Science.gov

Sample records for affect regional climate

  1. NATURAL AND ATHROPOGENIC FACTORS AFFECTING GLOBAL AND REGIONAL CLIMATE

    EPA Science Inventory

    New England weather is highly variable for a number of
    reasons. Our regional climate is also quite variable. The
    winters of the past decade are milder than they were in the
    1960s and 1970s but as the ice-out and snowfall data show
    (Figs 2.5 and 2.6), the patterns of c...

  2. Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers

    NASA Astrophysics Data System (ADS)

    Blarquez, Olivier; Ali, Adam A.; Girardin, Martin P.; Grondin, Pierre; Fréchette, Bianca; Bergeron, Yves; Hély, Christelle

    2015-09-01

    Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees.

  3. Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers

    PubMed Central

    Blarquez, Olivier; Ali, Adam A.; Girardin, Martin P.; Grondin, Pierre; Fréchette, Bianca; Bergeron, Yves; Hély, Christelle

    2015-01-01

    Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees. PMID:26330162

  4. Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers.

    PubMed

    Blarquez, Olivier; Ali, Adam A; Girardin, Martin P; Grondin, Pierre; Fréchette, Bianca; Bergeron, Yves; Hély, Christelle

    2015-09-02

    Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees.

  5. GLOBAL CHANGE RESEARCH NEWS #34: PUBLICATION OF FACT SHEET BY EPA REGION 3, "HOW WILL CLIMATE CHANGE AFFECT THE MID-ATLANTIC REGION?"

    EPA Science Inventory

    EPA's Global Change Research Program is pleased to announce the publication of a fact sheet entitled, "How Will Climate Change Affect the Mid-Atlantic Region?." This information sheet was prepared and published by EPA's Region 3 office. It summarizes key findings from the Mid-Atl...

  6. Factors affecting summer maize yield under climate change in Shandong Province in the Huanghuaihai region of China.

    PubMed

    Chen, Guoqing; Liu, Hongjun; Zhang, Jiwang; Liu, Peng; Dong, Shuting

    2012-07-01

    Clarification of influencing factors (cultivar planted, cultivation management, climatic conditions) affecting yields of summer maize (Zea mays L.) would provide valuable information for increasing yields further under variable climatic conditions. Here, we report actual maize yields in the Huanghuaihai region over the past 50 years (1957-2007), simulated yields of major varieties in different years (Baimaya in the 1950s, Zhengdan-2 in the 1970s, Yedan-13 in the 1990s, and Zhengdan-958 in the 2000s), and factors that influence yield. The results show that, although each variety change has played a critical role in increasing maize yields, the contribution of variety to yield increase has decreased steadily over the past 50 years (42.6%-44.3% from the 1950s to the 1970s, 34.4%-47.2% from the 1970s to the 1990s, and 21.0%-37.6% from the 1990s to the 2000s). The impact of climatic conditions on maize yield has exhibited an increasing trend (0.67%-22.5% from the 1950s to the 1970s, 2.6%-27.0% from the 1970s to the 1990s, and 9.1%-51.1% from the 1990s to the 2000s); however, interannual differences can be large, especially if there were large changes in temperature and rainfall. Among climatic factors, rainfall had a greater positive influence than light and temperature on yield increase. Cultivation measures could change the contribution rates of variety and climatic conditions. Overall, unless there is a major breakthrough in variety, improving cultivation measures will remain important for increasing future summer maize yields in the Huanghuaihai region.

  7. Climatic Concepts and Regions.

    ERIC Educational Resources Information Center

    Thomas, Paul F.

    Designed for students in grades 7 through 12, this teaching unit presents illustrative resource materials depicting concepts related to climate and geographic regions. Emphasis is on giving students an understanding of climatic elements and factors, not as isolated, disjointed entities, but as a dynamic interplay of forces having a very definite…

  8. Northwest Regional Climate Assessment

    NASA Technical Reports Server (NTRS)

    Lipschultz, Fred

    2011-01-01

    Objectives are to establish a continuing, inclusive National process that: 1) synthesizes relevant science and information 2) increases understanding of what is known & not known 3) identifies information needs related to preparing for climate variability and change, and reducing climate impacts and vulnerability 4) evaluates progress of adaptation & mitigation activities 5) informs science priorities 6) builds assessment capacity in regions and sectors 7) builds understanding & skilled use of findings

  9. Do regional climate models represent regional climate?

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas; Widmann, Martin

    2014-05-01

    When using climate change scenarios - either from global climate models or further downscaled - to assess localised real world impacts, one has to ensure that the local simulation indeed correctly represents the real world local climate. Representativeness has so far mainly been discussed as a scale issue: simulated meteorological variables in general represent grid box averages, whereas real weather is often expressed by means of point values. As a result, in particular simulated extreme values are not directly comparable with observed local extreme values. Here we argue that the issue of representativeness is more general. To illustrate this point, assume the following situations: first, the (GCM or RCM) simulated large scale weather, e.g., the mid-latitude storm track, might be systematically distorted compared to observed weather. If such a distortion at the synoptic scale is strong, the simulated local climate might be completely different from the observed. Second, the orography even of high resolution RCMs is only a coarse model of true orography. In particular in mountain ranges the simulated mesoscale flow might therefore considerably deviate from the observed flow, leading to systematically displaced local weather. In both cases, the simulated local climate does not represent observed local climate. Thus, representativeness also encompasses representing a particular location. We propose to measure this aspect of representativeness for RCMs driven with perfect boundary conditions as the correlation between observations and simulations at the inter-annual scale. In doing so, random variability generated by the RCMs is largely averaged out. As an example, we assess how well KNMIs RACMO2 RCM at 25km horizontal resolution represents winter precipitation in the gridded E-OBS data set over the European domain. At a chosen grid box, RCM precipitation might not be representative of observed precipitation, in particular in the rain shadow of major moutain ranges

  10. Factors affecting population dynamics of leaf beetles in a subarctic region: The interplay between climate warming and pollution decline.

    PubMed

    Zvereva, Elena L; Hunter, Mark D; Zverev, Vitali; Kozlov, Mikhail V

    2016-10-01

    Understanding the mechanisms by which abiotic drivers, such as climate and pollution, influence population dynamics of animals is important for our ability to predict the population trajectories of individual species under different global change scenarios. We monitored four leaf beetle species (Coleoptera: Chrysomelidae) feeding on willows (Salix spp.) in 13 sites along a pollution gradient in subarctic forests of north-western Russia from 1993 to 2014. During a subset of years, we also measured the impacts of natural enemies and host plant quality on the performance of one of these species, Chrysomela lapponica. Spring and fall temperatures increased by 2.5-3°C during the 21-year observation period, while emissions of sulfur dioxide and heavy metals from the nickel-copper smelter at Monchegorsk decreased fivefold. However, contrary to predictions of increasing herbivory with climate warming, and in spite of discovered increase in host plant quality with increase in temperatures, none of the beetle species became more abundant during the past 20years. No directional trends were observed in densities of either Phratora vitellinae or Plagiodera versicolora, whereas densities of both C. lapponica and Gonioctena pallida showed a simultaneous rapid 20-fold decline in the early 2000s, remaining at very low levels thereafter. Time series analysis and model selection indicated that these abrupt population declines were associated with decreases in aerial emissions from the smelter. Observed declines in the population densities of C. lapponica can be explained by increases in mortality from natural enemies due to the combined action of climate warming and declining pollution. This pattern suggests that at least in some tri-trophic systems, top-down factors override bottom-up effects and govern the impacts of environmental changes on insect herbivores.

  11. Regional Climate Tutorial: Assessing Regional Climate Change and Its Impacts

    NASA Astrophysics Data System (ADS)

    Barron, E.; Fisher, A.

    2002-05-01

    Recent scientific progress now enables credible projections of global changes in climate over long time periods. But people will experience global climate change where they live and work, and have difficulty thinking of a future beyond their grandchildren's lifetime. Although the task of projecting climate change and its impacts is far more challenging for regional and relatively near-term time scales, these are the scales at which actions most easily can be taken to moderate negative impacts. This tutorial will summarize what is known about projecting changes in regional climate, and about assessing the impacts for sectors such as forests, agriculture, fresh water quantity and quality, coastal zones, human health, and ecosystems. The Mid-Atlantic Regional Assessment (MARA) is used to provide context and illustrate how adaptation within the region and feedback from other regions influence the impacts that might be experienced.

  12. "Climate Matters Documoments": Enabling Regionally-Specific Climate Awareness

    NASA Astrophysics Data System (ADS)

    Keener, V. W.; Finucane, M.

    2012-12-01

    The Pacific Regional Integrated Sciences & Assessments (RISA) is a multidisciplinary program that enhances the ability of Pacific Island communities to understand, plan for, and adapt to climate-induced change. Using both social and physical science research methods, the Pacific RISA engages a network of regional decision-makers and stakeholders to help solve climate-related issues. Pacific RISA has a broad audience of local and regional decision-makers (i.e. natural resource managers, community planners, state and federal government agencies) and stakeholders (i.e. farmers and ranchers, fishermen, community and native islander groups). The RISA program engages with this audience through a mixed-method approach of two-way communication, including one-on-one interviews, workshops, consensus discussions and public presentations that allow us to tailor our efforts to the needs of specific stakeholders. A recent Pacific RISA project was the creation and production of four short, educational "documoment" videos that explore the different ways in which climate change in Hawaii affects stakeholders from different sectors. The documoments, generally titled "Climate Matters", start with a quote about why climate matters to each stakeholder: a rancher, a coastal hotel owner, the manager of a landfill, and the local branch of the National Weather Service. The narratives then have each stakeholder discussing how climate impacts their professional and personal lives, and describing the types of climate change they have experienced in the islands. Each video ends with a technical fact about how different climate variables in Hawaii (sea level, precipitation, ENSO) have actually changed within the last century of observational data. Freely available on www.PacificRISA.org, the Documoments have been viewed over 350 times, and have inspired similar video projects and received positive attention from different audiences of stakeholders and scientists. In other assessment work the

  13. Climate change velocity underestimates climate change exposure in mountainous regions

    PubMed Central

    Dobrowski, Solomon Z.; Parks, Sean A.

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported. PMID:27476545

  14. Climate change velocity underestimates climate change exposure in mountainous regions

    NASA Astrophysics Data System (ADS)

    Dobrowski, Solomon Z.; Parks, Sean A.

    2016-08-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported.

  15. Landscape fragmentation affects responses of avian communities to climate change.

    PubMed

    Jarzyna, Marta A; Porter, William F; Maurer, Brian A; Zuckerberg, Benjamin; Finley, Andrew O

    2015-08-01

    Forecasting the consequences of climate change is contingent upon our understanding of the relationship between biodiversity patterns and climatic variability. While the impacts of climate change on individual species have been well-documented, there is a paucity of studies on climate-mediated changes in community dynamics. Our objectives were to investigate the relationship between temporal turnover in avian biodiversity and changes in climatic conditions and to assess the role of landscape fragmentation in affecting this relationship. We hypothesized that community turnover would be highest in regions experiencing the most pronounced changes in climate and that these patterns would be reduced in human-dominated landscapes. To test this hypothesis, we quantified temporal turnover in avian communities over a 20-year period using data from the New York State Breeding Atlases collected during 1980-1985 and 2000-2005. We applied Bayesian spatially varying intercept models to evaluate the relationship between temporal turnover and temporal trends in climatic conditions and landscape fragmentation. We found that models including interaction terms between climate change and landscape fragmentation were superior to models without the interaction terms, suggesting that the relationship between avian community turnover and changes in climatic conditions was affected by the level of landscape fragmentation. Specifically, we found weaker associations between temporal turnover and climatic change in regions with prevalent habitat fragmentation. We suggest that avian communities in fragmented landscapes are more robust to climate change than communities found in contiguous habitats because they are comprised of species with wider thermal niches and thus are less susceptible to shifts in climatic variability. We conclude that highly fragmented regions are likely to undergo less pronounced changes in composition and structure of faunal communities as a result of climate change

  16. Integrating Climate Information and Decision Processes for Regional Climate Resilience

    NASA Astrophysics Data System (ADS)

    Buizer, James; Goddard, Lisa; Guido, Zackry

    2015-04-01

    An integrated multi-disciplinary team of researchers from the University of Arizona and the International Research Institute for Climate and Society at Columbia University have joined forces with communities and institutions in the Caribbean, South Asia and West Africa to develop relevant, usable climate information and connect it to real decisions and development challenges. The overall objective of the "Integrating Climate Information and Decision Processes for Regional Climate Resilience" program is to build community resilience to negative impacts of climate variability and change. We produce and provide science-based climate tools and information to vulnerable peoples and the public, private, and civil society organizations that serve them. We face significant institutional challenges because of the geographical and cultural distance between the locale of climate tool-makers and the locale of climate tool-users and because of the complicated, often-inefficient networks that link them. To use an accepted metaphor, there is great institutional difficulty in coordinating the supply of and the demand for useful climate products that can be put to the task of building local resilience and reducing climate vulnerability. Our program is designed to reduce the information constraint and to initiate a linkage that is more demand driven, and which provides a set of priorities for further climate tool generation. A demand-driven approach to the co-production of appropriate and relevant climate tools seeks to meet the direct needs of vulnerable peoples as these needs have been canvassed empirically and as the benefits of application have been adequately evaluated. We first investigate how climate variability and climate change affect the livelihoods of vulnerable peoples. In so doing we assess the complex institutional web within which these peoples live -- the public agencies that serve them, their forms of access to necessary information, the structural constraints

  17. Reliability of regional climate simulations

    NASA Astrophysics Data System (ADS)

    Ahrens, W.; Block, A.; Böhm, U.; Hauffe, D.; Keuler, K.; Kücken, M.; Nocke, Th.

    2003-04-01

    Quantification of uncertainty becomes more and more a key issue for assessing the trustability of future climate scenarios. In addition to the mean conditions, climate impact modelers focus in particular on extremes. Before generating such scenarios using e.g. dynamic regional climate models, a careful validation of present-day simulations should be performed to determine the range of errors for the quantities of interest under recent conditions as a raw estimate of their uncertainty in the future. Often, multiple aspects shall be covered together, and the required simulation accuracy depends on the user's demand. In our approach, a massive parallel regional climate model shall be used on the one hand to generate "long-term" high-resolution climate scenarios for several decades, and on the other hand to provide very high-resolution ensemble simulations of future dry spells or heavy rainfall events. To diagnosis the model's performance for present-day simulations, we have recently developed and tested a first version of a validation and visualization chain for this model. It is, however, applicable in a much more general sense and could be used as a common test bed for any regional climate model aiming at this type of simulations. Depending on the user's interest, integrated quality measures can be derived for near-surface parameters using multivariate techniques and multidimensional distance measures in a first step. At this point, advanced visualization techniques have been developed and included to allow for visual data mining and to qualitatively identify dominating aspects and regularities. Univariate techniques that are especially designed to assess climatic aspects in terms of statistical properties can then be used to quantitatively diagnose the error contributions of the individual used parameters. Finally, a comprehensive in-depth diagnosis tool allows to investigate, why the model produces the obtained near-surface results to answer the question if the

  18. Land use and climate affect Black Tern, Northern Harrier, and Marsh Wren abundance in the Prairie Pothole Region of the United States

    USGS Publications Warehouse

    Forcey, Greg M.; Thogmartin, Wayne E.; Linz, George M.; McKann, Patrick C.

    2014-01-01

    Bird populations are influenced by many environmental factors at both large and small scales. Our study evaluated the influences of regional climate and land-use variables on the Northern Harrier (Circus cyaneus), Black Tern (Childonias niger), and Marsh Wren (Cistothorus palustris) in the prairie potholes of the upper Midwest of the United States. These species were chosen because their diverse habitat preference represent the spectrum of habitat conditions present in the Prairie Potholes, ranging from open prairies to dense cattail marshes. We evaluated land-use covariates at three logarithmic spatial scales (1,000 ha, 10,000 ha, and 100,000 ha) and constructed models a priori using information from published habitat associations and climatic influences. The strongest influences on the abundance of each of the three species were the percentage of wetland area across all three spatial scales and precipitation in the year preceding that when bird surveys were conducted. Even among scales ranging over three orders of magnitude the influence of spatial scale was small, as models with the same variables expressed at different scales were often in the best model subset. Examination of the effects of large-scale environmental variables on wetland birds elucidated relationships overlooked in many smaller-scale studies, such as the influences of climate and habitat variables at landscape scales. Given the spatial variation in the abundance of our focal species within the prairie potholes, our model predictions are especially useful for targeting locations, such as northeastern South Dakota and central North Dakota, where management and conservation efforts would be optimally beneficial. This modeling approach can also be applied to other species and geographic areas to focus landscape conservation efforts and subsequent small-scale studies, especially in constrained economic climates.

  19. Regional Climate Modeling: Progress, Challenges, and Prospects

    SciTech Connect

    Wang, Yuqing; Leung, Lai R.; McGregor, John L.; Lee, Dong-Kyou; Wang, Wei-Chyung; Ding, Yihui; Kimura, Fujio

    2004-12-01

    Regional climate modeling with regional climate models (RCMs) has matured over the past decade and allows for meaningful utilization in a broad spectrum of applications. In this paper, latest progresses in regional climate modeling studies are reviewed, including RCM development, applications of RCMs to dynamical downscaling for climate change assessment, seasonal climate predictions and climate process studies, and the study of regional climate predictability. Challenges and potential directions of future research in this important area are discussed, with the focus on those to which less attention has been given previously, such as the importance of ensemble simulations, further development and improvement of regional climate modeling approach, modeling extreme climate events and sub-daily variation of clouds and precipitation, model evaluation and diagnostics, applications of RCMs to climate process studies and seasonal predictions, and development of regional earth system models. It is believed that with both the demonstrated credibility of RCMs’ capability in reproducing not only monthly to seasonal mean climate and interannual variability but also the extreme climate events when driven by good quality reanalysis and the continuous improvements in the skill of global general circulation models (GCMs) in simulating large-scale atmospheric circulation, regional climate modeling will remain an important dynamical downscaling tool for providing the needed information for assessing climate change impacts and seasonal climate predictions, and a powerful tool for improving our understanding of regional climate processes. An internationally coordinated effort can be developed with different focuses by different groups to advance regional climate modeling studies. It is also recognized that since the final quality of the results from nested RCMs depends in part on the realism of the large-scale forcing provided by GCMs, the reduction of errors and improvement in

  20. [Climatic suitability of single cropping rice planting region in China].

    PubMed

    Duan, Ju-Qi; Zhou, Guang-Sheng

    2012-02-01

    To clarify the leading climate factors affecting the distribution of single cropping rice planting region in China at national and annual temporal scales and to reveal the potential distribution and climatic suitability divisions of this planting region in China could not only provide scientific basis for optimizing the allocation of single cropping rice production, modifying planting pattern, and introducing fine varieties, but also ensure the food security of China. In this paper, the potential climate factors affecting the single cropping rice distribution in China at regional and annual scales were selected from related literatures, and the single cropping rice geographic information from the national agro-meteorological observation stations of China Meteorological Administration (CMA), together with the maximum entropy model (MaxEnt) and spatial analyst function of Arc-GIS software, were adopted to clarify the leading climate factors affecting the potential distribution of single cropping rice planting region in China, and to construct a model about the relationships between the potential distribution of the planting region and the climate. The results showed that annual precipitation, moisture index, and days of not less than 18 degrees C stably were the leading climate factors affecting the potential distribution of single cropping rice planting region in China, with their cumulative contribution rate reached 94.5% of all candidate climate factors. The model constructed in this paper could well simulate the potential distribution of single cropping rice planting region in China. According to the appearance frequency, the low, medium and high climatic suitability divisions of single cropping rice planting region in China were clarified, and the climate characteristics of the planting region in each climatic suitability division were analyzed.

  1. Advancing climate dynamics toward reliable regional climate projections

    NASA Astrophysics Data System (ADS)

    Xie, Shang-Ping

    2013-06-01

    With a scientific consensus reached regarding the anthropogenic effect on global mean temperature, developing reliable regional climate projections has emerged as a new challenge for climate science. A national project was launched in China in 2012 to study ocean's role in regional climate change. This paper starts with a review of recent advances in the study of regional climate response to global warming, followed by a description of the Chinese project including the rationale, objectives, and plan for field observations. The 15 research articles that follow in the special issue are highlighted, representing some of the initial results from the project.

  2. Portuguese wine regions under a changing climate

    NASA Astrophysics Data System (ADS)

    Santos, João A.; Fraga, Helder; Malheiro, Aureliano C.; Moutinho-Pereira, José; Jones, Gregory V.; Pinto, Joaquim G.

    2014-05-01

    Viticulture and wine production are among the most important sectors of the Portuguese economy. However, as grapevines are strongly affected by weather and climate, climate change may represent an important threat to wine production. The current (1950-2000) and future (2041-2070) bioclimatic conditions in Portugal are discussed by analyzing a number of indices suitable for viticultural zoning, including a categorized bioclimatic index. A two-step method of spatial pattern downscaling is applied in order to achieve a very high spatial resolution (of approximately 1 km) throughout Portugal. Future projections are based on an ensemble of 13 climate model transient experiments, forced by the SRES A1B emission scenario. Results for the recent past are in clear agreement with the current distribution of vineyards and of the established Denomination of Origin regions. Furthermore, the typical climatic conditions associated with each grapevine variety that are currently grown in Portugal are assessed. Under future scenarios, nevertheless, the current conditions are projected to change significantly towards a lower bioclimatic diversity. This can be explained by the projected warming and drying in future decades. The resulting changes in varietal suitability and wine characteristics of each region may thereby bring important challenges for the Portuguese winemaking sector. As such, new measures need to be timely implemented to adapt to these climate change projections and to mitigate their likely detrimental impacts on the Portuguese economy. Acknowledgments: this work is supported by European Union Funds (FEDER/COMPETE - Operational Competitiveness Programme) and by national funds (FCT - Portuguese Foundation for Science and Technology) under the project ClimVineSafe (PTDC/AGR-ALI/110877/2009).

  3. Will climate change affect insect pheromonal communication?

    PubMed

    Boullis, Antoine; Detrain, Claire; Francis, Frédéric; Verheggen, François J

    2016-10-01

    Understanding how climate change will affect species interactions is a challenge for all branches of ecology. We have only limited understanding of how increasing temperature and atmospheric CO2 and O3 levels will affect pheromone-mediated communication among insects. Based on the existing literature, we suggest that the entire process of pheromonal communication, from production to behavioural response, is likely to be impacted by increases in temperature and modifications to atmospheric CO2 and O3 levels. We argue that insect species relying on long-range chemical signals will be most impacted, because these signals will likely suffer from longer exposure to oxidative gases during dispersal. We provide future directions for research programmes investigating the consequences of climate change on insect pheromonal communication.

  4. Path Dependence of Regional Climate Change

    NASA Astrophysics Data System (ADS)

    Herrington, Tyler; Zickfeld, Kirsten

    2013-04-01

    Path dependence of the climate response to CO2 forcing has been investigated from a global mean perspective, with evidence suggesting that long-term global mean temperature and precipitation changes are proportional to cumulative CO2 emissions, and independent of emissions pathway. Little research, however, has been done on path dependence of regional climate changes, particularly in areas that could be affected by tipping points. Here, we utilize the UVic Earth System Climate Model version 2.9, an Earth System Model of Intermediate Complexity. It consists of a 3-dimensional ocean general circulation model, coupled with a dynamic-thermodynamic sea ice model, and a thermodynamic energy-moisture balance model of the atmosphere. This is then coupled with a terrestrial carbon cycle model and an ocean carbon-cycle model containing an inorganic carbon and marine ecosystem component. Model coverage is global with a zonal resolution of 3.6 degrees and meridional resolution of 1.8 degrees. The model is forced with idealized emissions scenarios across five cumulative emission groups (1300 GtC, 2300 GtC, 3300 GtC, 4300 GtC, and 5300 GtC) to explore the path dependence of (and the possibility of hysteresis in) regional climate changes. Emission curves include both fossil carbon emissions and emissions from land use changes, and span a variety of peak and decline scenarios with varying emission rates, as well as overshoot and instantaneous pulse scenarios. Tipping points being explored include those responsible for the disappearance of summer Arctic sea-ice, the irreversible melt of the Greenland Ice Sheet, the collapse of the Atlantic Thermohaline Circulation, and the dieback of the Amazonian Rainforest. Preliminary results suggest that global mean climate change after cessation of CO2 emissions is independent of the emissions pathway, only varying with total cumulative emissions, in accordance with results from earlier studies. Forthcoming analysis will investigate path

  5. Climate change in Central America and Mexico: regional climate model validation and climate change projections

    NASA Astrophysics Data System (ADS)

    Karmalkar, Ambarish V.; Bradley, Raymond S.; Diaz, Henry F.

    2011-08-01

    Central America has high biodiversity, it harbors high-value ecosystems and it's important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it's unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Niño events in recent decades that adversely affected species in the region.

  6. Has solar variability caused climate change that affected human culture?

    NASA Astrophysics Data System (ADS)

    Feynman, Joan

    If solar variability affects human culture it most likely does so by changing the climate in which the culture operates. Variations in the solar radiative input to the Earth's atmosphere have often been suggested as a cause of such climate change on time scales from decades to tens of millennia. In the last 20 years there has been enormous progress in our knowledge of the many fields of research that impinge on this problem; the history of the solar output, the effect of solar variability on the Earth's mean climate and its regional patterns, the history of the Earth's climate and the history of mankind and human culture. This new knowledge encourages revisiting the question asked in the title of this talk. Several important historical events have been reliably related to climate change including the Little Ice Age in northern Europe and the collapse of the Classical Mayan civilization in the 9th century AD. In the first section of this paper we discus these historical events and review the evidence that they were caused by changes in the solar output. Perhaps the most important event in the history of mankind was the development of agricultural societies. This began to occur almost 12,000 years ago when the climate changed from the Pleistocene to the modern climate of the Holocene. In the second section of the paper we will discuss the suggestion ( Feynman and Ruzmaikin, 2007) that climate variability was the reason agriculture developed when it did and not before.

  7. Climate Change and Climate Variability in the Latin American Region

    NASA Astrophysics Data System (ADS)

    Magrin, G. O.; Gay Garcia, C.; Cruz Choque, D.; Gimenez-Sal, J. C.; Moreno, A. R.; Nagy, G. J.; Nobre, C.; Villamizar, A.

    2007-05-01

    Over the past three decades LA was subjected to several climate-related impacts due to increased El Niño occurrences. Two extremely intense episodes of El Niño and other increased climate extremes happened during this period contributing greatly to augment the vulnerability of human systems to natural disasters. In addition to weather and climate, the main drivers of the increased vulnerability are demographic pressure, unregulated urban growth, poverty and rural migration, low investment in infrastructure and services, and problems in inter-sector coordination. As well, increases in temperature and increases/decreases in precipitation observed during the last part of 20th century have yet led to intensification of glaciers melting, increases in floods/droughts and forest fires frequency, increases in morbidity and mortality, increases in plant diseases incidence; lost of biodiversity, reduction in dairy cattle production, and problems with hydropower generation, highly affecting LA human system. For the end of the 21st century, the projected mean warming for LA ranges from 1 to 7.5ºC and the frequency of weather and climate extremes could increase. Additionally, deforestation is projected to continue leading to a reduction of 25 percent in Amazonia forest in 2020 and 40 percent in 2050. Soybeans planted area in South America could increase by 55 percent by 2020 enhancing aridity/desertification in many of the already water- stressed regions. By 2050 LA population is likely to be 50 percent larger than in 2000, and migration from the country sides to the cities will continue. In the near future, these predicted changes are very likely to severely affect a number of ecosystems and sectors distribution; b) Disappearing most tropical glaciers; c) Reducing water availability and hydropower generation; d) Increasing desertification and aridity; e) Severely affecting people, resources and economic activities in coastal areas; f) Increasing crop's pests and diseases

  8. A Hierarchical Evaluation of Regional Climate Simulations

    SciTech Connect

    Leung, Lai-Yung R.; Ringler, Todd; Collins, William D.; Taylor, Mark; Ashfaq, Moetasim

    2013-08-20

    Global climate models (GCMs) are the primary tools for predicting the evolution of the climate system. Through decades of development, GCMs have demonstrated useful skill in simulating climate at continental to global scales. However, large uncertainties remain in projecting climate change at regional scales, which limit our ability to inform decisions on climate change adaptation and mitigation. To bridge this gap, different modeling approaches including nested regional climate models (RCMs), global stretch-grid models, and global high-resolution atmospheric models have been used to provide regional climate simulations (Leung et al. 2003). In previous efforts to evaluate these approaches, isolating their relative merits was not possible because factors such as dynamical frameworks, physics parameterizations, and model resolutions were not systematically constrained. With advances in high performance computing, it is now feasible to run coupled atmosphere-ocean GCMs at horizontal resolution comparable to what RCMs use today. Global models with local refinement using unstructured grids have become available for modeling regional climate (e.g., Rauscher et al. 2012; Ringler et al. 2013). While they offer opportunities to improve climate simulations, significant efforts are needed to test their veracity for regional-scale climate simulations.

  9. Regional Collaborations to Combat Climate Change: The Climate Science Centers as Strategies for Climate Adaptation

    NASA Astrophysics Data System (ADS)

    Morelli, T. L.; Palmer, R. N.

    2014-12-01

    The Department of Interior Northeast Climate Science Center (NE CSC) is part of a federal network of eight Climate Science Centers created to provide scientific information, tools, and techniques that managers and other parties interested in land, water, wildlife and cultural resources can use to anticipate, monitor, and adapt to climate change. The consortium approach taken by the CSCs allows the academic side of the Centers to gather expertise across departments, disciplines, and even institutions. This interdisciplinary approach is needed for successfully meeting regional needs for climate impact assessment, adaptive management, education, and stakeholder outreach. Partnership with the federal government facilitates interactions with the key on-the-ground stakeholders who are able to operationalize the results and conclusions of that research, monitor the progress of management actions, and provide feedback to refine future methodology and decisions as new information on climate impacts is discovered. For example, NE CSC researchers are analyzing the effect of climate change on the timing and volume of seasonal and annual streamflows and the concomitant effects on ecological and cultural resources; developing techniques to monitor tree range dynamics as affected by natural disturbances which can enable adaptation of projected climate impacts; studying the effects of changes in the frequency and magnitude of drought and stream temperature on brook trout habitats, spatial distribution and population persistence; and conducting assessments of northeastern regional climate projections and high-resolution downscaling. Project methods are being developed in collaboration with stakeholders and results are being shared broadly with federal, state, and other partners to implement and refine effective and adaptive management actions.

  10. Regional Changes in Extreme Climatic Events

    NASA Astrophysics Data System (ADS)

    Bell, J. L.; Sloan, L. C.; Snyder, M. A.

    2002-12-01

    This study focuses on California as a climatically complex region that is vulnerable to changes in water supply and delivery. A regional climate model is employed to assess changes in the frequency and intensity of extreme temperatures and precipitation. Significant increases in daily minimum and maximum temperatures occur with a doubling of atmospheric carbon dioxide concentration. Increases in daily temperatures lead to increases in prolonged heat waves and length of the growing season. Changes in total and extreme precipitation vary by geographic region.

  11. FY08 LDRD Final Report Regional Climate

    SciTech Connect

    Bader, D C; Chin, H; Caldwell, P M

    2009-05-19

    An integrated, multi-model capability for regional climate change simulation is needed to perform original analyses to understand and prepare for the impacts of climate change on the time and space scales that are critical to California's future environmental quality and economic prosperity. Our intent was to develop a very high resolution regional simulation capability to address consequences of climate change in California to complement the global modeling capability that is supported by DOE at LLNL and other institutions to inform national and international energy policies. The California state government, through the California Energy Commission (CEC), institutionalized the State's climate change assessment process through its biennial climate change reports. The bases for these reports, however, are global climate change simulations for future scenarios designed to inform international policy negotiations, and are primarily focused on the global to continental scale impacts of increasing emissions of greenhouse gases. These simulations do not meet the needs of California public and private officials who will make major decisions in the next decade that require an understanding of climate change in California for the next thirty to fifty years and its effects on energy use, water utilization, air quality, agriculture and natural ecosystems. With the additional development of regional dynamical climate modeling capability, LLNL will be able to design and execute global simulations specifically for scenarios important to the state, then use those results to drive regional simulations of the impacts of the simulated climate change for regions as small as individual cities or watersheds. Through this project, we systematically studied the strengths and weaknesses of downscaling global model results with a regional mesoscale model to guide others, particularly university researchers, who are using the technique based on models with less complete parameterizations or

  12. Towards predictive understanding of regional climate change

    NASA Astrophysics Data System (ADS)

    Xie, Shang-Ping; Deser, Clara; Vecchi, Gabriel A.; Collins, Matthew; Delworth, Thomas L.; Hall, Alex; Hawkins, Ed; Johnson, Nathaniel C.; Cassou, Christophe; Giannini, Alessandra; Watanabe, Masahiro

    2015-10-01

    Regional information on climate change is urgently needed but often deemed unreliable. To achieve credible regional climate projections, it is essential to understand underlying physical processes, reduce model biases and evaluate their impact on projections, and adequately account for internal variability. In the tropics, where atmospheric internal variability is small compared with the forced change, advancing our understanding of the coupling between long-term changes in upper-ocean temperature and the atmospheric circulation will help most to narrow the uncertainty. In the extratropics, relatively large internal variability introduces substantial uncertainty, while exacerbating risks associated with extreme events. Large ensemble simulations are essential to estimate the probabilistic distribution of climate change on regional scales. Regional models inherit atmospheric circulation uncertainty from global models and do not automatically solve the problem of regional climate change. We conclude that the current priority is to understand and reduce uncertainties on scales greater than 100 km to aid assessments at finer scales.

  13. Great plains regional climate assessment technical report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Great Plains region (GP) plays important role in providing food and energy to the economy of the United States. Multiple climatic and non-climatic stressors put multiple sectors, livelihoods and communities at risk, including agriculture, water, ecosystems and rural and tribal communities. The G...

  14. Regional Climate Change Hotspots over Africa

    NASA Astrophysics Data System (ADS)

    Anber, U.; Zakey, A.; Abd El Wahab, M.

    2009-04-01

    Regional Climate Change Index (RCCI), is developed based on regional mean precipitation change, mean surface air temperature change, and change in precipitation and temperature interannual variability. The RCCI is a comparative index designed to identify the most responsive regions to climate change, or Hot- Spots. The RCCI is calculated for Seven land regions over North Africa and Arabian region from the latest set of climate change projections by 14 global climates for the A1B, A2 and B1 IPCC emission scenarios. The concept of climate change can be approaches from the viewpoint of vulnerability or from that of climate response. In the former case a Hot-Spot can be defined as a region for which potential climate change impacts on the environment or different activity sectors can be particularly pronounced. In the other case, a Hot-Spot can be defined as a region whose climate is especially responsive to global change. In particular, the characterization of climate change response-based Hot-Spot can provide key information to identify and investigate climate change Hot-Spots based on results from multi-model ensemble of climate change simulations performed by modeling groups from around the world as contributions to the Fourth Assessment Report of Intergovernmental Panel on Climate Change (IPCC). A Regional Climate Change Index (RCCI) is defined based on four variables: change in regional mean surface air temperature relative to the global average temperature change ( or Regional Warming Amplification Factor, RWAF ), change in mean regional precipitation (P % , of present day value ), change in regional surface air temperature interannual variability (T % ,of present day value), change in regional precipitation interannual variability (P % ,of present day value ). In the definition of the RCCI it is important to include quantities other than mean change because often mean changes are not the only important factors for specific impacts. We thus also include inter

  15. Regional Climate Change Hotspots over Africa

    NASA Astrophysics Data System (ADS)

    Anber, U.

    2009-04-01

    Regional Climate Change Index (RCCI), is developed based on regional mean precipitation change, mean surface air temperature change, and change in precipitation and temperature interannual variability. The RCCI is a comparative index designed to identify the most responsive regions to climate change, or Hot- Spots. The RCCI is calculated for Seven land regions over North Africa and Arabian region from the latest set of climate change projections by 14 global climates for the A1B, A2 and B1 IPCC emission scenarios. The concept of climate change can be approaches from the viewpoint of vulnerability or from that of climate response. In the former case a Hot-Spot can be defined as a region for which potential climate change impacts on the environment or different activity sectors can be particularly pronounced. In the other case, a Hot-Spot can be defined as a region whose climate is especially responsive to global change. In particular, the characterization of climate change response-based Hot-Spot can provide key information to identify and investigate climate change Hot-Spots based on results from multi-model ensemble of climate change simulations performed by modeling groups from around the world as contributions to the Assessment Report of Intergovernmental Panel on Climate Change (IPCC). A Regional Climate Change Index (RCCI) is defined based on four variables: change in regional mean surface air temperature relative to the global average temperature change ( or Regional Warming Amplification Factor, RWAF ), change in mean regional precipitation ( , of present day value ), change in regional surface air temperature interannual variability ( ,of present day value), change in regional precipitation interannual variability ( , of present day value ). In the definition of the RCCI it is important to include quantities other than mean change because often mean changes are not the only important factors for specific impacts. We thus also include inter annual

  16. One regional ARM guide for climatic evaluation

    SciTech Connect

    Brown, R.M.

    1990-04-01

    One of the early tasks of the Atmospheric Radiation Measurements (ARM) Program is to provide climatic guides for site selection purposes including possible continental, regional, local and on-site locations. The first guide A Preliminary ARM Guide for Climatic Evaluations'' provided some climate data on a continental scale; this one is an attempt to show the variability that exists over a region. Kansas was chosen for this particular guide because it satisfies most of the requirements given in the ARM Program Plan, i.e., climatic significance, potential for synergism with other programs and scientific and logistical viability. Kansas has extreme climatic variations, is centrally located, is compatible with other large scale programs (Fife), has good airfields and accommodations to minimize time and effort in planning and operating an ARM site for continuous use and special campaigns.

  17. One regional ARM guide for climatic evaluation

    SciTech Connect

    Brown, R.M.

    1990-04-01

    One of the early tasks of the Atmospheric Radiation Measurements (ARM) Program is to provide climatic guides for site selection purposes including possible continental, regional, local and on-site locations. The first guide ``A Preliminary ARM Guide for Climatic Evaluations`` provided some climate data on a continental scale; this one is an attempt to show the variability that exists over a region. Kansas was chosen for this particular guide because it satisfies most of the requirements given in the ARM Program Plan, i.e., climatic significance, potential for synergism with other programs and scientific and logistical viability. Kansas has extreme climatic variations, is centrally located, is compatible with other large scale programs (Fife), has good airfields and accommodations to minimize time and effort in planning and operating an ARM site for continuous use and special campaigns.

  18. CLIMATE IMPACTS ON REGIONAL WATER

    EPA Science Inventory

    The New England region (including the 6 New England
    states plus upstate New York) offers a very diverse geography,
    matched by an equally diverse economy and human
    population. Livelihoods throughout the region are based
    on service industries that depend heavily on comm...

  19. Regional Scale Analyses of Climate Change Impacts on Agriculture

    NASA Astrophysics Data System (ADS)

    Wolfe, D. W.; Hayhoe, K.

    2006-12-01

    New statistically downscaled climate modeling techniques provide an opportunity for improved regional analysis of climate change impacts on agriculture. Climate modeling outputs can often simultaneously meet the needs of those studying impacts on natural as well as managed ecosystems. Climate outputs can be used to drive existing forest or crop models, or livestock models (e.g., temperature-humidity index model predicting dairy milk production) for improved information on regional impact. High spatial resolution climate forecasts, combined with knowledge of seasonal temperatures or rainfall constraining species ranges, can be used to predict shifts in suitable habitat for invasive weeds, insects, and pathogens, as well as cash crops. Examples of climate thresholds affecting species range and species composition include: minimum winter temperature, duration of winter chilling (vernalization) hours (e.g., hours below 7.2 C), frost-free period, and frequency of high temperature stress days in summer. High resolution climate outputs can also be used to drive existing integrated pest management models predicting crop insect and disease pressure. Collectively, these analyses can be used to test hypotheses or provide insight into the impact of future climate change scenarios on species range shifts and threat from invasives, shifts in crop production zones, and timing and regional variation in economic impacts.

  20. Selecting global climate models for regional climate change studies.

    PubMed

    Pierce, David W; Barnett, Tim P; Santer, Benjamin D; Gleckler, Peter J

    2009-05-26

    Regional or local climate change modeling studies currently require starting with a global climate model, then downscaling to the region of interest. How should global models be chosen for such studies, and what effect do such choices have? This question is addressed in the context of a regional climate detection and attribution (D&A) study of January-February-March (JFM) temperature over the western U.S. Models are often selected for a regional D&A analysis based on the quality of the simulated regional climate. Accordingly, 42 performance metrics based on seasonal temperature and precipitation, the El Nino/Southern Oscillation (ENSO), and the Pacific Decadal Oscillation are constructed and applied to 21 global models. However, no strong relationship is found between the score of the models on the metrics and results of the D&A analysis. Instead, the importance of having ensembles of runs with enough realizations to reduce the effects of natural internal climate variability is emphasized. Also, the superiority of the multimodel ensemble average (MM) to any 1 individual model, already found in global studies examining the mean climate, is true in this regional study that includes measures of variability as well. Evidence is shown that this superiority is largely caused by the cancellation of offsetting errors in the individual global models. Results with both the MM and models picked randomly confirm the original D&A results of anthropogenically forced JFM temperature changes in the western U.S. Future projections of temperature do not depend on model performance until the 2080s, after which the better performing models show warmer temperatures.

  1. Selecting global climate models for regional climate change studies

    PubMed Central

    Pierce, David W.; Barnett, Tim P.; Santer, Benjamin D.; Gleckler, Peter J.

    2009-01-01

    Regional or local climate change modeling studies currently require starting with a global climate model, then downscaling to the region of interest. How should global models be chosen for such studies, and what effect do such choices have? This question is addressed in the context of a regional climate detection and attribution (D&A) study of January-February-March (JFM) temperature over the western U.S. Models are often selected for a regional D&A analysis based on the quality of the simulated regional climate. Accordingly, 42 performance metrics based on seasonal temperature and precipitation, the El Nino/Southern Oscillation (ENSO), and the Pacific Decadal Oscillation are constructed and applied to 21 global models. However, no strong relationship is found between the score of the models on the metrics and results of the D&A analysis. Instead, the importance of having ensembles of runs with enough realizations to reduce the effects of natural internal climate variability is emphasized. Also, the superiority of the multimodel ensemble average (MM) to any 1 individual model, already found in global studies examining the mean climate, is true in this regional study that includes measures of variability as well. Evidence is shown that this superiority is largely caused by the cancellation of offsetting errors in the individual global models. Results with both the MM and models picked randomly confirm the original D&A results of anthropogenically forced JFM temperature changes in the western U.S. Future projections of temperature do not depend on model performance until the 2080s, after which the better performing models show warmer temperatures. PMID:19439652

  2. Evaluation of regional climate simulations for air quality modelling purposes

    NASA Astrophysics Data System (ADS)

    Menut, Laurent; Tripathi, Om P.; Colette, Augustin; Vautard, Robert; Flaounas, Emmanouil; Bessagnet, Bertrand

    2013-05-01

    In order to evaluate the future potential benefits of emission regulation on regional air quality, while taking into account the effects of climate change, off-line air quality projection simulations are driven using weather forcing taken from regional climate models. These regional models are themselves driven by simulations carried out using global climate models (GCM) and economical scenarios. Uncertainties and biases in climate models introduce an additional "climate modeling" source of uncertainty that is to be added to all other types of uncertainties in air quality modeling for policy evaluation. In this article we evaluate the changes in air quality-related weather variables induced by replacing reanalyses-forced by GCM-forced regional climate simulations. As an example we use GCM simulations carried out in the framework of the ERA-interim programme and of the CMIP5 project using the Institut Pierre-Simon Laplace climate model (IPSLcm), driving regional simulations performed in the framework of the EURO-CORDEX programme. In summer, we found compensating deficiencies acting on photochemistry: an overestimation by GCM-driven weather due to a positive bias in short-wave radiation, a negative bias in wind speed, too many stagnant episodes, and a negative temperature bias. In winter, air quality is mostly driven by dispersion, and we could not identify significant differences in either wind or planetary boundary layer height statistics between GCM-driven and reanalyses-driven regional simulations. However, precipitation appears largely overestimated in GCM-driven simulations, which could significantly affect the simulation of aerosol concentrations. The identification of these biases will help interpreting results of future air quality simulations using these data. Despite these, we conclude that the identified differences should not lead to major difficulties in using GCM-driven regional climate simulations for air quality projections.

