affect evolutionary and ecological dynamics between the prey bacterium Serratia marcescens and the predatory protozoan Tetrahymena thermophila. Predation increased the frequency of defensive, nonpigmented prey types, which bore competitive costs in terms of reduced maximum growth rate, most in a constant-resource environment. Furthermore, the predator densities of the pulsed-resource environment regularly fluctuated above and below the mean predator densities of the constant environment. These results suggest that selection favored fast-growing competitor prey types over defensive but slower-growing prey types more often in the pulsed-resource environment (abundance of resources and low predation risk). As a result, the selection for prey defense fluctuated more in the pulsed-resource environment, leading to a weaker mean response in prey defense. At the ecological level, the evolution of prey defense weakened the relative strength of top-down regulation on prey community. This was more evident in the constant-resource environment, whereas the slow emergence of defensive prey types gradually decreased the amplitude of predator peaks in the pulsed-resource environment. Our study suggests that rapid evolution plays a smaller role in the ecological dynamics of communities dominated by resource pulses.

  5. Population expansion and individual age affect endoparasite richness and diversity in a recolonising large carnivore population

    PubMed Central

    Lesniak, Ines; Heckmann, Ilja; Heitlinger, Emanuel; Szentiks, Claudia A.; Nowak, Carsten; Harms, Verena; Jarausch, Anne; Reinhardt, Ilka; Kluth, Gesa; Hofer, Heribert; Krone, Oliver

    2017-01-01

    The recent recolonisation of the Central European lowland (CEL) by the grey wolf (Canis lupus) provides an excellent opportunity to study the effect of founder events on endoparasite diversity. Which role do prey and predator populations play in the re-establishment of endoparasite life cycles? Which intrinsic and extrinsic factors control individual endoparasite diversity in an expanding host population? In 53 individually known CEL wolves sampled in Germany, we revealed a community of four cestode, eight nematode, one trematode and 12 potential Sarcocystis species through molecular genetic techniques. Infections with zoonotic Echinococcus multilocularis, Trichinella britovi and T. spiralis occurred as single cases. Per capita endoparasite species richness and diversity significantly increased with population size and changed with age, whereas sex, microsatellite heterozygosity, and geographic origin had no effect. Tapeworm abundance (Taenia spp.) was significantly higher in immigrants than natives. Metacestode prevalence was slightly higher in ungulates from wolf territories than from control areas elsewhere. Even though alternative canid definitive hosts might also play a role within the investigated parasite life cycles, our findings indicate that (1) immigrated wolves increase parasite diversity in German packs, and (2) prevalence of wolf-associated parasites had declined during wolf absence and has now risen during recolonisation. PMID:28128348

  6. Population expansion and individual age affect endoparasite richness and diversity in a recolonising large carnivore population

    NASA Astrophysics Data System (ADS)

    Lesniak, Ines; Heckmann, Ilja; Heitlinger, Emanuel; Szentiks, Claudia A.; Nowak, Carsten; Harms, Verena; Jarausch, Anne; Reinhardt, Ilka; Kluth, Gesa; Hofer, Heribert; Krone, Oliver

    2017-01-01

    The recent recolonisation of the Central European lowland (CEL) by the grey wolf (Canis lupus) provides an excellent opportunity to study the effect of founder events on endoparasite diversity. Which role do prey and predator populations play in the re-establishment of endoparasite life cycles? Which intrinsic and extrinsic factors control individual endoparasite diversity in an expanding host population? In 53 individually known CEL wolves sampled in Germany, we revealed a community of four cestode, eight nematode, one trematode and 12 potential Sarcocystis species through molecular genetic techniques. Infections with zoonotic Echinococcus multilocularis, Trichinella britovi and T. spiralis occurred as single cases. Per capita endoparasite species richness and diversity significantly increased with population size and changed with age, whereas sex, microsatellite heterozygosity, and geographic origin had no effect. Tapeworm abundance (Taenia spp.) was significantly higher in immigrants than natives. Metacestode prevalence was slightly higher in ungulates from wolf territories than from control areas elsewhere. Even though alternative canid definitive hosts might also play a role within the investigated parasite life cycles, our findings indicate that (1) immigrated wolves increase parasite diversity in German packs, and (2) prevalence of wolf-associated parasites had declined during wolf absence and has now risen during recolonisation.

  7. Population expansion and individual age affect endoparasite richness and diversity in a recolonising large carnivore population.

    PubMed

    Lesniak, Ines; Heckmann, Ilja; Heitlinger, Emanuel; Szentiks, Claudia A; Nowak, Carsten; Harms, Verena; Jarausch, Anne; Reinhardt, Ilka; Kluth, Gesa; Hofer, Heribert; Krone, Oliver

    2017-01-27

    The recent recolonisation of the Central European lowland (CEL) by the grey wolf (Canis lupus) provides an excellent opportunity to study the effect of founder events on endoparasite diversity. Which role do prey and predator populations play in the re-establishment of endoparasite life cycles? Which intrinsic and extrinsic factors control individual endoparasite diversity in an expanding host population? In 53 individually known CEL wolves sampled in Germany, we revealed a community of four cestode, eight nematode, one trematode and 12 potential Sarcocystis species through molecular genetic techniques. Infections with zoonotic Echinococcus multilocularis, Trichinella britovi and T. spiralis occurred as single cases. Per capita endoparasite species richness and diversity significantly increased with population size and changed with age, whereas sex, microsatellite heterozygosity, and geographic origin had no effect. Tapeworm abundance (Taenia spp.) was significantly higher in immigrants than natives. Metacestode prevalence was slightly higher in ungulates from wolf territories than from control areas elsewhere. Even though alternative canid definitive hosts might also play a role within the investigated parasite life cycles, our findings indicate that (1) immigrated wolves increase parasite diversity in German packs, and (2) prevalence of wolf-associated parasites had declined during wolf absence and has now risen during recolonisation.

  8. Quantifying the Effects of Predator and Prey Body Size on Sea Star Feeding Behaviors.

    PubMed

    Gooding, Rebecca A; Harley, Christopher D G

    2015-06-01

    Body size plays a crucial role in determining the strength of species interactions, population dynamics, and community structure. We measured how changes in body size affect the trophic relationship between the sea star Pisaster ochraceus and its prey, the mussel Mytilus trossulus. We tested the effects of a wide range of predator and prey sizes on sea stars' prey-size preference, feeding rate, and prey tissue consumption. We found that preferred prey size increased with sea star size. Pisaster consumption rate (mussels consumed per day) and tissue intake rate (grams of tissue consumed per day) also increased with sea star size. Pisaster consumption rate, but not tissue intake rate, decreased with increasing mussel size. Juvenile sea stars preferred the most profitable prey sizes-that is, those that maximized tissue consumed per unit handling time. When adult sea stars were offered larger, more profitable mussels, tissue intake rates (grams per day) tended to increase, although this relationship was not statistically significant. Our results indicate that the Pisaster-Mytilus interaction depends on the sizes of both predator and prey, that predation rates are sensitive to even small changes in body size, and that shifts in size distributions may affect predator energetics and prey numbers differently depending on the factors that limit tissue consumption rates.

  9. Predicting when climate-driven phenotypic change affects population dynamics.

    PubMed

    McLean, Nina; Lawson, Callum R; Leech, Dave I; van de Pol, Martijn

    2016-06-01

    Species' responses to climate change are variable and diverse, yet our understanding of how different responses (e.g. physiological, behavioural, demographic) relate and how they affect the parameters most relevant for conservation (e.g. population persistence) is lacking. Despite this, studies that observe changes in one type of response typically assume that effects on population dynamics will occur, perhaps fallaciously. We use a hierarchical framework to explain and test when impacts of climate on traits (e.g. phenology) affect demographic rates (e.g. reproduction) and in turn population dynamics. Using this conceptual framework, we distinguish four mechanisms that can prevent lower-level responses from impacting population dynamics. Testable hypotheses were identified from the literature that suggest life-history and ecological characteristics which could predict when these mechanisms are likely to be important. A quantitative example on birds illustrates how, even with limited data and without fully-parameterized population models, new insights can be gained; differences among species in the impacts of climate-driven phenological changes on population growth were not explained by the number of broods or density dependence. Our approach helps to predict the types of species in which climate sensitivities of phenotypic traits have strong demographic and population consequences, which is crucial for conservation prioritization of data-deficient species.

  10. Rate of language evolution is affected by population size.

    PubMed

    Bromham, Lindell; Hua, Xia; Fitzpatrick, Thomas G; Greenhill, Simon J

    2015-02-17

    The effect of population size on patterns and rates of language evolution is controversial. Do languages with larger speaker populations change faster due to a greater capacity for innovation, or do smaller populations change faster due to more efficient diffusion of innovations? Do smaller populations suffer greater loss of language elements through founder effects or drift, or do languages with more speakers lose features due to a process of simplification? Revealing the influence of population size on the tempo and mode of language evolution not only will clarify underlying mechanisms of language change but also has practical implications for the way that language data are used to reconstruct the history of human cultures. Here, we provide, to our knowledge, the first empirical, statistically robust test of the influence of population size on rates of language evolution, controlling for the evolutionary history of the populations and formally comparing the fit of different models of language evolution. We compare rates of gain and loss of cognate words for basic vocabulary in Polynesian languages, an ideal test case with a well-defined history. We demonstrate that larger populations have higher rates of gain of new words whereas smaller populations have higher rates of word loss. These results show that demographic factors can influence rates of language evolution and that rates of gain and loss are affected differently. These findings are strikingly consistent with general predictions of evolutionary models.

  11. Disease-mediated bottom-up regulation: An emergent virus affects a keystone prey, and alters the dynamics of trophic webs.

    PubMed

    Monterroso, Pedro; Garrote, Germán; Serronha, Ana; Santos, Emídio; Delibes-Mateos, Miguel; Abrantes, Joana; Perez de Ayala, Ramón; Silvestre, Fernando; Carvalho, João; Vasco, Inês; Lopes, Ana M; Maio, Elisa; Magalhães, Maria J; Mills, L Scott; Esteves, Pedro J; Simón, Miguel Ángel; Alves, Paulo C

    2016-10-31

    Emergent diseases may alter the structure and functioning of ecosystems by creating new biotic interactions and modifying existing ones, producing cascading processes along trophic webs. Recently, a new variant of the rabbit haemorrhagic disease virus (RHDV2 or RHDVb) arguably caused widespread declines in a keystone prey in Mediterranean ecosystems - the European rabbit (Oryctolagus cuniculus). We quantitatively assess the impact of RHDV2 on natural rabbit populations and in two endangered apex predator populations: the Iberian lynx (Lynx pardinus) and the Spanish Imperial eagle (Aquila adalberti). We found 60-70% declines in rabbit populations, followed by decreases of 65.7% in Iberian lynx and 45.5% in Spanish Imperial eagle fecundities. A revision of the web of trophic interactions among rabbits and their dependent predators suggests that RHDV2 acts as a keystone species, and may steer Mediterranean ecosystems to management-dependent alternative states, dominated by simplified mesopredator communities. This model system stresses the importance of diseases as functional players in the dynamics of trophic webs.

  12. Disease-mediated bottom-up regulation: An emergent virus affects a keystone prey, and alters the dynamics of trophic webs

    PubMed Central

    Monterroso, Pedro; Garrote, Germán; Serronha, Ana; Santos, Emídio; Delibes-Mateos, Miguel; Abrantes, Joana; Perez de Ayala, Ramón; Silvestre, Fernando; Carvalho, João; Vasco, Inês; Lopes, Ana M.; Maio, Elisa; Magalhães, Maria J.; Mills, L. Scott; Esteves, Pedro J.; Simón, Miguel Ángel; Alves, Paulo C.

    2016-01-01

    Emergent diseases may alter the structure and functioning of ecosystems by creating new biotic interactions and modifying existing ones, producing cascading processes along trophic webs. Recently, a new variant of the rabbit haemorrhagic disease virus (RHDV2 or RHDVb) arguably caused widespread declines in a keystone prey in Mediterranean ecosystems - the European rabbit (Oryctolagus cuniculus). We quantitatively assess the impact of RHDV2 on natural rabbit populations and in two endangered apex predator populations: the Iberian lynx (Lynx pardinus) and the Spanish Imperial eagle (Aquila adalberti). We found 60–70% declines in rabbit populations, followed by decreases of 65.7% in Iberian lynx and 45.5% in Spanish Imperial eagle fecundities. A revision of the web of trophic interactions among rabbits and their dependent predators suggests that RHDV2 acts as a keystone species, and may steer Mediterranean ecosystems to management-dependent alternative states, dominated by simplified mesopredator communities. This model system stresses the importance of diseases as functional players in the dynamics of trophic webs. PMID:27796353

  13. FACTORS ADVERSELY AFFECTING AMPHIBIAN POPULATIONS IN THE US

    EPA Science Inventory

    Factors known or suspected to be adversely affecting native amphibian populations in the US were identified using information from species accounts written in a standardized format by multiple authors in a forthcoming book. Specific adverse factors were identified for 53 (58%) of...

  14. Prey Carrying Capacity Modulates the Effect of Predation on Prey Diversity.

    PubMed

    Socolar, Jacob; Washburne, Alex

    2015-09-01

    Understanding the role of predation in regulating prey diversity is a major goal in ecology, with profound consequences for community dynamics, ecosystem structure, and conservation practice. Deterministic differential equation models predict that some predation regimes, such as prey-switching predation, should promote prey coexistence and increase prey diversity. However, such models do not capture stochastic population fluctuations that are ubiquitous in empirical study sites and nature reserves. In this article, we examine the effects of prey-switching predation on the species richness of prey communities with demographic noise. We show that in finite, discrete prey populations, the ability of prey-switching predation to promote diversity depends on the carrying capacity of the prey community and the richness of the source pool for prey. Identical predation regimes may have opposite effects on prey diversity depending on the size and productivity of the habitat or the metacommunity richness. Statistical properties of the fluctuations of prey populations determine the effect of stabilizing mechanisms on species richness. We discuss the implications of this result for empirical studies of predation in small study areas and for the management of small nature reserves.

  15. Top-down and bottom-up factors affecting seabird population trends in the California current system (1985-2006)

    NASA Astrophysics Data System (ADS)

    Ainley, David G.; David Hyrenbach, K.

    2010-03-01

    To characterize the environmental factors affecting seabird population trends in the central portion of the California current system (CCS), we analyzed standardized vessel-based surveys collected during the late spring (May-June) upwelling season over 22 yr (1985-2006). We tested the working hypothesis that population trends are related to species-specific foraging ecology, and predicted that temporal variation in population size should be most extreme in diving species with higher energy expenditure during foraging. We related variation in individual species abundance (number km -2) to seasonally lagged (late winter, early spring, late spring) and concurrent ocean conditions, and to long-term trends (using a proxy variable: year) during a multi-decadal period of major fluctuations in the El Niño-Southern oscillation (ENSO) and the Pacific decadal oscillation (PDO). We considered both remote (Multivariate ENSO Index, PDO) and local (coastal upwelling indices and sea-surface temperature) environmental variables as proxies for ocean productivity and prey availability. We also related seabird trends to those of potentially major trophic competitors, humpback ( Megaptera novaeangliae) and blue ( Balaenoptera musculus) whales, which increased in number 4-5-fold midway during our study. Cyclical oscillations in seabird abundance were apparent in the black-footed albatross ( Phoebastria nigripes), and decreasing trends were documented for ashy storm-petrel ( Oceanodroma homochroa), pigeon guillemot ( Cepphus columbus), rhinoceros auklet ( Cerorhinca monocerata), Cassin’s auklet ( Ptychoramphus aleuticus), and western gull ( Larus occidentalis); the sooty shearwater ( Puffinus griseus), exhibited a marked decline before signs of recovery at the end of the study period. The abundance of nine other focal species varied with ocean conditions, but without decadal or long-term trends. Six of these species have the largest global populations in the CCS, and four are highly

  16. Kestrel-Prey Dynamic in a Mediterranean Region: The Effect of Generalist Predation and Climatic Factors

    PubMed Central

    Fargallo, Juan A.; Martínez-Padilla, Jesús; Viñuela, Javier; Blanco, Guillermo; Torre, Ignasi; Vergara, Pablo; De Neve, Liesbeth

    2009-01-01

    Background Most hypotheses on population limitation of small mammals and their predators come from studies carried out in northern latitudes, mainly in boreal ecosystems. In such regions, many predators specialize on voles and predator-prey systems are simpler compared to southern ecosystems where predator communities are made up mostly of generalists and predator-prey systems are more complex. Determining food limitation in generalist predators is difficult due to their capacity to switch to alternative prey when the basic prey becomes scarce. Methodology We monitored the population density of a generalist raptor, the Eurasian kestrel Falco tinnunculus over 15 years in a mountainous Mediterranean area. In addition, we have recorded over 11 years the inter-annual variation in the abundance of two main prey species of kestrels, the common vole Microtus arvalis and the eyed lizard Lacerta lepida and a third species scarcely represented in kestrel diet, the great white-toothed shrew Crocidura russula. We estimated the per capita growth rate (PCGR) to analyse population dynamics of kestrel and predator species. Principal Findings Multimodel inference determined that the PCGR of kestrels was better explained by a model containing the population density of only one prey species (the common vole) than a model using a combination of the densities of the three prey species. The PCGR of voles was explained by kestrel abundance in combination with annual rainfall and mean annual temperature. In the case of shrews, growth rate was also affected by kestrel abundance and temperature. Finally, we did not find any correlation between kestrel and lizard abundances. Significance Our study showed for the first time vertebrate predator-prey relationships at southern latitudes and determined that only one prey species has the capacity to modulate population dynamics of generalist predators and reveals the importance of climatic factors in the dynamics of micromammal species and lizards

  17. The impact of parasite manipulation and predator foraging behavior on predator-prey communities.

    PubMed

    Fenton, A; Rands, S A

    2006-11-01

    Parasites are known to directly affect their hosts at both the individual and population level. However, little is known about their more subtle, indirect effects and how these may affect population and community dynamics. In particular, trophically transmitted parasites may manipulate the behavior of intermediate hosts, fundamentally altering the pattern of contact between these individuals and their predators. Here, we develop a suite of population dynamic models to explore the impact of such behavioral modifications on the dynamics and structure of the predator-prey community. We show that, although such manipulations do not directly affect the persistence of the predator and prey populations, they can greatly alter the quantitative dynamics of the community, potentially resulting in high amplitude oscillations in abundance. We show that the precise impact of host manipulation depends greatly on the predator's functional response, which describes the predator's foraging efficiency under changing prey availabilities. Even if the parasite is rarely observed within the prey population, such manipulations extend beyond the direct impact on the intermediate host to affect the foraging success of the predator, with profound implications for the structure and stability of the predator-prey community.

  18. Global stability of prey-taxis systems

    NASA Astrophysics Data System (ADS)

    Jin, Hai-Yang; Wang, Zhi-An

    2017-02-01

    In this paper, we prove the global boundedness and stability of the predator-prey system with prey-taxis in a two-dimensional bounded domain with Neumann boundary conditions. By deriving an entropy-like equality and a boundedness criterion, we show that the intrinsic interaction between predators and preys is sufficient to prevent the population overcrowding even the prey-taxis is included and strong. Furthermore, by constructing appropriate Lyapunov functionals, we show that prey-only steady state is globally asymptotically stable if the predation is weak, and the co-existence steady state is globally asymptotically stable under some conditions (like the prey-taxis is weak or the prey diffuses fast) if the predation is strong. The convergence rates of solutions to the steady states are derived in the paper.

  19. Continuous traveling waves for prey-taxis.

    PubMed

    Lee, J M; Hillen, T; Lewis, M A

    2008-04-01

    Spatially moving predators are often considered for biological control of invasive species. The question arises as to whether introduced predators are able to stop an advancing pest or foreign population. In recent studies of reaction-diffusion models, it has been shown that the prey invasion can only be stopped if the prey dynamics observes an Allee effect. In this paper, we include prey-taxis into the model. Prey-taxis describe the active movement of predators to regions of high prey density. This effect leads to the observation that predators are drawn away from the leading edge of a prey invasion where its density is low. This leads to counterintuitive result that prey-taxis can actually reduce the likelihood of effective biocontrol.

  20. Half-soliton interaction of population taxis waves in predator-prey systems with pursuit and evasion.

    PubMed

    Tsyganov, M A; Biktashev, V N

    2004-09-01

    In this paper, we use numerical simulations to demonstrate a half-soliton interaction of waves in a mathematical model of a "prey-predator" system with taxis when of two colliding waves, one annihilates and the other continues to propagate. We show that this effect depends on the "ages" or, equivalently, "widths" of the colliding waves. In two spatial dimensions we demonstrate that the type of interaction, i.e., annihilation, quasisoliton, or half-soliton, depends not only on curvature and width of the colliding waves, but also on the angle of the collision. When conditions of collision are varying in such a way that only a part of a wave survives the collision, then "taxitons," compact pieces of solitary waves, may form, which can exist for a significant time.

  1. Can coyotes affect deer populations in Southeastern North America?

    SciTech Connect

    Kilgo, J., C.; Ray, H., Scott; Ruth, Charles; Miller, Karl, V.

    2010-07-01

    ABSTRACT The coyote (Canis latrans) is a recent addition to the fauna of eastern North America, and in many areas coyote populations have been established for only a decade or two. Although coyotes are known predators of white-tailed deer (Odocoileus virginianus) in their historic range, effects this new predator may have on eastern deer populations have received little attention. We speculated that in the southeastern United States, coyotes may be affecting deer recruitment, and we present 5 lines of evidence that suggest this possibility. First, the statewide deer population in South Carolina has declined coincident with the establishment and increase in the coyote population. Second, data sets from the Savannah River Site (SRS) in South Carolina indicate a new mortality source affecting the deer population concurrent with the increase in coyotes. Third, an index of deer recruitment at SRS declined during the period of increase in coyotes. Fourth, food habits data from SRS indicate that fawns are an important food item for coyotes during summer. Finally, recent research from Alabama documented significant coyote predation on fawns there. Although this evidence does not establish cause and effect between coyotes and observed declines in deer recruitment, we argue that additional research should proactively address this topic in the region. We identified several important questions on the nature of the deer–coyote relationship in the East.

  2. Web orientation and prey resources for web-building spiders in eastern hemlock.

    PubMed

    Mallis, Rachael E; Rieske, Lynne K

    2010-10-01

    We examined the arthropod community on eastern hemlock, Tsuga canadensis (L.) Carr, in the context of its role in providing potential prey items for hemlock-associated web-weaving spiders. Using sticky traps simulating spider webs, we evaluated what prey items are available to web-weaving spiders in eastern hemlock based on web orientation (horizontal versus vertical) and cardinal direction. We found that the overwhelming majority (>70%) of prey items available to spiders in hemlock canopies were Diptera. Psocoptera, Hymenoptera, and Hemiptera comprised most of the remaining potential prey. A significant direction × orientation interaction, and greater trap capture in some direction-orientation combinations, suggests that spiders might locate their webs in eastern hemlock canopies for thermoregulatory purposes, ultimately optimizing prey capture. We also evaluated these findings in the context of hemlock infestation by the invasive hemlock woolly adelgid, Adelges tsugae Annand. The adelgid is a sedentary insect with a mobile crawler stage that provides a readily available, easily obtained food source for predators in hemlock canopies. However, an abundance of alternative prey will affect within canopy spider distribution and the potential intensity with which spiders consume these prey. Understanding the response of spiders to potential prey availability is essential to understanding the trophic interactions involving these predators and their potential for influencing herbivore populations.

  3. Selective Predation of a Stalking Predator on Ungulate Prey.

    PubMed

    Heurich, Marco; Zeis, Klara; Küchenhoff, Helmut; Müller, Jörg; Belotti, Elisa; Bufka, Luděk; Woelfing, Benno

    2016-01-01

    Prey selection is a key factor shaping animal populations and evolutionary dynamics. An optimal forager should target prey that offers the highest benefits in terms of energy content at the lowest costs. Predators are therefore expected to select for prey of optimal size. Stalking predators do not pursue their prey long, which may lead to a more random choice of prey individuals. Due to difficulties in assessing the composition of available prey populations, data on prey selection of stalking carnivores are still scarce. We show how the stalking predator Eurasian lynx (Lynx lynx) selects prey individuals based on species identity, age, sex and individual behaviour. To address the difficulties in assessing prey population structure, we confirm inferred selection patterns by using two independent data sets: (1) data of 387 documented kills of radio-collared lynx were compared to the prey population structure retrieved from systematic camera trapping using Manly's standardized selection ratio alpha and (2) data on 120 radio-collared roe deer were analysed using a Cox proportional hazards model. Among the larger red deer prey, lynx selected against adult males-the largest and potentially most dangerous prey individuals. In roe deer lynx preyed selectively on males and did not select for a specific age class. Activity during high risk periods reduced the risk of falling victim to a lynx attack. Our results suggest that the stalking predator lynx actively selects for size, while prey behaviour induces selection by encounter and stalking success rates.

  4. Selective Predation of a Stalking Predator on Ungulate Prey

    PubMed Central

    Heurich, Marco; Zeis, Klara; Küchenhoff, Helmut; Müller, Jörg; Belotti, Elisa; Bufka, Luděk; Woelfing, Benno

    2016-01-01

    Prey selection is a key factor shaping animal populations and evolutionary dynamics. An optimal forager should target prey that offers the highest benefits in terms of energy content at the lowest costs. Predators are therefore expected to select for prey of optimal size. Stalking predators do not pursue their prey long, which may lead to a more random choice of prey individuals. Due to difficulties in assessing the composition of available prey populations, data on prey selection of stalking carnivores are still scarce. We show how the stalking predator Eurasian lynx (Lynx lynx) selects prey individuals based on species identity, age, sex and individual behaviour. To address the difficulties in assessing prey population structure, we confirm inferred selection patterns by using two independent data sets: (1) data of 387 documented kills of radio-collared lynx were compared to the prey population structure retrieved from systematic camera trapping using Manly’s standardized selection ratio alpha and (2) data on 120 radio-collared roe deer were analysed using a Cox proportional hazards model. Among the larger red deer prey, lynx selected against adult males—the largest and potentially most dangerous prey individuals. In roe deer lynx preyed selectively on males and did not select for a specific age class. Activity during high risk periods reduced the risk of falling victim to a lynx attack. Our results suggest that the stalking predator lynx actively selects for size, while prey behaviour induces selection by encounter and stalking success rates. PMID:27548478

  5. Linking biomechanics and ecology through predator-prey interactions: flight performance of dragonflies and their prey.

    PubMed

    Combes, S A; Rundle, D E; Iwasaki, J M; Crall, J D

    2012-03-15

    Aerial predation is a highly complex, three-dimensional flight behavior that affects the individual fitness and population dynamics of both predator and prey. Most studies of predation adopt either an ecological approach in which capture or survival rates are quantified, or a biomechanical approach in which the physical interaction is studied in detail. In the present study, we show that combining these two approaches provides insight into the interaction between hunting dragonflies (Libellula cyanea) and their prey (Drosophila melanogaster) that neither type of study can provide on its own. We performed >2500 predation trials on nine dragonflies housed in an outdoor artificial habitat to identify sources of variability in capture success, and analyzed simultaneous predator-prey flight kinematics from 50 high-speed videos. The ecological approach revealed that capture success is affected by light intensity in some individuals but that prey density explains most of the variability in success rate. The biomechanical approach revealed that fruit flies rarely respond to approaching dragonflies with evasive maneuvers, and are rarely successful when they do. However, flies perform random turns during flight, whose characteristics differ between individuals, and these routine, erratic turns are responsible for more failed predation attempts than evasive maneuvers. By combining the two approaches, we were able to determine that the flies pursued by dragonflies when prey density is low fly more erratically, and that dragonflies are less successful at capturing them. This highlights the importance of considering the behavior of both participants, as well as their biomechanics and ecology, in developing a more integrative understanding of organismal interactions.

  6. Predator cue and prey density interactively influence indirect effects on basal resources in intertidal oyster reefs.

    PubMed

    Hughes, A Randall; Rooker, Kelly; Murdock, Meagan; Kimbro, David L

    2012-01-01

    Predators can influence prey abundance and traits by direct consumption, as well as by non-consumptive effects of visual, olfactory, or tactile cues. The strength of these non-consumptive effects (NCEs) can be influenced by a variety of factors, including predator foraging mode, temporal variation in predator cues, and the density of competing prey. Testing the relative importance of these factors for determining NCEs is critical to our understanding of predator-prey interactions in a variety of settings. We addressed this knowledge gap by conducting two mesocosm experiments in a tri-trophic intertidal oyster reef food web. More specifically, we tested how a predatory fish (hardhead catfish, Ariopsis felis) directly influenced their prey (mud crabs, Panopeus spp.) and indirectly affected basal resources (juvenile oysters, Crassostrea virginica), as well as whether these direct and indirect effects changed across a density gradient of competing prey. Per capita crab foraging rates were inversely influenced by crab density, but they were not affected by water-borne predator cues. As a result, direct consumptive effects on prey foraging rates were stronger than non-consumptive effects. In contrast, predator cue and crab density interactively influenced indirect predator effects on oyster mortality in two experiments, with trait-mediated and density-mediated effects of similar magnitude operating to enhance oyster abundance. Consistent differences between a variable predator cue environment and other predator cue treatments (no cue and constant cue) suggests that an understanding of the natural risk environment experienced by prey is critical to testing and interpreting trait-mediated indirect interactions. Further, the prey response to the risk environment may be highly dependent on prey density, particularly in prey populations with strong intra-specific interactions.

  7. Population coding of affect across stimuli, modalities and individuals

    PubMed Central

    Chikazoe, Junichi; Lee, Daniel H.; Kriegeskorte, Nikolaus; Anderson, Adam K.

    2014-01-01

    It remains unclear how the brain represents external objective sensory events alongside our internal subjective impressions of them—affect. Representational mapping of population level activity evoked by complex scenes and basic tastes uncovered a neural code supporting a continuous axis of pleasant-to-unpleasant valence. This valence code was distinct from low-level physical and high-level object properties. While ventral temporal and anterior insular cortices supported valence codes specific to vision and taste, both the medial and lateral orbitofrontal cortices (OFC), maintained a valence code independent of sensory origin. Further only the OFC code could classify experienced affect across participants. The entire valence spectrum is represented as a collective pattern in regional neural activity as sensory-specific and abstract codes, whereby the subjective quality of affect can be objectively quantified across stimuli, modalities, and people. PMID:24952643

  8. Great Lakes prey fish populations: a cross-basin overview of status and trends based on bottom trawl surveys, 1978-2013

    USGS Publications Warehouse

    Gorman, Owen T.; Weidel, Brian C.

    2014-01-01

    The assessment of Great Lakes prey fish stocks have been conducted annually with bottom trawls since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. These stock assessments provide data on the status and trends of prey fish that are consumed by important commercial and recreational fishes. Although all these annual surveys are conducted using bottom trawls, they differ among the lakes in the proportion of the lake covered, seasonal timing, trawl gear used, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique, population indices were standardized to the highest value for a time series within each lake for the following prey species: Cisco (Coregonus artedi), Bloater (C. hoyi), Rainbow Smelt (Osmerus mordax), Alewife (Alosa pseudoharengus), and Round Goby (Neogobius melanostomus). In this report, standardized indices are presented in graphical form along with synopses to provide a short, informal cross-basin summary of the status and trends of principal prey fishes. There was basin-wide agreement in the trends of age-1 and older biomass for all prey species, with the highest concordance occurring for coregonids and Rainbow Smelt, and weaker concordance for Alewife. For coregonids, the highest biomass occurred from the mid-1980s to the mid-1990s. Rainbow Smelt biomass declined slowly and erratically during the last quarter century. Alewife biomass was generally higher from the early 1980s through 1990s across the Great Lakes, but since the early 1990s, trends have been divergent across the lakes, though there has been a downward trend in all lakes since 2005. Recently, Lake Huron has shown resurgence in biomass of Bloater, achieving 75% of its maximum record in 2012 due to recruitment of a succession of strong and moderate year classes that appeared in 2005-2011. Also, strong recruitment of the 2010 year class of Alewife has led to a sharp increase in biomass of Alewife in

  9. Reciprocal Behavioral Plasticity and Behavioral Types during Predator-Prey Interactions

    PubMed Central

    McGhee, Katie E.; Pintor, Lauren M.; Bell, Alison M.

    2014-01-01

    How predators and prey interact has important consequences for population dynamics and community stability. Here we explored how predator-prey interactions are simultaneously affected by reciprocal behavioral plasticity (i.e., plasticity in prey defenses countered by plasticity in predator offenses and vice versa) and consistent individual behavioral variation (i.e., behavioral types) within both predator and prey populations. We assessed the behavior of a predator species (northern pike) and a prey species (three-spined stickleback) during one-on-one encounters. We also measured additional behavioral and morphological traits in each species. Using structural equation modeling, we found that reciprocal behavioral plasticity as well as predator and prey behavioral types influenced how individuals behaved during an interaction. Thus, the progression and ultimate outcome of predator-prey interactions depend on both the dynamic behavioral feedback occurring during the encounter and the underlying behavioral type of each participant. We also examined whether predator behavioral type is underlain by differences in metabolism and organ size. We provide some of the first evidence that behavioral type is related to resting metabolic rate and size of a sensory organ (the eyes). Understanding the extent to which reciprocal behavioral plasticity and intraspecific behavioral variation influence the outcome of species interactions could provide insight into the maintenance of behavioral variation as well as community dynamics. PMID:24231533

  10. Reciprocal behavioral plasticity and behavioral types during predator-prey interactions.

    PubMed

    McGhee, Katie E; Pintor, Lauren M; Bell, Alison M

    2013-12-01

    How predators and prey interact has important consequences for population dynamics and community stability. Here we explored how predator-prey interactions are simultaneously affected by reciprocal behavioral plasticity (i.e., plasticity in prey defenses countered by plasticity in predator offenses and vice versa) and consistent individual behavioral variation (i.e., behavioral types) within both predator and prey populations. We assessed the behavior of a predator species (northern pike) and a prey species (three-spined stickleback) during one-on-one encounters. We also measured additional behavioral and morphological traits in each species. Using structural equation modeling, we found that reciprocal behavioral plasticity as well as predator and prey behavioral types influenced how individuals behaved during an interaction. Thus, the progression and ultimate outcome of predator-prey interactions depend on both the dynamic behavioral feedback occurring during the encounter and the underlying behavioral type of each participant. We also examined whether predator behavioral type is underlain by differences in metabolism and organ size. We provide some of the first evidence that behavioral type is related to resting metabolic rate and size of a sensory organ (the eyes). Understanding the extent to which reciprocal behavioral plasticity and intraspecific behavioral variation influence the outcome of species interactions could provide insight into the maintenance of behavioral variation as well as community dynamics.

  11. Demographic stochasticity reduces the synchronizing effect of dispersal in predator-prey metapopulations.

    PubMed

    Simonis, Joseph L

    2012-07-01

    Dispersal may affect predator-prey metapopulations by rescuing local sink populations from extinction or by synchronizing population dynamics across the metapopulation, increasing the risk of regional extinction. Dispersal is likely influenced by demographic stochasticity, however, particularly because dispersal rates are often very low in metapopulations. Yet the effects of demographic stochasticity on predator-prey metapopulations are not well known. To that end, I constructed three models of a two-patch predator-prey system. The models constitute a hierarchy of complexity, allowing direct comparisons. Two models included demographic stochasticity (pure jump process [PJP] and stochastic differential equations [SDE]), and the third was deterministic (ordinary differential equations [ODE]). One stochastic model (PJP) treated population sizes as discrete, while the other (SDE) allowed population sizes to change continuously. Both stochastic models only produced synchronized predator-prey dynamics when dispersal was high for both trophic levels. Frequent dispersal by only predators or prey in the PJP and SDE spatially decoupled the trophic interaction, reducing synchrony of the non-dispersive species. Conversely, the ODE generated synchronized predator-prey dynamics across all dispersal rates, except when initial conditions produced anti-phase transients. These results indicate that demographic stochasticity strongly reduces the synchronizing effect of dispersal, which is ironic because demographic stochasticity is often invoked post hoc as a driver of extinctions in synchronized metapopulations.

  12. Population density affects sex ratio variation in red deer.

    PubMed

    Kruuk, L E; Clutton-Brock, T H; Albon, S D; Pemberton, J M; Guinness, F E

    1999-06-03

    Many mammal populations show significant deviations from an equal sex ratio at birth, but these effects are notoriously inconsistent. This may be because more than one mechanism affects the sex ratio and the action of these mechanisms depends on environmental conditions. Here we show that the adaptive relationship between maternal dominance and offspring sex ratio previously demonstrated in red deer (Cervus elaphus), where dominant females produced more males, disappeared at high population density. The proportion of males born each year declined with increasing population density and with winter rainfall, both of which are environmental variables associated with nutritional stress during pregnancy. These changes in the sex ratio corresponded to reductions in fecundity, suggesting that they were caused by differential fetal loss. In contrast, the earlier association with maternal dominance is presumed to have been generated pre-implantation. The effects of one source of variation superseded the other within about two generations. Comparison with other ungulate studies indicates that positive associations between maternal quality and the proportion of male offspring born have only been documented in populations below carrying capacity.

  13. Biodiversity vs. biocontrol: positive and negative effects of alternative prey on control of slugs by carabid beetles.

    PubMed

    Symondson, W O C; Cesarini, S; Dodd, P W; Harper, G L; Bruford, M W; Glen, D M; Wiltshire, C W; Harwood, J D

    2006-12-01

    Environment-friendly farming techniques seek to increase invertebrate biodiversity in part with the intention of encouraging greater numbers of predators that will help to control crop pests. However, in theory, this effect may be negated if the availability of a greater abundance and diversity of alternative prey diverts predators away from feeding on pests. The hypothesis that access to alternative prey can lead to reduced pest suppression under semi-field conditions was tested. Alternative prey type and diversity were manipulated in 70 mesocosms over 7+ weeks in the presence of the carabid Pterostichus melanarius (Illiger), a known predator of slugs, and reproducing populations of the slug Deroceras reticulatum (Müller). Significantly fewer slugs survived where no alternative prey were provided. Maximum slug numbers and biomass were found in treatments containing either carabids plus a high diversity of alternative prey (many species of earthworm and three of Diptera larvae) or a single additional prey (blowfly larvae, Calliphora vomitoria Linnaeus). In these treatments slug numbers and biomass were as high as in plots lacking predators. The effects of alternative prey were taxon-specific. Alternative prey strongly affected carabid fitness in terms of biomass and egg load. The fittest predators (those with access to high alternative prey diversity or C. vomitoria larvae) reduced slug numbers the least. The mean individual slug weights were greater in treatments with alternative prey than where no alternative prey were provided to the carabids. These results suggest that pests may survive and reproduce more rapidly in patches where predators have access to alternative prey.

  14. Within and between Population Variation in Epidermal Club Cell Investment in a Freshwater Prey Fish: A Cautionary Tale for Evolutionary Ecologists

    PubMed Central

    Manek, Aditya K.; Ferrari, Maud C. O.; Pollock, Robyn J.; Vicente, Daniel; Weber, Lynn P.; Chivers, Douglas P.

    2013-01-01

    Many prey fishes possess large club cells in their epidermis. The role of these cells has garnered considerable attention from evolutionary ecologists. These cells likely form part of the innate immune system of fishes, however, they also have an alarm function, releasing chemical cues that serve to warn nearby conspecifics of danger. Experiments aimed at understanding the selection pressures leading to the evolution of these cells have been hampered by a surprisingly large intraspecific variation in epidermal club cell (ECC) investment. The goal of our current work was to explore the magnitude and nature of this variation in ECC investment. In a field survey, we documented large differences in ECC investment both within and between several populations of minnows. We then tested whether we could experimentally reduce variation in mean ECC number by raising fish under standard laboratory conditions for 4 weeks. Fish from different populations responded very differently to being held under standard laboratory conditions; some populations showed an increase in ECC investment while others remained unchanged. More importantly, we found some evidence that we could reduce within population variation in ECC investment through time, but could not reduce among-population variation in mean ECC investment. Given the large variation we observed in wild fish and our limited ability to converge mean cell number by holding the fish under standard conditions, we caution that future studies may be hard pressed to find subtle effects of various experimental manipulations; this will make elucidating the selection pressures leading to the evolution of the cells challenging. PMID:23469175

  15. Do Large Carnivores and Mesocarnivores Have Redundant Impacts on Intertidal Prey?

    PubMed

    Suraci, Justin P; Clinchy, Michael; Zanette, Liana Y

    2017-01-01

    The presence of large carnivores can affect lower trophic levels by suppressing mesocarnivores and reducing their impacts on prey. The mesopredator release hypothesis therefore predicts prey abundance will be higher where large carnivores are present, but this prediction assumes limited dietary overlap between large and mesocarnivores. Where dietary overlap is high, e.g., among omnivorous carnivore species, or where prey are relatively easily accessible, the potential exists for large and mesocarnivores to have redundant impacts on prey, though this possibility has not been explored. The intertidal community represents a potentially important but poorly studied resource for coastal carnivore populations, and one for which dietary overlap between carnivores may be high. To evaluate usage of the intertidal community by coastal carnivores and the potential for redundancy between large and mesocarnivores, we surveyed (i) intertidal prey abundance (crabs and fish) and (ii) the abundance and activity of large carnivores (predominantly black bears) and mesocarnivores (raccoons and mink) in an area with an intact carnivore community in coastal British Columbia, Canada. Overall carnivore activity was strongly related to intertidal prey availability. Notably, this relationship was not contingent on carnivore species identity, suggestive of redundancy-high intertidal prey availability was associated with either greater large carnivore activity or greater mesocarnivore activity. We then compared intertidal prey abundances in this intact system, in which bears dominate, with those in a nearby system where bears and other large carnivores have been extirpated, and raccoons are the primary intertidal predator. We found significant similarities in intertidal species abundances, providing additional evidence for redundancy between large (bear) and mesocarnivore (raccoon) impacts on intertidal prey. Taken together, our results indicate that intertidal prey shape habitat use and

  16. Do Large Carnivores and Mesocarnivores Have Redundant Impacts on Intertidal Prey?

    PubMed Central

    Clinchy, Michael; Zanette, Liana Y.

    2017-01-01

    The presence of large carnivores can affect lower trophic levels by suppressing mesocarnivores and reducing their impacts on prey. The mesopredator release hypothesis therefore predicts prey abundance will be higher where large carnivores are present, but this prediction assumes limited dietary overlap between large and mesocarnivores. Where dietary overlap is high, e.g., among omnivorous carnivore species, or where prey are relatively easily accessible, the potential exists for large and mesocarnivores to have redundant impacts on prey, though this possibility has not been explored. The intertidal community represents a potentially important but poorly studied resource for coastal carnivore populations, and one for which dietary overlap between carnivores may be high. To evaluate usage of the intertidal community by coastal carnivores and the potential for redundancy between large and mesocarnivores, we surveyed (i) intertidal prey abundance (crabs and fish) and (ii) the abundance and activity of large carnivores (predominantly black bears) and mesocarnivores (raccoons and mink) in an area with an intact carnivore community in coastal British Columbia, Canada. Overall carnivore activity was strongly related to intertidal prey availability. Notably, this relationship was not contingent on carnivore species identity, suggestive of redundancy–high intertidal prey availability was associated with either greater large carnivore activity or greater mesocarnivore activity. We then compared intertidal prey abundances in this intact system, in which bears dominate, with those in a nearby system where bears and other large carnivores have been extirpated, and raccoons are the primary intertidal predator. We found significant similarities in intertidal species abundances, providing additional evidence for redundancy between large (bear) and mesocarnivore (raccoon) impacts on intertidal prey. Taken together, our results indicate that intertidal prey shape habitat use and

  17. May organic pollutants affect fish populations in the North Sea?

    PubMed

    Hylland, Ketil; Beyer, Jonny; Berntssen, Marc; Klungsøyr, Jarle; Lang, Thomas; Balk, Lennart

    2006-01-08

    The North Sea is a highly productive area with large fish populations that have been extensively harvested over the past century. North Sea fisheries remain important to the surrounding countries despite declining fish stocks over the past decades. The main reason for declining fish stocks is nearly certainly overfishing, but other environmental pressures also affect fish populations, such as eutrophication, climate change, and exposure to metals and organic pollutants, including polyaromatic hydrocarbons (PAHs), alkylphenols, and organochlorine compounds. There are three main sources of organic pollutants in the North Sea: atmospheric, land-based sources, and inputs from offshore gas and oil installations. All three sources contribute to elevated concentrations of organic pollutants in the North Sea compared to the Norwegian Sea. There is evidence that chlorinated organic contaminants were present in sufficiently high concentrations in the southern North Sea two decades ago, to alter embryonal development in fish. The results from extensive, long-term monitoring programs show that some diseases decreased whereas other increased in the southern North Sea and that, among other factors, contaminants may play a role in the temporal changes recorded in disease prevalence. Recent studies demonstrated that components in offshore effluents may affect fish reproduction and that tissues of fish near oil rigs are structurally different to tissues of fish from reference areas. Data on effluents from offshore activities have recently become available through an international workshop (BECPELAG) and follow-up studies.

  18. Competing conservation objectives for predators and prey: estimating killer whale prey requirements for Chinook salmon.

    PubMed

    Williams, Rob; Krkošek, Martin; Ashe, Erin; Branch, Trevor A; Clark, Steve; Hammond, Philip S; Hoyt, Erich; Noren, Dawn P; Rosen, David; Winship, Arliss

    2011-01-01

    Ecosystem-based management (EBM) of marine resources attempts to conserve interacting species. In contrast to single-species fisheries management, EBM aims to identify and resolve conflicting objectives for different species. Such a conflict may be emerging in the northeastern Pacific for southern resident killer whales (Orcinus orca) and their primary prey, Chinook salmon (Oncorhynchus tshawytscha). Both species have at-risk conservation status and transboundary (Canada-US) ranges. We modeled individual killer whale prey requirements from feeding and growth records of captive killer whales and morphometric data from historic live-capture fishery and whaling records worldwide. The models, combined with caloric value of salmon, and demographic and diet data for wild killer whales, allow us to predict salmon quantities needed to maintain and recover this killer whale population, which numbered 87 individuals in 2009. Our analyses provide new information on cost of lactation and new parameter estimates for other killer whale populations globally. Prey requirements of southern resident killer whales are difficult to reconcile with fisheries and conservation objectives for Chinook salmon, because the number of fish required is large relative to annual returns and fishery catches. For instance, a U.S. recovery goal (2.3% annual population growth of killer whales over 28 years) implies a 75% increase in energetic requirements. Reducing salmon fisheries may serve as a temporary mitigation measure to allow time for management actions to improve salmon productivity to take effect. As ecosystem-based fishery management becomes more prevalent, trade-offs between conservation objectives for predators and prey will become increasingly necessary. Our approach offers scenarios to compare relative influence of various sources of uncertainty on the resulting consumption estimates to prioritise future research efforts, and a general approach for assessing the extent of conflict

  19. Competing Conservation Objectives for Predators and Prey: Estimating Killer Whale Prey Requirements for Chinook Salmon

    PubMed Central

    Williams, Rob; Krkošek, Martin; Ashe, Erin; Branch, Trevor A.; Clark, Steve; Hammond, Philip S.; Hoyt, Erich; Noren, Dawn P.; Rosen, David; Winship, Arliss

    2011-01-01

    Ecosystem-based management (EBM) of marine resources attempts to conserve interacting species. In contrast to single-species fisheries management, EBM aims to identify and resolve conflicting objectives for different species. Such a conflict may be emerging in the northeastern Pacific for southern resident killer whales (Orcinus orca) and their primary prey, Chinook salmon (Oncorhynchus tshawytscha). Both species have at-risk conservation status and transboundary (Canada–US) ranges. We modeled individual killer whale prey requirements from feeding and growth records of captive killer whales and morphometric data from historic live-capture fishery and whaling records worldwide. The models, combined with caloric value of salmon, and demographic and diet data for wild killer whales, allow us to predict salmon quantities needed to maintain and recover this killer whale population, which numbered 87 individuals in 2009. Our analyses provide new information on cost of lactation and new parameter estimates for other killer whale populations globally. Prey requirements of southern resident killer whales are difficult to reconcile with fisheries and conservation objectives for Chinook salmon, because the number of fish required is large relative to annual returns and fishery catches. For instance, a U.S. recovery goal (2.3% annual population growth of killer whales over 28 years) implies a 75% increase in energetic requirements. Reducing salmon fisheries may serve as a temporary mitigation measure to allow time for management actions to improve salmon productivity to take effect. As ecosystem-based fishery management becomes more prevalent, trade-offs between conservation objectives for predators and prey will become increasingly necessary. Our approach offers scenarios to compare relative influence of various sources of uncertainty on the resulting consumption estimates to prioritise future research efforts, and a general approach for assessing the extent of conflict

  20. A non-autonomous stochastic predator-prey model.

    PubMed

    Buonocore, Aniello; Caputo, Luigia; Pirozzi, Enrica; Nobile, Amelia G

    2014-04-01

    The aim of this paper is to consider a non-autonomous predator-prey-like system, with a Gompertz growth law for the prey. By introducing random variations in both prey birth and predator death rates, a stochastic model for the predator-prey-like system in a random environment is proposed and investigated. The corresponding Fokker-Planck equation is solved to obtain the joint probability density for the prey and predator populations and the marginal probability densities. The asymptotic behavior of the predator-prey stochastic model is also analyzed.