  3. CARICOF - The Caribbean Regional Climate Outlook Forum

    NASA Astrophysics Data System (ADS)

    Van Meerbeeck, Cedric

    2013-04-01

    Regional Climate Outlook Forums (RCOFs) are viewed as a critical building block in the Global Framework for Climate Services (GFCS) of the World Meteorological Organization (WMO). The GFCS seeks to extend RCOFs to all vulnerable regions of the world such as the Caribbean, of which the entire population is exposed to water- and heat-related natural hazards. An RCOF is initially intended to identify gaps in information and technical capability; facilitate research cooperation and data exchange within and between regions, and improve coordination within the climate forecasting community. A focus is given on variations in climate conditions on a seasonal timescale. In this view, the relevance of a Caribbean RCOF (CARICOF) is the following: while the seasonality of the climate in the Caribbean has been well documented, major gaps in knowledge exist in terms of the drivers in the shifts of amplitude and phase of seasons (as evidenced from the worst region-wide drought period in recent history during 2009-2010). To address those gaps, CARICOF has brought together National Weather Services (NWSs) from 18 territories under the coordination of the Caribbean Institute for Meteorology and Hydrology (CIMH), to produce region-wide, consensus, seasonal climate outlooks since March 2012. These outlooks include tercile rainfall forecasts, sea and air surface temperature forecasts as well as the likely evolution of the drivers of seasonal climate variability in the region, being amongst others the El Niño Southern Oscillation or tropical Atlantic and Caribbean Sea temperatures. Forecasts for both the national-scale forecasts made by the NWSs and CIMH's regional-scale forecast amalgamate output from several forecasting tools. These currently include: (1) statistical models such as Canonical Correlation Analysis run with the Climate Predictability Tool, providing tercile rainfall forecasts at weather station scale; (2) a global outlooks published by the WMO appointed Global Producing

  4. Climate impacts of regional SO2 emissions

    NASA Astrophysics Data System (ADS)

    Lamarque, J. F.; Fiore, A. M.; Shindell, D. T.

    2015-12-01

    Climate impacts of regional SO2 emissions J.-F. Lamarque, A. M. Fiore and D. Shindell In this talk, we present the analysis of constant -forcing present-day simulations pertaining to the perturbation of SO2 emissions over the United States and China. Using 3 chemistry-climate models (CESM, GFDL and GISS), we show that the removal of SO2 anthropogenic emissions over each region leads to significant (at the 95% or above; significance is also assessed relative to internal variability as determined from a 200-year control simulation with perpetual year 2000 conditions) perturbations in temperature over multiple regions of the Northern Hemisphere. While more limited, significant perturbations in regional precipitation are also found. While the overall (global and zonal means) forcing from Chinese emissions is similar to the US case, we found that the regional response to the emissions has different regional distributions.

  5. Global water resources affected by human interventions and climate change.

    PubMed

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D; Wada, Yoshihide; Wisser, Dominik

    2014-03-04

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future.

  6. Global water resources affected by human interventions and climate change

    PubMed Central

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D.; Wada, Yoshihide; Wisser, Dominik

    2014-01-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future. PMID:24344275

  7. A coupled regional climate-biosphere model for climate studies

    SciTech Connect

    Bossert, J.; Winterkamp, J.; Barnes, F.; Roads, J.

    1996-04-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project has been to develop and test a regional climate modeling system that couples a limited-area atmospheric code to a biosphere scheme that properly represents surface processes. The development phase has included investigations of the impact of variations in surface forcing parameters, meteorological input data resolution, and model grid resolution. The testing phase has included a multi-year simulation of the summer climate over the Southwest United States at higher resolution than previous studies. Averaged results from a nine summer month simulation demonstrate the capability of the regional climate model to produce a representative climatology of the Southwest. The results also show the importance of strong summertime thermal forcing of the surface in defining this climatology. These simulations allow us to observe the climate at much higher temporal and spatial resolutions than existing observational networks. The model also allows us to see the full three-dimensional state of the climate and thereby deduce the dominant physical processes at any particular time.

  8. Regional climate change and national responsibilities

    NASA Astrophysics Data System (ADS)

    Hansen, James; Sato, Makiko

    2016-03-01

    Global warming over the past several decades is now large enough that regional climate change is emerging above the noise of natural variability, especially in the summer at middle latitudes and year-round at low latitudes. Despite the small magnitude of warming relative to weather fluctuations, effects of the warming already have notable social and economic impacts. Global warming of 2 °C relative to preindustrial would shift the ‘bell curve’ defining temperature anomalies a factor of three larger than observed changes since the middle of the 20th century, with highly deleterious consequences. There is striking incongruity between the global distribution of nations principally responsible for fossil fuel CO2 emissions, known to be the main cause of climate change, and the regions suffering the greatest consequences from the warming, a fact with substantial implications for global energy and climate policies.

  9. Changing Climate Is Affecting Agriculture in the U.S.

    MedlinePlus

    ... USDA has established seven regional hubs for risk adaptation and mitigation to climate change. These Hubs will ... season. Assessments and regional forecasts for hazard and adaptation planning to provide more time to prepare. Outreach ...

  10. Atmosphere Processes Dynamic and Mountain Region Climate

    NASA Astrophysics Data System (ADS)

    Davitashvili, T.; Khvedelidze, Z.; Javakhishvili, Kh.; Sharikadze, I.

    As is known, on the whole regional climate is depended on the Sun's lope relation to the horizon and the characteristics of the Earth relief. In the mountain regions (Caucasian region) compound relief conduce additional turbulence craetion and flow round stream increasing or decreasing. All that bring climate change special feature in the mountain regions. Climate formation and change internal factors are enough interconnected. We had study reverse connection between temperature, moisture, cloudness radiation balance, the Sun's activity and its components on the basis of the data over last 140 years. For the central months of the seasons, there was comparison day-night, monthly an annual motion of the radiation and temperature, temperature and Sun's activity, with account of cloud and moisture. Reverse connection between climate elements was valuated with help of correlation coefficient (r>0.8), but period of its reiteration analysis of the calculated fields the available natural data and the semiempirical calculation it was shown, that in the Western Georgia temperature was not increased unlike the Eastern Georgia.

  11. Brazil's sugarcane boom could affect regional temperatures

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-04-01

    With the world seeking to cut its dependence on fossil fuels, the use of bioethanol and other biofuels is on the rise. In Brazil, the second largest producer and consumer of bioethanol, this has led to a boom in sugarcane production. Based on new laws and trade agreements, researchers expect Brazil's production of sugarcane-derived ethanol to increase tenfold over the next decade, with considerable land being converted for growing sugarcane. Much of this expansion is expected to come at a loss of some of the country's cerrado savannas. So while a major aim of the turn to biofuels is to reduce the transfer of carbon to the atmosphere and mitigate global climate change, the shifting agricultural activity could have direct consequences on Brazil's climate by changing the region's physical and biogeochemical properties.

  12. Detection and Attribution of Regional Climate Change

    SciTech Connect

    Bala, G; Mirin, A

    2007-01-19

    We developed a high resolution global coupled modeling capability to perform breakthrough studies of the regional climate change. The atmospheric component in our simulation uses a 1{sup o} latitude x 1.25{sup o} longitude grid which is the finest resolution ever used for the NCAR coupled climate model CCSM3. Substantial testing and slight retuning was required to get an acceptable control simulation. The major accomplishment is the validation of this new high resolution configuration of CCSM3. There are major improvements in our simulation of the surface wind stress and sea ice thickness distribution in the Arctic. Surface wind stress and ocean circulation in the Antarctic Circumpolar Current are also improved. Our results demonstrate that the FV version of the CCSM coupled model is a state of the art climate model whose simulation capabilities are in the class of those used for IPCC assessments. We have also provided 1000 years of model data to Scripps Institution of Oceanography to estimate the natural variability of stream flow in California. In the future, our global model simulations will provide boundary data to high-resolution mesoscale model that will be used at LLNL. The mesoscale model would dynamically downscale the GCM climate to regional scale on climate time scales.

  13. Regional Actions to Address Climate Change Impacts on Water

    EPA Pesticide Factsheets

    EPA's ten regions work to address climate change on a local level, implementing regionally important solutions and working with stakeholders on the ground. Many regional partners work closely with EPA to better implement climate solutions

  14. Can climate-effective land management reduce regional warming?

    NASA Astrophysics Data System (ADS)

    Hirsch, A. L.; Wilhelm, M.; Davin, E. L.; Thiery, W.; Seneviratne, S. I.

    2017-02-01

    Limiting global warming to well below 2°C is an imminent challenge for humanity. However, even if this global target can be met, some regions are still likely to experience substantial warming relative to others. Using idealized global climate simulations, we examine the potential of land management options in affecting regional climate, with a focus on crop albedo enhancement and irrigation (climate-effective land management). The implementation is performed over all crop regions globally to provide an upper bound. We find that the implementation of both crop albedo enhancement and irrigation can reduce hot temperature extremes by more than 2°C in North America, Eurasia, and India over the 21st century relative to a scenario without management application. The efficacy of crop albedo enhancement scales with the magnitude, where a cooling response exceeding 0.5°C for hot temperature extremes was achieved with a large (i.e., ≥0.08) change in crop albedo. Regional differences were attributed to the surface energy balance response with temperature changes mostly explained by latent heat flux changes for irrigation and net shortwave radiation changes for crop albedo enhancement. However, limitations do exist, where we identify warming over the winter months when climate-effective land management is temporarily suspended. This was associated with persistent cloud cover that enhances longwave warming. It cannot be confirmed if the magnitude of this feedback is reproducible in other climate models. Our results overall demonstrate that regional warming of hot extremes in our climate model can be partially mitigated when using an idealized treatment of climate-effective land management.

  15. Weather anomalies affect Climate Change microblogging intensity

    NASA Astrophysics Data System (ADS)

    Molodtsova, T.; Kirilenko, A.

    2012-12-01

    There is a huge gap between the scientific consensus and public understanding of climate change. Climate change has become a political issue and a "hot" topic in mass media that only adds the complexity to forming the public opinion. Scientists operate in scientific terms, not necessarily understandable by general public, while it is common for people to perceive the latest weather anomaly as an evidence of climate change. In 1998 Hansen et al. introduced a concept of an objectively measured subjective climate change indicator, which can relate public feeling that the climate is changing to the observed meteorological parameters. We tested this concept in a simple example of a temperature-based index, which we related to microblogging activity. Microblogging is a new form of communication in which the users describe their current status in short Internet messages. Twitter (http://twitter.com), is currently the most popular microblogging platform. There are multiple reasons, why this data is particularly valuable to the researches interested in social dynamics: microblogging is widely used to publicize one's opinion with the public; has broad, diverse audience, represented by users from many countries speaking different languages; finally, Twitter contains an enormous number of data, e.g., there were 1,284,579 messages related to climate change from 585,168 users in the January-May data collection. We collected the textual data entries, containing words "climate change" or "global warming" from the 1st of January, 2012. The data was retrieved from the Internet every 20 minutes using a specially developed Python code. Using geolocational information, blog entries originating from the New York urbanized area were selected. These entries, used as a source of public opinion on climate change, were related to the surface temperature, obtained from La Guardia airport meteorological station. We defined the "significant change" in the temperature index as deviation of the

  16. Satellite-based climate information within the WMO RA VI Regional Climate Centre on Climate Monitoring

    NASA Astrophysics Data System (ADS)

    Obregón, A.; Nitsche, H.; Körber, M.; Kreis, A.; Bissolli, P.; Friedrich, K.; Rösner, S.

    2014-05-01

    The World Meteorological Organization (WMO) established Regional Climate Centres (RCCs) around the world to create science-based climate information on a regional scale within the Global Framework for Climate Services (GFCS). The paper introduces the satellite component of the WMO Regional Climate Centre on Climate Monitoring (RCC-CM) for Europe and the Middle East. The RCC-CM product portfolio is based on essential climate variables (ECVs) as defined by the Global Climate Observing System (GCOS), spanning the atmospheric (radiation, clouds, water vapour) and terrestrial domains (snow cover, soil moisture). In the first part, the input data sets are briefly described, which are provided by the EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) Satellite Application Facilities (SAF), in particular CM SAF, and by the ESA (European Space Agency) Climate Change Initiative (CCI). In the second part, the derived RCC-CM products are presented, which are divided into two groups: (i) operational monitoring products (e.g. monthly means and anomalies) based on near-real-time environmental data records (EDRs) and (ii) climate information records (e.g. climatologies, time series, trend maps) based on long-term thematic climate data records (TCDRs) with adequate stability, accuracy and homogeneity. The products are provided as maps, statistical plots and gridded data, which are made available through the RCC-CM website (www.dwd.de/rcc-cm).

  17. Probabilistic Predictions of Regional Climate Change

    NASA Astrophysics Data System (ADS)

    Harris, G. R.; Sexton, D. M.; Booth, B. B.; Brown, K.; Collins, M.; Murphy, J. M.

    2009-12-01

    We present a methodology for quantifying the leading sources of uncertainty in climate change projections that allows more robust prediction of probability distribution functions (PDFs) for transient regional climate change than is possible, for example, with the multimodel ensemble in the the CMIP3 archive used for the IPCC Fourth Assessment. Uncertainty in equilibrium climate response has been systematically explored by varying uncertain parameters in the atmosphere, sea-ice and surface components in a ensemble of simulations with the third version of the Hadley Centre model coupled to a slab ocean. The ensemble is used to emulate the response for one million parameter combinations, ensuring robust prediction of the prior distributions of equilibrium response for this model. Posterior PDFs are estimated using a weighting scheme that calculates the likelihood for each model version, based upon its ability to reproduce a large set of observed seasonal-mean climate variables. Information from the CMIP3 simulations is used to assess the effect of structural uncertainty, and this is included as an additional variance in the weighting. The posterior distributions of equilibrium response are shown to be relatively robust to variation in key assumptions of the method. A time-scaling technique that maps equilibrium to transient change is then used to predict PDFs for transient regional climate change for specified emissions scenarios. The scaling uses a simple climate model (SCM), with global climate feedbacks and local response sampled from the equilibrium response, and other SCM parameters tuned to the response of other AOGCM ensembles. Use of the SCM allows efficient sampling of uncertainties not fully sampled by expensive GCM simulation, including uncertainty in aerosol radiative forcing, the rate of ocean heat uptake, and the strength of carbon-cycle feedbacks. Uncertainties arising from statistical components of the method, such as emulation or scaling, are

  18. Climatic Effects of Regional Nuclear War

    NASA Technical Reports Server (NTRS)

    Oman, Luke D.

    2011-01-01

    We use a modern climate model and new estimates of smoke generated by fires in contemporary cities to calculate the response of the climate system to a regional nuclear war between emerging third world nuclear powers using 100 Hiroshima-size bombs (less than 0.03% of the explosive yield of the current global nuclear arsenal) on cities in the subtropics. We find significant cooling and reductions of precipitation lasting years, which would impact the global food supply. The climate changes are large and longlasting because the fuel loadings in modern cities are quite high and the subtropical solar insolation heats the resulting smoke cloud and lofts it into the high stratosphere, where removal mechanisms are slow. While the climate changes are less dramatic than found in previous "nuclear winter" simulations of a massive nuclear exchange between the superpowers, because less smoke is emitted, the changes seem to be more persistent because of improvements in representing aerosol processes and microphysical/dynamical interactions, including radiative heating effects, in newer global climate system models. The assumptions and calculations that go into these conclusions will be described.

  19. Regional climate downscaling: What's the point?

    NASA Astrophysics Data System (ADS)

    Pielke, Roger A., Sr.; Wilby, Robert L.

    2012-01-01

    Dynamical and statistical downscaling of multidecadal global climate models provides finer spatial resolution information for climate impact assessments [Wilby and Fowler, 2010]. Increasingly, some scientists are using the language of "prediction" with respect to future regional climate change and impacts [e.g., Hurrell et al., 2009; Shapiro et al., 2010], yet others note serious reservations about the capability of downscaling to provide detailed, accurate predictions [see Kerr, 2011]. Dynamic downscaling is based on regional climate models (usually just the atmospheric part) that have finer horizontal grid resolution of surface features such as terrain [Castro et al., 2005]. Statistical downscaling uses transfer functions (e.g., regression relationships) representing observed relationships between larger-scale atmospheric variables and local quantities such as daily precipitation and/or temperature [Wilby and Fowler, 2010]. These approaches have been successful in improving the skill of numerical weather prediction. Statistical downscaling can also be used as the benchmark (the control) against which dynamic downscaling skill is judged [Landsea and Knaff, 2000

  20. Climate Change Projections of the North American Regional Climate Change Assessment Program (NARCCAP)

    SciTech Connect

    Mearns, L. O.; Sain, Steve; Leung, Lai-Yung R.; Bukovsky, M. S.; McGinnis, Seth; Biner, S.; Caya, Daniel; Arritt, R.; Gutowski, William; Takle, Eugene S.; Snyder, Mark A.; Jones, Richard; Nunes, A M B.; Tucker, S.; Herzmann, D.; McDaniel, Larry; Sloan, Lisa

    2013-10-01

    We investigate major results of the NARCCAP multiple regional climate model (RCM) experiments driven by multiple global climate models (GCMs) regarding climate change for seasonal temperature and precipitation over North America. We focus on two major questions: How do the RCM simulated climate changes differ from those of the parent GCMs and thus affect our perception of climate change over North America, and how important are the relative contributions of RCMs and GCMs to the uncertainty (variance explained) for different seasons and variables? The RCMs tend to produce stronger climate changes for precipitation: larger increases in the northern part of the domain in winter and greater decreases across a swath of the central part in summer, compared to the four GCMs driving the regional models as well as to the full set of CMIP3 GCM results. We pose some possible process-level mechanisms for the difference in intensity of change, particularly for summer. Detailed process-level studies will be necessary to establish mechanisms and credibility of these results. The GCMs explain more variance for winter temperature and the RCMs for summer temperature. The same is true for precipitation patterns. Thus, we recommend that future RCM-GCM experiments over this region include a balanced number of GCMs and RCMs.

  1. North American Regional Climate Change Assessment Program (NARCCAP): Producing Regional Climate Change Projections for Climate Impacts Studies

    NASA Astrophysics Data System (ADS)

    Arritt, R. W.; Mearns, L.; Anderson, C.; Bader, D.; Buonomo, E.; Caya, D.; Duffy, P.; Elguindi, N.; Giorgi, F.; Gutowski, W.; Held, I.; Nunes, A.; Jones, R.; Laprise, R.; Leung, L. R.; Middleton, D.; Moufouma-Okia, W.; Nychka, D.; Qian, Y.; Roads, J.; Sain, S.; Snyder, M.; Sloan, L.; Takle, E.

    2006-12-01

    The North American Regional Climate Change Assessment Program (NARCCAP) is constructing projections of regional climate change over the coterminous United States and Canada in order to provide climate change information at decision relevant scales. A major goal of NARCCAP is to estimate uncertainties in regional scale projections of future climate by using multiple regional climate models (RCMs) nested within multiple atmosphere-ocean general circulation models (AOGCMs). NARCCAP is using six nested regional climate models at 50 km resolution to dynamically downscale realizations of current climate (1971-2000) and future climate (2041-2070, following the A2 SRES emission scenario) from four AOGCMs. Global time slice simulations, also at 50 km resolution, will be performed using the GFDL AM2.1 and NCAR CAM3 atmospheric models forced by the AOGCM sea surface temperatures and will be compared with results of the regional models. Results from this multiple-RCM, multiple-AOGCM suite will be statistically analyzed to investigate the cascade of uncertainty as one type of model draws information from another. All output will be made available to the climate analysis and climate impacts assessment communities through an archiving and data distribution plan. The climate impacts community will have these data at unprecedented spatial and temporal (hourly to six-hourly) resolution to support decision-relevant evaluations for public policy. As part of our evaluation of uncertainties, simulations are presently being concluded that nest the participating RCMs within reanalyses of observations. These simulations can be viewed as nesting the RCMs within a GCM that is nearly perfect (constrained by available observations), allowing us to separate errors attributable to the RCMs from those attributable to the driving AOGCMs. Results to date indicate that skill is greater in winter than in summer, and greater for temperature than for precipitation. Temperature and precipitation errors

  2. The Three Gorges Dam Affects Regional Precipitation

    NASA Technical Reports Server (NTRS)

    Wu, Liguang; Zhang, Qiang; Jiang, Zhihong

    2006-01-01

    Issues regarding building large-scale dams as a solution to power generation and flood control problems have been widely discussed by both natural and social scientists from various disciplines, as well as the policy-makers and public. Since the Chinese government officially approved the Three Gorges Dam (TGD) projects, this largest hydroelectric project in the world has drawn a lot of debates ranging from its social and economic to climatic impacts. The TGD has been partially in use since June 2003. The impact of the TGD is examined through analysis of the National Aeronautics and Space Administration (NASA) Tropical Rainfall Measuring Mission (TRMM) rainfall rate and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature and high-resolution simulation using the Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) fifth-generation Mesoscale Model (MM5). The independent satellite data sets and numerical simulation clearly indicate that the land use change associated with the TGD construction has increased the precipitation in the region between Daba and Qinling mountains and reduced the precipitation in the vicinity of the TGD after the TGD water level abruptly rose from 66 to 135 m in June 2003. This study suggests that the climatic effect of the TGD is on the regional scale (approx.100 km) rather than on the local scale (approx.10 km) as projected in previous studies.

  3. How increasing CO sub 2 and climate change affect forests

    SciTech Connect

    Graham, R.L.; Turner, M.G.; Dale, V.H. )

    1990-09-01

    The strong relationship among climate, atmosphere, soils, biota, and human activities provides a solid basis for anticipating changes in terrestrial biomes in response to changes in the global environment. This article examines potential forest responses to elevated carbon dioxide in conjunction with climatic change. Key ecological processes and how human intervention can affect those processes is presented.

  4. How does spatial variability of climate affect catchment streamflow predictions?

    EPA Science Inventory

    Spatial variability of climate can negatively affect catchment streamflow predictions if it is not explicitly accounted for in hydrologic models. In this paper, we examine the changes in streamflow predictability when a hydrologic model is run with spatially variable (distribute...

  5. Studies of dynamical processes affecting global climate

    SciTech Connect

    Keller, C.; Cooper, D.; Eichinger, W.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development project at the Los Alamos National Laboratory (LANL). The main objective was, by a combined theoretical and observational approach, to develop improved models of dynamic processes in the oceans and atmosphere and to incorporate them into large climate codes, chiefly in four main areas: numerical physics, chemistry, water vapor, and ocean-atmosphere interactions. Main areas of investigation included studies of: cloud parameterizations for global climate codes, Lidar and the planetary boundary layer, chemistry, climate variability using coupled ocean-atmospheric models, and numerical physical methods. This project employed a unique approach that included participation of a number of University of California faculty, postdoctoral fellows and graduate students who collaborated with Los Alamos research staff on specific tasks, thus greatly enhancing the research output. Overall accomplishments during the sensing of the atmospheric planetary were: (1) first two- and three-dimensional remote sensing of the atmospheric planetary boundary layer using Lidars, (2) modeling of 20-year cycle in both pressure and sea surface temperatures in North Pacific, (3) modeling of low frequency internal variability, (4) addition of aerosols to stratosphere to simulate Pinatubo effect on ozone, (5) development of fast, comprehensive chemistry in the troposphere for urban pollution studies, (6) new prognostic cloud parameterization in global atmospheric code remedied problems with North Pacific atmospheric circulation and excessive equatorial precipitation, (7) development of a unique aerosol analysis technique, the aerosol time-of-flight mass spectrometer (ATOFMS), which allows real-time analysis of the size and chemical composition of individual aerosol particles, and (8) numerical physics applying Approximate Inertial Manifolds to ocean circulation. 14 refs., 6 figs.

  6. Objective calibration of regional climate models

    NASA Astrophysics Data System (ADS)

    Bellprat, O.; Kotlarski, S.; Lüthi, D.; SchäR, C.

    2012-12-01

    Climate models are subject to high parametric uncertainty induced by poorly confined model parameters of parameterized physical processes. Uncertain model parameters are typically calibrated in order to increase the agreement of the model with available observations. The common practice is to adjust uncertain model parameters manually, often referred to as expert tuning, which lacks objectivity and transparency in the use of observations. These shortcomings often haze model inter-comparisons and hinder the implementation of new model parameterizations. Methods which would allow to systematically calibrate model parameters are unfortunately often not applicable to state-of-the-art climate models, due to computational constraints facing the high dimensionality and non-linearity of the problem. Here we present an approach to objectively calibrate a regional climate model, using reanalysis driven simulations and building upon a quadratic metamodel presented by Neelin et al. (2010) that serves as a computationally cheap surrogate of the model. Five model parameters originating from different parameterizations are selected for the optimization according to their influence on the model performance. The metamodel accurately estimates spatial averages of 2 m temperature, precipitation and total cloud cover, with an uncertainty of similar magnitude as the internal variability of the regional climate model. The non-linearities of the parameter perturbations are well captured, such that only a limited number of 20-50 simulations are needed to estimate optimal parameter settings. Parameter interactions are small, which allows to further reduce the number of simulations. In comparison to an ensemble of the same model which has undergone expert tuning, the calibration yields similar optimal model configurations, but leading to an additional reduction of the model error. The performance range captured is much wider than sampled with the expert-tuned ensemble and the presented

  7. The Challenge of Simulating the Regional Climate over Florida

    NASA Astrophysics Data System (ADS)

    Misra, V.; Mishra, A. K.

    2015-12-01

    In this study we show that the unique geography of the peninsular Florida with close proximity to strong mesoscale surface ocean currents among other factors warrants the use of relatively high resolution climate models to project Florida's hydroclimate. In the absence of such high resolution climate models we highlight the deficiencies of two relatively coarse spatial resolution CMIP5 models with respect to the warm western boundary current of the Gulf Stream. As a consequence it affects the coastal SST and the land-ocean contrast, affecting the rainy summer seasonal precipitation accumulation over peninsular Florida. We also show this through two sensitivity studies conducted with a regional coupled ocean atmosphere model with different bathymetries that dislocate and modulate the strength of the Gulf Stream that locally affects the SST in the two simulations. These studies show that a stronger and more easterly displaced Gulf Stream produces warmer coastal SST's along the Atlantic coast of Florida that enhances the precipitation over peninsular Florida relative to the other regional climate model simulation. However the regional model simulations indicate that variability of wet season rainfall variability in peninsular Florida becomes less dependent on the land-ocean contrast with a stronger Gulf Stream current.

  8. Land Cover / Climate Interaction at Global and Regional Scales

    NASA Astrophysics Data System (ADS)

    Xue, Y.

    2014-12-01

    Land cover and climate interact at regional and global scales through biophysical, biogeochemical, and ecological processes. Land cover change (LCC) affects regional climate through impacts on surface albedo and surface net radiation, on the partitioning of available energy between sensible and latent heat fluxes, on the atmospheric heating, moisture flux convergence and circulation, and the partitioning of rainfall between evaporation and runoff. Meanwhile, the climate variability and change also affect the LCC. Based on historical anthropogenic land cover change data from 1948-2005, numerical experiments that were designed to test its impact using general circulation models indicate that the LCC enhances the global warming in past half century. This is because after land degradation, reduction of evaporation is dominant, leading to surface warming. The reduction of net radiation due to high surface albedo plays a secondary role. Meanwhile, its impact on the regional monsoon is significant. The produced monsoon rainfall anomaly is not only limited within the land degradation area but extend to much large area through its interaction with the atmospheric circulations. The warming climate and climate variability also affect the vegetation distribution. For instance, with a coupled biophysical and dynamic vegetation model forced by the observed meteorological data, the North America leaf area index (LAI) shows an increasing trend after the 1970s in responding to warming. Meanwhile, the effects of the severe drought during 1987-1992 and the last decade in the southwestern U.S. on vegetation are also evident from the simulated and satellite-derived LAIs. The land covers in some parts of North America also show substantial changes. Evaluations of these simulations using satellite data are crucial. The critical issues in applying satellite data for LCC studies are also discussed.

  9. Multi - Region Analysis of a New Climate Extremes Index

    NASA Astrophysics Data System (ADS)

    Dittus, A. J.; Karoly, D. J.; Lewis, S. C.; Alexander, L. V.

    2014-12-01

    In this study, a new Climate Extremes Index (CEI) is introduced, extending the earlier combined CEI proposed by Karl et al. (1996). It is based on the use of standard extreme indices derived from daily meteorological station data, facilitating the computation of this index and making use of two global gridded extreme indices datasets. The index combines the fraction of area experiencing extreme conditions in daily temperature and daily and annual precipitation, therefore representing a combined measure of extremes. The analysis of this index at the global scale is limited by data availability. In this study, the four continental-scale regions analysed are Europe, North America, Asia and Australia over the period from 1951 to 2010. Additionally, the index is also computed for the entire Northern Hemisphere, corresponding to the first CEI results at the hemispheric scale. Results show statistically significant increases in the percentage area experiencing much above average warm days and nights and much below average cool days and nights for all regions, with the exception of North America for maximum temperature extremes. Increases in the area affected by precipitation extremes are also found for the Northern Hemisphere regions, particularly Europe. This study shows the potential of this new index for climate monitoring and other applications by documenting large-scale changes in the areas experiencing climate extremes. Preliminary detection and attribution results will also be presented using extreme indices computed for the Coupled Model Intercomparison Project Phase 5 climate model simulations (Sillmann et al., 2013). Karl, T. R., R. W. Knight, D. R. Easterling, and R. G. Quayle, 1996: Indices of climate change for the United States. Bull. Amer. Meteor. Soc., 77, 279-292. Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh (2013), Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate, J. Geophys

  10. ClimateImpactsOnline: A web platform for regional climate impacts

    NASA Astrophysics Data System (ADS)

    Nocke, Thomas

    2013-04-01

    Climate change is widely known but there is often uncertainty about the specific effects. One of the key tasks is - beyond discussing climate change and its impacts in specialist groups - to present these to a wider audience. In that respect, decision-makers in the public sector as well as directly affected professional groups require to obtain easy-to-understand information. These groups are not made up of specialist scientists. This gives rise to two challenges: (1) the complex information must be presented such that it is commonly understood, and (2) access to the information must be easy. Interested parties do not have time to familiarize themselves over a lengthy period, but rather want to immediately work with the information. Beside providing climate information globally, regional information become of increasing interest for local decision making regarding awareness building and adaptation options. In addition, current web portals mainly focus on climate information, considering climate impacts on different sectors only implicitly. As solution, Potsdam Institute for Climate Impact Research and WetterOnline have jointly developed an Internet portal that is easy to use, groups together interesting information about climate impacts and offers it in a directly usable form. This new web portal ClimateImpactsOnline.com provides detailed information, combining multiple sectors for the test case of Germany. For this region, numerous individual studies on climate change have been prepared by various institutions. These studies differ in terms of their aim, region and time period of interest. Thus, the goal of ClimateImpactsOnline.com is to present a synthesized view on regional impacts of global climate change on hydrology, agriculture, forest, energy, tourism and health sector. The climate and impact variables are available on a decadal time resolution for the period from 1901-2100, combining observed data and future projections. Detailed information are presented

  11. Impact of Asia Dust Aerosols on Regional Environment and Climate

    NASA Astrophysics Data System (ADS)

    Huang, J.

    2015-12-01

    East Asia is a major dust source in the world and has great impacts on regional climate in Asia, where the large arid and semi-arid regions are. In this study, the typical transport paths of East Asia dust, which affect regional and global climates, are demonstrated and numerous effects of dust aerosols on clouds and precipitation primarily over East Asian arid and semi-arid regions are discussed. Compared with the dust aerosols of Saharan, those of East Asian are more absorptive of solar radiation, and can influence the cloud properties not only by acting as cloud condensation nuclei and ice nuclei but also through changing the relative humidity and stability of the atmosphere (via semi-direct effect). Converting visible light to thermal energy, dust aerosols can burn clouds to produce a warming effect on climate, which is opposite to the first and second indirect effects of aerosols. Over Asia arid and semi-arid regions, the positive feedback in the aerosol-cloud-precipitation interaction may aggravate drought in its inner land. Impact of Asia dust on regional environment, especially on haze weather, are also presented in this talk.

  12. A framework for regional modeling of past climates

    NASA Astrophysics Data System (ADS)

    Sloan, L. C.

    2006-09-01

    The methods of reconstructing ancient climate information from the rock record are summarized, and the climate forcing factors that have been active at global and regional scales through Earth history are reviewed. In this context, the challenges and approaches to modeling past climates by using a regional climate model are discussed. A significant challenge to such modeling efforts arises if the time period of interest occurred prior to the past ˜3 5 million years, at which point land sea distributions and topography markedly different from present must be specified at the spatial resolution required by regional climate models. Creating these boundary conditions requires a high degree of geologic knowledge, and also depends greatly upon the global climate model driving conditions. Despite this and other challenges, regional climate models represent an important and unique tool for paleoclimate investigations. Application of regional climate models to paleoclimate studies may provide another way to assess the overall performance of regional climate models.

  13. Climate impacts on northern Canada: regional background.

    PubMed

    Prowse, Terry D; Furgal, Chris; Bonsal, Barrie R; Peters, Daniel L

    2009-07-01

    Understanding the implications of climate change on northern Canada requires a background about the size and diversity of its human and biogeophysical systems. Occupying an area of almost 40% of Canada, with one-third of this contained in Arctic islands, Canada's northern territories consist of a diversity of physical environments unrivaled around the circumpolar north. Major ecozones composed of a range of landforms, climate, vegetation, and wildlife include: Arctic, boreal and taiga cordillera; boreal and taiga plains; taiga shield; and northern and southern Arctic. Although generally characterized by a cold climate, there is an enormous range in air temperature with mean annual values being as high as -5 degrees C in the south to as low as -20 degrees C in the high Arctic islands. A similar contrast characterizes precipitation, which can be > 700 mm y(-1) in some southern alpine regions to as low as 50 mm y(-1) over islands of the high Arctic. Major freshwater resources are found within most northern ecozones, varying from large glaciers or ice caps and lakes to extensive wetlands and peat lands. Most of the North's renewable water, however, is found within its major river networks and originates in more southerly headwaters. Ice covers characterize the freshwater systems for multiple months of the year while permafrost prevails in various forms, dominating the terrestrial landscape. The marine environment, which envelops the Canadian Arctic Archipelago, is dominated by seasonal to multiyear sea ice often several meters thick that plays a key role in the regional climate. Almost two-thirds of northern Canadian communities are located along coastlines with the entire population being just over 100 000. Most recent population growth has been dominated by an expansion of nonaboriginals, primarily the result of resource development and the growth of public administration. The economies of northern communities, however, remain quite mixed with traditional land

  14. MODIS land cover uncertainty in regional climate simulations

    NASA Astrophysics Data System (ADS)

    Li, Xue; Messina, Joseph P.; Moore, Nathan J.; Fan, Peilei; Shortridge, Ashton M.

    2017-02-01

    MODIS land cover datasets are used extensively across the climate modeling community, but inherent uncertainties and associated propagating impacts are rarely discussed. This paper modeled uncertainties embedded within the annual MODIS Land Cover Type (MCD12Q1) products and propagated these uncertainties through the Regional Atmospheric Modeling System (RAMS). First, land cover uncertainties were modeled using pixel-based trajectory analyses from a time series of MCD12Q1 for Urumqi, China. Second, alternative land cover maps were produced based on these categorical uncertainties and passed into RAMS. Finally, simulations from RAMS were analyzed temporally and spatially to reveal impacts. Our study found that MCD12Q1 struggles to discriminate between grasslands and croplands or grasslands and barren in this study area. Such categorical uncertainties have significant impacts on regional climate model outputs. All climate variables examined demonstrated impact across the various regions, with latent heat flux affected most with a magnitude of 4.32 W/m2 in domain average. Impacted areas were spatially connected to locations of greater land cover uncertainty. Both biophysical characteristics and soil moisture settings in regard to land cover types contribute to the variations among simulations. These results indicate that formal land cover uncertainty analysis should be included in MCD12Q1-fed climate modeling as a routine procedure.

  15. Regional differences in climate change of the ionosphere

    NASA Astrophysics Data System (ADS)

    Lastovicka, Jan

    2016-07-01

    The increasing concentration of greenhouse gases, particularly carbon dioxide CO2, in the atmosphere affects not only the troposphere and surface climate, it affects the whole atmosphere-ionosphere system and it induces long-term trends and/or climate change in the ionosphere. The geographic distribution of CO2 in the upper atmosphere/ionosphere is relatively homogeneous and the long-term increase of CO2 concentration in the atmosphere is known to be stable. However, there are some other secondary drivers of long-term trends in the upper atmosphere/ionosphere, whose long-term behavior and/or effects either are not spatially homogeneous or are not stable in time (or both). Geomagnetic activity, solar activity, secular change of the Earth's magnetic field, long-term evolution of stratospheric ozone concentration and atmospheric wave activity are such trend drivers. They are responsible for regional differences in trends and also for their temporal non-stability. Regions of strong trends as a consequence of regional differences of trends represent a specific kind of risk from the point of view of space/ionospheric climate. These features of ionospheric trends will briefly be treated in this presentation.

  16. Program for Arctic Regional Climate Assessment (PARCA)

    NASA Technical Reports Server (NTRS)

    Gogineni, Sivaprasad; Thomas, Robert H.; Abdalati, Waleed (Editor)

    1999-01-01

    The Program for Arctic Regional Climate Assessment (PARCA) is a NASA-sponsored initiative with the prime objective of understanding the mass balance of the Greenland ice sheet. In October 1998, PARCA investigators met to review activities of the previous year, assess the program's progress, and plan future investigations directed at accomplishing that objective. Some exciting results were presented and discussed, including evidence of dramatic thinning of the ice sheet near the southeastern coast. Details of the investigations and many of the accomplishments are given in this report, but major highlights are given in the Executive Summary of the report.

  17. Regional hydro-climatic impacts of contemporary Amazonian deforestation

    NASA Astrophysics Data System (ADS)

    Khanna, Jaya

    More than 17% of the Amazon rainforest has been cleared in the past three decades triggering important climatological and societal impacts. This thesis is devoted to identifying and explaining the regional hydroclimatic impacts of this change employing multidecadal satellite observations and numerical simulations providing an integrated perspective on this topic. The climatological nature of this study motivated the implementation and application of a cloud detection technique to a new geostationary satellite dataset. The resulting sub daily, high spatial resolution, multidecadal time series facilitated the detection of trends and variability in deforestation triggered cloud cover changes. The analysis was complemented by satellite precipitation, reanalysis and ground based datasets and attribution with the variable resolution Ocean-Land-Atmosphere-Model. Contemporary Amazonian deforestation affects spatial scales of hundreds of kilometers. But, unlike the well-studied impacts of a few kilometers scale deforestation, the climatic response to contemporary, large scale deforestation is neither well observed nor well understood. Employing satellite datasets, this thesis shows a transition in the regional hydroclimate accompanying increasing scales of deforestation, with downwind deforested regions receiving 25% more and upwind deforested regions receiving 25% less precipitation from the deforested area mean. Simulations robustly reproduce these shifts when forced with increasing deforestation alone, suggesting a negligible role of large-scale decadal climate variability in causing the shifts. Furthermore, deforestation-induced surface roughness variations are found necessary to reproduce the observed spatial patterns in recent times illustrating the strong scale-sensitivity of the climatic response to Amazonian deforestation. This phenomenon, inconsequential during the wet season, is found to substantially affect the regional hydroclimate in the local dry and parts of

  18. Climate services within a regional climate adaptation project

    NASA Astrophysics Data System (ADS)

    Hänsel, Stephanie; Heidenreich, Majana; Franke, Johannes; Riedel, Kathrin; Matschullat, Jörg; Bernhofer, Christian

    2013-04-01

    In recent years the demand for adapting to climate variability and change became more and more obvious. Thus a multitude of projects dealing with climate adaptation strategies and concrete measures was launched. Commonly, developing adaptation options is based on downscaled climate model outputs. These outputs have to be provided within the projects, but just providing the data is far from being sufficient. Obstacles connected with using climate projections for climate adaptation include uncertainties and bandwidths of climate projections and the inability of models to describe parameters such as extreme weather events, which are particularly relevant for many climate adaptation decisions. Climate scientists know that model outputs are no climate data and cannot be treated as observational data were treated in the past. Still, many practitioners demand precise values for future climate to replace past CLINO-values and to run their applications. Thus, climate adaptation involves adapting the instruments and processes used in deriving climate-related decisions. Communicating the challenges arising from this need in rethinking common procedures is of outstanding significance for any successful adaptation practice. Dealing with uncertainties of climate projections is a constant necessity, since they are always based on several simplifications, parameterisations and assumptions, e.g., on the future socioeconomic development or on climate sensitivity. Future climate should thus be communicated in bandwidths. Working with just one scenario, one climate model, or even working with ensemble means is risky as it evokes a higher than appropriate perceived confidence in the results. It encourages using familiar tools in processing climate information, rather than caution. Consequences are suboptimal adaption and misallocation of finances. We encourage working with bandwidths and testing climate adaptation options against a broad range of possible future climates. Climate

  19. Regional projection of climate impact indices over the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Casanueva, Ana; Frías, M.; Dolores; Herrera, Sixto; Bedia, Joaquín; San Martín, Daniel; Gutiérrez, José Manuel; Zaninovic, Ksenija

    2014-05-01

    Climate Impact Indices (CIIs) are being increasingly used in different socioeconomic sectors to transfer information about climate change impacts and risks to stakeholders. CIIs are typically based on different weather variables such as temperature, wind speed, precipitation or humidity and comprise, in a single index, the relevant meteorological information for the particular impact sector (in this study wildfires and tourism). This dependence on several climate variables poses important limitations to the application of statistical downscaling techniques, since physical consistency among variables is required in most cases to obtain reliable local projections. The present study assesses the suitability of the "direct" downscaling approach, in which the downscaling method is directly applied to the CII. In particular, for illustrative purposes, we consider two popular indices used in the wildfire and tourism sectors, the Fire Weather Index (FWI) and the Physiological Equivalent Temperature (PET), respectively. As an example, two case studies are analysed over two representative Mediterranean regions of interest for the EU CLIM-RUN project: continental Spain for the FWI and Croatia for the PET. Results obtained with this "direct" downscaling approach are similar to those found from the application of the statistical downscaling to the individual meteorological drivers prior to the index calculation ("component" downscaling) thus, a wider range of statistical downscaling methods could be used. As an illustration, future changes in both indices are projected by applying two direct statistical downscaling methods, analogs and linear regression, to the ECHAM5 model. Larger differences were found between the two direct statistical downscaling approaches than between the direct and the component approaches with a single downscaling method. While these examples focus on particular indices and Mediterranean regions of interest for CLIM-RUN stakeholders, the same study

  20. A conceptual framework for regional feedbacks in a changing climate

    NASA Astrophysics Data System (ADS)

    Batlle Bayer, L.; van den Hurk, B. J. J. M.; Strengers, B.

    2012-04-01

    Terrestrial ecosystems and climate influence each other through biogeochemical (e.g. carbon cycle) and biogeophysical (e.g. albedo, water fluxes) processes. These interactions might be disturbed when a climate human-induced forcing takes place (e.g. deforestation); and the ecosystem responses to the climate system might amplify (positive feedback) or dampen (negative feedback) the initial forcing. Research on feedbacks has been mainly based on the carbon cycle at the global scale. However, biogeophysical feedbacks might have a great impact at the local or regional scale, which is the main focus of this article. A conceptual framework, with the major interactions and processes between terrestrial ecosystems and climate, is presented to further explore feedbacks at the regional level. Four hot spots with potential changes in land use/management and climate are selected: sub-Saharan Africa (SSA), Europe, the Amazon Basin and South and Southeast Asia. For each region, diverse climate human-induced forcings and feedbacks were identified based on relevant published literature. For Europe, the positive soil moisture-evapotranspiration (ET) is important for natural vegetation during a heat wave event, while the positive soil moisture-precipitation feedback plays a more important role for droughts in the Amazon region. Agricultural expansion in SSA will depend on the impacts of the changing climate on crop yields and the adopted agro-technologies. The adoption of irrigation in the commonly rainfed systems might turn the positive soil moisture- ET feedback into a negative one. In contrast, South and Southeast Asia might face water shortage in the future, and thus turning the soil moisture-ET feedback into a positive one. Further research is needed for the major processes that affect the ultimate sign of the feedbacks, as well as for the interactions, which effect remains uncertain, such as ET-precipitation interaction. In addition, socio-economic feedbacks need to be added

  1. Regional Climate Model Projection Credibility for the North American Monsoon

    NASA Astrophysics Data System (ADS)

    Bukovsky, M. S.; Carrillo, C. M.; Gochis, D. J.; Mearns, L. O.

    2014-12-01

    Climate change projections from the North American Regional Climate Change Assessment Program (NARCCAP) suite of regional climate model (RCM) simulations for the North American monsoon system are assessed herein. We focus on changes in precipitation and the many factors effecting the projections. The end goal of our in-depth, process-based assessment is to establish the differential credibility of the ensemble members. In the end, there is a deceptively strong full-ensemble agreement for a decrease in precipitation during the monsoon season. Bias is considerably affecting many of the model projections, and we find that the simulations that are the most biased, in varying ways, in the baseline/current climate, produce the greatest decreases. Problems in the baseline simulations and projections include those related to: atmospheric moisture content, the monsoon high, the Gulf of California low-level jet, tropical easterly waves, the El Niño Southern Oscillation, precipitation intensity, and other features/phenomena. This presentation will provide a summary of our findings.

  2. Attribution of the Regional Patterns of North American Climate Trends

    NASA Astrophysics Data System (ADS)

    Hoerling, M.; Kumar, A.; Karoly, D.; Rind, D.; Hegerl, G.; Eischeid, J.

    2007-12-01

    North American trends in surface temperature and precipitation during 1951-2006 exhibit large spatial and seasonal variations. We seek to explain these by synthesizing new information based on existing model simulations of climate and its forcing, and based on modern reanalyses that describe past and current conditions within the free atmosphere. The presentation focuses on current capabilities to explain the spatial variations and seasonal differences in North American climate trends. It will address whether various heterogeneities in space and time can be accounted for by the climate system's sensitivity to time evolving anthropogenic forcing, and examines the influences of non-anthropogenic processes. New findings are presented that indicate anthropogenic forcing alone was unlikely the cause for key regional and seasonal patterns of change, including the absence of summertime warming over the Great Plains of the United States, and the absence of warming during both winter and summer over the southern United States. Key regional features are instead attributed to trends in the principal patterns of atmospheric flow that affect North American climate. It is demonstrated that observed variations in global sea surface temperatures have significantly influenced these patterns of atmospheric flow.

  3. Climate programs update: USDA Southwest Regional Climate Hub update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PROGRAM OVERVIEW: The overarching goal of the USDA SW Climate Hub is to assist farmers, ranchers and foresters in addressing the effects of climate change including prolonged drought, increased insect outbreaks and severe wildfires. In the first year of operations, the SW Climate Hub (est. Februa...

  4. Human footprint affects US carbon balance more than climate change

    USGS Publications Warehouse

    Bachelet, Dominique; Ferschweiler, Ken; Sheehan, Tim; Baker, Barry; Sleeter, Benjamin M.; Zhu, Zhiliang

    2017-01-01

    The MC2 model projects an overall increase in carbon capture in conterminous United States during the 21st century while also simulating a rise in fire causing much carbon loss. Carbon sequestration in soils is critical to prevent carbon losses from future disturbances, and we show that natural ecosystems store more carbon belowground than managed systems do. Natural and human-caused disturbances affect soil processes that shape ecosystem recovery and competitive interactions between native, exotics, and climate refugees. Tomorrow's carbon budgets will depend on how land use, natural disturbances, and climate variability will interact and affect the balance between carbon capture and release.

  5. Regional downscaling of global climate runs for Nepal

    NASA Astrophysics Data System (ADS)

    Granerød, M.; Mesquita, M. D.; Basnayake, S.

    2011-12-01

    Nepal is a vulnerable country to changes in climate. This is mainly due to its dependency on water resources from the Himalayas. There is evidence of significant warming in Nepal, with an average trend of around +0.06 degrees Celsius per year. Studies have shown that the warming rates are higher in higher altitudes. Such temperature trend will have an impact on the melting of the glaciers and consequently on Nepal. Precipitation has also been observed to have increased, but not at the same magnitude as temperature. The water supply is affected by more unpredictable precipitation that can lead to droughts and shorter heavy rainfall. Future projections can give an indication whether these factors will affect river runoff, which can have large impacts on agriculture and in other sectors. Global Climate Models (GCMs) have a coarse resolution and limitations in the numerical and in the physical treatment. More detailed climate datasets are needed to produce climate projections for countries like Nepal. In this study, we use the climate version of the Weather Research and Forecasting model (clWRF3.1.1, developed at the University of Cantabria, Spain), which is a regional climate model (RCM), to provide a more detailed description of future climate scenarios in Nepal. The Atmospheric General Circulation Model, ARPEGE, has been used to provide lateral boundary conditions for the model evaluation. A control simulation from 1970 to 2000, and 4 future climate scenario runs from 2030 to 2060 are created based on these data. The parent domain has a horizontal grid resolution of 48 km, covering the area 68 to 100 degrees East and 1 degree South to 38 degree North. The nested domain has a horizontal grid resolution of 12 km, covering the area 79 to 90 degree East and 25 to 32 degree North. Both domains are run with 37 vertical levels reaching up to 50 hPa. In the clWRF setup, the microphysical scheme used is the WRF Single-Moment 3-class scheme and the cumulus option is the Grell

  6. How Does Climate Change Affect the Bering Sea Ecosystem?

    NASA Astrophysics Data System (ADS)

    Sigler, Michael F.; Harvey, H. Rodger; Ashjian, Carin J.; Lomas, Michael W.; Napp, Jeffrey M.; Stabeno, Phyllis J.; Van Pelt, Thomas I.

    2010-11-01

    The Bering Sea is one of the most productive marine ecosystems in the world, sustaining nearly half of U.S. annual commercial fish catches and providing food and cultural value to thousands of coastal and island residents. Fish and crab are abundant in the Bering Sea; whales, seals, and seabirds migrate there every year. In winter, the topography, latitude, atmosphere, and ocean circulation combine to produce a sea ice advance in the Bering Sea unmatched elsewhere in the Northern Hemisphere, and in spring the retreating ice; longer daylight hours; and nutrient-rich, deep-ocean waters forced up onto the broad continental shelf result in intense marine productivity (Figure 1). This seasonal ice cover is a major driver of Bering Sea ecology, making this ecosystem particularly sensitive to changes in climate. Predicted changes in ice cover in the coming decades have intensified concern about the future of this economically and culturally important region. In response, the North Pacific Research Board (NPRB) and the U.S. National Science Foundation (NSF) entered into a partnership in 2007 to support the Bering Sea Project, a comprehensive $52 million investigation to understand how climate change is affecting the Bering Sea ecosystem, ranging from lower trophic levels (e.g., plankton) to fish, seabirds, marine mammals, and, ultimately, humans. The project integrates two research programs, the NSF Bering Ecosystem Study (BEST) and the NPRB Bering Sea Integrated Ecosystem Research Program (BSIERP), with substantial in-kind contributions from the U.S. National Oceanic and Atmospheric Administration (NOAA) and the U.S. Fish and Wildlife Service.

  7. Regional climates in GCMs. Final report

    SciTech Connect

    Crane, R.G.

    1995-12-31

    This research describes empirical methods developed to obtain short-term, regional results from global climate models. Observational data sets were compared to the GENESIS climate model; spatial and temporal variability were examined to validate the circulation model on the synoptic scale. A feed-forward neural network was used to determine transfer functions for circulation-precipitation relationships. The empirical methodologies derived were then applied to the analysis of mountain snowpack in the upper Colorado Basin. The comparison of observational data and the model showed that the synoptic scale circulation of the GENESIS model is realistic over the eastern United States; however, the model features are displaced south by about five degrees and actual pressures in the model are much lower than observed pressures. Preliminary results from the neural network produced correlations between observed and predicted rainfall of about 0.7 to 0.8, depending on the net configuration. Similar results were obtained for the upper Colorado Basin study in the prediction of winter snowfall. 6 refs., 3 figs.

  8. Climate Dynamics of Regional US Southeastern drought

    NASA Astrophysics Data System (ADS)

    Arrigo, J.

    2008-12-01

    The phenomena of droughts both regional and continental have received considerable attention from both science and policy. Understanding the larger scale dynamics of these events is critical to improving predictability, management and mitigation strategies. The history of drought in the United States shows both long (multi-decadal) and short (seasonal or yearly) droughts in various regions. Some of the most severe droughts, such as those with the largest economic losses or that have received the most attention both from the scientific and broader communities have occurred in the Midwest/Great Plains (e.g. the "Dust Bowl" years, the 1988 drought) and generally correlate with continent-wide anomalies. The Southeast region of the US, while generally having a more humid temperature climate than the rest of the country, also is subject to periods of drought conditions. In this study we analyze long term records of PDSI in the southeastern United States. While some occurrences correlate with larger continental scale droughts, many severe southeastern droughts occur during a synoptic pattern correlating with wetter conditions through the greater Midwest, have a seasonal pattern different than larger continental scale anomalies, and show correlations with patterns in Atlantic tropical activity. While winter and spring deficits may initiate a drought, we find a proportionally larger decrease in summertime precipitation during severe drought periods. Some of this decrease may be related to the contribution of tropical systems, which increases in the periods following droughts. We suggest that the dynamics of drought in this region differ from the larger US pattern, and particularly need to account for the interaction between continental and tropical contributions. With an increasing population and areas of high agricultural productivity, we argue this region deserves further attention from both the scientific and larger community, that understanding these dynamics will

  9. A climate robust integrated modelling framework for regional impact assessment of climate change

    NASA Astrophysics Data System (ADS)

    Janssen, Gijs; Bakker, Alexander; van Ek, Remco; Groot, Annemarie; Kroes, Joop; Kuiper, Marijn; Schipper, Peter; van Walsum, Paul; Wamelink, Wieger; Mol, Janet

    2013-04-01

    Decision making towards climate proofing the water management of regional catchments can benefit greatly from the availability of a climate robust integrated modelling framework, capable of a consistent assessment of climate change impacts on the various interests present in the catchments. In the Netherlands, much effort has been devoted to developing state-of-the-art regional dynamic groundwater models with a very high spatial resolution (25x25 m2). Still, these models are not completely satisfactory to decision makers because the modelling concepts do not take into account feedbacks between meteorology, vegetation/crop growth, and hydrology. This introduces uncertainties in forecasting the effects of climate change on groundwater, surface water, agricultural yields, and development of groundwater dependent terrestrial ecosystems. These uncertainties add to the uncertainties about the predictions on climate change itself. In order to create an integrated, climate robust modelling framework, we coupled existing model codes on hydrology, agriculture and nature that are currently in use at the different research institutes in the Netherlands. The modelling framework consists of the model codes MODFLOW (groundwater flow), MetaSWAP (vadose zone), WOFOST (crop growth), SMART2-SUMO2 (soil-vegetation) and NTM3 (nature valuation). MODFLOW, MetaSWAP and WOFOST are coupled online (i.e. exchange information on time step basis). Thus, changes in meteorology and CO2-concentrations affect crop growth and feedbacks between crop growth, vadose zone water movement and groundwater recharge are accounted for. The model chain WOFOST-MetaSWAP-MODFLOW generates hydrological input for the ecological prediction model combination SMART2-SUMO2-NTM3. The modelling framework was used to support the regional water management decision making process in the 267 km2 Baakse Beek-Veengoot catchment in the east of the Netherlands. Computations were performed for regionalized 30-year climate change

  10. On the importance for climate science communication - the climate office for polar regions and sea level rise

    NASA Astrophysics Data System (ADS)

    Treffeisen, Renate; Lemke, Peter; Dethloff, Klaus

    2010-05-01

    Climate change presents a major challenge for national and international action and cooperation. A wide variation in the vulnerability is to be expected across different regions, due to regional differences in local environmental conditions, preexisting stresses to ecosystems, current resource-use patterns, and the framework of factors affecting decision-making including government policies, prices, preferences, and values. Thus, considerable regional impact differences will be faced as a result of climate change. Being aware will help to prepare for these inevitable consequences in time. Climate change is nowhere more strongly expressed than in the polar regions which respond to even small changes in climate. Given the major role played by these regions within the Earth's climate system the climate office for polar regions and sea level rise is hosted by the Foundation Alfred Wegener Institute for Polar and Marine Research (AWI) which conducts research in the Arctic, the Antarctic and at temperate latitudes since 1980. The major goal of the climate office is to encourage the communication and dialogue between science and public. Primarily, this is done by the unique close contact and cooperation to the research center scientists. A continuous exchange is supported beyond the research center towards universities and authorities at state and federal level. The climate office represents polar aspects of climate related research based on the scientific expertise from the hosting research institute e.g. the understanding of the ocean-ice-atmosphere interactions, the animal and plant kingdoms of the Arctic and Antarctic, and the evolution of the polar continents and seas. The climate office translates the scientific work into English, making complex issues accessible to policymakers and the public. It compiles, evaluates, comprehensively process and transparently communicate the latest findings from polar related climate research. The paper will present different

  11. Regional climate simulations over Vietnam using the WRF model

    NASA Astrophysics Data System (ADS)

    Raghavan, S. V.; Vu, M. T.; Liong, S. Y.

    2016-10-01

    We present an analysis of the present-day (1961-1990) regional climate simulations over Vietnam. The regional climate model Weather Research and Forecasting (WRF) was driven by the global reanalysis ERA40. The performance of the regional climate model in simulating the observed climate is evaluated with a main focus on precipitation and temperature. The regional climate model was able to reproduce the observed spatial patterns of the climate, although with some biases. The model also performed better in reproducing the extreme precipitation and the interannual variability. Overall, the WRF model was able to simulate the main regional signatures of climate variables, seasonal cycles, and frequency distributions. This study is an evaluation of the present-day climate simulations of a regional climate model at a resolution of 25 km. Given that dynamical downscaling has become common for studying climate change and its impacts, the study highlights that much more improvements in modeling might be necessary to yield realistic simulations of climate at high resolutions before they can be used for impact studies at a local scale. The need for a dense network of observations is also realized as observations at high resolutions are needed when it comes to evaluations and validations of models at sub-regional and local scales.

  12. Climate change and vector-borne diseases: a regional analysis.

    PubMed

    Githeko, A K; Lindsay, S W; Confalonieri, U E; Patz, J A

    2000-01-01

    Current evidence suggests that inter-annual and inter-decadal climate variability have a direct influence on the epidemiology of vector-borne diseases. This evidence has been assessed at the continental level in order to determine the possible consequences of the expected future climate change. By 2100 it is estimated that average global temperatures will have risen by 1.0-3.5 degrees C, increasing the likelihood of many vector-borne diseases in new areas. The greatest effect of climate change on transmission is likely to be observed at the extremes of the range of temperatures at which transmission occurs. For many diseases these lie in the range 14-18 degrees C at the lower end and about 35-40 degrees C at the upper end. Malaria and dengue fever are among the most important vector-borne diseases in the tropics and subtropics; Lyme disease is the most common vector-borne disease in the USA and Europe. Encephalitis is also becoming a public health concern. Health risks due to climatic changes will differ between countries that have developed health infrastructures and those that do not. Human settlement patterns in the different regions will influence disease trends. While 70% of the population in South America is urbanized, the proportion in sub-Saharan Africa is less than 45%. Climatic anomalies associated with the El Niño-Southern Oscillation phenomenon and resulting in drought and floods are expected to increase in frequency and intensity. They have been linked to outbreaks of malaria in Africa, Asia and South America. Climate change has far-reaching consequences and touches on all life-support systems. It is therefore a factor that should be placed high among those that affect human health and survival.

  13. Climate change and vector-borne diseases: a regional analysis.

    PubMed Central

    Githeko, A. K.; Lindsay, S. W.; Confalonieri, U. E.; Patz, J. A.

    2000-01-01

    Current evidence suggests that inter-annual and inter-decadal climate variability have a direct influence on the epidemiology of vector-borne diseases. This evidence has been assessed at the continental level in order to determine the possible consequences of the expected future climate change. By 2100 it is estimated that average global temperatures will have risen by 1.0-3.5 degrees C, increasing the likelihood of many vector-borne diseases in new areas. The greatest effect of climate change on transmission is likely to be observed at the extremes of the range of temperatures at which transmission occurs. For many diseases these lie in the range 14-18 degrees C at the lower end and about 35-40 degrees C at the upper end. Malaria and dengue fever are among the most important vector-borne diseases in the tropics and subtropics; Lyme disease is the most common vector-borne disease in the USA and Europe. Encephalitis is also becoming a public health concern. Health risks due to climatic changes will differ between countries that have developed health infrastructures and those that do not. Human settlement patterns in the different regions will influence disease trends. While 70% of the population in South America is urbanized, the proportion in sub-Saharan Africa is less than 45%. Climatic anomalies associated with the El Niño-Southern Oscillation phenomenon and resulting in drought and floods are expected to increase in frequency and intensity. They have been linked to outbreaks of malaria in Africa, Asia and South America. Climate change has far-reaching consequences and touches on all life-support systems. It is therefore a factor that should be placed high among those that affect human health and survival. PMID:11019462

  14. Climate Outreach Using Regional Coastal Ocean Observing System Portals

    NASA Astrophysics Data System (ADS)

    Anderson, D. M.; Hernandez, D. L.; Wakely, A.; Bochenek, R. J.; Bickel, A.

    2015-12-01

    Coastal oceans are dynamic, changing environments affected by processes ranging from seconds to millennia. On the east and west coast of the U.S., regional observing systems have deployed and sustained a remarkable diverse array of observing tools and sensors. Data portals visualize and provide access to real-time sensor networks. Portals have emerged as an interactive tool for educators to help students explore and understand climate. Bringing data portals to outreach events, into classrooms, and onto tablets and smartphones enables educators to address topics and phenomena happening right now. For example at the 2015 Charleston Science Technology Engineering and Math (STEM) Festival, visitors navigated the SECOORA (Southeast Coastal Ocean Observing regional Association) data portal to view the real-time marine meteorological conditions off South Carolina. Map-based entry points provide an intuitive interface for most students, an array of time series and other visualizations depict many of the essential principles of climate science manifest in the coastal zone, and data down-load/ extract options provide access to the data and documentation for further inquiry by advanced users. Beyond the exposition of climate principles, the portal experience reveals remarkable technologies in action and shows how the observing system is enabled by the activity of many different partners.

  15. Characterizing Uncertainty for Regional Climate Change Mitigation and Adaptation Decisions

    SciTech Connect

    Unwin, Stephen D.; Moss, Richard H.; Rice, Jennie S.; Scott, Michael J.

    2011-09-30

    This white paper describes the results of new research to develop an uncertainty characterization process to help address the challenges of regional climate change mitigation and adaptation decisions.

  16. Is climate change affecting wolf populations in the high Arctic?

    USGS Publications Warehouse

    Mech, L.D.

    2004-01-01

    Gobal climate change may affect wolves in Canada's High Arctic (80?? N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However, when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena. ?? 2004 Kluwer Academic Publishers.

  17. Is climate change affecting wolf populations in the high Arctic?

    USGS Publications Warehouse

    Mech, L.D.

    2004-01-01

    Global climate change may affect wolves in Canada's High Arctic (80DG N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena.

  18. The Regional Impact of Current and Future Dust Levels on Climate in Western North America

    NASA Astrophysics Data System (ADS)

    Hutchison, K. A.; O'Brien, T. A.; Sloan, L. C.

    2008-12-01

    Recent global climate model (GCM) studies indicate that southwestern North America may transition to a more arid climate in the next century due to a shifting further north of the poleward edge of the Hadley cell (resulting from increased land and sea surface temperatures). Accompanying this aridification, it is possible that rates of dust production in this region will increase. While it is known that dust concentrations in the atmosphere affect climate, particularly at the regional level, the magnitude as well as the sign of predicted dust-climate effects vary significantly. Aerosols from dust can either reflect or absorb sunlight depending on several factors including concentration and particle size. Additionally, regional atmospheric circulation patterns (un-resolvable by GCMs) influence the distribution of dust. Using climate scenarios from the most recent version of the regional climate model RegCM with a newly developed dust module, this study examines possible changes in dust production in western North America in the next century and how these changes would affect climate. These results are presented in the context of present day dust-climate interactions. Future scenarios also assess the effects of different atmospheric carbon dioxide (CO2) levels, specifically from the two most disparate IPCC AR4 scenarios for the year 2100: one in which CO2 emissions were frozen at the year 2000 (the lowest atmospheric CO2 increase considered), and the other using the fossil fuel intensive A1F1 scenario (highest CO2 increase). For both CO2 scenarios, the model is run twice: once with and once without dust-climate interactions included in the climate system feedbacks. This study allows inferences to be made about the levels of dust that could occur in 2100 and how these dust concentrations could alter current predictions of climate for the study region. Further, the effect that increasing CO2 levels may have on both the levels of dust, and how dust affects climate, is

  19. CLIMATE IMPACTS ON REGIONAL AIR QUALITY (CIRAQ): MODELING OZONE SENSITIVITIES TO FUTURE CLIMATE

    EPA Science Inventory

    Using global and regional modeling tools, predictions of future climate and ozone concentrations are developed for the continental United States. Results suggest that future changes in climate will contribute to an increase in ozone concentrations; however, the future changes in...

  20. Regional-Scale Climate Change: Observations and Model Simulations

    SciTech Connect

    Bradley, Raymond S; Diaz, Henry F

    2010-12-14

    This collaborative proposal addressed key issues in understanding the Earth's climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, and we conducted studies of changes in phonological indicators based on various climatic thresholds.

  1. Potential impact of U.S. biofuels on regional climate

    NASA Astrophysics Data System (ADS)

    Georgescu, M.; Lobell, D. B.; Field, C. B.

    2009-11-01

    Recent work has shown that current bio-energy policy directives may have harmful, indirect consequences, affecting both food security and the global climate system. An additional unintended but direct effect of large-scale biofuel production is the impact on local and regional climate resulting from changes in the energy and moisture balance of the surface upon conversion to biofuel crops. Using the latest version of the WRF modeling system we conducted twenty-four, midsummer, continental-wide, sensitivity experiments by imposing realistic biophysical parameter limits appropriate for bio-energy crops in the Corn Belt of the United States. In the absence of strain/crop-specific parameterizations, a primary goal of this work was to isolate the maximum regional climate impact, for a trio of individual July months, due to land-use change resulting from bio-energy crops and to identify the relative importance of each biophysical parameter in terms of its individual effect. Maximum, local changes in 2 m temperature of the order of 1°C occur for the full breadth of albedo (ALB), minimum canopy resistance (RCMIN), and rooting depth (ROOT) specifications, while the regionally (105°W-75°W and 35°N-50°N) and monthly averaged response of 2 m temperature was most pronounced for the ALB and RCMIN experiments, exceeding 0.2°C. The full range of albedo variability associated with biofuel crops may be sufficient to drive regional changes in summertime rainfall. Individual parameter effects on 2 m temperature are additive, highlight the cooling contribution of higher leaf area index (LAI) and ROOT for perennial grasses (e.g., Miscanthus) versus annual crops (e.g., maize), and underscore the necessity of improving location- and vegetation-specific representation of RCMIN and ALB.

  2. Projected shifts in Coffea arabica suitability among major global producing regions due to climate change.

    PubMed

    Ovalle-Rivera, Oriana; Läderach, Peter; Bunn, Christian; Obersteiner, Michael; Schroth, Götz

    2015-01-01

    Regional studies have shown that climate change will affect climatic suitability for Arabica coffee (Coffea arabica) within current regions of production. Increases in temperature and changes in precipitation patterns will decrease yield, reduce quality and increase pest and disease pressure. This is the first global study on the impact of climate change on suitability to grow Arabica coffee. We modeled the global distribution of Arabica coffee under changes in climatic suitability by 2050s as projected by 21 global circulation models. The results suggest decreased areas suitable for Arabica coffee in Mesoamerica at lower altitudes. In South America close to the equator higher elevations could benefit, but higher latitudes lose suitability. Coffee regions in Ethiopia and Kenya are projected to become more suitable but those in India and Vietnam to become less suitable. Globally, we predict decreases in climatic suitability at lower altitudes and high latitudes, which may shift production among the major regions that produce Arabica coffee.

  3. Projected Shifts in Coffea arabica Suitability among Major Global Producing Regions Due to Climate Change

    PubMed Central

    Ovalle-Rivera, Oriana; Läderach, Peter; Bunn, Christian; Obersteiner, Michael; Schroth, Götz

    2015-01-01

    Regional studies have shown that climate change will affect climatic suitability for Arabica coffee (Coffea arabica) within current regions of production. Increases in temperature and changes in precipitation patterns will decrease yield, reduce quality and increase pest and disease pressure. This is the first global study on the impact of climate change on suitability to grow Arabica coffee. We modeled the global distribution of Arabica coffee under changes in climatic suitability by 2050s as projected by 21 global circulation models. The results suggest decreased areas suitable for Arabica coffee in Mesoamerica at lower altitudes. In South America close to the equator higher elevations could benefit, but higher latitudes lose suitability. Coffee regions in Ethiopia and Kenya are projected to become more suitable but those in India and Vietnam to become less suitable. Globally, we predict decreases in climatic suitability at lower altitudes and high latitudes, which may shift production among the major regions that produce Arabica coffee. PMID:25875230

  4. Predicting when climate-driven phenotypic change affects population dynamics.

    PubMed

    McLean, Nina; Lawson, Callum R; Leech, Dave I; van de Pol, Martijn

    2016-06-01

    Species' responses to climate change are variable and diverse, yet our understanding of how different responses (e.g. physiological, behavioural, demographic) relate and how they affect the parameters most relevant for conservation (e.g. population persistence) is lacking. Despite this, studies that observe changes in one type of response typically assume that effects on population dynamics will occur, perhaps fallaciously. We use a hierarchical framework to explain and test when impacts of climate on traits (e.g. phenology) affect demographic rates (e.g. reproduction) and in turn population dynamics. Using this conceptual framework, we distinguish four mechanisms that can prevent lower-level responses from impacting population dynamics. Testable hypotheses were identified from the literature that suggest life-history and ecological characteristics which could predict when these mechanisms are likely to be important. A quantitative example on birds illustrates how, even with limited data and without fully-parameterized population models, new insights can be gained; differences among species in the impacts of climate-driven phenological changes on population growth were not explained by the number of broods or density dependence. Our approach helps to predict the types of species in which climate sensitivities of phenotypic traits have strong demographic and population consequences, which is crucial for conservation prioritization of data-deficient species.

  5. How will climate change affect vine behaviour in different soils?

    NASA Astrophysics Data System (ADS)

    Leibar, Urtzi; Aizpurua, Ana; Morales, Fermin; Pascual, Inmaculada; Unamunzaga, Olatz

    2014-05-01

    and water-deficit had a clear influence on the grape phenological development and composition, whilst soil affected root configuration and anthocyanins concentration. Effects of climate change and water availability on different soil conditions should be considered to take full advantage or mitigate the consequences of the future climate conditions.

  6. Climate change will affect the Asian water towers.

    PubMed

    Immerzeel, Walter W; van Beek, Ludovicus P H; Bierkens, Marc F P

    2010-06-11

    More than 1.4 billion people depend on water from the Indus, Ganges, Brahmaputra, Yangtze, and Yellow rivers. Upstream snow and ice reserves of these basins, important in sustaining seasonal water availability, are likely to be affected substantially by climate change, but to what extent is yet unclear. Here, we show that meltwater is extremely important in the Indus basin and important for the Brahmaputra basin, but plays only a modest role for the Ganges, Yangtze, and Yellow rivers. A huge difference also exists between basins in the extent to which climate change is predicted to affect water availability and food security. The Brahmaputra and Indus basins are most susceptible to reductions of flow, threatening the food security of an estimated 60 million people.

  7. Regional monitoring of environmental physics climate related anomalies

    NASA Astrophysics Data System (ADS)

    El-Askary, Hesham

    2004-11-01

    Scientific communities have been working in creating and enhancing scientific research programs in which in situ and satellite data as well as remote sensing (RS) technologies are being applied to regional environmental issues. These issues include the effects of climate change on regional flooding, droughts and the impact of human activities as they relate to feedbacks on the global climate. More specifically, one needs to evaluate the potential impact of climatological variability on social, economic, and human activities. In addition, the study of their effects on agriculture, forests, local natural ecosystems and water climate-related resources, is most important. Finally, dust storms and other natural events such as droughts can have great local impacts. Approximately half of the dust in today's atmosphere may be the result of changes to the environment caused by human activities, including agriculture, overgrazing, and deforestation. Climate variability may lead to the occurrence of some severe environmental phenomena like dust storms, hurricanes, tornadoes, floods and droughts. Under normal conditions we can detect different dust effects associated with the movement of storms as well as different rain patterns that do not affect much of the surrounding environment either at regional or global scales. On the other hand, under abnormal climatological conditions, high anomalies of precipitation might occur due to the presence of hurricanes or other events, leading to severe flooding events. In this dissertation, we apply time series analysis techniques to remote sensing and in situ data to detect precipitation and dust storm anomalies and study their behavior on regional scales. The first application is the detection and monitoring of dust storms events over parts of the Middle East and Asia. Dust storms cause health and economic hazards. In this thesis dust storms development is examined based on using remote sensing. It utilizes a combination of optical

  8. Anthropogenic climate change affects meteorological drought risk in Europe

    NASA Astrophysics Data System (ADS)

    Gudmundsson, L.; Seneviratne, S. I.

    2016-04-01

    Drought constitutes a significant natural hazard in Europe, impacting societies and ecosystems across the continent. Climate model simulations with increasing greenhouse gas concentrations project increased drought risk in southern Europe, and on the other hand decreased drought risk in the north. Observed changes in water balance components and drought indicators resemble the projected pattern. However, assessments of possible causes of the reported regional changes have so far been inconclusive. Here we investigate whether anthropogenic emissions have altered past and present meteorological (precipitation) drought risk. For doing so we first estimate the magnitude of 20 year return period drought years that would occur without anthropogenic effects on the climate. Subsequently we quantify to which degree the occurrence probability, i.e. the risk, of these years has changed if anthropogenic climate change is accounted for. Both an observational and a climate model-based assessment suggest that it is >95% likely that human emissions have increased the probability of drought years in the Mediterranean, whereas it is >95% likely that the probability of dry years has decreased in northern Europe. In central Europe the evidence is inconclusive. The results highlight that anthropogenic climate change has already increased drought risk in southern Europe, stressing the need to develop efficient mitigation measures.

  9. Does Nudging Squelch the Extremes in Regional Climate Modeling?

    EPA Science Inventory

    An important question in regional climate downscaling is whether to constrain (nudge) the interior of the limited-area domain toward the larger-scale driving fields. Prior research has demonstrated that interior nudging can increase the skill of regional climate predictions origin...

  10. Applying Descriptive Statistics to Teaching the Regional Classification of Climate.

    ERIC Educational Resources Information Center

    Lindquist, Peter S.; Hammel, Daniel J.

    1998-01-01

    Describes an exercise for college and high school students that relates descriptive statistics to the regional climatic classification. The exercise introduces students to simple calculations of central tendency and dispersion, the construction and interpretation of scatterplots, and the definition of climatic regions. Forces students to engage…

  11. Testing the Effects of Increased Horizontal Resolution in a Regional Climate Model for a Climatically Vulnerable Region

    NASA Astrophysics Data System (ADS)

    Snyder, M. A.; Sloan, L. C.; Bell, J. L.

    2002-12-01

    The need for high-resolution simulations of modern and future climates has driven the use of regional climate models in recent years. Regional climate models use a much higher horizontal resolution than global climate models, allowing more detailed investigations of climate at scales of importance to a wider range of parties. Here we explore the effects of increased horizontal resolution on the simulation of climate over the Western U. S. We performed three experiments of modern day climate, using the same boundary conditions, at three different horizontal resolutions, 20 km, 30 km, and 40 km. We compared the experiments with observations of climate and with each other in order to evaluate any improvement or lack of improvement in using the higher resolution. Initial comparisons suggest that a 20 km resolution produces more accurate snow and precipitation results, with temperature results being more similar and accurate between the 20 and 30 km cases.

  12. Climate affects predator control of an herbivore outbreak.

    PubMed

    Preisser, Evan L; Strong, Donald R

    2004-05-01

    Herbivore outbreaks and the accompanying devastation of plant biomass can have enormous ecological effects. Climate directly affects such outbreaks through plant stress or alterations in herbivore life-history traits. Large-scale variation in climate can indirectly affect outbreaks through trophic interactions, but the magnitude of such effects is unknown. On the California coast, rainfall in years during and immediately previous to mass lupine mortality was two-thirds that of years without such mortality. However, neither mature lupines nor their root-feeding herbivores are directly affected by annual variation in rainfall. By increasing soil moisture to levels characteristic of summers following El Niño/Southern Oscillation (ENSO) events, we increased persistence of a predator (the entomopathogenic nematode Heterorhabditis marelatus). This led to suppression of an outbreak of the herbivorous moth Hepialus californicus, indirectly protecting bush lupine (Lupinus arboreus). Our results are consistent with the marine-oriented Menge-Sutherland hypothesis (Menge and Sutherland 1987) that abiotic stress has greater effects on higher than on lower trophic levels. The mechanisms producing these results differ from those proposed by Menge-Sutherland, however, highlighting differences between trophic processes in underground and terrestrial/marine food webs. Our evidence suggests that herbivore outbreaks and mass lupine mortality are indirectly affected by ENSO's facilitation of top-down control in this food web.

  13. Strengthening Climate Services Capabilities and Regional Engagement at NOAA's National Climatic Data Center

    NASA Astrophysics Data System (ADS)

    Shea, E.

    2008-12-01

    The demand for sector-based climate information is rapidly expanding. In order to support this demand, it is crucial that climate information is managed in an effective, efficient, and user-conscious manner. NOAA's National Climatic Data Center is working closely with numerous partners to develop a comprehensive interface that is authoritative, accessible, and responsive to a variety of sectors, stakeholders, and other users. This talk will explore these dynamics and activities, with additional perspectives on climate services derived from the regional and global experiences of the NOAA Integrated Data and Environmental Applications (IDEA) Center in the Pacific. The author will explore the importance of engaging partners and customers in the development, implementation and emergence of a national climate service program. The presentation will draw on the author's experience in climate science and risk management programs in the Pacific, development of regional and national climate services programs and insights emerging from climate services development efforts in NCDC. In this context, the author will briefly discuss some of guiding principles for effective climate services and applications including: - Early and continuous dialogue, partnership and collaboration with users/customers; - Establishing and sustaining trust and credibility through a program of shared learning and joint problem- solving; - Understanding the societal context for climate risk management and using a problem-focused approach to the development of products and services; - Addressing information needs along a continuum of timescales from extreme events to long-term change; and - Embedding education, outreach and communications activities as critical program elements in effective climate services. By way of examples, the author will reference lessons learned from: early Pacific Island climate forecast applications and climate assessment activities; the implementation of the Pacific Climate

  14. A Data Driven Framework for Integrating Regional Climate Models

    NASA Astrophysics Data System (ADS)

    Lansing, C.; Kleese van Dam, K.; Liu, Y.; Elsethagen, T.; Guillen, Z.; Stephan, E.; Critchlow, T.; Gorton, I.

    2012-12-01

    There are increasing needs for research addressing complex climate sensitive issues of concern to decision-makers and policy planners at a regional level. Decisions about allocating scarce water across competing municipal, agricultural, and ecosystem demands is just one of the challenges ahead, along with decisions regarding competing land use priorities such as biofuels, food, and species habitat. Being able to predict the extent of future climate change in the context of introducing alternative energy production strategies requires a new generation of modeling capabilities. We will also need more complete representations of human systems at regional scales, incorporating the influences of population centers, land use, agriculture and existing and planned electrical demand and generation infrastructure. At PNNL we are working towards creating a first-of-a-kind capability known as the Integrated Regional Earth System Model (iRESM). The fundamental goal of the iRESM initiative is the critical analyses of the tradeoffs and consequences of decision and policy making for integrated human and environmental systems. This necessarily combines different scientific processes, bridging different temporal and geographic scales and resolving the semantic differences between them. To achieve this goal, iRESM is developing a modeling framework and supporting infrastructure that enable the scientific team to evaluate different scenarios in light of specific stakeholder questions such as "How do regional changes in mean climate states and climate extremes affect water storage and energy consumption and how do such decisions influence possible mitigation and carbon management schemes?" The resulting capability will give analysts a toolset to gain insights into how regional economies can respond to climate change mitigation policies and accelerated deployment of alternative energy technologies. The iRESM framework consists of a collection of coupled models working with high

  15. Regional Wave Climates along Eastern Boundary Currents

    NASA Astrophysics Data System (ADS)

    Semedo, Alvaro; Soares, Pedro

    2016-04-01

    Two types of wind-generated gravity waves coexist at the ocean surface: wind sea and swell. Wind sea waves are waves under growing process. These young growing waves receive energy from the overlaying wind and are strongly coupled to the local wind field. Waves that propagate away from their generation area and no longer receive energy input from the local wind are called swell. Swell waves can travel long distances across entire ocean basins. A qualitative study of the ocean waves from a locally vs. remotely generation perspective is important, since the air sea interaction processes is strongly modulated by waves and vary accordingly to the prevalence of wind sea or swell waves in the area. A detailed climatology of wind sea and swell waves along eastern boundary currents (EBC; California Current, Canary Current, in the Northern Hemisphere, and Humboldt Current, Benguela Current, and Western Australia Current, in the Southern Hemisphere), based on the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis will be presented. The wind regime along EBC varies significantly from winter to summer. The high summer wind speeds along EBC generate higher locally generated wind sea waves, whereas lower winter wind speeds in these areas, along with stronger winter extratropical storms far away, lead to a predominance of swell waves there. In summer, the coast parallel winds also interact with coastal headlands, increasing the wind speed through a process called "expansion fan", which leads to an increase in the height of locally generated waves downwind of capes and points. Hence the spatial patterns of the wind sea or swell regional wave fields are shown to be different from the open ocean along EBC, due to coastal geometry and fetch dimensions. Swell waves will be shown to be considerably more prevalent and to carry more energy in winter along EBC, while in summer locally generated wind sea waves are either more comparable to swell waves or

  16. Will climate change affect biodiversity in pacific northwest forests

    SciTech Connect

    Henderson, S.; Rosenbaum, B.J.

    1992-01-01

    Global climate change could have significant consequences for biological diversity in Pacific Northwest (PNW) forested ecosystems, particularly in areas already threatened by anthropogenic activities and the resultant habitat modification and fragmentation. The forests of the Pacific Northwest have a high biological diversity, not only in terms of tree species, but also in terms of herbs, bryophytes and hepatophytes, algae, fungi, protist, bacteria, and many groups of vertebrates and invertebrates. Global circulation and vegetation model projections of global climate change effects on PNW forests include reductions in species diversity in low elevation forests as well as elevational and latitudinal shifts in species ranges. As species are most likely to be stressed at the edges of their ranges, plant and animal species with low mobility, or those that are prevented from migrating by lack of habitat corridors, may become regionally extinct. Endangered species with limited distribution may be especially vulnerable to shifts in habitat conditions.

  17. Regional climate change mitigation with crops: context and assessment.

    PubMed

    Singarayer, J S; Davies-Barnard, T

    2012-09-13

    The intention of this review is to place crop albedo biogeoengineering in the wider picture of climate manipulation. Crop biogeoengineering is considered within the context of the long-term modification of the land surface for agriculture over several thousand years. Biogeoengineering is also critiqued in relation to other geoengineering schemes in terms of mitigation power and adherence to social principles for geoengineering. Although its impact is small and regional, crop biogeoengineering could be a useful and inexpensive component of an ensemble of geoengineering schemes to provide temperature mitigation. The method should not detrimentally affect food security and there may even be positive impacts on crop productivity, although more laboratory and field research is required in this area to understand the underlying mechanisms.

  18. U.S. Global Climate Change Impacts Report, Alaska Region

    NASA Astrophysics Data System (ADS)

    McGuire, D.

    2009-12-01

    The assessment of the Global Climate Change Impacts in the United States includes analyses of the potential climate change impacts in Alaska. The resulting findings are discussed in this presentation, with the effects on water resources discussed separately. Major findings include: Summers are getting hotter and drier, with increasing evaporation outpacing increased precipitation. Climate changes are already affecting water, energy, transportation, agriculture, ecosystems, and health. These impacts are different from region to region and will grow under projected climate change. Wildfires and insect problems are increasing. Climate plays a key role in determining the extent and severity of insect outbreaks and wildfire. The area burned in North America’s northern forest that spans Alaska and Canada tripled from the 1960s to the 1990s. During the 1990s, south-central Alaska experienced the largest outbreak of spruce bark beetles in the world because of warmer weather in all seasons of the year. Under changing climate conditions, the average area burned per year in Alaska is projected to double by the middle of this century10. By the end of this century, area burned by fire is projected to triple under a moderate greenhouse gas emissions scenario and to quadruple under a higher emissions scenario. Close-bodied lakes are declining in area. A continued decline in the area of surface water would present challenges for the management of natural resources and ecosystems on National Wildlife Refuges in Alaska. These refuges, which cover over 77 million acres (21 percent of Alaska) and comprise 81 percent of the U.S. National Wildlife Refuge System, provide a breeding habitat for millions of waterfowl and shorebirds that winter in the lower 48 states. Permafrost thawing will damage public and private infrastructure. Land subsidence (sinking) associated with the thawing of permafrost presents substantial challenges to engineers attempting to preserve infrastructure in

  19. Implication of Agricultural Land Use Change on Regional Climate Projection

    NASA Astrophysics Data System (ADS)

    Wang, G.; Ahmed, K. F.; You, L.

    2015-12-01

    Agricultural land use plays an important role in land-atmosphere interaction. Agricultural activity is one of the most important processes driving human-induced land use land cover change (LULCC) in a region. In addition to future socioeconomic changes, climate-induced changes in crop yield represent another important factor shaping agricultural land use. In feedback, the resulting LULCC influences the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. Therefore, assessment of climate change impact on future agricultural land use and its feedback is of great importance in climate change study. In this study, to evaluate the feedback of projected land use changes to the regional climate in West Africa, we employed an asynchronous coupling between a regional climate model (RegCM) and a prototype land use projection model (LandPro). The LandPro model, which was developed to project the future change in agricultural land use and the resulting shift in natural vegetation in West Africa, is a spatially explicit model that can account for both climate and socioeconomic changes in projecting future land use changes. In the asynchronously coupled modeling framework, LandPro was run for every five years during the period of 2005-2050 accounting for climate-induced change in crop yield and socioeconomic changes to project the land use pattern by the mid-21st century. Climate data at 0.5˚ was derived from RegCM to drive the crop model DSSAT for each of the five-year periods to simulate crop yields, which was then provided as input data to LandPro. Subsequently, the land use land cover map required to run RegCM was updated every five years using the outputs from the LandPro simulations. Results from the coupled model simulations improve the understanding of climate change impact on future land use and the resulting feedback to regional climate.