  1. Of mice and mallards: Positive indirect effects of coexisting prey on waterfowl nest success

    USGS Publications Warehouse

    Ackerman, Joshua T.

    2002-01-01

    Coexisting prey species interact indirectly via their shared predators when one prey type influences predation rates of the second prey type. In a temperate system where the predominant shared predator is a generalist, I studied the indirect effects of rodent populations on waterfowl nest success, both within the nesting season among sites and among years. Among six to ten upland fields (14 to 27 ha), mallard (Anas platyrhynchos) nest success was positively correlated with rodent abundance in all three years of the study. After removing year effects, mallard nest success remained positively correlated with the relative abundance of rodents. Of the rodent species present, California voles (Microtus californicus) were the most important coexisting prey type influencing nest success. Among years, mallard nest success was positively correlated with vole abundance; the asymptotic relationship suggests a threshold response to vole abundance, beyond which predators become satiated and additional voles do little to affect nest success. I tested and rejected three alternative explanations for the observed positive correlation between mallard nest success and rodent abundance that do not involve an indirect effect of coexisting prey populations. The influences of dense nesting cover, nesting density, and predator activity did not explain the observed patterns of nest success. These results suggest that rodent populations buffer predation on waterfowl nests, both within and among years, via the behavioral responses of shared predators to coexisting prey.

  2. Local genetic adaptation generates latitude-specific effects of warming on predator-prey interactions.

    PubMed

    De Block, Marjan; Pauwels, Kevin; Van Den Broeck, Maarten; De Meester, Luc; Stoks, Robby

    2013-03-01

    Temperature effects on predator-prey interactions are fundamental to better understand the effects of global warming. Previous studies never considered local adaptation of both predators and prey at different latitudes, and ignored the novel population combinations of the same predator-prey species system that may arise because of northward dispersal. We set up a common garden warming experiment to study predator-prey interactions between Ischnura elegans damselfly predators and Daphnia magna zooplankton prey from three source latitudes spanning >1500 km. Damselfly foraging rates showed thermal plasticity and strong latitudinal differences consistent with adaptation to local time constraints. Relative survival was higher at 24 °C than at 20 °C in southern Daphnia and higher at 20 °C than at 24 °C, in northern Daphnia indicating local thermal adaptation of the Daphnia prey. Yet, this thermal advantage disappeared when they were confronted with the damselfly predators of the same latitude, reflecting also a signal of local thermal adaptation in the damselfly predators. Our results further suggest the invasion success of northward moving predators as well as prey to be latitude-specific. We advocate the novel common garden experimental approach using predators and prey obtained from natural temperature gradients spanning the predicted temperature increase in the northern populations as a powerful approach to gain mechanistic insights into how community modules will be affected by global warming. It can be used as a space-for-time substitution to inform how predator-prey interaction may gradually evolve to long-term warming.

  3. Predator-prey system with strong Allee effect in prey.

    PubMed

    Wang, Jinfeng; Shi, Junping; Wei, Junjie

    2011-03-01

    Global bifurcation analysis of a class of general predator-prey models with a strong Allee effect in prey population is given in details. We show the existence of a point-to-point heteroclinic orbit loop, consider the Hopf bifurcation, and prove the existence/uniqueness and the nonexistence of limit cycle for appropriate range of parameters. For a unique parameter value, a threshold curve separates the overexploitation and coexistence (successful invasion of predator) regions of initial conditions. Our rigorous results justify some recent ecological observations, and practical ecological examples are used to demonstrate our theoretical work.

  4. Effects of prey quality and predator body size on prey DNA detection success in a centipede predator.

    PubMed

    Eitzinger, B; Unger, E M; Traugott, M; Scheu, S

    2014-08-01

    Predator body size and prey quality are important factors driving prey choice and consumption rates. Both factors might affect prey detection success in PCR-based gut content analysis, potentially resulting in over- or underestimation of feeding rates. Experimental evidence, however, is scarce. We examined how body size and prey quality affect prey DNA detection success in centipede predators. Due to metabolic rates increasing with body size, we hypothesized that prey DNA detection intervals will be shorter in large predators than in smaller ones. Moreover, we hypothesized that prey detection intervals of high-quality prey, defined by low carbon-to-nitrogen ratio will be shorter than in low-quality prey due to faster assimilation. Small, medium and large individuals of centipedes Lithobius spp. (Lithobiidae, Chilopoda) were fed Collembola and allowed to digest prey for up to 168 h post-feeding. To test our second hypothesis, medium-sized lithobiids were fed with either Diptera or Lumbricidae. No significant differences in 50% prey DNA detection success time intervals for a 272-bp prey DNA fragment were found between the predator size groups, indicating that body size does not affect prey DNA detection success. Post-feeding detection intervals were significantly shorter in Lumbricidae and Diptera compared to Collembola prey, apparently supporting the second hypothesis. However, sensitivity of diagnostic PCR differed between prey types, and quantitative PCR revealed that concentration of targeted DNA varied significantly between prey types. This suggests that both DNA concentration and assay sensitivity need to be considered when assessing prey quality effects on prey DNA detection success.

  5. Predator-prey interactions, resource depression and patch revisitation

    USGS Publications Warehouse

    Erwin, R.M.

    1989-01-01

    Generalist predators may be confronted by different types of prey in different patches: sedentary and conspicuous, cryptic (with or without refugia), conspicuous and nonsocial, or conspicuous and social. I argue that, where encounter rates with prey are of most importance, patch revisitation should be a profitable tactic where prey have short 'recovery' times (conspicuous, nonsocial prey), or where anti-predator response (e.g. shoaling) may increase conspicuousness. Predictions are made for how temporal changes in prey encounter rates should affect revisit schedules and feeding rates for the 4 different prey types.

  6. Restructuring fundamental predator-prey models by recognising prey-dependent conversion efficiency and mortality rates.

    PubMed

    Li, Jiqiu; Montagnes, David J S

    2015-05-01

    Incorporating protozoa into population models (from simple predator-prey explorations to complex food web simulations) is of conceptual, ecological, and economic importance. From theoretical and empirical perspectives, we expose unappreciated complexity in the traditional predator-prey model structure and provide a parsimonious solution, especially for protistologists. We focus on how prey abundance alters two key components of models: predator conversion efficiency (e, the proportion of prey converted to predator, before mortality loss) and predator mortality (δ, the portion of the population lost though death). Using a well-established model system (Paramecium and Didinium), we collect data to parameterize a range of existing and novel population models that differ in the functional forms of e and δ. We then compare model simulations to an empirically obtained time-series of predator-prey population dynamics. The analysis indicates that prey-dependent e and δ should be considered when structuring population models and that both prey and predator biomass also vary with prey abundance. Both of these impact the ability of the model to predict population dynamics and, therefore, should be included in theoretical model evaluations and assessment of ecosystem dynamics associated with biomass flux.

  7. Antagonistic evolution in an aposematic predator-prey signaling system.

    PubMed

    Speed, Michael P; Franks, Daniel W

    2014-10-01

    Warning signals within species, such as the bright colors of chemically defended animals, are usually considered mutualistic, monomorphic traits. Such a view is however increasingly at odds with the growing empirical literature, showing nontrivial levels of signal variation within prey populations. Key to understanding this variation, we argue, could be a recognition that toxicity levels frequently vary within populations because of environmental heterogeneity. Inequalities in defense may undermine mutualistic monomorphic signaling, causing evolutionary antagonism between loci that determine appearance of less well-defended and better defended prey forms within species. In this article, we apply a stochastic model of evolved phenotypic plasticity to the evolution of prey signals. We show that when toxicity levels vary, then antagonistic interactions can lead to evolutionary conflict between alleles at different signaling loci, causing signal evolution, "red queen-like" evolutionary chase, and one or more forms of signaling equilibria. A key prediction is that variation in the way that predators use information about toxicity levels in their attack behaviors profoundly affects the evolutionary characteristics of the prey signaling systems. Environmental variation is known to cause variation in many qualities that organisms signal; our approach may therefore have application to other signaling systems.

  8. The model of fungal population dynamics affected by nystatin

    NASA Astrophysics Data System (ADS)

    Voychuk, Sergei I.; Gromozova, Elena N.; Sadovskiy, Mikhail G.

    Fungal diseases are acute problems of the up-to-day medicine. Significant increase of resistance of microorganisms to the medically used antibiotics and a lack of new effective drugs follows in a growth of dosage of existing chemicals to solve the problem. Quite often such approach results in side effects on humans. Detailed study of fungi-antibiotic dynamics can identify new mechanisms and bring new ideas to overcome the microbial resistance with a lower dosage of antibiotics. In this study, the dynamics of the microbial population under antibiotic treatment was investigated. The effects of nystatin on the population of Saccharomyces cerevisiae yeasts were used as a model system. Nystatin effects were investigated both in liquid and solid media by viability tests. Dependence of nystatin action on osmotic gradient was evaluated in NaCl solutions. Influences of glucose and yeast extract were additionally analyzed. A "stepwise" pattern of the cell death caused by nystatin was the most intriguing. This pattern manifested in periodical changes of the stages of cell death against stages of resistance to the antibiotic. The mathematical model was proposed to describe cell-antibiotic interactions and nystatin viability effects in the liquid medium. The model implies that antibiotic ability to cause a cells death is significantly affected by the intracellular compounds, which came out of cells after their osmotic barriers were damaged

  9. Environment and Host Affects Arbuscular Mycorrhiza Fungi (AMF) Population

    PubMed Central

    Rahim, Norahizah Abd; Jais, Hasnah Md; Hassan, Hasnuri Mat

    2016-01-01

    The association of arbuscular mycorrhiza fungi (AMF) and roots undoubtedly gives positive advantages to the host plant. However, heavily fertilised soil such as in oil palm plantation, inhibit the growth of mycorrhiza. Thus, the aim of this research is to distinguish and quantify the availability of AMF population and propagules at different sites of an oil palm plantation by Most Probable Number (MPN) assay. In addition, root infection method was employed to observe host compatibility through the propagation of AMF using two different types of hosts, monocotyledon (Echinochloa cruss-galli) and dicotyledon (Vigna radiata). Three different locations at an oil palm plantation were chosen for sampling. Each location was represented by a distinctive soil series, and were further divided into two sites, that is canopy and midway area. Midway site had a greater population of AMF compared to canopy. The result showed that different environments affect the availability of AMF in the soil. Higher number of AMF infection observed in monocotyledon host suggests that the fibrous root system provide a better association with mycorrhiza. PMID:27965735

  10. Coevolution can reverse predator-prey cycles.

    PubMed

    Cortez, Michael H; Weitz, Joshua S

    2014-05-20

    A hallmark of Lotka-Volterra models, and other ecological models of predator-prey interactions, is that in predator-prey cycles, peaks in prey abundance precede peaks in predator abundance. Such models typically assume that species life history traits are fixed over ecologically relevant time scales. However, the coevolution of predator and prey traits has been shown to alter the community dynamics of natural systems, leading to novel dynamics including antiphase and cryptic cycles. Here, using an eco-coevolutionary model, we show that predator-prey coevolution can also drive population cycles where the opposite of canonical Lotka-Volterra oscillations occurs: predator peaks precede prey peaks. These reversed cycles arise when selection favors extreme phenotypes, predator offense is costly, and prey defense is effective against low-offense predators. We present multiple datasets from phage-cholera, mink-muskrat, and gyrfalcon-rock ptarmigan systems that exhibit reversed-peak ordering. Our results suggest that such cycles are a potential signature of predator-prey coevolution and reveal unique ways in which predator-prey coevolution can shape, and possibly reverse, community dynamics.

  11. Forelimb indicators of prey-size preference in the Felidae.

    PubMed

    Meachen-Samuels, Julie; Van Valkenburgh, Blaire

    2009-06-01

    The forelimbs, along with the crania, are an essential part of the prey-killing apparatus in cats. Linear morphometrics of the forelimbs were used to determine the morphological differences between felids that specialize on large prey, small prey, or mixed prey. We also compared the scaling of felid forelimbs to those of canids to test whether prey capture strategies affect forelimb scaling. Results suggest that large prey specialists have relatively robust forelimbs when compared with smaller prey specialists. This includes relatively more robust humeri and radii, relatively larger distal ends of the humerus, and relatively larger articular areas of the humerus and radius. Large prey specialists also had relatively longer olecranon processes of the ulna and wider proximal paws. These characters are all important for subduing large prey while the cat positions itself for the killing bite. Small prey specialists have relatively longer distal limb elements for swift prey capture, and mixed prey specialists had intermediate values with relatively more robust metacarpals. Arboreal felids also had more robust limbs. They had relatively longer proximal phalanges for better grip while climbing, and a relatively short brachial index (radius to humerus ratio). Additionally, we found that felids and canids differ in forelimb scaling, which emphasizes the dual use of forelimbs for locomotion and prey capture in felids. This morphometric technique worked well to separate prey-size preference in felids, but did not work as well to separate locomotor groups, as scansorial and terrestrial felids were not clearly distinguished.

  12. Prey change behaviour with predation threat, but demographic effects vary with prey density: experiments with grasshoppers and birds.

    PubMed

    Belovsky, Gary E; Laws, Angela Nardoni; Slade, Jennifer B

    2011-04-01

    Increasingly, ecologists emphasize that prey frequently change behaviour in the presence of predators and these behavioural changes can reduce prey survival and reproduction as much or more than predation itself. However, the effects of behavioural changes on survival and reproduction may vary with prey density due to intraspecific competition. In field experiments, we varied grasshopper density and threat of avian predation and measured grasshopper behaviour, survival and reproduction. Grasshopper behaviour changed with the threat of predation and these behavioural changes were invariant with grasshopper density. Behavioural changes with the threat of predation decreased per capita reproduction over all grasshopper densities; whereas the behavioural changes increased survival at low grasshopper densities and then decreased survival at high densities. At low grasshopper densities, the total reproductive output of the grasshopper population remained unchanged with predation threat, but declined at higher densities. The effects of behavioural changes with predation threat varied with grasshopper density because of a trade-off between survival and reproduction as intraspecific competition increased with density. Therefore, resource availability may need to be considered when assessing how prey behavioural changes with predation threat affect population and food web dynamics.

  13. Relative importance of evolutionary dynamics depends on the composition of microbial predator-prey community.

    PubMed

    Friman, Ville-Petri; Dupont, Alessandra; Bass, David; Murrell, David J; Bell, Thomas

    2016-06-01

    Community dynamics are often studied in subsets of pairwise interactions. Scaling pairwise interactions back to the community level is, however, problematic because one given interaction might not reflect ecological and evolutionary outcomes of other functionally similar species interactions or capture the emergent eco-evolutionary dynamics arising only in more complex communities. Here we studied this experimentally by exposing Pseudomonas fluorescens SBW25 prey bacterium to four different protist predators (Tetrahymena pyriformis, Tetrahymena vorax, Chilomonas paramecium and Acanthamoeba polyphaga) in all possible single-predator, two-predator and four-predator communities for hundreds of prey generations covering both ecological and evolutionary timescales. We found that only T. pyriformis selected for prey defence in single-predator communities. Although T. pyriformis selection was constrained in the presence of the intraguild predator, T. vorax, T. pyriformis selection led to evolution of specialised prey defence strategies in the presence of C. paramecium or A. polyphaga. At the ecological level, adapted prey populations were phenotypically more diverse, less stable and less productive compared with non-adapted prey populations. These results suggest that predator community composition affects the relative importance of ecological and evolutionary processes and can crucially determine when rapid evolution has the potential to change ecological properties of microbial communities.

  14. COULD ETHINYL ESTRADIOL AFFECT THE POPULATION BIOLOGY OF CUNNER, TAUTOGOLABRUS ADSPERSUS

    EPA Science Inventory

    Endocrine disrupting chemicals in the environment may disturb the population dynamics of wildlife by affecting reproductive output and embryonic development of organisms. This study used a population model to evaluate whether ethinyl estradiol (EE2 could affect cunner Tautogolabr...

  15. A learning strategy for predator preying on edible and inedible prey.

    PubMed

    Tsoularis, A

    2007-01-01

    In this paper I propose a reinforcement learning model for a predator preying upon two types of prey, the unpalatable (noxious) models, and the palatable mimics. The latter type of prey resembles the models in appearance so as to derive some protection from the predator who must avoid the unpalatable models. Essentially the predator is treated as a learning automaton adopting a simple reinforcement learning strategy in order to increase its consumption of palatable prey and reduce the consumption of unpalatable ones. The populations of both mimics and models are assumed to grow logistically.

  16. The effect of habitat structure on prey mortality depends on predator and prey microhabitat use.

    PubMed

    Klecka, Jan; Boukal, David S

    2014-09-01

    Structurally complex habitats provide cover and may hinder the movement of animals. In predator-prey relationships, habitat structure can decrease predation risk when it provides refuges for prey or hinders foraging activity of predators. However, it may also provide shelter, supporting structures and perches for sit-and-wait predators and hence increase their predation rates. We tested the effect of habitat structure on prey mortality in aquatic invertebrates in short-term laboratory predation trials that differed in the presence or absence of artificial vegetation. The effect of habitat structure on prey mortality was context dependent as it changed with predator and prey microhabitat use. Specifically, we observed an 'anti-refuge' effect of added vegetation: phytophilous predators that perched on the plants imposed higher predation pressure on planktonic prey, while mortality of benthic prey decreased. Predation by benthic and planktonic predators on either type of prey remained unaffected by the presence of vegetation. Our results show that the effects of habitat structure on predator-prey interactions are more complex than simply providing prey refuges or cover for predators. Such context-specific effects of habitat complexity may alter the coupling of different parts of the ecosystem, such as pelagic and benthic habitats, and ultimately affect food web stability through cascading effects on individual life histories and trophic link strengths.

  17. Field and laboratory observations on predation and prey selectivity of the scyphomedusa Chrysaora cf. caliparea in Southeast Indian waters

    NASA Astrophysics Data System (ADS)

    Kanagaraj, Govindan; Ezhilarasan, Pazhaniyappan; Sampathkumar, Pitchai; Morandini, André C.; Sivakumar, Velayudhan Pillai

    2011-03-01

    Chrysaora cf. caliparea, one of the most abundant medusae species in India, seems to be an important predator in the coastal waters of Bay of Bengal. The ability of Chrysaora cf. caliparea to feed at maximum rate in high prey concentrations implies that this jellyfish can efficiently exploit dense prey patches, at least for a short period. This study presents preliminary information regarding digestion and feeding rate upon copepods in a warm water environment. The ingestion rate of the average-sized medusae Chrysaora cf. caliparea is well balanced in nature, which in turn implies that this jellyfish is tuned for optimal utilization of available prey resources. Comparison with earlier research indicates that prey escape speed is one important factor governing which prey will be captured. A full understanding of predation mechanics awaits further investigation of both predator and prey behavior. However, because of the scarcity of long-term quantitative population data most insights have to be made indirectly. Nevertheless, low abundance of Chrysaora cf. caliparea in the water column during summer (May 2007) and the overall annual abundance seem not to considerably affect the zooplankton population, especially copepods. The present work contributes to the knowledge of prey-predator relationship of the forgotten fauna in Indian waters, which is especially crucial for understanding the process of ecological recovery of coastal water environment.

  18. Revisiting the classics: considering nonconsumptive effects in textbook examples of predator-prey interactions.

    PubMed

    Peckarsky, Barbara L; Abrams, Peter A; Bolnick, Daniel I; Dill, Lawrence M; Grabowski, Jonathan H; Luttbeg, Barney; Orrock, John L; Peacor, Scott D; Preisser, Evan L; Schmitz, Oswald J; Trussell, Geoffrey C

    2008-09-01

    Predator effects on prey dynamics are conventionally studied by measuring changes in prey abundance attributed to consumption by predators. We revisit four classic examples of predator-prey systems often cited in textbooks and incorporate subsequent studies of nonconsumptive effects of predators (NCE), defined as changes in prey traits (e.g., behavior, growth, development) measured on an ecological time scale. Our review revealed that NCE were integral to explaining lynx-hare population dynamics in boreal forests, cascading effects of top predators in Wisconsin lakes, and cascading effects of killer whales and sea otters on kelp forests in nearshore marine habitats. The relative roles of consumption and NCE of wolves on moose and consequent indirect effects on plant communities of Isle Royale depended on climate oscillations. Nonconsumptive effects have not been explicitly tested to explain the link between planktonic alewives and the size structure of the zooplankton, nor have they been invoked to attribute keystone predator status in intertidal communities or elsewhere. We argue that both consumption and intimidation contribute to the total effects of keystone predators, and that characteristics of keystone consumers may differ from those of predators having predominantly NCE. Nonconsumptive effects are often considered as an afterthought to explain observations inconsistent with consumption-based theory. Consequently, NCE with the same sign as consumptive effects may be overlooked, even though they can affect the magnitude, rate, or scale of a prey response to predation and can have important management or conservation implications. Nonconsumptive effects may underlie other classic paradigms in ecology, such as delayed density dependence and predator-mediated prey coexistence. Revisiting classic studies enriches our understanding of predator-prey dynamics and provides compelling rationale for ramping up efforts to consider how NCE affect traditional predator-prey

  19. Design Factors Affect User Experience for Different Cultural Populations

    ERIC Educational Resources Information Center

    Chu, Sauman

    2016-01-01

    With increasing changes in our demographic populations and new immigrants settling in the US, there is an increasing need for visual communications that address the diversity of our populations. This paper draws from the results of the researcher's several past research and teaching projects that worked with different cultural populations. These…

  20. Factors affecting outdoor exposure in winter: population-based study

    NASA Astrophysics Data System (ADS)

    Mäkinen, Tiina M.; Raatikka, Veli-Pekka; Rytkönen, Mika; Jokelainen, Jari; Rintamäki, Hannu; Ruuhela, Reija; Näyhä, Simo; Hassi, Juhani

    2006-09-01

    The extent of outdoor exposure during winter and factors affecting it were examined in a cross-sectional population study in Finland. Men and women aged 25-74 years from the National FINRISK 2002 sub-study ( n=6,591) were queried about their average weekly occupational, leisure-time and total cold exposure during the past winter. The effects of gender, age, area of residence, occupation, ambient temperature, self-rated health, physical activity and education on cold exposure were analysed. The self-reported median total cold exposure time was 7 h/week (8 h men, 6 h women),<1 h/week (2 h men, 0 h women) at work, 4 h/week (5 h men, 4 h women) during leisure time and 1 h/week (1 h men, 1.5 h women) while commuting to work. Factors associated with increased occupational cold exposure among men were: being employed in agriculture, forestry and industry/mining/construction or related occupations, being less educated and being aged 55-64 years. Factors associated with increased leisure-time cold exposure among men were: employment in industry/mining/construction or related occupations, being a pensioner or unemployed, reporting at least average health, being physically active and having college or vocational education. Among women, being a housewife, pensioner or unemployed and engaged in physical activity increased leisure-time cold exposure, and young women were more exposed than older ones. Self-rated health was positively associated with leisure time cold exposure in men and only to a minor extent in women. In conclusion, the subjects reported spending 4% of their total time under cold exposure, most of it (71%) during leisure time. Both occupational and leisure-time cold exposure is greater among men than women.

  1. Intermediate fragmentation per se provides stable predator-prey metapopulation dynamics.

    PubMed

    Cooper, Jennifer K; Li, Jiqiu; Montagnes, David J S

    2012-08-01

    The extent to which a landscape is fragmented affects persistence of predator-prey dynamics. Increasing fragmentation concomitantly imposes conditions that stabilise and destabilise metapopulations. For the first time, we explicitly assessed the hypothesis that intermediate levels provide optimal conditions for stability. We examine four structural changes arising from increased fragmentation: increased fragment number; decreased fragment size; increased connectedness (corridors scaled to fragment); increased fragment heterogeneity (based on connectedness). Using the model predator-prey system (Didinium-Paramecium) we support our hypothesis, by examining replicated metapopulations dynamics at five fragmentation levels. Although both species became extinct without fragmentation, prey survived at low and high levels, and both survived at intermediate levels. By examining time to extinction, maximum abundances, and population asynchrony we conclude that fragmentation produces structural heterogeneity (independent of environmental heterogeneity), which influences stability. Our analysis suggests why some theoretical, field and microcosm studies present conflicting views of fragmentation effects on population persistence.

  2. Bayesian inference for functional response in a stochastic predator-prey system.

    PubMed

    Gilioli, Gianni; Pasquali, Sara; Ruggeri, Fabrizio

    2008-02-01

    We present a Bayesian method for functional response parameter estimation starting from time series of field data on predator-prey dynamics. Population dynamics is described by a system of stochastic differential equations in which behavioral stochasticities are represented by noise terms affecting each population as well as their interaction. We focus on the estimation of a behavioral parameter appearing in the functional response of predator to prey abundance when a small number of observations is available. To deal with small sample sizes, latent data are introduced between each pair of field observations and are considered as missing data. The method is applied to both simulated and observational data. The results obtained using different numbers of latent data are compared with those achieved following a frequentist approach. As a case study, we consider an acarine predator-prey system relevant to biological control problems.

  3. The consequences of facultative sex in a prey adapting to predation.

    PubMed

    Koch, H; Becks, L

    2017-01-01

    A species reproductive mode, along with its associated costs and benefits, can play a significant role in its evolution and survival. Facultative sexuality, being able to reproduce both sexually and asexually, has been deemed evolutionary favourable as the benefits of either mode may be fully realized. In fact, many studies have focused on identifying the benefits of sex and/or the forces selecting for increased rates of sex using facultative sexual species. The costs of either mode, however, can also have a profound impact on a population's evolutionary trajectory. Here, we used experimental evolution and fitness assays to investigate the consequences of facultative sexuality in prey adapting to predation. Specifically, we compared the adaptive response of algal prey populations exposed to constant rotifer predation and which had alternating cycles of asexual and sexual reproduction where sexual episodes were either facultative (sexual and asexual progeny simultaneously propagated) or obligate (only sexual progeny propagated). We found that prey populations with facultative sexual episodes reached a lower final relative fitness and suffered a greater trade-off in traits under selection, that is defence and competitive ability, as compared to prey populations with obligate sexual episodes. Our results suggest that costs associated with sexual reproduction (germination time) and asexual reproduction (selection interference) were amplified in the facultative sexual prey populations, leading to a reduction in the net advantage of sexuality. Additionally, we found evidence that the cost of sex was reduced in the obligate sexual prey populations because increased selection for sex was observed via the spontaneous production of sexual cells. These results show that certain costs associated with facultative sexuality can affect an organism's evolutionary trajectory.

  4. Predator hunting mode and habitat domain alter nonconsumptive effects in predator-prey interactions.

    PubMed

    Preisser, Evan L; Orrock, John L; Schmitz, Oswald J

    2007-11-01

    Predators can affect prey populations through changes in traits that reduce predation risk. These trait changes (nonconsumptive effects, NCEs) can be energetically costly and cause reduced prey activity, growth, fecundity, and survival. The strength of nonconsumptive effects may vary with two functional characteristics of predators: hunting mode (actively hunting, sit-and-pursue, sit-and-wait) and habitat domain (the ability to pursue prey via relocation in space; can be narrow or broad). Specifically, cues from fairly stationary sit-and-wait and sit-and-pursue predators should be more indicative of imminent predation risk, and thereby evoke stronger NCEs, compared to cues from widely ranging actively hunting predators. Using a meta-analysis of 193 published papers, we found that cues from sit-and-pursue predators evoked stronger NCEs than cues from actively hunting predators. Predator habitat domain was less indicative of NCE strength, perhaps because habitat domain provides less reliable information regarding imminent risk to prey than does predator hunting mode. Given the importance of NCEs in determining the dynamics of prey communities, our findings suggest that predator characteristics may be used to predict how changing predator communities translate into changes in prey. Such knowledge may prove particularly useful given rates of local predator change due to habitat fragmentation and the introduction of novel predators.

  5. Coevolution of phenotypic plasticity in predator and prey: why are inducible offenses rarer than inducible defenses?

    PubMed

    Mougi, Akihiko; Kishida, Osamu; Iwasa, Yoh

    2011-04-01

    Inducible defenses of prey and inducible offenses of predators are drastic phenotypic changes activated by the interaction between a prey and predator. Inducible defenses occur in many taxa and occur more frequently than inducible offenses. Recent empirical studies have reported reciprocal phenotypic changes in both predator and prey. Here, we model the coevolution of inducible plasticity in both prey and predator, and examine how the evolutionary dynamics of inducible plasticity affect the population dynamics of a predator-prey system. Under a broad range of parameter values, the proportion of predators with an offensive phenotype is smaller than the proportion of prey with a defensive phenotype, and the offense level is relatively lower than the defense level at evolutionary end points. Our model also predicts that inducible plasticity evolves in both species when predation success depends sensitively on the difference in the inducible trait value between the two species. Reciprocal phenotypic plasticity may be widespread in nature but may have been overlooked by field studies because offensive phenotypes are rare and inconspicuous.

  6. Seroprevalence of avian paramyxovirus 1, 2, and 3 in captive and free-living birds of prey in Spain (preliminary results): implications for management of wild and captive populations.

    PubMed

    Höfle, Ursula; Blanco, J M; Kaleta, E F

    2002-10-01

    Since December 1997, 700 blood plasma samples from 31 different species of captive and free-living birds of prey from Spain were analyzed by hemagglutination inhibition (HI) test for the presence of antibodies to avian paramyxovirus (aPMV) 1,2, and 3. Out of 700 birds, 120 tested positive for aPMV-1, 10 birds had antibodies to aPMV-2, and 4 birds tested positive against aPMV-3. Prevalence of antibodies against aPMV-1 was significantly higher in captive than in free-living birds of prey and in Falconiformes than in Strigidae and Accipitridae. Infection or exposure in captive birds may be due to the use of avian-derived food in rehabilitation and captive-breeding centers. This may be of concern at the time of reintroduction of these birds into free-living populations.

  7. Giant panda (Ailuropoda melanoleuca) population dynamics and bamboo (subfamily Bambusoideae) life history: a structured population approach to examining carrying capacity when the prey are semelparous

    USGS Publications Warehouse

    Carter, J.; Ackleh, A.S.; Leonard, B.P.; Wang, Hongfang

    1999-01-01

    The giant panda, Ailuropoda melanoleuca, is a highly specialized Ursid whose diet consists almost entirely of various species of bamboo. Bamboo (Bambusoideae) is a grass subfamily whose species often exhibit a synchronous semelparity. Synchronous semelparity can create local drops in carrying capacity for the panda. We modeled the interaction of pandas and their bamboo food resources with an age structured panda population model linked to a natural history model of bamboo biomass dynamics based on literature values of bamboo biomass, and giant panda life history dynamics. This paper reports the results of our examination of the interaction between pandas and their bamboo food resource and its implications for panda conservation. In the model all panda populations were well below the carrying capacity of the habitat. The giant panda populations growth was most sensitive to changes in birth rates and removal of reproductive aged individuals. Periodic starvation that has been documented in conjunction with bamboo die-offs is probably related to the inability to move to other areas within the region where bamboo is still available. Based on the results of this model, giant panda conservation should concentrate on keeping breeding individuals in the wild, keep corridors to different bamboo species open to pandas, and to concentrate research on bamboo life history.

  8. Effects of uniform rotational flow on predator-prey system

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hee

    2012-12-01

    Rotational flow is often observed in lotic ecosystems, such as streams and rivers. For example, when an obstacle interrupts water flowing in a stream, energy dissipation and momentum transfer can result in the formation of rotational flow, or a vortex. In this study, I examined how rotational flow affects a predator-prey system by constructing a spatially explicit lattice model consisting of predators, prey, and plants. A predation relationship existed between the species. The species densities in the model were given as S (for predator), P (for prey), and G (for plant). A predator (prey) had a probability of giving birth to an offspring when it ate prey (plant). When a predator or prey was first introduced, or born, its health state was assigned an initial value of 20 that subsequently decreased by one with every time step. The predator (prey) was removed from the system when the health state decreased to less than zero. The degree of flow rotation was characterized by the variable, R. A higher R indicates a higher tendency that predators and prey move along circular paths. Plants were not affected by the flow because they were assumed to be attached to the streambed. Results showed that R positively affected both predator and prey survival, while its effect on plants was negligible. Flow rotation facilitated disturbances in individuals’ movements, which consequently strengthens the predator and prey relationship and prevents death from starvation. An increase in S accelerated the extinction of predators and prey.

  9. How does adaptive consumer movement affect population dynamics in consumer-resource metacommunities with homogeneous patches?

    PubMed

    Abrams, Peter A; Ruokolainen, Lasse

    2011-05-21

    This article uses simple models to explore the impact of adaptive movement by consumers on the population dynamics of a consumer-resource metacommunity consisting of two identical patches. Consumer-resource interactions within a patch are described by the Rosenzweig-MacArthur predator-prey model, and these dynamics are assumed to be cyclic in the absence of movement. The per capita movement rate from one patch to the other is an increasing function of the difference between the per capita birth minus death rate in the destination patch and that in the currently occupied patch. Several variations on this model are considered. Results show that adaptive movement frequently creates anti-phase cycles in the two patches; these suppress the predator-prey cycle and lead to low temporal variation of the total population sizes of both species. Paradoxically, even when movement is very sensitive to the fitness difference between patches, perfect synchrony of patches is often much less likely than in comparable systems with random movement. Under these circumstances adaptive movement of consumers often generates differences in the average properties of the two patches. In addition, mean global densities and responses to global perturbations often differ greatly from similar systems with no movement or random movement.

  10. A focus on long-run sustainability of a harvested prey predator system in the presence of alternative prey.

    PubMed

    Kar, T K; Chattopadhyay, S K

    2010-01-01

    Within the framework of a general equilibrium model we study the long-run dynamics of a prey-predator model in the presence of an alternative prey. Our results show that sustainability, i.e. a positive value of the population in the long run, essentially depends on individual harvesting efforts and digesting factors relative to alternative prey. A detailed bifurcation analysis evidences the richness of possible long-run dynamics. Our model clearly shows that the role of an alternative prey must be taken into consideration when studying prey-predator dynamics.

  11. Visual illusions in predator-prey interactions: birds find moving patterned prey harder to catch.

    PubMed

    Hämäläinen, Liisa; Valkonen, Janne; Mappes, Johanna; Rojas, Bibiana

    2015-09-01

    Several antipredator strategies are related to prey colouration. Some colour patterns can create visual illusions during movement (such as motion dazzle), making it difficult for a predator to capture moving prey successfully. Experimental evidence about motion dazzle, however, is still very scarce and comes only from studies using human predators capturing moving prey items in computer games. We tested a motion dazzle effect using for the first time natural predators (wild great tits, Parus major). We used artificial prey items bearing three different colour patterns: uniform brown (control), black with elongated yellow pattern and black with interrupted yellow pattern. The last two resembled colour patterns of the aposematic, polymorphic dart-poison frog Dendrobates tinctorius. We specifically tested whether an elongated colour pattern could create visual illusions when combined with straight movement. Our results, however, do not support this hypothesis. We found no differences in the number of successful attacks towards prey items with different patterns (elongated/interrupted) moving linearly. Nevertheless, both prey types were significantly more difficult to catch compared to the uniform brown prey, indicating that both colour patterns could provide some benefit for a moving individual. Surprisingly, no effect of background (complex vs. plain) was found. This is the first experiment with moving prey showing that some colour patterns can affect avian predators' ability to capture moving prey, but the mechanisms lowering the capture rate are still poorly understood.

  12. Variable wind, pack ice, and prey dispersion affect the long-term adequacy of protected areas for an Arctic sea duck.

    PubMed

    Lovvorn, James R; Anderson, Eric M; Rocha, Aariel R; Larned, William W; Grebmeier, Jacqueline M; Cooper, Lee W; Kolts, Jason M; North, Christopher A

    2014-03-01

    With changing climate, delineation of protected areas for sensitive species must account for long-term variability and geographic shifts of key habitat elements. Projecting the future adequacy of protected areas requires knowing major factors that drive such changes, and how readily the animals adjust to altered resources. In the Arctic, the viability of habitats for marine birds and mammals often depends on sea ice to dissipate storm waves and provide platforms for resting. However, some wind conditions (including weak winds during extreme cold) can consolidate pack ice into cover so dense that air-breathing divers are excluded from the better feeding areas. Spectacled Eiders (Somateria fischeri) winter among leads (openings) in pack ice in areas where densities of their bivalve prey are quite high. During winter 2009, however, prevailing winds created a large region of continuous ice with inadequate leads to allow access to areas of dense preferred prey. Stable isotope and fatty acid biomarkers indicated that, under these conditions, the eiders did not diversify their diet to include abundant non-bivalve taxa but did add a smaller, less preferred, bivalve species. Consistent with a computer model of eider energy balance, the body fat of adult eiders in 2009 was 33-35% lower than on the same date (19 March) in 2001 when ice conditions allowed access to higher bivalve densities. Ice cover data suggest that the eiders were mostly excluded from areas of high bivalve density from January to March in about 30% of 14 winters from 1998 to 2011. Thus, even without change in total extent of ice, shifts in prevailing winds can alter the areal density of ice to reduce access to important habitats. Because changes in wind-driven currents can also rearrange the dispersion of prey, the potential for altered wind patterns should be an important concern in projecting effects of climate change on the adequacy of marine protected areas for diving endotherms in the Arctic.

  13. Prey-mediated avoidance of an intraguild predator by its intraguild prey

    USGS Publications Warehouse

    Wilson, R.R.; Blankenship, T.L.; Hooten, M.B.; Shivik, J.A.

    2010-01-01

    Intraguild (IG) predation is an important factor influencing community structure, yet factors allowing coexistence of IG predator and IG prey are not well understood. The existence of spatial refuges for IG prey has recently been noted for their importance in allowing coexistence. However, reduction in basal prey availability might lead IG prey to leave spatial refuges for greater access to prey, leading to increased IG predation and fewer opportunities for coexistence. We determined how the availability of prey affected space-use patterns of bobcats (Lynx rufus, IG prey) in relation to coyote space-use patterns (Canis latrans, IG predators). We located animals from fall 2007 to spring 2009 and estimated bobcat home ranges and core areas seasonally. For each bobcat relocation, we determined intensity of coyote use, distance to water, small mammal biomass, and mean small mammal biomass of the home range during the season the location was collected. We built generalized linear mixed models and used Akaike Information Criteria to determine which factors best predicted bobcat space use. Coyote intensity was a primary determinant of bobcat core area location. In bobcat home ranges with abundant prey, core areas occurred where coyote use was low, but shifted to areas intensively used by coyotes when prey declined. High spatial variability in basal prey abundance allowed some bobcats to avoid coyotes while at the same time others were forced into more risky areas. Our results suggest that multiple behavioral strategies associated with spatial variation in basal prey abundance likely allow IG prey and IG predators to coexist. ?? 2010 Springer-Verlag.

  14. Prey-mediated avoidance of an intraguild predator by its intraguild prey.

    PubMed

    Wilson, Ryan R; Blankenship, Terry L; Hooten, Mevin B; Shivik, John A

    2010-12-01

    Intraguild (IG) predation is an important factor influencing community structure, yet factors allowing coexistence of IG predator and IG prey are not well understood. The existence of spatial refuges for IG prey has recently been noted for their importance in allowing coexistence. However, reduction in basal prey availability might lead IG prey to leave spatial refuges for greater access to prey, leading to increased IG predation and fewer opportunities for coexistence. We determined how the availability of prey affected space-use patterns of bobcats (Lynx rufus, IG prey) in relation to coyote space-use patterns (Canis latrans, IG predators). We located animals from fall 2007 to spring 2009 and estimated bobcat home ranges and core areas seasonally. For each bobcat relocation, we determined intensity of coyote use, distance to water, small mammal biomass, and mean small mammal biomass of the home range during the season the location was collected. We built generalized linear mixed models and used Akaike Information Criteria to determine which factors best predicted bobcat space use. Coyote intensity was a primary determinant of bobcat core area location. In bobcat home ranges with abundant prey, core areas occurred where coyote use was low, but shifted to areas intensively used by coyotes when prey declined. High spatial variability in basal prey abundance allowed some bobcats to avoid coyotes while at the same time others were forced into more risky areas. Our results suggest that multiple behavioral strategies associated with spatial variation in basal prey abundance likely allow IG prey and IG predators to coexist.

  15. Tigers and their prey: Predicting carnivore densities from prey abundance

    USGS Publications Warehouse

    Karanth, K.U.; Nichols, J.D.; Kumar, N.S.; Link, W.A.; Hines, J.E.

    2004-01-01

    The goal of ecology is to understand interactions that determine the distribution and abundance of organisms. In principle, ecologists should be able to identify a small number of limiting resources for a species of interest, estimate densities of these resources at different locations across the landscape, and then use these estimates to predict the density of the focal species at these locations. In practice, however, development of functional relationships between abundances of species and their resources has proven extremely difficult, and examples of such predictive ability are very rare. Ecological studies of prey requirements of tigers Panthera tigris led us to develop a simple mechanistic model for predicting tiger density as a function of prey density. We tested our model using data from a landscape-scale long-term (1995-2003) field study that estimated tiger and prey densities in 11 ecologically diverse sites across India. We used field techniques and analytical methods that specifically addressed sampling and detectability, two issues that frequently present problems in macroecological studies of animal populations. Estimated densities of ungulate prey ranged between 5.3 and 63.8 animals per km2. Estimated tiger densities (3.2-16.8 tigers per 100 km2) were reasonably consistent with model predictions. The results provide evidence of a functional relationship between abundances of large carnivores and their prey under a wide range of ecological conditions. In addition to generating important insights into carnivore ecology and conservation, the study provides a potentially useful model for the rigorous conduct of macroecological science.

  16. Oscillations in a size-structured prey-predator model.

    PubMed

    Bhattacharya, Souvik; Martcheva, Maia

    2010-11-01

    This article introduces a predator-prey model with the prey structured by body size, based on reports in the literature that predation rates are prey-size specific. The model is built on the foundation of the one-species physiologically structured models studied earlier. Three types of equilibria are found: extinction, multiple prey-only equilibria and possibly multiple predator-prey coexistence equilibria. The stabilities of the equilibria are investigated. Comparison is made with the underlying ODE Lotka-Volterra model. It turns out that the ODE model can exhibit sustain oscillations if there is an Allee effect in the net reproduction rate, that is the net reproduction rate grows for some range of the prey's population size. In contrast, it is shown that the structured PDE model can exhibit sustain oscillations even if the net reproductive rate is strictly declining with prey population size. We find that predation, even size-non-specific linear predation can destabilize a stable prey-only equilibrium, if reproduction is size specific and limited to individuals of large enough size. Furthermore, we show that size-specific predation can also destabilize the predator-prey equilibrium in the PDE model. We surmise that size-specific predation allows for temporary prey escape which is responsible for destabilization in the predator-prey dynamics.

  17. Maximizing the benefits of antiretroviral therapy for key affected populations

    PubMed Central

    Grubb, Ian R; Beckham, Sarah W; Kazatchkine, Michel; Thomas, Ruth M; Albers, Eliot R; Cabral, Mauro; Lange, Joep; Vella, Stefano; Kurian, Manoj; Beyrer, Chris

    2014-01-01

    Introduction Scientific research has demonstrated the clinical benefits of earlier initiation of antiretroviral treatment (ART), and that ART can markedly reduce HIV transmission to sexual partners. Ensuring universal access to ART for those who need it has long been a core principle of the HIV response, and extending the benefits of ART to key populations is critical to increasing the impact of ART and the overall effectiveness of the HIV response. However, this can only be achieved through coordinated efforts to address political, social, legal and economic barriers that key populations face in accessing HIV services. Discussion Recent analyses show that HIV prevalence levels among key populations are far higher than among the general population, and they experience a range of biological and behavioural factors, and social, legal and economic barriers that increase their vulnerability to HIV and have resulted in alarmingly low ART coverage. World Health Organization 2014 consolidated guidance on HIV among key populations offers the potential for increased access to ART by key populations, following the same principles as for the general adult population. However, it should not be assumed that key populations will achieve greater access to ART unless stigma, discrimination and punitive laws, policies and practices that limit access to ART and other HIV interventions in many countries are addressed. Conclusions Rights-based approaches and investments in critical enablers, such as supportive legal and policy environments, are essential to enable wider access to ART and other HIV interventions for key populations. The primary objective of ART should always be to treat the person living with HIV; prevention is an important, additional benefit. ART should be provided only with informed consent. The preventive benefits of treatment must not be used as a pretext for failure to provide other necessary HIV programming for key populations, including comprehensive harm

  18. Factors affecting levels of genetic diversity in natural populations.

    PubMed Central

    Amos, W; Harwood, J

    1998-01-01

    Genetic variability is the clay of evolution, providing the base material on which adaptation and speciation depend. It is often assumed that most interspecific differences in variability are due primarily to population size effects, with bottlenecked populations carrying less variability than those of stable size. However, we show that population bottlenecks are unlikely to be the only factor, even in classic case studies such as the northern elephant seal and the cheetah, where genetic polymorphism is virtually absent. Instead, we suggest that the low levels of variability observed in endangered populations are more likely to result from a combination of publication biases, which tend to inflate the level of variability which is considered 'normal', and inbreeding effects, which may hasten loss of variability due to drift. To account for species with large population sizes but low variability we advance three hypotheses. First, it is known that certain metapopulation structures can result in effective population sizes far below the census size. Second, there is increasing evidence that heterozygous sites mutate more frequently than equivalent homozygous sites, plausibly because mismatch repair between homologous chromosomes during meiosis provides extra opportunities to mutate. Such a mechanism would undermine the simple relationship between heterozygosity and effective population size. Third, the fact that related species that differ greatly in variability implies that large amounts of variability can be gained or lost rapidly. We argue that such cases are best explained by rapid loss through a genome-wide selective sweep, and suggest a mechanism by which this could come about, based on forced changes to a control gene inducing coevolution in the genes it controls. Our model, based on meiotic drive in mammals, but easily extended to other systems, would tend to facilitate population isolation by generating molecular incompatabilities. Circumstances can even be

  19. Disentangling taste and toxicity in aposematic prey.

    PubMed

    Holen, Øistein Haugsten

    2013-02-22

    Many predators quickly learn to avoid attacking aposematic prey. If the prey vary in toxicity, the predators may alternatively learn to capture and taste-sample prey carefully before ingesting or rejecting them (go-slow behaviour). An increase in prey toxicity is generally thought to decrease predation on prey populations. However, while prey with a higher toxin load are more harmful to ingest, they may also be easier to recognize and reject owing to greater distastefulness, which can facilitate a taste-sampling foraging strategy. Here, the classic diet model is used to study the separate effects of taste and toxicity on predator preferences. The taste-sampling process is modelled using signal detection theory. The model is applicable to automimicry and batesian mimicry. It shows that when the defensive toxin is sufficiently distasteful, a mimicry complex may be less profitable to the predator and better protected against predation if the models are moderately toxic than if they are highly toxic. Moreover, taste mimicry can reduce the profitability of the mimicry complex and increase protection against predation. The results are discussed in relation to the selection pressures acting on prey defences and the evolution of mimicry.