  20. A framework for modeling uncertainty in regional climate change

    EPA Science Inventory

    In this study, we present a new modeling framework and a large ensemble of climate projections to investigate the uncertainty in regional climate change over the United States associated with four dimensions of uncertainty. The sources of uncertainty considered in this framework ...

  1. Regional Climate Variations and Change for Terrestrial Ecosystems Workshop Review

    EPA Science Inventory

    North Carolina State University, the University of North Carolina at Chapel Hill, and the U.S. Environmental Protection Agency, in partnership with the U.S. Department of the Interior Southeast Climate Science Center (SECSC), hosted the Regional Climate Variations and Change for ...

  2. Using Different Spatial Scales of Climate Data for Regional Climate Impact Assessment: Effect on Crop Modeling Analysis

    NASA Astrophysics Data System (ADS)

    Mereu, V.; Gallo, A.; Trabucco, A.; Montesarchio, M.; Mercogliano, P.; Spano, D.

    2015-12-01

    The high vulnerability of the agricultural sector to climate conditions causes serious concern regarding climate change impacts on crop development and production, particularly in vulnerable areas like the Mediterranean Basin. Crop simulation models are the most common tools applied for the assessment of such impacts on crop development and yields, both at local and regional scales. However, the use of these models in regional impact studies requires spatial input data for weather, soil, management, etc, whose resolution could affect simulation results. Indeed, the uncertainty in projecting climate change impacts on crop phenology and yield at the regional scale is affected not only by the uncertainty related to climate models and scenarios, but also by the downscaling methods and the resolution of climate data. The aim of this study was the evaluation of the effects of spatial resolutions of climate projections in estimating maturity date and grain yield for different varieties of durum wheat, common wheat and maize in Italy. The simulations were carried out using the CSM-CERES-Wheat and CSM-CERES-Maize crop models included in the DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, parameterized and evaluated in different experimental sites located in Italy. Dynamically downscaled climate data at different resolutions and different RCP scenarios were used as input in the crop models. A spatial platform, DSSAT-CSM based, developed in R programming language was applied to perform the simulation of maturity date and grain yield for durum wheat, common wheat and maize in each grid cell. Results, analyzed at the national and regional level, will be discussed.

  3. Building a Regional Collaborative for Climate Literacy

    NASA Astrophysics Data System (ADS)

    Shcherba, O.; Carlton, C.

    2015-12-01

    The San Francisco Bay Area has a strong community of environmental educators with an articulated interest in expanding, elevating, and strengthening climate change programming. Based in this community, a group of educators identified a strong need for and interest in collaborating to increase capacity and knowledge, support pilot testing, and implement climate change best practices in educational and interpretive programs. Since its inception, the Bay Area Climate Literacy Collaborative has brought together over 25 organizations, ranging from wildlife refuges to nonprofit education centers and city park agencies. While still in its nascent phase, the Bay Area Climate Literacy Collaborative exemplifies the power of collective impact. With the backbone support of the Institute at the Golden Gate, the Collaborative has developed a common agenda and is making strides towards developing common measures of success. The initial development stages of this group present an interesting case study and highlight some of the challenges, opportunities, and lessons learned for others seeking to build their own collective impact initiative.

  4. Ensemble-based Regional Climate Prediction: Political Impacts

    NASA Astrophysics Data System (ADS)

    Miguel, E.; Dykema, J.; Satyanath, S.; Anderson, J. G.

    2008-12-01

    Accurate forecasts of regional climate, including temperature and precipitation, have significant implications for human activities, not just economically but socially. Sub Saharan Africa is a region that has displayed an exceptional propensity for devastating civil wars. Recent research in political economy has revealed a strong statistical relationship between year to year fluctuations in precipitation and civil conflict in this region in the 1980s and 1990s. To investigate how climate change may modify the regional risk of civil conflict in the future requires a probabilistic regional forecast that explicitly accounts for the community's uncertainty in the evolution of rainfall under anthropogenic forcing. We approach the regional climate prediction aspect of this question through the application of a recently demonstrated method called generalized scalar prediction (Leroy et al. 2009), which predicts arbitrary scalar quantities of the climate system. This prediction method can predict change in any variable or linear combination of variables of the climate system averaged over a wide range spatial scales, from regional to hemispheric to global. Generalized scalar prediction utilizes an ensemble of model predictions to represent the community's uncertainty range in climate modeling in combination with a timeseries of any type of observational data that exhibits sensitivity to the scalar of interest. It is not necessary to prioritize models in deriving with the final prediction. We present the results of the application of generalized scalar prediction for regional forecasts of temperature and precipitation and Sub Saharan Africa. We utilize the climate predictions along with the established statistical relationship between year-to-year rainfall variability in Sub Saharan Africa to investigate the potential impact of climate change on civil conflict within that region.

  5. Regional Climate Model Sensitivity to Domain Size

    NASA Astrophysics Data System (ADS)

    Leduc, M.; Laprise, R.

    2006-05-01

    Regional Climate Models are increasingly used to add small-scale features that are not present in their lateral boundary conditions (LBCs). It is well known that the limited area over which a model integrates must be large enough to allow the full development of small scales features (Jones et al., 1995). On the other hand, integrations on very large domains have shown important departures from the driving data, unless large-scale nudging is applied (e.g., Castro and Pielke, 2005). Here the effects of domain size on the development of small-scales are examined using the "Big-Brother" approach developed by Denis et al. (2002). This method consists of generating a high-resolution simulation over a large domain (the Big-Brother). The next step is to degrade this dataset with a low-pass filter based on discrete cosine transform (DCT; Denis et al., 2002) to emulate coarse-resolution LBCs that are usually taken from GCMs or reanalyses. A second simulation (the Little-Brother) is driven by the coarse-resolution LBCs and generates its own small-scale features inside the new smaller domain. Nested and added scales of the Little- Brother can then be compared with the Big-Brother (unfiltered) ones by using the DCT-filter again. Three February months (1990,1991 and 1992) were integrated over a continental grid (Big-Brother: 196x196 gridpoints) with a spatial resolution of 45 km covering almost the entire North-America. After filtering, this dataset is used to drive five simulations with varying domain size (48x48, 72x72, 96x96, 120x120 and 144x144) centred on the same geographic location; all other parameters are kept constant. Monthly statistics of the five Little-Brothers are compared with the virtual reference (Big-Brother) over the common domain (28x28) corresponding to the smallest Little-Brother but without its sponge zone. Results show that temporal correlation of large-scale events increases when the domain size is reduced from 144x144 to 48x48. For the same domain

  6. The Intensification of Global and Regional Climate Variability and Change

    NASA Astrophysics Data System (ADS)

    Weaver, S. J.

    2015-12-01

    Recent evidence from the IPCC and National Climate Assessment reports indicate that extreme climate events are increasing in many regions of the world. Interestingly, the nature and causes of the changes in extremes may be expressed differently for the global and regional scales, and also amongst climate variables (e.g., precipitation and temperature). For instance, over the last several decades the temperature probability density function on the global scale exhibits a mean shift to the warmer side, as opposed to a change in it's variability. Conversely, the interannual variability of precipitation is intensifying on the regional scale, especially over the U.S. during spring. Although the statistical characteristics of the temperature and precipitation changes may have a varied expression they both contribute to the potential for increases in extreme events. The causes and physical mechanisms for the intensification of mean global temperature and regional precipitation variability are explored using observationally constrained datasets and non-traditional climate model approaches.

  7. Inductive analysis about the impact of climate warming on regional geomorphic evolution in arid area

    NASA Astrophysics Data System (ADS)

    Anayit, Mattohti; Abulizi, Mailiya

    2016-04-01

    Climate change on the surface of earth will produce a chain reaction among so many global natural environmental elements. Namely, all the issues will be affected by the climate change, just like the regional water environment, formation and development of landscape, plants and animals living environment, the survival of microorganisms, the human economic environment and health, and the whole social environment changes at well. But because of slow frequency of climate change and it is volatility change, its influence on other factors and the overall environmental performance is not obvious, and its reflection performs slowly. Using regional weather data, we calculated qualitatively and quantitatively and did analysis the impact of climate warming on Xinjiang (a province of China) geomorphic evolution elements, including the ground weather, erosion rate, collapse change, landslide occurrences changes and impact debris flow, combining the field survey and indoor test methods. Key words: climate change; the geomorphic induction; landscape change in river basin; Xinjiang

  8. Quantification of climate tourism potential of Croatia based on measured data and regional modeling

    NASA Astrophysics Data System (ADS)

    Brosy, Caroline; Zaninovic, Ksenija; Matzarakis, Andreas

    2014-08-01

    Tourism is one of the most important economic sectors in Croatia. The Adriatic coast is a popular travel destination for tourists, especially during the summer months. During their activities, tourists are affected by atmospheric conditions and therefore by weather and climate. Therefore, it is important to have reliable information about thermal conditions as well as their impacts on human beings. Here, the climate tourism potential of Croatia is presented and quantified on the basis of three selected stations in different climatic regions. The physiologically equivalent temperature is used for analysis as well as other climatic parameters relevant for tourism and recreation. The results already point to hot conditions for outdoor activities in summer during afternoons, especially along the coast but also for continental regions, resulting in a reduction of the climate tourism potential. In the future, this trend looks set to increase, possibly leading to a changing tourism sector in Croatia requiring adaptation and new strategies.

  9. Quantification of climate tourism potential of Croatia based on measured data and regional modeling.

    PubMed

    Brosy, Caroline; Zaninovic, Ksenija; Matzarakis, Andreas

    2014-08-01

    Tourism is one of the most important economic sectors in Croatia. The Adriatic coast is a popular travel destination for tourists, especially during the summer months. During their activities, tourists are affected by atmospheric conditions and therefore by weather and climate. Therefore, it is important to have reliable information about thermal conditions as well as their impacts on human beings. Here, the climate tourism potential of Croatia is presented and quantified on the basis of three selected stations in different climatic regions. The physiologically equivalent temperature is used for analysis as well as other climatic parameters relevant for tourism and recreation. The results already point to hot conditions for outdoor activities in summer during afternoons, especially along the coast but also for continental regions, resulting in a reduction of the climate tourism potential. In the future, this trend looks set to increase, possibly leading to a changing tourism sector in Croatia requiring adaptation and new strategies.

  10. Current climate and climate change over India as simulated by the Canadian Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Alexandru, Adelina; Sushama, Laxmi

    2014-09-01

    The performance of the fifth generation of the Canadian Regional Climate Model (CRCM5) in reproducing the main climatic characteristics over India during the southwest (SW)-, post- and pre-monsoon seasons are presented in this article. To assess the performance of CRCM5, European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) and Interim re-analysis (ERA-Interim) driven CRCM5 simulation is compared against independent observations and reanalysis data for the 1971-2000 period. Projected changes for two future periods, 2041-2070 and 2071-2100, with respect to the 1971-2000 current period are assessed based on two transient climate change simulations of CRCM5 spanning the 1950-2100 period. These two simulations are driven by the Canadian Earth System Model version 2 (CanESM2) and the Max Planck Institute for Meteorology's Earth System Low Resolution Model (MPI-ESM-LR), respectively. The boundary forcing errors associated with errors in the driving global climate models are also studied by comparing the 1971-2000 period of the CanESM2 and MPI-ESM-LR driven simulations with that of the CRCM5 simulation driven by ERA-40/ERA-Interim. Results show that CRCM5 driven by ERA-40/ERA-Interim is in general able to capture well the temporal and spatial patterns of 2 m-temperature, precipitation, wind, sea level pressure, total runoff and soil moisture over India in comparison with available reanalysis and observations. However, some noticeable differences between the model and observational data were found during the SW-monsoon season within the domain of integration. CRCM5 driven by ERA-40/ERA-Interim is 1-2 °C colder than CRU observations and generates more precipitation over the Western Ghats and central regions of India, and not enough in the northern and north-eastern parts of India and along the Konkan west coast in comparison with the observed precipitation. The monsoon onset seems to be relatively well captured over the southwestern coast of India

  11. Current climate and climate change over India as simulated by the Canadian Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Alexandru, Adelina; Sushama, Laxmi

    2015-08-01

    The performance of the fifth generation of the Canadian Regional Climate Model (CRCM5) in reproducing the main climatic characteristics over India during the southwest (SW)-, post- and pre-monsoon seasons are presented in this article. To assess the performance of CRCM5, European Centre for Medium- Range Weather Forecasts (ECMWF) Re- Analysis (ERA- 40) and Interim re-analysis (ERA-Interim) driven CRCM5 simulation is compared against independent observations and reanalysis data for the 1971-2000 period. Projected changes for two future periods, 2041-2070 and 2071-2100, with respect to the 1971-2000 current period are assessed based on two transient climate change simulations of CRCM5 spanning the 1950-2100 period. These two simulations are driven by the Canadian Earth System Model version 2 (CanESM2) and the Max Planck Institute for Meteorology's Earth System Low Resolution Model (MPI-ESM-LR), respectively. The boundary forcing errors associated with errors in the driving global climate models are also studied by comparing the 1971-2000 period of the CanESM2 and MPI-ESM-LR driven simulations with that of the CRCM5 simulation driven by ERA-40/ERA-Interim. Results show that CRCM5 driven by ERA-40/ERA-Interim is in general able to capture well the temporal and spatial patterns of 2 m-temperature, precipitation, wind, sea level pressure, total runoff and soil moisture over India in comparison with available reanalysis and observations. However, some noticeable differences between the model and observational data were found during the SW-monsoon season within the domain of integration. CRCM5 driven by ERA-40/ERA-Interim is 1-2 °C colder than CRU observations and generates more precipitation over the Western Ghats and central regions of India, and not enough in the northern and north-eastern parts of India and along the Konkan west coast in comparison with the observed precipitation. The monsoon onset seems to be relatively well captured over the southwestern coast of

  12. The North American Regional Climate Change Assessment Program: Overview of Climate Change Results

    NASA Astrophysics Data System (ADS)

    Mearns, L. O.

    2011-12-01

    The North American Regional Climate Change Assessment Program (NARCCAP) is an international program that is serving the climate scenario needs of the United States, Canada, and northern Mexico. We are systematically investigating the uncertainties in regional scale projections of future climate and producing high resolution climate change scenarios using multiple regional climate models (RCMs) and multiple global model responses by nesting the RCMs within atmosphere ocean general circulation models (AOGCMs) forced with a medium-high emissions scenario, over a domain covering the conterminous US, northern Mexico, and most of Canada. The project also includes a validation component through nesting the participating RCMs within the NCEP reanalysis R2. The basic spatial resolution of the RCM simulations is 50 km. This program includes six different RCMs that have been used in various intercomparison programs in Europe and the United States. Four different AOGCMs provide boundary conditions to drive the RCMS for 30 years in the current climate and 30 years for the mid 21st century. The resulting climate model simulations form the basis for multiple high resolution climate scenarios that can be used in climate change impacts and adaptation assessments over North America. Eleven of the planned 12 sets of current and future simulations have been completed. Measures of uncertainty across the multiple simulations are being developed by geophysical statisticians. In this overview talk, results from the climate change experiments for various subregions, along with measures of uncertainty, will be presented.

  13. The North American Regional Climate Change Assessment Program: Overview of Climate Change Results

    NASA Astrophysics Data System (ADS)

    Mearns, L. O.

    2012-12-01

    The North American Regional Climate Change Assessment Program (NARCCAP) is an international program that is serving the climate scenario needs of the United States, Canada, and northern Mexico. We are systematically investigating the uncertainties in regional scale projections of future climate and producing high resolution climate change scenarios using multiple regional climate models (RCMs) and multiple global model responses by nesting the RCMs within atmosphere ocean general circulation models (AOGCMs) forced with a medium-high emissions scenario, over a domain covering the conterminous US, northern Mexico, and most of Canada. The project also includes a validation component through nesting the participating RCMs within the NCEP reanalysis R2. The basic spatial resolution of the RCM simulations is 50 km. This program includes six different RCMs that have been used in various intercomparison programs in Europe and the United States. Four different AOGCMs provide boundary conditions to drive the RCMS for 30 years in the current climate and 30 years for the mid 21st century. The resulting climate model simulations form the basis for multiple high resolution climate scenarios that can be used in climate change impacts and adaptation assessments over North America. All 12 sets of current and future simulations have been completed. Measures of uncertainty across the multiple simulations are being developed by geophysical statisticians. In this overview talk, results from the various climate change experiments for various subregions, along with measures of uncertainty, will be presented

  14. Initialized near-term regional climate change prediction

    PubMed Central

    Doblas-Reyes, F. J.; Andreu-Burillo, I.; Chikamoto, Y.; García-Serrano, J.; Guemas, V.; Kimoto, M.; Mochizuki, T.; Rodrigues, L. R. L.; van Oldenborgh, G. J.

    2013-01-01

    Climate models are seen by many to be unverifiable. However, near-term climate predictions up to 10 years into the future carried out recently with these models can be rigorously verified against observations. Near-term climate prediction is a new information tool for the climate adaptation and service communities, which often make decisions on near-term time scales, and for which the most basic information is unfortunately very scarce. The Fifth Coupled Model Intercomparison Project set of co-ordinated climate-model experiments includes a set of near-term predictions in which several modelling groups participated and whose forecast quality we illustrate here. We show that climate forecast systems have skill in predicting the Earth's temperature at regional scales over the past 50 years and illustrate the trustworthiness of their predictions. Most of the skill can be attributed to changes in atmospheric composition, but also partly to the initialization of the predictions. PMID:23591882

  15. Initialized near-term regional climate change prediction.

    PubMed

    Doblas-Reyes, F J; Andreu-Burillo, I; Chikamoto, Y; García-Serrano, J; Guemas, V; Kimoto, M; Mochizuki, T; Rodrigues, L R L; van Oldenborgh, G J

    2013-01-01

    Climate models are seen by many to be unverifiable. However, near-term climate predictions up to 10 years into the future carried out recently with these models can be rigorously verified against observations. Near-term climate prediction is a new information tool for the climate adaptation and service communities, which often make decisions on near-term time scales, and for which the most basic information is unfortunately very scarce. The Fifth Coupled Model Intercomparison Project set of co-ordinated climate-model experiments includes a set of near-term predictions in which several modelling groups participated and whose forecast quality we illustrate here. We show that climate forecast systems have skill in predicting the Earth's temperature at regional scales over the past 50 years and illustrate the trustworthiness of their predictions. Most of the skill can be attributed to changes in atmospheric composition, but also partly to the initialization of the predictions.

  16. Satellite-Derived Water Vapor Winds for Regional Climate Studies

    NASA Technical Reports Server (NTRS)

    Jedlovce, Gary J.; Lerner, Jeffery A.; Iwai, Hisaki; Haines, Stephanie

    1999-01-01

    The retrieval of winds and humidity in the upper-troposphere has matured to the point where it may now be possible to better understand and diagnose regional climate variations from geostationary satellites than from conventional measurements or model analysis, especially in data sparse regions. In this poster paper, upper-tropospheric circulation features and moisture transport covering ENSO periods are presented and discussed. Precursor and other detectable interannual climate signals are analyzed and compared to model diagnosed features. Estimates of winds and humidity over data-rich regions (from conventional measurements) are used to show the robustness of the data and its value over regions which are currently poorly sampled.

  17. Impacts of climate change on infrastructure in permafrost regions

    NASA Astrophysics Data System (ADS)

    Beloloutskaia, M.; Anisimov, O.

    2003-04-01

    There is a growing evidence of enhanced warming over the permafrost regions, and significant impacts on natural and human systems are expected. Changes in the temperature, distribution, and depth of seasonal thawing of permafrost will have direct and immediate implications for the infrastructure built upon it. The mechanical strength of permafrost decreases with warming, resulting in damage to and possible failure of buildings, pipelines, and transportation facilities. Extensive infrastructure was developed in the Arctic largely in association with the extraction and transportation industries. Several large cities in Russia with few hundred thousand population are of particular concern since many buildings there have already been affected by the changes in permafrost properties. Detrimental changes in permafrost conditions are often not abrupt. Instead, they evolve gradually and can be predicted and monitored, allowing avoidance of catastrophic events and mitigation of negative consequences. Climate-induced threats to infrastructure in permafrost regions may be evaluated using a numerical "settlement" index, Iset, which allows to classify modern permafrost with respect to its potential for thermokarst development: Iset = dZ * W, where dZ is the relative change in the depth of seasonal thawing predicted by permafrost model for the conditions of the future climate and W is the volumetric proportion of near surface soil occupied by ground ice. Permafrost model of intermediate complexity (Koudriavtcev's model) was used with selected GCM-based scenarios of climate change to construct predictive maps of "settlement" index for the mid-21st century. Circumpolar permafrost area was partitioned into zones of high, moderate, and low hazard potential. Despite discrepancies in details, all scenarios yield a zone in the high-risk category distributed discontinuously around the margins of the Arctic Ocean, indicating high potential for coastal erosion. Several population centers

  18. Heating up Climate Literacy Education: Understanding Teachers' and Students' Motivational and Affective Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Sinatra, G. M.

    2011-12-01

    Changing students' ideas about controversial scientific issues, such as human-induced climate change, presents unique challenges for educators (Lombardi & Sinatra, 2010; Sinatra & Mason, 2008). First, climate science is complex and requires "systems thinking," or the ability to think and reason abstractly about emergent systems (Goldstone & Sakamoto, 2003). Appreciating the intricacies of complex systems and emergent processes has proven challenging for students (Chi, 2005). In addition to these challenges, there are specific misconceptions that may lead thinking astray on the issue of global climate change, such as the distinction between weather and climate (Lombardi & Sinatra, 2010). As an example, when students are asked about their views on climate change, they often recall individual storm events or very cold periods and use their personal experiences and recollections of short-term temperature fluctuations to assess whether the planet is warming. Beyond the conceptual difficulties, controversial topics offer another layer of challenge. Such topics are often embedded in complex socio-cultural and political contexts, have a high degree of uncertainty, and may be perceived by individuals as in conflict with their personal or religious beliefs (Levinson, 2006, Sinatra, Kardash, Taasoobshirazi, & Lombardi, 2011). Individuals are often committed to their own views on socio-scientific issues and this commitment may serve as a motivation to actively resist new ideas (Dole & Sinatra, 1998). Individuals may also have strong emotions associated with their misconceptions (Broughton, Pekrun, & Sinatra, 2011). Negative emotions, misconceptions, and resistance do not make a productive combination for learning. Further, teachers who find human-induced climate change implausible have been shown to hold negative emotions about having to teach about climate change (Lombardi & Sinatra, in preparation), which could affect how they present the topic to students. In this

  19. Impacts on regional climate of Amazon deforestation

    SciTech Connect

    Dickinson, R.E.; Kennedy, P. NCAR, Boulder, CO )

    1992-10-01

    A simulation of the climate response to Amazon deforestation has been carried out. Precipitation is decreased on the average by 25 percent or 1.4 mm/day, with ET and runoff both decreasing by 0.7 mm/day. Modifications of surface energy balance through change of albedo and roughness are complicated by cloud feedbacks. The initial decrease of the absorption of solar radiation by higher surface albedos is largely cancelled by a reduction in cloud cover, but consequent reduction in downward longwave has a substantial impact on surface energy balance. Smoke aerosols might have an effect comparable to deforestation during burning season. 8 refs.

  20. Protecting Health from Climate Change in the WHO European Region

    PubMed Central

    Wolf, Tanja; Sanchez Martinez, Gerardo; Cheong, Hae-Kwan; Williams, Eloise; Menne, Bettina

    2014-01-01

    “How far are we in the WHO European Region in implementing action to counter the health impacts of climate change?” This was the question posed to representatives of Member States in the WHO European Region of in the WHO working group on health in climate change (HIC). Twenty-two Member States provided answers to a comprehensive 2012 questionnaire that focused on eight thematic areas (governance; vulnerability, impact and adaptation (health) assessments (VIA); adaptation strategies and action plans; climate change mitigation; strengthening health systems; raising awareness and building capacity; greening health services; and sharing best practices). Strong development has been in climate change vulnerability and impact assessments, as well as strengthening health systems and awareness raising. Areas where implementation would benefit from further action are the development of national health adaptation plans, greening health systems, sharing best practices and reducing greenhouse gas (GHG) emissions in other sectors. At the Fifth Ministerial Conference on Environment and Health in Parma, Itatly in 2010, the European Commitment to Act on climate change and health and the European Regional Framework for Action to protect health from climate change were endorsed by the fifty-three European Member States. The results of this questionnaire present the most comprehensive assessment so far of progress made by European Member States to protect public health from climate change since the Parma Conference agreements. PMID:24937528

  1. Regional climate model performance in the Lake Victoria basin

    NASA Astrophysics Data System (ADS)

    Williams, Karina; Chamberlain, Jill; Buontempo, Carlo; Bain, Caroline

    2015-03-01

    Lake Victoria, the second largest freshwater lake in the world, plays a crucial role in the hydrology of equatorial eastern Africa. Understanding how climate change may alter rainfall and evaporation patterns is thus of vital importance for the economic development and the livelihood of the region. Regional rainfall distribution appears, up to a large extent, to be controlled by local drivers which may be not well resolved in general circulation model simulations. We investigate the performance over the Lake Victoria basin of an ensemble of UK Met Office Hadley Centre regional climate model (HadRM3P) simulations at 50 km, driven by five members of the Hadley Centre global perturbed-physics ensemble (QUMP). This is part of the validation of an ensemble of simulations that has been used to assess the impacts of climate change over the continent over the period 1950-2099. We find that the regional climate model is able to simulate a lake/land breeze over Lake Victoria, which is a significant improvement over the driving global climate model and a vital step towards reproducing precipitation characteristics in the region. The local precipitation correlates well with large-scale processes in the Pacific Ocean and Indian Ocean, which is in agreement with observations. We find that the spatial pattern of precipitation in the region and the diurnal cycle of convection is well represented although the amount of rainfall over the lake appears to be overestimated in most seasons. Reducing the observational uncertainty in precipitation over the lake through future field campaigns would enable this model bias to be better quantified. We conclude that increasing the spatial resolution of the model significantly improves its ability to simulate the current climate of the Lake Victoria basin. We suggest that, despite the higher computational costs, the inclusion of a model which allows two-way interactions between the lake and its surroundings should be seriously considered for

  2. Perceptible changes in regional precipitation in a future climate

    NASA Astrophysics Data System (ADS)

    Mahlstein, Irina; Portmann, Robert W.; Daniel, John S.; Solomon, Susan; Knutti, Reto

    2012-03-01

    Evidence is strong that the changes observed in the Earth's globally averaged temperature over the past half-century are caused to a large degree by human activities. Efforts to document accompanying precipitation changes in observations have met with limited success, and have been primarily focussed on large-scale regions in order to reduce the relative impact of the natural variability of precipitation as compared to any potential forced change. Studies have not been able to identify statistically significant changes in observed precipitation on small spatial scales. General circulation climate models offer the possibility to extend the analysis of precipitation changes into the future, to determine when simulated changes may emerge from the simulated variability locally as well as regionally. Here we estimate the global temperature increase needed for the precipitation “signal” to emerge from the “noise” of interannual variability within various climatic regions during their wet season. The climatic regions are defined based on cluster analysis. The dry season is not included due to poor model performance as compared to measurements during the observational period. We find that at least a 1.4°C warmer climate compared with the early 20th century is needed for precipitation changes to become statistically significant in any of the analysed climate regions. By the end of this century, it is likely that many land regions will experience statistically significant mean precipitation changes during wet season relative to the early 20th century based on an A1B scenario.

  3. Decadal-Interdecadal SST Variability and Regional Climate Teleconnections

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Weng, H.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Dominant modes of decadal and interdecadal SST variability and their impacts on summertime rainfall variability over East Asia and the North America are studied. Two dominant modes of interdecadal SST variability, one associated with El Nino-like warming in the global oceans and one with an east-west seesaw variation in the equatorial Pacific have been identified. The first mode is associated in part with a long-term warming trend in the topical oceans and cooling over the northern Pacific. The second mode suggests an westward shift and strengthening of the Walker circulation from 1960s to the 1980s. Over East Asian, the first SST mode is correlated with reduced rainfall in northern China and excessive rainfall in central China. This SST mode is also associated with the tendency for increased rainfall over the midwest region, and reduced rainfall over the east Coast of the US. The results suggest a teleconnection pattern which links the occurrences of drought and floods over the Asian monsoon and the US summertime time climate. This teleconnection is likely to be associated with decadal variability of the East Asian jetstream, which are affected by strong land surface heating over the Siberian region, as well as El Nino-like SST forcings. The occurrences of major droughts and floods in the East Asian and US continent in recent decades are discussed in light of the above teleconnection patterns.

  4. Regional climate impacts of a biofuels policy projection

    NASA Astrophysics Data System (ADS)

    Anderson, Christopher J.; Anex, Robert P.; Arritt, Raymond W.; Gelder, Brian K.; Khanal, Sami; Herzmann, Daryl E.; Gassman, Phillip W.

    2013-03-01

    The potential for regional climate change arising from adoption of policies to increase production of biofuel feedstock is explored using a regional climate model. Two simulations are performed using the same atmospheric forcing data for the period 1979-2004, one with present-day land use and monthly phenology and the other with land use specified from an agro-economic prediction of energy crop distribution and monthly phenology consistent with this land use change. In Kansas and Oklahoma, where the agro-economic model predicts 15-30% conversion to switchgrass, the regional climate model simulates locally lower temperature (especially in spring), slightly higher relative humidity in spring and slightly lower relative humidity in summer, and summer depletion of soil moisture. This shows the potential for climate impacts of biofuel policies and raises the question of whether soil water depletion may limit biomass crop productivity in agricultural areas that are responsive to the policies. We recommend the use of agronomic models to evaluate the possibility that soil moisture depletion could reduce productivity of biomass crops in this region. We conclude, therefore, that agro-economic and climate models should be used iteratively to examine an ensemble of agricultural land use and climate scenarios, thereby reducing the possibility of unforeseen consequences from rapid changes in agricultural production systems.

  5. Modeled regional climate change and California endemic oak ranges

    PubMed Central

    Kueppers, Lara M.; Snyder, Mark A.; Sloan, Lisa C.; Zavaleta, Erika S.; Fulfrost, Brian

    2005-01-01

    In the coming century, anthropogenic climate change will threaten the persistence of restricted endemic species, complicating conservation planning. Although most efforts to quantify potential shifts in species' ranges use global climate model (GCM) output, regional climate model (RCM) output may be better suited to predicting shifts by restricted species, particularly in regions with complex topography or other regionally important climate-forcing factors. Using a RCM-based future climate scenario, we found that potential ranges of two California endemic oaks, Quercus douglasii and Quercus lobata, shrink considerably (to 59% and 54% of modern potential range sizes, respectively) and shift northward. This result is markedly different from that obtained by using a comparable GCM-based scenario, under which these species retain 81% and 73% of their modern potential range sizes, respectively. The difference between RCM- and GCM-based scenarios is due to greater warming and larger precipitation decreases during the growing season predicted by the RCM in these species' potential ranges. Based on the modeled regional climate change, <50% of protected land area currently containing these species is expected to contain them under a future midrange “business-as-usual” path of greenhouse gas emissions. PMID:16260750

  6. Potential climatic impacts of vegetation change: A regional modeling study

    USGS Publications Warehouse

    Copeland, J.H.; Pielke, R.A.; Kittel, T.G.F.

    1996-01-01

    The human species has been modifying the landscape long before the development of modern agrarian techniques. Much of the land area of the conterminous United States is currently used for agricultural production. In certain regions this change in vegetative cover from its natural state may have led to local climatic change. A regional climate version of the Colorado State University Regional Atmospheric Modeling System was used to assess the impact of a natural versus current vegetation distribution on the weather and climate of July 1989. The results indicate that coherent regions of substantial changes, of both positive and negative sign, in screen height temperature, humidity, wind speed, and precipitation are a possible consequence of land use change throughout the United States. The simulated changes in the screen height quantities were closely related to changes in the vegetation parameters of albedo, roughness length, leaf area index, and fractional coverage. Copyright 1996 by the American Geophysical Union.

  7. A catalog of moisture sources for continental climatic regions

    NASA Astrophysics Data System (ADS)

    Nieto, Raquel; Castillo, Rodrigo; Drumond, Anita; Gimeno, Luis

    2014-06-01

    This technical note describes a catalog of moisture sources for two sets of continental climatic regions: one based on regions with similar late 20th century mean climate and similar projected late 21st century precipitation changes, and the other widely used in IPCC assessment reports. By illustrating with one region by classification, the European one was selected and we identify and characterize all the major sources of moisture, and analyze their interannual variability and the role of the three dominant modes of global climate variability, including the El Niño-Southern Oscillation (ENSO) and the Northern and Southern Annular Modes (NAM, SAM). We also estimate the influence of those oceanic regions that will see the greatest increases in evaporation rate in future years.

  8. Atmospheric and Climate Aspects of Russian Regions Sustainability

    NASA Astrophysics Data System (ADS)

    Golitsyn, G. S.; Dubovsky, S. V.; Ginzburg, A. S.; Mokhov, I. I.; Khomyakov, P. M.

    Russia is one of the first countries created the national program of sustainable devel- opment. The Presidential Decree SOn the national strategy of the Russian Federation & cedil;in the environment protection and sustainable developmentT was issued by in 1994. Atmospheric and climate aspects play very important roles in the sustainable devel- opment at the regional level in Russia as well as at national one. Last year Russian Academy of Sciences in collaboration with some leaders of the local Russian au- thorities started the Project SSustainable development of Russia and its regionsT. In & cedil; this project the problems of Russian socio-economical development are considered together with regional atmospheric and climate changes, environmental and natural resources, population, urbanization, energetic and new technology development, and so on. The main problems of Russian regions socio-economical development related to global and local climate changes, environmental and natural resources, urbanization will be discussed.

  9. Future droughts in Global Climate Models and adaptation strategies from regional present-day analogues

    NASA Astrophysics Data System (ADS)

    Orlowsky, B.; Seneviratne, S. I.

    2012-04-01

    Droughts are among the most impacting phenomena of a changing climate, affecting agricultural productivity and human health. They can furthermore interact with and amplify other climatic extreme events such as heat waves. Our analysis of the CMIP5 ensemble of GCM simulations identifies several hot spots of aggravating droughts in coming decades, such as the Mediterranean, parts of the Southern US and North East Brazil, which also compare well with increasing stress from heat waves. However, as we show by a comparison of drought indices, the exact pattern can substantially depend on the index choice. In some regions of the developing world which are particularly vulnerable to droughts, e.g. Central Africa, this uncertainty is further increased by a high disagreement between the GCMs. In a second step, we perform an analogue search which, for a given target region, identifies regions which under present-day climate show drought conditions that are similar to the projected future drought conditions of the target region. For example, the future conditions in the Mediterranean are found to be analogue to the present-day conditions in parts of the US, Central Asia or Australia. Information from web resources on climate change adaptation and agricultural practices for the identified similar regions are then assessed in the context of the target region as potential guidelines for adaptation. Thus combining the temporal and spatial dimension helps to transfer local climate adaptation knowledge to other regions, where it is expected to become relevant in the future.

  10. Regional Climate Model Projections for the State of Washington

    SciTech Connect

    Salathe, E.; Leung, Lai-Yung R.; Qian, Yun; Zhang, Yongxin

    2010-05-05

    Global climate models do not have sufficient spatial resolution to represent the atmospheric and land surface processes that determine the unique regional heterogeneity of the climate of the State of Washington. If future large-scale weather patterns interact differently with the local terrain and coastlines than current weather patterns, local changes in temperature and precipitation could be quite different from the coarse-scale changes projected by global models. Regional climate models explicitly simulate the interactions between the large-scale weather patterns simulated by a global model and the local terrain. We have performed two 100-year climate simulations using the Weather and Research Forecasting (WRF) model developed at the National Center for Atmospheric Research (NCAR). One simulation is forced by the NCAR Community Climate System Model version 3 (CCSM3) and the second is forced by a simulation of the Max Plank Institute, Hamburg, global model (ECHAM5). The mesoscale simulations produce regional changes in snow cover, cloudiness, and circulation patterns associated with interactions between the large-scale climate change and the regional topography and land-water contrasts. These changes substantially alter the temperature and precipitation trends over the region relative to the global model result or statistical downscaling. To illustrate this effect, we analyze the changes from the current climate (1970-1999) to the mid 21st century (2030-2059). Changes in seasonal-mean temperature, precipitation, and snowpack are presented. Several climatological indices of extreme daily weather are also presented: precipitation intensity, fraction of precipitation occurring in extreme daily events, heat wave frequency, growing season length, and frequency of warm nights. Despite somewhat different changes in seasonal precipitation and temperature from the two regional simulations, consistent results for changes in snowpack and extreme precipitation are found in

  11. Regional Impacts of Climate Change in the Caribou Chilcotin Region, Fraser River Basin, BC, Canada

    NASA Astrophysics Data System (ADS)

    Bennett, K. E.; Werner, A. T.; Salathé, E. P.; Schnorbus, M.; Nelitz, M.; David, R. R.

    2009-05-01

    The terrain and climate of British Columbia (BC) is some of the most complex in the country, and is likely going to face unprecedented changes in hydrology due to the impacts of climate change. The Pacific Climate Impacts Consortium (PCIC) was formed in 2005 to produce tools to determine how water resources in BC and its surrounding provinces, territories and states are being affected by climate change. PCIC's first large-scale watershed modelling project implemented, in collaboration with the River Forecast Centre and the University of Washington, the Variable Infiltration Capacity (VIC) model in several major BC watersheds. Future scenarios were developed to analyse the impacts of climate change on snowpack, streamflow and soil moisture in these basins. The current study focuses on the methods to develop future scenarios and the results of the hydrologic modelling. Six different GCM emissions scenarios were selected for BC from the AR4 scenarios. A modified bias correction and statistical downscaling (BCSD) technique created at the University of Washington was used to downscale GCM results to the scale of gridded historical forcings data to generate transient-daily time step, regional-scale projections of future climate change. These forcings were then used to drive the VIC macro-scale hydrologic model. A comparison of forcings for the historical period (1961-1990) from the downscaled GCM data to the forcings created from the observed records on the monthly-timescale demonstrated that the downscaled data captured the range of variability present in the 1961-1990 period in large and medium sized basins quite well. Accurately downscaling data for application in small basins was more difficult. Daily results created with the original BCSD technique were unrealistic in places and problematic for application in hydrologic models, such as VIC that depend on an accurate daily temperature range to model evaporation and snowpack. Results for the Fraser Basin study include

  12. Verification of regional climate models over the territory of Ukraine

    NASA Astrophysics Data System (ADS)

    Krakovska, S.; Palamarchuk, L.; Shedemenko, I.; Djukel, G.; Gnatjuk, N.

    2009-04-01

    Verification of regional climate models (RCMs) over the territory of Ukraine was the first stage of the National project for assessment of possible climate change and its impact on the economic and social life in Ukraine in XXI century. Since Ukraine has pretty different climates in different parts, the territory of Ukraine was divided on 11 regions with more or less uniform climate conditions: 7 almost equal in space regions in plain terrain, 2 - in coastal zones near the Black and Azov seas and 2 - in the Carpathian and the Crimean mountains. Verification of RCMs for climate characteristics was carried out for each defined region separately. Data of meteorological network in Ukraine (187 stations) and the Climate Research Unit (CRU 10-min global data-set) for multy-year monthly, season and annual means of temperature and precipitation for the period 1961-90 were used for verification of models' results. Two RCMs were used in the analysis of the past climate of Ukraine: REMO (MPI-M, Hamburg) and RegCM3 (ICTP, Trieste). Both models were constructed with initial and boundary conditions from ERA-40 data-set with horizontal spacing of ~25 km and vertically 27 (REMO) and 18 (RegCM3) Z-σ levels. In a whole, both models demonstrated better ability for temperature than precipitation characteristics. Very high correlation of 0.9 was found between models, network and CRU for temperatures and 0.7-0.8 for precipitation. Generally, models were warmer especially for summer months up to 2 oC. More precipitation in the models was found for winter season and less - for summer and in the mountainous subregions comparably with observations. In perspective we intend to run RCMs initialized with GCMs for the same period and for XXI century and account for the obtained systematic models' errors in the analysis of possible climate change over the territory of Ukraine.

  13. Is the Eocene's climate affected by ocean tides?

    NASA Astrophysics Data System (ADS)

    Weber, Tobias; Thomas, Maik

    2014-05-01

    Global ocean models can generally be divided into Ocean General Circulation and tidal models. Paleoclimate simulations consider dynamics due to the ocean's general, i.e., thermohaline, wind and pressure driven circulation, while tidal dynamics most commonly are neglected due to their strict periodicity and high frequencies. Nevertheless, it could be demonstrated that transport ellipses and energy fluxes are being deformed over shelf areas due to tidal induced friction thus altering ocean circulation and energy fluxes on longer timescales. This makes tides not only an interesting subject of investigation of present-day dynamics, but also of paleo time slices, when both different celestial constellations and geometric shapes of ocean basins affected tidal waves. Using the coupled atmosphere-ocean general circulation model ECHAM5/MPIOM with an integrated tidal module based on luni-solar ephemerides, we simultaneously simulate circulation and tidal dynamics for the Early Eocene (50Ma) and a pre-industrial control run. Major changes in ocean circulation cannot only be observed in shelf areas, but also in the open ocean, for example the Indian and North Atlantic Oceans. Especially the opening of the Tethys Sea alters ocean basin geometry and hereby the dissipation of tidal waves. The southern position of Australia allows resonance between the Indian and Pacific Ocean and leads to high amplitudes in the M2 tide that dominate the Western Pacific and Eastern Indian Oceans. Including tidal dynamics in the ocean model also affects climate by decreasing global mean temperature.

  14. Climate-Smart Landscapes for Managing Water Resources in the Tea Growing Regions of Northeast India

    NASA Astrophysics Data System (ADS)

    Gupta, N.; Biggs, E. M.; Saikia, S. D.; Duncan, J.

    2015-12-01

    Tea is an important global agricultural commodity, both commercially and culturally. Assam, an agrarian state in northeast India is the largest single tea growing region in the world and the productivity (both in terms of quantity and quality) requires a specific range of enviro-climatic conditions. Precipitation and temperature are two climate factors which highly influence productivity. Thus water plays a critical role in sustaining future tea production in Assam. Recently the region has been affected by heterogeneous spatiotemporal distributions of precipitation and rising temperatures. This has led to temporally varying drought-like conditions during the tea production season, reducing crop resilience and degrading yield quality. Quantifying regional climate-yield characteristics enables more effective decision-making regarding climate change mitigation, water resources management and adaptation to sustain (and enhance) future tea crop production. This research used a panel based regression model to statistically quantify the extent to which precipitation and temperature variables are associated with changes in tea yield. Monthly time-series climate and yield data were regressed for the period 2004 to 2014. Yield data were obtained from 80 tea estates across the four main tea growing regions of Assam, and 120 climate variables were selected for analysis. Results indicate that periods of drought (e.g. more than 10 consecutive days of zero precipitation) are significantly associated with reductions in yield, whereas periods of intense precipitation (e.g. number of days where the 95th percentile was exceeded) are generally associated with increased yield. These results have provided an enhanced understanding of climate-yield characteristics, which will subsequently be used to deliver more climate-smart advisory decision-support services to tea producers in the region. Although water resources management practices, such as water harvesting structures, check dams

  15. The WASCAL regional climate simulations for West Africa - how to add value to existing climate projections

    NASA Astrophysics Data System (ADS)

    Arnault, J.; Heinzeller, D.; Klein, C.; Dieng, D.; Smiatek, G.; Bliefernicht, J.; Sylla, M. B.; Kunstmann, H.