  20. Disentangling taste and toxicity in aposematic prey

    PubMed Central

    Holen, Øistein Haugsten

    2013-01-01

    Many predators quickly learn to avoid attacking aposematic prey. If the prey vary in toxicity, the predators may alternatively learn to capture and taste-sample prey carefully before ingesting or rejecting them (go-slow behaviour). An increase in prey toxicity is generally thought to decrease predation on prey populations. However, while prey with a higher toxin load are more harmful to ingest, they may also be easier to recognize and reject owing to greater distastefulness, which can facilitate a taste-sampling foraging strategy. Here, the classic diet model is used to study the separate effects of taste and toxicity on predator preferences. The taste-sampling process is modelled using signal detection theory. The model is applicable to automimicry and Batesian mimicry. It shows that when the defensive toxin is sufficiently distasteful, a mimicry complex may be less profitable to the predator and better protected against predation if the models are moderately toxic than if they are highly toxic. Moreover, taste mimicry can reduce the profitability of the mimicry complex and increase protection against predation. The results are discussed in relation to the selection pressures acting on prey defences and the evolution of mimicry. PMID:23256198

  1. Functional response of wolves preying on barren-ground caribou in a multiple-prey ecosystem

    USGS Publications Warehouse

    Dale, B.W.; Adams, Layne G.; Bowyer, R.T.

    1994-01-01

    1. We investigated the functional response of wolves (Canis lupus) to varying abundance of ungulate prey to test the hypothesis that switching from alternate prey to preferred prey results in regulation of a caribou (Rangifer tarandus) population at low densities. 2. We determined prey selection, kill rates, and prey abundance for four wolf packs during three 30-day periods in March 1989, March 1990, November 1990, and created a simple discrete model to evaluate the potential for the expected numerical and observed functional responses of wolves to regulate caribou populations. 3. We observed a quickly decelerating type II functional response that, in the absence of numerical response, implicates an anti-regulatory effect of wolf predation on barren-ground caribou dynamics. 4. There was little potential for regulation caused by the multiplicative effect of increasing functional and numerical responses because of presence of alternative prey. This resulted in high wolf:caribou ratios at low prey densities which precluded the effects of an increasing functional response. 5. Inversely density-dependent predation by other predators, such as bears, reduces the potential for predators to regulate caribou populations at low densities, and small reductions in predation by one predator may have disproportionately large effects on the total predation rate.

  2. Diet, prey delivery rates, and prey biomass of Northern Goshawks in East-Central Arizona

    USGS Publications Warehouse

    Rogers, A.S.; DeStefano, S.; Ingraldi, M.F.

    2006-01-01

    Recent concern over persistence of Northern Goshawk (Accipiter gentilis) populations in Arizona has stemmed from two long-term demography studies that report substantial yearly fluctuations in productivity and evidence of a declining population. Although many factors could be involved in changes in productivity and population declines, availability of food is one such factor. As part of a demography study on the Sitgreaves portion of the Apache-Sitgreaves National Forest in Arizona, we used remote cameras to assess diets of goshawks. Northern Goshawks preyed upon 22 species during two nesting seasons. Adult pairs tended to specialize on particular species of prey. Prey delivery rates decreased throughout the nesting season with a corresponding increase in biomass in the latter stages of the nestling and fledgling periods. Adults appeared to take larger prey as nestlings increased in age.

  3. Unique coevolutionary dynamics in a predator-prey system.

    PubMed

    Mougi, Akihiko; Iwasa, Yoh

    2011-05-21

    In this paper, we study the predator-prey coevolutionary dynamics when a prey's defense and a predator's offense change in an adaptive manner, either by genetic evolution or phenotypic plasticity, or by behavioral choice. Results are: (1) The coevolutionary dynamics are more likely to be stable if the predator adapts faster than the prey. (2) The prey population size can be nearly constant but the predator population can show very large amplitude fluctuations. (3) Both populations may oscillate in antiphase. All of these are not observed when the handling time is short and the prey's density dependence is weak. (4) The population dynamics and the trait dynamics show resonance: the amplitude of the population fluctuation is the largest when the speed of adaptation is intermediate. These results may explain experimental studies with microorganisms.

  4. Cannibalism in discrete-time predator-prey systems.

    PubMed

    Chow, Yunshyong; Jang, Sophia R-J

    2012-01-01

    In this study, we propose and investigate a two-stage population model with cannibalism. It is shown that cannibalism can destabilize and lower the magnitude of the interior steady state. However, it is proved that cannibalism has no effect on the persistence of the population. Based on this model, we study two systems of predator-prey interactions where the prey population is cannibalistic. A sufficient condition based on the nontrivial boundary steady state for which both populations can coexist is derived. It is found via numerical simulations that introduction of the predator population may either stabilize or destabilize the prey dynamics, depending on cannibalism coefficients and other vital parameters.

  5. Glyphosate-based herbicide has contrasting effects on prey capture by two co-occurring wolf spider species.

    PubMed

    Rittman, Sandra; Wrinn, Kerri M; Evans, Samuel C; Webb, Alex W; Rypstra, Ann L

    2013-10-01

    Anthropogenic substances have the potential to affect animal behavior either because they present a novel stimulus or because they interfere with natural chemical communication pathways. Such shifts can alter the dynamic between predators and potential prey, which might affect population success as well as the strength of food web linkages. We examined the foraging of two wolf spiders, Tigrosa helluo and Pardosa milvina (Araneae, Lycosidae), that are abundant in agroecosystems where they are routinely exposed to herbicides. We tested the hypothesis that the presence of a commercial formulation of a glyphosate-based herbicide would affect the prey capture behavior of these two wolf spiders. We tested the larger Tigrosa foraging on Pardosa or crickets (Acheta domesticus) and the smaller Pardosa foraging on crickets. Tigrosa subdued crickets more quickly and with fewer lunges than it took them to capture Pardosa. The presence of herbicide allowed Tigrosa to orient toward and capture both prey species more quickly but it did not affect the number of lunges required to subdue either prey. Herbicide did not affect the timing of prey capture for Pardosa but it did cause them to use more lunges in the process. Thus, herbicide had contrasting effects on foraging behavior of these two agrobiont predators, which means that it could shift the direction and strength of food web linkages in complex ways.

  6. Predator prey interactions of Procambarus clarkii with aquatic macroinvertebrates in single and multiple prey systems

    NASA Astrophysics Data System (ADS)

    Correia, Alexandra Marçal; Bandeira, Nuno; Anastácio, Pedro Manuel

    2005-11-01

    Understanding the interspecific interactions of Procambarus clarkii with other aquatic macroinvertebrates will help to unveil the mechanisms and processes underlying biological invasiveness. The purpose of this study was to investigate predator-prey interactions of two ontogenic phases of P. clarkii with native and exotic species of aquatic macroinvertebrates at a single and multiple prey level. We performed laboratory experiments to determine the consumption and the behavioral responses of Chironomus riparius, Physa acuta and Corbicula fluminea to P. clarkii. The presence of P. clarkii significantly affected the abundance of C. riparius and P. acuta, but not of C. fluminea whether prey species were provided singly or simultaneously. The consumption of C. riparius by P. clarkii was higher than P. acuta for both crayfish sizes and situations (single/multiple prey systems) and C. fluminea was never consumed. Physa acuta was the only species that exhibited an anti-predator behavior to P. clarkii. Our results show that P. clarkii can have strong consumptive and trait effects on aquatic macroinvertebrate prey at a single and multiple prey level, resulting in differential impacts on different prey species. This study clarifies some aspects of the predator-prey interactions between P. clarkii and native as well as other exotic macroinvertebrate species that have invaded freshwater biocenosis worldwide.

  7. Environmental fluctuations restrict eco-evolutionary dynamics in predator–prey system

    PubMed Central

    Hiltunen, Teppo; Ayan, Gökçe B.; Becks, Lutz

    2015-01-01

    Environmental fluctuations, species interactions and rapid evolution are all predicted to affect community structure and their temporal dynamics. Although the effects of the abiotic environment and prey evolution on ecological community dynamics have been studied separately, these factors can also have interactive effects. Here we used bacteria–ciliate microcosm experiments to test for eco-evolutionary dynamics in fluctuating environments. Specifically, we followed population dynamics and a prey defence trait over time when populations were exposed to regular changes of bottom-up or top-down stressors, or combinations of these. We found that the rate of evolution of a defence trait was significantly lower in fluctuating compared with stable environments, and that the defence trait evolved to lower levels when two environmental stressors changed recurrently. The latter suggests that top-down and bottom-up changes can have additive effects constraining evolutionary response within populations. The differences in evolutionary trajectories are explained by fluctuations in population sizes of the prey and the predator, which continuously alter the supply of mutations in the prey and strength of selection through predation. Thus, it may be necessary to adopt an eco-evolutionary perspective on studies concerning the evolution of traits mediating species interactions. PMID:25994670

  8. Environmental fluctuations restrict eco-evolutionary dynamics in predator-prey system.

    PubMed

    Hiltunen, Teppo; Ayan, Gökçe B; Becks, Lutz

    2015-06-07

    Environmental fluctuations, species interactions and rapid evolution are all predicted to affect community structure and their temporal dynamics. Although the effects of the abiotic environment and prey evolution on ecological community dynamics have been studied separately, these factors can also have interactive effects. Here we used bacteria-ciliate microcosm experiments to test for eco-evolutionary dynamics in fluctuating environments. Specifically, we followed population dynamics and a prey defence trait over time when populations were exposed to regular changes of bottom-up or top-down stressors, or combinations of these. We found that the rate of evolution of a defence trait was significantly lower in fluctuating compared with stable environments, and that the defence trait evolved to lower levels when two environmental stressors changed recurrently. The latter suggests that top-down and bottom-up changes can have additive effects constraining evolutionary response within populations. The differences in evolutionary trajectories are explained by fluctuations in population sizes of the prey and the predator, which continuously alter the supply of mutations in the prey and strength of selection through predation. Thus, it may be necessary to adopt an eco-evolutionary perspective on studies concerning the evolution of traits mediating species interactions.

  9. Nash Equilibria in Noncooperative Predator-Prey Games

    SciTech Connect

    Ramos, Angel Manuel Roubicek, Tomas

    2007-09-15

    A noncooperative game governed by a distributed-parameter predator-prey system is considered, assuming that two players control initial conditions for predator and prey, respectively. Existence of a Nash equilibrium is shown under the condition that the desired population profiles and the environmental carrying capacity for the prey are sufficiently small. A conceptual approximation algorithm is proposed and analyzed. Finally, numerical simulations are performed, too.

  10. A delayed prey-predator system with parasitic infection.

    PubMed

    Mukherjee, Debasis

    2006-08-01

    This paper analyzes a prey-predator system in which some members of the prey population and all predators are subjected to infection by a parasite. The predator functional response is a function of a weighted sum of prey abundances. Persistence and extinction criteria are derived. The stability of the interior equilibrium point is discussed. The role of delay is also addressed. Lastly the results are verified through computer simulation. Numerical simulation suggests that the delay has a destabilizing effect.

  11. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Actions affecting plant and animal... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  12. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Actions affecting plant and animal... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  13. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Actions affecting plant and animal... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  14. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Actions affecting plant and animal... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  15. 40 CFR 230.75 - Actions affecting plant and animal populations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Actions affecting plant and animal... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes...

  16. Latin America: native populations affected by early onset periodontal disease.

    PubMed

    Nowzari, Hessam; Botero, Javier Enrique

    2011-06-01

    Millions of individuals are affected by early onset periodontal disease in Latin America, a continent that includes more than 20 countries. The decision-makers claim that the disease is not commonly encountered. In 2009, 280,919 authorized immigrants were registered in the United States versus 5,460,000 unauthorized (2,600,000 in California). The objective of the present article is to raise awareness about the high prevalence of the disease among Latin Americans and the good prognosis of preventive measures associated with minimal financial cost.

  17. Is climate change affecting wolf populations in the high Arctic?

    USGS Publications Warehouse

    Mech, L.D.

    2004-01-01

    Gobal climate change may affect wolves in Canada's High Arctic (80?? N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However, when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena. ?? 2004 Kluwer Academic Publishers.

  18. Is climate change affecting wolf populations in the high Arctic?

    USGS Publications Warehouse

    Mech, L.D.

    2004-01-01

    Global climate change may affect wolves in Canada's High Arctic (80DG N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena.

  19. Increased predation of nutrient-enriched aposematic prey

    PubMed Central

    Halpin, Christina G.; Skelhorn, John; Rowe, Candy

    2014-01-01

    Avian predators readily learn to associate the warning coloration of aposematic prey with the toxic effects of ingesting them, but they do not necessarily exclude aposematic prey from their diets. By eating aposematic prey ‘educated’ predators are thought to be trading-off the benefits of gaining nutrients with the costs of eating toxins. However, while we know that the toxin content of aposematic prey affects the foraging decisions made by avian predators, the extent to which the nutritional content of toxic prey affects predators' decisions to eat them remains to be tested. Here, we show that European starlings (Sturnus vulgaris) increase their intake of a toxic prey type when the nutritional content is artificially increased, and decrease their intake when nutritional enrichment is ceased. This clearly demonstrates that birds can detect the nutritional content of toxic prey by post-ingestive feedback, and use this information in their foraging decisions, raising new perspectives on the evolution of prey defences. Nutritional differences between individuals could result in equally toxic prey being unequally predated, and might explain why some species undergo ontogenetic shifts in defence strategies. Furthermore, the nutritional value of prey will likely have a significant impact on the evolutionary dynamics of mimicry systems. PMID:24598424

  20. Increased predation of nutrient-enriched aposematic prey.

    PubMed

    Halpin, Christina G; Skelhorn, John; Rowe, Candy

    2014-04-22

    Avian predators readily learn to associate the warning coloration of aposematic prey with the toxic effects of ingesting them, but they do not necessarily exclude aposematic prey from their diets. By eating aposematic prey 'educated' predators are thought to be trading-off the benefits of gaining nutrients with the costs of eating toxins. However, while we know that the toxin content of aposematic prey affects the foraging decisions made by avian predators, the extent to which the nutritional content of toxic prey affects predators' decisions to eat them remains to be tested. Here, we show that European starlings (Sturnus vulgaris) increase their intake of a toxic prey type when the nutritional content is artificially increased, and decrease their intake when nutritional enrichment is ceased. This clearly demonstrates that birds can detect the nutritional content of toxic prey by post-ingestive feedback, and use this information in their foraging decisions, raising new perspectives on the evolution of prey defences. Nutritional differences between individuals could result in equally toxic prey being unequally predated, and might explain why some species undergo ontogenetic shifts in defence strategies. Furthermore, the nutritional value of prey will likely have a significant impact on the evolutionary dynamics of mimicry systems.

  1. Factors affecting minority population proximity to hazardous facilities

    SciTech Connect

    Nieves, L.A.; Nieves, A.L. |

    1995-04-01

    Disproportionate exposure of minority groups to environmental hazards has been attributed to ``environmental racism`` by some authors, without systematic investigation of the factors underlying this exposure pattern. This study examines regional differences in the proximity of African-Americans, Hispanics, Asians, and non-Hispanic Whites to a broad range of facility types and explores the effects of urban and income factors. A statistically significant inverse relationship is found between the percentage of non-Hispanic Whites and virtually all facility categories in all regions. Except for Hispanics in the South, all such associations for minority groups show a direct relationship, though some are nonsignificant. The geographic concentration of facilities is more closely tied to urbanization than to economic factors. Controlling for both urban and economic factors, minority population concentration is still a significant explanatory variable for some facility types in some regions. This finding is most consistent for African-Americans.

  2. Diet of generalist predators reflects effects of cropping period and farming system on extra- and intraguild prey.

    PubMed

    Roubinet, Eve; Birkhofer, Klaus; Malsher, Gerard; Staudacher, Karin; Ekbom, Barbara; Traugott, Michael; Jonsson, Mattias

    2017-01-28

    The suppression of agricultural pests by natural enemies, including generalist arthropod predators, is an economically important regulating ecosystem service. Besides pests, generalist predators may also consume non-pest extraguild and intraguild prey, which can affect their impact on pest populations. This may either reduce the impact of generalist predators on pest populations, because they are diverted from pest predation, or increase it, as it helps them survive periods of low pest availability. However, the availability of pest prey and alternative, non-pest prey can vary over the crop growing season and between farming systems, potentially affecting predator-prey interactions and the levels of biological control. We have limited information about how farming systems and environmental variation over the crop growing season influence predator diets. This limits our ability to predict the importance of generalist predators as natural enemies of agricultural pests. Here we utilize molecular gut content analyses to assess detection frequencies of extra- and intraguild prey DNA in generalist predator communities in replicated organically and conventionally managed cereal fields at two key periods of the cropping season for aphid biological control. This is done in order to understand how farming system, crop season, prey availability and predator community composition determine the composition of predator diets. Aphid pests and decomposers (springtails) were equally important prey for generalist predators early in the growing season. Later in the season, the importance of aphid prey increased with increasing aphid densities while springtail predation rates were positively correlated to abundance of this prey at both early and late crop growth stages. Intraguild predation was unidirectional: carabids fed on spiders, whereas spiders rarely fed on carabids. Carabids had higher detection frequencies for the two most common spider families in organically compared to

  3. A single predator multiple prey model with prey mutation

    NASA Astrophysics Data System (ADS)

    Mullan, Rory; Abernethy, Gavin M.; Glass, David H.; McCartney, Mark

    2016-11-01

    A multiple species predator-prey model is expanded with the introduction of a coupled map lattice for the prey, allowing the prey to mutate discretely into other prey species. The model is examined in its single predator, multiple mutating prey form. Two unimodal maps are used for the underlying dynamics of the prey species, with different predation strategies being used. Conclusions are drawn on how varying the control parameters of the model governs the overall behaviour and survival of the species. It is observed that in such a complex system, with multiple mutating prey, a large range of non-linear dynamics is possible.

  4. Unusual predator-prey dynamics under reciprocal phenotypic plasticity.

    PubMed

    Mougi, Akihiko

    2012-07-21

    Recent theories and experiments have shown that plasticity, such as an inducible defense or an inducible offense in predator-prey interactions, strongly influences the stability of the population dynamics. However, such plastic adaptation has not been expected to cause unusual dynamics such as antiphase cycles, which occur in experimental predator-prey systems with evolutionary adaptation in the defensive trait of prey. Here I show that antiphase cycles and cryptic cycles (a large population fluctuation in one species with almost no change in the population of the other species) can occur in a predator-prey system when both member species can change their phenotypes through adaptive plasticity (inducible defenses and offenses). I consider a familiar type of predator-prey system in which both species can change their morphology or behavior through phenotypic plasticity. The plasticity, that is, the ability to change between distinct phenotypes, is assumed to occur so as to maximize their fitness. I examined how the reciprocal adaptive plasticity influences the population dynamics. The results show that unusual dynamics such as antiphase population cycles and cryptic cycles can occur when both species show inducible plasticity. The unusual dynamics are particularly likely to occur when the carrying capacity of the prey is small (the density dependence of the prey's growth is strong). The unusual predator-prey dynamics may be induced by phenotypic plasticity as long as the phenotypic change occurs to maximize fitness.

  5. Source population characteristics affect heterosis following genetic rescue of fragmented plant populations

    PubMed Central

    Pickup, M.; Field, D. L.; Rowell, D. M.; Young, A. G.

    2013-01-01

    Understanding the relative importance of heterosis and outbreeding depression over multiple generations is a key question in evolutionary biology and is essential for identifying appropriate genetic sources for population and ecosystem restoration. Here we use 2455 experimental crosses between 12 population pairs of the rare perennial plant Rutidosis leptorrhynchoides (Asteraceae) to investigate the multi-generational (F1, F2, F3) fitness outcomes of inter-population hybridization. We detected no evidence of outbreeding depression, with inter-population hybrids and backcrosses showing either similar fitness or significant heterosis for fitness components across the three generations. Variation in heterosis among population pairs was best explained by characteristics of the foreign source or home population, and was greatest when the source population was large, with high genetic diversity and low inbreeding, and the home population was small and inbred. Our results indicate that the primary consideration for maximizing progeny fitness following population augmentation or restoration is the use of seed from large, genetically diverse populations. PMID:23173202

  6. a Numerical Study on Predator Prey Model

    NASA Astrophysics Data System (ADS)

    Laham, Mohamed Faris; Krishnarajah, Isthrinayagy; Jumaat, Abdul Kadir

    Stochastic spatial models are becoming a popular tool for understand the ecological and evolution of ecosystem problems. We consider the predator prey interactions in term of stochastic representation of this Lotka-Volterra model and explore the use of stochastic processes to extinction behavior of the interacting populations. Here, we present simulation of stochastic processes of continuous time Lotka-Volterra model. Euler method has been used to solve the predator prey system. The trajectory spiral graph has been plotted based on obtained solution to show the population cycle of predator as a function of time.

  7. Prey Selection of Scandinavian Wolves: Single Large or Several Small?

    PubMed Central

    Eklund, Ann; Zimmermann, Barbara; Wikenros, Camilla; Wabakken, Petter

    2016-01-01

    Research on large predator-prey interactions are often limited to the predators’ primary prey, with the potential for prey switching in systems with multiple ungulate species rarely investigated. We evaluated wolf (Canis lupus) prey selection at two different spatial scales, i.e., inter- and intra-territorial, using data from 409 ungulate wolf-kills in an expanding wolf population in Scandinavia. This expansion includes a change from a one-prey into a two-prey system with variable densities of one large-sized ungulate; moose (Alces alces) and one small-sized ungulate; roe deer (Capreolus capreolus). Among wolf territories, the proportion of roe deer in wolf kills was related to both pack size and roe deer density, but not to moose density. Pairs of wolves killed a higher proportion of roe deer than did packs, and wolves switched to kill more roe deer as their density increased above a 1:1 ratio in relation to the availability of the two species. At the intra-territorial level, wolves again responded to changes in roe deer density in their prey selection whereas we found no effect of snow depth, time during winter, or other predator-related factors on the wolves’ choice to kill moose or roe deer. Moose population density was only weakly related to intra-territorial prey selection. Our results show that the functional response of wolves on moose, the species hitherto considered as the main prey, was strongly dependent on the density of a smaller, alternative, ungulate prey. The impact of wolf predation on the prey species community is therefore likely to change with the composition of the multi-prey species community along with the geographical expansion of the wolf population. PMID:28030549

  8. Changes in Alaskan soft-bottom prey communities along a gradient in sea otter predation

    USGS Publications Warehouse

    Kvitek, R.G.; Oliver, J.S.; DeGange, A.R.; Anderson, B.S.

    1992-01-01

    Sea Otter (Enhydra lutris), well documented as "keystone" predators in rocky marine communities, were found to exert a strong influence on infaunal prey communities in soft-sediment habitats. Direct and indirect effects of sea otter predation on subtidal soft-bottom prey communities were evaluated along a temporal gradient of sea otter occupancy around the Kodiak Archipelago. The results indicate that Kodiak otters forage primarily on bivalve prey and dramatically reduce infaunal bivalve and green sea urchin (Strongylocentrotus droebachiensis) prey populations. Bivalve prey abundance, biomass, and size were inversely related to duration of sea otter occupancy. The relative conditions of shells discarded by otters in shallow (<10 m) vs. deep (> 20 m) water at the same sites indicate that otters first exploited Saxidomus in shallow-water feeding areas, and later switched to Macoma spp. in deeper water. Otter-cracked shells of the deep-burrowing clam Tresus capax were rarely found, even at otter foraging sites where the clam accounted for the majority of available prey biomass, suggesting that it has a partial depth refuge from otter predation. The indirect effects of otter predation included substratum disturbance and the facilitation of sea star predation on infaunal prey. Sea stars, Pycnopodia helianthoides, were attracted to experimentally dug excavations as well as natural sea otter foraging pits, where the sea stars foraged on smaller size classes of infaunal bivalves than those eaten by otters. Otters also discard clam shells on the sediment surface and expose old, buried shells during excavation. Surface shells were found to provide attachment sites for large anemones and kelp. Our study shows that sea otters can affect soft-sediment communities, not only through predation, as in rocky habitats, but also through disturbance, and thus retain a high degree of influence in two very different habitat types.

  9. Predators and Prey

    ERIC Educational Resources Information Center

    Kramm, Kenneth R.

    1975-01-01

    Reviews basic concepts of predator-prey interaction, encourages the presentation of the predator's role and describes a model of predator behavior to be used in secondary school or college classes. (LS)

  10. Theory of Arachnid Prey Localization

    NASA Astrophysics Data System (ADS)

    Stürzl, W.; Kempter, R.; van Hemmen, J. L.

    2000-06-01

    Sand scorpions and many other arachnids locate their prey through highly sensitive slit sensilla at the tips (tarsi) of their eight legs. This sensor array responds to vibrations with stimulus-locked action potentials encoding the target direction. We present a neuronal model to account for stimulus angle determination using a population of second-order neurons, each receiving excitatory input from one tarsus and inhibition from a triad opposite to it. The input opens a time window whose width determines a neuron's firing probability. Stochastic optimization is realized through tuning the balance between excitation and inhibition. The agreement with experiments on the sand scorpion is excellent.

  11. An island-wide predator manipulation reveals immediate and long-lasting matching of risk by prey

    PubMed Central

    Orrock, John L.; Fletcher, Robert J.

    2014-01-01

    Anti-predator behaviour affects prey population dynamics, mediates cascading effects in food webs and influences the likelihood of rapid extinctions. Predator manipulations in natural settings provide a rare opportunity to understand how prey anti-predator behaviour is affected by large-scale changes in predators. Here, we couple a long-term, island-wide manipulation of an important rodent predator, the island fox (Urocyon littoralis), with nearly 6 years of measurements on foraging by deer mice (Peromyscus maniculatus) to provide unequivocal evidence that prey closely match their foraging behaviour to the number of fox predators present on the island. Peromyscus maniculatus foraging among exposed and sheltered microhabitats (a measure of aversion to predation risk) closely tracked fox density, but the nature of this effect depended upon nightly environmental conditions known to affect rodent susceptibility to predators. These effects could not be explained by changes in density of deer mice over time. Our work reveals that prey in natural settings are cognizant of the dynamic nature of their predators over timescales that span many years, and that predator removals spanning many generations of prey do not result in a loss of anti-predator behaviour. PMID:24759863

  12. An island-wide predator manipulation reveals immediate and long-lasting matching of risk by prey.

    PubMed

    Orrock, John L; Fletcher, Robert J

    2014-06-07

    Anti-predator behaviour affects prey population dynamics, mediates cascading effects in food webs and influences the likelihood of rapid extinctions. Predator manipulations in natural settings provide a rare opportunity to understand how prey anti-predator behaviour is affected by large-scale changes in predators. Here, we couple a long-term, island-wide manipulation of an important rodent predator, the island fox (Urocyon littoralis), with nearly 6 years of measurements on foraging by deer mice (Peromyscus maniculatus) to provide unequivocal evidence that prey closely match their foraging behaviour to the number of fox predators present on the island. Peromyscus maniculatus foraging among exposed and sheltered microhabitats (a measure of aversion to predation risk) closely tracked fox density, but the nature of this effect depended upon nightly environmental conditions known to affect rodent susceptibility to predators. These effects could not be explained by changes in density of deer mice over time. Our work reveals that prey in natural settings are cognizant of the dynamic nature of their predators over timescales that span many years, and that predator removals spanning many generations of prey do not result in a loss of anti-predator behaviour.

  13. Do predators control prey species abundance? An experimental test with brown treesnakes on Guam.

    PubMed

    Campbell, Earl W; Adams, Amy A Yackel; Converse, Sarah J; Fritts, Thomas H; Rodda, Gordon H

    2012-05-01

    The effect of predators on the abundance of prey species is a topic of ongoing debate in ecology; the effect of snake predators on their prey has been less debated, as there exists a general consensus that snakes do not negatively influence the abundance of their prey. However, this viewpoint has not been adequately tested. We quantified the effect of brown treesnake (Boiga irregularis) predation on the abundance and size of lizards on Guam by contrasting lizards in two 1-ha treatment plots of secondary forest from which snakes had been removed and excluded vs. two 1-ha control plots in which snakes were monitored but not removed or excluded. We removed resident snakes from the treatment plots with snake traps and hand capture, and snake immigration into these plots was precluded by electrified snake barriers. Lizards were sampled in all plots quarterly for a year following snake elimination in the treatment plots. Following the completion of this experiment, we used total removal sampling to census lizards on a 100-m2 subsample of each plot. Results of systematic lizard population monitoring before and after snake removal suggest that the abundance of the skink, Carlia ailanpalai, increased substantially and the abundance of two species of gekkonids, Lepidodactylus lugubris and Hemidactylus frenatus, also increased on snake-free plots. No treatment effect was observed for the skink Emoia caeruleocauda. Mean snout-vent length of all lizard species only increased following snake removal in the treatment plots. The general increase in prey density and mean size was unexpected in light of the literature consensus that snakes do not control the abundance of their prey species. Our findings show that, at least where alternate predators are lacking, snakes may indeed affect prey populations.

  14. Do predators control prey species abundance? An experimental test with brown treesnakes on Guam

    USGS Publications Warehouse

    Campbell, Earl W.; Yackel Adams, Amy A.; Converse, Sarah J.; Fritts, Thomas H.; Rodda, Gordon H.

    2012-01-01

    The effect of predators on the abundance of prey species is a topic of ongoing debate in ecology; the effect of snake predators on their prey has been less debated, as there exists a general consensus that snakes do not negatively influence the abundance of their prey. However, this viewpoint has not been adequately tested. We quantified the effect of brown treesnake (Boiga irregularis) predation on the abundance and size of lizards on Guam by contrasting lizards in two 1-ha treatment plots of secondary forest from which snakes had been removed and excluded vs. two 1-ha control plots in which snakes were monitored but not removed or excluded. We removed resident snakes from the treatment plots with snake traps and hand capture, and snake immigration into these plots was precluded by electrified snake barriers. Lizards were sampled in all plots quarterly for a year following snake elimination in the treatment plots. Following the completion of this experiment, we used total removal sampling to census lizards on a 100-m2 subsample of each plot. Results of systematic lizard population monitoring before and after snake removal suggest that the abundance of the skink, Carlia ailanpalai, increased substantially and the abundance of two species of gekkonids, Lepidodactylus lugubris and Hemidactylus frenatus, also increased on snake-free plots. No treatment effect was observed for the skink Emoia caeruleocauda. Mean snout–vent length of all lizard species only increased following snake removal in the treatment plots. The general increase in prey density and mean size was unexpected in light of the literature consensus that snakes do not control the abundance of their prey species. Our findings show that, at least where alternate predators are lacking, snakes may indeed affect prey populations.

  15. The Interaction between Selection, Demography and Selfing and How It Affects Population Viability

    PubMed Central

    Awad, Diala Abu; Gallina, Sophie; Bonamy, Cyrille; Billiard, Sylvain

    2014-01-01

    Population extinction due to the accumulation of deleterious mutations has only been considered to occur at small population sizes, large sexual populations being expected to efficiently purge these mutations. However, little is known about how the mutation load generated by segregating mutations affects population size and, eventually, population extinction. We propose a simple analytical model that takes into account both the demographic and genetic evolution of populations, linking population size, density dependence, the mutation load, and self-fertilisation. Analytical predictions were found to be relatively good predictors of population size and probability of population viability when verified using an explicit individual based stochastic model. We show that initially large populations do not always reach mutation-selection balance and can go extinct due to the accumulation of segregating deleterious mutations. Population survival depends not only on the relative fitness and demographic stochasticity, but also on the interaction between the two. When deleterious mutations are recessive, self-fertilisation affects viability non-monotonically and genomic cold-spots could favour the viability of outcrossing populations. PMID:24465911

  16. Predator population depending on lemming cycles

    NASA Astrophysics Data System (ADS)

    Anashkina, Ekaterina I.; Chichigina, Olga A.; Valenti, Davide; Kargovsky, Aleksey V.; Spagnolo, Bernardo

    2016-07-01

    In this paper, a Langevin equation for predator population with multiplicative correlated noise is analyzed. The noise source, which is a nonnegative random pulse noise with regulated periodicity, corresponds to the prey population cycling. The increase of periodicity of noise affects the average predator density at the stationary state.

  17. Presence-absence surveys of prey and their use in predicting leopard (Panthera pardus) densities: a case study from Armenia.

    PubMed

    Khorozyan, Igor G; Malkhasyan, Alexander G; Abramov, Alexei V

    2008-12-01

    It is important to predict how many individuals of a predator species can survive in a given area on the basis of prey sufficiency and to compare predictive estimates with actual numbers to understand whether or not key threats are related to prey availability. Rugged terrain and low detection probabilities do not allow for the use of traditional prey count techniques in mountain areas. We used presence-absence occupancy modeling and camera-trapping to estimate the abundance and densities of prey species and regression analysis to predict leopard (Panthera pardus) densities from estimated prey biomass in the mountains of the Nuvadi area, Meghri Ridge, southern Armenia. The prey densities were 12.94 ± 2.18 individuals km(-2) for the bezoar goat (Capra aegagrus), 6.88 ± 1.56 for the wild boar (Sus scrofa) and 0.44 ± 0.20 for the roe deer (Capreolus capreolus). The detection probability of the prey was a strong function of the activity patterns, and was highest in diurnal bezoar goats (0.59 ± 0.09). Based on robust regression, the estimated total ungulate prey biomass (720.37 ± 142.72 kg km(-2) ) can support a leopard density of 7. 18 ± 3.06 individuals 100 km(-2) . The actual leopard density is only 0.34 individuals 100 km(-2) (i.e. one subadult male recorded over the 296.9 km(2) ), estimated from tracking and camera-trapping. The most plausible explanation for this discrepancy between predicted and actual leopard density is that poaching and disturbance caused by livestock breeding, plant gathering, deforestation and human-induced wild fires are affecting the leopard population in Armenia.

  18. Location of odor sources and the affected population in Imperial County, California

    SciTech Connect

    Hahn, J.L.

    1981-08-01

    This report is divided into four sections. The first two sections contain general background information on Imperial County. The third section is a general discussion of odor sources in Imperial County, and the fourth maps the specific odor sources, the expected areas of perception, and the affected populations. this mapping is done for the Imperial Valley and each of the four Imperial County KGRA's (Known Geothermal Resource Areas) where odor from the development of the geothermal energy may affect population.

  19. Habitat stability and predation pressure affect temperament behaviours in populations of three-spined sticklebacks.

    PubMed

    Brydges, Nichola M; Colegrave, Nick; Heathcote, Robert J P; Braithwaite, Victoria A

    2008-03-01

    1. There is growing interest in the causes and consequences of animal temperaments. Temperament behaviours often have heritable components, but ecological variables can also affect them. Numerous variables are likely to differ between habitats, and these may interact to influence temperament behaviours. 2. Temperament behaviours may be correlated within populations (behavioural syndromes), although the underlying causes of such correlations are currently unclear. 3. We analysed three different temperament behaviours and learning ability in three-spined sticklebacks, Gasterosteus aculeatus, to determine how different ecological variables influence them both within and between populations. We selected populations from four ponds and four rivers that varied naturally in their exposure to predators. 4. High-predation river populations were significantly less bold than a high-predation pond and low-predation river populations, and low-predation pond populations were significantly less bold than a high-predation pond population. Within populations, temperament behaviours were correlated in one high-predation river population only. 5. These results suggest that multiple ecological factors can interact to affect temperament behaviours between populations, and also correlations in those behaviours within populations.

  20. Dynamics of additional food provided predator-prey system with mutually interfering predators.

    PubMed

    Prasad, B S R V; Banerjee, Malay; Srinivasu, P D N

    2013-11-01

    Use of additional/alternative food source to predators is one of the widely recognised practices in the field of biological control. Both theoretical and experimental works point out that quality and quantity of additional food play a vital role in the controllability of the pest. Theoretical studies carried out previously in this direction indicate that incorporating mutual interference between predators can stabilise the system. Experimental evidence also point out that mutual interference between predators can affect the outcome of the biological control programs. In this article dynamics of additional food provided predator-prey system in the presence of mutual interference between predators has been studied. The mutual interference between predators is modelled using Beddington-DeAngelis type functional response. The system analysis highlights the role of mutual interference on the success of biological control programs when predators are provided with additional food. The model results indicate the possibility of stable coexistence of predators with low prey population levels. This is in contrast to classical predator-prey models wherein this stable co-existence at low prey population levels is not possible. This study classifies the characteristics of biological control agents and additional food (of suitable quality and quantity), permitting the eco-managers to enhance the success rate of biological control programs.

  1. Spatiotemporal patterns provoked by environmental variability in a predator-prey model.

    PubMed

    Fras, Maja; Gosak, Marko

    2013-12-01

    The emergence of spatiotemporal patterns in the distribution of species is one of the most striking phenomena in ecology and nonlinear science. Since it is known that spatial inhomogeneities can significantly affect the dynamics of ecological populations, in the present paper we investigate the impact of environmental variability on the formation of patterns in a spatially extended predator-prey model. In particular, we utilize a predator-prey system with a Holling III functional response and introduce random spatial variations of the kinetic parameter signifying the intrinsic growth rate of the prey, reflecting the impact of a heterogeneous environment. Our results reveal that in the proximity of the Hopf bifurcation environmental variability is able to provoke pattern formation, whereby the coherence of the patterns exhibits a resonance-like dependence on the variability strength. Furthermore, we show that the phenomenon can only be observed if the spatial heterogeneities exhibit large enough regions with high growth rates of the prey. Our findings thus indicate that variability could be an essential pattern formation mechanism of the populations.

  2. Pulsed-resource dynamics increase the asymmetry of antagonistic coevolution between a predatory protist and a prey bacterium.

    PubMed

    Friman, V-P; Laakso, J; Koivu-Orava, M; Hiltunen, T

    2011-12-01

    Temporal resource fluctuations could affect the strength of antagonistic coevolution through population dynamics and costs of adaptation. We studied this by coevolving the prey bacterium Serratia marcescens with the predatory protozoa Tetrahymena thermophila in constant and pulsed-resource environments for approximately 1300 prey generations. Consistent with arms race theory, the prey evolved to be more defended, whereas the predator evolved to be more efficient in consuming the bacteria. Coevolutionary adaptations were costly in terms of reduced prey growth in resource-limited conditions and less efficient predator growth on nonliving resource medium. However, no differences in mean coevolutionary changes or adaptive costs were observed between environments, even though resource pulses increased fluctuations and mean densities of coevolving predator populations. Interestingly, a surface-associated prey defence mechanism (bacterial biofilm), to which predators were probably unable to counter-adapt, evolved to be stronger in pulsed-resource environment. These results suggest that temporal resource fluctuations can increase the asymmetry of antagonistic coevolution by imposing stronger selection on one of the interacting species.

  3. Climate-ecosystem change off southern California: Time-dependent seabird predator-prey numerical responses

    NASA Astrophysics Data System (ADS)

    Sydeman, William J.; Thompson, Sarah Ann; Santora, Jarrod A.; Koslow, J. Anthony; Goericke, Ralf; Ohman, Mark D.

    2015-02-01

    Climate change may increase both stratification and upwelling in marine ecosystems, but these processes may affect productivity in opposing or complementary ways. For the Southern California region of the California Current Ecosystem (CCE), we hypothesized that changes in stratification and upwelling have affected marine bird populations indirectly through changes in prey availability. To test this hypothesis, we derived trends and associations between stratification and upwelling, the relative abundance of potential prey including krill and forage fish, and seabirds based on the long-term, multi-disciplinary CalCOFI/CCE-LTER program. Over the period 1987 through 2011, spring and summer seabird density (all species combined) declined by ~2% per year, mostly in the northern sector of the study region. Krill showed variable trends with two species increasing and one deceasing, resulting in community reorganization. Nearshore forage fish, dominated by northern anchovy (Engraulis mordax) as well as offshore mesopelagic species, show declines in relative abundance over this period. The unidirectional decline in springtime seabird density is largely explained by declining nearshore fish abundance in the previous season (winter). Interannual variability in seabird density, especially in the 2000s, is explained by variability in krill abundance. Changes in the numerical responses of seabirds to prey abundance correspond to a putative ecosystem shift in 1998-1999 and support aspects of optimal foraging (diet) theory. Predator-prey interactions and numerical responses clearly explain aspects of the upper trophic level patterns of change in the pelagic ecosystem off southern California.

  4. Piscivore-prey fish interactions: mechanisms behind diurnal patterns in prey selectivity in brown and clear water.

    PubMed

    Ranåker, Lynn; Persson, Jens; Jönsson, Mikael; Nilsson, P Anders; Brönmark, Christer

    2014-01-01

    Environmental change may affect predator-prey interactions in lakes through deterioration of visual conditions affecting foraging success of visually oriented predators. Environmental change in lakes includes an increase in humic matter causing browner water and reduced visibility, affecting the behavioural performance of both piscivores and prey. We studied diurnal patterns of prey selection in piscivorous pikeperch (Sander lucioperca) in both field and laboratory investigations. In the field we estimated prey selectivity and prey availability during day and night in a clear and a brown water lake. Further, prey selectivity during day and night conditions was studied in the laboratory where we manipulated optical conditions (humic matter content) of the water. Here, we also studied the behaviours of piscivores and prey, focusing on foraging-cycle stages such as number of interests and attacks by the pikeperch as well as the escape distance of the prey fish species. Analyses of gut contents from the field study showed that pikeperch selected perch (Perca fluviatilis) over roach (Rutilus rutilus) prey in both lakes during the day, but changed selectivity towards roach in both lakes at night. These results were corroborated in the selectivity experiments along a brown-water gradient in day and night light conditions. However, a change in selectivity from perch to roach was observed when the optical condition was heavily degraded, from either brown-stained water or light intensity. At longer visual ranges, roach initiated escape at distances greater than pikeperch attack distances, whereas perch stayed inactive making pikeperch approach and attack at the closest range possible. Roach anti-predatory behaviour decreased in deteriorated visual conditions, altering selectivity patterns. Our results highlight the importance of investigating both predator and prey responses to visibility conditions in order to understand the effects of degrading optical conditions on

  5. Comparing the effects of rapid evolution and phenotypic plasticity on predator-prey dynamics.

    PubMed

    Yamamichi, Masato; Yoshida, Takehito; Sasaki, Akira

    2011-09-01

    Ecologists have increasingly focused on how rapid adaptive trait changes can affect population dynamics. Rapid adaptation can result from either rapid evolution or phenotypic plasticity, but their effects on population dynamics are seldom compared directly. Here we examine theoretically the effects of rapid evolution and phenotypic plasticity of antipredatory defense on predator-prey dynamics. Our analyses reveal that phenotypic plasticity tends to stabilize population dynamics more strongly than rapid evolution. It is therefore important to know the mechanism by which phenotypic variation is generated for predicting the dynamics of rapidly adapting populations. We next examine an advantage of a phenotypically plastic prey genotype over the polymorphism of specialist prey genotypes. Numerical analyses reveal that the plastic genotype, if there is a small cost for maintaining it, cannot coexist with the pairs of specialist counterparts unless the system has a limit cycle. Furthermore, for the plastic genotype to replace specialist genotypes, a forced environmental fluctuation is critical in a broad parameter range. When these results are combined, the plastic genotype enjoys an advantage with population oscillations, but plasticity tends to lose its advantage by stabilizing the oscillations. This dilemma leads to an interesting intermittent limit cycle with the changing frequency of phenotypic plasticity.

  6. Predation risk increases dispersal distance in prey

    NASA Astrophysics Data System (ADS)

    Otsuki, Hatsune; Yano, Shuichi

    2014-06-01

    Understanding the ecological factors that affect dispersal distances allows us to predict the consequences of dispersal. Although predator avoidance is an important cause of prey dispersal, its effects on dispersal distance have not been investigated. We used simple experimental setups to test dispersal distances of the ambulatory dispersing spider mite ( Tetranychus kanzawai) in the presence or absence of a predator ( Neoseiulus womersleyi). In the absence of predators, most spider mites settled in adjacent patches, whereas the majority of those dispersing in the presence of predators passed through adjacent patches and settled in distant ones. This is the first study to experimentally demonstrate that predators induce greater dispersal distance in prey.

  7. Global stability of predator-prey system with alternative prey.

    PubMed

    Sahoo, Banshidhar

    2013-01-01

    A predator-prey model in presence of alternative prey is proposed. Existence and local stability conditions for interior equilibrium points are derived. Global stability conditions for interior equilibrium points are also found. Bifurcation analysis is done with respect to predator's searching rate and handling time. Bifurcation analysis confirms the existence of global stability in presence of alternative prey.

  8. Prey Detection and Prey Capture in Copepod Nauplii

    PubMed Central

    Bruno, Eleonora; Andersen Borg, Christian Marc; Kiørboe, Thomas

    2012-01-01

    Copepod nauplii are either ambush feeders that feed on motile prey or they produce a feeding current that entrains prey cells. It is unclear how ambush and feeding-current feeding nauplii perceive and capture prey. Attack jumps in ambush feeding nauplii should not be feasible at low Reynolds numbers due to the thick viscous boundary layer surrounding the attacking nauplius. We use high-speed video to describe the detection and capture of phytoplankton prey by the nauplii of two ambush feeding species (Acartia tonsa and Oithona davisae) and by the nauplii of one feeding-current feeding species (Temora longicornis). We demonstrate that the ambush feeders both detect motile prey remotely. Prey detection elicits an attack jump, but the jump is not directly towards the prey, such as has been described for adult copepods. Rather, the nauplius jumps past the prey and sets up an intermittent feeding current that pulls in the prey from behind towards the mouth. The feeding-current feeding nauplius detects prey arriving in the feeding current but only when the prey is intercepted by the setae on the feeding appendages. This elicits an altered motion pattern of the feeding appendages that draws in the prey. PMID:23144712

  9. Stability analysis and numerical simulation of 1 prey - 2 predator system

    NASA Astrophysics Data System (ADS)

    Savitri, D.; Abadi

    2015-03-01

    In this paper, we study an ecological system that consists of 1 prey and 2 predators populations. The prey population grows logistically while Holling type II functional response is applied for both predators . The first predator preys on the prey and the second predator preys on the first one. The study starts with the stability analysis of critical points of the systems. Then, by using normal form and centre manifold method the information about other nontrivial solutions due to bifurcation including possible limit cycles appearance is obtained. The results are confirmed by numerical simulation using MatCont and biological interpretation of the results is also presented.

  10. A multiple phenotype predator-prey model with mutation

    NASA Astrophysics Data System (ADS)

    Abernethy, Gavin M.; Mullan, Rory; Glass, David H.; McCartney, Mark

    2017-01-01

    An existing multiple phenotype predator-prey model is expanded to include mutation amongst the predator phenotypes. Two unimodal maps are used for the underlying dynamics of the prey. A predation strategy is also defined which differs for each of the predators in the model. Results show that the introduction of predator mutation enhances predator survival both in terms of the number of phenotypes and total population for a range of values of the predation rate. In general, the dominant predator phenotype is the one which is most focused on the prey phenotype with the largest population.

  11. Mammalian predator-prey interaction in a fragmented landscape: weasels and voles.

    PubMed

    Haapakoski, Marko; Sundell, Janne; Ylönen, Hannu

    2013-12-01

    The relationship between predators and prey is thought to change due to habitat loss and fragmentation, but patterns regarding the direction of the effect are lacking. The common prediction is that specialized predators, often more dependent on a certain habitat type, should be more vulnerable to habitat loss compared to generalist predators, but actual fragmentation effects are unknown. If a predator is small and vulnerable to predation by other larger predators through intra-guild predation, habitat fragmentation will similarly affect both the prey and the small predator. In this case, the predator is predicted to behave similarly to the prey and avoid open and risky areas. We studied a specialist predator's, the least weasel, Mustela nivalis nivalis, spacing behavior and hunting efficiency on bank voles, Myodes glareolus, in an experimentally fragmented habitat. The habitat consisted of either one large habitat patch (non-fragmented) or four small habitat patches (fragmented) with the same total area. The study was replicated in summer and autumn during a year with high avian predation risk for both voles and weasels. As predicted, weasels under radio-surveillance killed more voles in the non-fragmented habitat which also provided cover from avian predators during their prey search. However, this was only during autumn, when the killing rate was also generally high due to cold weather. The movement areas were the same for both sexes and both fragmentation treatments, but weasels of both sexes were more prone to take risks in crossing the open matrix in the fragmented treatment. Our results support the hypothesis that habitat fragmentation may increase the persistence of specialist predator and prey populations if predators are limited in the same habitat as their prey and they share the same risk from avian predation.