    2015-12-01

    With climate change being one of the most severe challenges to rural Africa in the 21st century, West Africa is facing an urgent need to develop effective adaptation and mitigation measures to protect its constantly growing population. WASCAL (West African Science Service Center on Climate Change and Adapted Land Use) is a large-scale research-focused program designed to enhance the resilience of human and environmental systems to climate change and increased variability. An integral part of its climate services is the provisioning of a new set of high resolution, ensemble-based regional climate change scenarios for the region of West Africa. In this contribution, we present the overall concept of the WASCAL regional climate projections and provide information on the dissemination of the data. We discuss the model performance over the validation period for two of the three regional climate models employed, the Weather Research & Forecasting Tool (WRF) and the Consortium for Small-scale Modeling Model COSMO in Climate Mode (COSMO-CLM), and give details about a novel precipitation database used to verify the models. Particular attention is paid to the representation of the dynamics of the West African Summer Monsoon and to the added value of our high resolution models over existing data sets. We further present results on the climate change signal obtained from the WRF model runs for the periods 2020-2050 and 2070-2100 and compare them to current state-of-the-art projections from the CORDEX project. As an example, the figure shows the different climate change signals obtained for the total annual rainfall with respect to the 1980-2010 mean (WRF-E: WASCAL 12km high-resolution run MPI-ESM + WRFV3.5.1, CORDEX-E: 50km medium-resolution run MPI-ESM + RCA4, CORDEX-G: 50km medium-resolution run GFDL-ESM + RCA4).

  16. Sensitivity of regional climate to global temperature and forcing

    NASA Astrophysics Data System (ADS)

    Tebaldi, Claudia; O'Neill, Brian; Lamarque, Jean-François

    2015-07-01

    The sensitivity of regional climate to global average radiative forcing and temperature change is important for setting global climate policy targets and designing scenarios. Setting effective policy targets requires an understanding of the consequences exceeding them, even by small amounts, and the effective design of sets of scenarios requires the knowledge of how different emissions, concentrations, or forcing need to be in order to produce substantial differences in climate outcomes. Using an extensive database of climate model simulations, we quantify how differences in global average quantities relate to differences in both the spatial extent and magnitude of climate outcomes at regional (250-1250 km) scales. We show that differences of about 0.3 °C in global average temperature are required to generate statistically significant changes in regional annual average temperature over more than half of the Earth’s land surface. A global difference of 0.8 °C is necessary to produce regional warming over half the land surface that is not only significant but reaches at least 1 °C. As much as 2.5 to 3 °C is required for a statistically significant change in regional annual average precipitation that is equally pervasive. Global average temperature change provides a better metric than radiative forcing for indicating differences in regional climate outcomes due to the path dependency of the effects of radiative forcing. For example, a difference in radiative forcing of 0.5 W m-2 can produce statistically significant differences in regional temperature over an area that ranges between 30% and 85% of the land surface, depending on the forcing pathway.

  17. Regional projections of North Indian climate for adaptation studies.

    PubMed

    Mathison, Camilla; Wiltshire, Andrew; Dimri, A P; Falloon, Pete; Jacob, Daniela; Kumar, Pankaj; Moors, Eddy; Ridley, Jeff; Siderius, Christian; Stoffel, Markus; Yasunari, T

    2013-12-01

    Adaptation is increasingly important for regions around the world where large changes in climate could have an impact on populations and industry. The Brahmaputra-Ganges catchments have a large population, a main industry of agriculture and a growing hydro-power industry, making the region susceptible to changes in the Indian Summer Monsoon, annually the main water source. The HighNoon project has completed four regional climate model simulations for India and the Himalaya at high resolution (25km) from 1960 to 2100 to provide an ensemble of simulations for the region. In this paper we have assessed the ensemble for these catchments, comparing the simulations with observations, to give credence that the simulations provide a realistic representation of atmospheric processes and therefore future climate. We have illustrated how these simulations could be used to provide information on potential future climate impacts and therefore aid decision-making using climatology and threshold analysis. The ensemble analysis shows an increase in temperature between the baseline (1970-2000) and the 2050s (2040-2070) of between 2 and 4°C and an increase in the number of days with maximum temperatures above 28°C and 35°C. There is less certainty for precipitation and runoff which show considerable variability, even in this relatively small ensemble, spanning zero. The HighNoon ensemble is the most complete data for the region providing useful information on a wide range of variables for the regional climate of the Brahmaputra-Ganges region, however there are processes not yet included in the models that could have an impact on the simulations of future climate. We have discussed these processes and show that the range from the HighNoon ensemble is similar in magnitude to potential changes in projections where these processes are included. Therefore strategies for adaptation must be robust and flexible allowing for advances in the science and natural environmental changes.

  18. Informing Decisions with a Climate Synthesis Product: Implications for Regional Climate Services

    NASA Astrophysics Data System (ADS)

    Guido, Z.; Hill, D.; Crimmins, M.; Ferguson, D. B.

    2012-12-01

    The demand for regional climate information is increasing and spurring efforts to provide a broad slate of climate services that inform policy and resource management and elevate general knowledge. Routine syntheses of existing climate-related information may be an effective strategy for connecting climate information to decision making, but few studies have formally assessed their contribution to informing decisions. During the 2010-2011 winter, drought conditions expanded and intensified in Arizona and New Mexico, creating an opportunity to develop and evaluate a pithy, monthly regional climate communication product—La Niña Drought Tracker—that synthesized and interpreted drought and climate information. Six issues were published and subsequently evaluated through an online survey. On average, 417 people consulted the publication each month. Many of the survey respondents indicated that they made at least one drought-related decision, and the product at least moderately influenced the majority of those decisions, some of which helped mitigate economic losses and reduce climate vulnerability. The product also improved understanding of climate and drought for more than 90 percent of the respondents and helped the majority of them better prepare for drought. These, and other results demonstrate that routine interpretation and synthesis of existing climate information can help enhance access to and understanding and use of climate information in decision-making. Moreover, developing regional, contextual knowledge within climate service programs can facilitate the implementation of activities like the Tracker that enhance the use of climate information without engaging in time-consuming collaborative processes that can prevent the timely production of the services. We present results from the case study of the Tracker and place it within the context of the challenges and opportunities associated with providing climate services, particularly those services that

  19. Regional analysis of ground and above-ground climate

    SciTech Connect

    Not Available

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

  20. Regional analysis of ground and above-ground climate

    NASA Astrophysics Data System (ADS)

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of Earth tempering as a practice and of specific Earth sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground are included. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 20 locations in the United States.

  1. A regional approach to climate adaptation in the Nile Basin

    NASA Astrophysics Data System (ADS)

    Butts, Michael B.; Buontempo, Carlo; Lørup, Jens K.; Williams, Karina; Mathison, Camilla; Jessen, Oluf Z.; Riegels, Niels D.; Glennie, Paul; McSweeney, Carol; Wilson, Mark; Jones, Richard; Seid, Abdulkarim H.

    2016-10-01

    The Nile Basin is one of the most important shared basins in Africa. Managing and developing the water resources within the basin must not only address different water uses but also the trade-off between developments upstream and water use downstream, often between different countries. Furthermore, decision-makers in the region need to evaluate and implement climate adaptation measures. Previous work has shown that the Nile flows can be highly sensitive to climate change and that there is considerable uncertainty in climate projections in the region with no clear consensus as to the direction of change. Modelling current and future changes in river runoff must address a number of challenges; including the large size of the basin, the relative scarcity of data, and the corresponding dramatic variety of climatic conditions and diversity in hydrological characteristics. In this paper, we present a methodology, to support climate adaptation on a regional scale, for assessing climate change impacts and adaptation potential for floods, droughts and water scarcity within the basin.

  2. Impact of regional climate change on human health.

    PubMed

    Patz, Jonathan A; Campbell-Lendrum, Diarmid; Holloway, Tracey; Foley, Jonathan A

    2005-11-17

    The World Health Organisation estimates that the warming and precipitation trends due to anthropogenic climate change of the past 30 years already claim over 150,000 lives annually. Many prevalent human diseases are linked to climate fluctuations, from cardiovascular mortality and respiratory illnesses due to heatwaves, to altered transmission of infectious diseases and malnutrition from crop failures. Uncertainty remains in attributing the expansion or resurgence of diseases to climate change, owing to lack of long-term, high-quality data sets as well as the large influence of socio-economic factors and changes in immunity and drug resistance. Here we review the growing evidence that climate-health relationships pose increasing health risks under future projections of climate change and that the warming trend over recent decades has already contributed to increased morbidity and mortality in many regions of the world. Potentially vulnerable regions include the temperate latitudes, which are projected to warm disproportionately, the regions around the Pacific and Indian oceans that are currently subjected to large rainfall variability due to the El Niño/Southern Oscillation sub-Saharan Africa and sprawling cities where the urban heat island effect could intensify extreme climatic events.

  3. Impact of regional climate change on human health

    NASA Astrophysics Data System (ADS)

    Patz, Jonathan A.; Campbell-Lendrum, Diarmid; Holloway, Tracey; Foley, Jonathan A.

    2005-11-01

    The World Health Organisation estimates that the warming and precipitation trends due to anthropogenic climate change of the past 30years already claim over 150,000 lives annually. Many prevalent human diseases are linked to climate fluctuations, from cardiovascular mortality and respiratory illnesses due to heatwaves, to altered transmission of infectious diseases and malnutrition from crop failures. Uncertainty remains in attributing the expansion or resurgence of diseases to climate change, owing to lack of long-term, high-quality data sets as well as the large influence of socio-economic factors and changes in immunity and drug resistance. Here we review the growing evidence that climate-health relationships pose increasing health risks under future projections of climate change and that the warming trend over recent decades has already contributed to increased morbidity and mortality in many regions of the world. Potentially vulnerable regions include the temperate latitudes, which are projected to warm disproportionately, the regions around the Pacific and Indian oceans that are currently subjected to large rainfall variability due to the El Niño/Southern Oscillation sub-Saharan Africa and sprawling cities where the urban heat island effect could intensify extreme climatic events.

  4. Regional Analysis of Energy, Water, Land and Climate Interactions

    NASA Astrophysics Data System (ADS)

    Tidwell, V. C.; Averyt, K.; Harriss, R. C.; Hibbard, K. A.; Newmark, R. L.; Rose, S. K.; Shevliakova, E.; Wilson, T.

    2014-12-01

    Energy, water, and land systems interact in many ways and are impacted by management and climate change. These systems and their interactions often differ in significant ways from region-to-region. To explore the coupled energy-water-land system and its relation to climate change and management a simple conceptual model of demand, endowment and technology (DET) is proposed. A consistent and comparable analysis framework is needed as climate change and resource management practices have the potential to impact each DET element, resource, and region differently. These linkages are further complicated by policy and trade agreements where endowments of one region are used to meet demands in another. This paper reviews the unique DET characteristics of land, energy and water resources across the United States. Analyses are conducted according to the eight geographic regions defined in the 2014 National Climate Assessment. Evident from the analyses are regional differences in resources endowments in land (strong East-West gradient in forest, cropland and desert), water (similar East-West gradient), and energy. Demands likewise vary regionally reflecting differences in population density and endowment (e.g., higher water use in West reflecting insufficient precipitation to support dryland farming). The effect of technology and policy are particularly evident in differences in the energy portfolios across the eight regions. Integrated analyses that account for the various spatial and temporal differences in regional energy, water and land systems are critical to informing effective policy requirements for future energy, climate and resource management. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Resilience of marine turtle regional management units to climate change.

    PubMed

    Fuentes, Mariana M P B; Pike, David A; Dimatteo, Andrew; Wallace, Bryan P

    2013-05-01

    Enhancing species resilience to changing environmental conditions is often suggested as a climate change adaptation strategy. To effectively achieve this, it is necessary first to understand the factors that determine species resilience, and their relative importance in shaping the ability of species to adjust to the complexities of environmental change. This is an extremely challenging task because it requires comprehensive information on species traits. We explored the resilience of 58 marine turtle regional management units (RMUs) to climate change, encompassing all seven species of marine turtles worldwide. We used expert opinion from the IUCN-SSC Marine Turtle Specialist Group (n = 33 respondents) to develop a Resilience Index, which considered qualitative characteristics of each RMU (relative population size, rookery vulnerability, and genetic diversity) and non climate-related threats (fisheries, take, coastal development, and pollution/pathogens). Our expert panel perceived rookery vulnerability (the likelihood of functional rookeries becoming extirpated) and non climate-related threats as having the greatest influence on resilience of RMUs to climate change. We identified the world's 13 least resilient marine turtle RMUs to climate change, which are distributed within all three major ocean basins and include six of the world's seven species of marine turtle. Our study provides the first look at inter- and intra-species variation in resilience to climate change and highlights the need to devise metrics that measure resilience directly. We suggest that this approach can be widely used to help prioritize future actions that increase species resilience to climate change.

  6. Responses of terrestrial ecosystems' net primary productivity to future regional climate change in China.

    PubMed

    Zhao, Dongsheng; Wu, Shaohong; Yin, Yunhe

    2013-01-01

    The impact of regional climate change on net primary productivity (NPP) is an important aspect in the study of ecosystems' response to global climate change. China's ecosystems are very sensitive to climate change owing to the influence of the East Asian monsoon. The Lund-Potsdam-Jena Dynamic Global Vegetation Model for China (LPJ-CN), a global dynamical vegetation model developed for China's terrestrial ecosystems, was applied in this study to simulate the NPP changes affected by future climate change. As the LPJ-CN model is based on natural vegetation, the simulation in this study did not consider the influence of anthropogenic activities. Results suggest that future climate change would have adverse effects on natural ecosystems, with NPP tending to decrease in eastern China, particularly in the temperate and warm temperate regions. NPP would increase in western China, with a concentration in the Tibetan Plateau and the northwest arid regions. The increasing trend in NPP in western China and the decreasing trend in eastern China would be further enhanced by the warming climate. The spatial distribution of NPP, which declines from the southeast coast to the northwest inland, would have minimal variation under scenarios of climate change.

  7. The Climatology of Climate Extremes in the World's Major Growing Regions

    NASA Astrophysics Data System (ADS)

    Troy, T.; Zhu, X.

    2015-12-01

    A stable food supply is increasingly important as global populations grow and climate variability and extremes affect crop yields. It is therefore critical to quantify the occurrence of extremes in major growing regions globally to understand the vulnerability of the global food supply to climate. First, we grid the GHCN historical climate data and evaluate the effect of gridding on estimation of agriculturally relevant climate extremes, such as heat waves, consecutive dry days, and precipitation intensity. We find that the differences between gridded indices and the raw station indices are small, mostly less than 10%. We then evaluate the climatology of climate extremes and the probability of concurrent extremes, both within one growing region and across multiple regions globally. We find that the correlation of two precipitation or temperature related indices are quite strong, such that the probability of another extreme occurring increases given the occurrence of one extreme. These results provide estimations of the global food supply's vulnerability to climate variability and extremes, which is critical for planning in the coming decades with projections of more frequent and more intense climate extremes.

  8. Responses of Terrestrial Ecosystems’ Net Primary Productivity to Future Regional Climate Change in China

    PubMed Central

    Zhao, Dongsheng; Wu, Shaohong; Yin, Yunhe

    2013-01-01

    The impact of regional climate change on net primary productivity (NPP) is an important aspect in the study of ecosystems’ response to global climate change. China’s ecosystems are very sensitive to climate change owing to the influence of the East Asian monsoon. The Lund–Potsdam–Jena Dynamic Global Vegetation Model for China (LPJ-CN), a global dynamical vegetation model developed for China’s terrestrial ecosystems, was applied in this study to simulate the NPP changes affected by future climate change. As the LPJ-CN model is based on natural vegetation, the simulation in this study did not consider the influence of anthropogenic activities. Results suggest that future climate change would have adverse effects on natural ecosystems, with NPP tending to decrease in eastern China, particularly in the temperate and warm temperate regions. NPP would increase in western China, with a concentration in the Tibetan Plateau and the northwest arid regions. The increasing trend in NPP in western China and the decreasing trend in eastern China would be further enhanced by the warming climate. The spatial distribution of NPP, which declines from the southeast coast to the northwest inland, would have minimal variation under scenarios of climate change. PMID:23593325

  9. IN11B-1621: Quantifying How Climate Affects Vegetation in the Amazon Rainforest

    NASA Technical Reports Server (NTRS)

    Das, Kamalika; Kodali, Anuradha; Szubert, Marcin; Ganguly, Sangram; Bongard, Joshua

    2016-01-01

    Amazon droughts in 2005 and 2010 have raised serious concern about the future of the rainforest. Amazon forests are crucial because of their role as the largest carbon sink in the world which would effect the global warming phenomena with decreased photosynthesis activity. Especially, after a decline in plant growth in 1.68 million km2 forest area during the once-in-a-century severe drought in 2010, it is of primary importance to understand the relationship between different climatic variables and vegetation. In an earlier study, we have shown that non-linear models are better at capturing the relation dynamics of vegetation and climate variables such as temperature and precipitation, compared to linear models. In this research, we learn precise models between vegetation and climatic variables (temperature, precipitation) for normal conditions in the Amazon region using genetic programming based symbolic regression. This is done by removing high elevation and drought affected areas and also considering the slope of the region as one of the important factors while building the model. The model learned reveals new and interesting ways historical and current climate variables affect the vegetation at any location. MAIAC data has been used as a vegetation surrogate in our study. For temperature and precipitation, we have used TRMM and MODIS Land Surface Temperature data sets while learning the non-linear regression model. However, to generalize the model to make it independent of the data source, we perform transfer learning where we regress a regularized least squares to learn the parameters of the non-linear model using other data sources such as the precipitation and temperature from the Climatic Research Center (CRU). This new model is very similar in structure and performance compared to the original learned model and verifies the same claims about the nature of dependency between these climate variables and the vegetation in the Amazon region. As a result of this

  10. Climate warming affects biological invasions by shifting interactions of plants and herbivores.

    PubMed

    Lu, Xinmin; Siemann, Evan; Shao, Xu; Wei, Hui; Ding, Jianqing

    2013-08-01

    Plants and herbivorous insects can each be dramatically affected by temperature. Climate warming may impact plant invasion success directly but also indirectly through changes in their natural enemies. To date, however, there are no tests of how climate warming shifts the interactions among invasive plants and their natural enemies to affect invasion success. Field surveys covering the full latitudinal range of invasive Alternanthera philoxeroides in China showed that a beetle introduced for biocontrol was rare or absent at higher latitudes. In contrast, plant cover and mass increased with latitude. In a 2-year field experiment near the northern limit of beetle distribution, we found the beetle sustained populations across years under elevated temperature, dramatically decreasing A. philoxeroides growth, but it failed to overwinter in ambient temperature. Together, these results suggest that warming will allow the natural enemy to expand its range, potentially benefiting biocontrol in regions that are currently too cold for the natural enemy. However, the invader may also expand its range further north in response to warming. In such cases where plants tolerate cold better than their natural enemies, the geographical gap between plant and herbivorous insect ranges may not disappear but will shift to higher latitudes, leading to a new zone of enemy release. Therefore, warming will not only affect plant invasions directly but also drive either enemy release or increase that will result in contrasting effects on invasive plants. The findings are also critical for future management of invasive species under climate change.

  11. Regional predictability and the linearity of climate feedbacks

    NASA Astrophysics Data System (ADS)

    Feldl, N.; Roe, G.

    2011-12-01

    At the global scale, feedback analysis is a powerful tool for constraining climate sensitivity through understanding uncertainty in the component model physics. Our focus here is to evaluate the extent to which this framework can be applied to the question of regional climate predictability. We have developed a clean and clear approach to address these challenges. We employ the GFDL AM2 model in aquaplanet mode, coupled to simple ocean mixed-layer and sea-ice schemes, and run under perpetual equinox conditions. This simplified, aquaplanet simulation enables us to investigate the atmospheric response to carbon dioxide without the effects of a seasonal cycle or land-sea distribution, which can obscure the response. Further, we explicitly calculate radiative kernels (necessary to diagnose the feedbacks) for this precise model set-up, thus removing much of the ambiguity in the feedback approximation. We find that linking regional predictability and individual climate feedbacks depends on the balance between local radiative feedbacks and meridional energy transport in response to changes in climate forcing. An important aspect of this energy budget is the linearity of the kernel-calculated feedbacks, which we evaluate. Spatial patterns of these factors can be related to the basic structure of atmospheric circulation, and our results highlight regional differences in the effect of feedbacks on the regional climate response.

  12. Determing Credibility of Regional Simulations of Future Climate

    NASA Astrophysics Data System (ADS)

    Mearns, L. O.

    2009-12-01

    Climate models have been evaluated or validated ever since they were first developed. Establishing that a climate model can reproduce (some) aspects of the current climate of the earth on various spatial and temporal scales has long been a standard procedure for providing confidence in the model's ability to simulate future climate. However, direct links between the successes and failures of models in reproducing the current climate with regard to what future climates the models simulate has been largely lacking. This is to say that the model evaluation process has been largely divorced from the projections of future climate that the models produce. This is evidenced in the separation in the Intergovernmental Panel on Climate Change (IPCC) WG1 report of the chapter on evaluation of models from the chapter on future climate projections. There has also been the assumption of 'one model, one vote, that is, that each model projection is given equal weight in any multi-model ensemble presentation of the projections of future climate. There have been various attempts at determing measures of credibility that would avoid the 'ultrademocratic' assumption of the IPCC. Simple distinctions between models were made by research such as in Giorgi and Mearns (2002), Tebaldi et al., (2005), and Greene et al., (2006). But the metrics used were rather simplistic. More ambitous means of discriminating among the quality of model simulations have been made through the production of complex multivariate metrics, but insufficent work has been produced to verify that the metrics successfully discriminate in meaningful ways. Indeed it has been suggested that we really don't know what a model must successfully model to establish confidence in its regional-scale projections (Gleckler et al., 2008). Perhaps a more process oriented regional expert judgment approach is needed to understand which errors in climate models really matter for the model's response to future forcing. Such an approach

  13. Climate in Context - How partnerships evolve in regions

    NASA Astrophysics Data System (ADS)

    Parris, A. S.

    2014-12-01

    In 2015, NOAA's RISA program will celebrate its 20th year of exploration in the development of usable climate information. In the mid-1990s, a vision emerged to develop interdisciplinary research efforts at the regional scale for several important reasons. Recognizable climate patterns, such as the El Nino Southern Oscillation (ENSO), emerge at the regional level where our understanding of observations and models coalesce. Critical resources for society are managed in a context of regional systems, such as water supply and human populations. Multiple scales of governance (local, state, and federal) with complex institutional relationships can be examined across a region. Climate information (i.e. data, science, research etc) developed within these contexts has greater potential for use. All of this work rests on a foundation of iterative engagement between scientists and decision makers. Throughout these interactions, RISAs have navigated diverse politics, extreme events and disasters, socio-economic and ecological disruptions, and advances in both science and technology. Our understanding of information needs is evolving into a richer understanding of complex institutional, legal, political, and cultural contexts within which people can use science to make informed decisions. The outcome of RISA work includes both cases where climate information was used in decisions and cases where capacity for using climate information and making climate resilient decisions has increased over time. In addition to balancing supply and demand of scientific information, RISAs are engaged in a social process of reconciling climate information use with important drivers of society. Because partnerships are critical for sustained engagement, and because engagement is critically important to the use of science, the rapid development of new capacity in regionally-based science programs focused on providing climate decision support is both needed and challenging. New actors can bolster

  14. Impact of climate change upon vector born diseases in Europe and Africa using ENSEMBLES Regional Climate Models

    NASA Astrophysics Data System (ADS)

    Caminade, Cyril; Morse, Andy

    2010-05-01

    Climate variability is an important component in determining the incidence of a number of diseases with significant human/animal health and socioeconomic impacts. The most important diseases affecting health are vector-borne, such as malaria, Rift Valley Fever and including those that are tick borne, with over 3 billion of the world population at risk. Malaria alone is responsible for at least one million deaths annually, with 80% of malaria deaths occurring in sub-Saharan Africa. The climate has a large impact upon the incidence of vector-borne diseases; directly via the development rates and survival of both the pathogen and the vector, and indirectly through changes in the environmental conditions. A large ensemble of regional climate model simulations has been produced within the ENSEMBLES project framework for both the European and African continent. This work will present recent progress in human and animal disease modelling, based on high resolution climate observations and regional climate simulations. Preliminary results will be given as an illustration, including the impact of climate change upon bluetongue (disease affecting the cattle) over Europe and upon malaria and Rift Valley Fever over Africa. Malaria scenarios based on RCM ensemble simulations have been produced for West Africa. These simulations have been carried out using the Liverpool Malaria Model. Future projections highlight that the malaria incidence decreases at the northern edge of the Sahel and that the epidemic belt is shifted southward in autumn. This could lead to significant public health problems in the future as the demography is expected to dramatically rise over Africa for the 21st century.

  15. Attributing causes of regional climate change in the Baltic Sea area

    NASA Astrophysics Data System (ADS)

    Bhend, Jonas; Gaillard-Lemdahl, Marie-José; Hansson, Hans-Christen

    2015-04-01

    Here we assess to what extent the effect of forcing mechanisms on the observed climate change in the Baltic Sea area can be detected. In particular, we assess the effect of factors causing large-scale warming (mainly anthropogenic greenhouse gases) and the regional effect of atmospheric aerosols and land-cover and land-use changes. Unfortunately, only very few targeted analyses for the Baltic catchment area are available at the moment, but findings at the regional scale are generally qualitatively consistent with global or hemispheric analyses. The observed warming in summer cannot be explained without human influence (in particular the warming effect of increasing atmospheric greenhouse gas concentrations). In other seasons and for other aspects of regional warming, findings are mixed or not significant as of yet. In addition, large-scale circulation and rainfall changes in the northern hemisphere and the Arctic have been detected to exceed natural internal variability. Other aspects of regional climate change including changes in storminess, snow properties, runoff and the changing physical properties of the Baltic Sea have not been formally attributed to human influence yet. Scientific understanding of the effect of aerosols on regional climate is still accumulating. It is likely that the major emission changes in Europe have had an effect on the climate in the Baltic region, the magnitude of which, however, is still unknown. Development of the modelling capability and targeted analyses are urgently needed to reduce the uncertainties related to the effect of aerosol changes on regional observed climate change. Historic deforestation and recent reforestation are the major anthropogenic land-cover changes affecting the Baltic Sea area. From all studies at hand it can be concluded that there is no evidence that anthropogenic land-cover change would be one of the forcings behind the recent warming in the Baltic region. However, past anthropogenic land-cover change

  16. Book Review: Regional Hydrological Response to Climate Change

    NASA Technical Reports Server (NTRS)

    Koster, Randal

    1998-01-01

    The book being reviewed, Regional Hydrological Response to Climate Change, addresses the effects of global climate change, particularly global warming induced by greenhouse gas emissions, on hydrological budgets at the regional scale. As noted in its preface, the book consists of peer-reviewed papers delivered at scientific meetings held by the International Geographical Union Working Group on Regional Hydrological Response to Climate Change and Global Warming, supplemented with some additional chapters that round out coverage of the topic. The editors hope that this book will serve as "not only a record of current achievements, but also a stimulus to further hydrological research as the detail and spatial resolution of Global Climate Models improves". The reviewer found the background material on regional climatology to be valuable and the methodologies presented to be of interest. The value of the book is significantly diminished, however by the dated nature of some of the material and by large uncertainties in the predictions of regional precipitation change. The book would have been improved by a much more extensive documentation of the uncertainty associated with each step of the prediction process.

  17. Using NMME in Region-Specific Operational Seasonal Climate Forecasts

    NASA Astrophysics Data System (ADS)

    Gronewold, A.; Bolinger, R. A.; Fry, L. M.; Kompoltowicz, K.

    2015-12-01

    The National Oceanic and Atmospheric Administration's Climate Prediction Center (NOAA/CPC) provides access to a suite of real-time monthly climate forecasts that comprise the North American Multi-Model Ensemble (NMME) in an attempt to meet increasing demands for monthly to seasonal climate prediction. While the graphical map forecasts of the NMME are informative, there is a need to provide decision-makers with probabilistic forecasts specific to their region of interest. Here, we demonstrate the potential application of the NMME to address regional climate projection needs by developing new forecasts of temperature and precipitation for the North American Great Lakes, the largest system of lakes on Earth. Regional opertional water budget forecasts rely on these outlooks to initiate monthly forecasts not only of the water budget, but of monthly lake water levels as well. More specifically, we present an alternative for improving existing operational protocols that currently involve a relatively time-consuming and subjective procedure based on interpreting the maps of the NMME. In addition, all forecasts are currently presented in the NMME in a probabilistic format, with equal weighting given to each member of the ensemble. In our new evolution of this product, we provide historical context for the forecasts by superimposing them (in an on-line graphical user interface) with the historical range of observations. Implementation of this new tool has already led to noticeable advantages in regional water budget forecasting, and has the potential to be transferred to other regional decision-making authorities as well.

  18. Influence of the African Great Lakes on the regional climate

    NASA Astrophysics Data System (ADS)

    Thiery, Wim; Davin, Edouard; Panitz, Hans-Jürgen; Demuzere, Matthias; Lhermitte, Stef; van Lipzig, Nicole

    2015-04-01

    Although the African Great Lakes are important regulators for the East-African climate, their influence on atmospheric dynamics and the regional hydrological cycle remains poorly understood. We aim to assess this impact by conducting a regional climate model simulation which resolves individual lakes and explicitly computes lake temperatures. The regional climate model COSMO-CLM, coupled to a state-of-the-art lake parameterization scheme and land surface model, is used to dynamically downscale the COSMO-CLM CORDEX-Africa evaluation simulation to 7 km grid spacing for the period 1999-2008. Evaluation of the model reveals good performance compared to both in-situ and satellite observations, especially for spatio-temporal variability of lake surface temperatures and precipitation. Model integrations indicate that the four major African Great Lakes almost double precipitation amounts over their surface relative to a simulation without lakes, but hardly exert any influence on precipitation beyond their shores. The largest lakes also cool their near-surface air, this time with pronounced downwind influence. The lake-induced cooling happens during daytime, when the lakes absorb incoming solar radiation and inhibit upward turbulent heat transport. At night, when this heat is released, the lakes warm the near-surface air. Furthermore, Lake Victoria has profound influence on atmospheric dynamics and stability as it induces cellular motion with over-lake convective inhibition during daytime, and the reversed pattern at night. Overall, this study shows the added value of resolving individual lakes and realistically representing lake surface temperatures for climate studies in this region. Thiery, W., Davin, E., Panitz, H.-J., Demuzere, M., Lhermitte, S., van Lipzig, N.P.M., The impact of the African Great Lakes on the regional climate, J. Climate (in review).

  19. Climate fails to predict wood decomposition at regional scales

    NASA Astrophysics Data System (ADS)

    Bradford, Mark A.; Warren, Robert J., II; Baldrian, Petr; Crowther, Thomas W.; Maynard, Daniel S.; Oldfield, Emily E.; Wieder, William R.; Wood, Stephen A.; King, Joshua R.

    2014-07-01

    Decomposition of organic matter strongly influences ecosystem carbon storage. In Earth-system models, climate is a predominant control on the decomposition rates of organic matter. This assumption is based on the mean response of decomposition to climate, yet there is a growing appreciation in other areas of global change science that projections based on mean responses can be irrelevant and misleading. We test whether climate controls on the decomposition rate of dead wood--a carbon stock estimated to represent 73 +/- 6 Pg carbon globally--are sensitive to the spatial scale from which they are inferred. We show that the common assumption that climate is a predominant control on decomposition is supported only when local-scale variation is aggregated into mean values. Disaggregated data instead reveal that local-scale factors explain 73% of the variation in wood decomposition, and climate only 28%. Further, the temperature sensitivity of decomposition estimated from local versus mean analyses is 1.3-times greater. Fundamental issues with mean correlations were highlighted decades ago, yet mean climate-decomposition relationships are used to generate simulations that inform management and adaptation under environmental change. Our results suggest that to predict accurately how decomposition will respond to climate change, models must account for local-scale factors that control regional dynamics.

  20. In Brief: U.S. regional impacts of climate change

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2007-12-01

    On 4 December, the Pew Center on Global Climate Change released a report that assesses climate vulnerabilities in four different areas of the United States. ``Regional impacts of climate change: Four case studies in the United States'' notes that midwestern cities are likely to experience more frequent, longer, and hotter heat waves; that wildfires are likely to increase in the U.S. West; that sustaining fragile Gulf Coast wetlands ecosystems will be increasingly difficult due to climate change; and that the Chesapeake Bay may respond to climate change with more frequent and larger hypoxia events. The report indicates that adaptation measures need to be a critical component of any long-term U.S. climate strategy. ``The degree to which we can adapt to the consequences of climate change will be determined in large part by the policies and management practices we put in place today,'' said Pew Center president Eileen Claussen. For more information, visit the Web site: http://www.pewclimate.org.

  1. Affective Learning in Higher Education: A Regional Perspective

    ERIC Educational Resources Information Center

    Evans, Nina; Ziaian, Tahereh; Sawyer, Janet; Gillham, David

    2013-01-01

    A pilot study was conducted in a regional university setting to promote awareness of the value of affective teaching and learning amongst staff and students. Academic staff and students from diverse disciplines at University of South Australia's (UniSA) Centre for Regional Engagement (CRE) were recruited to the study. The research investigated…

  2. A High-Resolution Land Cover Study of Regional Early Eocene Climate

    NASA Astrophysics Data System (ADS)

    Thrasher, B. L.; Sloan, L. C.; Stauffer, H. L.

    2008-12-01

    Although the distribution of various types of land cover is directly affected by climate factors such as temperature and precipitation, the reverse is also true. Land cover itself can affect regional climate in a number of ways such as through changes in surface albedo, changes in moisture availability, and exchanges of gases with the atmosphere. Much of the research on the effect land cover type has on climate has dealt with modeling deforestation. The removal of boreal forests leads to an increase in albedo, decreases in both temperature and precipitation, and changes in the pattern of snowmelt. Tropical deforestation, on the other hand, leads to an increase in temperature but a decrease in precipitation and evapotranspiration. In addition to vegetation, climate effects due to surface water land cover types (lakes, wetlands, glaciers, etc.) have also been modeled. Studies of North Africa during the mid-Holocene have shown that the addition of lakes and wetlands decreases albedo and increases precipitation and evaporation in the region. Studies of Lake Victoria have shown that increases in the lake surface temperature lead to increases in regional precipitation amount and distribution. Global-scale modeling studies of the basins of Western North America have shown that the presence of a sizeable body of water in this area could have had a mitigating effect on the regional climate during the early Eocene (approximately 50-56 million years ago), keeping winter temperatures above freezing and decreasing the annual temperature range. Meanwhile, regional modeling studies of the same area and time have not examined varying land cover types and have instead used only extensive zones of singular land types. This study uses high-resolution land cover maps with a regional model to examine the climate sensitivity of Western North America during the early Eocene to the addition of land cover features such as lakes, marshland, and shrubs.

  3. Leader charisma and affective team climate: the moderating role of the leader's influence and interaction.

    PubMed

    Hernández Baeza, Ana; Araya Lao, Cristina; García Meneses, Juliana; González Romá, Vicente

    2009-11-01

    In this study, we evaluate the role of leader charisma in fostering positive affective team climate and preventing negative affective climate. The analysis of a longitudinal database of 137 bank branches by means of hierarchical moderated regression shows that leader charisma has a stronger effect on team optimism than on team tension. In addition, the leader's influence and the frequency of leader-team interaction moderate the relationship between charisma and affective climate. However, whereas the leader's influence enhances the relationship between leader charisma and positive affective climate, the frequency of interaction has counterproductive effects.

  4. CCID - Making Caribbean Climate Data Accessible to the Region

    NASA Astrophysics Data System (ADS)

    Crosbourne, R. F.; Taylor, M. A.

    2006-05-01

    Arising out of an AIACC sponsored project investigating the link between climate and the incidence of dengue in the Caribbean, was a realization that a number of deficiencies existed when it came to access to and use of Caribbean climate data. Caribbean climate data are notoriously difficult to acquire, exist neither in a centralized location nor bundled in available data packages, and often require coding into sophisticated data analysis software for the generation of even simple plots. This has proven to be a deterrent to the pursuit of climate and climate related research in and about the region, and the development of interest in climate science at the primary and secondary school levels. The development of CCID - The Caribbean Climate Interactive Database - is an attempt to overcome these deficiencies. It does so by making available a subset of Caribbean station data in a format which facilitates easy use by technical and non-technical users. CCID Version 1 is a one-stop Caribbean climate database packaged within an easy to use interface which facilitates: (i) the storage of daily maximum and minimum temperatures and rainfall station data for at least one station for 24 Caribbean territories (ii) quick and easy retrieval of subsets of the data as specified by the users through a web interface (iii) simple statistical manipulations, and (iv) easy update of the database as new data becomes available. This study details the five modules which comprise CCID's design and gives an overview of each, as well as the supporting protocols. Examples of CCID's use are also offered, as are plans for its pilot testing within the region and its future development.

  5. Integrated regional changes in arctic climate feedbacks: Implications for the global climate system

    USGS Publications Warehouse

    McGuire, A.D.; Chapin, F. S.; Walsh, J.E.; Wirth, C.; ,

    2006-01-01

    The Arctic is a key part of the global climate system because the net positive energy input to the tropics must ultimately be resolved through substantial energy losses in high-latitude regions. The Arctic influences the global climate system through both positive and negative feedbacks that involve physical, ecological, and human systems of the Arctic. The balance of evidence suggests that positive feedbacks to global warming will likely dominate in the Arctic during the next 50 to 100 years. However, the negative feedbacks associated with changing the freshwater balance of the Arctic Ocean might abruptly launch the planet into another glacial period on longer timescales. In light of uncertainties and the vulnerabilities of the climate system to responses in the Arctic, it is important that we improve our understanding of how integrated regional changes in the Arctic will likely influence the evolution of the global climate system. Copyright ?? 2006 by Annual Reviews. All rights reserved.

  6. Production and use of regional climate model projections - A Swedish perspective on building climate services.

    PubMed

    Kjellström, Erik; Bärring, Lars; Nikulin, Grigory; Nilsson, Carin; Persson, Gunn; Strandberg, Gustav

    2016-09-01

    We describe the process of building a climate service centred on regional climate model results from the Rossby Centre regional climate model RCA4. The climate service has as its central facility a web service provided by the Swedish Meteorological and Hydrological Institute where users can get an idea of various aspects of climate change from a suite of maps, diagrams, explaining texts and user guides. Here we present the contents of the web service and how this has been designed and developed in collaboration with users of the service in a dialogue reaching over more than a decade. We also present the ensemble of climate projections with RCA4 that provides the fundamental climate information presented at the web service. In this context, RCA4 has been used to downscale nine different coupled atmosphere-ocean general circulation models (AOGCMs) from the 5th Coupled Model Intercomparison Project (CMIP5) to 0.44° (c. 50 km) horizontal resolution over Europe. Further, we investigate how this ensemble relates to the CMIP5 ensemble. We find that the iterative approach involving the users of the climate service has been successful as the service is widely used and is an important source of information for work on climate adaptation in Sweden. The RCA4 ensemble samples a large degree of the spread in the CMIP5 ensemble implying that it can be used to illustrate uncertainties and robustness in future climate change in Sweden. The results also show that RCA4 changes results compared to the underlying AOGCMs, sometimes in a systematic way.

  7. Forecasting energy security impacts of biofuels using regional climate models

    NASA Astrophysics Data System (ADS)

    Yang, X.; Campbell, E.; Snyder, M. A.; Sloan, L.; Kueppers, L. M.

    2010-12-01

    Production of biofuels in the U.S. is growing rapidly, with corn providing the dominant feedstock for current production and corn stover potentially providing a critical feedstock source for future cellulosic ethanol production. While production of domestic biofuels is thought to improve energy security, future changes in climate may impact crop yield variability and erode the energy security benefits of biofuels. Here we examine future yield variability for corn and soy using RegCM regional climate data from NARCAPP, historical agronomic data, and statistical models of yield variability. Our simulations of historical yield anomalies using monthly temperature and precipitation data from RegCM show robust relationships to observed yield anomalies. Simulations of future yield anomalies show increased yield variability relative to historical yield variability in the region of high corn production. Since variability in energy supply is a critical concern for energy security we suggest that the climate-induced yield variability on critical biofuels feedstocks be explored more widely.

  8. On the suitability of regional climate models for reconstructing climatologies

    NASA Astrophysics Data System (ADS)

    Tapiador, Francisco J.; Angelis, Carlos F.; Viltard, Nicolas; Cuartero, Fernando; de Castro, Manuel

    2011-08-01

    This paper discusses the potential of Regional Climate Models (RCMs) as reanalysis tools by presenting a reconstruction of the European climate using several RCMs with diverse physical parameterizations. The use of RCMs is intended to increase the spatial resolution of the analysis provided by Global Models through dynamic downscaling. At the same time, the use of several models allows us to characterize the uncertainties, as these can be estimated from the spread of the ensemble. When the RCMs are nested in reanalyses instead of in a Global Model it is possible to create climatologies of unprecedented robustness for variables such as temperature, precipitation, wind speed, and humidity, among others. While these climatologies are subject to further improvement as methods and computing power evolve, they point the way forward to the development of atmospheric information products suitable for a variety of studies including education, agriculture, renewable energies and climate change research, biogeography, insurance, risk assessment, hydrology, and regional planning.

  9. Soil Moisture Time Stability in Two Hydro-climatic Regions

    NASA Astrophysics Data System (ADS)

    Mohanty, B. P.; Joshi, C.; Jacobs, J. M.

    2009-12-01

    In this study we present time stability analyses of soil moisture at different spatial measurement support scales (point-scale and airborne remote sensing footprint-scale 800 m X 800 m) in two different hydro-climatic regions. The data used in the analyses consist of in-situ and passive microwave remotely sensed soil moisture data from Southern Great Plains hydrology experiments 1997 and 1999 (SGP97 and SGP99) conducted in Little Washita (LW) watershed, Oklahoma, and Soil Moisture Experiments 2002 and 2005 (SMEX02 and SMEX05) in Walnut Creek (WC) watershed, Iowa. Results show that in both the regions soil properties (i.e., percentage clay, percentage sand, and soil texture), and topography (elevation and slope) are significant physical controls jointly affecting the spatio-temporal evolution and time stability of soil moisture at both point- and footprint-scale. In Iowa, using point scale soil moisture measurements, WC11 field having higher %clay and lower %sand content was found to be more time stable than the WC12 field. The common time stable points using data across the 3-year period (2002-2005) were mostly located at moderate to high elevations in both the fields. Drainage features and cropping practices also affected the field-scale soil moisture variability in the WC fields. At the remote sensing footprint-scale, the ANOVA tests show that the percentage clay and percentage sand are better able to discern the time stable features of the footprints compared to the soil texture in Iowa. Further, the footprints with steep slopes exhibited the best time stable characteristics in Iowa. On the other hand, in Oklahoma, ANOVA results show that the footprints with sandy clay and loam soil texture are better indicators of the time stability phenomena. In terms of the hill slope position, depressions (0-0.93%) followed by mild slopes (0.93-1.85%) are the best indicators of time stable footprints. Also, at both point- and footprint-scale in both the regions, land use

  10. North American regional climate reconstruction from ground surface temperature histories

    NASA Astrophysics Data System (ADS)

    Jaume-Santero, Fernando; Pickler, Carolyne; Beltrami, Hugo; Mareschal, Jean-Claude

    2016-12-01

    Within the framework of the PAGES NAm2k project, 510 North American borehole temperature-depth profiles were analyzed to infer recent climate changes. To facilitate comparisons and to study the same time period, the profiles were truncated at 300 m. Ground surface temperature histories for the last 500 years were obtained for a model describing temperature changes at the surface for several climate-differentiated regions in North America. The evaluation of the model is done by inversion of temperature perturbations using singular value decomposition and its solutions are assessed using a Monte Carlo approach. The results within 95 % confidence interval suggest a warming between 1.0 and 2.5 K during the last two centuries. A regional analysis, composed of mean temperature changes over the last 500 years and geographical maps of ground surface temperatures, show that all regions experienced warming, but this warming is not spatially uniform and is more marked in northern regions.