  12. Effect of dispersal in two-patch prey-predator system with positive density dependence growth of preys.

    PubMed

    Sasmal, Sourav Kumar; Ghosh, Dibakar

    2017-01-01

    Prey-predator systems in patchy environment, connected through dispersal between patches is a very common phenomenon observed in nature, which have a significant impact in ecology, species persistence and extinction, etc. In the present paper, we consider a two patch prey-predator system where the patches are connected through dispersal between preys populations only. We consider positive density dependence growth for preys population. In addition, we consider the time scale difference (different life span) between preys and predator populations. From our study, we can conclude that dispersal can save both the populations from extinction, when in a single patch initial preys density is lower the Allee threshold. Also, time difference can increase the basin of attraction of the coexistence equilibrium of our two-patch model. Time scale difference also can help to reach the steady state faster than the without time scale difference, and it also causes the amplitude death when populations are in limit cycle oscillation. We also analyze our model by considering the time delay in dispersal dynamics, and we show that delay induced dispersal can stabilize the system and cause the amplitude death when individual populations are in the limit cycle, without dispersal. In addition, dispersal in non-identical patches can stabilize at its interior equilibrium even if the environment is harsh for both the populations in both the individual patches.

  13. Bioeconomic harvesting of a prey-predator fishery.

    PubMed

    Das, Tapasi; Mukherjee, R N; Chaudhuri, K S

    2009-09-01

    This paper deals with the problem of non-selective harvesting of a prey-predator system by using a reasonable catch-rate function instead of usual catch-per-unit-efforthypothesis. Here both the prey and the predator species obey the law of logistic growth. We have taken the predator functional response to prey density in such a form that each predator's functional response to the prey density approaches a constant as the prey population increases. Boundedness of the exploited system is examined. The existence of its steady states and their stability (local and global) are studied using Eigenvalue analysis. The existence of bionomic equilibria has been illustrated using a numerical example. The problem of determining the optimal harvesting policy is then solved by using Pontryagin's maximum principle.

  14. An Eco-epidemiological System with Infected Prey and Predator subject to the weak Allee effect.

    PubMed

    Sasmal, Sourav Kumar; Chattopadhyay, Joydev

    2013-10-24

    In this article, we propose a general prey-predator model with disease in prey and predator subject to the weak Allee effects. We make the following assumptions: (i) infected prey competes for resources but does not contribute to reproduction; and (ii) in comparison to the consumption of the susceptible prey, consumption of infected prey would contribute less or negatively to the growth of predator. Based on these assumptions, we provide basic dynamic properties for the full model and corresponding submodels with and without the Allee effects. By comparing the disease free submodels (susceptible prey-predator model) with and without the Allee effects, we conclude that the Allee effects can create or destroy the interior attractors. This enables us to obtain the complete dynamics of the full model and conclude that the model has only one attractor (only susceptible prey survives or susceptible-infected coexist), or two attractors (bi-stability with only susceptible prey and susceptible prey-predator coexist or susceptible prey-infected prey coexists and susceptible prey-predator coexist). This model does not support the coexistence of susceptible-infected-predator, which is caused by the assumption that infected population contributes less or are harmful to the growth of predator in comparison to the consumption of susceptible prey.

  15. Genetic diversity affects the strength of population regulation in a marine fish.

    PubMed

    Johnson, D W; Freiwald, J; Bernardi, G

    2016-03-01

    Variation is an essential feature of biological populations, yet much of ecological theory treats individuals as though they are identical. This simplifying assumption is often justified by the perception that variation among individuals does not have significant effects on the dynamics of whole populations. However, this perception may be skewed by a historic focus on studying single populations. A true evaluation of the extent to which among-individual variation affects the dynamics of populations requires the study of multiple populations. In this study, we examined variation in the dynamics of populations of a live-bearing, marine fish (black surfperch; Embiotoca jacksoni). In collaboration with an organization of citizen scientists (Reef Check California), we were able to examine the dynamics of eight populations that were distributed throughout approximately 700 km of coastline, a distance that encompasses much of this species' range. We hypothesized that genetic variation within a local population would be related to the intensity of competition and to the strength of population regulation. To test this hypothesis, we examined whether genetic diversity (measured by the diversity of mitochondrial DNA haplotypes) was related to the strength of population regulation. Low-diversity populations experienced strong density dependence in population growth rates and population sizes were regulated much more tightly than they were in high-diversity populations. Mechanisms that contributed to this pattern include links between genetic diversity, habitat use, and spatial crowding. On average, low-diversity populations used less of the available habitat and exhibited greater spatial clustering (and more intense competition) for a given level of density (measured at the scale of the reef). Although the populations we studied also varied with respect to exogenous characteristics (habitat complexity, densities of predators, and interspecific competitors), none of these

  16. Indirect evolutionary rescue: prey adapts, predator avoids extinction.

    PubMed

    Yamamichi, Masato; Miner, Brooks E

    2015-09-01

    Recent studies have increasingly recognized evolutionary rescue (adaptive evolution that prevents extinction following environmental change) as an important process in evolutionary biology and conservation science. Researchers have concentrated on single species living in isolation, but populations in nature exist within communities of interacting species, so evolutionary rescue should also be investigated in a multispecies context. We argue that the persistence or extinction of a focal species can be determined solely by evolutionary change in an interacting species. We demonstrate that prey adaptive evolution can prevent predator extinction in two-species predator-prey models, and we derive the conditions under which this indirect evolutionary interaction is essential to prevent extinction following environmental change. A nonevolving predator can be rescued from extinction by adaptive evolution of its prey due to a trade-off for the prey between defense against predation and population growth rate. As prey typically have larger populations and shorter generations than their predators, prey evolution can be rapid and have profound effects on predator population dynamics. We suggest that this process, which we term 'indirect evolutionary rescue', has the potential to be critically important to the ecological and evolutionary responses of populations and communities to dramatic environmental change.

  17. Prey availability, consumption, and quality contribute to variation in growth of subyearling Chinook Salmon rearing in riverine and reservoir habitats

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Erhardt, John M.; St. John, Scott J.

    2014-01-01

    We examined prey availability, prey consumed, and diet energy content as sources of variation in growth of natural fall Chinook Salmon Oncorhynchus tshawytscha subyearlings rearing in riverine and reservoir habitats in the Snake River. Subyearlings in riverine habitat primarily consumed aquatic insects (e.g., Diptera, Ephemeroptera, Trichoptera), of which a high proportion was represented by adult, terrestrial forms. In the reservoir, subyearlings also consumed aquatic insects but also preyed heavily at times on nonnative lentic amphipods Corophium spp. and the mysid Neomysis mercedis, which were absent in riverine habitats. The availability of prey was typically much higher in the reservoir due to N. mercedis often composing over 90% of the biomass, but when this taxon was removed from consideration, biomass estimates were more often higher in the riverine habitat. Subyearling diets during 2009–2011 were generally 17–40% higher in energy in the riverine habitat than in the reservoir. Observed growth in both length and weight were significantly higher in the riverine habitat than in the reservoir. Little is known about how temporal and spatial changes in the food web in large river landscapes influence populations of native anadromous fishes. Our results provide a glimpse of how the spread and establishment of nonnative prey species can reduce juvenile salmon growth in a large river impoundment, which in turn can affect migration timing and survival.

  18. Aggregative response in bats: prey abundance versus habitat.

    PubMed

    Müller, Jörg; Mehr, Milenka; Bässler, Claus; Fenton, M Brock; Hothorn, Torsten; Pretzsch, Hans; Klemmt, Hans-Joachim; Brandl, Roland

    2012-07-01

    In habitats where prey is either rare or difficult to predict spatiotemporally, such as open habitats, predators must be adapted to react effectively to variations in prey abundance. Open-habitat foraging bats have a wing morphology adapted for covering long distances, possibly use information transfer to locate patches of high prey abundance, and would therefore be expected to show an aggregative response at these patches. Here, we examined the effects of prey abundance on foraging activities of open-habitat foragers in comparison to that of edge-habitat foragers and closed-habitat foragers. Bat activity was estimated by counting foraging calls recorded with bat call recorders (38,371 calls). Prey abundance was estimated concurrently at each site using light and pitfall traps. The habitat was characterized by terrestrial laser scanning. Prey abundance increased with vegetation density. As expected, recordings of open-habitat foragers clearly decreased with increasing vegetation density. The foraging activity of edge- and closed-habitat foragers was not significantly affected by the vegetation density, i.e., these guilds were able to forage from open habitats to habitats with dense vegetation. Only open-habitat foragers displayed a significant and proportional aggregative response to increasing prey abundance. Our results suggest that adaptations for effective and low-cost foraging constrains habitat use and excludes the guild of open-habitat foragers from foraging in habitats with high prey abundance, such as dense forest stands.

  19. Recommendations for the Use of ICT in Elderly Populations with Affective Disorders

    PubMed Central

    Gros, Auriane; Bensamoun, David; Manera, Valeria; Fabre, Roxane; Zacconi-Cauvin, Anne-Marie; Thummler, Susanne; Benoit, Michel; Robert, Philippe; David, Renaud

    2016-01-01

    Objective: Affective disorders are frequently encountered among elderly populations, and the use of information and communication technologies (ICT) could provide an added value for their recognition and assessment in addition to current clinical methods. The diversity and lack of consensus in the emerging field of ICTs is however a strong limitation for their global use in daily practice. The aim of the present article is to provide recommendations for the use of ICTs for the assessment and management of affective disorders among elderly populations with or without dementia. Methods: A Delphi panel was organized to gather recommendations from experts in the domain. A set of initial general questions for the use of ICT in affective disorders was used to guide the discussion of the expert panel and to analyze the Strengths, Weaknesses, Opportunities, and Threats (SWOT) of employing ICT in elderly populations with affective disorders. Based on the results collected from this first round, a web survey was sent to local general practitioners (GPs) and to all interns in psychiatry in France. Results: The results of the first round revealed that ICT may offer very useful tools for practitioners involved in the diagnosis and management of affective disorders. However, the results of the web survey showed the interest to explain better to current and upcoming practitioners the utility of ICT especially for people living with dementia. PMID:27877126

  20. Recommendations for the Use of ICT in Elderly Populations with Affective Disorders.

    PubMed

    Gros, Auriane; Bensamoun, David; Manera, Valeria; Fabre, Roxane; Zacconi-Cauvin, Anne-Marie; Thummler, Susanne; Benoit, Michel; Robert, Philippe; David, Renaud

    2016-01-01

    Objective: Affective disorders are frequently encountered among elderly populations, and the use of information and communication technologies (ICT) could provide an added value for their recognition and assessment in addition to current clinical methods. The diversity and lack of consensus in the emerging field of ICTs is however a strong limitation for their global use in daily practice. The aim of the present article is to provide recommendations for the use of ICTs for the assessment and management of affective disorders among elderly populations with or without dementia. Methods: A Delphi panel was organized to gather recommendations from experts in the domain. A set of initial general questions for the use of ICT in affective disorders was used to guide the discussion of the expert panel and to analyze the Strengths, Weaknesses, Opportunities, and Threats (SWOT) of employing ICT in elderly populations with affective disorders. Based on the results collected from this first round, a web survey was sent to local general practitioners (GPs) and to all interns in psychiatry in France. Results: The results of the first round revealed that ICT may offer very useful tools for practitioners involved in the diagnosis and management of affective disorders. However, the results of the web survey showed the interest to explain better to current and upcoming practitioners the utility of ICT especially for people living with dementia.

  1. Can ocean acidification affect population dynamics of the barnacle Semibalanus balanoides at its southern range edge?

    PubMed

    Findlay, Helen S; Burrows, Michael T; Kendall, Michael A; Spicer, John I; Widdicombe, Stephen

    2010-10-01

    The global ocean and atmosphere are warming. There is increasing evidence suggesting that, in addition to other environmental factors, climate change is affecting species distributions and local population dynamics. Additionally, as a consequence of the growing levels of atmospheric carbon dioxide (CO2), the oceans are taking up increasing amounts of this CO2, causing ocean pH to decrease (ocean acidification). The relative impacts of ocean acidification on population dynamics have yet to be investigated, despite many studies indicating that there will be at least a sublethal impact on many marine organisms, particularly key calcifying organisms. Using empirical data, we forced a barnacle (Semibalanus balanoides) population model to investigate the relative influence of sea surface temperature (SST) and ocean acidification on a population nearing the southern limit of its geographic distribution. Hindcast models were compared to observational data from Cellar Beach (southwestern United Kingdom). Results indicate that a declining pH trend (-0.0017 unit/yr), indicative of ocean acidification over the past 50 years, does not cause an observable impact on the population abundance relative to changes caused by fluctuations in temperature. Below the critical temperature (here T(crit) = 13.1 degrees C), pH has a more significant affect on population dynamics at this southern range edge. However, above this value, SST has the overriding influence. At lower SST, a decrease in pH (according to the National Bureau of Standards, pHNBs) from 8.2 to 7.8 can significantly decrease the population abundance. The lethal impacts of ocean acidification observed in experiments on early life stages reduce cumulative survival by approximately 25%, which again will significantly alter the population level at this southern limit. Furthermore, forecast predictions from this model suggest that combined acidification and warming cause this local population to die out 10 years earlier than

  2. A stage structured predator-prey model with disease in the prey

    NASA Astrophysics Data System (ADS)

    Agarwal, M.; Pandey, P.

    2008-02-01

    A non-linear mathematical model for a prey-predator community is proposed and analyzed. In the model, prey gets infected and predator population is structured into two stages of life, immature and mature with a time lag between two stages. Boundedness and non-negativity of the solutions of the system have been proved. Criterion for the stability of the system in the absence of delay is derived and bifurcation is found. The critical value of delay parameter for which stability change may occur is obtained.

  3. Seasonal patterns of predation for gray wolves in the multi-prey system of Yellowstone National Park.

    PubMed

    Metz, Matthew C; Smith, Douglas W; Vucetich, John A; Stahler, Daniel R; Peterson, Rolf O

    2012-05-01

    predation because of changes in prey vulnerability. Patterns of wolf predation were influenced by the nutritional condition of adult elk and the availability of smaller prey (i.e. elk calves, deer). We discuss how these patterns affect our overall understanding of predator and prey population dynamics.

  4. Landscape context affects genetic diversity at a much larger spatial extent than population abundance.

    PubMed

    Jackson, Nathan D; Fahrig, Lenore

    2014-04-01

    Regional landscape context influences the fate of local populations, yet the spatial extent of this influence (called the "scale of effect") is difficult to predict. Thus, a major problem for conservation management is to understand the factors governing the scale of effect such that landscape structure surrounding a focal area is measured and managed at the biologically relevant spatial scale. One unresolved question is whether and how scale of effect may depend on the population response measured (e.g., abundance vs. presence/absence). If scales of effect differ across population outcomes of a given species, management based on one outcome may compromise another, further complicating conservation decision making. Here we used an individual-based simulation model to investigate how scales of effect of landscapes that vary in the amount and fragmentation of habitat differ among three population responses (local abundance, presence/absence, and genetic diversity). We also explored how the population response measured affects the relative importance of habitat amount and fragmentation in shaping local populations, and how dispersal distance mediates the magnitude and spatial scale of these effects. We found that the spatial scale most strongly influencing local populations depended on the outcome measured and was predicted to be small for abundance, medium-sized for presence/absence, and large for genetic diversity. Increasing spatial scales likely resulted from increasing temporal scales over which outcomes were regulated (with local genetic diversity being regulated over the largest number of generations). Thus, multiple generations of dispersal and gene flow linked local population patterns to regional population size. The effects of habitat amount dominated the effects of fragmentation for all three outcomes. Increased dispersal distance strongly reduced abundance, but not presence/absence or genetic diversity. Our results suggest that managing protected species

  5. Analysis of a competitive prey-predator system with a prey refuge.

    PubMed

    Sarwardi, Sahabuddin; Mandal, Prashanta Kumar; Ray, Santanu

    2012-12-01

    Gauss's competitive exclusive principle states that two competing species having analogous environment cannot usually occupy the same space at a time but in order to exploit their common environment in a different manner, they can co-exist only when they are active in different times. On the other hand, several studies on predators in various natural and laboratory situations have shown that competitive coexistence can result from predation in a way by resisting any one prey species from becoming sufficiently abundant to outcompete other species such that the predator makes the coexistence possible. It has also been shown that the use of refuges by a fraction of the prey population exerts a stabilizing effect in the interacting population dynamics. Further, the field surveys in the Sundarban mangrove ecosystem reveal that two detritivorous fishes, viz. Liza parsia and Liza tade (prey population) coexist in nature with the presence of the predator fish population, viz. Lates calcarifer by using refuges. In view of such observations in mind, a three-component model consisting of two prey and one predator population is considered in the present investigation with the inclusion of Holling type-II response function incorporating a constant proportion of prey refuge. The essential mathematical features of the present model have been analyzed thoroughly in terms of the local and the global stability and the bifurcations arising in some selected situations as well. The threshold values for some parameters indicating the feasibility and the stability conditions of some equilibria are also determined. The ranges of the significant parameters under which the system admits a Hopf bifurcation are investigated. The explicit formulae for determining the stability, direction and other properties of bifurcating periodic solutions are also derived with the use of both the normal form and the central manifold theory. Numerical illustrations are performed finally in order to validate

  6. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations.

    PubMed

    Mei, H W; Luo, L J; Ying, C S; Wang, Y P; Yu, X Q; Guo, L B; Paterson, A H; Li, Z K

    2003-06-01

    To understand the types of gene action controlling seven quantitative traits in rice, QTL mapping was performed to dissect the main effect (M-QTLs) and digenic epistatic (E-QTLs) QTLs responsible for the trait performance of 254 recombinant inbred lines (RILs) of "Lemont/Teqing", and two testcross (TC) F(1) populations derived from these RILs. The correlation analyses reveal a general pattern, i.e. trait heritability in the RILs was negatively correlated to trait heterosis in the TC hybrids. A large number of M-QTLs and E-QTLs affecting seven traits, including heading date (HD), plant height (PH), flag leaf length (FLL), flag leaf width (FLW), panicle length (PL), spikelet number per panicle (SN) and spikelet fertility (SF), were identified and could be classified into two predominant groups, additive QTLs detected primarily in the RILs, and overdominant QTLs identified exclusively in the TC populations. There is little overlap between QTLs identified in the RILs and in the TC populations. This result implied that additive gene action is largely independent from non-additive gene action in the genetic control of quantitative traits of rice. The detected E-QTLs collectively explained a much greater portion of the total phenotypic variation than the M-QTLs, supporting prior findings that epistasis has played an important role in the genetic control of quantitative traits in rice. The implications of these results to the development of inbred and hybrid cultivars were discussed.

  7. Dynamics and patterns of a diffusive Leslie-Gower prey-predator model with strong Allee effect in prey

    NASA Astrophysics Data System (ADS)

    Ni, Wenjie; Wang, Mingxin

    2016-10-01

    This paper is devoted to study the dynamical properties and stationary patterns of a diffusive Leslie-Gower prey-predator model with strong Allee effect in the prey population. We first analyze the nonnegative constant equilibrium solutions and their stabilities, and then study the dynamical properties of time-dependent solutions. Moreover, we investigate the stationary patterns induced by diffusions (Turing pattern). Our results show that the impact of the strong Allee effect essentially increases the system spatiotemporal complexity.

  8. Ecological interactions affecting population-level responses to chemical stress in Mesocyclops leuckarti.

    PubMed

    Kulkarni, Devdutt; Hommen, Udo; Schäffer, Andreas; Preuss, Thomas G

    2014-10-01

    Higher tiers of ecological risk assessment (ERA) consider population and community-level endpoints. At the population level, the phenomenon of density dependence is one of the most important ecological processes that influence population dynamics. In this study, we investigated how different mechanisms of density dependence would influence population-level ERA of the cyclopoid copepod Mesocyclops leuckarti under toxicant exposure. We used a combined approach of laboratory experiments and individual-based modelling. An individual-based model was developed for M. leuckarti to simulate population dynamics under triphenyltin exposure based on individual-level ecological and toxicological data from laboratory experiments. The study primarily aimed to-(1) determine which life-cycle processes, based on feeding strategies, are most significant in determining density dependence (2) explore how these mechanisms of density dependence affect extrapolation from individual-level effects to the population level under toxicant exposure. Model simulations showed that cannibalism of nauplii that were already stressed by TPT exposure contributed to synergistic effects of biotic and abiotic factors and led to a twofold stress being exerted on the nauplii, thereby resulting in a higher population vulnerability compared to the scenario without cannibalism. Our results suggest that in population-level risk assessment, it is easy to underestimate toxicity unless underlying ecological interactions including mechanisms of population-level density regulation are considered. This study is an example of how a combined approach of experiments and mechanistic modelling can lead to a thorough understanding of ecological processes in ecotoxicology and enable a more realistic ERA.

  9. Stochasticity and determinism: how density-independent and density-dependent processes affect population variability.

    PubMed

    Ohlberger, Jan; Rogers, Lauren A; Stenseth, Nils Chr

    2014-01-01

    A persistent debate in population ecology concerns the relative importance of environmental stochasticity and density dependence in determining variability in adult year-class strength, which contributes to future reproduction as well as potential yield in exploited populations. Apart from the strength of the processes, the timing of density regulation may affect how stochastic variation, for instance through climate, translates into changes in adult abundance. In this study, we develop a life-cycle model for the population dynamics of a large marine fish population, Northeast Arctic cod, to disentangle the effects of density-independent and density-dependent processes on early life-stages, and to quantify the strength of compensatory density dependence in the population. The model incorporates information from scientific surveys and commercial harvest, and dynamically links multiple effects of intrinsic and extrinsic factors on all life-stages, from eggs to spawners. Using a state-space approach we account for observation error and stochasticity in the population dynamics. Our findings highlight the importance of density-dependent survival in juveniles, indicating that this period of the life cycle largely determines the compensatory capacity of the population. Density regulation at the juvenile life-stage dampens the impact of stochastic processes operating earlier in life such as environmental impacts on the production of eggs and climate-dependent survival of larvae. The timing of stochastic versus regulatory processes thus plays a crucial role in determining variability in adult abundance. Quantifying the contribution of environmental stochasticity and compensatory mechanisms in determining population abundance is essential for assessing population responses to climate change and exploitation by humans.

  10. Effects of the heterogeneous landscape on a predator-prey system

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hee

    2010-01-01

    In order to understand how a heterogeneous landscape affects a predator-prey system, a spatially explicit lattice model consisting of predators, prey, grass, and landscape was constructed. The predators and preys randomly move on the lattice space and the grass grows in its neighboring site according to its growth probability. When predators and preys meet at the same site at the same time, a number of prey, equal to the number of predators are eaten. This rule was also applied to the relationship between the prey and grass. The predator (prey) could give birth to an offspring when it ate prey (grass), with a birth probability. When a predator or prey animal was initially introduced, or newly born, its health state was set at a given high value. This health state decreased by one with every time step. When the state of an animal decreased to less than zero, the animal died and was removed from the system. The heterogeneous landscape was characterized by parameter H, which controlled the heterogeneity according to the neutral model. The simulation results showed that H positively or negatively affected a predator’s survival, while its effect on prey and grass was less pronounced. The results can be understood by the disturbance of the balance between the prey and predator densities in the areas where the animals aggregated.

  11. A snail-eating snake recognizes prey handedness

    PubMed Central

    Danaisawadi, Patchara; Asami, Takahiro; Ota, Hidetoshi; Sutcharit, Chirasak; Panha, Somsak

    2016-01-01

    Specialized predator-prey interactions can be a driving force for their coevolution. Southeast Asian snail-eating snakes (Pareas) have more teeth on the right mandible and specialize in predation on the clockwise-coiled (dextral) majority in shelled snails by soft-body extraction. Snails have countered the snakes’ dextral-predation by recurrent coil reversal, which generates diverse counterclockwise-coiled (sinistral) prey where Pareas snakes live. However, whether the snake predator in turn evolves any response to prey reversal is unknown. We show that Pareas carinatus living with abundant sinistrals avoids approaching or striking at a sinistral that is more difficult and costly to handle than a dextral. Whenever it strikes, however, the snake succeeds in predation by handling dextral and sinistral prey in reverse. In contrast, P. iwasakii with little access to sinistrals on small peripheral islands attempts and frequently misses capturing a given sinistral. Prey-handedness recognition should be advantageous for right-handed snail-eating snakes where frequently encountering sinistrals. Under dextral-predation by Pareas snakes, adaptive fixation of a prey population for a reversal gene instantaneously generates a sinistral species because interchiral mating is rarely possible. The novel warning, instead of sheltering, effect of sinistrality benefitting both predators and prey could further accelerate single-gene ecological speciation by left-right reversal. PMID:27046345

  12. [Factors affecting the attitude of the Czech population towards induced abortion].

    PubMed

    Weiss, P; Zvĕrina, J

    1998-10-01

    Based on an anonymous questionnaire survey of a representative population group above 15 years of age in the Czech Republic (862 men and 857 women) the authors investigated also sociodemographic factors affecting attitudes of the Czech population to induced abortions. The findings suggest that attitudes of men and women to induced abortions do not differ essentially in any of the investigated criteria. The size of domicile does not affect the attitudes substantially. The most restrictive views are expressed by respondents of the oldest age group (above 60 years) and respondents of the youngest age group (15-17 years). The liberal attitude to induced abortions increases with the educational level. Religious belief has a marked effect on restrictive attitudes to abortions, nevertheless among catholic subjects only 7% male and female respondents expressed refused induced abortions unequivocally.

  13. Ecological context and metapopulation dynamics affect sex-ratio variation among dioecious plant populations

    PubMed Central

    Field, David L.; Pickup, Melinda; Barrett, Spencer C. H.

    2013-01-01

    Background and Aims Populations of dioecious flowering plants commonly exhibit heterogeneity in sex ratios and deviations from the equilibrium expectation of equal numbers of females and males. Yet the role of ecological and demographic factors in contributing towards biased sex ratios is currently not well understood. Methods Species-level studies from the literature were analysed to investigate ecological correlates of among-population sex-ratio variation and metapopulation models and empirical data were used to explore the influence of demography and non-equilibrium conditions on flowering sex ratios. Key Results The survey revealed significant among-population heterogeneity in sex ratios and this was related to the degree of sampling effort. For some species, sex-ratio bias was associated with the proportion of non-reproductive individuals, with greater male bias in populations with a lower proportion of individuals that were flowering. Male-biased ratios were also found at higher altitudes and latitudes, and in more xeric sites. Simulations and empirical data indicated that clonal species exhibited greater heterogeneity in sex ratios than non-clonal species as a result of their slower approach to equilibrium. The simulations also indicated the importance of interactions between reproductive mode and founder effects, with greater departures from equilibrium in clonal populations with fewer founding individuals. Conclusions The results indicate that sex-based differences in costs of reproduction and non-equilibrium conditions can each play important roles in affecting flowering sex ratios in populations of dioecious plants. PMID:23444124

  14. Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape

    USGS Publications Warehouse

    Funk, W.C.; Blouin, M.S.; Corn, P.S.; Maxell, B.A.; Pilliod, D.S.; Amish, S.; Allendorf, F.W.

    2005-01-01

    Landscape features such as mountains, rivers, and ecological gradients may strongly affect patterns of dispersal and gene flow among populations and thereby shape population dynamics and evolutionary trajectories. The landscape may have a particularly strong effect on patterns of dispersal and gene flow in amphibians because amphibians are thought to have poor dispersal abilities. We examined genetic variation at six microsatellite loci in Columbia spotted frogs (Rana luteiventris) from 28 breeding ponds in western Montana and Idaho, USA, in order to investigate the effects of landscape structure on patterns of gene flow. We were particularly interested in addressing three questions: (i) do ridges act as barriers to gene flow? (ii) is gene flow restricted between low and high elevation ponds? (iii) does a pond equal a 'randomly mating population' (a deme)? We found that mountain ridges and elevational differences were associated with increased genetic differentiation among sites, suggesting that gene flow is restricted by ridges and elevation in this species. We also found that populations of Columbia spotted frogs generally include more than a single pond except for very isolated ponds. There was also evidence for surprisingly high levels of gene flow among low elevation sites separated by large distances. Moreover, genetic variation within populations was strongly negatively correlated with elevation, suggesting effective population sizes are much smaller at high elevation than at low elevation. Our results show that landscape features have a profound effect on patterns of genetic variation in Columbia spotted frogs.

  15. Uniform persistence in a generalized prey-predator system with parasitic infection.

    PubMed

    Mukherjee, D

    1998-08-01

    This paper deals with a generalized prey-predator system where the prey population is infected by a microparasite. The model is described by a system of three autonomous ordinary differential equations. Conditions for persistence of all populations are given. Impermanence criteria are also derived.

  16. Prey preference and life tables of the predatory mite Parasitus bituberosus (Acari: Parasitidae) when offered various prey combinations.

    PubMed

    Szafranek, Piotr; Lewandowski, Mariusz; Kozak, Marcin

    2013-09-01

    Parasitus bituberosus Karg (Acari: Parasitidae) is one of the predatory mite species inhabiting mushroom houses. It is known to accept a wide range of prey, suggesting that it may be a promising candidate for the biological control of key pests of mushroom culture. In our study it did not show any prey preference among four groups of small organisms often occurring in mushroom growth medium, namely rhabditid nematodes, pygmephorid mites, and sciarid and phorid fly larvae. Nevertheless, the type of food these predators fed on affects their development. The shortest egg-to-adult development time was obtained on a nematode diet. On a diet of phorid larvae, mite development stopped at the deutonymph stage; none reached adulthood. All other diets sufficed to reach the adult phase. Female fecundity when fed nematodes and sciarid larvae did not differ, but it was much lower when fed pygmephorid mites. Other life table parameters confirmed that pygmephorid mites constituted the worst diet for P. bituberosus. The highest intrinsic rate of population increase (r m = 0.34) was obtained on the nematode diet; when fed sciarid larvae and pygmephorid mites it was 0.25 and 0.14, respectively. Our study provides good reasons to further test P. bituberosus as biocontrol agent of especially sciarid flies and nematodes, especially when the compost is well colonized by mushroom mycelium (which retards nematode growth).

  17. Effects of vole fluctuations on the population dynamics of the barn owl Tyto alba.

    PubMed

    Klok, Chris; de Roos, Andre M

    2007-01-01

    Many predator species feed on prey that fluctuates in abundance from year to year. Birds of prey can face large fluctuations in food abundance i.e. small mammals, especially voles. These annual changes in prey abundance strongly affect the reproductive success and mortality of the individual predators and thus can be expected to influence their population dynamics and persistence. The barn owl, for example, shows large fluctuations in breeding success that correlate with the dynamics in voles, their main prey species. Analysis of the impact of fluctuations in vole abundance (their amplitude, peaks and lows, cycle length and regularity) with a simple predator prey model parameterized with literature data indicates population persistence is especially affected by years with low vole abundance. In these years the population can decline to low owl numbers such that the ensuing peak vole years cannot be exploited. This result is independent of the length and regularity of vole fluctuations. The relevance of this result for conservation of the barn owl and other birds of prey that show a numerical response to fluctuating prey species is discussed.

  18. Let's go beyond taxonomy in diet description: testing a trait-based approach to prey-predator relationships.

    PubMed

    Spitz, Jérôme; Ridoux, Vincent; Brind'Amour, Anik

    2014-09-01

    Understanding 'Why a prey is a prey for a given predator?' can be facilitated through trait-based approaches that identify linkages between prey and predator morphological and ecological characteristics and highlight key functions involved in prey selection. Enhanced understanding of the functional relationships between predators and their prey is now essential to go beyond the traditional taxonomic framework of dietary studies and to improve our knowledge of ecosystem functioning for wildlife conservation and management. We test the relevance of a three-matrix approach in foraging ecology among a marine mammal community in the northeast Atlantic to identify the key functional traits shaping prey selection processes regardless of the taxonomy of both the predators and prey. Our study reveals that prey found in the diet of marine mammals possess functional traits which are directly and significantly linked to predator characteristics, allowing the establishment of a functional typology of marine mammal-prey relationships. We found prey selection of marine mammals was primarily shaped by physiological and morphological traits of both predators and prey, confirming that energetic costs of foraging strategies and muscular performance are major drivers of prey selection in marine mammals. We demonstrate that trait-based approaches can provide a new definition of the resource needs of predators. This framework can be used to anticipate bottom-up effects on marine predator population dynamics and to identify predators which are sensitive to the loss of key prey functional traits when prey availability is reduced.

  19. Socioeconomic factors affecting marriage, divorce and birth rates in a Japanese population.

    PubMed

    Uchida, E; Araki, S; Murata, K

    1993-10-01

    The effects of low income, urbanisation and young age population on age-adjusted rates of first marriage, divorce and live birth among the Japanese population in 46 prefectures were analysed by stepwise regression for 1970 and for 1975. During this period, Japanese society experienced a drastic change from long-lasting economic growth to serious recession in 1973. In both 1970 and 1975, the first marriage rate for females was inversely related to low income and the divorce rates for both males and females were positively related to low income. The live birth rate was significantly related to low income, urbanisation and young age population only in 1975. The first marriage rate for females and the divorce rates for both sexes increased significantly but the first marriage rate for males and live birth rate significantly decreased between 1970 and 1975. These findings suggest that low income was the essential factor affecting first marriage for females and divorce for males and females.

  20. Population variation affects interactions between two California salt marsh plant species more than precipitation.

    PubMed

    Noto, Akana E; Shurin, Jonathan B

    2016-02-01

    Species that occur along broad environmental gradients often vary in phenotypic traits that make them better adapted to local conditions. Variation in species interactions across gradients could therefore be due to either phenotypic differences among populations or environmental conditions that shift the balance between competition and facilitation. To understand how the environment (precipitation) and variation among populations affect species interactions, we conducted a common garden experiment using two common salt marsh plant species, Salicornia pacifica and Jaumea carnosa, from six salt marshes along the California coast encompassing a large precipitation gradient. Plants were grown alone or with an individual of the opposite species from the same site and exposed to one of three precipitation regimes. J. carnosa was negatively affected in the presence of S. pacifica, while S. pacifica was facilitated by J. carnosa. The strength of these interactions varied by site of origin but not by precipitation treatment. These results suggest that phenotypic variation among populations can affect interaction strength more than environment, despite a threefold difference in precipitation. Geographic intraspecific variation may therefore play an important role in determining the strength of interactions in communities.

  1. Famine-affected, refugee, and displaced populations: recommendations for public health issues.

    PubMed

    1992-07-24

    During the past three decades, the most common emergencies affecting the health of large populations in developing countries have involved famine and forced migrations. The public health consequences of mass population displacement have been extensively documented. On some occasions, these migrations have resulted in extremely high rates of mortality, morbidity, and malnutrition. The most severe consequences of population displacement have occurred during the acute emergency phase, when relief efforts are in the early stage. During this phase, deaths--in some cases--were 60 times the crude mortality rate (CMR) among non-refugee populations in the country of origin (1). Although the quality of international disaster response efforts has steadily improved, the human cost of forced migration remains high. Since the early 1960s, most emergencies involving refugees and displaced persons have taken place in less developed countries where local resources have been insufficient for providing prompt and adequate assistance. The international community's response to the health needs of these populations has been at times inappropriate, relying on teams of foreign medical personnel with little or no training. Hospitals, clinics, and feeding centers have been set up without assessment of preliminary needs, and essential prevention programs have been neglected. More recent relief programs, however, emphasize a primary health care (PHC) approach, focusing on preventive programs such as immunization and oral rehydration therapy (ORT), promoting involvement by the refugee community in the provision of health services, and stressing more effective coordination and information gathering. The PHC approach offers long-term advantages, not only for the directly affected population, but also for the country hosting the refugees. A PHC strategy is sustainable and strengthens the national health development program.

  2. Temporal behaviour profiles of Mus musculus in nature are affected by population activity.

    PubMed

    Robbers, Yuri; Koster, Eva A S; Krijbolder, Doortje I; Ruijs, Amanda; van Berloo, Sander; Meijer, Johanna H

    2015-02-01

    Animals have circadian clocks that govern their activity pattern, resulting in 24h rhythms in physiology and behaviour. Under laboratory conditions, light is the major external signal that affects temporal patterns in behaviour, and Mus musculus is strictly nocturnal in its behaviour. In the present study we questioned whether under natural conditions, environmental factors other than light affect the temporal profile of mice. In order to test this, we investigated the activity patterns of free-ranging M. musculus in a natural habitat, using sensors and a camera integrated into a recording unit that the mice could freely enter and leave. Our data show that mice have seasonal fluctuations in activity duration (6.7±0.82 h in summer, 11.3±1.80 h in winter). Furthermore, although primarily nocturnal, wild mice also exhibit daytime activity from spring until late autumn. A multivariate analysis revealed that the major factor correlating with increased daytime activity was population activity, defined as the number of visits to the recording site. Day length had a small but significant effect. Further analysis revealed that the relative population activity (compared to the past couple of days) is a better predictor of daytime activity than absolute population activity. Light intensity and temperature did not have a significant effect on daytime activity. The amount of variance explained by external factors is 51.9%, leaving surprisingly little unexplained variance that might be attributed to the internal clock. Our data further indicate that mice determine population activity by comparing a given night with the preceding 2-7 nights, a time frame suggesting a role for olfactory cues. We conclude that relative population activity is a major factor controlling the temporal activity patterns of M. musculus in an unrestricted natural population.

  3. Tactile experience shapes prey-capture behavior in Etruscan shrews

    PubMed Central

    Anjum, Farzana; Brecht, Michael

    2012-01-01

    A crucial role of tactile experience for the maturation of neural response properties in the somatosensory system is well established, but little is known about the role of tactile experience in the development of tactile behaviors. Here we study how tactile experience affects prey capture behavior in Etruscan shrews, Suncus etruscus. Prey capture in adult shrews is a high-speed behavior that relies on precise attacks guided by tactile Gestalt cues. We studied the role of tactile experience by three different approaches. First, we analyzed the hunting skills of young shrews' right after weaning. We found that prey capture in young animals in most, but not all, aspects is similar to that of adults. Second, we performed whisker trimming for 3–4 weeks after birth. Such deprivation resulted in a lasting disruption of prey capture even after whisker re-growth: attacks lacked precise targeting and had a lower success rate. Third, we presented adult shrews with an entirely novel prey species, the giant cockroach. The shape of this roach is very different from the shrew's normal (cricket) prey and the thorax—the preferred point of attack in crickets—is protected by a heavy cuticle. Initially shrews attacked giant roaches the same way they attack crickets and targeted the thoracic region. With progressive experience, however, shrews adopted a new attack strategy targeting legs and underside of the roaches while avoiding other body parts. Speed and efficiency of attacks improved. These data suggest that tactile experience shapes prey capture behavior. PMID:22701408

  4. Tactile experience shapes prey-capture behavior in Etruscan shrews.

    PubMed

    Anjum, Farzana; Brecht, Michael

    2012-01-01

    A crucial role of tactile experience for the maturation of neural response properties in the somatosensory system is well established, but little is known about the role of tactile experience in the development of tactile behaviors. Here we study how tactile experience affects prey capture behavior in Etruscan shrews, Suncus etruscus. Prey capture in adult shrews is a high-speed behavior that relies on precise attacks guided by tactile Gestalt cues. We studied the role of tactile experience by three different approaches. First, we analyzed the hunting skills of young shrews' right after weaning. We found that prey capture in young animals in most, but not all, aspects is similar to that of adults. Second, we performed whisker trimming for 3-4 weeks after birth. Such deprivation resulted in a lasting disruption of prey capture even after whisker re-growth: attacks lacked precise targeting and had a lower success rate. Third, we presented adult shrews with an entirely novel prey species, the giant cockroach. The shape of this roach is very different from the shrew's normal (cricket) prey and the thorax-the preferred point of attack in crickets-is protected by a heavy cuticle. Initially shrews attacked giant roaches the same way they attack crickets and targeted the thoracic region. With progressive experience, however, shrews adopted a new attack strategy targeting legs and underside of the roaches while avoiding other body parts. Speed and efficiency of attacks improved. These data suggest that tactile experience shapes prey capture behavior.

  5. Functional responses of cougars (Puma concolor) in a multiple prey-species system.

    PubMed

    Soria-Díaz, Leroy; Fowler, Mike S; Monroy-Vilchis, Octavio; Oro, Daniel

    2017-03-06

    The study of predator-prey interactions is commonly analyzed using functional responses to gain an understanding of predation patterns and the impact they have on prey populations. Despite this, little is known about predator-prey systems with multiple prey species in sites near the equator. Here we studied the functional response of cougars (Puma concolor) in Sierra Nanchititla Natural Reserve (Mexico), in relation to their main prey, armadillo (Dasypus novemcinctus), coati (Nasua narica) and white-tailed deer (Odocoileus virginianus). Between 2004 and 2010, cougar scats were collected along five transects to estimate the consumption of different prey species. A relative abundance index (RAI) was calculated for each prey species and cougar using 18 camera traps. We compared Holling type I, II and III functional response models to determine patterns in prey consumption based on the relative abundance and biomass of each prey species consumed. The three main prey species comprised 55% (armadillo), 17% (coati) and 8% (white-tailed deer) of the diet. Type I and II functional responses described consumption of the two most common prey species armadillos and coati similarly well, while a type I response best characterized consumption of white-tailed deer. A negative correlation between the proportions of armadillo versus coati and white-tailed deer biomass in cougar scats suggests switching to consume alternative prey, confirming high foraging plasticity of this carnivore. This work represents one of the few studies to compare functional responses across multiple prey species, combined with evidence for prey-switching at low densities of preferred prey. This article is protected by copyright. All rights reserved.

  6. Coupling in goshawk and grouse population dynamics in Finland.

    PubMed

    Tornberg, Risto; Lindén, Andreas; Byholm, Patrik; Ranta, Esa; Valkama, Jari; Helle, Pekka; Lindén, Harto

    2013-04-01

    Different prey species can vary in their significance to a particular predator. In the simplest case, the total available density or biomass of a guild of several prey species might be most relevant to the predator, but behavioural and ecological traits of different prey species can alter the picture. We studied the population dynamics of a predator-prey setting in Finland by fitting first-order log-linear vector autoregressive models to long-term count data from active breeding sites of the northern goshawk (Accipiter gentilis; 1986-2009), and to three of its main prey species (1983-2010): hazel grouse (Bonasa bonasia), black grouse (Tetrao tetrix) and capercaillie (T. urogallus), which belong to the same forest grouse guild and show synchronous fluctuations. Our focus was on modelling the relative significance of prey species and estimating the tightness of predator-prey coupling in order to explain the observed population dynamics, simultaneously accounting for effects of density dependence, winter severity and spatial correlation. We established nine competing candidate models, where different combinations of grouse species affect goshawk dynamics with lags of 1-3 years. Effects of goshawk on grouse were investigated using one model for each grouse species. The most parsimonious model for goshawk indicated separate density effects of hazel grouse and black grouse, and different effects with lags of 1 and 3 years. Capercaillie showed no effects on goshawk populations, while the effect of goshawk on grouse was clearly negative only in capercaillie. Winter severity had significant adverse effects on goshawk and hazel grouse populations. In combination, large-scale goshawk-grouse population dynamics are coupled, but there are no clear mutual effects for any of the individual guild members. In a broader context, our study suggests that pooling data on closely related, synchronously fluctuating prey species can result in the loss of relevant information, rather than

  7. Birds of Prey of Wisconsin.

    ERIC Educational Resources Information Center

    Hamerstrom, Frances

    This copiously illustrated document is designed to be a field quide to birds of prey that are common to Wisconsin, as well as to some that enter the state occasionally. An introduction discusses birds of prey with regard to migration patterns, the relationship between common names and the attitudes of people toward certain birds, and natural signs…

  8. Interactive effects of predation risk and conspecific density on the nutrient stoichiometry of prey.

    PubMed

    Guariento, Rafael D; Carneiro, Luciana S; Jorge, Jaqueiuto S; Borges, Angélica N; Esteves, Francisco A; Caliman, Adriano

    2015-11-01

    The mere presence of predators (i.e., predation risk) can alter consumer physiology by restricting food intake and inducing stress, which can ultimately affect prey-mediated ecosystem processes such as nutrient cycling. However, many environmental factors, including conspecific density, can mediate the perception of risk by prey. Prey conspecific density has been defined as a fundamental feature that modulates perceived risk. In this study, we tested the effects of predation risk on prey nutrient stoichiometry (body and excretion). Using a constant predation risk, we also tested the effects of varying conspecific densities on prey responses to predation risk. To answer these questions, we conducted a mesocosm experiment using caged predators (Belostoma sp.), and small bullfrog tadpoles (Lithobates catesbeianus) as prey. We found that L. catesbeianus tadpoles adjust their body nutrient stoichiometry in response to predation risk, which is affected by conspecific density. We also found that the prey exhibited strong morphological responses to predation risk (i.e., an increase in tail muscle mass), which were positively correlated to body nitrogen content. Thus, we pose the notion that in risky situations, adaptive phenotypic responses rather than behavioral ones might partially explain why prey might have a higher nitrogen content under predation risk. In addition, the interactive roles of conspecific density and predation risk, which might result in reduced perceived risk and physiological restrictions in prey, also affected how prey stoichiometry responded to the fear of predation.

  9. Impact of cannibalism on predator-prey dynamics: size-structured interactions and apparent mutualism.

    PubMed

    Rudolf, Volker H W

    2008-06-01

    Direct and indirect interactions between two prey species can strongly alter the dynamics of predator-prey systems. Most predators are cannibalistic, and as a consequence, even systems with only one predator and one prey include two prey types: conspecifics and heterospecifics. The effects of the complex direct and indirect interactions that emerge in such cannibalistic systems are still poorly understood. This study examined how the indirect interaction between conspecific and heterospecific prey affects cannibalism and predation rates and how the direct interactions between both species indirectly alter the effect of the cannibalistic predator. I tested for these effects using larvae of the stream salamanders Eurycea cirrigera (prey) and Pseudotriton ruber (cannibalistic predator) by manipulating the relative densities of the conspecific and heterospecific prey in the presence and absence of the predator in experimental streams. The rates of cannibalism and heterospecific predation were proportional to the respective densities and negatively correlated, indicating a positive indirect interaction between conspecific and heterospecific prey, similar to "apparent mutualism." Direct interactions between prey species did not alter the effect of the predator. Although both types of prey showed a similar 30% reduction in night activity and switch in microhabitat use in response to the presence of the predator, cannibalism rates were three times higher than heterospecific predation rates irrespective of the relative densities of the two types of prey. Cumulative predation risks differed even more due to the 48% lower growth rate of conspecific prey. Detailed laboratory experiments suggest that the 3:1 difference in cannibalism and predation rate was due to the higher efficiency of heterospecific prey in escaping immediate attacks. However, no difference was observed when the predator was a closely related salamander species, Gyrinophilus porphyriticus, indicating that

  10. Spatiotemporal dynamics of the epidemic transmission in a predator-prey system.

    PubMed

    Su, Min; Hui, Cang; Zhang, Yanyu; Li, Zizhen

    2008-11-01

    Epidemic transmission is one of the critical density-dependent mechanisms that affect species viability and dynamics. In a predator-prey system, epidemic transmission can strongly affect the success probability of hunting, especially for social animals. Predators, therefore, will suffer from the positive density-dependence, i.e., Allee effect, due to epidemic transmission in the population. The rate of species contacting the epidemic, especially for those endangered or invasive, has largely increased due to the habitat destruction caused by anthropogenic disturbance. Using ordinary differential equations and cellular automata, we here explored the epidemic transmission in a predator-prey system. Results show that a moderate Allee effect will destabilize the dynamics, but it is not true for the extreme Allee effect (weak or strong). The predator-prey dynamics amazingly stabilize by the extreme Allee effect. Predators suffer the most from the epidemic disease at moderate transmission probability. Counter-intuitively, habitat destruction will benefit the control of the epidemic disease. The demographic stochasticity dramatically influences the spatial distribution of the system. The spatial distribution changes from oil-bubble-like (due to local interaction) to aggregated spatially scattered points (due to local interaction and demographic stochasticity). It indicates the possibility of using human disturbance in habitat as a potential epidemic-control method in conservation.