  11. Partnerships in the Polar Regions: Climate to Classrooms

    NASA Astrophysics Data System (ADS)

    Warburton, J.; Bartholow, S.

    2013-12-01

    PolarTREC (Teachers and Researchers Exploring and Collaborating) is a program in which K-12 teachers spend 2-6 weeks participating in hands-on field research experiences in the polar regions which focus heavily on climate change and climate science. The goal of PolarTREC is to invigorate polar science education and understanding by bringing K-12 educators and polar researchers together. Through teachers, climate understanding can be shaped for the future by having scientifically literate students entering the workforce. Alone, PolarTREC reaches a myriad of classrooms throughout the country. With new partnerships of the National Park Service and Alaska Geographic, we developed additional field experiences in climate change education for teachers. Campaigns for climate literacy do impact students but are only effective with well-trained, experienced teachers. Our programmatic goal is to expand the opportunities for PolarTREC teachers to share their involvement in science with additional formal and informal educators. 'Teaching the teachers' will reach additional audiences in media, policy, and classrooms. Modeling this program, we designed and conducted teacher trainings on climate science in Denali National Park. Utilizing expert university faculty and park managers in climate science and PolarTREC alumni teachers, the program was touted as 'the best professional opportunity to date". This program gave new teachers the tools to adequately communicate climate science for a generation of scientifically literate students. This presentation will outline the practices used in creating and implementing a climate literacy program for teachers through partnerships that will effectively influence student learning.

  12. Climate Change and a Global City: An Assessment of the Metropolitan East Coast Region

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia; Solecki, William

    1999-01-01

    The objective of the research is to derive an assessment of the potential climate change impacts on a global city - in this case the 31 county region that comprises the New York City metropolitan area. This study comprises one of the regional components that contribute to the ongoing U.S. National Assessment: The Potential Consequences of Climate Variability and Change and is an application of state-of-the-art climate change science to a set of linked sectoral assessment analyses for the Metro East Coast (MEC) region. We illustrate how three interacting elements of global cities react and respond to climate variability and change with a broad conceptual model. These elements include: people (e.g., socio- demographic conditions), place (e.g., physical systems), and pulse (e.g., decision-making and economic activities). The model assumes that a comprehensive assessment of potential climate change can be derived from examining the impacts within each of these elements and at their intersections. Thus, the assessment attempts to determine the within-element and the inter-element effects. Five interacting sector studies representing the three intersecting elements are evaluated. They include the Coastal Zone, Infrastructure, Water Supply, Public Health, and Institutional Decision-making. Each study assesses potential climate change impacts on the sector and on the intersecting elements, through the analysis of the following parts: 1. Current conditions of sector in the region; 2. Lessons and evidence derived from past climate variability; 3. Scenario predictions affecting sector; potential impacts of scenario predictions; 4. Knowledge/information gaps and critical issues including identification of additional research questions, effectiveness of modeling efforts, equity of impacts, potential non-local interactions, and policy recommendations; and 5. Identification of coping strategies - i.e., resilience building, mitigation strategies, new technologies, education that

  13. Regional Climate Change and Development of Public Health Decision Aids

    NASA Astrophysics Data System (ADS)

    Hegedus, A. M.; Darmenova, K.; Grant, F.; Kiley, H.; Higgins, G. J.; Apling, D.

    2011-12-01

    According to the World Heath Organization (WHO) climate change is a significant and emerging threat to public health, and changes the way we must look at protecting vulnerable populations. Worldwide, the occurrence of some diseases and other threats to human health depend predominantly on local climate patterns. Rising average temperatures, in combination with changing rainfall patterns and humidity levels, alter the lifecycle and regional distribution of certain disease-carrying vectors, such as mosquitoes, ticks and rodents. In addition, higher surface temperatures will bring heat waves and heat stress to urban regions worldwide and will likely increase heat-related health risks. A growing body of scientific evidence also suggests an increase in extreme weather events such as floods, droughts and hurricanes that can be destructive to human health and well-being. Therefore, climate adaptation and health decision aids are urgently needed by city planners and health officials to determine high risk areas, evaluate vulnerable populations and develop public health infrastructure and surveillance systems. To address current deficiencies in local planning and decision making with respect to regional climate change and its effect on human health, our research is focused on performing a dynamical downscaling with the Weather Research and Forecasting (WRF) model to develop decision aids that translate the regional climate data into actionable information for users. WRF model is initialized with the Max Planck Institute European Center/Hamburg Model version 5 (ECHAM5) General Circulation Model simulations forced with the Special Report on Emissions (SRES) A1B emissions scenario. Our methodology involves development of climatological indices of extreme weather, quantifying the risk of occurrence of water/rodent/vector-borne diseases as well as developing various heat stress related decision aids. Our results indicate that the downscale simulations provide the necessary

  14. Impacts of climate change on land-use and wetland productivity in the Prairie Pothole Region of North America

    USGS Publications Warehouse

    Rashford, Benjamin S.; Adams, Richard M.; Wu, JunJie; Voldseth, Richard A.; Guntenspergen, Glenn R.; Werner, Brett; Johnson, W. Carter

    2016-01-01

    Wetland productivity in the Prairie Pothole Region (PPR) of North America is closely linked to climate. A warmer and drier climate, as predicted, will negatively affect the productivity of PPR wetlands and the services they provide. The effect of climate change on wetland productivity, however, will not only depend on natural processes (e.g., evapotranspiration), but also on human responses. Agricultural land use, the predominant use in the PPR, is unlikely to remain static as climate change affects crop yields and prices. Land use in uplands surrounding wetlands will further affect wetland water budgets and hence wetland productivity. The net impact of climate change on wetland productivity will therefore depend on both the direct effects of climate change on wetlands and the indirect effects on upland land use. We examine the effect of climate change and land-use response on semipermanent wetland productivity by combining an economic model of agricultural land-use change with an ecological model of wetland dynamics. Our results suggest that the climate change scenarios evaluated are likely to have profound effects on land use in the North and South Dakota PPR, with wheat displacing other crops and pasture. The combined pressure of land-use and climate change significantly reduces wetland productivity. In a climate scenario with a +4 °C increase in temperature, our model predicts that almost the entire region may lack the wetland productivity necessary to support wetland-dependent species.

  15. Downscaled Regional Climate Information for the Southeastern US

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s Office of Research and Development in Research Triangle Park, NC, has been developing regional climate and air quality fields for North America for current and future periods. Research emphasis has been placed on evaluating near-s...

  16. Regional Climate Change Impact on Agricultural Land Use in West Africa

    NASA Astrophysics Data System (ADS)

    Ahmed, K. F.; Wang, G.; You, L.

    2014-12-01

    Agriculture is a key element of the human-induced land use land cover change (LULCC) that is influenced by climate and can potentially influence regional climate. Temperature and precipitation directly impact the crop yield (by controlling photosynthesis, respiration and other physiological processes) that then affects agricultural land use pattern. In feedback, the resulting changes in land use and land cover play an important role to determine the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. The assessment of future agricultural land use is, therefore, of great importance in climate change study. In this study, we develop a prototype land use projection model and, using this model, project the changes to land use pattern and future land cover map accounting for climate-induced yield changes for major crops in West Africa. Among the inputs to the land use projection model are crop yield changes simulated by the crop model DSSAT, driven with the climate forcing data from the regional climate model RegCM4.3.4-CLM4.5, which features a projected decrease of future mean crop yield and increase of inter-annual variability. Another input to the land use projection model is the projected changes of food demand in the future. In a so-called "dumb-farmer scenario" without any adaptation, the combined effect of decrease in crop yield and increase in food demand will lead to a significant increase in agricultural land use in future years accompanied by a decrease in forest and grass area. Human adaptation through land use optimization in an effort to minimize agricultural expansion is found to have little impact on the overall areas of agricultural land use. While the choice of the General Circulation Model (GCM) to derive initial and boundary conditions for the regional climate model can be a source of uncertainty in projecting the future LULCC, results from sensitivity experiments indicate that the changes

  17. Spatial connectivity of urban clusters and regional climate effects

    NASA Astrophysics Data System (ADS)

    Jia, G.; Hu, Y.; Xu, R.

    2015-12-01

    Rapid urbanization in East Asia in past three decades is considered as a remarkable process that featured with expansion of urban clusters and tightened linkages within and among clusters. Such process could lead to much larger scale climate effects, and could even contribute to sub-regional and regional climate change. In large area of urban clusters with significant expansion of built-up in relatively short period, local urban heat islands could contribute to sub-regional climate forcing. Here we use visible/near infrared and thermal infrared satellite data to estimate multiple scale structure of urban clusters, and to assess effects of urban heat islands at local and regional scales in East Asia. Our estimates of urban extent were greater than previously reported in most global datasets. Strong spatial connection and internal expansion were found in major urban clusters in past 30 years, and was accelerated in past 10 years. Many city clusters were merging into each other, with gradual blurring boundaries and disappearing of gaps among member cities. Cities and towns were more connected with roads and commercial corridors, while wildland and urban greens became more isolated as patches among built-up areas. We would argue that in many cases in this region, urban clusters are no longer "islands", they are now "seas" in term of climate related urban canopy. Urban greens such as parks and plantation were long recognized for their cooling effects that buffer the urban heat island effect, however, such cooling effects tend to be weakened as their patches became smaller and isolated, and over dominated by urban surfaces. There were significant positive relations between urban fraction and urban heat island effects as demonstrated by VNIR and TIR data from multiple satellites. Those new estimates are expected to effectively improve climate simulation for better understanding the impacts of inter-connected urban clusters on air temperature, precipitation, wind speed

  18. Predicting the Affects of Climate Change on Evapotranspiration and Agricultural Productivity of Semi-arid Basins

    NASA Astrophysics Data System (ADS)

    Peri, L.; Tyler, S. W.; Zheng, C.; Pohll, G. M.; Yao, Y.

    2013-12-01

    Many arid and semi-arid regions around the world are experiencing water shortages that have become increasingly problematic. Since the late 1800s, upstream diversions in Nevada's Walker River have delivered irrigation supply to the surrounding agricultural fields resulting in a dramatic water level decline of the terminal Walker Lake. Salinity has also increased because the only outflow from the lake is evaporation from the lake surface. The Heihe River basin of northwestern China, a similar semi-arid catchment, is also facing losses from evaporation of terminal locations, agricultural diversions and evapotranspiration (ET) of crops. Irrigated agriculture is now experiencing increased competition for use of diminishing water resources while a demand for ecological conservation continues to grow. It is important to understand how the existing agriculture in these regions will respond as climate changes. Predicting the affects of climate change on groundwater flow, surface water flow, ET and agricultural productivity of the Walker and Heihe River basins is essential for future conservation of water resources. ET estimates from remote sensing techniques can provide estimates of crop water consumption. By determining similarities of both hydrologic cycles, critical components missing in both systems can be determined and predictions of impacts of climate change and human management strategies can be assessed.

  19. Evaluation of a High-Resolution Regional Climate Ensemble

    NASA Astrophysics Data System (ADS)

    Bruyere, C. L.; Tye, M. R.; Keellings, D.; Jaye, A.

    2014-12-01

    A high-resolution Regional Climate Ensemble is used to investigate the limits of predictability of climate simulations, with a focus on high-impact weather. A diverse set of approaches are being applied to examine the impact of the different physics parameterizations on the simulated climate and high-impact weather statistics and to determine the physics combinations that result in realistic scenarios. In this paper we focus on the ensemble members' ability to correctly simulate current climate variability in terms of: 1) extreme temperature and precipitation over different regions, and 2) tropical cyclone statistics. A twenty-four member physics ensemble of climate simulations has been generated using the state-of-the-art Weather Research and Forecasting Model (Skamarock et al. 2008). The ensemble model has been run over an extended North American domain of approximately 25° S to 70° N and from the African coast to the East Pacific, and at sufficient resolution to capture high-impact weather events. Skamarock, W., J. B. Klemp, J. Dudhia, D. O. Gill, D. Barker, M. G. Duda, X. Huang, and W. Wang, 2008: A Description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN-475+STR. Boulder, CO.

  20. Climate change and the future of natural disturbances in the central hardwood region

    SciTech Connect

    Dale, Virginia H; Hughes, M. Joseph; Hayes, Daniel J

    2015-01-01

    The spatial patterns and ecological processes of the southeastern upland hardwood forests have evolved to reflect past climatic conditions and natural disturbance regimes. Changes in climate can lead to disturbances that exceed their natural range of variation, and the impacts of these changes will depend on the vulnerability or resiliency of these ecosystems. Global Circulation Models generally project annual increases in temperature across the southeastern United States over the coming decades, but changes in precipitation are less consistent. Even more unclear is how climate change might affect future trends in the severity and frequency of natural disturbances, such as severe storms, fires, droughts, floods, and insect outbreaks. Here, we use a time-series satellite data record to map the spatial pattern and severity of broad classes of natural disturbances the southeast region. The data derived from this map allow analysis of regional-scale trends in natural and anthropogenic disturbances in the region over the last three decades. Throughout the region, between 5% and 25% of forest land is affected by some sort of disturbance each year since 1985. The time series reveals periodic droughts that themselves are widespread and of low severity but are associated with more localized, high-severity disturbances such as fire and insect outbreaks. The map also reveals extensive anthropogenic disturbance across the region in the form of forest conversion related to resource extraction and urban and residential development. We discuss how changes in climate and disturbance regimes might affect southeastern forests in the future via altering the exposure, sensitivity and adaptive capacity of these ecosystems. Changes in climate are highly likely to expose southeastern forests to more frequent and severe disturbances, but ultimately how vulnerable or resilient southeastern forests are to these changes will depend on their sensitivity and capacity to adapt to these novel

  1. The United States National Climate Assessment - Alaska Technical Regional Report

    USGS Publications Warehouse

    Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart; Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart

    2012-01-01

    The Alaskan landscape is changing, both in terms of effects of human activities as a consequence of increased population, social and economic development and their effects on the local and broad landscape; and those effects that accompany naturally occurring hazards such as volcanic eruptions, earthquakes, and tsunamis. Some of the most prevalent changes, however, are those resulting from a changing climate, with both near term and potential upcoming effects expected to continue into the future. Alaska's average annual statewide temperatures have increased by nearly 4°F from 1949 to 2005, with significant spatial variability due to the large latitudinal and longitudinal expanse of the State. Increases in mean annual temperature have been greatest in the interior region, and smallest in the State's southwest coastal regions. In general, however, trends point toward increases in both minimum temperatures, and in fewer extreme cold days. Trends in precipitation are somewhat similar to those in temperature, but with more variability. On the whole, Alaska saw a 10-percent increase in precipitation from 1949 to 2005, with the greatest increases recorded in winter. The National Climate Assessment has designated two well-established scenarios developed by the Intergovernmental Panel on Climate Change (Nakicenovic and others, 2001) as a minimum set that technical and author teams considered as context in preparing portions of this assessment. These two scenarios are referred to as the Special Report on Emissions Scenarios A2 and B1 scenarios, which assume either a continuation of recent trends in fossil fuel use (A2) or a vigorous global effort to reduce fossil fuel use (B1). Temperature increases from 4 to 22°F are predicted (to 2070-2099) depending on which emissions scenario (A2 or B1) is used with the least warming in southeast Alaska and the greatest in the northwest. Concomitant with temperature changes, by the end of the 21st century the growing season is expected

  2. Impacts of uncertainties in European gridded precipitation observations on regional climate analysis.

    PubMed

    Prein, Andreas F; Gobiet, Andreas

    2017-01-01

    Gridded precipitation data sets are frequently used to evaluate climate models or to remove model output biases. Although precipitation data are error prone due to the high spatio-temporal variability of precipitation and due to considerable measurement errors, relatively few attempts have been made to account for observational uncertainty in model evaluation or in bias correction studies. In this study, we compare three types of European daily data sets featuring two Pan-European data sets and a set that combines eight very high-resolution station-based regional data sets. Furthermore, we investigate seven widely used, larger scale global data sets. Our results demonstrate that the differences between these data sets have the same magnitude as precipitation errors found in regional climate models. Therefore, including observational uncertainties is essential for climate studies, climate model evaluation, and statistical post-processing. Following our results, we suggest the following guidelines for regional precipitation assessments. (1) Include multiple observational data sets from different sources (e.g. station, satellite, reanalysis based) to estimate observational uncertainties. (2) Use data sets with high station densities to minimize the effect of precipitation undersampling (may induce about 60% error in data sparse regions). The information content of a gridded data set is mainly related to its underlying station density and not to its grid spacing. (3) Consider undercatch errors of up to 80% in high latitudes and mountainous regions. (4) Analyses of small-scale features and extremes are especially uncertain in gridded data sets. For higher confidence, use climate-mean and larger scale statistics. In conclusion, neglecting observational uncertainties potentially misguides climate model development and can severely affect the results of climate change impact assessments.

  3. Can regional climate engineering save the summer Arctic sea ice?

    NASA Astrophysics Data System (ADS)

    Tilmes, S.; Jahn, Alexandra; Kay, Jennifer E.; Holland, Marika; Lamarque, Jean-Francois

    2014-02-01

    Rapid declines in summer Arctic sea ice extent are projected under high-forcing future climate scenarios. Regional Arctic climate engineering has been suggested as an emergency strategy to save the sea ice. Model simulations of idealized regional dimming experiments compared to a business-as-usual greenhouse gas emission simulation demonstrate the importance of both local and remote feedback mechanisms to the surface energy budget in high latitudes. With increasing artificial reduction in incoming shortwave radiation, the positive surface albedo feedback from Arctic sea ice loss is reduced. However, changes in Arctic clouds and the strongly increasing northward heat transport both counteract the direct dimming effects. A 4 times stronger local reduction in solar radiation compared to a global experiment is required to preserve summer Arctic sea ice area. Even with regional Arctic dimming, a reduction in the strength of the oceanic meridional overturning circulation and a shut down of Labrador Sea deep convection are possible.

  4. Mid-Holocene regional reorganization of climate variability

    NASA Astrophysics Data System (ADS)

    Wirtz, K. W.; Bernhardt, K.; Lohmann, G.; Lemmen, C.

    2009-01-01

    We integrate 130 globally distributed proxy time series to refine the understanding of climate variability during the Holocene. Cyclic anomalies and temporal trends in periodicity from the Lower to the Upper Holocene are extracted by combining Lomb-Scargle Fourier-transformed spectra with bootstrapping. Results were cross-checked by counting events in the time series. Main outcomes are: First, the propensity of the climate system to fluctuations is a region specific property. Many records of adjacent sites reveal a similar change in variability although they belong to different proxy types (e.g., δ18O, lithic composition). Secondly, at most sites, irreversible change occured in the Mid-Holocene. We suggest that altered ocean circulation together with slightly modified coupling intensity between regional climate subsystems around the 5.5 kyr BP event (termination of the African Humid Period) were responsible for the shift. Fluctuations especially intensified along a pan-American corridor. This may have led to an unequal crisis probability for early human civilizations in the Old and New World. Our study did not produce evidence for millennial scale cyclicity in some solar activity proxies for the Upper Holocene, nor for a privileged role of the prominent 250, 550, 900 and 1450 yr cycles. This lack of global periodicities corroborates the regional character of climate variability.

  5. Mid-Holocene regional reorganization of climate variability

    NASA Astrophysics Data System (ADS)

    Wirtz, K. W.; Bernhardt, K.; Lohmann, G.; Lemmen, C.

    2009-04-01

    We integrate 130 globally distributed proxy time series to refine the understanding of climate variability during the Holocene. Cyclic anomalies and temporal trends in periodicity from the Lower to the Upper Holocene are extracted by combining Lomb-Scargle Fourier-transformed spectra with bootstrapping. Results were cross-checked by counting events in the time series. Main outcomes are: First, the propensity of the climate system to fluctuations is a region specific property. Many records of adjacent sites reveal a similar change in variability although they belong to different proxy types (e.g., δ18O, lithic composition). Secondly, at most sites, irreversible change occured in the Mid- Holocene. We suggest that altered ocean circulation together with slightly modified coupling intensity between regional climate subsystems around the 5.5 kyr BP event (termination of the African Humid Period) were responsible for the shift. Fluctuations especially intensified along a pan- American corridor. This may have led to an unequal crisis probability for early human civilizations in the Old and New World. Our study did not produce evidence for millennial scale cyclicity in some solar activity proxies for the Upper Holocene, nor for a privileged role of the prominent 250, 550, 900 and 1450 yr cycles. This lack of global periodicities corroborates the regional character of climate variability.

  6. Regional climate change-Science in the Southeast

    USGS Publications Warehouse

    Jones, Sonya A.

    2010-01-01

    Resource managers are at the forefront of a new era of management. They must consider the potential impacts of climate change on the Nation's resources and proactively develop strategies for dealing with those impacts on plants, animals, and ecosystems. This requires rigorous, scientific understanding of environmental change. The role of the U.S. Geological Survey (USGS) in this effort is to analyze climate-change data and develop tools for assessing how changing conditions are likely to impact resources. This information will assist Federal, State, local, and tribal partners manage resources strategically. The 2008 Omnibus Budget Act and Secretarial Order 3289 established a new network of eight Department of Interior Regional Climate Science Centers to provide technical support for resource managers. The Southeast Regional Assessment Project (SERAP) is the first regional assessment to be funded by the USGS National Climate Change and Wildlife Science Center (http://nccw.usgs.gov/). The USGS is working closely with the developing Department of Interior Landscape Conservation Cooperatives to ensure that the project will meet the needs of resource managers in the Southeast. In addition, the U.S. Fish and Wildlife Service is providing resources to the SERAP to expand the scope of the project.

  7. Late holocene climate changes in the Sea of Azov region

    NASA Astrophysics Data System (ADS)

    Matishov, G. G.; Novenko, E. Yu.; Krasnorutskaya, K. V.

    2012-05-01

    The results of paleoclimatic reconstructions made with the help of the information-statistical method developed by V.A. Klimanov based on palynological data from the Sea of Azov bottom sediments. For the period of the last 3000 years, four phases of warm and dry climates and three phases of relatively cool and humid climates were identified. The latter phases were characterized by wider expansion of tree vegetation in the region around the Sea of Azov. The range of mean annual temperatures between warmer and cooler intervals was about 4°C.

  8. Solar Forcing of Regional Climate Change During the Maunder Minimum

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.; Schmidt, Gavin A.; Mann, Michael E.; Rind, David; Waple, Anne; Hansen, James E. (Technical Monitor)

    2002-01-01

    We examine the climate response to solar irradiance changes between the late 17th century Maunder Minimum and the late 18th century. Global average temperature changes are small (about 0.3 to 0.4 C) in both a climate model and empirical reconstructions. However, regional temperature changes are quite large. In the model, these occur primarily through a forced shift toward the low index state of the Arctic Oscillation/North Atlantic Oscillation. This leads to colder temperatures over the Northern Hemisphere continents, especially in winter (1 to 2 C), in agreement with historical records and proxy data for surface temperatures.

  9. Tropical deforestation: Modeling local- to regional-scale climate change

    SciTech Connect

    Henderson-Sellers, A.; Durbidge, T.B.; Pitman, A.J. ); Dickinson, R.E. ); Kennedy, P.J. ); McGuffie, K. )

    1993-04-20

    The authors report results from a model study using the National Center for Atmospheric Research Community Climate Model (Version 1) general circulation model to assess the impact of regional scale deforestation on climate change. In the model a large parcel in the Amazon basin is changed from tropical rain forest to scrub grassland. Impacts can include adding CO[sub 2] to the atmosphere by biomass burning, increasing surface albedo, changing precipitation and evaporation rates, impacting soil moisture, and general weather patterns. They compare their model results with earlier work which has looked at this same problem.

  10. Future meteorological drought: projections of regional climate models for Europe

    NASA Astrophysics Data System (ADS)

    Stagge, James; Tallaksen, Lena; Rizzi, Jonathan

    2015-04-01

    In response to the major European drought events of the last decade, projecting future drought frequency and severity in a non-stationary climate is a major concern for Europe. Prior drought studies have identified regional hotspots in the Mediterranean and Eastern European regions, but have otherwise produced conflicting results with regard to future drought severity. Some of this disagreement is likely related to the relatively coarse resolution of Global Climate Models (GCMs) and regional averaging, which tends to smooth extremes. This study makes use of the most current Regional Climate Models (RCMs) forced with CMIP5 climate projections to quantify the projected change in meteorological drought for Europe during the next century at a fine, gridded scale. Meteorological drought is quantified using the Standardized Precipitation Index (SPI) and the Standardized Precipitation-Evapotranspiration Index (SPEI), which normalize accumulated precipitation and climatic water balance anomaly, respectively, for a specific location and time of year. By comparing projections for these two indices, the importance of precipitation deficits can be contrasted with the importance of evapotranspiration increases related to temperature changes. Climate projections are based on output from CORDEX (the Coordinated Regional Climate Downscaling Experiment), which provides high resolution regional downscaled climate scenarios that have been extensively tested for numerous regions around the globe, including Europe. SPI and SPEI are then calculated on a gridded scale at a spatial resolution of either 0.44 degrees (~50 km) or 0.11 degrees (~12.5km) for the three projected emission pathways (rcp26, rcp45, rcp85). Analysis is divided into two major sections: first validating the models with respect to observed historical trends in meteorological drought from 1970-2005 and then comparing drought severity and frequency during three future time periods (2011-2040, 2041-2070, 2071-2100) to the

  11. Extreme events evaluation over African cities with regional climate simulations

    NASA Astrophysics Data System (ADS)

    Bucchignani, Edoardo; Mercogliano, Paola; Simonis, Ingo; Engelbrecht, Francois

    2013-04-01

    The warming of the climate system in recent decades is evident from observations and is mainly related to the increase of anthropogenic greenhouse gas concentrations (IPCC, 2012). Given the expected climate change conditions on the African continent, as underlined in different publications, and their associated socio-economic impacts, an evaluation of the specific effects on some strategic African cities on the medium and long-term is of crucial importance with regard to the development of adaptation strategies. Assessments usually focus on averages climate properties rather than on variability or extremes, but often these last ones have more impacts on the society than averages values. Global Coupled Models (GCM) are generally used to simulate future climate scenarios as they guarantee physical consistency between variables; however, due to the coarse spatial resolution, their output cannot be used for impact studies on local scales, which makes necessary the generation of higher resolution climate change data. Regional Climate Models (RCM) describe better the phenomena forced by orography or by coastal lines, or that are related to convection. Therefore they can provide more detailed information on climate extremes that are hard to study and even harder to predict because they are, by definition, rare and obey different statistical laws. The normal bias of the RCM to represent the local climatology is reduced using adequate statistical techniques based on the comparison of the simulated results with long observational time series. In the framework of the EU-FP7 CLUVA (Climate Change and Urban Vulnerability in Africa) project, regional projections of climate change at high resolution (about 8 km), have been performed for selected areas surrounding five African cities. At CMCC, the regional climate model COSMO-CLM has been employed: it is a non-hydrostatic model. For each domain, two simulations have been performed, considering the RCP4.5 and RCP8.5 emission

  12. Potential effects of climate change on freshwater ecosystems of the New England/Mid-Atlantic Region

    USGS Publications Warehouse

    Moore, M.V.; Pace, M.L.; Mather, J.R.; Murdoch, Peter S.; Howarth, R.W.; Folt, C.L.; Chen, C.-Y.; Hemond, Harold F.; Flebbe, P.A.; Driscoll, C.T.

    1997-01-01

    Numerous freshwater ecosystems, dense concentrations of humans along the eastern seaboard, extensive forests and a history of intensive land use distinguish the New England/Mid-Atlantic Region. Human population densities are forecast to increase in portions of the region at the same time that climate is expected to be changing. Consequently, the effects of humans and climatic change are likely to affect freshwater ecosystems within the region interactively. The general climate, at present, is humid continental, and the region receives abundant precipitation. Climatic projections for a 2 ??CO2 atmosphere, however, suggest warmer and drier conditions for much of this region. Annual temperature increases ranging from 3-5??C are projected, with the greatest increases occurring in autumn or winter. According to a water balance model, the projected increase in temperature will result in greater rates of evaporation and evapotranspiration. This could cause a 21 and 31% reduction in annual stream flow in the southern and northern sections of the region, respectively, with greatest reductions occurring in autumn and winter. The amount and duration of snow cover is also projected to decrease across the region, and summer convective thunderstorms are likely to decrease in frequency but increase in intensity. The dual effects of climate change and direct anthropogenic stress will most likely alter hydrological and biogeochemical processes, and, hence, the floral and faunal communities of the region's freshwater ecosystems. For example, the projected increase in evapotranspiration and evaporation could eliminate most bog ecosystems, and increases in water temperature may increase bioaccumulation, and possibly biomagnification, of organic and inorganic contaminants. Not all change may be adverse. For example, a decrease in runoff may reduce the intensity of ongoing estuarine eutrophication, and acidification of aquatic habitats during the spring snowmelt period may be

  13. Model experiments on climate change in the Tokyo metropolitan area using regional climate scenarios

    NASA Astrophysics Data System (ADS)

    Tsunematsu, N.; Dairaku, K.

    2011-12-01

    There is a possibility that the future atmospheric warming leads to more frequent heavy rainfall in the metropolitan area, thereby increasing the risk of floods. As part of REsearch Program on Climate Change Adaptation (RECCA) funded by Ministry of Education, Culture, Sports, Science and Technology, Japan, we started numerical model experiments for investigating the vulnerability and adaptation to climate change in water hazard assessments in the metropolitan area by the use of regional climate scenarios. The model experiments adopt dynamical downscaling techniques. Future climate projections obtained from regional climate model simulations at 20 km horizontal grid spacing are downscaled into finer grids (less than 5 km resolutions) of Regional Atmospheric Modeling System Version 6.0 modified by National Research Institute for Earth Science and Disaster Prevention (NIED-RAMS). Prior to performing the dynamical downscaling experiments, the NIED-RAMS model biases are evaluated by comparing long-term surface meteorological observations with results of the model simulations that are carried out by using the Japanese Re-Analysis (JRA) data and Japan Meteorological Agency Meso-Scale Model outputs as the initial and boundary conditions.

  14. Impacts of climate change on mangrove ecosystems: A region by region overview

    USGS Publications Warehouse

    Ward, Raymond D.; Friess, Daniel A.; Day, Richard H.; MacKenzie, Richard A.

    2016-01-01

    Inter-related and spatially variable climate change factors including sea level rise, increased storminess, altered precipitation regime and increasing temperature are impacting mangroves at regional scales. This review highlights extreme regional variation in climate change threats and impacts, and how these factors impact the structure of mangrove communities, their biodiversity and geomorphological setting. All these factors interplay to determine spatially variable resiliency to climate change impacts, and because mangroves are varied in type and geographical location, these systems are good models for understanding such interactions at different scales. Sea level rise is likely to influence mangroves in all regions although local impacts are likely to be more varied. Changes in the frequency and intensity of storminess are likely to have a greater impact on N and Central America, Asia, Australia, and East Africa than West Africa and S. America. This review also highlights the numerous geographical knowledge gaps of climate change impacts, with some regions particularly understudied (e.g., Africa and the Middle East). While there has been a recent drive to address these knowledge gaps especially in South America and Asia, further research is required to allow researchers to tease apart the processes that influence both vulnerability and resilience to climate change. A more globally representative view of mangroves would allow us to better understand the importance of mangrove type and landscape setting in determining system resiliency to future climate change.

  15. Significance of model credibility in estimating climate projection distributions for regional hydroclimatological risk assessments

    USGS Publications Warehouse

    Brekke, L.D.; Dettinger, M.D.; Maurer, E.P.; Anderson, M.

    2008-01-01

    Ensembles of historical climate simulations and climate projections from the World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset were investigated to determine how model credibility affects apparent relative scenario likelihoods in regional risk assessments. Methods were developed and applied in a Northern California case study. An ensemble of 59 twentieth century climate simulations from 17 WCRP CMIP3 models was analyzed to evaluate relative model credibility associated with a 75-member projection ensemble from the same 17 models. Credibility was assessed based on how models realistically reproduced selected statistics of historical climate relevant to California climatology. Metrics of this credibility were used to derive relative model weights leading to weight-threshold culling of models contributing to the projection ensemble. Density functions were then estimated for two projected quantities (temperature and precipitation), with and without considering credibility-based ensemble reductions. An analysis for Northern California showed that, while some models seem more capable at recreating limited aspects twentieth century climate, the overall tendency is for comparable model performance when several credibility measures are combined. Use of these metrics to decide which models to include in density function development led to local adjustments to function shapes, but led to limited affect on breadth and central tendency, which were found to be more influenced by 'completeness' of the original ensemble in terms of models and emissions pathways. ?? 2007 Springer Science+Business Media B.V.

  16. Impact of Agricultural Practice on Regional Climate in a CoupledLand Surface Mesoscale Model

    SciTech Connect

    Cooley, H.S.; Riley, W.J.; Torn, M.S.; He, Y.

    2004-07-01

    The land surface has been shown to form strong feedbacks with climate due to linkages between atmospheric conditions and terrestrial ecosystem exchanges of energy, momentum, water, and trace gases. Although often ignored in modeling studies, land management itself may form significant feedbacks. Because crops are harvested earlier under drier conditions, regional air temperature, precipitation, and soil moisture, for example, affect harvest timing, particularly of rain-fed crops. This removal of vegetation alters the land surface characteristics and may, in turn, affect regional climate. We applied a coupled climate(MM5) and land-surface (LSM1) model to examine the effects of early and late winter wheat harvest on regional climate in the Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility in the Southern Great Plains, where winter wheat accounts for 20 percent of the land area. Within the winter wheat region, simulated 2 m air temperature was 1.3 C warmer in the Early Harvest scenario at mid-day averaged over the two weeks following harvest. Soils in the harvested area were drier and warmer in the top 10 cm and wetter in the 10-20 cm layer. Midday soils were 2.5 C warmer in the harvested area at mid-day averaged over the two weeks following harvest. Harvest also dramatically altered latent and sensible heat fluxes. Although differences between scenarios diminished once both scenarios were harvested, the short-term impacts of land management on climate were comparable to those from land cover change demonstrated in other studies.

  17. Combined effects of global climate change and regional ecosystem drivers on an exploited marine food web.

    PubMed

    Niiranen, Susa; Yletyinen, Johanna; Tomczak, Maciej T; Blenckner, Thorsten; Hjerne, Olle; Mackenzie, Brian R; Müller-Karulis, Bärbel; Neumann, Thomas; Meier, H E Markus

    2013-11-01

    Changes in climate, in combination with intensive exploitation of marine resources, have caused large-scale reorganizations in many of the world's marine ecosystems during the past decades. The Baltic Sea in Northern Europe is one of the systems most affected. In addition to being exposed to persistent eutrophication, intensive fishing, and one of the world's fastest rates of warming in the last two decades of the 20th century, accelerated climate change including atmospheric warming and changes in precipitation is projected for this region during the 21st century. Here, we used a new multimodel approach to project how the interaction of climate, nutrient loads, and cod fishing may affect the future of the open Central Baltic Sea food web. Regionally downscaled global climate scenarios were, in combination with three nutrient load scenarios, used to drive an ensemble of three regional biogeochemical models (BGMs). An Ecopath with Ecosim food web model was then forced with the BGM results from different nutrient-climate scenarios in combination with two different cod fishing scenarios. The results showed that regional management is likely to play a major role in determining the future of the Baltic Sea ecosystem. By the end of the 21st century, for example, the combination of intensive cod fishing and high nutrient loads projected a strongly eutrophicated and sprat-dominated ecosystem, whereas low cod fishing in combination with low nutrient loads resulted in a cod-dominated ecosystem with eutrophication levels close to present. Also, nonlinearities were observed in the sensitivity of different trophic groups to nutrient loads or fishing depending on the combination of the two. Finally, many climate variables and species biomasses were projected to levels unseen in the past. Hence, the risk for ecological surprises needs to be addressed, particularly when the results are discussed in the ecosystem-based management context.

  18. Use of Climatic Information In Regional Water Resources Assessment

    NASA Astrophysics Data System (ADS)

    Claps, P.

    Relations between climatic parameters and hydrological variables at the basin scale are investigated, with the aim of evaluating in a parsimonious way physical parameters useful both for a climatic classification of an area and for supporting statistical models of water resources assessment. With reference to the first point, literature methods for distributed evaluation of parameters such as temperature, global and net solar radiation, precipitation, have been considered at the annual scale with the aim of considering the viewpoint of the robust evaluation of parameters based on few basic physical variables of simple determination. Elevation, latitude and average annual number of sunny days have demonstrated to be the essential parameters with respect to the evaluation of climatic indices related to the soil water deficit and to the radiative balance. The latter term was evaluated at the monthly scale and validated (in the `global' term) with measured data. in questo caso riferite al bilancio idrico a scala annuale. Budyko, Thornthwaite and Emberger climatic indices were evaluated on the 10,000 km2 territory of the Basilicata region (southern Italy) based on a 1.1. km grid. They were compared in terms of spatial variability and sensitivity to the variation of the basic variables in humid and semi-arid areas. The use of the climatic index data with respect to statistical parameters of the runoff series in some gauging stations of the region demonstrated the possibility to support regionalisation of the annual runoff using climatic information, with clear distinction of the variability of the coefficient of variation in terms of the humidity-aridity of the basin.

  19. Holocene climate changes in the Cape Hatteras region

    NASA Astrophysics Data System (ADS)

    Naughton, F.; Keigwin, L. D.; Peteet, D. M.; Desprat, S.; Oliveira, D.; Abrantes, F.

    2013-12-01

    In the last century many studies have been done in various naturally occurring archives to understand the nature, timing and causes of Holocene natural climate oscillations. Most of the available Holocene climatic reconstructions are however, not based on a direct comparison of terrestrial, marine and ice records making it difficult to obtain an accurate understanding of the interactions of the atmosphere-ocean-land systems and their relationship in global climate variability. Few studies based on direct sea land comparison have been reported for some key areas of the eastern North Atlantic but almost none in the western North Atlantic. Here we present a direct comparison between terrestrial (pollen) and marine (planktonic δ18O) proxies from a well dated (ten AMS 14C dates on planktonic foraminifera and seaweed) slope core (KNR 178-2 JPC 32), retrieved close to Cape Hatteras (35°58.58'N, 74°42.77'W, 1006 m). This study provides information on eastern North America vegetation and on the northwestern Atlantic sea surface response to both Holocene long-term and rapid climate changes. Five intervals, marked mainly by changes in temperate trees are associated with long term climate shifts (12000-9150 ka; 9150-7250 ka; 7250-5350 ka; 5350-2800 ka; 2800-700 ka). Over these intervals, several abrupt cooling events are noted, as well as several indications of shifts in moisture. The comparison of our data with those available and unpublished records from several key sites of the North Atlantic region, gives insights into the nature, timing and causes of Holocene climate oscillations in the North Atlantic region and in particular off Cape Hatteras.

  20. Regional climate response to solar-radiation management

    NASA Astrophysics Data System (ADS)

    Ricke, Katharine L.; Morgan, M. Granger; Allen, Myles R.

    2010-08-01

    Concerns about the slow pace of climate mitigation have led to renewed dialogue about solar-radiation management, which could be achieved by adding reflecting aerosols to the stratosphere. Modelling studies suggest that solar-radiation management could produce stabilized global temperatures and reduced global precipitation. Here we present an analysis of regional differences in a climate modified by solar-radiation management, using a large-ensemble modelling experiment that examines the impacts of 54 scenarios for global temperature stabilization. Our results confirm that solar-radiation management would generally lead to less extreme temperature and precipitation anomalies, compared with unmitigated greenhouse gas emissions. However, they also illustrate that it is physically not feasible to stabilize global precipitation and temperature simultaneously as long as atmospheric greenhouse gas concentrations continue to rise. Over time, simulated temperature and precipitation in large regions such as China and India vary significantly with different trajectories for solar-radiation management, and they diverge from historical baselines in different directions. Hence, it may not be possible to stabilize the climate in all regions simultaneously using solar-radiation management. Regional diversity in the response to different levels of solar-radiation management could make consensus about the optimal level of geoengineering difficult, if not impossible, to achieve.

  1. Climate variability and land cover change over the North American monsoon region (Invited)

    NASA Astrophysics Data System (ADS)

    Zeng, X.; Scheftic, W. D.; Broxton, P. D.

    2013-12-01

    The North American Monsoon System over Mexico and southwestern United States represents a weather/climate and ecosystem coupled "macrosystem". The weather and climate affect the seasonal and interannual variability of ecosystem, while the ecosystem change affects surface energy, water, and carbon fluxes that, in turn, affect weather and climate. Furthermore, long-term weather/climate data have a much coarser horizontal resolution than the satellite land cover data. Here the North American Regional Reanalysis (NARR) data at 32 km grid spacing will be combined with various satellite remote sensing products at 1 km and/or 8 km resolution from AVHRR, MODIS, and SPOT for the period of 1982 to present. Our analysis includes: a) precipitation, wind, and precipitable water data from NARR to characterize the North American monsoon; b) land cover type, normalized difference vegetation index (NDVI), green vegetation fraction, and leaf-area index (LAI) data to characterize the seasonal and interannual variability of ecosystem; c) assessing the consistency of various satellite products; and d) testing the coherence in the weather/climate and ecosystem variability.

  2. Temporal Responses of NDVI to Climate Factors in Different Climatic Regions

    NASA Astrophysics Data System (ADS)

    Zare, H.

    2015-12-01

    The satellite-derived Normalized Difference Vegetation Index (NDVI) has been widely used to investigate the impact of climate factors on vegetation changes. However, a few studies have concentrated on comparing the relationship of climate factors and vegetation in different climatic regions. To enhance the understanding of these relationship, a temporal analysis was carried out on time series of 16-day NDVI from MODIS (2000-2014) during the growing season in ten protected areas of different regions of Iran. The correlation analyses between climate factors and NDVI was classified into two sub-periods. First from February to April and second from May to September. In the first sub-period, NDVI was more correlated to temperature than precipitation, all the areas had positive correlation with temperature. Slope of regression in arid region was less than others. In contrast, precipitation had different impact on NDVI among the locations from February to April. The negative correlation was found between precipitation and woody lands (humid regions), whereas precipitation in Bafgh and Turan in which annual plants are dominant (arid regions), had positive impact on NDVI. In the second sub-period, temperature showed negative significant influence on NDVI; however, the slope of regression was not identical across the locations. Woody lands had more strong correlation with temperature. NDVI sensitivity to temperature had a time lag of 30 days in most of areas, whereas arid regions did not show time lag. Positive correlation was found between precipitation and NDVI during warm period in all the locations. The areas covered by perennial plant had 1-2 months lag to respond to precipitation. Overall, no significant trend in NDVI changes was shown during the study period. We concluded that NDVI sensitivity to climate factors relies on vegetation type and time of year.

  3. Linking the Weather Generator with Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Dubrovsky, Martin; Farda, Ales; Skalak, Petr; Huth, Radan

    2013-04-01

    One of the downscaling approaches, which transform the raw outputs from the climate models (GCMs or RCMs) into data with more realistic structure, is based on linking the stochastic weather generator with the climate model output. The present contribution, in which the parametric daily surface weather generator (WG) M&Rfi is linked to the RCM output, follows two aims: (1) Validation of the new simulations of the present climate (1961-1990) made by the ALADIN-Climate Regional Climate Model at 25 km resolution. The WG parameters are derived from the RCM-simulated surface weather series and compared to those derived from weather series observed in 125 Czech meteorological stations. The set of WG parameters will include statistics of the surface temperature and precipitation series (including probability of wet day occurrence). (2) Presenting a methodology for linking the WG with RCM output. This methodology, which is based on merging information from observations and RCM, may be interpreted as a downscaling procedure, whose product is a gridded WG capable of producing realistic synthetic multivariate weather series for weather-ungauged locations. In this procedure, WG is calibrated with RCM-simulated multi-variate weather series in the first step, and the grid specific WG parameters are then de-biased by spatially interpolated correction factors based on comparison of WG parameters calibrated with gridded RCM weather series and spatially scarcer observations. The quality of the weather series produced by the resultant gridded WG will be assessed in terms of selected climatic characteristics (focusing on characteristics related to variability and extremes of surface temperature and precipitation). Acknowledgements: The present experiment is made within the frame of projects ALARO-Climate (project P209/11/2405 sponsored by the Czech Science Foundation), WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports of CR) and VALUE (COST ES 1102

  4. Climate variation and regional gradients in population dynamics of two hole-nesting passerines.

    PubMed Central

    Saether, Bernt-Erik; Engen, Steinar; Møller, Anders Pape; Matthysen, Erik; Adriaensen, Frank; Fiedler, Wolfgang; Leivits, Agu; Lambrechts, Marcel M; Visser, Marcel E; Anker-Nilssen, Tycho; Both, Christiaan; Dhondt, André A; McCleery, Robin H; McMeeking, John; Potti, Jamie; Røstad, Ole Wiggo; Thomson, David

    2003-01-01

    Latitudinal gradients in population dynamics can arise through regional variation in the deterministic components of the population dynamics and the stochastic factors. Here, we demonstrate an increase with latitude in the contribution of a large-scale climate pattern, the North Atlantic Oscillation (NAO), to the fluctuations in size of populations of two European hole-nesting passerine species. However, this influence of climate induced different latitudinal gradients in the population dynamics of the two species. In the great tit the proportion of the variability in the population fluctuations explained by the NAO increased with latitude, showing a larger impact of climate on the population fluctuations of this species at higher latitudes. In contrast, no latitudinal gradient was found in the relative contribution of climate to the variability of the pied flycatcher populations because the total environmental stochasticity increased with latitude. This shows that the population ecological consequences of an expected climate change will depend on how climate affects the environmental stochasticity in the population process. In both species, the effects will be larger in those parts of Europe where large changes in climate are expected. PMID:14667357

  5. Geographical patterns in cyanobacteria distribution: climate influence at regional scale.

    PubMed

    Pitois, Frédéric; Thoraval, Isabelle; Baurès, Estelle; Thomas, Olivier

    2014-01-28

    Cyanobacteria are a component of public health hazards in freshwater environments because of their potential as toxin producers. Eutrophication has long been considered the main cause of cyanobacteria outbreak and proliferation, whereas many studies emphasized the effect of abiotic parameters (mainly temperature and light) on cell growth rate or toxin production. In view of the growing concerns of global change consequences on public health parameters, this study attempts to enlighten climate influence on cyanobacteria at regional scale in Brittany (NW France). The results show that homogeneous cyanobacteria groups are associated with climatic domains related to temperature, global radiation and pluviometry, whereas microcystins (MCs) occurrences are only correlated to local cyanobacteria species composition. As the regional climatic gradient amplitude is similar to the projected climate evolution on a 30-year timespan, a comparison between the present NW and SE situations was used to extrapolate the evolution of geographical cyanobacteria distribution in Brittany. Cyanobacteria composition should shift toward species associated with more frequent Microcystins occurrences along a NW/SE axis whereas lakes situated along a SW/NE axis should transition to species (mainly Nostocales) associated with lower MCs detection frequencies.

  6. Sensitivity of Regional Climate to Deforestation in the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Eltahir, Elfatih A. B.; Bras, Rafael L.

    1994-01-01

    The deforestation results in several adverse effect on the natural environment. The focus of this paper is on the effects of deforestation on land-surface processes and regional climate of the Amazon basin. In general, the effect of deforestation on climate are likely to depend on the scale of the defrosted area. In this study, we are interested in the effects due to deforestation of areas with a scale of about 250 km. Hence, a meso-scale climate model is used in performing numerical experiments on the sensitivity of regional climate to deforestation of areas with that size. It is found that deforestation results in less net surface radiation, less evaporation, less rainfall, and warmer surface temperature. The magnitude of the of the change in temperature is of the order 0.5 C, the magnitudes of the changes in the other variables are of the order of IO%. In order to verify some of he results of the numerical experiments, the model simulations of net surface radiation are compared to recent observations of net radiation over cleared and undisturbed forest in the Amazon. The results of the model and the observations agree in the following conclusion: the difference in net surface radiation between cleared and undisturbed forest is, almost, equally partioned between net solar radiation and net long-wave radiation. This finding contributes to our understanding of the basic physics in the deforestation problem.

  7. Geographical Patterns in Cyanobacteria Distribution: Climate Influence at Regional Scale

    PubMed Central

    Pitois, Frédéric; Thoraval, Isabelle; Baurès, Estelle; Thomas, Olivier

    2014-01-01

    Cyanobacteria are a component of public health hazards in freshwater environments because of their potential as toxin producers. Eutrophication has long been considered the main cause of cyanobacteria outbreak and proliferation, whereas many studies emphasized the effect of abiotic parameters (mainly temperature and light) on cell growth rate or toxin production. In view of the growing concerns of global change consequences on public health parameters, this study attempts to enlighten climate influence on cyanobacteria at regional scale in Brittany (NW France). The results show that homogeneous cyanobacteria groups are associated with climatic domains related to temperature, global radiation and pluviometry, whereas microcystins (MCs) occurrences are only correlated to local cyanobacteria species composition. As the regional climatic gradient amplitude is similar to the projected climate evolution on a 30-year timespan, a comparison between the present NW and SE situations was used to extrapolate the evolution of geographical cyanobacteria distribution in Brittany. Cyanobacteria composition should shift toward species associated with more frequent Microcystins occurrences along a NW/SE axis whereas lakes situated along a SW/NE axis should transition to species (mainly Nostocales) associated with lower MCs detection frequencies. PMID:24476711

  8. Climate and land use controls on soil organic carbon in the loess plateau region of China.

    PubMed

    Dang, Yaai; Ren, Wei; Tao, Bo; Chen, Guangsheng; Lu, Chaoqun; Yang, Jia; Pan, Shufen; Wang, Guodong; Li, Shiqing; Tian, Hanqin

    2014-01-01

    The Loess Plateau of China has the highest soil erosion rate in the world where billion tons of soil is annually washed into Yellow River. In recent decades this region has experienced significant climate change and policy-driven land conversion. However, it has not yet been well investigated how these changes in climate and land use have affected soil organic carbon (SOC) storage on the Loess Plateau. By using the Dynamic Land Ecosystem Model (DLEM), we quantified the effects of climate and land use on SOC storage on the Loess Plateau in the context of multiple environmental factors during the period of 1961-2005. Our results show that SOC storage increased by 0.27 Pg C on the Loess Plateau as a result of multiple environmental factors during the study period. About 55% (0.14 Pg C) of the SOC increase was caused by land conversion from cropland to grassland/forest owing to the government efforts to reduce soil erosion and improve the ecological conditions in the region. Historical climate change reduced SOC by 0.05 Pg C (approximately 19% of the total change) primarily due to a significant climate warming and a slight reduction in precipitation. Our results imply that the implementation of "Grain for Green" policy may effectively enhance regional soil carbon storage and hence starve off further soil erosion on the Loess Plateau.

  9. Regional climate impacts of a possible future grand solar minimum

    PubMed Central

    Ineson, Sarah; Maycock, Amanda C.; Gray, Lesley J.; Scaife, Adam A.; Dunstone, Nick J.; Harder, Jerald W.; Knight, Jeff R.; Lockwood, Mike; Manners, James C.; Wood, Richard A.

    2015-01-01

    Any reduction in global mean near-surface temperature due to a future decline in solar activity is likely to be a small fraction of projected anthropogenic warming. However, variability in ultraviolet solar irradiance is linked to modulation of the Arctic and North Atlantic Oscillations, suggesting the potential for larger regional surface climate effects. Here, we explore possible impacts through two experiments designed to bracket uncertainty in ultraviolet irradiance in a scenario in which future solar activity decreases to Maunder Minimum-like conditions by 2050. Both experiments show regional structure in the wintertime response, resembling the North Atlantic Oscillation, with enhanced relative cooling over northern Eurasia and the eastern United States. For a high-end decline in solar ultraviolet irradiance, the impact on winter northern European surface temperatures over the late twenty-first century could be a significant fraction of the difference in climate change between plausible AR5 scenarios of greenhouse gas concentrations. PMID:26102364

  10. Regional climate impacts of a possible future grand solar minimum.

    PubMed

    Ineson, Sarah; Maycock, Amanda C; Gray, Lesley J; Scaife, Adam A; Dunstone, Nick J; Harder, Jerald W; Knight, Jeff R; Lockwood, Mike; Manners, James C; Wood, Richard A

    2015-06-23

    Any reduction in global mean near-surface temperature due to a future decline in solar activity is likely to be a small fraction of projected anthropogenic warming. However, variability in ultraviolet solar irradiance is linked to modulation of the Arctic and North Atlantic Oscillations, suggesting the potential for larger regional surface climate effects. Here, we explore possible impacts through two experiments designed to bracket uncertainty in ultraviolet irradiance in a scenario in which future solar activity decreases to Maunder Minimum-like conditions by 2050. Both experiments show regional structure in the wintertime response, resembling the North Atlantic Oscillation, with enhanced relative cooling over northern Eurasia and the eastern United States. For a high-end decline in solar ultraviolet irradiance, the impact on winter northern European surface temperatures over the late twenty-first century could be a significant fraction of the difference in climate change between plausible AR5 scenarios of greenhouse gas concentrations.

  11. A Regional Climate Modeling Study of the Effects of Irrigation and Urbanization on California Climate

    NASA Astrophysics Data System (ADS)

    Kueppers, L. M.; Snyder, M. A.; Sloan, L. C.; Bryant, S.

    2005-12-01

    California and neighboring states have seen significant changes in land cover and land use over the past century, with expanding urbanization along the Pacific coast and extensive agricultural development inland. Expanded irrigation and urbanization both have implications for local and regional climate due to changes in land surface albedo, vegetation roughness, maximum vegetation cover, and seasonal variation in soil moisture. We modified a regional climate model, RegCM3, which already included irrigated and dryland crop types, to include urban and suburban land cover types. We used the model to quantify the difference in climate between cases using pre-settlement land cover and modern (~1990) land cover. We used 1979-1989 NCEP reanalysis data as input at the model perimeter, encompassing a very wet year and several very dry years. We analyzed the final 8 years of output to give soil moisture adequate time to equilibrate. Irrigated agricultural land in California's Central and Imperial Valleys had the strongest effect on both temperature and relative humidity. During the April-November dry season, monthly average surface temperature was cooler after conversion from pre-settlement vegetation to modern irrigated cropland. During the same period, relative humidity was higher. We found no change in precipitation rates. The effects were likely due to the increased soil water availability with irrigation, as the changes largely vanish during the rainy months of December-March. At the resolution of our model (30km), we found no significant effects of urbanization on local or regional climate. This could be due to the proximity of most urban areas to the coast, or due to the urban parameterization that we employed. Overall, the modeled effect of irrigation on temperature is comparable in magnitude, but opposite in sign, to the temperature effect of business-as-usual CO2 increases predicted for California by RegCM. This result emphasizes the need for models of future

  12. Regional Risk Assessment for climate change impacts on coastal aquifers.

    PubMed

    Iyalomhe, F; Rizzi, J; Pasini, S; Torresan, S; Critto, A; Marcomini, A

    2015-12-15

    Coastal aquifers have been identified as particularly vulnerable to impacts on water quantity and quality due to the high density of socio-economic activities and human assets in coastal regions and to the projected rising sea levels, contributing to the process of saltwater intrusion. This paper proposes a Regional Risk Assessment (RRA) methodology integrated with a chain of numerical models to evaluate potential climate change-related impacts on coastal aquifers and linked natural and human systems (i.e., wells, river, agricultural areas, lakes, forests and semi-natural environments). The RRA methodology employs Multi Criteria Decision Analysis methods and Geographic Information Systems functionalities to integrate heterogeneous spatial data on hazard, susceptibility and risk for saltwater intrusion and groundwater level variation. The proposed approach was applied on the Esino River basin (Italy) using future climate hazard scenarios based on a chain of climate, hydrological, hydraulic and groundwater system models running at different spatial scales. Models were forced with the IPCC SRES A1B emission scenario for the period 2071-2100 over four seasons (i.e., winter, spring, summer and autumn). Results indicate that in future seasons, climate change will cause few impacts on the lower Esino River valley. Groundwater level decrease will have limited effects: agricultural areas, forests and semi-natural environments will be at risk only in a region close to the coastline which covers less than 5% of the total surface of the considered receptors; less than 3.5% of the wells will be exposed in the worst scenario. Saltwater intrusion impact in future scenarios will be restricted to a narrow region close to the coastline (only few hundred meters), and thus it is expected to have very limited effects on the Esino coastal aquifer with no consequences on the considered natural and human systems.

  13. Crop phenology feedback on climate over central US in a regional climate model

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Takle, E.; Xue, L.; Segal, M.

    2004-12-01

    The moisture and CO2 fluxes over cropland represent local climate forcing and an important component of atmospheric energy and CO2 budgets. Since observed fluxes, especially for CO2, are rarely available over extensive areas the fluxes are mainly estimated by climate models. The carbon sequestration and water consumption by crops are only crudely represented in the models. For example, most climate models use climatological or static crop growth and development that do not change from year to year, indistinguishable between flood and drought years. To improve the moisture and CO2 fluxes (i.e., photosynthesis) from crops we coupled crop models (CERES for corn and CropGro for soybean) with the regional model (MM5) along with the land surface model (LSM). This crop-climate coupled model with interactive crop phenology can simulate interannual variations in CO2 and water fluxes from the surface. The coupled model was used to simulate CO2 and moisture fluxes in the past couple of growing seasons in the central U.S. Results were compared with available CO2 flux observations at some AmeriFlux sites. It is found that the coupled model gives more realistic seasonal accumulation of CO2 fluxes and that the dynamic crop development in the coupled model has a strong feedback on regional precipitation. The typical climate models using static crop phenology significantly overestimate CO2 fluxes during early growing season because of positive biases in specifying leaf area index.

  14. Reliability of regional climate model simulations of extremes and of long-term climate

    NASA Astrophysics Data System (ADS)

    Böhm, U.; Kücken, M.; Hauffe, D.; Gerstengarbe, F.-W.; Werner, P. C.; Flechsig, M.; Keuler, K.; Block, A.; Ahrens, W.; Nocke, Th.

    2004-06-01

    We present two case studies that demonstrate how a common evaluation methodology can be used to assess the reliability of regional climate model simulations from different fields of research. In Case I, we focused on the agricultural yield loss risk for maize in Northeastern Brazil during a drought linked to an El-Niño event. In Case II, the present-day regional climatic conditions in Europe for a 10-year period are simulated. To comprehensively evaluate the model results for both kinds of investigations, we developed a general methodology. On its basis, we elaborated and implemented modules to assess the quality of model results using both advanced visualization techniques and statistical algorithms. Besides univariate approaches for individual near-surface parameters, we used multivariate statistics to investigate multiple near-surface parameters of interest together. For the latter case, we defined generalized quality measures to quantify the model's accuracy. Furthermore, we elaborated a diagnosis tool applicable for atmospheric variables to assess the model's accuracy in representing the physical processes above the surface under various aspects. By means of this evaluation approach, it could be demonstrated in Case Study I that the accuracy of the applied regional climate model resides at the same level as that we found for another regional model and a global model. Excessive precipitation during the rainy season in coastal regions could be identified as a major contribution leading to this result. In Case Study II, we also identified the accuracy of the investigated mean characteristics for near-surface temperature and precipitation to be comparable to another regional model. In this case, an artificial modulation of the used initial and boundary data during preprocessing could be identified as the major source of error in the simulation. Altogether, the achieved results for the presented investigations indicate the potential of our methodology to be

  15. Impacts of uncertainties in European gridded precipitation observations on regional climate analysis

    PubMed Central

    Gobiet, Andreas

    2016-01-01

    ABSTRACT Gridded precipitation data sets are frequently used to evaluate climate models or to remove model output biases. Although precipitation data are error prone due to the high spatio‐temporal variability of precipitation and due to considerable measurement errors, relatively few attempts have been made to account for observational uncertainty in model evaluation or in bias correction studies. In this study, we compare three types of European daily data sets featuring two Pan‐European data sets and a set that combines eight very high‐resolution station‐based regional data sets. Furthermore, we investigate seven widely used, larger scale global data sets. Our results demonstrate that the differences between these data sets have the same magnitude as precipitation errors found in regional climate models. Therefore, including observational uncertainties is essential for climate studies, climate model evaluation, and statistical post‐processing. Following our results, we suggest the following guidelines for regional precipitation assessments. (1) Include multiple observational data sets from different sources (e.g. station, satellite, reanalysis based) to estimate observational uncertainties. (2) Use data sets with high station densities to minimize the effect of precipitation undersampling (may induce about 60% error in data sparse regions). The information content of a gridded data set is mainly related to its underlying station density and not to its grid spacing. (3) Consider undercatch errors of up to 80% in high latitudes and mountainous regions. (4) Analyses of small‐scale features and extremes are especially uncertain in gridded data sets. For higher confidence, use climate‐mean and larger scale statistics. In conclusion, neglecting observational uncertainties potentially misguides climate model development and can severely affect the results of climate change impact assessments. PMID:28111497

  16. Early Benefits of Mitigation in Risk of Regional Climate Extremes

    NASA Astrophysics Data System (ADS)

    Ciavarella, Andrew; Stott, Peter; Lowe, Jason

    2015-04-01

    Large differences in climate outcomes are projected over the coming century depending on whether greenhouse gas emissions continue on a business as usual path or are substantially reduced following an aggressive mitigation strategy. However, it has previously been claimed that it will take many decades for there to be any significant difference between paths of aggressive mitigation and business as usual with the emergence of differences only seen towards the middle of the century. Here we show that important differences in our exposure to risk of climate extremes in many land regions emerges much more quickly. Without substantial mitigation, in many regions of the world, extreme (one in 20-year) seasonal, regional near surface air temperatures are found to have become more than twice as likely within only 15 years (i.e. by 2030). Therefore our exposure to climate risk is reduced substantially and rapidly with aggressive mitigation. This demonstrates that the benefits of mitigation are realised rapidly and it is not necessary to wait until the middle of the century as has previously been claimed.

  17. Assessing climate change impacts on water resources in remote mountain regions

    NASA Astrophysics Data System (ADS)

    Buytaert, Wouter; De Bièvre, Bert

    2013-04-01

    From a water resources perspective, remote mountain regions are often considered as a basket case. They are often regions where poverty is often interlocked with multiple threats to water supply, data scarcity, and high uncertainties. In these environments, it is paramount to generate locally relevant knowledge about water resources and how they impact local livelihoods. This is often problematic. Existing environmental data collection tends to be geographically biased towards more densely populated regions, and prioritized towards strategic economic activities. Data may also be locked behind institutional and technological barriers. These issues create a "knowledge trap" for data-poor regions, which is especially acute in remote and hard-to-reach mountain regions. We present lessons learned from a decade of water resources research in remote mountain regions of the Andes, Africa and South Asia. We review the entire tool chain of assessing climate change impacts on water resources, including the interrogation and downscaling of global circulation models, translating climate variables in water availability and access, and assessing local vulnerability. In global circulation models, mountain regions often stand out as regions of high uncertainties and lack of agreement of future trends. This is partly a technical artifact because of the different resolution and representation of mountain topography, but it also highlights fundamental uncertainties in climate impacts on mountain climate. This problem also affects downscaling efforts, because regional climate models should be run in very high spatial resolution to resolve local gradients, which is computationally very expensive. At the same time statistical downscaling methods may fail to find significant relations between local climate properties and synoptic processes. Further uncertainties are introduced when downscaled climate variables such as precipitation and temperature are to be translated in hydrologically

  18. Adaptation and the Two-Degree Target - Regional Climate Consequences

    NASA Astrophysics Data System (ADS)

    Kreienkamp, F.; Hübener, H.; Spekat, A.; Wolf, H.

    2010-09-01

    In the current debate on climate change, countries are preparing for adaptation to the expected impacts of climate change. For example, Germany has decided its Adaptation Strategy in December 2008. It is the ensuing responsibility of the German Federal States to put this strategy into adaptation measures and specific action. However, to decide on such critical and expensive actions, reliable climate change information is needed. Depending on the relevant sector, this information is required on different scales in time and space. Furthermore, global policy discusses the two-degree target aiming to contain climate change to a warming of less than two degrees relative to pre-industrial values. It is currently discussed, whether or not this goal can be reached at all. However, as governmental bodies, the Environmental Agencies need to address the political aim of the two-degree target and have to respond to the implied climate change signals. At the moment no very high resolution (~10km) climate projections are available for a scenario which stays within the bounds of the two degree target. Therefore, a different approach was taken and will be presented: Global climate simulations with the ECHAM5 model have been evaluated as to the time when the global average warming hits the mark of two degrees above the pre-industrial level. Moreover, this approach is applied for different available SRES scenarios. 30-year time slices were selected centered at these instants in time. The resulting time slices were analyzed in the high resolution RCM simulations of dynamical (CCLM and REMO) as well as statistical (WETTREG) type, driven with the respective GCM scenario run. Thus, a minimum climate change is assessed as the lower bound for which adaptation measures will be definitely necessary. As it turns out, the relevant time frame assessed from the global climate simulations is 2036--2065 for scenario A1B, 2041--2070 for scenario A2 and 2051--2080 for scenario B1. In addition, the

  19. Will climate change affect outbreak patterns of planthoppers in Bangladesh?

    PubMed

    Ali, M P; Huang, Dingcheng; Nachman, G; Ahmed, Nur; Begum, Mahfuz Ara; Rabbi, M F

    2014-01-01

    Recently, planthoppers outbreaks have intensified across Asia resulting in heavy rice yield losses. The problem has been widely reported as being induced by insecticides while other factors such as global warming that could be potential drivers have been neglected. Here, we speculate that global warming may increase outbreak risk of brown planthopper (Nilaparvata lugens Stål.). We present data that demonstrate the relationship between climate variables (air temperature and precipitation) and the abundance of brown planthopper (BPH) during 1998-2007. Data show that BPH has become significantly more abundant in April over the 10-year period, but our data do not indicate that this is due to a change in climate, as no significant time trends in temperature and precipitation could be demonstrated. The abundance of BPH varied considerably between months within a year which is attributed to seasonal factors, including the availability of suitable host plants. On the other hand, the variation within months is attributed to fluctuations in monthly temperature and precipitation among years. The effects of these weather variables on BPH abundance were analyzed statistically by a general linear model. The statistical model shows that the expected effect of increasing temperatures is ambiguous and interacts with the amount of rainfall. According to the model, months or areas characterized by a climate that is either cold and dry or hot and wet are likely to experience higher levels of BPH due to climate change, whereas other combinations of temperature and rainfall may reduce the abundance of BPH. The analysis indicates that global warming may have contributed to the recent outbreaks of BPH in some rice growing areas of Asia, and that the severity of such outbreaks is likely to increase if climate change exaggerates. Our study highlights the need to consider climate change when designing strategies to manage planthoppers outbreaks.

  20. Will Climate Change Affect Outbreak Patterns of Planthoppers in Bangladesh?

    PubMed Central

    Ali, M. P.; Huang, Dingcheng; Nachman, G.; Ahmed, Nur; Begum, Mahfuz Ara; Rabbi, M. F.

    2014-01-01

    Recently, planthoppers outbreaks have intensified across Asia resulting in heavy rice yield losses. The problem has been widely reported as being induced by insecticides while other factors such as global warming that could be potential drivers have been neglected. Here, we speculate that global warming may increase outbreak risk of brown planthopper (Nilaparvata lugens Stål.). We present data that demonstrate the relationship between climate variables (air temperature and precipitation) and the abundance of brown planthopper (BPH) during 1998–2007. Data show that BPH has become significantly more abundant in April over the 10-year period, but our data do not indicate that this is due to a change in climate, as no significant time trends in temperature and precipitation could be demonstrated. The abundance of BPH varied considerably between months within a year which is attributed to seasonal factors, including the availability of suitable host plants. On the other hand, the variation within months is attributed to fluctuations in monthly temperature and precipitation among years. The effects of these weather variables on BPH abundance were analyzed statistically by a general linear model. The statistical model shows that the expected effect of increasing temperatures is ambiguous and interacts with the amount of rainfall. According to the model, months or areas characterized by a climate that is either cold and dry or hot and wet are likely to experience higher levels of BPH due to climate change, whereas other combinations of temperature and rainfall may reduce the abundance of BPH. The analysis indicates that global warming may have contributed to the recent outbreaks of BPH in some rice growing areas of Asia, and that the severity of such outbreaks is likely to increase if climate change exaggerates. Our study highlights the need to consider climate change when designing strategies to manage planthoppers outbreaks. PMID:24618677

  1. Verification of regional climates of GISS GCM. Part 2: Summer

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.; Rind, David

    1989-01-01

    Verification is made of the synoptic fields, sea-level pressure, precipitation rate, 200mb zonal wind and the surface resultant wind generated by two versions of the Goddard Institute for Space Studies (GISS) climate model. The models differ regarding the horizontal resolution of the computation grids and the specification of the sea-surface temperatures. Maps of the regional distributions of seasonal means of the model fields are shown alongside maps that show the observed distributions. Comparisons of the model results with observations are discussed and also summarized in tables according to geographic region.

  2. First Evaluation of the CCAM Aerosol Simulation over Africa: Implications for Regional Climate Modeling

    NASA Astrophysics Data System (ADS)

    Horowitz, H.; Garland, R. M.; Thatcher, M. J.; Naidoo, M.; van der Merwe, J.; Landman, W.; Engelbrecht, F.

    2015-12-01

    An accurate representation of African aerosols in climate models is needed to understand the regional and global radiative forcing and climate impacts of aerosols, at present and under future climate change. However, aerosol simulations in regional climate models for Africa have not been well-tested. Africa contains the largest single source of biomass-burning smoke aerosols and dust globally. Although aerosols are short-lived relative to greenhouse gases, black carbon in particular is estimated to be second only to carbon dioxide in contributing to warming on a global scale. Moreover, Saharan dust is exported great distances over the Atlantic Ocean, affecting nutrient transport to regions like the Amazon rainforest, which can further impact climate. Biomass burning aerosols are also exported from Africa, westward from Angola over the Atlantic Ocean and off the southeastern coast of South Africa to the Indian Ocean. Here, we perform the first extensive quantitative evaluation of the Conformal-Cubic Atmospheric Model (CCAM) aerosol simulation against monitored data, focusing on aerosol optical depth (AOD) observations over Africa. We analyze historical regional simulations for 1999 - 2012 from CCAM consistent with the experimental design of CORDEX at 50 km global horizontal resolution, through the dynamical downscaling of ERA-Interim data reanalysis data, with the CMIP5 emissions inventory (RCP8.5 scenario). CCAM has a prognostic aerosol scheme for organic carbon, black carbon, sulfate, and dust, and non-prognostic sea salt. The CCAM AOD at 550nm was compared to AOD (observed at 440nm, adjusted to 550nm with the Ångström exponent) from long-term AERONET stations across Africa. Sites strongly impacted by dust and biomass burning and with long continuous records were prioritized. In general, the model captures the monthly trends of the AERONET data. This presentation provides a basis for understanding how well aerosol particles are represented over Africa in

  3. How does the sensitivity of climate affect stratospheric solar radiation management?

    NASA Astrophysics Data System (ADS)

    Ricke, K.; Rowlands, D. J.; Ingram, W.; Keith, D.; Morgan, M. G.

    2011-12-01

    If implementation of proposals to engineer the climate through solar radiation management (SRM) ever occurs, it is likely to be contingent upon climate sensitivity. Despite this, no modeling studies have examined how the effectiveness of SRM forcings differs between the typical Atmosphere-Ocean General Circulation Models (AOGCMs) with climate sensitivities close to the Coupled Model Intercomparison Project (CMIP) mean and ones with high climate sensitivities. Here, we use a perturbed physics ensemble modeling experiment to examine variations in the response of climate to SRM under different climate sensitivities. When SRM is used as a substitute for mitigation its ability to maintain the current climate state gets worse with increased climate sensitivity and with increased concentrations of greenhouse gases. However, our results also demonstrate that the potential of SRM to slow climate change, even at the regional level, grows with climate sensitivity. On average, SRM reduces regional rates of temperature change by more than 90 percent and rates of precipitation change by more than 50 percent in these higher sensitivity model configurations. To investigate how SRM might behave in models with high climate sensitivity that are also consistent with recent observed climate change we perform a "perturbed physics" ensemble (PPE) modelling experiment with the climateprediction.net (cpdn) version of the HadCM3L AOGCM. Like other perturbed physics climate modelling experiments, we simulate past and future climate scenarios using a wide range of model parameter combinations that both reproduce past climate within a specified level of accuracy and simulate future climates with a wide range of climate sensitivities. We chose 43 members ("model versions") from a subset of the 1,550 from the British Broadcasting Corporation (BBC) climateprediction.net project that have data that allow restarts. We use our results to explore how much assessments of SRM that use best

  4. Transient Climate Change over California at a Regional Scale

    NASA Astrophysics Data System (ADS)

    Snyder, M. A.; Sloan, L. C.

    2003-12-01

    Steady-state experiments of future climate change using regional climate models (RCM) have shown increased temperature, decreased snow accumulation and changes in precipitation over California under doubled preindustrial CO2 concentrations. The forcing of these early experiments was done using global climate model (GCM) data with fixed sea surface temperatures (SST) and fixed CO2 concentrations. Since SSTs were fixed, important feedbacks from the ocean to the atmosphere were not included in these experiments. Also, the CO2 concentrations are set to a single value throughout the experiments, and did not evolve as a function of time. To address these issues, we have taken global climate model output from a fully coupled ocean-atmosphere GCM, the NCAR CCSM1, for the time periods 1980-1999 and 2080-2099 and used that output to drive a RCM with a domain centered over California. The CO2 concentrations in these experiments increase as function of time and thus are a more realistic representation of actual changes. CO2 values for the future time period (2080-2090) are based on projections by the Intergovernmental Panel on Climate Change. Initial results from these experiments show increased temperatures by up to 5° C on a monthly basis. Snow accumulation is decreased dramatically by over 220 mm snow water equivalent in the Sierra Nevada Mountains. Our results show precipitation increases over the northern half of the state in January and February and decreases in the same region in December. Precipitation also decreases over the Sierra Nevada Mountains in March and May.

  5. Inter-variable relations in regional climate model outputs

    NASA Astrophysics Data System (ADS)

    Wilcke, R.; Chandler, R. E.; Prein, A. F.

    2015-12-01

    Regional climate models (RCMs) intent to provide physically consistent climate data to the climate change impact research community. However, the effects of parametrisations of unresolved sub-grid processes and systematic biases in the model output requires not only a post-processing in form of bias adjustment but also an analysis of inter-variable relations. Many impact models require several climate variables as input data, which makes it necessary to check if the inter-variable dependence structure is simulated realistically by RCMs. A common practice is to bias adjust RCM output variables to improve their individual distribution and mean climate characteristics. This can be done by empirical bias adjustment procedures such as quantile mapping. However, applying statistical bias adjustment procedures on individual variables may alter the inter-variable relationships given by the climate model and hence distort the physical consistency.In our study we examined the inter-variable relations of RCM output variables by using estimates of conditional probability density functions for pairs of variables. Conditional densities obtained from multiple European RCMs were compared with those obtained from observations. We quantified the extent to which these conditional density estimates are distorted by an empirical bias adjustment procedure. Additionally, the influence of the model physics on the representation of inter-variable relations is analysed for a 24 member perturbed physics ensemble of WRF simulations in the U.S.. Here, multiple observational data sets were used to address the influence of observational uncertainties on the analysis. Finally, the results obtained from the European and U.S. modelling initiatives are compared to provide a common basis on the representation of inter-variable relations in RCM outputs.

  6. The range of regional climate change projections in central Europe: How to deal with the spread of climate model results?

    NASA Astrophysics Data System (ADS)

    Rechid, D.; Jacob, D.; Podzun, R.

    2010-09-01

    The regional climate change projections for central Europe in the 21st century show a large spread of simulated temperature and precipitation trends due to natural variability and modelling uncertainties. The questions are how to extract robust climate change signals and how to transfer the range of possible temperature and precipitation trends to climate change impact studies and adaptation strategies? Within the BMBF funded research priority "KLIMZUG - Managing Climate Change in the Regions of the Future", innovative strategies for adaptation to climate change are developed. The funding activity particularly stresses the regional aspect since the global problem climate change must be tackled by measures at regional and local level. The focus of the joint project "KLIMZUG-NORD - Strategic Approaches to Climate Change Adaptation in the Hamburg Metropolitan Region" is to establish an interdisciplinary network between the research, administrative and economic sectors in this region. The regional climate change information is provided by the Max-Planck-Institute for Meteorology as input for climate change impact assessments. The cross-sectional task "climate change" is to prepare consistent regional climate data and to advise on its reasonable use. The project benefits from the results of the ENSEMBLES EU project, in which an extensive set of regional climate change simulations at 50 km horizontal resolution were performed for 1950 to 2100. For impact studies, higher horizontal resolutions are required. With the regional climate model REMO, three global climate change scenarios from ECHAM5-MPIOM were downscaled to 50 km with three ensemble members each. In a second step, some members were further downscaled to 10 km for central Europe. For the global and regional simulations, the trends were analysed and indicate a strong internal climate variability, which further increases the range of climate change simulation results. This all recommends the application of 1

  7. Regional and Global Climate Response to Anthropogenic SO2 Emissions from China in Three Climate Models

    NASA Technical Reports Server (NTRS)

    Kasoar, M.; Voulgarakis, Apostolos; Lamarque, Jean-Francois; Shindell, Drew T.; Bellouin, Nicholas; Collins, William J.; Faluvegi, Greg; Tsigaridis, Kostas

    2016-01-01

    We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against

  8. Climate change and the microbiology of the Antarctic Peninsula region.

    PubMed

    Pearce, David A

    2008-01-01

    Antarctic terrestrial ecosystems are cold, dry, low nutrient environments, with large temperature fluctuations and paradoxically low levels of water availability. These extreme environments are dominated by microorganisms (viruses, archaea, eubacteria, fungi and microsporidia, alveolata, stmramenopila, rhodophyta, green algae and protists), which can either tolerate or are adapted to exploit unfavourable growth conditions. However, climate change is altering the growth environment in Antarctica, and so selection pressures on these microorganisms are changing which, in turn, might affect microbial activity in key processes such as biogeochemical cycling. Although the direct effect of a change in, for example, temperature, is known for very few Antarctic microorganisms, molecular techniques (to monitor population structure) and genomic techniques (to identify specific gene function) are starting to give us an insight into what the potential effects of climate change might be at the cellular level. The key to how microorganisms respond to such change depends upon the rate and magnitude of the change along with the physiological capability of microorganisms to adapt or tolerate those changes. Here we will examine a number of case studies in which the effects of factors such as temperature, nutrient availability, grazing, salinity, seasonal cycle and carbon dioxide concentration have each been demonstrated to affect bacterial community structure in polar and alpine ecosystems. The results suggest that the spatial distribution of genetic variation and, hence, comparative rates of evolution, colonization and extinction are particularly important when considering the response of microbial communities to climate change.

  9. On how climate variability influences regional sea level change

    NASA Astrophysics Data System (ADS)

    Brunnabend, Sandra-Esther; Kusche, Jürgen; Rietbroek, Roelof; Forootan, Ehsan

    2016-04-01

    Regional trends in sea level change are strongly influenced by climate variations, such as ENSO (El-Nino Southern Oscillation), the IOD (Indian Ocean Dipole), or the PDO (Pacific Decadal Oscillation). Hence, before computing long term regional sea level change, these sea level variations need to be taken into account as they lead to strong dependencies of computed regional sea level trends on the time period of the investigation. In this study, sea level change during the years 1993 to 2013 is analysed to identify the dominant modes of sea level change caused by climate variations. Here, two different gridded altimetry products are analysed, namely ESA's combined CCI SeaLevel v1.1 ECV product (doi: 10.5270/esa-sea_level_cci-1993_2013-v_1.1-201412), and absolute dynamic topography produced by Ssalto/Duacs and distributed by Aviso, with support from Cnes (http://www.aviso.altimetry.fr/duacs/). Reconstructions using the different decomposition techniques including the standard principle component analysis (PCA), rotated empirical orthogonal functions (REOF) and independent component analysis (ICA) method are analysed. They are compared with sea level change modelled with the global finite-element sea-ice ocean model (FESOM). The results indicate that from the applied methods, ICA is most suitable to separate the individual climate variability signals in independent modes of sea level change. This especially holds for extracting the ENSO contribution in sea level changes, which was better separated by applying ICA, from both altimetry and modelled sea level products. In addition, it is presented how modelled sea level change reflects climate variations compared to that identified in the altimetry products.

  10. CORDEX.be: COmbining Regional climate Downscaling EXpertise in Belgium

    NASA Astrophysics Data System (ADS)

    Termonia, Piet; Van Schaeybroeck, Bert; De Ridder, Koen; Fettweis, Xavier; Gobin, Anne; Luyten, Patrick; Marbaix, Philippe; Pottiaux, Eric; Stavrakou, Trissevgeni; Van Lipzig, Nicole; van Ypersele, Jean-Pascal; Willems, Patrick

    2016-04-01

    The main objective of the ongoing project CORDEX.be, "COmbining Regional Downscaling EXpertise in Belgium: CORDEX and Beyond" is to gather existing and ongoing Belgian research activities in the domain of climate modelling to create a coherent scientific basis for future climate services in Belgium. The project regroups eight Belgian Institutes under a single research program of the Belgian Science Policy (BELSPO). The project involves three regional climate models: the ALARO model, the COSMO-CLM model and the MAR model running according to the guidelines of the CORDEX project and at convection permitting resolution on small domains over Belgium. The project creates a framework to address four objectives/challenges. First, this projects aims to contribute to the EURO-CORDEX project. Secondly, RCP simulations are executed at convection-permitting resolutions (3 to 5 km) on small domains. Thirdly, the output of the atmospheric models is used to drive land surface models (the SURFEX model and the Urbclim model) with urban modules, a crop model (REGCROP), a tides and storm model (COHERENS) and the MEGAN-MOHYCAN model that simulates the fluxes emitted by vegetation. Finally, one work package will translate the uncertainty present in the CORDEX database to the high-resolution output of the CORDEX.be project. The organization of the project will be presented and first results will be shown, demonstrating that convection-permitting models can add extra skill to the mesoscale version of the regional climate models, in particular regarding the extreme value statistics and the diurnal cycle.

  11. CORDEX.be: COmbining Regional climate Downscaling EXpertise in Belgium

    NASA Astrophysics Data System (ADS)

    Termonia, P.

    2015-12-01

    The main objective of the ongoing project CORDEX.be, "COmbining Regional Downscaling EXpertise in Belgium: CORDEX and Beyond", is to gather existing and ongoing Belgian research activities in the domain of climate modelling to create a coherent scientific basis for future climate services in Belgium. The project regroups 8 Belgian Institutes under a single research program of the Belgian Science Policy (BELSPO). The project involves three regional climate models: the ALARO model, the COSMO-CLM model and the MAR model running according to the guidelines of the CORDEX project and at convection permitting resolution on small domains over Belgium. The project creates a framework to address four objectives/challenges. First, this projects aims to contribute to the EURO-CORDEX project. Secondly, RCP simulations are executed at convection-permitting resolutions (3 to 5 km) on small domains. Thirdly, the output of the atmospheric models is used to drive land surface models (the SURFEX model and the Urbclim model) with urban modules, a crop model (REGCROP), a tides and storm model (COHERENS) and the MEGAN-MOHYCAN model that simulates the fluxes emitted by vegetation. Finally, one work package will translate the uncertainty present in the CORDEX database to the high-resolution output of the CORDEX.be project. The organization of the project will be presented and first results will be shown, demonstrating that convection-permitting models can add extra skill to the mesoscale version of the regional climate models, in particular regarding the extreme value statistics and the diurnal cycle.

  12. Streamflow estimation using WRF-Hydro with dynamically downscaled climate variables over southern tropical Indian region

    NASA Astrophysics Data System (ADS)

    Davis, S.; Sudheer, K. P.; Gunthe, S. S.

    2015-12-01

    Indian summer monsoon rainfall (ISMR; June to September), which constitutes around 80% of India's annual rainfall, has shown an increasing trend in intensity and frequency of extreme events (Goswami et al., 2006). It is a widely recognized fact that the increasing temperature in association with anthropogenic activities can affect the hydrological cycle, which leads to extreme events. In addition a shift in extremes of the spatial pattern of ISMR has recently been observed (Ghosh et al., 2011). Such changes in rainfall on temporal and spatial scale can further affect the stream flow over a given region subsequently making water resource management a difficult task (Mondal and Mujumdar, 2015). The hydrological models used for the stream flow estimation are dependent on various climate variables as input data. These climate variables could be obtained through either observational networks or climate model outputs. Due to the scarcity of the observational data over the Indian region and the coarse resolution of global climate model output, which is used as input to hydrologic models, large uncertainties are introduced in stream flow output (Overgaard et al., 2007). In the present study we have used the Weather Research and Forecasting (WRF) model (Skamarock et al. 2008) to downscale the essential climate variables (surface temperature, precipitation, relative humidity, etc.) as an input for its coupled hydrological extension, WRF Hydro (NCAR user's guide). We will present the results obtained from the WRF-hydro simulation to estimate the stream flow over the Thamirabarani river basin in Southern Tropical Indian region. Preliminary simulations using WRF to estimate the precipitation showed the reasonable quantitative agreement with observed values. An attempt will be made to demonstrate how these results can further be used for developing flood-forecasting techniques and for local regional water resource management.

  13. Temperature trends in regions affected by increasing aridity/humidity

    NASA Astrophysics Data System (ADS)

    Jones, Philip D.; Reid, Phillip A.

    A paper in 1991 claimed that regions affected by desertification experience warming trends relative to neighbouring areas. To assess this, an index of aridity/humidity based on the ratio of annual precipitation to annual potential evapotranspiration totals (P/PET) is developed. This index is used to define regions experiencing increases (and those where the increase is statistically significant) in aridity and humidity. We also consider regions always arid (average values of P/PET <0.5) and always humid (P/PET >2.0). Trends of average annual and summer surface air temperature are then calculated for regions in the various aridity/humidity categories and compared to most of the rest of the world's land areas equatorward of 60°. The results indicate that most of the differences in trends between categories are not statistically significant.

  14. "The Effect of Alternative Representations of Lake Temperatures and Ice on WRF Regional Climate Simulations"

    EPA Science Inventory

    Lakes can play a significant role in regional climate, modulating inland extremes in temperature and enhancing precipitation. Representing these effects becomes more important as regional climate modeling (RCM) efforts focus on simulating smaller scales. When using the Weathe...

  15. Multiple satellite estimates of urban fractions and climate effects at regional scale

    NASA Astrophysics Data System (ADS)

    Jia, G.; Xu, R.; He, Y.