  11. Dynamics of Predator-Prey Metapopulations with Allee Effects.

    PubMed

    Fan, Meng; Wu, Ping; Feng, Zhilan; Swihart, Robert K

    2016-08-01

    Allee effects increasingly are recognized as influential determinants of population dynamics, especially in disturbed landscapes. We developed a predator-prey metapopulation model to study the impact of an Allee effect on predator-prey. The model incorporates habitat destruction and predators with imperfect information about prey distribution. Criteria are established for the existence and stability of equilibria, and the possible existence of a limit cycle is discussed. Numerical bifurcation analysis of the model is carried out to examine the impact of Allee effects as well as other key processes on trophic dynamics. Inclusion of Allee effects produces a richer array of dynamics than earlier models in which it was absent. When prey interacts with generalist predators, Allee effects operate synergistically to depress prey populations. Allee effects are more likely to depress occupancy levels when destruction of habitat patches is moderate; at severe levels of destruction, Allee effects are swamped by demographic effects of habitat loss. Stronger Allee effects correspond to lower thresholds of predator colonization rates at which prey become extinct. We discuss implications of our model for conservation of rare species as well as pest management via biocontrol.

  12. Population sex-ratio affecting behavior and physiology of overwintering bank voles (Myodes glareolus).

    PubMed

    Sipari, Saana; Haapakoski, Marko; Klemme, Ines; Palme, Rupert; Sundell, Janne; Ylönen, Hannu

    2016-05-15

    Many boreal rodents are territorial during the breeding season but during winter become social and aggregate for more energy efficient thermoregulation. Communal winter nesting and social interactions are considered to play an important role for the winter survival of these species, yet the topic is relatively little explored. Females are suggested to be the initiators of winter aggregations and sometimes reported to survive better than males. This could be due to the higher social tolerance observed in overwintering females than males. Hormonal status could also affect winter behavior and survival. For instance, chronic stress can have a negative effect on survival, whereas high gonadal hormone levels, such as testosterone, often induce aggressive behavior. To test if the winter survival of females in a boreal rodent is better than that of males, and to assess the role of females in the winter aggregations, we generated bank vole (Myodes glareolus) populations of three different sex ratios (male-biased, female-biased and even density) under semi-natural conditions. We monitored survival, spatial behavior and hormonal status (stress and testosterone) during two winter months. We observed no significant differences in survival between the sexes or among populations with differing sex-ratios. The degree of movement area overlap was used as an indicator of social tolerance and potential communal nesting. Individuals in male biased populations showed a tendency to be solitary, whereas in female biased populations there was an indication of winter aggregation. Females living in male-biased populations had higher stress levels than the females from the other populations. The female-biased sex-ratio induced winter breeding and elevated testosterone levels in males. Thus, our results suggest that the sex-ratio of the overwintering population can lead to divergent overwintering strategies in bank voles.

  13. The Lotka-Volterra predator-prey model with foraging-predation risk trade-offs.

    PubMed

    Krivan, Vlastimil

    2007-11-01

    This article studies the effects of adaptive changes in predator and/or prey activities on the Lotka-Volterra predator-prey population dynamics. The model assumes the classical foraging-predation risk trade-offs: increased activity increases population growth rate, but it also increases mortality rate. The model considers three scenarios: prey only are adaptive, predators only are adaptive, and both species are adaptive. Under all these scenarios, the neutral stability of the classical Lotka-Volterra model is partially lost because the amplitude of maximum oscillation in species numbers is bounded, and the bound is independent of the initial population numbers. Moreover, if both prey and predators behave adaptively, the neutral stability can be completely lost, and a globally stable equilibrium would appear. This is because prey and/or predator switching leads to a piecewise constant prey (predator) isocline with a vertical (horizontal) part that limits the amplitude of oscillations in prey and predator numbers, exactly as suggested by Rosenzweig and MacArthur in their seminal work on graphical stability analysis of predator-prey systems. Prey and predator activities in a long-term run are calculated explicitly. This article shows that predictions based on short-term behavioral experiments may not correspond to long-term predictions when population dynamics are considered.

  14. Bifurcation analysis of a predator-prey model with predators using hawk and dove tactics.

    PubMed

    Auger, Pierre; Kooi, Bob W; Bravo de la Parra, Rafael; Poggiale, Jean-Christophe

    2006-02-07

    Most classical prey-predator models do not take into account the behavioural structure of the population. Usually, the predator and the prey populations are assumed to be homogeneous, i.e. all individuals behave in the same way. In this work, we shall take into account different tactics that predators can use for exploiting a common self-reproducing resource, the prey population. Predators fight together in order to keep or to have access to captured prey individuals. Individual predators can use two behavioural tactics when they encounter to dispute a prey, the classical hawk and dove tactics. We assume two different time scales. The fast time scale corresponds to the inter-specific searching and handling for the prey by the predators and the intra-specific fighting between the predators. The slow time scale corresponds to the (logistic) growth of the prey population and mortality of the predator. We take advantage of the two time scales to reduce the dimension of the model and to obtain an aggregated model that describes the dynamics of the total predator and prey densities at the slow time scale. We present the bifurcation analysis of the model and the effects of the different predator tactics on persistence and stability of the prey-predator community are discussed.

  15. Predator-prey relationships in a Mediterranean vertebrate system: Bonelli's eagles, rabbits and partridges.

    PubMed

    Moleón, Marcos; Sánchez-Zapata, José A; Gil-Sánchez, José M; Ballesteros-Duperón, Elena; Barea-Azcón, José M; Virgós, Emilio

    2012-03-01

    How predators impact on prey population dynamics is still an unsolved issue for most wild predator-prey communities. When considering vertebrates, important concerns constrain a comprehensive understanding of the functioning of predator-prey relationships worldwide; e.g. studies simultaneously quantifying 'functional' and 'numerical responses' (i.e., the 'total response') are rare. The functional, the numerical, and the resulting total response (i.e., how the predator per capita intake, the population of predators and the total of prey eaten by the total predators vary with prey densities) are fundamental as they reveal the predator's ability to regulate prey population dynamics. Here, we used a multi-spatio-temporal scale approach to simultaneously explore the functional and numerical responses of a territorial predator (Bonelli's eagle Hieraaetus fasciatus) to its two main prey species (the rabbit Oryctolagus cuniculus and the red-legged partridge Alectoris rufa) during the breeding period in a Mediterranean system of south Spain. Bonelli's eagle responded functionally, but not numerically, to rabbit/partridge density changes. Type II, non-regulatory, functional responses (typical of specialist predators) offered the best fitting models for both prey. In the absence of a numerical response, Bonelli's eagle role as a regulating factor of rabbit and partridge populations seems to be weak in our study area. Simple (prey density-dependent) functional response models may well describe the short-term variation in a territorial predator's consumption rate in complex ecosystems.

  16. Effects of stochastic population fluctuations in two models of biological macroevolution

    NASA Astrophysics Data System (ADS)

    Murase, Yohsuke; Shimada, Takashi; Ito, Nobuyasu; Rikvold, Per Arne

    Two mathematical models of macroevolution are studied. These models have population dynamics at the species level, and mutations and extinction of species are also included. The population dynamics are updated by difference equations with stochastic noise terms that characterize population fluctuations. The effects of the stochastic population fluctuations on diversity and total population sizes on evolutionary time scales are studied. In one model, species can make either predator-prey, mutualistic, or competitive interactions, while the other model allows only predator-prey interactions. When the noise in the population dynamics is strong enough, both models show intermittent behavior and their power spectral densities show approximate 1/f fluctuations. In the noiseless limit, the two models have different power spectral densities. For the predator-prey model, 1/f2 fluctuations appears, indicating random-walk like behavior, while the other model still shows 1/f noise. These results indicate that stochastic population fluctuations may significantly affect long-time evolutionary dynamics.

  17. Imbalance of predator and prey armament: geographic clines in phenotypic interface and natural selection.

    PubMed

    Toju, Hirokazu; Sota, Teiji

    2006-01-01

    The escalation of defensive/offensive arms is ubiquitous in prey-predator evolutionary interactions. However, there may be a geographically varying imbalance in the armaments of participating species that affects the outcome of local interactions. In a system involving the Japanese camellia (Camellia japonica) and its obligate seed predator, the camellia weevil (Curculio camelliae), we investigated the geographic variation in physical defensive/offensive traits and that in natural selection on the plant's defense among 17 populations over a 700-km-wide area in Japan. The sizes of the plant defensive apparatus (pericarp thickness) and the weevil offensive apparatus (rostrum length) clearly correlated with each other across populations. Nevertheless, the balance in armaments between the two species was geographically structured. In the populations for which the balance was relatively advantageous for the plant's defense, natural selection on the trait was stronger because in the other populations, most plant individuals were too vulnerable to resist the attacks of the weevil, and their seeds were infested independent of pericarp thickness. We also found that the imbalance between the defensive/offensive armaments and the intensity of natural selection showed clear latitudinal clines. Overall, our results suggest that the imbalance of armament between sympatric prey and predator could determine the strength of local selection and that climatic conditions could affect the local and overall trajectory of coevolutionary arms races.

  18. Interactive influence of biotic and abiotic cues on the plasticity of preferred body temperatures in a predator-prey system.

    PubMed

    Smolinský, Radovan; Gvoždík, Lumír

    2012-09-01

    The ability to modify phenotypes in response to heterogeneity of the thermal environment represents an important component of an ectotherm's non-genetic adaptive capacity. Despite considerable attention being dedicated to the study of thermally-induced developmental plasticity, whether or not interspecific interactions shape the plastic response in both a predator and its prey remains unknown. We tested several predictions about the joint influence of predator/prey scents and thermal conditions on the plasticity of preferred body temperatures (T (p)) in both actors of this interaction, using a dragonfly nymphs-newt larvae system. Dragonfly nymphs (Aeshna cyanea) and newt eggs (Ichthyosaura alpestris) were subjected to fluctuating cold and warm thermal regimes (7-12 and 12-22°C, respectively) and the presence/absence of a predator or prey chemical cues. Preferred body temperatures were measured in an aquatic thermal gradient (5-33°C) over a 24-h period. Newt T (p) increased with developmental temperature irrespective of the presence/absence of predator cues. In dragonflies, thermal reaction norms for T (p) were affected by the interaction between temperature and prey cues. Specifically, the presence of newt scents in cold regime lowered dragonfly T (p). We concluded that predator-prey interactions influenced thermally-induced plasticity of T (p) but not in a reciprocal fashion. The occurrence of frequency-dependent thermal plasticity may have broad implications for predator-prey population dynamics, the evolution of thermal biology traits, and the consequences of sustaining climate change within ecological communities.

  19. [Factors affecting access to health care institutions by the internally displaced population in Colombia].

    PubMed

    Mogollón-Pérez, Amparo Susana; Vázquez, María Luisa

    2008-04-01

    In Colombia, the on-going armed conflict causes displacement of thousands of persons that suffer its economic, social, and health consequences. Despite government regulatory efforts, displaced people still experience serious problems in securing access to health care. In order to analyze the institutional factors that affect access to health care by the internally displaced population, a qualitative, exploratory, and descriptive study was carried out by means of semi-structured individual interviews with a criterion sample of stakeholders (81). A narrative content analysis was performed, with mixed generation of categories and segmentation of data by themes and informants. Inadequate funding, providers' problems with reimbursement by insurers, and lack of clear definition as to coverage under the Social Security System in Health pose barriers to access to health care by the internally displaced population. Bureaucratic procedures, limited inter- and intra-sector coordination, and scarce available resources for public health service providers also affect access. Effective government action is required to ensure the right to health care for this population.

  20. Bacterial predator–prey dynamics in microscale patchy landscapes

    PubMed Central

    Rotem, Or; Jurkevitch, Edouard; Dekker, Cees

    2016-01-01

    Soil is a microenvironment with a fragmented (patchy) spatial structure in which many bacterial species interact. Here, we explore the interaction between the predatory bacterium Bdellovibrio bacteriovorus and its prey Escherichia coli in microfabricated landscapes. We ask how fragmentation influences the prey dynamics at the microscale and compare two landscape geometries: a patchy landscape and a continuous landscape. By following the dynamics of prey populations with high spatial and temporal resolution for many generations, we found that the variation in predation rates was twice as large in the patchy landscape and the dynamics was correlated over shorter length scales. We also found that while the prey population in the continuous landscape was almost entirely driven to extinction, a significant part of the prey population in the fragmented landscape persisted over time. We observed significant surface-associated growth, especially in the fragmented landscape and we surmise that this sub-population is more resistant to predation. Our results thus show that microscale fragmentation can significantly influence bacterial interactions. PMID:26865299

  1. Foraging and vulnerability traits modify predator-prey body mass allometry: freshwater macroinvertebrates as a case study.

    PubMed

    Klecka, Jan; Boukal, David S

    2013-09-01

    1. Predation is often size selective, but the role of other traits of the prey and predators in their interactions is little known. This hinders our understanding of the causal links between trophic interactions and the structure of animal communities. Better knowledge of trophic traits underlying predator-prey interactions is also needed to improve models attempting to predict food web structure and dynamics from known species traits. 2. We carried out laboratory experiments with common freshwater macroinvertebrate predators (diving beetles, dragonfly and damselfly larvae and water bugs) and their prey to assess how body size and traits related to foraging (microhabitat use, feeding mode and foraging mode) and to prey vulnerability (microhabitat use, activity and escape behaviour) affect predation strength. 3. The underlying predator-prey body mass allometry characterizing mean prey size and total predation pressure was modified by feeding mode of the predators (suctorial or chewing). Suctorial predators fed upon larger prey and had ˜3 times higher mass-specific predation rate than chewing predators of the same size and may thus have stronger effect on prey abundance. 4. Strength of individual trophic links, measured as mortality of the focal prey caused by the focal predator, was determined jointly by the predator and prey body mass and their foraging and vulnerability traits. In addition to the feeding mode, interactions between prey escape behaviour (slow or fast), prey activity (sedentary or active) and predator foraging mode (searching or ambush) strongly affected prey mortality. Searching predators was ineffective in capturing fast-escape prey in comparison with the remaining predator-prey combinations, while ambush predators caused higher mortality than searching predators and the difference was larger in active prey. 5. Our results imply that the inclusion of the commonly available qualitative data on foraging traits of predators and vulnerability traits

  2. Snake (Colubridae: Thamnophis) predatory responses to chemical cues from native and introduced prey species

    USGS Publications Warehouse

    Mullin, S.J.; Imbert, H.; Fish, J.M.; Ervin, E.L.; Fisher, R.N.

    2004-01-01

    Several aquatic vertebrates have been introduced into freshwater systems in California over the past 100 years. Some populations of the two-striped garter snake (Thamnophis hammondii) have lived in sympatry with these species since their introduction; other populations have never encountered them. To assess the possible adaptation to a novel prey, we tested the predatory responses of T. hammondii from different populations to different chemosensory cues from native and introduced prey species. We presented chemical extracts from potential prey types and 2 control odors to individual snakes on cotton swabs and recorded the number of tongue flicks and attacks directed at each swab. Subject response was higher for prey odors than control substances. Odors from introduced centrarchid fish (Lepomis) elicited higher response levels than other prey types, including native anuran larvae (Pseudacris regilla). The pattern of response was similar for both populations of snakes (experienced and nai??ve, with respect to the introduced prey). We suggest that the generalist aquatic lifestyle of T. hammondii has allowed it to take advantage of increasing populations of introduced prey. Decisions on the management strategies for some of these introduced prey species should include consideration of how T. hammondii populations might respond in areas of sympatry.

  3. Genomewide Scan for Affective Disorder Susceptibility Loci in Families of a Northern Swedish Isolated Population

    PubMed Central

    Venken, Tine; Claes, Stephan; Sluijs, Samuël; Paterson, Andrew D.; van Duijn, Cornelia; Adolfsson, Rolf; Del-Favero, Jurgen; Van Broeckhoven, Christine

    2005-01-01

    We analyzed nine multigenerational families with ascertained affective spectrum disorders in northern Sweden's geographically isolated population of Västerbotten. This northern Swedish population, which originated from a limited number of early settlers ∼8,000 years ago, is genetically more homogeneous than outbred populations. In a genomewide linkage analysis, we identified three chromosomal loci with multipoint LOD scores (MPLOD) ⩾2 at 9q31.1-q34.1 (MPLOD 3.24), 6q22.2-q24.2 (MPLOD 2.48), and 2q33-q36 (MPLOD 2.26) under a recessive affected-only model. Follow-up genotyping with application of a 2-cM density simple-tandem-repeat (STR) map confirmed linkage at 9q31.1-q34.1 (MPLOD 3.22), 6q23-q24 (MPLOD 3.25), and 2q33-q36 (MPLOD 2.2). In an initial analysis aimed at identification of the underlying susceptibility genes, we focused our attention on the 9q locus. We fine mapped this region at a 200-kb STR density, with the result of an MPLOD of 3.70. Genealogical studies showed that three families linked to chromosome 9q descended from common founder couples ∼10 generations ago. In this ∼10-generation pedigree, a common ancestral haplotype was inherited by the patients, which reduced the 9q candidate region to 1.6 Mb. Further, the shared haplotype was observed in 4.2% of patients with bipolar disorder with alternating episodes of depression and mania, but it was not observed in control individuals in a patient-control sample from the Västerbotten isolate. These results suggest a susceptibility locus on 9q31-q33 for affective disorder in this common ancestral region. PMID:15614721

  4. Predator and prey space use: dragonflies and tadpoles in an interactive game.

    PubMed

    Hammond, John I; Luttbeg, Barney; Sih, Andrew

    2007-06-01

    Predator and prey spatial distributions have important population and community level consequences. However, little is known either theoretically or empirically about behavioral mechanisms that underlie the spatial patterns that emerge when predators and prey freely interact. We examined the joint space use and behavioral rules governing movement of freely interacting groups of odonate (dragonfly) predators and two size classes of anuran (tadpole) prey in arenas containing two patches with different levels of the prey's resource. Predator and prey movement and space use was quantified both when they were apart and together. When apart from predators, large tadpoles strongly preferred the high resource patch. When apart from prey, dragonflies weakly preferred the high resource patch. When together, large prey shifted to a uniform distribution, while predators strongly preferred the high resource patch. These patterns qualitatively fit the predictions of several three trophic level, ideal free distribution models. In contrast, the space use of small prey and predators did not deviate from uniform. Three measures of joint space use (spatial correlations, overlap, and co-occurrence) concurred in suggesting that prey avoidance of predators was more important than predator attraction to prey in determining overall spatial patterns. To gain additional insight into behavioral mechanisms, we used a model selection approach to identify behavioral movement rules that can potentially explain the observed, emergent patterns of space use. Prey were more likely to leave patches with more predators and more conspecific competitors; resources had relatively weak effects on prey movements. In contrast, predators were more likely to leave patches with low resources (that they do not consume) and more competing predators; prey had relatively little effect on predator movements. These results highlight the importance of investigating freely interacting predators and prey, the potential

  5. Deficits in facial affect recognition among antisocial populations: a meta-analysis.

    PubMed

    Marsh, Abigail A; Blair, R J R

    2008-01-01

    Individuals with disorders marked by antisocial behavior frequently show deficits in recognizing displays of facial affect. Antisociality may be associated with specific deficits in identifying fearful expressions, which would implicate dysfunction in neural structures that subserve fearful expression processing. A meta-analysis of 20 studies was conducted to assess: (a) if antisocial populations show any consistent deficits in recognizing six emotional expressions; (b) beyond any generalized impairment, whether specific fear recognition deficits are apparent; and (c) if deficits in fear recognition are a function of task difficulty. Results show a robust link between antisocial behavior and specific deficits in recognizing fearful expressions. This impairment cannot be attributed solely to task difficulty. These results suggest dysfunction among antisocial individuals in specified neural substrates, namely the amygdala, involved in processing fearful facial affect.

  6. Behavioural and developmental responses of predatory coral reef fish to variation in the abundance of prey

    NASA Astrophysics Data System (ADS)

    Beukers-Stewart, B. D.; Beukers-Stewart, J. S.; Jones, G. P.

    2011-09-01

    Ecological theory suggests that the behaviour, growth and abundance of predators will be strongly influenced by the abundance of prey. Predators may in turn play an important role in structuring prey populations and communities. Responses of predators to variation in prey abundance have most commonly been demonstrated in low-diversity communities where food webs are relatively simple. How predators respond in highly diverse assemblages such as in coral reef habitats is largely unknown. This study describes an experiment that examined how the movement, diet and growth of the coral reef piscivore, Cephalopholis boenak (Serranidae) responded to variation in the abundance of its prey. Predator densities were standardised on small patch reefs made from the lagoonal reef-building coral, Porites cylindrica. These patch reefs exhibited natural variation in the abundance and community structure of multiple species of prey. However, our experiment generated a relatively simple predator-prey relationship, with C. boenak primarily responding to the most abundant species of prey. Three responses of predators were observed: aggregative, functional and developmental. Thirty-one per cent of individuals moved between patch reefs during the experiment, all from areas of relatively low to high prey density. Feeding rates were higher on patch reefs of high prey density, while growth rates of fish that remained on low prey density reefs throughout the experiment were lower. Growth rates of C. boenak on the experimental reefs were also much higher than for those living on natural patch reefs over the same time period, corresponding with overall differences in prey abundance. These results suggest that local abundance, feeding rate and growth of C. boenak were closely linked to the abundance of their main prey. This combination of predatory responses is a potential mechanism behind recent observations of density-dependent mortality and population regulation of prey in coral reef fish

  7. Risky prey behavior evolves in risky habitats.

    PubMed

    Urban, Mark C

    2007-09-04

    Longstanding theory in behavioral ecology predicts that prey should evolve decreased foraging rates under high predation threat. However, an alternative perspective suggests that growth into a size refuge from gape-limited predation and the future benefits of large size can outweigh the initial survival costs of intense foraging. Here, I evaluate the relative contributions of selection from a gape-limited predator (Ambystoma opacum) and spatial location to explanations of variation in foraging, growth, and survival in 10 populations of salamander larvae (Ambystoma maculatum). Salamander larvae from populations naturally exposed to intense A. opacum predation risk foraged more actively under common garden conditions. Higher foraging rates were associated with low survival in populations exposed to free-ranging A. opacum larvae. Results demonstrate that risky foraging activity can evolve in high predation-risk habitats when the dominant predators are gape-limited. This finding invites the further exploration of diverse patterns of prey foraging behavior that depends on natural variation in predator size-selectivity. In particular, prey should adopt riskier behaviors under predation threat than expected under existing risk allocation models if foraging effort directly reduces the duration of risk by growth into a size refuge. Moreover, evidence from this study suggests that foraging has evolved over microgeographic scales despite substantial modification by regional gene flow. This interaction between local selection and spatial location suggests a joint role for adaptation and maladaptation in shaping species interactions across natural landscapes, which is a finding with implications for dynamics at the population, community, and metacommunity levels.

  8. Are lemmings prey or predators?

    NASA Astrophysics Data System (ADS)

    Turchin, P.; Oksanen, L.; Ekerholm, P.; Oksanen, T.; Henttonen, H.

    2000-06-01

    Large oscillations in the populations of Norwegian lemmings have mystified both professional ecologists and lay public. Ecologists suspect that these oscillations are driven by a trophic mechanism: either an interaction between lemmings and their food supply, or an interaction between lemmings and their predators. If lemming cycles are indeed driven by a trophic interaction, can we tell whether lemmings act as the resource (`prey') or the consumer (`predator')? In trophic interaction models, peaks of resource density generally have a blunt, rounded shape, whereas peaks of consumer density are sharp and angular. Here we have applied several statistical tests to three lemming datasets and contrasted them with comparable data for cyclic voles. We find that vole peaks are blunt, consistent with their cycles being driven by the interaction with predators. In contrast, the shape of lemming peaks is consistent with the hypothesis that lemmings are functional predators, that is, their cycles are driven by their interaction with food plants. Our findings suggest that a single mechanism, such as interaction between rodents and predators, is unlikely to provide the `universal' explanation of all cyclic rodent dynamics.

  9. Thermoregulatory behaviour affects prevalence of chytrid fungal infection in a wild population of Panamanian golden frogs

    PubMed Central

    Richards-Zawacki, Corinne L.

    2010-01-01

    Predicting how climate change will affect disease dynamics requires an understanding of how the environment affects host–pathogen interactions. For amphibians, global declines and extinctions have been linked to a pathogenic chytrid fungus, Batrachochytrium dendrobatidis. Using a combination of body temperature measurements and disease assays conducted before and after the arrival of B. dendrobatidis, this study tested the hypothesis that body temperature affects the prevalence of infection in a wild population of Panamanian golden frogs (Atelopus zeteki). The timing of first detection of the fungus was consistent with that of a wave of epidemic infections spreading south and eastward through Central America. During the epidemic, many golden frogs modified their thermoregulatory behaviour, raising body temperatures above their normal set point. Odds of infection decreased with increasing body temperature, demonstrating that even slight environmental or behavioural changes have the potential to affect an individual's vulnerability to infection. The thermal dependency of the relationship between B. dendrobatidis and its amphibian hosts demonstrates how the progression of an epidemic can be influenced by complex interactions between host and pathogen phenotypes and the environments in which they are found. PMID:19864287

  10. Thermoregulatory behaviour affects prevalence of chytrid fungal infection in a wild population of Panamanian golden frogs.

    PubMed

    Richards-Zawacki, Corinne L

    2010-02-22

    Predicting how climate change will affect disease dynamics requires an understanding of how the environment affects host-pathogen interactions. For amphibians, global declines and extinctions have been linked to a pathogenic chytrid fungus, Batrachochytrium dendrobatidis. Using a combination of body temperature measurements and disease assays conducted before and after the arrival of B. dendrobatidis, this study tested the hypothesis that body temperature affects the prevalence of infection in a wild population of Panamanian golden frogs (Atelopus zeteki). The timing of first detection of the fungus was consistent with that of a wave of epidemic infections spreading south and eastward through Central America. During the epidemic, many golden frogs modified their thermoregulatory behaviour, raising body temperatures above their normal set point. Odds of infection decreased with increasing body temperature, demonstrating that even slight environmental or behavioural changes have the potential to affect an individual's vulnerability to infection. The thermal dependency of the relationship between B. dendrobatidis and its amphibian hosts demonstrates how the progression of an epidemic can be influenced by complex interactions between host and pathogen phenotypes and the environments in which they are found.

  11. Prey-predator model with a nonlocal consumption of prey

    NASA Astrophysics Data System (ADS)

    Banerjee, M.; Volpert, V.

    2016-08-01

    The prey-predator model with nonlocal consumption of prey introduced in this work extends previous studies of local reaction-diffusion models. Linear stability analysis of the homogeneous in space stationary solution and numerical simulations of nonhomogeneous solutions allow us to analyze bifurcations and dynamics of stationary solutions and of travelling waves. These solutions present some new properties in comparison with the local models. They correspond to different feeding strategies of predators observed in ecology.

  12. Prey-predator model with a nonlocal consumption of prey.

    PubMed

    Banerjee, M; Volpert, V

    2016-08-01

    The prey-predator model with nonlocal consumption of prey introduced in this work extends previous studies of local reaction-diffusion models. Linear stability analysis of the homogeneous in space stationary solution and numerical simulations of nonhomogeneous solutions allow us to analyze bifurcations and dynamics of stationary solutions and of travelling waves. These solutions present some new properties in comparison with the local models. They correspond to different feeding strategies of predators observed in ecology.

  13. Population regulation of epibenthic species in coastal ecosystems, with implications for latitudinal patterns

    NASA Astrophysics Data System (ADS)

    Freitas, Vânia; Bailey, Kevin M.; van der Veer, Henk W.

    The effect of predation on population regulation among (epi)benthic communities along the Atlantic coasts is reviewed. Population regulation requires density-dependent mortality at some phase in the life cycle, which can occur through predation under certain functional (Type III) and numerical feeding responses. Although the potential to induce regulation has been suggested for some epibenthic predators in the coastal zone, studies linking direct observations of predator-prey responses to observed regulation of the prey population are scarce. The identification of Type III functional response curves is mainly restricted to laboratory or cage studies, and the effect is confined to a limited range of prey densities. Numerical responses, especially predator aggregations, may be more common in the natural environment. The response type seems to be affected not only by habitat structure but also by water temperature. Prevailing temperature conditions can affect the functional response type possibly through changes in predator behavior. The effect of temperature on the response curve appears to be species-specific and hence, predator-prey specific. Therefore, no general effect of latitude on population regulation can be expected. Most likely there is a mosaic of predator-prey interactions that depend on local habitat, temperature conditions, multiple species interactions and predator and prey species types. We surmise that any latitudinal pattern in the overall recruitment variability along species distributional range is more likely to result from a trend in controlling rather than regulating factors.

  14. Trophic relay and prey switching - A stomach contents and calorimetric investigation of an ambassid fish and their saltmarsh prey

    NASA Astrophysics Data System (ADS)

    McPhee, Jack J.; Platell, Margaret E.; Schreider, Maria J.

    2015-12-01

    Trophic relay is an ecological model that involves the movement of biomass and energy from vegetation, such as saltmarshes, within estuaries to the open sea via a series of predator-prey relationships. Any potential for trophic relay is therefore affected by water movements within an estuary and by the ability of a predator to "switch" prey in response to fluctuating abundances of those prey. Saltmarsh-dwelling grapsid crabs, which feed on saltmarsh-derived detritus and microphytobenthos, release zoeae into ebbing tides that inundate saltmarshes during spring-tide cycles within tidally-dominated estuaries, such as Brisbane Water Estuary, therefore providing an opportunity to examine whether prey-switching and/or trophic relay may occur in fish that feed on those zoeae (such as the highly abundant estuarine ambassid, Ambassis jacksoniensis). This model was examined by sampling A. jacksoniensis near saltmarshes in a large, temperate south-eastern Australian estuary during flood and ebb tides on days of saltmarsh inundation and non-inundation over four spring-tide events in 2012. Stomach fullnesses of A. jacksoniensis were generally highest during ebb tides on days of saltmarsh inundation, implying that feeding was most marked at these times. Caridean decapods dominated diets during flood tides and on days of no saltmarsh inundation, while crab zoeae dominated diets during ebb tides and on days of inundation, suggesting that, when saltmarsh-derived zoeae became abundant, A. jacksoniensis switched to feeding on those prey. Three potential zooplankton prey (calanoid copepods, caridean decapods and crab zoeae) did not differ calorimetrically, indicating that switching of prey by A. jacksoniensis is not directly related to their preying on energetically greater prey, but reflects opportunistic feeding on more abundant and/or less elusive prey. As A. jacksoniensis is able to switch prey from estuarine caridean decapods to saltmarsh-derived crab zoeae, this very abundant

  15. Population dynamics of dechlorinators and factors affecting the level and products of PCB dechlorination in sediments

    SciTech Connect

    Kim, J.S.; Sokol, R.C.; Liu, X.; Bethoney, C.M.; Rhee, G.Y.

    1996-12-31

    Microbial dechlorination of polychlorinated biphenyls (PCBs) often stops although a significant number of removable chlorines remain. To determine the reason for the cessation, we investigated the limitation of organic carbon, PCB bioavailability, and inhibition by metabolic products. Enrichment with carbon sources did not induce additional chlorination, indicating the plateau was not due to depletion of organic carbon. The bioavailability was not limiting, since a subcritical micelle concentration of the surfactant, which enhanced desorption without inhibiting dechlorinating microorganisms, failed to lower the plateau. Neither was it due to accumulation of metabolites, since no additional dechlorination was detected when plateau sediments were incubated with fresh medium. Similarly, dechlorination was not inhibited in freshly spiked sediment slurries. Dechlorination ended up at the same level with nearly identical congener profiles, regardless of treatment. These results indicate that cessation of dechlorination was due to the accumulation of daughter congeners, which cannot be used as electron acceptors by microbes. To determine whether the decreasing availability affected the microorganisms, we determined the population dynamics of dechlorinators using the most probable number technique. The growth dynamics of the dechlorinators mirrored the time course of dechlorination. It started when the population increased by two orders of magnitude. Once dechlorination stopped the dechlorinating population also began to decrease. When dechlorinators were inoculated into PCB-free sediments, the population decreased over time. The decrease of the population as dechlorination ceased confirms that the diminishing availability of congeners was the reason for the incomplete dechlorination. Recent findings have shown that a second phase of dechlorination of certain congeners can occur after a long lag. 45 refs., 8 figs.

  16. Stability of a Prey-Predator Model with Behavior Changes

    NASA Astrophysics Data System (ADS)

    Wang, Wendi

    2010-04-01

    A prey-predator system with hawk and dove behavior changes is studied, which allows the same time scale for population growth and individual behavior changes. Through stability analysis, we find that the four patterns in dynamical behaviors persist when the restriction is removed that the time scale of the behavior changes is much faster than that of population growth. The patterns include the bistability of an eqUilibrium of predator survival and an equilibrium of predator extinction, the coexistence of two stable equilibria of predator survival, a monostable equilibrium that describes the coexistence of prey and predators, and the extinction of predators for all positive initial values.

  17. Predator-prey quasicycles from a path-integral formalism.

    PubMed

    Butler, Thomas; Reynolds, David

    2009-03-01

    The existence of beyond mean-field quasicycle oscillations in a simple spatial model of predator-prey interactions is derived from a path-integral formalism. The results agree substantially with those obtained from analysis of similar models using system size expansions of the master equation. In all of these analyses, the discrete nature of predator-prey populations and finite-size effects lead to persistent oscillations in time, but spatial patterns fail to form. The path-integral formalism goes beyond mean-field theory and provides a focus on individual realizations of the stochastic time evolution of population not captured in the standard master-equation approach.

  18. Herbivory Differentially Affects Plant Fitness in Three Populations of the Perennial Herb Lythrum salicaria along a Latitudinal Gradient.

    PubMed

    Lehndal, Lina; Ågren, Jon

    2015-01-01

    Herbivory can negatively and selectively affect plant fitness by reducing growth, survival and reproductive output, thereby influencing plant population dynamics and evolution. Latitudinal variation in intensity of herbivory is common, but the extent to which it translates into corresponding variation in effects on plant performance is still poorly known. We tested the hypothesis that variation in the fitness-consequences of herbivory mirror differences in intensity of herbivory among three natural populations of the perennial herb Lythrum salicaria along a latitudinal gradient from southern to northernmost Sweden. We documented intensity of herbivory and examined its effect on survival, growth and reproductive output over two years by experimentally removing herbivores with insecticide. The intensity of herbivory and the effects of herbivory on plant fitness were strongest in the southern population, intermediate in the central population and weakest in the northern population. The mean proportion of the leaf area removed ranged from 11% in the southern to 3% in the northern population. Herbivore removal increased plant height 1.5-fold in the southern and 1.2-fold in the central population, the proportion plants flowering 4-fold in the southern and 2-fold in the central population, and seed production per flower 1.6-fold in the southern and 1.2-fold in the central population, but did not affect plant fitness in the northern population. Herbivore removal thus affected the relative fecundity of plants in the three populations: In the control, seed output per plant was 8.6 times higher in the northern population compared to the southern population, whereas after herbivore removal it was 2.5 times higher in the southern population. The results demonstrate that native herbivores may strongly affect the demographic structure of L. salicaria populations and thereby shape geographic patterns of seed production. They further suggest that the strength of herbivore

  19. Oral impacts affecting daily performance in a low dental disease Thai population.

    PubMed

    Adulyanon, S; Vourapukjaru, J; Sheiham, A

    1996-12-01

    The aim of the study was to measure incidence of oral impacts on daily performances and their related features in a low dental disease population. 501 people aged 35-44 years in 16 rural villages in Ban Phang district, Khon Kaen, Thailand, were interviewed about oral impacts on nine physical, psychological and social aspects of performance during the past 6 months, and then had an oral examination. The clinical and behavioural data showed that the sample had low caries (DMFT = 2.7) and a low utilization of dental services. 73.6% of all subjects had at least one daily performance affected by an oral impact. The highest incidence of performances affected were Eating (49.7%), Emotional stability (46.5%) and Smiling (26.1%). Eating, Emotional stability and Cleaning teeth performances had a high frequency or long duration of impacts, but a low severity. The low frequency performances; Physical activities, Major role activity and Sleeping were rated as high severity. Pain and discomfort were mainly perceived as the causes of impacts (40.1%) for almost every performance except Smiling. Toothache was the major causal oral condition (32.7%) of almost all aspects of performance. It was concluded that this low caries people have as high an incidence of oral impacts as industrialized, high dental disease populations. Frequency and severity presented the paradoxical effect on different performances and should both be taken into account for overall estimation of impacts.

  20. Analysis of Prey-Predator Three Species Fishery Model with Harvesting Including Prey Refuge and Migration

    NASA Astrophysics Data System (ADS)

    Roy, Sankar Kumar; Roy, Banani

    In this article, a prey-predator system with Holling type II functional response for the predator population including prey refuge region has been analyzed. Also a harvesting effort has been considered for the predator population. The density-dependent mortality rate for the prey, predator and super predator has been considered. The equilibria of the proposed system have been determined. Local and global stabilities for the system have been discussed. We have used the analytic approach to derive the global asymptotic stabilities of the system. The maximal predator per capita consumption rate has been considered as a bifurcation parameter to evaluate Hopf bifurcation in the neighborhood of interior equilibrium point. Also, we have used fishing effort to harvest predator population of the system as a control to develop a dynamic framework to investigate the optimal utilization of the resource, sustainability properties of the stock and the resource rent is earned from the resource. Finally, we have presented some numerical simulations to verify the analytic results and the system has been analyzed through graphical illustrations.

  1. Histopathology of Growth Anomaly Affecting the Coral, Montipora capitata: Implications on Biological Functions and Population Viability

    PubMed Central

    Burns, John H. R.; Takabayashi, Misaki

    2011-01-01

    Growth anomalies (GAs) affect the coral, Montipora capitata, at Wai'ōpae, southeast Hawai'i Island. Our histopathological analysis of this disease revealed that the GA tissue undergoes changes which compromise anatomical machinery for biological functions such as defense, feeding, digestion, and reproduction. GA tissue exhibited significant reductions in density of ova (66.1–93.7%), symbiotic dinoflagellates (38.8–67.5%), mesenterial filaments (11.2–29.0%), and nematocytes (28.8–46.0%). Hyperplasia of the basal body wall but no abnormal levels of necrosis and algal or fungal invasion was found in GA tissue. Skeletal density along the basal body wall was significantly reduced in GAs compared to healthy or unaffected sections. The reductions in density of the above histological features in GA tissue were collated with disease severity data to quantify the impact of this disease at the colony and population level. Resulting calculations showed this disease reduces the fecundity of M. capitata colonies at Wai'ōpae by 0.7–49.6%, depending on GA severity, and the overall population fecundity by 2.41±0.29%. In sum, GA in this M. capitata population reduces the coral's critical biological functions and increases susceptibility to erosion, clearly defining itself as a disease and an ecological threat. PMID:22205976

  2. Local divergence of thermal reaction norms among amphibian populations is affected by pond temperature variation.

    PubMed

    Richter-Boix, Alex; Katzenberger, Marco; Duarte, Helder; Quintela, María; Tejedo, Miguel; Laurila, Anssi

    2015-08-01

    Although temperature variation is known to cause large-scale adaptive divergence, its potential role as a selective factor over microgeographic scales is less well-understood. Here, we investigated how variation in breeding pond temperature affects divergence in multiple physiological (thermal performance curve and critical thermal maximum [CTmax]) and life-history (thermal developmental reaction norms) traits in a network of Rana arvalis populations. The results supported adaptive responses to face two main constraints limiting the evolution of thermal adaptation. First, we found support for the faster-slower model, indicating an adaptive response to compensate for the thermodynamic constraint of low temperatures in colder environments. Second, we found evidence for the generalist-specialist trade-off with populations from colder and less thermally variable environments exhibiting a specialist phenotype performing at higher rates but over a narrower range of temperatures. By contrast, the local optimal temperature for locomotor performance and CTmax did not match either mean or maximum pond temperatures. These results highlight the complexity of the adaptive multiple-trait thermal responses in natural populations, and the role of local thermal variation as a selective force driving diversity in life-history and physiological traits in the presence of gene flow.

  3. Stochastic eco-evolutionary model of a prey-predator community.

    PubMed

    Costa, Manon; Hauzy, Céline; Loeuille, Nicolas; Méléard, Sylvie

    2016-02-01

    We are interested in the impact of natural selection in a prey-predator community. We introduce an individual-based model of the community that takes into account both prey and predator phenotypes. Our aim is to understand the phenotypic coevolution of prey and predators. The community evolves as a multi-type birth and death process with mutations. We first consider the infinite particle approximation of the process without mutation. In this limit, the process can be approximated by a system of differential equations. We prove the existence of a unique globally asymptotically stable equilibrium under specific conditions on the interaction among prey individuals. When mutations are rare, the community evolves on the mutational scale according to a Markovian jump process. This process describes the successive equilibria of the prey-predator community and extends the polymorphic evolutionary sequence to a coevolutionary framework. We then assume that mutations have a small impact on phenotypes and consider the evolution of monomorphic prey and predator populations. The limit of small mutation steps leads to a system of two differential equations which is a version of the canonical equation of adaptive dynamics for the prey-predator coevolution. We illustrate these different limits with an example of prey-predator community that takes into account different prey defense mechanisms. We observe through simulations how these various prey strategies impact the community.

  4. Prey detection in a cruising copepod

    PubMed Central

    Kjellerup, Sanne; Kiørboe, Thomas

    2012-01-01

    Small cruising zooplankton depend on remote prey detection and active prey capture for efficient feeding. Direct, passive interception of prey is inherently very inefficient at low Reynolds numbers because the viscous boundary layer surrounding the approaching predator will push away potential prey. Yet, direct interception has been proposed to explain how rapidly cruising, blind copepods feed on non-motile phytoplankton prey. Here, we demonstrate a novel mechanism for prey detection in a cruising copepod, and describe how motile and non-motile prey are discovered by hydromechanical and tactile or, likely, chemical cues, respectively. PMID:22158738

  5. Prey detection in a cruising copepod.

    PubMed

    Kjellerup, Sanne; Kiørboe, Thomas

    2012-06-23

    Small cruising zooplankton depend on remote prey detection and active prey capture for efficient feeding. Direct, passive interception of prey is inherently very inefficient at low Reynolds numbers because the viscous boundary layer surrounding the approaching predator will push away potential prey. Yet, direct interception has been proposed to explain how rapidly cruising, blind copepods feed on non-motile phytoplankton prey. Here, we demonstrate a novel mechanism for prey detection in a cruising copepod, and describe how motile and non-motile prey are discovered by hydromechanical and tactile or, likely, chemical cues, respectively.

  6. Integrated pest management with stochastic birth rate for prey species

    PubMed Central

    Akman, Olcay; Comar, Timothy D.; Hrozencik, Daniel

    2013-01-01

    Song and Xiang (2006) developed an impulsive differential equations model for a two-prey one-predator model with stage structure for the predator. They demonstrate the conditions on the impulsive period for which a globally asymptotically stable pest-eradication periodic solution exists, as well as conditions on the impulsive period for which the prey species is permanently maintained under an economically acceptable threshold. We extend their model by including stage structure for both predator and prey as well as by adding stochastic elements in the birth rate of the prey. As in Song and Xiang (2006), we find the conditions under which a globally asymptotically stable pest eradication periodic solution exists. In addition, we numerically show the relationship between the stochastically varying birth rate of the prey and the necessary efficacy of the pesticide for which the probability of eradication of the prey species is above 90%. This is significant because the model recognizes varying environmental and climatic conditions which affect the resources needed for pest eradication. PMID:23964194

  7. Integrated pest management with stochastic birth rate for prey species.

    PubMed

    Akman, Olcay; Comar, Timothy D; Hrozencik, Daniel

    2013-01-01

    Song and Xiang (2006) developed an impulsive differential equations model for a two-prey one-predator model with stage structure for the predator. They demonstrate the conditions on the impulsive period for which a globally asymptotically stable pest-eradication periodic solution exists, as well as conditions on the impulsive period for which the prey species is permanently maintained under an economically acceptable threshold. We extend their model by including stage structure for both predator and prey as well as by adding stochastic elements in the birth rate of the prey. As in Song and Xiang (2006), we find the conditions under which a globally asymptotically stable pest eradication periodic solution exists. In addition, we numerically show the relationship between the stochastically varying birth rate of the prey and the necessary efficacy of the pesticide for which the probability of eradication of the prey species is above 90%. This is significant because the model recognizes varying environmental and climatic conditions which affect the resources needed for pest eradication.

  8. Do lizards and snakes really differ in their ability to take large prey? A study of relative prey mass and feeding tactics in lizards.

    PubMed

    Shine, Richard; Thomas, Jai

    2005-07-01

    Adaptations of snakes to overpower and ingest relatively large prey have attracted considerable research, whereas lizards generally are regarded as unable to subdue or ingest such large prey items. Our data challenge this assumption. On morphological grounds, most lizards lack the highly kinetic skulls that facilitate prey ingestion in macrostomate snakes, but (1) are capable of reducing large items into ingestible-sized pieces, and (2) have much larger heads relative to body length than do snakes. Thus, maximum ingestible prey size might be as high in some lizards as in snakes. Also, the willingness of lizards to tackle very large prey items may have been underestimated. Captive hatchling scincid lizards (Bassiana duperreyi) offered crickets of a range of relative prey masses (RPMs) attacked (and sometimes consumed parts of) crickets as large as or larger than their own body mass. RPM affected foraging responses: larger crickets were less likely to be attacked (especially on the abdomen), more likely to be avoided, and less likely to provide significant nutritional benefit to the predator. Nonetheless, lizards successfully attacked and consumed most crickets < or =35% of the predator's own body mass, representing RPM as high as for most prey taken by snakes. Thus, although lizards lack the impressive cranial kinesis or prey-subduction adaptations of snakes, at least some lizards are capable of overpowering and ingesting prey items as large as those consumed by snakes of similar body sizes.

  9. Longitudinal population-based studies of affective disorders: Where to from here?

    PubMed Central

    Beard, John R; Galea, Sandro; Vlahov, David

    2008-01-01

    Background Longitudinal, population-based, research is important if we are to better characterize the lifetime patterns and determinants of affective disorders. While studies of this type are becoming increasingly prevalent, there has been little discussion about the limitations of the methods commonly used. Methods Discussion paper including a brief review of key prospective population-based studies as the basis for a critical appraisal of current approaches. Results We identified a number of common methodological weaknesses that restrict the potential of longitudinal research to characterize the diversity, prognosis, and determinants of affective disorders over time. Most studies using comprehensive diagnostic instruments have either been of relatively brief duration, or have suffered from long periods between waves. Most etiologic research has focused on first onset diagnoses, although these may be relatively uncommon after early adulthood and the burden of mental disorders falls more heavily on individuals with recurring disorders. Analysis has tended to be based on changes in diagnostic status rather than anges in symptom levels, limiting study power. Diagnoses have generally been treated as homogeneous entities and few studies have explored whether diagnostic subtypes such as atypical depression vary in their etiology or prognosis. Little research has considered whether there are distinct trajectories of symptoms over time and most has focused on individual disorders such as depression, rather than considering the relationship over time between symptoms of different affective disorders. There has also been limited longitudinal research on factors in the physical or social environment that may influence the onset, recurrence or chronicity of symptoms. Conclusion Many important, and in some respects quite basic, questions remain about the trajectory of depression and anxiety disorders over the life course and the factors that influence their incidence

  10. A modified predator-prey model for the interaction of police and gangs.

    PubMed

    Sooknanan, J; Bhatt, B; Comissiong, D M G

    2016-09-01

    A modified predator-prey model with transmissible disease in both the predator and prey species is proposed and analysed, with infected prey being more vulnerable to predation and infected predators hunting at a reduced rate. Here, the predators are the police and the prey the gang members. In this system, we examine whether police control of gangs is possible. The system is analysed with the help of stability analyses and numerical simulations. The system has five steady states-four of which involve no core gang members and one in which all the populations coexist. Thresholds are identified which determine when the predator and prey populations survive and when the disease remains endemic. For parameter values where the spread of disease among the police officers is greater than the death of the police officers, the diseased predator population survives, when it would otherwise become extinct.

  11. A modified predator–prey model for the interaction of police and gangs

    PubMed Central

    Sooknanan, J.; Bhatt, B.

    2016-01-01

    A modified predator–prey model with transmissible disease in both the predator and prey species is proposed and analysed, with infected prey being more vulnerable to predation and infected predators hunting at a reduced rate. Here, the predators are the police and the prey the gang members. In this system, we examine whether police control of gangs is possible. The system is analysed with the help of stability analyses and numerical simulations. The system has five steady states—four of which involve no core gang members and one in which all the populations coexist. Thresholds are identified which determine when the predator and prey populations survive and when the disease remains endemic. For parameter values where the spread of disease among the police officers is greater than the death of the police officers, the diseased predator population survives, when it would otherwise become extinct. PMID:27703682

  12. Assessing future expectations and the two-dimensional model of affect in an Italian population.

    PubMed

    Corno, Giulia; Molinari, Guadalupe; Baños, Rosa Maria

    2017-03-01

    Future-directed thinking has been described as part of two underlying systems that integrate dimensions of affect, motivational systems, orientation to the future, and future expectations, which are initiated at the cognitive, affective, biological, behavioral, and motivational levels. The main aim of the present study is to test the two underlying frameworks model and explore future expectations in a general Italian-speaking population (N=345). Therefore, the second aim of the present paper is to confirm the factorial structure of the Subjective Probability Task (SPT; MacLeod et al., 1996), a questionnaire designed to assess specific positive and negative orientations towards the future. Results showed that the SPT has good psychometric properties and it is a reliable instrument to assess future-directed thinking. Moreover, our findings confirmed the role of future expectancies as cognitive correlates of depression and anxiety. Differently from previous studies (Clark and Watson, 1991; MacLeod et al., 1996), our results did not confirm that depression was characterized by low positive affect. We believe this paper contributes to the understanding of future expectancies and their relation with anxiety and depression, and will help to expand the availability of an instrument to assess future directed thinking.

  13. Have historical climate changes affected Gentoo penguin (Pygoscelis papua) populations in Antarctica?

    PubMed

    Peña M, Fabiola; Poulin, Elie; Dantas, Gisele P M; González-Acuña, Daniel; Petry, Maria Virginia; Vianna, Juliana A

    2014-01-01

    The West Antarctic Peninsula (WAP) has been suffering an increase in its atmospheric temperature during the last 50 years, mainly associated with global warming. This increment of temperature trend associated with changes in sea-ice dynamics has an impact on organisms, affecting their phenology, physiology and distribution range. For instance, rapid demographic changes in Pygoscelis penguins have been reported over the last 50 years in WAP, resulting in population expansion of sub-Antarctic Gentoo penguin (P. papua) and retreat of Antarctic Adelie penguin (P. adeliae). Current global warming has been mainly associated with human activities; however these climate trends are framed in a historical context of climate changes, particularly during the Pleistocene, characterized by an alternation between glacial and interglacial periods. During the last maximal glacial (LGM∼21,000 BP) the ice sheet cover reached its maximum extension on the West Antarctic Peninsula (WAP), causing local extinction of Antarctic taxa, migration to lower latitudes and/or survival in glacial refugia. We studied the HRVI of mtDNA and the nuclear intron βfibint7 of 150 individuals of the WAP to understand the demographic history and population structure of P. papua. We found high genetic diversity, reduced population genetic structure and a signature of population expansion estimated around 13,000 BP, much before the first paleocolony fossil records (∼1,100 BP). Our results suggest that the species may have survived in peri-Antarctic refugia such as South Georgia and North Sandwich islands and recolonized the Antarctic Peninsula and South Shetland Islands after the ice sheet retreat.

  14. Predators' decisions to eat defended prey depend on the size of undefended prey☆

    PubMed Central

    Halpin, Christina G.; Skelhorn, John; Rowe, Candy

    2013-01-01

    Predators that have learned to associate warning coloration with toxicity often continue to include aposematic prey in their diet in order to gain the nutrients and energy that they contain. As body size is widely reported to correlate with energetic content, we predicted that prey size would affect predators' decisions to eat aposematic prey. We used a well-established system of wild-caught European starlings, Sturnus vulgaris, foraging on mealworms, Tenebrio molitor, to test how the size of undefended (water-injected) and defended (quinine-injected) prey, on different coloured backgrounds, affected birds’ decisions to eat defended prey. We found that birds ate fewer defended prey, and less quinine, when undefended prey were large compared with when they were small, but that the size of the defended prey had no effect on the numbers eaten. Consequently, we found no evidence that the mass of the defended prey or the overall mass of prey ingested affected the amount of toxin that a predator was willing to ingest, and instead the mass of undefended prey eaten was more important. This is a surprising finding, challenging the assumptions of state-dependent models of aposematism and mimicry, and highlighting the need to understand better the mechanisms of predator decision making. In addition, the birds did not learn to discriminate visually between defended and undefended prey based on size, but only on the basis of colour. This suggests that colour signals may be more salient to predators than size differences, allowing Batesian mimics to benefit from aposematic models even when they differ in size. PMID:23814280

  15. Sensing the strike of a predator fish depends on the specific gravity of a prey fish.

    PubMed

    Stewart, William J; McHenry, Matthew J

    2010-11-15

    The ability of a predator fish to capture a prey fish depends on the hydrodynamics of the prey and its behavioral response to the predator's strike. Despite the importance of this predator-prey interaction to the ecology and evolution of a diversity of fish, it is unclear what factors dictate a fish's ability to evade capture. The present study evaluated how the specific gravity of a prey fish's body affects the kinematics of prey capture and the signals detected by the lateral line system of the prey during the strike of a suction-feeding predator. The specific gravity of zebrafish (Danio rerio) larvae was measured with high precision from recordings of terminal velocity in solutions of varying density. This novel method found that specific gravity decreased by ∼5% (from 1.063, N=8, to 1.011, N=35) when the swim bladder inflates. To examine the functional consequences of this change, we developed a mathematical model of the hydrodynamics of prey in the flow field created by a suction-feeding predator. This model found that the observed decrease in specific gravity due to swim bladder inflation causes an 80% reduction of the flow velocity around the prey's body. Therefore, swim bladder inflation causes a substantial reduction in the flow signal that may be sensed by the lateral line system to evade capture. These findings demonstrate that the ability of a prey fish to sense a predator depends crucially on the specific gravity of the prey.

  16. Seasonal Foraging Ecology of Non-Migratory Cougars in a System with Migrating Prey

    PubMed Central

    Elbroch, L. Mark; Lendrum, Patrick E.; Newby, Jesse; Quigley, Howard; Craighead, Derek

    2013-01-01

    We tested for seasonal differences in cougar (Puma concolor) foraging behaviors in the Southern Yellowstone Ecosystem, a multi-prey system in which ungulate prey migrate, and cougars do not. We recorded 411 winter prey and 239 summer prey killed by 28 female and 10 male cougars, and an additional 37 prey items by unmarked cougars. Deer composed 42.4% of summer cougar diets but only 7.2% of winter diets. Males and females, however, selected different proportions of different prey; male cougars selected more elk (Cervus elaphus) and moose (Alces alces) than females, while females killed greater proportions of bighorn sheep (Ovis canadensis), pronghorn (Antilocapra americana), mule deer (Odocoileus hemionus) and small prey than males. Kill rates did not vary by season or between males and females. In winter, cougars were more likely to kill prey on the landscape as: 1) elevation decreased, 2) distance to edge habitat decreased, 3) distance to large bodies of water decreased, and 4) steepness increased, whereas in summer, cougars were more likely to kill in areas as: 1) elevation decreased, 2) distance to edge habitat decreased, and 3) distance from large bodies of water increased. Our work highlighted that seasonal prey selection exhibited by stationary carnivores in systems with migratory prey is not only driven by changing prey vulnerability, but also by changing prey abundances. Elk and deer migrations may also be sustaining stationary cougar populations and creating apparent competition scenarios that result in higher predation rates on migratory bighorn sheep in winter and pronghorn in summer. Nevertheless, cougar predation on rare ungulates also appeared to be influenced by individual prey selection. PMID:24349498

  17. Seasonal foraging ecology of non-migratory cougars in a system with migrating prey.

    PubMed

    Elbroch, L Mark; Lendrum, Patrick E; Newby, Jesse; Quigley, Howard; Craighead, Derek

    2013-01-01

    We tested for seasonal differences in cougar (Puma concolor) foraging behaviors in the Southern Yellowstone Ecosystem, a multi-prey system in which ungulate prey migrate, and cougars do not. We recorded 411 winter prey and 239 summer prey killed by 28 female and 10 male cougars, and an additional 37 prey items by unmarked cougars. Deer composed 42.4% of summer cougar diets but only 7.2% of winter diets. Males and females, however, selected different proportions of different prey; male cougars selected more elk (Cervus elaphus) and moose (Alces alces) than females, while females killed greater proportions of bighorn sheep (Ovis canadensis), pronghorn (Antilocapra americana), mule deer (Odocoileus hemionus) and small prey than males. Kill rates did not vary by season or between males and females. In winter, cougars were more likely to kill prey on the landscape as: 1) elevation decreased, 2) distance to edge habitat decreased, 3) distance to large bodies of water decreased, and 4) steepness increased, whereas in summer, cougars were more likely to kill in areas as: 1) elevation decreased, 2) distance to edge habitat decreased, and 3) distance from large bodies of water increased. Our work highlighted that seasonal prey selection exhibited by stationary carnivores in systems with migratory prey is not only driven by changing prey vulnerability, but also by changing prey abundances. Elk and deer migrations may also be sustaining stationary cougar populations and creating apparent competition scenarios that result in higher predation rates on migratory bighorn sheep in winter and pronghorn in summer. Nevertheless, cougar predation on rare ungulates also appeared to be influenced by individual prey selection.

  18. Specialist predator in a multi-species prey community: boreal voles and weasels.

    PubMed

    Sundell, Janne; Ylönen, Hannu

    2008-03-01

    Dissimilar vulnerabilities of different prey types and preferences of predators are factors likely to contribute to community dynamics. This may happen via differential individual properties of prey animals (e.g. vigilance, escape) or via habitat effects making hunting by a predator easier and more rewarding in some habitats, or both. Furthermore, community dynamics may be influenced by predator mediated apparent competition, in which an increase in one prey type has negative effects on another prey type indirectly via the shared predator. We summarize the current knowledge from the field in a model predator-prey system consisting of sympatric boreal vole species and their common specialist predator and review field studies using predator manipulation and studies on the responses of individuals in the laboratory and in outdoor enclosures. The vole species studied represent different prey types that are thought to have different vulnerabilities. Our observations on the main resident specialist predator, the least weasel (Mustela nivalis nivalis L.), show that it hunts according to prey availability and suitability of the hunting habitat. Prey voles respond to the presence of the predator behaviorally in various ways to avoid predation. We conclude that even if the least weasel is a specialized predator of small rodents it acts like a generalist predator within the small rodent guild and may facilitate the coexistence of prey species via predator switching. This may lead to interspecific synchrony between prey populations, which has often been observed. We suggest that the processes determining the community impact of predator-prey interactions are driven by the behavioral arms race between the predator and the prey, together with the habitat-dependent density of prey and net gain for the predator.

  19. Modelling the dynamics of traits involved in fighting-predators-prey system.

    PubMed

    Kooi, B W

    2015-12-01

    We study the dynamics of a predator-prey system where predators fight for captured prey besides searching for and handling (and digestion) of the prey. Fighting for prey is modelled by a continuous time hawk-dove game dynamics where the gain depends on the amount of disputed prey while the costs for fighting is constant per fighting event. The strategy of the predator-population is quantified by a trait being the proportion of the number of predator-individuals playing hawk tactics. The dynamics of the trait is described by two models of adaptation: the replicator dynamics (RD) and the adaptive dynamics (AD). In the RD-approach a variant individual with an adapted trait value changes the population's strategy, and consequently its trait value, only when its payoff is larger than the population average. In the AD-approach successful replacement of the resident population after invasion of a rare variant population with an adapted trait value is a step in a sequence changing the population's strategy, and hence its trait value. The main aim is to compare the consequences of the two adaptation models. In an equilibrium predator-prey system this will lead to convergence to a neutral singular strategy, while in the oscillatory system to a continuous singular strategy where in this endpoint the resident population is not invasible by any variant population. In equilibrium (low prey carrying capacity) RD and AD-approach give the same results, however not always in a periodically oscillating system (high prey carrying-capacity) where the trait is density-dependent. For low costs the predator population is monomorphic (only hawks) while for high costs dimorphic (hawks and doves). These results illustrate that intra-specific trait dynamics matters in predator-prey dynamics.

  20. Availability and abundance of prey for the red-cockaded woodpecker.

    SciTech Connect

    Hanula, James, L.; Horn, Scott

    2004-12-31

    Red-cockaded woodpecker; Road to Recovery. Proceedings of the 4th Red-cockaded woodpecker Symposium. Ralph Costa and Susan J. Daniels, eds. Savannah, Georgia. January, 2003. Chapter 11. Prey, Fire, and Community Ecology. Pp 633-645. Abstract: Over a 10-year period we investigated red-cockaded woodpecker (Picoides borealis) prey use, sources of prey, prey distribution within trees and stands, and how forest management decisions affect prey abundance in South Carolina, Alabama, Georgia and Florida. Cameras were operated at 31 nest cavities to record nest visits with prey in 4 locations that ranged in foraging habitat from pine stands established in old fields to an old-growth stand in South Georgia. Examination of nearly 12,000 photographs recorded over 5 years revealed that, although red-cockaded woodpeckers used over 40 arthropods for food, the majority of the nestling diet is comprised of a relatively small number of common arthropods.

  1. The protective function of personal growth initiative among a genocide-affected population in Rwanda.

    PubMed

    Blackie, Laura E R; Jayawickreme, Eranda; Forgeard, Marie J C; Jayawickreme, Nuwan

    2015-07-01

    The aim of the current study was to investigate the extent to which individual differences in personal growth initiative (PGI) were associated with lower reports of functional impairment of daily activities among a genocide-affected population in Rwanda. PGI measures an individual's motivation to develop as a person and the extent to which he or she is active in setting goals that work toward achieving self-improvement. We found that PGI was negatively associated with functional impairment when controlling for depression, posttraumatic stress disorder, and other demographic factors. Our results suggest that PGI may constitute an important mindset for facilitating adaptive functioning in the aftermath of adversity and in the midst of psychological distress, and as such they might have practical applications for the development of intervention programs.

  2. Optimal Harvesting in an Age-Structured Predator-Prey Model

    SciTech Connect

    Fister, K. Renee Lenhart, Suzanne

    2006-06-15

    We investigate optimal harvesting control in a predator-prey model in which the prey population is represented by a first-order partial differential equation with age-structure and the predator population is represented by an ordinary differential equation in time. The controls are the proportions of the populations to be harvested, and the objective functional represents the profit from harvesting. The existence and uniqueness of the optimal control pair are established.

  3. Does childhood cancer affect parental divorce rates? A population-based study.

    PubMed

    Syse, Astri; Loge, Jon H; Lyngstad, Torkild H

    2010-02-10

    PURPOSE Cancer in children may profoundly affect parents' personal relationships in terms of psychological stress and an increased care burden. This could hypothetically elevate divorce rates. Few studies on divorce occurrence exist, so the effect of childhood cancers on parental divorce rates was explored. PATIENTS AND METHODS Data on the entire Norwegian married population, age 17 to 69 years, with children age 0 to 20 years in 1974 to 2001 (N = 977,928 couples) were retrieved from the Cancer Registry, the Central Population Register, the Directorate of Taxes, and population censuses. Divorce rates for 4,590 couples who were parenting a child with cancer were compared with those of otherwise similar couples by discrete-time hazard regression models. Results Cancer in a child was not associated with an increased risk of parental divorce overall. An increased divorce rate was observed with Wilms tumor (odds ratio [OR], 1.52) but not with any of the other common childhood cancers. The child's age at diagnosis, time elapsed from diagnosis, and death from cancer did not influence divorce rates significantly. Increased divorce rates were observed for couples in whom the mothers had an education greater than high school level (OR, 1.16); the risk was particularly high shortly after diagnosis, for CNS cancers and Wilms tumors, for couples with children 0 to 9 years of age at diagnosis, and after a child's death. CONCLUSION This large, registry-based study shows that cancer in children is not associated with an increased parental divorce rate, except with Wilms tumors. Couples in whom the wife is highly educated appear to face increased divorce rates after a child's cancer, and this may warrant additional study.

  4. A Computer Simulation for Demonstrating and Modelling Predator-Prey Oscillations.

    ERIC Educational Resources Information Center

    Lutterschmidt, William I.; Schaefer, Jacob F.

    1997-01-01

    Discusses a computer simulation designed as an educational tool for students to observe predator-prey oscillations and experimentally investigate how changes in life histories affect predator and prey densities. Provides hands-on interaction with such theories and with mathematical models. Available to any instructor for curriculum use. (AIM)

  5. Oviposition Response by Orius Insidiosus (Hemiptera: Anthocoridae) to Plant Quality and Prey Availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The predator Orius insidiosus consumes a mixed diet of prey, vascular sap, and plant-based foods through its life. Plant species identity affects the oviposition behavior of O. insidiosus in that it prefers plants where newly hatched nymphs perform best, in the absence of prey. Choice tests were ...

  6. Phase transitions in predator-prey systems

    NASA Astrophysics Data System (ADS)

    Nagano, Seido; Maeda, Yusuke

    2012-01-01

    The relationship between predator and prey plays an important role in ecosystem conservation. However, our understanding of the principles underlying the spatial distribution of predators and prey is still poor. Here we present a phase diagram of a predator-prey system and investigate the lattice formation in such a system. We show that the production of stable lattice structures depends on the limited diffusion or migration of prey as well as higher carrying capacity for the prey. In addition, when the prey's growth rate is lower than the birth rate of the predator, global prey lattice formation is initiated by microlattices at the center of prey spirals. The predator lattice is later formed in the predator spirals. But both lattice formations proceed together as the prey growth rate increases.

  7. Relating wolf scat content to prey consumed

    USGS Publications Warehouse

    Floyd, T.J.; Mech, L.D.; Jordan, P.A.

    1978-01-01

    In 9 trials, captive wolves (Canis lupus) were fed prey varying in size from snowshoe hares (Lepus americanus) to adult deer (Odocoileus virginianus), and the resulting scats were counted. Field-collectible scats were distinguished from liquid, noncollectible stools. I n collectible scats, the remains of small prey occurred in greater proportion relative to the prey's weight, and in lesser proportion relative to the prey's numbers, than did the remains of larger prey. A regression equation with an excellent, fit to the data (r2 = 0.97) was derived to estimate the weight of prey eaten per collectible scat for any prey. With this information and average prey weights, the relative numbers of different prey eaten also can be calculated.

  8. Factors Affecting Tooth Retention among Adult Population of Dharwad District, India

    PubMed Central

    Inamdar, Nurul Ameen; Prasad, K V V

    2016-01-01

    Introduction Oral health in relation to general health is influen-ced by the retention of teeth. Understanding factors affecting tooth retention will help health and social policy-makers to translate the knowledge on tooth retention into action programs for improving oral health of the people and hence enhance tooth retention. Aim The aim of the present study was to determine the factors affecting tooth retention among adult population of Dharwad district, India. Materials and Methods A cross-sectional survey of 1100 subjects (616 urban and 484 rural) residing in Dharwad district, Karnataka, India, was conducted. Self-designed questionnaire was prepared and data were collected on socio-demographic factors, oral hygiene practices, diet practices, adverse oral habits and frequency of dental visits by the interview method and clinical examination. Statistical analysis was carried out by applying one way analysis of variance (ANOVA), unpaired t-test and backward stepwise multiple regression. Karl Pearson’s correlation coefficient was used to test the correlation between the two quantitative variables. Results A total of 66.72% subjects retained all 28 teeth and mean number of teeth retained by the study subjects were 25.33 (90.46%). There was gradual reduction in tooth retention with increase in age. Males (95.8%) compared to females (94.07%), unmarried (98.8%) than married subjects (93.3%) and subjects with intermediate or post high school diploma (97.5%) than those who were illiterate (89.5%) and other low educational level study subjects retained more teeth. Further mean values of tooth retention for other socio demographic factors i.e., occupation, income and family size were not statistically significant (p≤0.05). In addition, subjects using tooth brush (96.6%) and tooth paste (96.6%) for cleaning the teeth, subjects practicing mixed diet (96.6%) and subjects who never visited the dentist (96.5%) in their lifetime showed statistically significant greater tooth

  9. Differential effects of mercury on activity and swimming endurance in a model aquatic predator-prey system

    SciTech Connect

    Benton, M.J.; Carlson, J.K.; Benson, W.H.

    1994-12-31

    In addition to direct effects of contaminants on organisms, populations and communities, there may also be indirect or secondary effects related to altered behavior. This study examined the effects of mercury exposure on locomotory behavior in a model predator-prey system of largemouth bass (Micropterus salmoides) and fathead minnows (Pimephales promelas). At both low and high mercury concentrations, there was a significant effect of exposure on unforced activity and swimming endurance in fathead minnows. At all tested mercury concentrations, activity and endurance also were both positively correlated to body length. However, largemouth bass unforced activity and swimming endurance were not affected by exposure to low mercury concentrations. In light of these differential locomotory effects at environmentally relevant mercury concentrations, the potential impact on aquatic predator-prey systems will be discussed.

  10. Interactive effects of prey and weather on golden eagle reproduction

    USGS Publications Warehouse

    Steenhof, Karen; Kochert, Michael N.; McDonald, T.L.

    1997-01-01

    The reproduction of the golden eagle Aquila chrysaetos was studied in southwestern Idaho for 23 years, and the relationship between eagle reproduction and jackrabbit Lepus californicus abundance, weather factors, and their interactions, was modelled using general linear models. Backward elimination procedures were used to arrive at parsimonious models. 2. The number of golden eagle pairs occupying nesting territories each year showed a significant decline through time that was unrelated to either annual rabbit abundance or winter severity. However, eagle hatching dates were significantly related to both winter severity and jackrabbit abundance. Eagles hatched earlier when jackrabbits were abundant, and they hatched later after severe winters. 3. Jackrabbit abundance influenced the proportion of pairs that laid eggs, the proportion of pairs that were successful, mean brood size at fledging, and the number of young fledged per pair. Weather interacted with prey to influence eagle reproductive rates. 4. Both jackrabbit abundance and winter severity were important in predicting the percentage of eagle pairs that laid eggs. Percentage laying was related positively to jackrabbit abundance and inversely related to winter severity. 5. The variables most useful in predicting percentage of laying pairs successful were rabbit abundance and the number of extremely hot days during brood-rearing. The number of hot days and rabbit abundance were also significant in a model predicting eagle brood size at fledging. Both success and brood size were positively related to jackrabbit abundance and inversely related to the frequency of hot days in spring. 6. Eagle reproduction was limited by rabbit abundance during approximately twothirds of the years studied. Weather influenced how severely eagle reproduction declined in those years. 7. This study demonstrates that prey and weather can interact to limit a large raptor population's productivity. Smaller raptors could be affected more

  11. Historical and anthropogenic factors affecting the population genetic structure of Ontario's inland lake populations of Walleye (Sander vitreus).

    PubMed

    Walter, Ryan P; Cena, Christopher J; Morgan, George E; Heath, Daniel D

    2012-01-01

    Populations existing in formerly glaciated areas often display composite historical and contemporary patterns of genetic structure. For Canadian freshwater fishes, population genetic structure is largely reflective of dispersal from glacial refugia and isolation within drainage basins across a range of scales. Enhancement of sport fisheries via hatchery stocking programs and other means has the potential to alter signatures of natural evolutionary processes. Using 11 microsatellite loci genotyped from 2182 individuals, we analyzed the genetic structure of 46 inland lake walleye (Sander vitreus) populations spanning five major drainage basins within the province of Ontario, Canada. Population genetic analyses coupled with genotype assignment allowed us to: 1) characterize broad- and fine-scale genetic structure among Ontario walleye populations; and 2) determine if the observed population divergence is primarily due to natural or historical processes, or recent anthropogenic events. The partitioning of genetic variation revealed higher genetic divergence among lakes than among drainage basins or proposed ancestries-indicative of relatively high isolation among lakes, study-wide. Walleye genotypes were clustered into three major groups, likely reflective of Missourian, Mississippian, and Atlantic glacial refugial ancestry. Despite detectable genetic signatures indicative of anthropogenic influences, province-wide spatial genetic structure remains consistent with the hypothesis of dispersal from distinct glacial refugia and subsequent isolation of lakes within primary drainage basins. Our results provide a novel example of minimal impacts from fishery enhancement to the broad-scale genetic structure of inland fish populations.

  12. Geometric optimization for prey-predator strategies.

    PubMed

    Alshamary, Bader; Calin, Ovidiu

    2011-11-01

    This paper investigates several strategies for prey and predator in both bounded and unbounded domains, assuming they have the same speed. The work describes how the prey should move to escape from the predator and how predator should move to catch the prey. The approach is agent-based and explicitly tracks movement of individuals as prey and predator. We show that the prey escapes one or two competing predators, while might be caught in the case of three predators. The paper also describes a strategy for finding a well camouflaged static prey which emits signals.

  13. Predicting the effects of ocean acidification on predator-prey interactions: a conceptual framework based on coastal molluscs.

    PubMed

    Kroeker, Kristy J; Sanford, Eric; Jellison, Brittany M; Gaylord, Brian

    2014-06-01

    The influence of environmental change on species interactions will affect population dynamics and community structure in the future, but our current understanding of the outcomes of species interactions in a high-CO2 world is limited. Here, we draw upon emerging experimental research examining the effects of ocean acidification on coastal molluscs to provide hypotheses of the potential impacts of high-CO2 on predator-prey interactions. Coastal molluscs, such as oysters, mussels, and snails, allocate energy among defenses, growth, and reproduction. Ocean acidification increases the energetic costs of physiological processes such as acid-base regulation and calcification. Impacted molluscs can display complex and divergent patterns of energy allocation to defenses and growth that may influence predator-prey interactions; these include changes in shell properties, body size, tissue mass, immune function, or reproductive output. Ocean acidification has also been shown to induce complex changes in chemoreception, behavior, and inducible defenses, including altered cue detection and predator avoidance behaviors. Each of these responses may ultimately alter the susceptibility of coastal molluscs to predation through effects on predator handling time, satiation, and search time. While many of these effects may manifest as increases in per capita predation rates on coastal molluscs, the ultimate outcome of predator-prey interactions will also depend on how ocean acidification affects the specified predators, which also exhibit complex responses to ocean acidification. Changes in predator-prey interactions could have profound and unexplored consequences for the population dynamics of coastal molluscs in a high-CO2 ocean.

  14. Oscillatory behavior in a lattice prey-predator system.

    PubMed

    Lipowski, A

    1999-11-01

    Using Monte Carlo simulations we study a lattice model of a prey-predator system. We show that in the three-dimensional model populations of preys and predators exhibit coherent periodic oscillations but such a behavior is absent in lower-dimensional models. Finite-size analysis indicate that amplitude of these oscillations is finite even in the thermodynamic limit. This is an example of a microscopic model with stochastic dynamics which exhibits oscillatory behavior without any external driving force. We suggest that oscillations in our model are induced by some kind of stochastic resonance.

  15. On a predator-prey system of Gause type.

    PubMed

    Hasík, Karel

    2010-01-01

    In this paper a Gause type model of interactions between predator and prey population is considered. We deal with the sufficient condition due to Kuang and Freedman in the generalized form including a kind of weight function. In a previous paper we proved that the existence of such weight function implies the uniqueness of limit cycle. In the present paper we give a new condition equivalent to the existence of a weight function (Theorem 4.4). As a consequence of our result, it is shown that some simple qualitative properties of the trophic function and the prey isocline ensure the uniqueness of limit cycle.

  16. The impact of digital technology on health of populations affected by humanitarian crises: Recent innovations and current gaps.

    PubMed

    Mesmar, Sandra; Talhouk, Reem; Akik, Chaza; Olivier, Patrick; Elhajj, Imad H; Elbassuoni, Shady; Armoush, Sarah; Kalot, Joumana; Balaam, Madeline; Germani, Aline; Ghattas, Hala

    2016-11-01

    Digital technology is increasingly used in humanitarian action and promises to improve the health and social well-being of populations affected by both acute and protracted crises. We set out to (1) review the current landscape of digital technologies used by humanitarian actors and affected populations, (2) examine their impact on health and well-being of affected populations, and (3) consider the opportunities for and challenges faced by users of these technologies. Through a systematic search of academic databases and reports, we identified 50 digital technologies used by humanitarian actors, and/or populations affected by crises. We organized them according to the stage of the humanitarian cycle that they were used in, and the health outcomes or determinants of health they affected. Digital technologies were found to facilitate communication, coordination, and collection and analysis of data, enabling timely responses in humanitarian contexts. A lack of evaluation of these technologies, a paternalistic approach to their development, and issues of privacy and equity constituted major challenges. We highlight the need to create a space for dialogue between technology designers and populations affected by humanitarian crises.

  17. Collective behavior and predation success in a predator-prey model inspired by hunting bats.

    PubMed

    Lin, Yuan; Abaid, Nicole

    2013-12-01

    We establish an agent-based model to study the impact of prey behavior on the hunting success of predators. The predators and prey are modeled as self-propelled particles moving in a three-dimensional domain and subject to specific sensing abilities and behavioral rules inspired by bat hunting. The predators randomly search for prey. The prey either align velocity directions with peers, defined as "interacting" prey, or swarm "independently" of peer presence; both types of prey are subject to additive noise. In a simulation study, we find that interacting prey using low noise have the maximum predation avoidance because they form localized large groups, while they suffer high predation as noise increases due to the formation of broadly dispersed small groups. Independent prey, which are likely to be uniformly distributed in the domain, have higher predation risk under a low noise regime as they traverse larger spatial extents. These effects are enhanced in large prey populations, which exhibit more ordered collective behavior or more uniform spatial distribution as they are interacting or independent, respectively.

  18. Collective behavior and predation success in a predator-prey model inspired by hunting bats

    NASA Astrophysics Data System (ADS)

    Lin, Yuan; Abaid, Nicole

    2013-12-01

    We establish an agent-based model to study the impact of prey behavior on the hunting success of predators. The predators and prey are modeled as self-propelled particles moving in a three-dimensional domain and subject to specific sensing abilities and behavioral rules inspired by bat hunting. The predators randomly search for prey. The prey either align velocity directions with peers, defined as "interacting" prey, or swarm "independently" of peer presence; both types of prey are subject to additive noise. In a simulation study, we find that interacting prey using low noise have the maximum predation avoidance because they form localized large groups, while they suffer high predation as noise increases due to the formation of broadly dispersed small groups. Independent prey, which are likely to be uniformly distributed in the domain, have higher predation risk under a low noise regime as they traverse larger spatial extents. These effects are enhanced in large prey populations, which exhibit more ordered collective behavior or more uniform spatial distribution as they are interacting or independent, respectively.

  19. An eco-epidemiological system with infected prey and predator subject to the weak Allee effect.

    PubMed

    Sasmal, Sourav Kumar; Chattopadhyay, Joydev

    2013-12-01

    In this article, we propose a general prey–predator model with disease in prey and predator subject to the weak Allee effects. We make the following assumptions: (i) infected prey competes for resources but does not contribute to reproduction; and (ii) in comparison to the consumption of the susceptible prey, consumption of infected prey would contribute less or negatively to the growth of predator. Based on these assumptions, we provide basic dynamic properties for the full model and corresponding submodels with and without the Allee effects. By comparing the disease free submodels (susceptible prey–predator model) with and without the Allee effects, we conclude that the Allee effects can create or destroy the interior attractors. This enables us to obtain the complete dynamics of the full model and conclude that the model has only one attractor (only susceptible prey survives or susceptible-infected coexist), or two attractors (bi-stability with only susceptible prey and susceptible prey–predator coexist or susceptible prey-infected prey coexists and susceptible prey–predator coexist). This model does not support the coexistence of susceptible-infected-predator, which is caused by the assumption that infected population contributes less or are harmful to the growth of predator in comparison to the consumption of susceptible prey.

  20. Stage-specific predator species help each other to persist while competing for a single prey

    PubMed Central

    De Roos, A. M.; Schellekens, T.; Van Kooten, T.; Persson, L.

    2008-01-01

    Prey in natural communities are usually shared by many predator species. How predators coexist while competing for the same prey is one of the fundamental questions in ecology. Here, we show that competing predator species may not only coexist on a single prey but even help each other to persist if they specialize on different life history stages of the prey. By changing the prey size distribution, a predator species may in fact increase the amount of prey available for its competitor. Surprisingly, a predator may not be able to persist at all unless its competitor is also present. The competitor thus significantly increases the range of conditions for which a particular predator can persist. This “emergent facilitation” is a long-term, population-level effect that results from asymmetric increases in the rate of prey maturation and reproduction when predation relaxes competition among prey. Emergent facilitation explains observations of correlated increases of predators on small and large conspecific prey as well as concordance in their distribution patterns. Our results suggest that emergent facilitation may promote the occurrence of complex, stable, community food webs and that persistence of these communities could critically depend on diversity within predator guilds. PMID:18779580

  1. Density but not climate affects the population growth rate of guanacos ( Lama guanicoe) (Artiodactyla, Camelidae)

    PubMed Central

    Zubillaga, María; Skewes, Oscar; Soto, Nicolás; Rabinovich, Jorge E

    2014-01-01

    We analyzed the effects of population density and climatic variables on the rate of population growth in the guanaco ( Lama guanicoe), a wild camelid species in South America. We used a time series of 36 years (1977-2012) of population sampling in Tierra del Fuego, Chile. Individuals were grouped in three age-classes: newborns, juveniles, and adults; for each year a female population transition matrix was constructed, and the population growth rate (λ) was estimated for each year as the matrix highest positive eigenvalue. We applied a regression analysis with finite population growth rate (λ) as dependent variable, and total guanaco population, sheep population, annual mean precipitation, and winter mean temperature as independent variables, with and without time lags. The effect of guanaco population size was statistically significant, but the effects of the sheep population and the climatic variables on guanaco population growth rate were not statistically significant. PMID:25187878

  2. Predator personality structures prey communities and trophic cascades.

    PubMed

    Start, Denon; Gilbert, Benjamin

    2017-03-01

    Intraspecific variation is central to our understanding of evolution and population ecology, yet its consequences for community ecology are poorly understood. Animal personality - consistent individual differences in suites of behaviours - may be particularly important for trophic dynamics, where predator personality can determine activity rates and patterns of attack. We used mesocosms with aquatic food webs in which the top predator (dragonfly nymphs) varied in activity and subsequent attack rates on zooplankton, and tested the effects of predator personality. We found support for four hypotheses: (1) active predators disproportionately reduce the abundance of prey, (2) active predators select for predator-resistant prey species, (3) active predators strengthen trophic cascades (increase phytoplankton abundance) and (4) active predators are more likely to cannibalise one another, weakening all other trends when at high densities. These results suggest that intraspecific variation in predator personality is an important determinant of prey abundance, community composition and trophic cascades.

  3. Web Intervention for Adolescents Affected by Disaster: Population-Based Randomized Controlled Trial

    PubMed Central

    Ruggiero, Kenneth J.; Price, Matthew; Adams, Zachary; Stauffacher, Kirstin; McCauley, Jenna; Danielson, Carla Kmett; Knapp, Rebecca; Hanson, Rochelle F.; Davidson, Tatiana M.; Amstadter, Ananda B.; Carpenter, Matthew J.; Saunders, Benjamin E.; Kilpatrick, Dean G.; Resnick, Heidi S.

    2015-01-01

    Objective To assess the efficacy of Bounce Back Now (BBN), a modular, web-based intervention for disaster-affected adolescents and their parents. Method A population-based randomized controlled trial used address-based sampling to enroll 2,000 adolescents and parents from communities affected by tornadoes in Joplin, MO, and Alabama. Data collection via baseline and follow-up semi-structured telephone interviews was completed between September 2011 and August 2013. All families were invited to access the BBN study web portal irrespective of mental health status at baseline. Families who accessed the web portal were assigned randomly to 3 groups: (1) BBN, which featured modules for adolescents and parents targeting adolescents’ mental health symptoms; (2) BBN plus additional modules targeting parents’ mental health symptoms; or (3) assessment only. The primary outcomes were adolescent symptoms of posttraumatic stress disorder (PTSD) and depression. Results Nearly 50% of families accessed the web portal. Intent-to-treat analyses revealed time × condition interactions for PTSD symptoms (B=−0.24, SE=0.08, p<.01) and depressive symptoms (B=−0.23, SE=0.09, p<.01). Post-hoc comparisons revealed fewer PTSD and depressive symptoms for adolescents in the experimental vs. control conditions at 12-month follow-up (PTSD: B=−0.36, SE=0.19, p=.06; depressive symptoms: B=−0.42, SE=0.19, p=0.03). A time × condition interaction also was found favoring the BBN vs. BBN + parent self-help condition for PTSD symptoms (B=0.30, SE=0.12, p=.02), but not depressive symptoms (B=0.12, SE=0.12, p=.33). Conclusion Results supported the feasibility and initial efficacy of BBN as a scalable disaster mental health intervention for adolescents. Technology-based solutions have tremendous potential value if found to reduce the mental health burden of disasters. PMID:26299292

  4. Nitrogen deposition and prey nitrogen uptake control the nutrition of the carnivorous plant Drosera rotundifolia.

    PubMed

    Millett, J; Foot, G W; Svensson, B M

    2015-04-15

    Nitrogen (N) deposition has important negative impacts on natural and semi-natural ecosystems, impacting on biotic interactions across trophic levels. Low-nutrient systems are particularly sensitive to changes in N inputs and are therefore more vulnerable to N deposition. Carnivorous plants are often part of these ecosystems partly because of the additional nutrients obtained from prey. We studied the impact of N deposition on the nutrition of the carnivorous plant Drosera rotundifolia growing on 16 ombrotrophic bogs across Europe. We measured tissue N, phosphorus (P) and potassium (K) concentrations and prey and root N uptake using a natural abundance stable isotope approach. Our aim was to test the impact of N deposition on D. rotundifolia prey and root N uptake, and nutrient stoichiometry. D. rotundifolia root N uptake was strongly affected by N deposition, possibly resulting in reduced N limitation. The contribution of prey N to the N contained in D. rotundifolia ranged from 20 to 60%. N deposition reduced the maximum amount of N derived from prey, but this varied below this maximum. D. rotundifolia tissue N concentrations were a product of both root N availability and prey N uptake. Increased prey N uptake was correlated with increased tissue P concentrations indicating uptake of P from prey. N deposition therefore reduced the strength of a carnivorous plant-prey interaction, resulting in a reduction in nutrient transfer between trophic levels. We suggest that N deposition has a negative impact on D. rotundifolia and that responses to N deposition might be strongly site specific.

  5. Identification and synthetic modeling of factors affecting American black duck populations

    USGS Publications Warehouse

    Conroy, Michael J.; Miller, Mark W.; Hines, James E.

    2002-01-01

    We reviewed the literature on factors potentially affecting the population status of American black ducks (Anas rupribes). Our review suggests that there is some support for the influence of 4 major, continental-scope factors in limiting or regulating black duck populations: 1) loss in the quantity or quality of breeding habitats; 2) loss in the quantity or quality of wintering habitats; 3) harvest, and 4) interactions (competition, hybridization) with mallards (Anas platyrhychos) during the breeding and/or wintering periods. These factors were used as the basis of an annual life cycle model in which reproduction rates and survival rates were modeled as functions of the above factors, with parameters of the model describing the strength of these relationships. Variation in the model parameter values allows for consideration of scientific uncertainty as to the degree each of these factors may be contributing to declines in black duck populations, and thus allows for the investigation of the possible effects of management (e.g., habitat improvement, harvest reductions) under different assumptions. We then used available, historical data on black duck populations (abundance, annual reproduction rates, and survival rates) and possible driving factors (trends in breeding and wintering habitats, harvest rates, and abundance of mallards) to estimate model parameters. Our estimated reproduction submodel included parameters describing negative density feedback of black ducks, positive influence of breeding habitat, and negative influence of mallard densities; our survival submodel included terms for positive influence of winter habitat on reproduction rates, and negative influences of black duck density (i.e., compensation to harvest mortality). Individual models within each group (reproduction, survival) involved various combinations of these factors, and each was given an information theoretic weight for use in subsequent prediction. The reproduction model with highest

  6. Quorum sensing influences phage infection efficiency via affecting cell population and physiological state.

    PubMed

    Qin, Xuying; Sun, Qinghui; Yang, Baixue; Pan, Xuewei; He, Yang; Yang, Hongjiang

    2017-02-01

    Bacterial growth phase has been reported affecting phage infection. To underpin the related mechanism, infection efficiency of Pseudomonas aeruginosa phage K5 is characterized. When infecting the logarithmic cells, phage K5 produced significantly more infection centers than the stationary cells, well concordant with the viable cell ratio in the different growth phases. Additionally, the burst size decreased dramatically in the stationary cells, implying that the physiological state of the viable cells contributed to the productivity of phage K5, and it was consistent with the expression variation of the phage RNA polymerase. Quorum sensing inhibitor penicillic acid was applied and could significantly improve the viable cell proportion and the infection center numbers, but had less effect on the corresponding burst sizes. Moreover, the effect of penicillic acid and the quorum sensing regulator mutants on the production of phage C11 was also analyzed. Taken together, our data suggest that quorum sensing is involved in the defense of phage K5 infection by influencing the viable cell population and their physiological state, and it is an efficient and intrinsic pathway allowing bacteria to resist phage attacks in natural environment.

  7. Recombination affects accumulation of damaging and disease-associated mutations in human populations.

    PubMed

    Hussin, Julie G; Hodgkinson, Alan; Idaghdour, Youssef; Grenier, Jean-Christophe; Goulet, Jean-Philippe; Gbeha, Elias; Hip-Ki, Elodie; Awadalla, Philip

    2015-04-01

    Many decades of theory have demonstrated that, in non-recombining systems, slightly deleterious mutations accumulate non-reversibly, potentially driving the extinction of many asexual species. Non-recombining chromosomes in sexual organisms are thought to have degenerated in a similar fashion; however, it is not clear the extent to which damaging mutations accumulate along chromosomes with highly variable rates of crossing over. Using high-coverage sequencing data from over 1,400 individuals in the 1000 Genomes and CARTaGENE projects, we show that recombination rate modulates the distribution of putatively deleterious variants across the entire human genome. Exons in regions of low recombination are significantly enriched for deleterious and disease-associated variants, a signature varying in strength across worldwide human populations with different demographic histories. Regions with low recombination rates are enriched for highly conserved genes with essential cellular functions and show an excess of mutations with demonstrated effects on health, a phenomenon likely affecting disease susceptibility in humans.

  8. Pattern formation in prey-taxis systems.

    PubMed

    Lee, J M; Hillen, T; Lewis, M A

    2009-11-01

    In this paper, we consider spatial predator-prey models with diffusion and prey-taxis. We investigate necessary conditions for pattern formation using a variety of non-linear functional responses, linear and non-linear predator death terms, linear and non-linear prey-taxis sensitivities, and logistic growth or growth with an Allee effect for the prey. We identify combinations of the above non-linearities that lead to spatial pattern formation and we give numerical examples. It turns out that prey-taxis stabilizes the system and for large prey-taxis sensitivity we do not observe pattern formation. We also study and find necessary conditions for global stability for a type I functional response, logistic growth for the prey, non-linear predator death terms, and non-linear prey-taxis sensitivity.

  9. Inbreeding Affects Gene Expression Differently in Two Self-Incompatible Arabidopsis lyrata Populations with Similar Levels of Inbreeding Depression.

    PubMed

    Menzel, Mandy; Sletvold, Nina; Ågren, Jon; Hansson, Bengt

    2015-08-01

    Knowledge of which genes and pathways are affected by inbreeding may help understanding the genetic basis of inbreeding depression, the potential for purging (selection against deleterious recessive alleles), and the transition from outcrossing to selfing. Arabidopsis lyrata is a predominantly self-incompatible perennial plant, closely related to the selfing model species A. thaliana. To examine how inbreeding affects gene expression, we compared the transcriptome of experimentally selfed and outcrossed A. lyrata originating from two Scandinavian populations that express similar inbreeding depression for fitness (∂ ≈ 0.80). The number of genes significantly differentially expressed between selfed and outcrossed individuals were 2.5 times higher in the Norwegian population (≈ 500 genes) than in the Swedish population (≈ 200 genes). In both populations, a majority of genes were upregulated on selfing (≈ 80%). Functional annotation analysis of the differentially expressed genes showed that selfed offspring were characterized by 1) upregulation of stress-related genes in both populations and 2) upregulation of photosynthesis-related genes in Sweden but downregulation in Norway. Moreover, we found that reproduction- and pollination-related genes were affected by inbreeding only in Norway. We conclude that inbreeding causes both general and population-specific effects. The observed common effects suggest that inbreeding generally upregulates rather than downregulates gene expression and affects genes associated with stress response and general metabolic activity. Population differences in the number of affected genes and in effects on the expression of photosynthesis-related genes show that the genetic basis of inbreeding depression can differ between populations with very similar levels of inbreeding depression.

  10. Variable prey development time suppresses predator-prey cycles and enhances stability.

    PubMed

    Cronin, James T; Reeve, John D; Xu, Dashun; Xiao, Mingqing; Stevens, Heidi N

    2016-03-01

    Although theoretical models have demonstrated that predator-prey population dynamics can depend critically on age (stage) structure and the duration and variability in development times of different life stages, experimental support for this theory is non-existent. We conducted an experiment with a host-parasitoid system to test the prediction that increased variability in the development time of the vulnerable host stage can promote interaction stability. Host-parasitoid microcosms were subjected to two treatments: Normal and High variance in the duration of the vulnerable host stage. In control and Normal-variance microcosms, hosts and parasitoids exhibited distinct population cycles. In contrast, insect abundances were 18-24% less variable in High- than Normal-variance microcosms. More significantly, periodicity in host-parasitoid population dynamics disappeared in the High-variance microcosms. Simulation models confirmed that stability in High-variance microcosms was sufficient to prevent extinction. We conclude that developmental variability is critical to predator-prey population dynamics and could be exploited in pest-management programs.

  11. Both population size and patch quality affect local extinctions and colonizations.

    PubMed

    Franzén, Markus; Nilsson, Sven G

    2010-01-07

    Currently, the habitat of many species is fragmented, resulting in small local populations with individuals occasionally dispersing between the remaining habitat patches. In a solitary bee metapopulation, extinction probability was related to both local bee population sizes and pollen resources measured as host plant population size. Patch size, on the other hand, had no additional predictive power. The turnover rate of local bee populations in 63 habitat patches over 4 years was high, with 72 extinction events and 31 colonization events, but the pollen plant population was stable with no extinctions or colonizations. Both pollen resources and bee populations had strong and independent effects on extinction probability, but connectivity was not of importance. Colonizations occurred more frequently within larger host plant populations. For metapopulation survival of the bee, large pollen plant populations are essential, independent of current bee population size.

  12. Analysis of quantitative trait loci affecting chlorophyll content of rice leaves in a double haploid population and two backcross populations.

    PubMed

    Jiang, Gonghao; Zeng, Jing; He, Yuqing

    2014-02-25

    Chlorophyll content, one of the most important physiological parameters related to plant photosynthesis, is usually used to predict yield potential. To map the quantitative trait loci (QTLs) underlying the chlorophyll content of rice leaves, a double haploid (DH) population was developed from an indica/japonica (Zhenshan 97/Wuyujing 2) crossing and two backcross populations were established subsequently by backcrossing DH lines with each of their parents. The contents of chlorophyll a and chlorophyll b were determined by using a spectrophotometer to directly measure the leaf chlorophyll extracts. To determine the leaf chlorophyll retention along with maturation, all measurements were performed on the day of heading and were repeated 30 days later. A total of 60 QTLs were resolved for all the traits using these three populations. These QTLs were distributed on 10 rice chromosomes, except chromosomes 5 and 10; the closer the traits, the more clustering of the QTLs residing on common rice chromosomal regions. In general, the majority of QTLs that specify chlorophyll a content also play a role in determining chlorophyll b content. Strangely, chlorophyll content in this study was found mostly to be lacking or to have a negative correlation with yield. In both backcross F1 populations, overdominant (or underdominant) loci were more important than complete or partially dominant loci for main-effect QTLs and epistatic QTLs, thereby supporting previous findings that overdominant effects are the primary genetic basis for depression in inbreeding and heterosis in rice.

  13. Innate prey preference overridden by familiarisation with detrimental prey in a specialised myrmecophagous predator

    NASA Astrophysics Data System (ADS)

    Pekár, Stano; Cárdenas, Manuel

    2015-02-01

    Prey-specialised spiders often do not have brood care and may not deposit eggs in the proximity of the preferred prey. Thus, naïve spiderlings are left to their own to find their focal prey. Our aim was to reveal whether the choice of a specific prey is innate and whether familiarisation with a certain prey will condition prey choice. We used the myrmecophagous spider Euryopis episinoides, which specialises on Messor ants. It finds ants using chemical cues deposited on the substrate. Naïve spiderlings were offered chemical cues from Messor and Myrmica ants and Drosophila flies. They chose significantly more chemical cues from Messor ants than those from Drosophila flies. Then spiderlings were assigned to three prey treatments: fed with Messor ants only (optimal prey), fed with Myrmica ants only (suboptimal prey) or fed with Drosophila flies only (detrimental prey) until adulthood. Every 2 weeks, all spiders from all treatments were offered chemical cues from the three prey types and the frequency of choice and latency to assuming a posture were recorded. Experienced spiderlings preferred chemical cues from the prey in which they were raised. They suffered high mortality on Drosophila flies and attained largest size on the optimal prey. We show here that majority of spiderlings are born with an innate preference to their focal prey, which can be altered by familiarisation with alternative prey, irrespective of whether such a prey is beneficial.

  14. The Predator-Prey Relationship

    ERIC Educational Resources Information Center

    Mitchell, Charles W.

    1977-01-01

    Many children develop a mistaken attitude about the predator-prey relationship in the ecosystem. Fairy tales portray the predator as evil or worthless. This article attempts to clarify the role of the predator by giving numerous examples of the value of predators. (MA)

  15. Degraded environments alter prey risk assessment.

    PubMed

    Lönnstedt, Oona M; McCormick, Mark I; Chivers, Douglas P

    2012-01-01

    Elevated water temperatures, a decrease in ocean pH, and an increasing prevalence of severe storms have lead to bleaching and death of the hard corals that underpin coral reef ecosystems. As coral cover declines, fish diversity and abundance declines. How degradation of coral reefs affects behavior of reef inhabitants is unknown. Here, we demonstrate that risk assessment behaviors of prey are severely affected by coral degradation. Juvenile damselfish were exposed to visual and olfactory indicators of predation risk in healthy live, thermally bleached, and dead coral in a series of laboratory and field experiments. While fish still responded to visual cues in all habitats, they did not respond to olfactory indicators of risk in dead coral habitats, likely as a result of alteration or degradation of chemical cues. These cues are critical for learning and avoiding predators, and a failure to respond can have dramatic repercussions for survival and recruitment.

  16. Predators, alternative prey and climate influence annual breeding success of a long-lived sea duck.

    PubMed

    Iles, David T; Rockwell, Robert F; Matulonis, Paul; Robertson, Gregory J; Abraham, Kenneth F; Davies, J Chris; Koons, David N

    2013-05-01

    1. Perturbations to ecosystems have the potential to directly and indirectly affect species interactions, with subsequent impacts on population dynamics and the vital rates that regulate them. 2. The few long-term studies of common eider breeding ecology indicate that reproductive success is low in most years, interrupted by occasional boom years. However, no study has explicitly examined the drivers of long-term variation in reproductive success. 3. Here, we use encounter history data collected across 41 years to examine the effects of arctic foxes (a terrestrial nest predator), local abundance and spatial distribution of lesser snow geese (an alternative prey source), and spring climate on common eider nest success. 4. Eider nest success declined over the course of the study, but was also highly variable across years. Our results supported the hypothesis that the long-term decline in eider nest success was caused by apparent competition with lesser snow geese, mediated by shared predators. This effect persisted even following a large-scale exodus of nesting geese from the eider colony. Nest success was also lowest in years of low arctic fox index, presumably driven by prey switching in years of low small mammal availability. However, increased snow goose abundance appeared to buffer this effect through prey swamping. The effect of spring climate depended on the stage of the breeding season; cold and wet and warm and dry conditions in early spring were correlated with decreased nest success, whereas warm and wet conditions in late spring increased eider nest success. 5. These results underscore the significance of both trophic interactions and climate in regulating highly variable vital rates, which likely have important consequences for population dynamics and the conservation of long-lived iteroparous species.

  17. Impacts of human disturbance on large prey species: do behavioral reactions translate to fitness consequences?

    PubMed

    Leblond, Mathieu; Dussault, Christian; Ouellet, Jean-Pierre

    2013-01-01

    Anthropogenic disturbances have been demonstrated to affect animal behavior, distribution, and abundance, but assessment of their impacts on fitness-related traits has received little attention. We hypothesized that human activities and infrastructure cause a decrease in the individual performance of preys because of anthropogenically enhanced predation risk. We evaluated the impacts of commercial logging and road networks on the fitness of a large herbivore known to be sensitive to human disturbance: the forest-dwelling woodland caribou (Rangifer tarandus caribou). For 8 consecutive years (2004-2011) we monitored 59 individuals using GPS telemetry in the Charlevoix region of Québec, Canada. We also used Very High Frequency telemetry locations collected on 28 individuals from 1999-2000. We related habitat selection of adult caribou at various spatio-temporal scales to their probability of dying from predation, and to indices of their reproductive success and energy expenditure. The probability that adult caribou died from predation increased with the proportion of recent disturbances (including cutblocks ≤ 5 years old) in their annual home range. The respective effects of increasing paved and forestry road densities depended upon the overall road density within the home range of caribou. At a finer scale of 10 to 15 days before their death, caribou that were killed by a predator selected for recent disturbances more than individuals that survived, and avoided old mature conifer stands. The home range area of caribou increased with road density. Finally, the composition of the home range of females had no effect on their reproductive success. We show that human activities and infrastructure may influence the individual performance of large prey species in highly managed regions. We outline the need to consider the full set of impacts that human development may have on threatened animal populations, with particular emphasis on predator-prey relationships and

  18. Impacts of Human Disturbance on Large Prey Species: Do Behavioral Reactions Translate to Fitness Consequences?

    PubMed Central

    Leblond, Mathieu; Dussault, Christian; Ouellet, Jean-Pierre

    2013-01-01

    Anthropogenic disturbances have been demonstrated to affect animal behavior, distribution, and abundance, but assessment of their impacts on fitness-related traits has received little attention. We hypothesized that human activities and infrastructure cause a decrease in the individual performance of preys because of anthropogenically enhanced predation risk. We evaluated the impacts of commercial logging and road networks on the fitness of a large herbivore known to be sensitive to human disturbance: the forest-dwelling woodland caribou (Rangifer tarandus caribou). For 8 consecutive years (2004–2011) we monitored 59 individuals using GPS telemetry in the Charlevoix region of Québec, Canada. We also used Very High Frequency telemetry locations collected on 28 individuals from 1999–2000. We related habitat selection of adult caribou at various spatio-temporal scales to their probability of dying from predation, and to indices of their reproductive success and energy expenditure. The probability that adult caribou died from predation increased with the proportion of recent disturbances (including cutblocks ≤5 years old) in their annual home range. The respective effects of increasing paved and forestry road densities depended upon the overall road density within the home range of caribou. At a finer scale of 10 to 15 days before their death, caribou that were killed by a predator selected for recent disturbances more than individuals that survived, and avoided old mature conifer stands. The home range area of caribou increased with road density. Finally, the composition of the home range of females had no effect on their reproductive success. We show that human activities and infrastructure may influence the individual performance of large prey species in highly managed regions. We outline the need to consider the full set of impacts that human development may have on threatened animal populations, with particular emphasis on predator-prey relationships and

  19. Supplementary feeding of wild birds indirectly affects ground beetle populations in suburban gardens.

    PubMed

    Orros, Melanie E; Thomas, Rebecca L; Holloway, Graham J; Fellowes, Mark D E

    Supplementary feeding of wild birds by domestic garden-holders is a globally widespread and popular form of human-wildlife interaction, particularly in urban areas. Vast amounts of energy are thus being added to garden ecosystems. However, the potential indirect effects of this activity on non-avian species have been little studied to date, with the only two previous studies taking place under experimentally manipulated conditions. Here we present the first evidence of a localised depletive effect of wild bird feeding on ground beetles (Coleoptera: Carabidae) in suburban gardens under the usual feeding patterns of the garden-holders. We trapped significantly fewer ground beetles directly under bird-feeding stations than in matched areas of habitat away from feeders. Video analysis also revealed significantly higher activity by ground-foraging birds under the feeding stations than in the control areas. Small mammal trapping revealed no evidence that these species differ in abundance between gardens with and without bird feeders. We therefore suggest that local increases in ground-foraging activity by bird species whose diets encompass arthropods as well as seed material are responsible for the reduction in ground beetle numbers. Our work therefore illustrates that providing food for wild birds can have indirect negative effects on palatable prey species under typical conditions.

  20. A systematic review of measures of HIV/AIDS stigma in paediatric HIV-infected and HIV-affected populations

    PubMed Central

    McAteer, Carole Ian; Truong, Nhan-Ai Thi; Aluoch, Josephine; Deathe, Andrew Roland; Nyandiko, Winstone M; Marete, Irene; Vreeman, Rachel Christine

    2016-01-01

    Introduction HIV-related stigma impacts the quality of life and care management of HIV-infected and HIV-affected individuals, but how we measure stigma and its impact on children and adolescents has less often been described. Methods We conducted a systematic review of studies that measured HIV-related stigma with a quantitative tool in paediatric HIV-infected and HIV-affected populations. Results and discussion Varying measures have been used to assess stigma in paediatric populations, with most studies utilizing the full or variant form of the HIV Stigma Scale that has been validated in adult populations and utilized with paediatric populations in Africa, Asia and the United States. Other common measures included the Perceived Public Stigma Against Children Affected by HIV, primarily utilized and validated in China. Few studies implored item validation techniques with the population of interest, although scales were used in a different cultural context from the origin of the scale. Conclusions Many stigma measures have been used to assess HIV stigma in paediatric populations, globally, but few have implored methods for cultural adaptation and content validity. PMID:27717409

  1. Does population size affect genetic diversity? A test with sympatric lizard species

    PubMed Central

    Hague, M T J; Routman, E J

    2016-01-01

    Genetic diversity is a fundamental requirement for evolution and adaptation. Nonetheless, the forces that maintain patterns of genetic variation in wild populations are not completely understood. Neutral theory posits that genetic diversity will increase with a larger effective population size and the decreasing effects of drift. However, the lack of compelling evidence for a relationship between genetic diversity and population size in comparative studies has generated some skepticism over the degree that neutral sequence evolution drives overall patterns of diversity. The goal of this study was to measure genetic diversity among sympatric populations of related lizard species that differ in population size and other ecological factors. By sampling related species from a single geographic location, we aimed to reduce nuisance variance in genetic diversity owing to species differences, for example, in mutation rates or historical biogeography. We compared populations of zebra-tailed lizards and western banded geckos, which are abundant and short-lived, to chuckwallas and desert iguanas, which are less common and long-lived. We assessed population genetic diversity at three protein-coding loci for each species. Our results were consistent with the predictions of neutral theory, as the abundant species almost always had higher levels of haplotype diversity than the less common species. Higher population genetic diversity in the abundant species is likely due to a combination of demographic factors, including larger local population sizes (and presumably effective population sizes), faster generation times and high rates of gene flow with other populations. PMID:26306730

  2. Model complexity affects transient population dynamics following a dispersal event: a case study with pea aphids.

    PubMed

    Tenhumberg, Brigitte; Tyre, Andrew J; Rebarber, Richard

    2009-07-01

    Stage-structured population models predict transient population dynamics if the population deviates from the stable stage distribution. Ecologists' interest in transient dynamics is growing because populations regularly deviate from the stable stage distribution, which can lead to transient dynamics that differ significantly from the stable stage dynamics. Because the structure of a population matrix (i.e., the number of life-history stages) can influence the predicted scale of the deviation, we explored the effect of matrix size on predicted transient dynamics and the resulting amplification of population size. First, we experimentally measured the transition rates between the different life-history stages and the adult fecundity and survival of the aphid, Acythosiphon pisum. Second, we used these data to parameterize models with different numbers of stages. Third, we compared model predictions with empirically measured transient population growth following the introduction of a single adult aphid. We find that the models with the largest number of life-history stages predicted the largest transient population growth rates, but in all models there was a considerable discrepancy between predicted and empirically measured transient peaks and a dramatic underestimation of final population sizes. For instance, the mean population size after 20 days was 2394 aphids compared to the highest predicted population size of 531 aphids; the predicted asymptotic growth rate (lamdamax) was consistent with the experiments. Possible explanations for this discrepancy are discussed.

  3. Ranking landscape development scenarios affecting natterjack toad (Bufo calamita) population dynamics in Central Poland.

    PubMed

    Franz, Kamila W; Romanowski, Jerzy; Johst, Karin; Grimm, Volker

    2013-01-01

    When data are limited it is difficult for conservation managers to assess alternative management scenarios and make decisions. The natterjack toad (Bufo calamita) is declining at the edges of its distribution range in Europe and little is known about its current distribution and abundance in Poland. Although different landscape management plans for central Poland exist, it is unclear to what extent they impact this species. Based on these plans, we investigated how four alternative landscape development scenarios would affect the total carrying capacity and population dynamics of the natterjack toad. To facilitate decision-making, we first ranked the scenarios according to their total carrying capacity. We used the software RAMAS GIS to determine the size and location of habitat patches in the landscape. The estimated carrying capacities were very similar for each scenario, and clear ranking was not possible. Only the reforestation scenario showed a marked loss in carrying capacity. We therefore simulated metapopulation dynamics with RAMAS taking into account dynamical processes such as reproduction and dispersal and ranked the scenarios according to the resulting species abundance. In this case, we could clearly rank the development scenarios. We identified road mortality of adults as a key process governing the dynamics and separating the different scenarios. The renaturalisation scenario clearly ranked highest due to its decreased road mortality. Taken together our results suggest that road infrastructure development might be much more important for natterjack toad conservation than changes in the amount of habitat in the semi-natural river valley. We gained these insights by considering both the resulting metapopulation structure and dynamics in the form of a PVA. We conclude that the consideration of dynamic processes in amphibian conservation management may be indispensable for ranking management scenarios.

  4. Ranking Landscape Development Scenarios Affecting Natterjack Toad (Bufo calamita) Population Dynamics in Central Poland

    PubMed Central

    Franz, Kamila W.; Romanowski, Jerzy; Johst, Karin; Grimm, Volker

    2013-01-01

    When data are limited it is difficult for conservation managers to assess alternative management scenarios and make decisions. The natterjack toad (Bufo calamita) is declining at the edges of its distribution range in Europe and little is known about its current distribution and abundance in Poland. Although different landscape management plans for central Poland exist, it is unclear to what extent they impact this species. Based on these plans, we investigated how four alternative landscape development scenarios would affect the total carrying capacity and population dynamics of the natterjack toad. To facilitate decision-making, we first ranked the scenarios according to their total carrying capacity. We used the software RAMAS GIS to determine the size and location of habitat patches in the landscape. The estimated carrying capacities were very similar for each scenario, and clear ranking was not possible. Only the reforestation scenario showed a marked loss in carrying capacity. We therefore simulated metapopulation dynamics with RAMAS taking into account dynamical processes such as reproduction and dispersal and ranked the scenarios according to the resulting species abundance. In this case, we could clearly rank the development scenarios. We identified road mortality of adults as a key process governing the dynamics and separating the different scenarios. The renaturalisation scenario clearly ranked highest due to its decreased road mortality. Taken together our results suggest that road infrastructure development might be much more important for natterjack toad conservation than changes in the amount of habitat in the semi-natural river valley. We gained these insights by considering both the resulting metapopulation structure and dynamics in the form of a PVA. We conclude that the consideration of dynamic processes in amphibian conservation management may be indispensable for ranking management scenarios. PMID:23734223

  5. 'Take-away' foraging spatially uncouples predator and prey-attack distributions.

    PubMed

    Smallegange, Isabel M; van der Meer, Jaap; Sabelis, Maurice W

    2010-07-01

    1. Ideal-free distribution theory assumes that in a patchy environment foragers maximize fitness and hence their feeding rate by balancing gains from more food against losses from more competition. Ultimately, individuals cannot increase their feeding rate by moving to another patch and they distribute themselves over patches in proportion to prey density per patch. 2. In our experiments with shore crabs Carcinus maenas foraging on two adjacent patches with mussels Mytilus edulis, the implicit assumption of ideal-free distribution theory that catch should match time spent in a prey patch is not met, however. Despite aggregating their attack where it is most profitable shore crabs distributed themselves homogeneously across mussel patches: they 'take away' the prey caught and consume it elsewhere to reduce interference. 3. Thus, predator distributions can be quite different from prey-attack distributions. This is important because the latter is shown to be decisive for persistence of predator and prey populations in ecological models.

  6. Evolution towards oscillation or stability in a predator-prey system.

    PubMed

    Mougi, Akihiko; Iwasa, Yoh

    2010-10-22

    We studied a prey-predator system in which both species evolve. We discuss here the conditions that result in coevolution towards a stable equilibrium or towards oscillations. First, we show that a stable equilibrium or population oscillations with small amplitude is likely to occur if the prey's (host's) defence is effective when compared with the predator's (parasite's) attacking ability at equilibrium, whereas large-amplitude oscillations are likely if the predator's (parasite's) attacking ability exceeds the prey's (host's) defensive ability. Second, a stable equilibrium is more likely if the prey's defensive trait evolves faster than the predator's attack trait, whereas population oscillations are likely if the predator's trait evolves faster than that of the prey. Third, when the adaptation rates of both species are similar, the amplitude of the fluctuations in their abundances is small when the adaptation rate is either very slow or very fast, but at an intermediate rate of adaptation the fluctuations have a large amplitude. We also show the case in which the prey's abundance and trait fluctuate greatly, while those of the predator remain almost unchanged. Our results predict that populations and traits in host-parasite systems are more likely than those in prey-predator systems to show large-amplitude oscillations.

  7. Relative availability of natural prey versus livestock predicts landscape suitability for cheetahs Acinonyx jubatus in Botswana

    PubMed Central

    Winterbach, Christiaan W.; Boast, Lorraine K.; Klein, Rebecca; Somers, Michael J.

    2015-01-01

    Prey availability and human-carnivore conflict are strong determinants that govern the spatial distribution and abundance of large carnivore species and determine the suitability of areas for their conservation. For wide-ranging large carnivores such as cheetahs (Acinonyx jubatus), additional conservation areas beyond protected area boundaries are crucial to effectively conserve them both inside and outside protected areas. Although cheetahs prefer preying on wild prey, they also cause conflict with people by predating on especially small livestock. We investigated whether the distribution of cheetahs’ preferred prey and small livestock biomass could be used to explore the potential suitability of agricultural areas in Botswana for the long-term persistence of its cheetah population. We found it gave a good point of departure for identifying priority areas for land management, the threat to connectivity between cheetah populations, and areas where the reduction and mitigation of human-cheetah conflict is critical. Our analysis showed the existence of a wide prey base for cheetahs across large parts of Botswana’s agricultural areas, which provide additional large areas with high conservation potential. Twenty percent of wild prey biomass appears to be the critical point to distinguish between high and low probable levels of human-cheetah conflict. We identified focal areas in the agricultural zones where restoring wild prey numbers in concurrence with effective human-cheetah conflict mitigation efforts are the most immediate conservation strategies needed to maintain Botswana’s still large and contiguous cheetah population. PMID:26213646

  8. Relative availability of natural prey versus livestock predicts landscape suitability for cheetahs Acinonyx jubatus in Botswana.

    PubMed

    Winterbach, Hanlie E K; Winterbach, Christiaan W; Boast, Lorraine K; Klein, Rebecca; Somers, Michael J

    2015-01-01

    Prey availability and human-carnivore conflict are strong determinants that govern the spatial distribution and abundance of large carnivore species and determine the suitability of areas for their conservation. For wide-ranging large carnivores such as cheetahs (Acinonyx jubatus), additional conservation areas beyond protected area boundaries are crucial to effectively conserve them both inside and outside protected areas. Although cheetahs prefer preying on wild prey, they also cause conflict with people by predating on especially small livestock. We investigated whether the distribution of cheetahs' preferred prey and small livestock biomass could be used to explore the potential suitability of agricultural areas in Botswana for the long-term persistence of its cheetah population. We found it gave a good point of departure for identifying priority areas for land management, the threat to connectivity between cheetah populations, and areas where the reduction and mitigation of human-cheetah conflict is critical. Our analysis showed the existence of a wide prey base for cheetahs across large parts of Botswana's agricultural areas, which provide additional large areas with high conservation potential. Twenty percent of wild prey biomass appears to be the critical point to distinguish between high and low probable levels of human-cheetah conflict. We identified focal areas in the agricultural zones where restoring wild prey numbers in concurrence with effective human-cheetah conflict mitigation efforts are the most immediate conservation strategies needed to maintain Botswana's still large and contiguous cheetah population.

  9. Evolutionary Diversification of Prey and Predator Species Facilitated by Asymmetric Interactions.

    PubMed

    Zu, Jian; Wang, Jinliang; Huang, Gang

    We investigate the influence of asymmetric interactions on coevolutionary dynamics of a predator-prey system by using the theory of adaptive dynamics. We assume that the defense ability of prey and the attack ability of predators all can adaptively evolve, either caused by phenotypic plasticity or by behavioral choice, but there are certain costs in terms of their growth rate or death rate. The coevolutionary model is constructed from a deterministic approximation of random mutation-selection process. To sum up, if prey's trade-off curve is globally weakly concave, then five outcomes of coevolution are demonstrated, which depend on the intensity and shape of asymmetric predator-prey interactions and predator's trade-off shape. Firstly, we find that if there is a weakly decelerating cost and a weakly accelerating benefit for predator species, then evolutionary branching in the predator species may occur, but after branching further coevolution may lead to extinction of the predator species with a larger trait value. However, if there is a weakly accelerating cost and a weakly accelerating benefit for predator species, then evolutionary branching in the predator species is also possible and after branching the dimorphic predator can evolutionarily stably coexist with a monomorphic prey species. Secondly, if the asymmetric interactions become a little strong, then prey and predators will evolve to an evolutionarily stable equilibrium, at which they can stably coexist on a long-term timescale of evolution. Thirdly, if there is a weakly accelerating cost and a relatively strongly accelerating benefit for prey species, then evolutionary branching in the prey species is possible and the finally coevolutionary outcome contains a dimorphic prey and a monomorphic predator species. Fourthly, if the asymmetric interactions become more stronger, then predator-prey coevolution may lead to cycles in both traits and equilibrium population densities. The Red Queen dynamic is a

  10. Numerical Response of Migratory Shorebirds to Prey Distribution in a Large Temperate Arid Wetland, China

    PubMed Central

    Wen, Li

    2016-01-01

    Wuliangsuhai Lake provides important breeding and stopover habitats for shorebirds. The health of this wetland ecosystem is rapidly deteriorating due to eutrophication and water pollution and environmental management is urgently needed. To explore the connections among ecosystem health, prey density, and shorebird populations, we conducted surveys of both the benthic macroinvertebrates and shorebirds in the shorebird habitat of the wetland during the 2011 autumn migration season. The abundance of both shorebirds and benthic macroinvertebrates varied significantly in both space and time. Our data showed a clear association between shorebird populations and the density of benthic macroinvertebrates, which explained 53.63% of the variation in shorebird abundance. The prey density was strongly affected by environmental factors, including water and sediment quality. Chironomidae were mainly found at sites with higher total phosphorus, but with lower sediment concentrations of Cu. Lymnaeidae were mainly found at sites with a higher pH, lower salinity, and lower concentrations of total phosphorus and Cu. Habitats with very high concentrations of total phosphorus, heavy metals, or salinity were not suitable for benthic macroinvertebrates. Our findings suggest that the reductions of nutrient and heavy metal loadings are crucial in maintaining the ecological function of Wuliangsuhai as a stopover habitat for migratory shorebirds. PMID:28070447

  11. Toxicity tests based on predator-prey and competitive interactions between freshwater macroinvertebrates

    SciTech Connect

    Taylor, E.J.; Blockwell, S.J.; Pascoe, D.

    1994-12-31

    Simple multi-species toxicity tests based on the predation of Daphnia magna Straus by Hydra oligactis (Pallas) and competition between Gammarus pulex (L.) and Asellus aquaticus (L.) were used to determine the effects of three reference chemicals. Criteria examined included functional responses; time to first captures; handling times (predator/prey systems) and co-existence and growth. The tests which proved most practicable and sensitive (lowest observed effects 0.1, 21, and 80 {micro}g/l for lindane, copper and 3,4 dichloroaniline, respectively) were: (1) predator-prey tests: determining changes in the size-structure of predated D. magna populations and (2) competition tests: measuring the feeding rate of G. pulex competing with A. aquaticus, using a bioassay based on the time-response analysis of the consumption of Artemia salina eggs. The concentration of a chemical which affected particular response criteria was fond to depend on the test system employed. Results of the tests indicated that effects were often not dose-related and that a given criterion could be variously affected by different test concentrations. The complex pattern of responses may be explained in terms of the differential sensitivity of the interacting species and perhaps subtle alteration in strategies. The sensitivity of the bioassay endpoints is compared to those of a range of single species tests, and their value for predicting the impact pollutants may have upon natural freshwater ecosystems is discussed.

  12. The curse of the prey: Sarcoptes mite molecular analysis reveals potential prey-to-predator parasitic infestation in wild animals from Masai Mara, Kenya

    PubMed Central

    2011-01-01

    Background Recently, there have been attempts to understand the molecular epidemiology of Sarcoptes scabiei, to evaluate the gene flow between isolates of S. scabiei from different hosts and geographic regions. However, to our knowledge, a molecular study has not been carried out to assess the molecular diversity and gene flow of Sarcoptes mite in a predator/prey ecosystem. Results Our study revealed an absence of gene flow between the two herbivore (Thomson's gazelle and wildebeest)- and between the two carnivore (lion and cheetah)-derived Sarcoptes populations from Masai Mara (Kenya), which is in discrepancy with the host-taxon law described for wild animals in Europe. Lion- and wildebeest-derived Sarcoptes mite populations were similar yet different from the Thomson's gazelle-derived Sarcoptes population. This could be attributed to Sarcoptes cross-infestation from wildebeest ("favourite prey") of the lion, but not from Thomson's gazelle. The cheetah-derived Sarcoptes population had different subpopulations: one is cheetah-private, one similar to the wildebeest- and lion-derived Sarcoptes populations, and another similar to the Thomson's gazelle-derived Sarcoptes mite population, where both wildebeest and Thomson's gazelle are "favourite preys" for the cheetah. Conclusions In a predator/prey ecosystem, like Masai Mara in Kenya, it seems that Sarcoptes infestation in wild animals is prey-to-predator-wise, depending on the predator's "favourite prey". More studies on the lion and cheetah diet and behaviour could be of great help to clarify the addressed hypotheses. This study could have further ramification in the epidemiological studies and the monitoring protocols of the neglected Sarcoptes mite in predator/prey ecosystems. PMID:21978557

  13. Interspecific variation in prey capture behavior by co-occurring Nepenthes pitcher plants

    PubMed Central

    Chin, Lijin; Chung, Arthur YC; Clarke, Charles

    2014-01-01

    Pitcher plants of the genus Nepenthes capture a wide range of arthropod prey for nutritional benefit, using complex combinations of visual and olfactory signals and gravity-driven pitfall trapping mechanisms. In many localities throughout Southeast Asia, several Nepenthes different species occur in mixed populations. Often, the species present at any given location have strongly divergent trap structures and preliminary surveys indicate that different species trap different combinations of arthropod prey, even when growing at the same locality. On this basis, it has been proposed that co-existing Nepenthes species may be engaged in niche segregation with regards to arthropod prey, avoiding direct competition with congeners by deploying traps that have modifications that enable them to target specific prey types. We examined prey capture among 3 multi-species Nepenthes populations in Borneo, finding that co-existing Nepenthes species do capture different combinations of prey, but that significant interspecific variations in arthropod prey combinations can often be detected only at sub-ordinal taxonomic ranks. In all lowland Nepenthes species examined, the dominant prey taxon is Formicidae, but montane Nepenthes trap few (or no) ants and 2 of the 3 species studied have evolved to target alternative sources of nutrition, such as tree shrew feces. Using similarity and null model analyses, we detected evidence for niche segregation with regards to formicid prey among 5 lowland, sympatric Nepenthes species in Sarawak. However, we were unable to determine whether these results provide support for the niche segregation hypothesis, or whether they simply reflect unquantified variation in heterogeneous habitats and/or ant communities in the study sites. These findings are used to propose improvements to the design of field experiments that seek to test hypotheses about targeted prey capture patterns in Nepenthes. PMID:24481246

  14. Adult Prey Neutralizes Predator Nonconsumptive Limitation of Prey Recruitment

    PubMed Central

    Scrosati, Ricardo A.; Romoth, Katharina; Molis, Markus

    2016-01-01

    Recent studies have shown that predator chemical cues can limit prey demographic rates such as recruitment. For instance, barnacle pelagic larvae reduce settlement where predatory dogwhelk cues are detected, thereby limiting benthic recruitment. However, adult barnacles attract conspecific larvae through chemical and visual cues, aiding larvae to find suitable habitat for development. Thus, we tested the hypothesis that the presence of adult barnacles (Semibalanus balanoides) can neutralize dogwhelk (Nucella lapillus) nonconsumptive effects on barnacle recruitment. We did a field experiment in Atlantic Canada during the 2012 and 2013 barnacle recruitment seasons (May–June). We manipulated the presence of dogwhelks (without allowing them to physically contact barnacles) and adult barnacles in cages established in rocky intertidal habitats. At the end of both recruitment seasons, we measured barnacle recruit density on tiles kept inside the cages. Without adult barnacles, the nearby presence of dogwhelks limited barnacle recruitment by 51%. However, the presence of adult barnacles increased barnacle recruitment by 44% and neutralized dogwhelk nonconsumptive effects on barnacle recruitment, as recruit density was unaffected by dogwhelk presence. For species from several invertebrate phyla, benthic adult organisms attract conspecific pelagic larvae. Thus, adult prey might commonly constitute a key factor preventing negative predator nonconsumptive effects on prey recruitment. PMID:27123994

  15. Adult Prey Neutralizes Predator Nonconsumptive Limitation of Prey Recruitment.

    PubMed

    Ellrich, Julius A; Scrosati, Ricardo A; Romoth, Katharina; Molis, Markus

    2016-01-01

    Recent studies have shown that predator chemical cues can limit prey demographic rates such as recruitment. For instance, barnacle pelagic larvae reduce settlement where predatory dogwhelk cues are detected, thereby limiting benthic recruitment. However, adult barnacles attract conspecific larvae through chemical and visual cues, aiding larvae to find suitable habitat for development. Thus, we tested the hypothesis that the presence of adult barnacles (Semibalanus balanoides) can neutralize dogwhelk (Nucella lapillus) nonconsumptive effects on barnacle recruitment. We did a field experiment in Atlantic Canada during the 2012 and 2013 barnacle recruitment seasons (May-June). We manipulated the presence of dogwhelks (without allowing them to physically contact barnacles) and adult barnacles in cages established in rocky intertidal habitats. At the end of both recruitment seasons, we measured barnacle recruit density on tiles kept inside the cages. Without adult barnacles, the nearby presence of dogwhelks limited barnacle recruitment by 51%. However, the presence of adult barnacles increased barnacle recruitment by 44% and neutralized dogwhelk nonconsumptive effects on barnacle recruitment, as recruit density was unaffected by dogwhelk presence. For species from several invertebrate phyla, benthic adult organisms attract conspecific pelagic larvae. Thus, adult prey might commonly constitute a key factor preventing negative predator nonconsumptive effects on prey recruitment.

  16. Prey pursuit and interception in dragonflies.

    PubMed

    Olberg, R M; Worthington, A H; Venator, K R

    2000-02-01

    Perching dragonflies (Libellulidae; Odonata) are sit-and-wait predators, which take off and pursue small flying insects. To investigate their prey pursuit strategy, we videotaped 36 prey-capture flights of male dragonflies, Erythemis simplicicollis and Leucorrhinia intacta, for frame-by-frame analysis. We found that dragonflies fly directly toward the point of prey interception by steering to minimize the movement of the prey's image on the retina. This behavior could be guided by target-selective descending interneurons which show directionally selective visual responses to small-object movement. We investigated how dragonflies discriminate distance of potential prey. We found a peak in angular velocity of the prey shortly before take-off which might cue the dragonfly to nearby flying targets. Parallax information from head movements was not required for successful prey pursuit.

  17. When attempts at robbing prey turn fatal

    NASA Astrophysics Data System (ADS)

    Dejean, Alain; Corbara, Bruno; Azémar, Frédéric; Carpenter, James M.

    2012-07-01

    Because group-hunting arboreal ants spread-eagle insect prey for a long time before retrieving them, these prey can be coveted by predatory flying insects. Yet, attempting to rob these prey is risky if the ant species is also an effective predator. Here, we show that trying to rob prey from Azteca andreae workers is a fatal error as 268 out of 276 potential cleptobionts (97.1 %) were captured in turn. The ant workers hunt in a group and use the "Velcro®" principle to cling firmly to the leaves of their host tree, permitting them to capture very large prey. Exceptions were one social wasp, plus some Trigona spp. workers and flies that landed directly on the prey and were able to take off immediately when attacked. We conclude that in this situation, previously captured prey attract potential cleptobionts that are captured in turn in most of the cases.

  18. Effects of an infectious fungus, Batrachochytrium dendrobatidis, on amphibian predator-prey interactions.

    PubMed

    Han, Barbara A; Searle, Catherine L; Blaustein, Andrew R

    2011-02-02

    The effects of parasites and pathogens on host behaviors may be particularly important in predator-prey contexts, since few animal behaviors are more crucial for ensuring immediate survival than the avoidance of lethal predators in nature. We examined the effects of an emerging fungal pathogen of amphibians, Batrachochytrium dendrobatidis, on anti-predator behaviors of tadpoles of four frog species. We also investigated whether amphibian predators consumed infected prey, and whether B. dendrobatidis caused differences in predation rates among prey in laboratory feeding trials. We found differences in anti-predator behaviors among larvae of four amphibian species, and show that infected tadpoles of one species (Anaxyrus boreas) were more active and sought refuge more frequently when exposed to predator chemical cues. Salamander predators consumed infected and uninfected tadpoles of three other prey species at similar rates in feeding trials, and predation risk among prey was unaffected by B. dendrobatidis. Collectively, our results show that even sub-lethal exposure to B. dendrobatidis can alter fundamental anti-predator behaviors in some amphibian prey species, and suggest the unexplored possibility that indiscriminate predation between infected and uninfected prey (i.e., non-selective predation) could increase the prevalence of this widely distributed pathogen in amphibian populations. Because one of the most prominent types of predators in many amphibian systems is salamanders, and because salamanders are susceptible to B. dendrobatidis, our work suggests the importance of considering host susceptibility and behavioral changes that could arise from infection in both predators and prey.

  19. Consequences of a Refuge for the Predator-Prey Dynamics of a Wolf-Elk System in Banff National Park, Alberta, Canada

    PubMed Central

    Goldberg, Joshua F.; Hebblewhite, Mark; Bardsley, John

    2014-01-01

    Refugia can affect predator-prey dynamics via movements between refuge and non-refuge areas. We examine the influence of a refuge on population dynamics in a large mammal predator-prey system. Wolves (Canis lupus) have recolonized much of their former range in North America, and as a result, ungulate prey have exploited refugia to reduce predation risk with unknown impacts on wolf-prey dynamics. We examined the influence of a refuge on elk (Cervus elaphus) and wolf population dynamics in Banff National Park. Elk occupy the Banff townsite with little predation, whereas elk in the adjoining Bow Valley experience higher wolf predation. The Banff refuge may influence Bow Valley predator-prey dynamics through source-sink movements. To test this hypothesis, we used 26 years of wolf and elk population counts and the Delayed Rejection Adaptive Metropolis Markov chain Monte Carlo method to fit five predator-prey models: 1) with no source-sink movements, 2) with elk density-dependent dispersal from the refuge to the non-refuge, 3) with elk predation risk avoidance movements from the non-refuge to the refuge, 4) with differential movement rates between refuge and non-refuge, and 5) with short-term, source-sink wolf movements. Model 1 provided the best fit of the data, as measured by Akaike Information Criterion (AIC). In the top model, Banff and Bow Valley elk had median growth rates of 0.08 and 0.03 (95% credibility intervals [CIs]: 0.027–0.186 and 0.001–0.143), respectively, Banff had a median carrying capacity of 630 elk (95% CI: 471.9–2676.9), Bow Valley elk had a median wolf encounter rate of 0.02 (95% CI: 0.013–0.030), and wolves had a median death rate of 0.23 (95% CI: 0.146–0.335) and a median conversion efficiency of 0.07 (95% CI: 0.031–0.124). We found little evidence for potential source-sink movements influencing the predator-prey dynamics of this system. This result suggests that the refuge was isolated from the non-refuge. PMID:24670632

  20. Consequences of a refuge for the predator-prey dynamics of a wolf-elk system in Banff National Park, Alberta, Canada.

    PubMed

    Goldberg, Joshua F; Hebblewhite, Mark; Bardsley, John

    2014-01-01

    Refugia can affect predator-prey dynamics via movements between refuge and non-refuge areas. We examine the influence of a refuge on population dynamics in a large mammal predator-prey system. Wolves (Canis lupus) have recolonized much of their former range in North America, and as a result, ungulate prey have exploited refugia to reduce predation risk with unknown impacts on wolf-prey dynamics. We examined the influence of a refuge on elk (Cervus elaphus) and wolf population dynamics in Banff National Park. Elk occupy the Banff townsite with little predation, whereas elk in the adjoining Bow Valley experience higher wolf predation. The Banff refuge may influence Bow Valley predator-prey dynamics through source-sink movements. To test this hypothesis, we used 26 years of wolf and elk population counts and the Delayed Rejection Adaptive Metropolis Markov chain Monte Carlo method to fit five predator-prey models: 1) with no source-sink movements, 2) with elk density-dependent dispersal from the refuge to the non-refuge, 3) with elk predation risk avoidance movements from the non-refuge to the refuge, 4) with differential movement rates between refuge and non-refuge, and 5) with short-term, source-sink wolf movements. Model 1 provided the best fit of the data, as measured by Akaike Information Criterion (AIC). In the top model, Banff and Bow Valley elk had median growth rates of 0.08 and 0.03 (95% credibility intervals [CIs]: 0.027-0.186 and 0.001-0.143), respectively, Banff had a median carrying capacity of 630 elk (95% CI: 471.9-2676.9), Bow Valley elk had a median wolf encounter rate of 0.02 (95% CI: 0.013-0.030), and wolves had a median death rate of 0.23 (95% CI: 0.146-0.335) and a median conversion efficiency of 0.07 (95% CI: 0.031-0.124). We found little evidence for potential source-sink movements influencing the predator-prey dynamics of this system. This result suggests that the refuge was isolated from the non-refuge.

  1. Prey risk allocation in a grazing ecosystem.

    PubMed

    Gude, Justin A; Garrott, Robert A; Borkowski, John J; King, Fred

    2006-02-01

    Understanding the behaviorally mediated indirect effects of predators in ecosystems requires knowledge of predator-prey behavioral interactions. In predator-ungulate-plant systems, empirical research quantifying how predators affect ungulate group sizes and distribution, in the context of other influential variables, is particularly needed. The risk allocation hypothesis proposes that prey behavioral responses to predation risk depend on background frequencies of exposure to risk, and it can be used to make predictions about predator-ungulate-plant interactions. We determined non-predation variables that affect elk (Cervus elaphus) group sizes and distribution on a winter range in the Greater Yellowstone Ecosystem (GYE) using logistic and log-linear regression on surveys of 513 1-km2 areas conducted over two years. Employing model selection techniques, we evaluated risk allocation and other a priori hypotheses of elk group size and distributional responses to wolf (Canis lupus) predation risk while accounting for influential non-wolf-predation variables. We found little evidence that wolves affect elk group sizes, which were strongly influenced by habitat type and hunting by humans. Following predictions from the risk allocation hypothesis, wolves likely created a more dynamic elk distribution in areas that they frequently hunted, as elk tended to move following wolf encounters in those areas. This response should dilute elk foraging pressure on plant communities in areas where they are frequently hunted by wolves. We predict that this should decrease the spatial heterogeneity of elk impacts on grasslands in areas that wolves frequently hunt. We also predict that this should decrease browsing pressure on heavily browsed woody plant stands in certain areas, which is supported by recent research in the GYE.

  2. Evolution of dispersal in a predator-prey metacommunity.

    PubMed

    Pillai, Pradeep; Gonzalez, Andrew; Loreau, Michel

    2012-02-01

    Dispersal is crucial to allowing species inhabiting patchy or spatially subdivided habitats to persist globally despite the possibility of frequent local extinctions. Theoretical studies have repeatedly demonstrated that species that exhibit a regional metapopulation structure and are subject to increasing rates of local patch extinctions should experience strong selective pressures to disperse more rapidly despite the costs such increased dispersal would entail in terms of decreased local fitness. We extend these studies to consider how extinctions arising from predator-prey interactions affect the evolution of dispersal for species inhabiting a metacommunity. Specifically, we investigate how increasing a strong extinction-prone interaction between a predator and prey within local patches affects the evolution of each species' dispersal. We found that for the predator, as expected, evolutionarily stable strategy (ESS) dispersal rates increased monotonically in response to increasing local extinctions induced by strong predator top-down effects. Unexpectedly for the prey, however, ESS dispersal rates displayed a nonmonotonic response to increasing predator-induced extinction rates-actually decreasing for a significant range of values. These counterintuitive results arise from how extinctions resulting from trophic interactions play out at different spatial scales: interactions that increase extinction rates of both species locally can, at the same time, decrease the frequency of interaction between the prey and predator at the metacommunity scale.

  3. Long-term changes in the diet of Gymnogobius isaza from Lake Biwa, Japan: effects of body size and environmental prey availability.

    PubMed

    Briones, Jonathan Carlo; Tsai, Cheng-Han; Nakazawa, Takefumi; Sakai, Yoichiro; Papa, Rey Donne S; Hsieh, Chih-Hao; Okuda, Noboru

    2012-01-01

    Body size and environmental prey availability are both key factors determining feeding habits of gape-limited fish predators. However, our understanding of their interactive or relative effects is still limited. In this study, we performed quantitative dietary analysis of different body sizes of goby (Gymnogobius isaza) specimens collected from Lake Biwa between 1962 and 2004. First, we report that the diet was composed mainly of zooplankton (cladocerans and copepods) before the 1980s, and thereafter, shifted to zoobenthos (gammarids). This foraging shift coincided with, and thus can be linked to, known historical events in the lake at that time: decrease in zooplankton abundance with the alleviation of eutrophication, increase in fish body size resulting from fish population collapse, and increase in gammarid abundance due to reduced fish predation pressure. Supporting this view, our data analyses revealed how the long-term changes in the diet composition would be co-mediated by changes in fish body size and environmental prey availability. Specifically, while zoobenthos abundance strongly affected the fish diet composition, larger (smaller) fish preferred zoobenthos (zooplankton). Furthermore, the body size effects were stronger than those of prey availability. These results provide the best long-term evidence that fish feeding habits vary over decades with its body size and prey community due to anthropogenic disturbances.

  4. Selection pressure, cropping system and rhizosphere proximity affect atrazine degrader populations and activity in s-triazine adapted soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atrazine degrader populations and activity in s-triazine adapted soils are likely affected by interactions among and (or) between s-triazine application frequency, crop production system, and proximity to the rhizosphere. A field study was conducted on an s-triazine adapted soil to determine the ef...

  5. FUNGAL POPULATIONS ASSOCIATED TO NETTING TISSUE OF GALIA MELONS AFFECTING QUALITY DURING STORAGE.

    PubMed

    Parra, M A; Aguilar, F W; Martínez, J A

    2015-01-01

    Galia melons are produced in southeast Spain and exported to other European countries. The main problem of melons during transport and storage consists of the development of epiphytic populations of fungi living inside the netting areas located on fruit surface. These areas are natural wounds which are covered by local suberin and lignin secretion induced by the plant in response to the natural skin wounds which occurs during fruit growing. These fungi are growing from the scarce organic matter and nutrients that are either deposited or segregated from the fruit. Several genera of fungi have commonly been associated to those areas such as some species of Fusarium, Cladosporium sp. and Alternaria sp. and a few others. All microorganisms were living in an ecological equilibrium. However, when water was present inside the netting areas, the growth of Cladosporium sp. was exacerbated and then, the ecological equilibrium was broken, therefore these grey areas turned to green-dark colour due to hyphal development of this fungus. This process deteriorated visual quality of fruits, therefore the increase of losses during transport and storage were noticeable. A relative humidity very high, round 100% or a thinner layer of water condensed in these areas were sufficient to increase epiphytic development of Cladosporium without causing decay, even at refrigeration temperature. However, when relative humidity was lower than about 98%, no growth of aerial hyphae of Cladosporium was observed. In contrast, some brown stains round netting areas were developed due to the growth of the fungus through skin layers causing severe decay after 32 days of storage at 7 degrees C. When the affected fruits were transferred at ambient temperature, aerial mycelium of Cladosporium emerged from those brown skin areas exacerbating the losses. In conclusion, water condensation should be avoided to prevent epiphytic development of Cladosporium. If washing treatment of fruits is carried out during

  6. Generalist predator, cyclic voles and cavity nests: testing the alternative prey hypothesis.

    PubMed

    Pöysä, Hannu; Jalava, Kaisa; Paasivaara, Antti

    2016-12-01

    The alternative prey hypothesis (APH) states that when the density of the main prey declines, generalist predators switch to alternative prey and vice versa, meaning that predation pressure on the alternative prey should be negatively correlated with the density of the main prey. We tested the APH in a system comprising one generalist predator (pine marten, Martes martes), cyclic main prey (microtine voles, Microtus agrestis and Myodes glareolus) and alternative prey (cavity nests of common goldeneye, Bucephala clangula); pine marten is an important predator of both voles and common goldeneye nests. Specifically, we studied whether annual predation rate of real common goldeneye nests and experimental nests is negatively associated with fluctuation in the density of voles in four study areas in southern Finland in 2000-2011. Both vole density and nest predation rate varied considerably between years in all study areas. However, we did not find support for the hypothesis that vole dynamics indirectly affects predation rate of cavity nests in the way predicted by the APH. On the contrary, the probability of predation increased with vole spring abundance for both real and experimental nests. Furthermore, a crash in vole abundance from previous autumn to spring did not increase the probability of predation of real nests, although it increased that of experimental nests. We suggest that learned predation by pine marten individuals, coupled with efficient search image for cavities, overrides possible indirect positive effects of high vole density on the alternative prey in our study system.

  7. Dynamics of prey moving through a predator field: a model of migrating juvenile salmon

    USGS Publications Warehouse

    Petersen, J.H.; DeAngelis, D.L.

    2000-01-01

    The migration of a patch of prey through a field of relatively stationary predators is a situation that occurs frequently in nature. Making quantitative predictions concerning such phenomena may be difficult, however, because factors such as the number of the prey in the patch, the spatial length and velocity of the patch, and the feeding rate and satiation of the predators all interact in a complex way. However, such problems are of great practical importance in many management situations; e.g., calculating the mortality of juvenile salmon (smolts) swimming down a river or reservoir containing many predators. Salmon smolts often move downstream in patches short compared with the length of the reservoir. To take into account the spatial dependence of the interaction, we used a spatially-explicit, individual-based modeling approach. We found that the mortality of prey depends strongly on the number of prey in the patch, the downstream velocity of prey in the patch, and the dispersion or spread of the patch in size through time. Some counterintuitive phenomena are predicted, such as predators downstrean capturing more prey per predator than those upstream, even though the number of prey may be greatly depleted by the time the prey patch reaches the downstream predators. Individual-based models may be necessary for complex spatial situations, such as salmonid migration, where processes such as schooling occur at fine scales and affect system predictions. We compare some results to predictions from other salmonid models. (C) 2000 Elsevier Science Inc.

  8. Historical contingency affects signaling strategies and competitive abilities in evolving populations of simulated robots.

    PubMed

    Wischmann, Steffen; Floreano, Dario; Keller, Laurent

    2012-01-17

    One of the key innovations during the evolution of life on earth has been the emergence of efficient communication systems, yet little is known about the causes and consequences of the great diversity within and between species. By conducting experimental evolution in 20 independently evolving populations of cooperatively foraging simulated robots, we found that historical contingency in the occurrence order of novel phenotypic traits resulted in the emergence of two distinct communication strategies. The more complex foraging strategy was less efficient than the simpler strategy. However, when the 20 populations were placed in competition with each other, the populations with the more complex strategy outperformed the populations with the less complex strategy. These results demonstrate a tradeoff between communication efficiency and robustness and suggest that stochastic events have important effects on signal evolution and the outcome of competition between distinct populations.

  9. Disturbance frequency and vertical distribution of seeds affect long-term population dynamics: a mechanistic seed bank model.

    PubMed

    Eager, Eric Alan; Haridas, Chirakkal V; Pilson, Diana; Rebarber, Richard; Tenhumberg, Brigitte

    2013-08-01

    Seed banks are critically important for disturbance specialist plants because seeds of these species germinate only in disturbed soil. Disturbance and seed depth affect the survival and germination probability of seeds in the seed bank, which in turn affect population dynamics. We develop a density-dependent stochastic integral projection model to evaluate the effect of stochastic soil disturbances on plant population dynamics with an emphasis on mimicking how disturbances vertically redistribute seeds within the seed bank. We perform a simulation analysis of the effect of the frequency and mean depth of disturbances on the population's quasi-extinction probability, as well as the long-term mean and variance of the total density of seeds in the seed bank. We show that increasing the frequency of disturbances increases the long-term viability of the population, but the relationship between the mean depth of disturbance and the long-term viability of the population are not necessarily monotonic for all parameter combinations. Specifically, an increase in the probability of disturbance increases the long-term viability of the total seed bank population. However, if the probability of disturbance is too low, a shallower mean depth of disturbance can increase long-term viability, a relationship that switches as the probability of disturbance increases. However, a shallow disturbance depth is beneficial only in scenarios with low survival in the seed bank.

  10. Exploring the Relationship Between Callous-Unemotional Traits, Empathy Processing and Affective Valence in a General Population

    PubMed Central

    Lethbridge, Emma M.; Richardson, Paul; Reidy, Lisa; Taroyan, Naira A.

    2017-01-01

    Callous–Unemotional (CU) traits are personality attributes, which are associated with a deficit of affective valence and reduced empathetic responding in high CU trait clinical populations. The aim of the research was to explore whether a similar pattern of empathy and emotional responding correlated with CU trait manifestation in the general population. A total of 124 participants completed the Inventory of Callous-Unemotional Traits, the Interpersonal Reactivity Index, the Empathy Quotient, an expression recognition task, and a measure of affective response. Negative correlations with CU trait score were observed for both cognitive empathy and emotional empathy. Accuracy in the identification of fearful expressions presented a negative association with CU trait score. Self-rating of affective valence, when viewing both positive and negative images, indicated a universal reduction in emotional response associated with increased CU trait manifestation. PMID:28344681

  11. Further assessment of environmental contaminants in avian prey of the peregrine falcon in big bend National Park, Texas

    USGS Publications Warehouse

    Mora, M.A.; Skiles, R.S.; Paredes, M.

    2007-01-01

    A small resident population of peregrine falcons (Falco peregrinus anatum) in the Big Bend region of Texas has suffered reproductive failures since 1990. To continue our assessment of the effects of environmental contaminants on the peregrine falcon, we collected representative avian prey species during 2001 at Mariscal Canyon, Big Bend National Park. The avian carcasses were analyzed for inorganic and organochlorine contaminants. Concentrations of Se and Hg were present at high levels (up to 11 and 2.2 ??g/g dry weight, respectively) in some avian prey and could be implicated in reproductive failures of the peregrine falcon in Big Bend National Park. All other inorganic elements were below concentrations known to affect reproduction or to be associated with other deleterious effects in birds. Of all the organochlorines analyzed, only DDE and total PCBs were present above detection limits in all species, although at low concentrations. Our study provides further support to the hypothesis that contaminants in potential avian prey of the peregrine falcon in the Big Bend region are implicated in the productivity failures observed in this species since 1990.

  12. Examining the Prey Mass of Terrestrial and Aquatic Carnivorous Mammals: Minimum, Maximum and Range

    PubMed Central

    Tucker, Marlee A.; Rogers, Tracey L.

    2014-01-01

    Predator-prey body mass relationships are a vital part of food webs across ecosystems and provide key information for predicting the susceptibility of carnivore populations to extinction. Despite this, there has been limited research on the minimum and maximum prey size of mammalian carnivores. Without information on large-scale patterns of prey mass, we limit our understanding of predation pressure, trophic cascades and susceptibility of carnivores to decreasing prey populations. The majority of studies that examine predator-prey body mass relationships focus on either a single or a subset of mammalian species, which limits the strength of our models as well as their broader application. We examine the relationship between predator body mass and the minimum, maximum and range of their prey's body mass across 108 mammalian carnivores, from weasels to baleen whales (Carnivora and Cetacea). We test whether mammals show a positive relationship between prey and predator body mass, as in reptiles and birds, as well as examine how environment (aquatic and terrestrial) and phylogenetic relatedness play a role in this relationship. We found that phylogenetic relatedness is a strong driver of predator-prey mass patterns in carnivorous mammals and accounts for a higher proportion of variance compared with the biological drivers of body mass and environment. We show a positive predator-prey body mass pattern for terrestrial mammals as found in reptiles and birds, but no relationship for aquatic mammals. Our results will benefit our understanding of trophic interactions, the susceptibility of carnivores to population declines and the role of carnivores within ecosystems. PMID:25162695

  13. Examining the prey mass of terrestrial and aquatic carnivorous mammals: minimum, maximum and range.

    PubMed

    Tucker, Marlee A; Rogers, Tracey L

    2014-01-01

    Predator-prey body mass relationships are a vital part of food webs across ecosystems and provide key information for predicting the susceptibility of carnivore populations to extinction. Despite this, there has been limited research on the minimum and maximum prey size of mammalian carnivores. Without information on large-scale patterns of prey mass, we limit our understanding of predation pressure, trophic cascades and susceptibility of carnivores to decreasing prey populations. The majority of studies that examine predator-prey body mass relationships focus on either a single or a subset of mammalian species, which limits the strength of our models as well as their broader application. We examine the relationship between predator body mass and the minimum, maximum and range of their prey's body mass across 108 mammalian carnivores, from weasels to baleen whales (Carnivora and Cetacea). We test whether mammals show a positive relationship between prey and predator body mass, as in reptiles and birds, as well as examine how environment (aquatic and terrestrial) and phylogenetic relatedness play a role in this relationship. We found that phylogenetic relatedness is a strong driver of predator-prey mass patterns in carnivorous mammals and accounts for a higher proportion of variance compared with the biological drivers of body mass and environment. We show a positive predator-prey body mass pattern for terrestrial mammals as found in reptiles and birds, but no relationship for aquatic mammals. Our results will benefit our understanding of trophic interactions, the susceptibility of carnivores to population declines and the role of carnivores within ecosystems.

  14. Through experience to boldness? Deactivation of neophobia towards novel and aposematic prey in three European species of tits (Paridae).

    PubMed

    Adamová-Ježová, Dana; Hospodková, Eliška; Fuchsová, Lucie; Štys, Pavel; Exnerová, Alice

    2016-10-01

    European tits (Paridae) exhibit species-specific levels of initial wariness towards aposematic prey. This wariness may be caused by neophobia, dietary conservatism or innate bias against particular prey traits. We assessed the contribution of these three mechanisms to the behaviour of juvenile tits towards novel palatable prey and novel aposematic prey. We compared levels of initial wariness in great tits (Parus major), blue tits (Cyanistes caeruleus) and coal tits (Periparus ater), and tested how the wariness can be deactivated by experience with a palatable prey. One group of birds was pre-trained to attack familiar naturally coloured mealworms the other one, novel red-painted mealworms. Then all the birds were offered a novel palatable prey of different colour and shape: cricket (Acheta domestica) with blue sticker, and then a novel aposematic firebug (Pyrrhocoris apterus). The three species of tits differed in how the experience with a novel palatable prey affected their behaviour towards another novel prey. Great tits and coal tits from experienced groups significantly decreased their neophobia towards both palatable prey and aposematic prey while blue tits did not change their strongly neophobic reactions. The interspecific differences may be explained by differences in body size, geographic range, and habitat specialisation.

  15. Optimal forager against ideal free distributed prey.

    PubMed

    Garay, József; Cressman, Ross; Xu, Fei; Varga, Zoltan; Cabello, Tomás

    2015-07-01

    The introduced dispersal-foraging game is a combination of prey habitat selection between two patch types and optimal-foraging approaches. Prey's patch preference and forager behavior determine the prey's survival rate. The forager's energy gain depends on local prey density in both types of exhaustible patches and on leaving time. We introduce two game-solution concepts. The static solution combines the ideal free distribution of the prey with optimal-foraging theory. The dynamical solution is given by a game dynamics describing the behavioral changes of prey and forager. We show (1) that each stable equilibrium dynamical solution is always a static solution, but not conversely; (2) that at an equilibrium dynamical solution, the forager can stabilize prey mixed patch use strategy in cases where ideal free distribution theory predicts that prey will use only one patch type; and (3) that when the equilibrium dynamical solution is unstable at fixed prey density, stable behavior cycles occur where neither forager nor prey keep a fixed behavior.

  16. Predator-prey models with component Allee effect for predator reproduction.

    PubMed

    Terry, Alan J

    2015-12-01

    We present four predator-prey models with component Allee effect for predator reproduction. Using numerical simulation results for our models, we describe how the customary definitions of component and demographic Allee effects, which work well for single species models, can be extended to predators in predator-prey models by assuming that the prey population is held fixed. We also find that when the prey population is not held fixed, then these customary definitions may lead to conceptual problems. After this discussion of definitions, we explore our four models, analytically and numerically. Each of our models has a fixed point that represents predator extinction, which is always locally stable. We prove that the predator will always die out either if the initial predator population is sufficiently small or if the initial prey population is sufficiently small. Through numerical simulations, we explore co-existence fixed points. In addition, we demonstrate, by simulation, the existence of a stable limit cycle in one of our models. Finally, we derive analytical conditions for a co-existence trapping region in three of our models, and show that the fourth model cannot possess a particular kind of co-existence trapping region. We punctuate our results with comments on their real-world implications; in particular, we mention the possibility of prey resurgence from mortality events, and the possibility of failure in a biological pest control program.

  17. Evolutionary dynamics of prey-predator systems with Holling type II.

    PubMed

    Jian, Zu; Wang, Wendi; Bo, Zu

    2007-04-01

    This paper considers the coevolution of phenotypes in a community comprising the populations of predators and prey. The evolutionary dynamics is constructed from a stochastic process of mutation and selection. We investigate the ecological and evolutionary conditions that allow for continuously stable strategy and evolutionary branching. It is shown that branching in the prey can induce secondary branching in the predators. Furthermore, it is shown that the evolutionary dynamics admits a stable limit cycle. The evolutionary cycle is a likely outcome of the process, which requires higher evolutionary speed of prey than of predators. It is also found that different evolutionary rates and conversion efficiencies can influence the lengths of evolutionary cycles.

  18. Is the red spotted green frog Hypsiboas punctatus (Anura: Hylidae) selecting its preys? The importance of prey availability.

    PubMed

    López, Javier A; Scarabotti, Pablo A; Medrano, María C; Ghirardi, Romina

    2009-09-01

    The study of the feeding ecology of amphibians is an old issue in herpetology. Notwithstanding, the lack of food resources data in many studies of amphibians feeding has lead to partial understanding of frog feeding strategies. In this study we evaluate the trophic selectivity of a red spotted green frog (Hypsiboas punctatus) population from a Middle Paraná River floodplain pond in Argentina, and discuss the importance of prey availability data when interpreting results from diet analysis. We analyzed the gut contents of 47 H. punctatus adults and compared frog's diet with the environmental food resources. Prey availability was estimated by systematically seep-netting the microhabitat where anurans were localized foraging. We identified 33 taxonomic categories from gastrointestinal contents. Numerically, the most important prey categories were dipterans, followed by hemipterans, homopterans and coleopterans. The diet similarity between males and females was high and no statistical differences in diet composition were found. The most abundant food resources in the environment were dipterans, coleopterans, homopterans and collembolans. In order to assess whether frogs were selecting their preys, we calculated Pianka's niche overlap index and Jacobs' electivity index comparing gut contents to prey availability data. Trophic niche overlap was medium but significantly higher than expected by chance. The electivity index indicated that H. punctatus foraged dipterans slightly above their environmental abundance. Among the secondary preys, hemipterans were foraged selectively, homopterans were consumed in the same proportion to their occurrence in the environment, coleopterans were foraged quite under their availability and collembolans were practically ignored by frogs. Without food resources data, H. punctatus could be classified as a specialist feeder, but dipterans also were quite abundant in the environment. Our results show that H. punctatus fit better as a

  19. How Elephant Seals (Mirounga leonina) Adjust Their Fine Scale Horizontal Movement and Diving Behaviour in Relation to Prey Encounter Rate

    PubMed Central

    Jouma’a, Joffrey; Picard, Baptiste; Guinet, Christophe

    2016-01-01

    Understanding the diving behaviour of diving predators in relation to concomitant prey distribution could have major practical applications in conservation biology by allowing the assessment of how changes in fine scale prey distribution impact foraging efficiency and ultimately population dynamics. The southern elephant seal (Mirounga leonina, hereafter SES), the largest phocid, is a major predator of the southern ocean feeding on myctophids and cephalopods. Because of its large size it can carry bio-loggers with minimal disturbance. Moreover, it has great diving abilities and a wide foraging habitat. Thus, the SES is a well suited model species to study predator diving behaviour and the distribution of ecologically important prey species in the Southern Ocean. In this study, we examined how SESs adjust their diving behaviour and horizontal movements in response to fine scale prey encounter densities using high resolution accelerometers, magnetometers, pressure sensors and GPS loggers. When high prey encounter rates were encountered, animals responded by (1) diving and returning to the surface with steeper angles, reducing the duration of transit dive phases (thus improving dive efficiency), and (2) exhibiting more horizontally and vertically sinuous bottom phases. In these cases, the distance travelled horizontally at the surface was reduced. This behaviour is likely to counteract horizontal displacement from water currents, as they try to remain within favourable prey patches. The prey encounter rate at the bottom of dives decreased with increasing diving depth, suggesting a combined effect of decreased accessibility and prey density with increasing depth. Prey encounter rate also decreased when the bottom phases of dives were spread across larger vertical extents of the water column. This result suggests that the vertical aggregation of prey can regulate prey density, and as a consequence impact the foraging success of SESs. To our knowledge, this is one of

  20. Identification of loci affecting teat number by genome-wide association studies on three pig populations

    PubMed Central

    Tang, Jianhong; Zhang, Zhiyan; Yang, Bin; Guo, Yuanmei; Ai, Huashui; Long, Yi; Su, Ying; Cui, Leilei; Zhou, Liyu; Wang, Xiaopeng; Zhang, Hui; Wang, Chengbin; Ren, Jun; Huang, Lusheng; Ding, Nengshui

    2017-01-01

    Objective Three genome-wide association studies (GWAS) and a meta-analysis of GWAS were conducted to explore the genetic mechanisms underlying variation in pig teat number. Methods We performed three GWAS and a meta-analysis for teat number on three pig populations, including a White Duroc×Erhualian F2 resource population (n = 1,743), a Chinese Erhualian pig population (n = 320) and a Chinese Sutai pig population (n = 383). Results We detected 24 single nucleotide polymorphisms (SNPs) that surpassed the genome-wide significant level on Sus Scrofa chromosomes (SSC) 1, 7, and 12 in the F2 resource population, corresponding to four loci for pig teat number. We highlighted vertnin (VRTN) and lysine demethylase 6B (KDM6B) as two interesting candidate genes at the loci on SSC7 and SSC12. No significant associated SNPs were identified in the meta-analysis of GWAS. Conclusion The results verified the complex genetic architecture of pig teat number. The causative variants for teat number may be different in the three populations PMID:27165028

  1. Memory and obesity affect the population dynamics of asexual freshwater planarians

    NASA Astrophysics Data System (ADS)

    Dunkel, Jörn; Talbot, Jared; Schötz, Eva-Maria

    2011-04-01

    Asexual reproduction in multicellular organisms is a complex biophysical process that is not yet well understood quantitatively. Here, we report a detailed population study for the asexual freshwater planarian Schmidtea mediterranea, which can reproduce via transverse fission due to a large stem cell contingent. Our long-term observations of isolated non-interacting planarian populations reveal that the characteristic fission waiting time distributions for head and tail fragments differ significantly from each other. The stochastic fission dynamics of tail fragments exhibits non-negligible memory effects, implying that an accurate mathematical description of future data should be based on non-Markovian tree models. By comparing the effective growth of non-interacting planarian populations with those of self-interacting populations, we are able to quantify the influence of interactions between flatworms and physical conditions on the population growth. A surprising result is the non-monotonic relationship between effective population growth rate and nutrient supply: planarians exhibit a tendency to become 'obese' if the feeding frequency exceeds a critical level, resulting in a decreased reproduction activity. This suggests that these flatworms, which possess many genes homologous to those of humans, could become a new model system for studying dietary effects on reproduction and regeneration in multicellular organisms.

  2. Memory and obesity affect the population dynamics of asexual freshwater planarians.

    PubMed

    Dunkel, Jörn; Talbot, Jared; Schötz, Eva-Maria

    2011-04-01

    Asexual reproduction in multicellular organisms is a complex biophysical process that is not yet well understood quantitatively. Here, we report a detailed population study for the asexual freshwater planarian Schmidtea mediterranea, which can reproduce via transverse fission due to a large stem cell contingent. Our long-term observations of isolated non-interacting planarian populations reveal that the characteristic fission waiting time distributions for head and tail fragments differ significantly from each other. The stochastic fission dynamics of tail fragments exhibits non-negligible memory effects, implying that an accurate mathematical description of future data should be based on non-Markovian tree models. By comparing the effective growth of non-interacting planarian populations with those of self-interacting populations, we are able to quantify the influence of interactions between flatworms and physical conditions on the population growth. A surprising result is the non-monotonic relationship between effective population growth rate and nutrient supply: planarians exhibit a tendency to become 'obese' if the feeding frequency exceeds a critical level, resulting in a decreased reproduction activity. This suggests that these flatworms, which possess many genes homologous to those of humans, could become a new model system for studying dietary effects on reproduction and regeneration in multicellular organisms.

  3. Predator-prey interactions in a changing world: humic stress disrupts predator threat evasion in copepods.

    PubMed

    Santonja, Mathieu; Minguez, Laetitia; Gessner, Mark O; Sperfeld, Erik

    2016-12-29

    Increasing inputs of colored dissolved organic matter (cDOM), which is mainly composed of humic substances (HS), are a widespread phenomenon of environmental change in aquatic ecosystems. This process of brownification alters the chemical conditions of the environment, but knowledge is lacking of whether elevated cDOM and HS levels interfere with the ability of prey species to evade chemical predator cues and thus affect predator-prey interactions. We assessed the effects of acute and prolonged exposure to HS at increasing concentrations on the ability of freshwater zooplankton to avoid predator threat (imposed by fish kairomones) in laboratory trials with two calanoid copepods (Eudiaptomus gracilis and Heterocope appendiculata). Populations of both species clearly avoided water containing fish kairomones. However, the avoidance behavior weakened with increasing HS concentration, suggesting that HS affected the ability of copepods to perceive or respond to the predator cue. The behavioral responses of the two copepod populations to increasing HS concentrations differed, with H. appendiculata being more sensitive than E. gracilis in an acute exposure scenario, whereas E. gracilis responded more strongly after prolonged exposure. Both showed similar physiological impairment after prolonged exposure, as revealed by their oxidative balance as a stress indicator, but mortality increased more strongly for H. appendiculata when the HS concentration increased. These results indicate that reduced predator threat evasion in the presence of cDOM could make copepods more susceptible to predation in future, with variation in the strength of responses among populations leading to changes in zooplankton communities and lake food-web structure.

  4. Prey-Induced Swimming Dynamics Changes among Predatory Algae

    NASA Astrophysics Data System (ADS)

    Katz, J.; Sheng, J.; Malkiel, E.; Adolf, J.; Place, A.; Belas, R.

    2007-11-01

    High speed, cinematic digital holographic microscopy allows us to track thousands of microorganisms over a volume with substantial depth without loss of resolution. This technique enables us, for the first time, to examine, measure and characterize the swimming dynamics of microorganisms located within dense suspensions. The present experiments examine dense populations of predatory algae, K. veneficum and P. piscicida, prior to and after introducing prey. Swimming dynamics are characterized by radius and pitch of helical swimming trajectories, by translational and angular velocity, and their velocity spectra. K. veneficum moves in both left and right hand helices, while P. piscicida swims only in right hand helices. The radii increase with increasing velocity for both cases. Presented with its prey, K. veneficum reduces its velocity, radius and pitch, but increases its angular velocity. Conversely, P. piscicida increases its speed, radius and angular velocity. Power spectra of velocity reveal differences between scales of vertical velocity and those of horizontal components. Power spectra of velocity component aligned with the helix centerline reveals a shift in K. veneficum's swimming strategy from almost random-walk to a levy-walk as prey is introduced. P. piscicida always displays clear preference towards levy-walk, but spectral slope increases as prey is introduced.

  5. Optimal harvesting of prey-predator system with interval biological parameters: a bioeconomic model.

    PubMed

    Pal, D; Mahaptra, G S; Samanta, G P

    2013-02-01

    The paper presents the study of one prey one predator harvesting model with imprecise biological parameters. Due to the lack of precise numerical information of the biological parameters such as prey population growth rate, predator population decay rate and predation coefficients, we consider the model with imprecise data as form of an interval in nature. Many authors have studied prey-predator harvesting model in different form, here we consider a simple prey-predator model under impreciseness and introduce parametric functional form of an interval and then study the model. We identify the equilibrium points of the model and discuss their stabilities. The existence of bionomic equilibrium of the model is discussed. We study the optimal harvest policy and obtain the solution in the interior equilibrium using Pontryagin's maximum principle. Numerical examples are presented to support the proposed model.

  6. Warming reinforces nonconsumptive predator effects on prey growth, physiology, and body stoichiometry.

    PubMed

    Janssens, Lizanne; Van Dievel, Marie; Stoks, Robby

    2015-12-01

    While nonconsumptive effects of predators may strongly affect prey populations, little is known how future warming will modulate these effects. Such information would be especially relevant with regard to prey physiology and resulting changes in prey stoichiometry. We investigated in Enallagma cyathigerum damselfly larvae the effects of a 4°C warming (20°C vs. 24°C) and predation risk on growth rate, physiology and body stoichiometry, for the first time including all key mechanisms suggested by the general stress paradigm (GSP) on how stressors shape changes in body stoichiometry. Growth rate and energy storage were higher at 24°C. Based on thermodynamic principles and the growth rate hypothesis, we could demonstrate predictable reductions in body C:P under warming and link these to the increase in P-rich RNA; the associated warming-induced decrease in C:N may be explained by the increased synthesis of N-rich proteins. Yet, under predation risk, growth rate instead decreased with warming and the warming-induced decreases in C:N and C:P disappeared. As predicted by the GSP, larvae increased body C:N and C:P at 24°C under predation risk. Notably, we did not detect the assumed GSP-mechanisms driving these changes: despite an increased metabolic rate there was neither an increase of C-rich biomolecules (instead fat and sugar contents decreased under predation risk), nor a decrease of N-rich proteins. We hypothesize that the higher C:N and N:P under predation risk are caused by a higher investment in morphological defense. This may also explain the stronger predator-induced increase in C:N under warming. The expected higher C:P under predation risk was only present under warming and matched the observed growth reduction and associated reduction in P-rich RNA. Our integrated mechanistic approach unraveled novel pathways of how warming and predation risk shape body stoichiometry. Key findings that (1) warming effects on elemental stoichiometry were predictable and

  7. How Much Is Too Much? Assessment of Prey Consumption by Magellanic Penguins in Patagonian Colonies

    PubMed Central

    Sala, Juan E.; Wilson, Rory P.; Quintana, Flavio

    2012-01-01

    Penguins are major consumers in the southern oceans although quantification of this has been problematic. One suggestion proposes the use of points of inflection in diving profiles (‘wiggles’) for this, a method that has been validated for the estimation of prey consumption by Magellanic penguins (Spheniscus magellanicus) by Simeone and Wilson (2003). Following them, we used wiggles from 31 depth logger-equipped Magellanic penguins foraging from four Patagonian colonies; Punta Norte (PN), Bahía Bustamente (BB), Puerto Deseado (PD) and Puerto San Julián (PSJ), all located in Argentina between 42–49° S, to estimate the prey captured and calculate the catch per unit time (CPUT) for birds foraging during the early chick-rearing period. Numbers of prey caught and CPUT were significantly different between colonies. Birds from PD caught the highest number of prey per foraging trip, with CPUT values of 68±19 prey per hour underwater (almost two times greater than for the three remaining colonies). We modeled consumption from these data and calculate that the world Magellanic penguin population consumes about 2 million tons of prey per year. Possible errors in this calculation are discussed. Despite this, the analysis of wiggles seems a powerful and simple tool to begin to quantify prey consumption by Magellanic penguins, allowing comparison between different breeding sites. The total number of wiggles and/or CPUT do not reflect, by themselves, the availability of food for each colony, as the number of prey consumed by foraging trip is strongly associated with the energy content and wet mass of each colony-specific ‘prey type’. Individuals consuming more profitable prey could be optimizing the time spent underwater, thereby optimizing the energy expenditure associated with the dives. PMID:23251554

  8. How much is too much? Assessment of prey consumption by Magellanic penguins in Patagonian colonies.

    PubMed

    Sala, Juan E; Wilson, Rory P; Quintana, Flavio

    2012-01-01

    Penguins are major consumers in the southern oceans although quantification of this has been problematic. One suggestion proposes the use of points of inflection in diving profiles ('wiggles') for this, a method that has been validated for the estimation of prey consumption by Magellanic penguins (Spheniscus magellanicus) by Simeone and Wilson (2003). Following them, we used wiggles from 31 depth logger-equipped Magellanic penguins foraging from four Patagonian colonies; Punta Norte (PN), Bahía Bustamente (BB), Puerto Deseado (PD) and Puerto San Julián (PSJ), all located in Argentina between 42-49° S, to estimate the prey captured and calculate the catch per unit time (CPUT) for birds foraging during the early chick-rearing period. Numbers of prey caught and CPUT were significantly different between colonies. Birds from PD caught the highest number of prey per foraging trip, with CPUT values of 68±19 prey per hour underwater (almost two times greater than for the three remaining colonies). We modeled consumption from these data and calculate that the world Magellanic penguin population consumes about 2 million tons of prey per year. Possible errors in this calculation are discussed. Despite this, the analysis of wiggles seems a powerful and simple tool to begin to quantify prey consumption by Magellanic penguins, allowing comparison between different breeding sites. The total number of wiggles and/or CPUT do not reflect, by themselves, the availability of food for each colony, as the number of prey consumed by foraging trip is strongly associated with the energy content and wet mass of each colony-specific 'prey type'. Individuals consuming more profitable prey could be optimizing the time spent underwater, thereby optimizing the energy expenditure associated with the dives.

  9. Evolutionary Diversification of Prey and Predator Species Facilitated by Asymmetric Interactions

    PubMed Central

    Zu, Jian; Wang, Jinliang; Huang, Gang

    2016-01-01

    We investigate the influence of asymmetric interactions on coevolutionary dynamics of a predator-prey system by using the theory of adaptive dynamics. We assume that the defense ability of prey and the attack ability of predators all can adaptively evolve, either caused by phenotypic plasticity or by behavioral choice, but there are certain costs in terms of their growth rate or death rate. The coevolutionary model is constructed from a deterministic approximation of random mutation-selection process. To sum up, if prey’s trade-off curve is globally weakly concave, then five outcomes of coevolution are demonstrated, which depend on the intensity and shape of asymmetric predator-prey interactions and predator’s trade-off shape. Firstly, we find that if there is a weakly decelerating cost and a weakly accelerating benefit for predator species, then evolutionary branching in the predator species may occur, but after branching further coevolution may lead to extinction of the predator species with a larger trait value. However, if there is a weakly accelerating cost and a weakly accelerating benefit for predator species, then evolutionary branching in the predator species is also possible and after branching the dimorphic predator can evolutionarily stably coexist with a monomorphic prey species. Secondly, if the asymmetric interactions become a little strong, then prey and predators will evolve to an evolutionarily stable equilibrium, at which they can stably coexist on a long-term timescale of evolution. Thirdly, if there is a weakly accelerating cost and a relatively strongly accelerating benefit for prey species, then evolutionary branching in the prey species is possible and the finally coevolutionary outcome contains a dimorphic prey and a monomorphic predator species. Fourthly, if the asymmetric interactions become more stronger, then predator-prey coevolution may lead to cycles in both traits and equilibrium population densities. The Red Queen dynamic is a

  10. Climate change affects populations of northern birds in boreal protected areas.

    PubMed

    Virkkala, Raimo; Rajasärkkä, Ari

    2011-06-23

    Human land-use effects on species populations are minimized in protected areas and population changes can thus be more directly linked with changes in climate. In this study, bird population changes in 96 protected areas in Finland were compared using quantitative bird census data, between two time slices, 1981-1999 and 2000-2009, with the mean time span being 14 years. Bird species were categorized by distribution pattern and migratory strategy. Our results showed that northern bird species had declined by 21 per cent and southern species increased by 29 per cent in boreal protected areas during the study period, alongside a clear rise (0.7-0.8 °C) in mean temperatures. Distribution pattern was the main factor, with migratory strategy interacting in explaining population changes in boreal birds. Migration strategy interacted with distribution pattern so that, among northern birds, densities of both migratory and resident species declined, whereas among southern birds they both increased. The observed decline of northern species and increase in southern species are in line with the predictions of range shifts of these species groups under a warming climate, and suggest that the population dynamics of birds are already changing in natural boreal habitats in association with changing climate.

  11. Dynamics of host populations affected by the emerging fungal pathogen Batrachochytrium salamandrivorans

    PubMed Central

    Bozzuto, Claudio; Lötters, Stefan; Steinfartz, Sebastian

    2017-01-01

    Emerging infectious diseases cause extirpation of wildlife populations. We use an epidemiological model to explore the effects of a recently emerged disease caused by the salamander-killing chytrid fungus Batrachochytrium salamandrivorans (Bsal) on host populations, and to evaluate which mitigation measures are most likely to succeed. As individuals do not recover from Bsal, we used a model with the states susceptible, latent and infectious, and parametrized the model using data on host and pathogen taken from the literature and expert opinion. The model suggested that disease outbreaks can occur at very low host densities (one female per hectare). This density is far lower than host densities in the wild. Therefore, all naturally occurring populations are at risk. Bsal can lead to the local extirpation of the host population within a few months. Disease outbreaks are likely to fade out quickly. A spatial variant of the model showed that the pathogen could potentially spread rapidly. As disease mitigation during outbreaks is unlikely to be successful, control efforts should focus on preventing disease emergence and transmission between populations. Thus, this emerging wildlife disease is best controlled through prevention rather than subsequent actions.

  12. Association with pathogenic bacteria affects life-history traits and population growth in Caenorhabditis elegans.

    PubMed

    Diaz, S Anaid; Mooring, Eric Q; Rens, Elisabeth G; Restif, Olivier

    2015-04-01

    Determining the relationship between individual life-history traits and population dynamics is an essential step to understand and predict natural selection. Model organisms that can be conveniently studied experimentally at both levels are invaluable to test the rich body of theoretical literature in this area. The nematode Caenorhabditis elegans, despite being a well-established workhorse in genetics, has only recently received attention from ecologists and evolutionary biologists, especially with respect to its association with pathogenic bacteria. In order to start filling the gap between the two areas, we conducted a series of experiments aiming at measuring life-history traits as well as population growth of C. elegans in response to three different bacterial strains: Escherichia coli OP50, Salmonella enterica Typhimurium, and Pseudomonas aeruginosa PAO1. Whereas previous studies had established that the latter two reduced the survival of nematodes feeding on them compared to E. coli OP50, we report for the first time an enhancement in reproductive success and population growth for worms feeding on S. enterica Typhimurium. Furthermore, we used an age-specific population dynamic model, parameterized using individual life-history assays, to successfully predict the growth of populations over three generations. This study paves the way for more detailed and quantitative experimental investigation of the ecology and evolution of C. elegans and the bacteria it interacts with, which could improve our understanding of the fate of opportunistic pathogens in the environment.

  13. Lionfish misidentification circumvents an optimized escape response by prey

    PubMed Central

    McCormick, Mark I.; Allan, Bridie J. M.

    2016-01-01

    Invasive lionfish represent an unprecedented problem in the Caribbean basin, where they are causing major changes to foodwebs and habitats through their generalized predation on fishes and invertebrates. To ascertain what makes the red lionfish (Pterois volitans) such a formidable predator, we examined the reaction of a native damselfish prey, the whitetail damsel (Pomacentrus chrysurus), to a repeatable startle stimulus once they had been forewarned of the sight or smell of lionfish. Fast-start responses were compared with prey forewarned of a predatory rockcod (Cephalopholis microprion), a corallivorous butterflyfish (Chaetodon trifasctiatus) and experimental controls. Forewarning of the sight, smell or a combination of the two cues from a rockcod led to reduced escape latencies and higher response distances, speed and maximal speed compared with controls, suggesting that forewarning primed the prey and enabled a more effective escape response. In contrast, forewarning of lionfish did not affect the fast-start kinematics measured, which were the same as in the control and non-predatory butterflyfish treatments. Lionfish appear to be able to circumvent mechanisms commonly used by prey to identify predators and were misclassified as non-predatory, and this is likely to contribute to their success as predators. PMID:27990292

  14. Mindfulness and Self-compassion as Unique and Common Predictors of Affect in the General Population.

    PubMed

    López, Angélica; Sanderman, Robbert; Schroevers, Maya J

    2016-01-01

    In contrast to the increased research interest in the benefits of mindfulness and self-compassion, relatively few studies have examined their unique and combined effects in predicting affect. This cross-sectional study examined the predictive value of mindfulness and self-compassion for depressive symptoms, negative affect, and positive affect in a large representative sample of community adults (N = 1736). The Five Facets of Mindfulness Questionnaire (FFMQ) was used as a measure of mindfulness and the Self-Compassion Scale (SCS) as a measure of self-compassion. Five FFMQ facets were explored: observe, describe, act with awareness, non-judgment, and non-reactivity. Two SCS facets were explored: its positive items (SCS Pos) and its negative items (SCS Neg). When simultaneously examining all seven facets of mindfulness and self-compassion, three of the five FFMQ facets and SCS Neg significantly predicted both depressive symptoms and negative affect, with SCS Neg and act with awareness being the strongest predictors. These findings suggest that a harsh attitude towards oneself and a lack of attention when acting have the greatest value in predicting the presence of psychological symptoms. With respect to positive affect, four of the five FFMQ facets (except non-judgment) were significant predictors, with no unique predictive value of the two SCS's facets, suggesting that mindfulness is a more important predictor of positive affect than self-compassion, as measured by the FFMQ and SCS.

  15. Medium-sized exotic prey create novel food webs: the case of predators and scavengers consuming lagomorphs

    PubMed Central

    Hiraldo, Fernando; Lambertucci, Sergio A.

    2016-01-01

    Food web interactions are key to community structure. The introduction of species can be seen as an uncontrolled experiment of the addition of species. Introduced species lead to multiple changes, frequently threatening the native biodiversity. However, little is known about their direct effect on the upper level of the food web. In this study we review empirical data on the predator–prey relationship between the introduced lagomorphs and their consumers, and use meta-analytical tools to quantify the strength of their interactions. We expect that exotic lagomorphs will destabilize food webs, affect ecological processes and compromise the conservation of the invaded regions. We found 156 studies on the diet of 43 species of predators that consume lagomorphs as exotic preys in South America and Oceania. We found an average exotic lagomorphs-predator link of 20% which indicates a strong interaction, given that the average for the strongest links with native prey (when lagomorphs are not included in the predator diet) is about 24%. Additionally, this last link decreases to 17% when lagomorphs are present. When lagomorphs arrive in a new environment they may become the most important resource for predators, producing an unstable equilibrium in the novel food web. Any disruption of this interaction could have catastrophic consequences for the native diversity by directly impacting predators or indirectly impacting native preys by apparent competition. Eradication or any change in their abundances should be carefully considered in conservation actions since those will have great impacts on predator populations and ultimately in the whole communities. PMID:27547575

  16. Country of birth affects blood pressure in the French hypertensive diabetic population

    PubMed Central

    Aoun Bahous, Sola; Thomas, Frédérique; Pannier, Bruno; Danchin, Nicolas; Safar, Michel E.

    2015-01-01

    In a population of 56,242 individuals living in France, we showed that individuals born in France have significantly different levels of blood pressure (BP) and cardiovascular (CV) risk factors than African and Asian populations born in their own country but living long-term in France (average duration of stay, 5–10 years). The objective of our study was to investigate the impact of country of birth on BP and CV risk factors in a subpopulation of 9245 patients selected solely on the diagnosis of hypertension, either alone or with simultaneous type 2 diabetes. In the subgroup of individuals with hypertension alone, brachial systolic, diastolic, mean and pulse pressure (PP), heart rate (HR), augmentation index and PP amplification were significantly higher in African-born than French- and Asian-born populations. In the subgroup of individuals with both hypertension and diabetes, only augmentation index, PP amplification and brachial and central PP, but not brachial systolic, diastolic, mean BP, and HR, were elevated when the African-born subgroup was compared to the French- and Asian-born populations. Increased body mass index (BMI), waist-hip ratio (WHR), and deprivation scores, but not increased plasma lipids or glycemia, were consistently associated with the African-born population. The combination of diabetes and hypertension in African populations was associated with increased aortic stiffness and PP, together with greater body weight and WHR. In individuals with increased PP and hence systolic hypertension, increased PP requires systolic BP to be reduced whereas notable reductions in diastolic BP may have deleterious consequences. PMID:26388785

  17. Bacterial Communities Differ among Drosophila melanogaster Populations and Affect Host Resistance against Parasitoids

    PubMed Central

    Dini-Andreote, Francisco; Falcao Salles, Joana

    2016-01-01

    In Drosophila, diet is considered a prominent factor shaping the associated bacterial community. However, the host population background (e.g. genotype, geographical origin and founder effects) is a factor that may also exert a significant influence and is often overlooked. To test for population background effects, we characterized the bacterial communities in larvae of six genetically differentiated and geographically distant D. melanogaster lines collected from natural populations across Europe. The diet for these six lines had been identical for ca. 50 generations, thus any differences in the composition of the microbiome originates from the host populations. We also investigated whether induced shifts in the microbiome—in this case by controlled antibiotic administration—alters the hosts’ resistance to parasitism. Our data revealed a clear signature of population background on the diversity and composition of D. melanogaster microbiome that differed across lines, even after hosts had been maintained at the same diet and laboratory conditions for over 4 years. In particular, the number of bacterial OTUs per line ranged from 8 to 39 OTUs. Each line harboured 2 to 28 unique OTUs, and OTUs that were highly abundant in some lines were entirely missing in others. Moreover, we found that the response to antibiotic treatment differed among the lines and significantly altered the host resistance to the parasitoid Asobara tabida in one of the six lines. Wolbachia, a widespread intracellular endosymbiont associated with parasitoid resistance, was lacking in this line, suggesting that other components of the Drosophila microbiome caused a change in host resistance. Collectively, our results revealed that lines that originate from different population backgrounds show significant differences in the established Drosophila microbiome, outpacing the long-term effect of diet. Perturbations on these naturally assembled microbiomes to some degree influenced the hosts

  18. Wolf population dynamics in the U.S. Northern Rocky Mountains are affected by recruitment and human-caused mortality

    USGS Publications Warehouse

    Gude, J.A.; Mitchell, M.S.; Russell, R.E.; Sime, C.A.; Bangs, E.E.; Mech, L.D.; Ream, R.R.

    2012-01-01

    Reliable analyses can help wildlife managers make good decisions, which are particularly critical for controversial decisions such as wolf (Canis lupus) harvest. Creel and Rotella (2010) recently predicted substantial population declines in Montana wolf populations due to harvest, in contrast to predictions made by Montana Fish, Wildlife and Parks (MFWP). We replicated their analyses considering only those years in which field monitoring was consistent, and we considered the effect of annual variation in recruitment on wolf population growth. Rather than assuming constant rates, we used model selection methods to evaluate and incorporate models of factors driving recruitment and human-caused mortality rates in wolf populations in the Northern Rocky Mountains. Using data from 27 area-years of intensive wolf monitoring, we show that variation in both recruitment and human-caused mortality affect annual wolf population growth rates and that human-caused mortality rates have increased with the sizes of wolf populations. We document that recruitment rates have decreased over time, and we speculate that rates have decreased with increasing population sizes and/or that the ability of current field resources to document recruitment rates has recently become less successful as the number of wolves in the region has increased. Estimates of positive wolf population growth in Montana from our top models are consistent with field observations and estimates previously made by MFWP for 2008-2010, whereas the predictions for declining wolf populations of Creel and Rotella (2010) are not. Familiarity with limitations of raw data, obtained first-hand or through consultation with scientists who collected the data, helps generate more reliable inferences and conclusions in analyses of publicly available datasets. Additionally, development of efficient monitoring methods for wolves is a pressing need, so that analyses such as ours will be possible in future years when fewer resources

  19. Predator-prey body size relationships when predators can consume prey larger than themselves.

    PubMed

    Nakazawa, Takefumi; Ohba, Shin-Ya; Ushio, Masayuki

    2013-06-23

    As predator-prey interactions are inherently size-dependent, predator and prey body sizes are key to understanding their feeding relationships. To describe predator-prey size relationships (PPSRs) when predators can consume prey larger than themselves, we conducted field observations targeting three aquatic hemipteran bugs, and assessed their body masses and those of their prey for each hunting event. The data revealed that their PPSR varied with predator size and species identity, although the use of the averaged sizes masked these effects. Specifically, two predators had slightly decreased predator-prey mass ratios (PPMRs) during growth, whereas the other predator specialized on particular sizes of prey, thereby showing a clear positive size-PPMR relationship. We discussed how these patterns could be different from fish predators swallowing smaller prey whole.

  20. Falling Victim to Wasps in the Air: A Fate Driven by Prey Flight Morphology?

    PubMed

    Ballesteros, Yolanda; Polidori, Carlo; Tormos, José; Baños-Picón, Laura; Asís, Josep D

    2016-01-01

    In prey-predator systems where the interacting individuals are both fliers, the flight performance of both participants heavily influences the probability of success of the predator (the prey is captured) and of the prey (the predator is avoided). While the flight morphology (an estimate of flight performance) of predatory wasps has rarely been addressed as a factor that may contribute to explain prey use, how the flight morphology of potential prey influences the output of predator-prey encounters has not been studied. Here, we hypothesized that flight morphology associated with flight ability (flight muscle mass to body mass ratio (FMR) and body mass to wing area ratio (wing loading, WL)) of Diptera affect their probability of being captured by specialized Diptera-hunting wasps (Bembix merceti and B. zonata), predicting a better manoeuvrability and acceleration capacity achieved by higher FMR and lower WL, and flight speed achieved by higher WL. In addition, wasp species with better flight morphology should be less limited by an advantageous Diptera flight morphology. Overall, the abundance of dipterans in the environment explained an important part of the observed variance in prey capture rate. However, it was not the only factor shaping prey capture. First, higher prey abundance was associated with greater capture rate for one species (B. merceti), although not for the other one. Second, the interaction observed between the environmental dipteran availability and dipteran WL for B. zonata suggests that greater dipteran WL (this probably meaning high cruising speed) decreased the probability of being captured, as long as fly abundance was high in the environment. Third, greater dipteran FMR (which likely means high manoeuvrability and acceleration capacity) helped to reduce predation by B. merceti if, again, dipterans were abundant in the environment. Wasp WL only varied with body mass but not between species, thereby hardly accounting for inter

  1. Falling Victim to Wasps in the Air: A Fate Driven by Prey Flight Morphology?

    PubMed Central

    Ballesteros, Yolanda; Polidori, Carlo; Tormos, José; Baños-Picón, Laura; Asís, Josep D.

    2016-01-01

    In prey-predator systems where the interacting individuals are both fliers, the flight performance of both participants heavily influences the probability of success of the predator (the prey is captured) and of the prey (the predator is avoided). While the flight morphology (an estimate of flight performance) of predatory wasps has rarely been addressed as a factor that may contribute to explain prey use, how the flight morphology of potential prey influences the output of predator-prey encounters has not been studied. Here, we hypothesized that flight morphology associated with flight ability (flight muscle mass to body mass ratio (FMR) and body mass to wing area ratio (wing loading, WL)) of Diptera affect their probability of being captured by specialized Diptera-hunting wasps (Bembix merceti and B. zonata), predicting a better manoeuvrability and acceleration capacity achieved by higher FMR and lower WL, and flight speed achieved by higher WL. In addition, wasp species with better flight morphology should be less limited by an advantageous Diptera flight morphology. Overall, the abundance of dipterans in the environment explained an important part of the observed variance in prey capture rate. However, it was not the only factor shaping prey capture. First, higher prey abundance was associated with greater capture rate for one species (B. merceti), although not for the other one. Second, the interaction observed between the environmental dipteran availability and dipteran WL for B. zonata suggests that greater dipteran WL (this probably meaning high cruising speed) decreased the probability of being captured, as long as fly abundance was high in the environment. Third, greater dipteran FMR (which likely means high manoeuvrability and acceleration capacity) helped to reduce predation by B. merceti if, again, dipterans were abundant in the environment. Wasp WL only varied with body mass but not between species, thereby hardly accounting for inter

  2. Turbulence, Temperature, and Turbidity: The Ecomechanics of Predator-Prey Interactions in Fishes.

    PubMed

    Higham, Timothy E; Stewart, William J; Wainwright, Peter C

    2015-07-01

    Successful feeding and escape behaviors in fishes emerge from precise integration of locomotion and feeding movements. Fishes inhabit a wide range of habitats, including still ponds, turbulent rivers, and wave-pounded shorelines, and these habitats vary in several physical variables that can strongly impact both predator and prey. Temperature, the conditions of ambient flow, and light regimes all have the potential to affect predator-prey encounters, yet the integration of these factors into our understanding of fish biomechanics is presently limited. We explore existing knowledge of kinematics, muscle function, hydrodynamics, and evolutionary morphology in order to generate a framework for understanding the ecomechanics of predator-prey encounters in fishes. We expect that, in the absence of behavioral compensation, a decrease in temperat