    2014-12-01

    Regional climate is controlled by large scale forcing at lateral boundary and physical processes within the region. Landuse in East Asia has been changed substantially in the last three decades, featured with expansion of urban built-up at unprecedented scale and speed. The fast expansion of urban areas could contribute to local even regional climate change. However, current spatial datasets of urban fractions do not well represent extend and expansion of urban areas in the regions, and the best available satellite data and remote sensing techniques have not been well applied to serve regional modeling of urbanization impacts on near surface temperature and other climate variables. Better estimates of localized urban fractions and urban climate effects are badly needed. Here we use high and mid resolution satellite data to estimate urban fractions and to assess effects of urban heat islands at local and regional scales. With our fractional cover, data fusion, and differentiated threshold approaches, estimated urban extent was greater than previously reported in many global datasets. Many city clusters were merging into each other, with gradual blurring boundaries and disappearing of gaps among member cities. Cities and towns were more connected with roads and commercial corridors, while wildland and urban greens became more isolated as patches among built-up areas. Those new estimates are expected to effectively improve climate simulation at local and regional scales in East Asia. There were significant positive relations between urban fraction and urban heat island effects as demonstrated by VNIR and TIR data from multiple satellites. Stronger warming was detected at the meteorological stations that experienced greater urbanization, i.e., those with a higher urbanization rate. While the total urban area affects the absolute temperature values, the change of the urban area (urbanization rate) likely affects the temperature trend. Increases of approximately 10% in

  16. Global and Regional Temperature-change Potentials for Near-term Climate Forcers

    NASA Technical Reports Server (NTRS)

    Collins, W.J.; Fry, M. M.; Yu, H.; Fuglestvedt, J. S.; Shindell, D. T.; West, J. J.

    2013-01-01

    The emissions of reactive gases and aerosols can affect climate through the burdens of ozone, methane and aerosols, having both cooling and warming effects. These species are generally referred to near-term climate forcers (NTCFs) or short-lived climate pollutants (SLCPs), because of their short atmospheric residence time. The mitigation of these would be attractive for both air quality and climate on a 30-year timescale, provided it is not at the expense of CO2 mitigation. In this study we examine the climate effects of the emissions of NTCFs from 4 continental regions (East Asia, Europe, North America and South Asia) using results from the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model simulations. We address 3 aerosol species (sulphate, particulate organic matter and black carbon - BC) and 4 ozone precursors (methane, reactive nitrogen oxides - NOx, volatile organic compounds VOC, and carbon monoxide - CO). For the aerosols the global warming potentials (GWPs) and global temperature change potentials (GTPs) are simply time-dependent scaling of the equilibrium radiative forcing, with the GTPs decreasing more rapidly with time than the GWPs. While the aerosol climate metrics have only a modest dependence on emission region, emissions of NOx and VOCs from South Asia have GWPs and GTPs of higher magnitude than from the other northern hemisphere regions. On regional basis, the northern mid-latitude temperature response to northern mid-latitude emissions is approximately twice as large as the global average response for aerosol emission, and about 20-30% larger than the global average for methane, VOC and CO emissions. We also found that temperatures in the Arctic latitudes appear to be particularly sensitive to black carbon emissions from South Asia.

  17. The impacts of climate changes in the renewable energy resources in the Caribbean region

    SciTech Connect

    Erickson III, David J

    2010-02-01

    Assessment of renewable energy resources such as surface solar radiation and wind current has great relevance in the development of local and regional energy policies. This paper examines the variability and availability of these resources as a function of possible climate changes for the Caribbean region. Global climate changes have been reported in the last decades, causing changes in the atmospheric dynamics, which affects the net solar radiation balance at the surface and the wind strength and direction. For this investigation, the future climate changes for the Caribbean are predicted using the parallel climate model (PCM) and it is coupled with the numerical model regional atmospheric modeling system (RAMS) to simulate the solar and wind energy spatial patterns changes for the specific case of the island of Puerto Rico. Numerical results from PCM indicate that the Caribbean basin from 2041 to 2055 will experience a slight decrease in the net surface solar radiation (with respect to the years 1996-2010), which is more pronounced in the western Caribbean sea. Results also indicate that the easterly winds have a tendency to increase in its magnitude, especially from the years 2070 to 2098. The regional model showed that important areas to collect solar energy are located in the eastern side of Puerto Rico, while the more intense wind speed is placed around the coast. A future climate change is expected in the Caribbean that will result in higher energy demands, but both renewable energy sources will have enough intensity to be used in the future as alternative energy resources to mitigate future climate changes.

  18. Climate change and adaptive water management measures in Chtouka Aït Baha region (Morocco).

    PubMed

    Seif-Ennasr, Marieme; Zaaboul, Rashyd; Hirich, Abdelaziz; Caroletti, Giulio Nils; Bouchaou, Lhoussaine; El Morjani, Zine El Abidine; Beraaouz, El Hassane; McDonnell, Rachael A; Choukr-Allah, Redouane

    2016-12-15

    This study evaluates the effect on the availability of water resources for agriculture of expected future changes in precipitation and temperature distributions in north-western Africa. It also puts forward some locally derived adaptation strategies to climate change that can have a positive impact on water resources in the Chtouka Aït Baha region. Historical baselines of precipitation and temperature were derived using satellite data respectively from CHIRPS and CRU, while future projections of temperature and precipitation were extracted from the Coordinated Regional Climate Downscaling Experiment database (CORDEX). Projections were also generated for two future periods (2030-2049 and 2080-2099) under two Representative Concentration Pathways: RCP4.5 and RCP8.5. Regional climate models and satellite data outputs were evaluated by calculating their bias and RMSE against historical baseline and observed data. Under the RCP8.5 scenario, temperature in the region shows an increase by 2°C for the 2030-2049 time period, and by 4 to 5°C towards the end of the 21st century. According to the RCP4.5 scenario, precipitation shows a reduction of 10 to 30% for the period 2030-2049, up to 60% for 2080-2099. Outputs from the climate change projections were used to force the HEC-HMS hydrological model. Simulation results indicate that water deficit at basin level will likely triple towards 2050 due to increase in water demand and decrease in aquifer recharge and dam storage. This alarming situation, in a country that already suffers from water insecurity, emphasizes the need for more efforts to implement climate change adaptation measures. This paper presents an assessment of 38 climate change adaptation measures according to several criteria. The evaluation shows that measures affecting the management of water resources have the highest benefit-to-efforts ratio, which indicates that decision makers and stakeholders should increasingly focus their efforts on management

  19. Climate regionalization for main production areas of Indonesia: Case study of West Java

    NASA Astrophysics Data System (ADS)

    Perdinan; Farysca Adi, Ryco; Sugiarto, Yon; Arifah, Annisa; Yustisi Arini, Enggar; Atmaja, Tri

    2017-01-01

    Spatially, climate condition is vary within a region and considered as essential information for planning activities such as agro-climate zonation. An approach to understand the spatial climate variability is the utilization of climate regionalization that is applied to rainfall data to distinguish differences in the pattern and magnitude (characteristics) of spatial rainfall variability over a region. Unfortunately, the application of climate regionalization poses a challenging issue in Indonesia, considering the availability of climate data. Recent advances in satellite and reanalysis data measuring climate variability over a large area provided an opportunity for the application of climate regionalization in the country. Using the West Java, one of main crop production regions in Indonesia, climate regionalization techniques were applied to map spatial variability of climate types based on rainfall data recorded by climate stations (point based analysis) and estimated by modeled/reanalysis data and satellite observations (gridded data). The regionalization derived from gridded rainfall data have reasonably better in capturing the zonal pattern of differences in climate types within the study region than the regionalization applied to insufficient numbers of site-based rainfall observation. This indicates that the gridded data offers an alternative for climate regionalization, when site-based observations are unavailable or limited.

  20. Development of ALARO-Climate regional climate model for a very high resolution

    NASA Astrophysics Data System (ADS)

    Skalak, Petr; Farda, Ales; Brozkova, Radmila; Masek, Jan

    2013-04-01

    ALARO-Climate is a new regional climate model (RCM) derived from the ALADIN LAM model family. It is based on the numerical weather prediction model ALARO and developed at the Czech Hydrometeorological Institute. The model is expected to able to work in the so called "grey zone" physics (horizontal resolution of 4 - 7 km) and at the same time retain its ability to be operated in resolutions in between 20 and 50 km, which are typical for contemporary generation of regional climate models. Here we present the main features of the RCM ALARO-Climate and results of the first model simulations on longer time-scales (1961-1990). The model was driven by the ERA-40/Interim re-analyses and run on the large pan-European integration domain ("ENSEMBLES / Euro-Cordex domain") with spatial resolution of 25 km. The simulated model climate was compared with the gridded observation of air temperature (mean, maximum, minimum) and precipitation from the E-OBS version 7 dataset. The validation of the first ERA-40 simulation has revealed significant cold biases in all seasons (between -4 and -2 °C) and overestimation of precipitation on 20% to 60% in the selected Central Europe target area (0° - 30° eastern longitude ; 40° - 60° northern latitude). The consequent adaptations in the model and their effect on the simulated properties of climate variables are illustrated. Acknowledgements: This study was performed within the frame of projects ALARO (project P209/11/2405 sponsored by the Czech Science Foundation) and CzechGlobe Centre (CZ.1.05/1.1.00/02.0073). The partial support was also provided under the projects P209-11-0956 of the Czech Science Foundation and CZ.1.07/2.4.00/31.0056 (Operational Programme of Education for Competitiveness of Ministry of Education, Youth and Sports of the Czech Republic).

  1. Urban precipitation extremes: How reliable are regional climate models?

    NASA Astrophysics Data System (ADS)

    Mishra, Vimal; Dominguez, Francina; Lettenmaier, Dennis P.

    2012-02-01

    We evaluate the ability of regional climate models (RCMs) that participated in the North American Regional Climate Change Assessment Program (NARCCAP) to reproduce the historical season of occurrence, mean, and variability of 3 and 24-hour precipitation extremes for 100 urban areas across the United States. We show that RCMs with both reanalysis and global climate model (GCM) boundary conditions behave similarly and underestimate 3-hour precipitation maxima across almost the entire U.S. RCMs with both boundary conditions broadly capture the season of occurrence of precipitation maxima except in the interior of the western U.S. and the southeastern U.S. On the other hand, the RCMs do much better in identifying the season of 24-hour precipitation maxima. For mean annual precipitation maxima, regardless of the boundary condition, RCMs consistently show high (low) bias for locations in the western (eastern) U.S. Our results indicate that RCM-simulated 3-hour precipitation maxima at 100-year return period could be considered acceptable for stormwater infrastructure design at less than 12% of the 100 urban areas (regardless of boundary conditions). RCM performance for 24-hour precipitation maxima was slightly better, with performance acceptable for stormwater infrastructure design judged adequate at about 25% of the urban areas.

  2. Desertification of forest, range and desert in Tehran province, affected by climate change

    NASA Astrophysics Data System (ADS)

    Eskandari, Hadi; Borji, Moslem; Khosravi, Hassan; Mesbahzadeh, Tayebeh

    2016-06-01

    Climate change has been identified as a leading human and environmental crisis of the twenty-first century. Drylands throughout the world have always undergone periods of degradation due to naturally occurring fluctuation in climate. Persistence of widespread degradation in arid and semiarid regions of Iran necessitates monitoring and evaluation. This paper aims to monitor the desertification trend in three types of land use, including range, forest and desert, affected by climate change in Tehran province for the 2000s and 2030s. For assessing climate change at Mehrabad synoptic station, the data of two emission scenarios, including A2 and B2, were used, utilizing statistical downscaling techniques and data generated by the Statistical DownScaling Model (SDSM). The index of net primary production (NPP) resulting from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images was employed as an indicator of destruction from 2001 to 2010. The results showed that temperature is the most significant driving force which alters the net primary production in rangeland, forest and desert land use in Tehran province. On the basis of monitoring findings under real conditions, in the 2000s, over 60 % of rangelands and 80 % of the forest were below the average production in the province. On the other hand, the long-term average changes of NPP in the rangeland and forests indicated the presence of relatively large areas of these land uses with a production rate lower than the desert. The results also showed that, assuming the existence of circumstances of each emission scenarios, the desertification status will not improve significantly in the rangelands and forests of Tehran province.

  3. Multimodel Estimate of Global Water Resources Affected by Human Interventions and Climate Change

    NASA Astrophysics Data System (ADS)

    Haddeland, I.; Biemans, H.; Flörke, M.; Hanasaki, N.; Stacke, T.; Tessler, Z. D.; Wada, Y.

    2013-12-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural or domestic purposes. Climate change is expected to additionally affect water supply and demand. Several global hydrologic models have recently implemented reservoir operations and water withdrawals in their modeling schemes. Seven of these models (H08, LPJmL, PCR-GLOBWB, MPI-HM, VIC, WaterGAP and WBM) have been run within the framework of two model inter-comparison projects - the currently running Inter-sectoral Impact Model Intercomparison Project (ISI-MIP) and its predecessor on the water sector the Water Model Intercomparison Project (WaterMIP). In both projects hydrological models were forced with multiple climate projections from different Atmosphere-Ocean General Circulation Models (AOGCMs) taking into account present day human interventions on the hydrological cycle such as dams and water withdrawals. By integrating results from the two projects we benefit form a large ensemble size that allows for assessments of uncertainties from climate projections from different AOGCMs. Here, multimodel analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared. The results indicate that direct human impacts on the annual water cycle in some regions are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2K). In many river basins the relative effects of human interventions are much larger at the seasonal level than at the annual level. There is, however, a considerable spread in the model estimates of these impacts. Possible reasons for this spread, e.g. differences in the reservoir operation schemes, are discussed.

  4. Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula.

    PubMed

    Montes-Hugo, Martin; Doney, Scott C; Ducklow, Hugh W; Fraser, William; Martinson, Douglas; Stammerjohn, Sharon E; Schofield, Oscar

    2009-03-13

    The climate of the western shelf of the Antarctic Peninsula (WAP) is undergoing a transition from a cold-dry polar-type climate to a warm-humid sub-Antarctic-type climate. Using three decades of satellite and field data, we document that ocean biological productivity, inferred from chlorophyll a concentration (Chl a), has significantly changed along the WAP shelf. Summertime surface Chl a (summer integrated Chl a approximately 63% of annually integrated Chl a) declined by 12% along the WAP over the past 30 years, with the largest decreases equatorward of 63 degrees S and with substantial increases in Chl a occurring farther south. The latitudinal variation in Chl a trends reflects shifting patterns of ice cover, cloud formation, and windiness affecting water-column mixing. Regional changes in phytoplankton coincide with observed changes in krill (Euphausia superba) and penguin populations.

  5. A review on regional convection permitting climate modeling

    NASA Astrophysics Data System (ADS)

    van Lipzig, Nicole; Prein, Andreas; Brisson, Erwan; Van Weverberg, Kwinten; Demuzere, Matthias; Saeed, Sajjad; Stengel, Martin

    2016-04-01

    With the increase of computational resources, it has recently become possible to perform climate model integrations where at least part the of convection is resolved. Since convection-permitting models (CPMs) are performing better than models where convection is parameterized, especially for high-impact weather like extreme precipitation, there is currently strong scientific progress in this research domain (Prein et al., 2015). Another advantage of CPMs, that have a horizontal grid spacing <4 km, is that they better resolve complex orography and land use. The regional climate model COSMO-CLM is frequently applied for CPM simulations, due to its non-hydrostatic dynamics and open international network of scientists. This presentation consists of an overview of the recent progress in CPM, with a focus on COSMO-CLM. It consists of three parts, namely the discussion of i) critical components of CPM, ii) the added value of CPM in the present-day climate and iii) the difference in climate sensitivity in CPM compared to coarser scale models. In terms of added value, the CPMs especially improve the representation of precipitation's, diurnal cycle, intensity and spatial distribution. However, an in depth-evaluation of cloud properties with CCLM over Belgium indicates a strong underestimation of the cloud fraction, causing an overestimation of high temperature extremes (Brisson et al., 2016). In terms of climate sensitivity, the CPMs indicate a stronger increase in flash floods, changes in hail storm characteristics, and reductions in the snowpack over mountains compared to coarser scale models. In conclusion, CPMs are a very promising tool for future climate research. However, additional efforts are necessary to overcome remaining deficiencies, like improving the cloud characteristics. This will be a challenging task due to compensating deficiencies that currently exist in `state-of-the-art' models, yielding a good representation of average climate conditions. In the light

  6. Ensemble of regional climate model projections for Ireland

    NASA Astrophysics Data System (ADS)

    Nolan, Paul; McGrath, Ray

    2016-04-01

    The method of Regional Climate Modelling (RCM) was employed to assess the impacts of a warming climate on the mid-21st-century climate of Ireland. The RCM simulations were run at high spatial resolution, up to 4 km, thus allowing a better evaluation of the local effects of climate change. Simulations were run for a reference period 1981-2000 and future period 2041-2060. Differences between the two periods provide a measure of climate change. To address the issue of uncertainty, a multi-model ensemble approach was employed. Specifically, the future climate of Ireland was simulated using three different RCMs, driven by four Global Climate Models (GCMs). To account for the uncertainty in future emissions, a number of SRES (B1, A1B, A2) and RCP (4.5, 8.5) emission scenarios were used to simulate the future climate. Through the ensemble approach, the uncertainty in the RCM projections can be partially quantified, thus providing a measure of confidence in the predictions. In addition, likelihood values can be assigned to the projections. The RCMs used in this work are the COnsortium for Small-scale MOdeling-Climate Limited-area Modelling (COSMO-CLM, versions 3 and 4) model and the Weather Research and Forecasting (WRF) model. The GCMs used are the Max Planck Institute's ECHAM5, the UK Met Office's HadGEM2-ES, the CGCM3.1 model from the Canadian Centre for Climate Modelling and the EC-Earth consortium GCM. The projections for mid-century indicate an increase of 1-1.6°C in mean annual temperatures, with the largest increases seen in the east of the country. Warming is enhanced for the extremes (i.e. hot or cold days), with the warmest 5% of daily maximum summer temperatures projected to increase by 0.7-2.6°C. The coldest 5% of night-time temperatures in winter are projected to rise by 1.1-3.1°C. Averaged over the whole country, the number of frost days is projected to decrease by over 50%. The projections indicate an average increase in the length of the growing season

  7. Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms.

    PubMed

    Vautard, Robert; Thais, Françoise; Tobin, Isabelle; Bréon, François-Marie; Devezeaux de Lavergne, Jean-Guy; Colette, Augustin; Yiou, Pascal; Ruti, Paolo Michele

    2014-01-01

    The rapid development of wind energy has raised concerns about environmental impacts. Temperature changes are found in the vicinity of wind farms and previous simulations have suggested that large-scale wind farms could alter regional climate. However, assessments of the effects of realistic wind power development scenarios at the scale of a continent are missing. Here we simulate the impacts of current and near-future wind energy production according to European Union energy and climate policies. We use a regional climate model describing the interactions between turbines and the atmosphere, and find limited impacts. A statistically significant signal is only found in winter, with changes within ±0.3 °C and within 0-5% for precipitation. It results from the combination of local wind farm effects and changes due to a weak, but robust, anticyclonic-induced circulation over Europe. However, the impacts remain much weaker than the natural climate interannual variability and changes expected from greenhouse gas emissions.

  8. Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms

    NASA Astrophysics Data System (ADS)

    Vautard, Robert; Thais, Françoise; Tobin, Isabelle; Bréon, François-Marie; de Lavergne, Jean-Guy Devezeaux; Colette, Augustin; Yiou, Pascal; Ruti, Paolo Michele

    2014-02-01

    The rapid development of wind energy has raised concerns about environmental impacts. Temperature changes are found in the vicinity of wind farms and previous simulations have suggested that large-scale wind farms could alter regional climate. However, assessments of the effects of realistic wind power development scenarios at the scale of a continent are missing. Here we simulate the impacts of current and near-future wind energy production according to European Union energy and climate policies. We use a regional climate model describing the interactions between turbines and the atmosphere, and find limited impacts. A statistically significant signal is only found in winter, with changes within ±0.3 °C and within 0-5% for precipitation. It results from the combination of local wind farm effects and changes due to a weak, but robust, anticyclonic-induced circulation over Europe. However, the impacts remain much weaker than the natural climate interannual variability and changes expected from greenhouse gas emissions.

  9. The UC-LLNL Regional Climate System Model

    SciTech Connect

    Miller, N.L.; Kim, Jinwon

    1996-09-01

    The UC-LLNL Regional Climate System Model has been under development since 1991. The unique system simulates climate from the global scale down to the watershed catchment scale, and consists of data pre- and post- processors, and four model components. The four model components are (1) a mesoscale atmospheric simulation model, (2) a soil-plant-snow model, (3) a watershed hydrology-riverflow model, and (4) a suite of crop response models. The first three model components have been coupled, and the system includes two-way feedbacks between the soil-plant-snow model and the mesoscale atmospheric simulation model. This three-component version of RCSM has been tested, validated, and successfully used for operational quantitative precipitation forecasts and seasonal water resource studies over the southwestern US. We are currently implementation and validating the fourth component, the Decision Support system for Agrotechnology Transfer (DSSAT). A description of the UC-LLNL RCSM and some recent results are presented.

  10. Climate change projections over three metropolitan regions in Southeast Brazil using the non-hydrostatic Eta regional climate model at 5-km resolution

    NASA Astrophysics Data System (ADS)

    Lyra, Andre; Tavares, Priscila; Chou, Sin Chan; Sueiro, Gustavo; Dereczynski, Claudine; Sondermann, Marcely; Silva, Adan; Marengo, José; Giarolla, Angélica

    2017-02-01

    The objective of this work is to assess changes in three metropolitan regions of Southeast Brazil (Rio de Janeiro, São Paulo, and Santos) based on the projections produced by the Eta Regional Climate Model (RCM) at very high spatial resolution, 5 km. The region, which is densely populated and extremely active economically, is frequently affected by intense rainfall events that trigger floods and landslides during the austral summer. The analyses are carried out for the period between 1961 and 2100. The 5-km simulations are results from a second downscaling nesting in the HadGEM2-ES RCP4.5 and RCP8.5 simulations. Prior to the assessment of the projections, the higher resolution simulations were evaluated for the historical period (1961-1990). The comparison between the 5-km and the coarser driver model simulations shows that the spatial patterns of precipitation and temperature of the 5-km Eta simulations are in good agreement with the observations. The simulated frequency distribution of the precipitation and temperature extremes from the 5-km Eta RCM is consistent with the observed structure and extreme values. Projections of future climate change using the 5-km Eta runs show stronger warming in the region, primarily during the summer season, while precipitation is strongly reduced. Projected temperature extremes show widespread heating with maximum temperatures increasing by approximately 9 °C in the three metropolitan regions by the end of the century in the RCP8.5 scenario. A trend of drier climate is also projected using indices based on daily precipitation, which reaches annual rainfall reductions of more than 50 % in the state of Rio de Janeiro and between 40 and 45 % in São Paulo and Santos. The magnitude of these changes has negative implications to the population health conditions, energy security, and economy.

  11. Regional Water System Vulnerabilities and Strengths for Unavoidable Climate Adaptation

    NASA Astrophysics Data System (ADS)

    Gleick, P. H.; Palaniappan, M.; Christian-Smith, J.; Cooley, H.

    2011-12-01

    A wide range of options are available to help water systems prepare and adapt for unavoidable climate impacts, but these options vary depending on region, climatic conditions, economic status, and technical infrastructure in place. Drawing on case studies from the United States, India, and elsewhere, and from both urban and agricultural water systems, risks to water supply and quality are evaluated and summarized and categories of responses to help improve the effectiveness of adaptation policies are reviewed. Among the issues to be discussed are characteristics unique to developing country cities, such as the predominance of informal actors in the water sector. The formal, or government sector, which often exclusively manages water access and distribution in developed country cities, is only one among many players in the water sector in developing country cities. Informal access to water includes direct access by individuals through private groundwater systems, private water markets using vendors or sales of bottled water, and rainwater harvesting systems on individual homes. In this environment, with already existing pressures on water availability and use, the impacts of climate change on water will be strongly felt. This complicates planning for water supply and demand and risks increasing already prevalent water insecurity, especially for urban poor. In wealthier countries, any planning for water-related climate impacts tends to take the form of "business as usual" responses, such as efforts to expand supply with new infrastructure, manage demand through conservation programs, or simply put off addressing the problem to the next generation of managers and users. These approaches can be effective, but also risk missing unusual, non-linear, or threshold impacts. Examples of more informed and innovative efforts to substantively address climate change risks will be presented.

  12. Development of 21st Century Regional Climate Services

    NASA Astrophysics Data System (ADS)

    Wiggins, A.; Bailey, M.; Dello, K.; Mote, P.

    2011-12-01

    Alex Wiggins - Oregon State University - wigginal@engr.oregonstate.edu Mike Bailey - Oregon State University - mjb@eecs.oregonstate.edu Kathie Dello - Oregon Climate Change Research Institute - kdello@coas.oregonstate.edu Phil Mote - Oregon State University - pmote@coas.oregonstate.edu State climate offices respond frequently to requests regarding past events and current weather with its long-term context. Answering some of these requests may require examining many different sources of data, some quite voluminous. The general public and media, however, are not interested in huge amounts of data or spending the time sifting through it; they only want the information they requested and they usually want it immediately. Our Regional Climate Services (RCS) project was developed as a solution to thinly funded state climate offices to allow users to visualize and explore many different data sets at any time without using the resources of the climate offices. The developed web application for the RCS project currently tries to balance the need for vast amounts of data to be able to compare all facets of the data sets, with tools to pre-process and compress the information to quickly deliver informative content to users and maintain an excellent experience. RCS employs the use of prefetching of data for user experience, pre-processing of tiled images and data comparisons, memory caching server side, and data manipulation client side using shaders and the gpu for data culling and scaling to give clients a great experience and limit the amount of data transfer and recalculation from the server. Allowing the client to do data manipulation client side we are saving terabytes of preprocessed images and data that would have to be stored to maintain the user experience as well as allowing them to create useful visualizations and explore the data sets completely.

  13. Regional features of global climate change in the Carpathian Basin

    NASA Astrophysics Data System (ADS)

    Pongrácz, R.; Bartholy, J.; Matyasovszky, I.; Schlanger, V.

    2003-04-01

    IPCC TAR suggests that eastern and central European countries could become highly vulnerable to global warming. Our investigations support these findings, especially, in case of two subregions: (1) Hungarian Great Plain, (2) watershed of the Lake Balaton. Severe shortage of precipitation occurred in the last few decades in both areas, thus, ecosystems must face to high risk of environmental change. The Great Plain is the largest agricultural area in Hungary where high variability of floods and droughts causes severe damages in crop yields and human settlements. Frequent extreme events may result in unstable climate conditions and increased vulnerability of agricultural activity in this region. One of the largest lake in Europe is the Lake Balaton with its unique 3.3 meter depth on average. In the last few years, the mean water level has decreased by 0.6-0.8 m several times for a few months period. The only outflow of the lake, a small creek (called Sio) has been regulated in 1863 in order to control the water runoff from the lake to the river Danube (120 km distance). The aim of our investigations is to compare climate change scenarios for these two sensitive regions. Two downscaling techniques have been compared, namely, (1) stochastical downscaling method nested in coupled ocean-atmosphere GCMs, (2) an upwelling diffusion energy balance model combined with GCM outputs and IPCC emission scenarios. The stochastical downscaling method includes large-scale circulation of the atmosphere, and also, it is able to represent the linkage between the local surface variables and large-scale circulation. Seasonal and annual changes in temperature and precipitation have been determined in case of the 2xCO2 climate and compared to historical data. Furthermore, several IPCC emission scenarios have been compared and GCM outputs have been analysed in order to project climate conditions for the 21st century in the Carpathian Basin.

  14. A regional dynamic vegetation-climate model for Central America

    NASA Astrophysics Data System (ADS)

    Snell, R. S.; Cowling, S. A.; Smith, B.

    2009-12-01

    Global vegetation models simulate the distribution of vegetation as a function of climate. Dynamic global vegetation models (DGVMs) are also able to simulate the vegetation shifts in response to climate change, which makes them particularly useful for addressing questions about past and future climate scenarios. However, DGVMs have been criticized for using generic plant functional types (PFTs) and running the models at a coarse grid cell resolution. Regional dynamic vegetation models are able to simulate important landscape variation, since they use a finer resolution and specific PFTs for their region. Regional studies have typically focused on boreal or temperate ecosystems in North America and Europe. We will be presenting the results of applying a dynamic regional vegetation-climate model (LPJ-GUESS) for Central America. Initially, the model was run with the described global PFTs. However, several biomes were very poorly represented. Two PFTs were added: a Tropical Needleleaf Evergreen Tree to improve the simulation of the Mixed Pine-Oak biome, and a Desert Shrub to capture the Xeric Shrublands. The overall distribution of biomes was visually similar, however the Kappa statistic indicated a poor agreement with the potential biome map (overall Kappa = 0.301). The Kappa statistic did improve as we aggregated cell sizes and simplified the biomes (overall Kappa = 0.728). Compared to remote sensing data, the model showed a strong correlation with total LAI (r = 0.75). The poor Kappa statistic is likely due to a combination of factors. The way in which biomes are defined by the author can have a large influence on the level of agreement between simulated and potential vegetation. The Kappa statistic is also limited to comparing individual grid cells and thus, cannot detect overall patterns. Examining those areas which are poorly represented will help to identify future work and improve the representation of vegetation in these ecological models. In particular, the

  15. Effects of double cropping on summer climate of the North China Plain and neighbouring regions

    NASA Astrophysics Data System (ADS)

    Jeong, S. J.

    2015-12-01

    The North China Plain (NCP) is one of the most important agricultural regions in Asia and produces up to 50% of the cereal consumed in China each year. To meet increasing food demands without expanding croplands, annual agricultural practice in much of the NCP has changed from single to double cropping. The impact of double cropping on the regional climate, through biophysical feedbacks caused by changes in land surface conditions, remains largely unknown. Here we show that observed surface air temperatures during the inter-cropping season (June and July) are 0.40 °C higher over double cropping regions (DCRs) than over single cropping regions (SCRs), with increases in the daily maximum temperature as large as 1.02 °C. Using regional climate modelling, we attribute the higher temperatures in DCRs to reduced evapotranspiration during the inter-cropping period. The higher surface temperatures in June and July affect low-level circulation and, in turn, rainfall associated with the East Asian monsoon over the NCP and neighbouring countries. These findings suggest that double cropping in the NCP can amplify the magnitude of summertime climate changes over East Asia.

  16. Investigation into regional climate variability using tree-ring reconstruction, climate diagnostics and prediction

    NASA Astrophysics Data System (ADS)

    Barandiaran, Daniel A.

    This document is a summary of research conducted to develop and apply climate analysis tools toward a better understanding of the past and future of hydroclimate variability in the state of Utah. Two pilot studies developed data management and climate analysis tools subsequently applied to our region of interest. The first investigated the role of natural atmospheric forcing in the inter-annual variability of precipitation of the Sahel region in Africa, and found a previously undocumented link with the East Atlantic mode, which explains 29% of variance in regional precipitation. An analysis of output from an operational seasonal climate forecast model revealed a failure in the model to reproduce this linkage, thus highlighting a shortcoming in model performance. The second pilot study studied long-term trends in the strength of the Great Plains low-level jet, an driver of storm development in the region's wet spring season. Our analysis showed that since 1979 the low-level jet has strengthened as shifted the timing of peak activity, resulting in shifts both in time and location for peak precipitation, possibly the result of anthropogenic forcing. Our third study used a unique tree-ring dataset to create a reconstruction of April 1 snow water equivalent, an important measure of water supply in the Intermountain West, for the state of Utah to 1850. Analysis of the reconstruction shows the majority of snowpack variability occurs monotonically over the whole state at decadal to multidecadal frequencies. The final study evaluated decadal prediction performance of climate models participating in the Coupled Model Intercomparison Project 5. We found that the analyzed models exhibit modest skill in prediction of the Pacific Decadal Oscillation and better skill in prediction of global temperature trends post 1960.

  17. Modeling the Impacts of Global Climate and Regional Land Use Change on Regional Climate, Air Quality and Public Health in the New York Metropolitan Region

    NASA Astrophysics Data System (ADS)

    Rosenthal, J. E.; Knowlton, K. M.; Kinney, P. L.

    2002-12-01

    There is an imminent need to downscale the global climate models used by international consortiums like the IPCC (Intergovernmental Panel on Climate Change) to predict the future regional impacts of climate change. To meet this need, a "place-based" climate model that makes specific regional projections about future environmental conditions local inhabitants could face is being created by the Mailman School of Public Health at Columbia University, in collaboration with other researchers and universities, for New York City and the 31 surrounding counties. This presentation describes the design and initial results of this modeling study, aimed at simulating the effects of global climate change and regional land use change on climate and air quality over the northeastern United States in order to project the associated public health impacts in the region. Heat waves and elevated concentrations of ozone and fine particles are significant current public health stressors in the New York metropolitan area. The New York Climate and Health Project is linking human dimension and natural sciences models to assess the potential for future public health impacts from heat stress and air quality, and yield improved tools for assessing climate change impacts. The model will be applied to the NY metropolitan east coast region. The following questions will be addressed: 1. What changes in the frequency and severity of extreme heat events are likely to occur over the next 80 years due to a range of possible scenarios of land use and land cover (LU/LC) and climate change in the region? 2. How might the frequency and severity of episodic concentrations of ozone (O3) and airborne particulate matter smaller than 2.5 æm in diameter (PM2.5) change over the next 80 years due to a range of possible scenarios of land use and climate change in the metropolitan region? 3. What is the range of possible human health impacts of these changes in the region? 4. How might projected future human

  18. Influence of the Laurentian Great Lakes on Regional Climate

    NASA Astrophysics Data System (ADS)

    Notaro, M.; Holman, K.; Zarrin, A.; Fluck, E.; Vavrus, S. J.; Bennington, V.

    2012-12-01

    The influence of the Laurentian Great Lakes on climate is assessed by comparing two decade-long simulations, with the lakes either included or excluded, using the Abdus Salam International Centre for Theoretical Physics Regional Climate Model Version 4. The Great Lakes dampen the variability in near-surface air temperature across the surrounding region, while reducing the amplitude of the diurnal cycle and annual cycle of air temperature. The impacts of the Great Lakes on the regional surface energy budget include an increase (decrease) in turbulent fluxes during the cold (warm) season and an increase in surface downward shortwave radiation flux during summer due to diminished atmospheric moisture and convective cloud amount. Changes in the hydrologic budget due to the presence of the Great Lakes include increases in evaporation and precipitation during October-March and decreases during May-August, along with springtime reductions in snowmelt-related runoff. Circulation responses consist of a regionwide decrease in sea-level pressure in autumn-winter and an increase in summer, with enhanced ascent and descent in the two seasons, respectively. The most pronounced simulated impact of the Great Lakes on synoptic systems traversing the basin is a weakening of cold-season anticyclones.

  19. A regional climate simulation study with land cover dynamics in Northern China

    NASA Astrophysics Data System (ADS)

    Wang, Hanjie; Ju, Yongmao; Li, Jianyun; Qiu, Guoyu

    2007-09-01

    A social-economic database based on the Governmental Statistical Annals, county-to-county investigation, literature verification, as well as the satellite identification was completed recently by the Remote Sensing and GIS Research Center, Beijing Normal University of China. The GIS Operational System handing this database not only provides details of the social, ecological, and economic information of the Northern China's 13 provinces since earlier 1950s, but also gives out predictions of these information by 2050 with different sceneries concerning the population increase, land use variation, governmental policy adjusting, administrating capability, science and technology development, National GDP increment, as well as world climate change. Aims at further regional climate simulation study, there is a special module nested in the GIS Operational System that interprets the county-level administrative data-units to a 60 × 60 km numerical mesh-grid suitable for climate model. By incorporating the land use dynamics provided by the above database, the new generation of the Regional Integrate Environment Modeling System (RIEMS2.0) was used for climate simulation study. The preliminary simulation studies show that: (1) the regional climate will be affected by the LULC variation because the equilibrium of water and heat transfer in the air-vegetation interface is changed; (2) the integrate impact of the LULC variation on climate (such as temperature, humidity and net long-wave radiation, precipitation) is not only limited to the Northern China where LULC varies, but also to the whole numerical domain where the LULC does not vary at all; (3) the ecological construction engineering implemented in Northern China including the Green-Great Wall construction engineering, the replace farming with forestry and grass movement, and the natural forest conservation etc has shown and will work positively on the eco-environment improvement, particularly shown as the increased

  20. Regional climate models downscaling in the Alpine area with multimodel superensemble

    NASA Astrophysics Data System (ADS)

    Cane, D.; Barbarino, S.; Renier, L. A.; Ronchi, C.

    2013-05-01

    The climatic scenarios show a strong signal of warming in the Alpine area already for the mid-XXI century. The climate simulations, however, even when obtained with regional climate models (RCMs), are affected by strong errors when compared with observations, due both to their difficulties in representing the complex orography of the Alps and to limitations in their physical parametrization. Therefore, the aim of this work is to reduce these model biases by using a specific post processing statistic technique, in order to obtain a more suitable projection of climate change scenarios in the Alpine area. For our purposes we used a selection of regional climate models (RCMs) runs which were developed in the framework of the ENSEMBLES project. They were carefully chosen with the aim to maximise the variety of leading global climate models and of the RCMs themselves, calculated on the SRES scenario A1B. The reference observations for the greater Alpine area were extracted from the European dataset E-OBS (produced by the ENSEMBLES project), which have an available resolution of 25 km. For the study area of Piedmont daily temperature and precipitation observations (covering the period from 1957 to the present) were carefully gridded on a 14 km grid over Piedmont region through the use of an optimal interpolation technique. Hence, we applied the multimodel superensemble technique to temperature fields, reducing the high biases of RCMs temperature field compared to observations in the control period. We also proposed the application of a brand new probabilistic multimodel superensemble dressing technique, already applied to weather forecast models successfully, to RCMS: the aim was to estimate precipitation fields, with careful description of precipitation probability density functions conditioned to the model outputs. This technique allowed for reducing the strong precipitation overestimation, arising from the use of RCMs, over the Alpine chain and to reproduce well the

  1. Climatic characteristics and regionalization of fogs in China

    NASA Astrophysics Data System (ADS)

    Hao, T. Y.; Chen, S. C.; Han, S. Q.; Shan, X. L.; Meng, L. H.

    2017-01-01

    Using trend coefficient method, vector analysis method, and monitored meteorological data across China, climatic characteristics and spatial pattern of fogs in China were investigated. The results show that most fogs occur in southeastern China. Thin fogs usually occur in fog-rare regions and dense fogs take place in fog-prone regions. The number of annual fog days in most regions of China exhibits a decreasing trend from 1980 to 2010. It also found that the regions with more fog days correspond to the lower concentration degree of fogs, and vice versa. In terms of the national scale, the concentration periods of fogs are mainly in November, December, and January in China. We further classified the occurrence frequencies of fogs into five spatial distribution patterns over a single year according to the spatial distribution characteristics of fogs occurrence frequencies of 36 dekads, namely, a whole year can be correspondingly divided into five phases. Based on this, multi-year average fog-prone regions in the five phases are obtained. Our results also identify the high incidence periods of fogs in different fog-prone regions.

  2. Evaluation of Regional Climate Simulations over the Great Lakes Region Driven by Three Global Data Sets

    SciTech Connect

    Zhong, Shiyuan; Li, Xiuping; Bian, Xindi; Heilman, Warren E.; Leung, Lai-Yung R.; Gustafson, William I.

    2012-06-27

    The performance of regional climate simulations is evaluated for the Great Lakes region. Three 10-year (1990–1999) current-climate simulations are performed using the MM5 regional climate model (RCM) with 36-km horizontal resolution. The simulations employed identical configuration and physical parameterizations, but different lateral boundary conditions and sea-surface temperatures derived from the NCEP Global Reanalysis and output from the CCSM3 and GISS general circulation models (GCMs). The simulation results are compared to the North American Regional Reanalysis (NARR). The three RCM simulations appeared to be more accurate in winter and least accurate in summer, and more accurate aloft than near the surface. The reanalysis-constrained simulation adequately captured the spatial distribution and seasonal cycle of the observed surface-air temperature and precipitation, but it produced consistently across all seasons a cold bias that is generally larger over the lakes than over land and a wet bias due to an overestimation of nonconvective precipitation. The simulated seasonal cycle of moisture–flux convergence over the region was in very good agreement with NARR. The two GCM-driven runs adequately simulated the spatial and seasonal variation of temperature, but overestimated cold-season precipitation and underestimated summer precipitation, reversing the observed annual precipitation cycle. The GISS-driven run failed to simulate the prevailing low-level flow and moisture convergence patterns. All three RCM simulations successfully captured the impact of the Great Lakes on the region's climate, especially on winter precipitation, a significant improvement over coarse-resolution GCM simulations over the region.

  3. Integration of climatic indices in an objective probabilistic model for establishing and mapping viticultural climatic zones in a region

    NASA Astrophysics Data System (ADS)

    Moral, Francisco J.; Rebollo, Francisco J.; Paniagua, Luis L.; García, Abelardo; Honorio, Fulgencio

    2016-05-01

    Different climatic indices have been proposed to determine the wine suitability in a region. Some of them are related to the air temperature, but the hydric component of climate should also be considered which, in turn, is influenced by the precipitation during the different stages of the grapevine growing and ripening periods. In this study, we propose using the information obtained from ten climatic indices [heliothermal index (HI), cool night index (CI), dryness index (DI), growing season temperature (GST), the Winkler index (WI), September mean thermal amplitude (MTA), annual precipitation (AP), precipitation during flowering (PDF), precipitation before flowering (PBF), and summer precipitation (SP)] as inputs in an objective and probabilistic model, the Rasch model, with the aim of integrating the individual effects of them, obtaining the climate data that summarize all main climatic indices, which could influence on wine suitability from a climate viewpoint, and utilizing the Rasch measures to generate homogeneous climatic zones. The use of the Rasch model to estimate viticultural climatic suitability constitutes a new application of great practical importance, enabling to rationally determine locations in a region where high viticultural potential exists and establishing a ranking of the climatic indices which exerts an important influence on wine suitability in a region. Furthermore, from the measures of viticultural climatic suitability at some locations, estimates can be computed using a geostatistical algorithm, and these estimates can be utilized to map viticultural climatic zones in a region. To illustrate the process, an application to Extremadura, southwestern Spain, is shown.

  4. Adapting to Climate Change in the Great Lakes Region: The Wisconsin Initiative on Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Vimont, D.; Liebl, D.

    2012-12-01

    The mission of the Wisconsin Initiative on Climate Change Impacts (WICCI; http://www.wicci.wisc.edu) is to assess the impacts of climate change on Wisconsin's natural, human, and built environments; and to assist in developing, recommending, and implementing climate adaptation strategies in Wisconsin. WICCI originated in 2007 as a partnership between the University of Wisconsin Nelson Institute and the Wisconsin Department of Natural Resources, and has since grown to include numerous other state, public, and private institutions. In 2011, WICCI released its First Assessment Report, which documents the efforts of over 200 individuals around the state in assessing vulnerability and estimating the risk that regional climate change poses to Wisconsin. The success of WICCI as an organization can be traced to its existence as a partnership between academic and state institutions, and as a boundary organization that catalyzes cross-disciplinary efforts between science and policy. WICCI's organizational structure and its past success at assessing climate impacts in Wisconsin will be briefly discussed. As WICCI moves into its second phase, it is increasing its emphasis on the second part of its mission: development, and implementation of adaptation strategies. Towards these goals WICCI has expanded its organizational structure to include a Communications and Outreach Committee that further ensures a necessary two-way communication of information between stakeholders / decision makers, and scientific efforts. WICCI is also increasing its focus on place-based efforts that include climate change information as one part of an integrated effort at sustainable development. The talk will include a discussion of current outreach and education efforts, as well as future directions for WICCI efforts.

  5. [Climate change and hygienic assessment of weather conditions in Omsk and the Omsk Region].

    PubMed

    Gudinova, Zh V; Akimova, I S; Klochikhina, A V

    2010-01-01

    The paper deals with trends in climate change in the Omsk Region: the increases in average annual air temperatures and rainfall, which are attended by the higher number of abnormal weather events, as shown by the data of the Omsk Regional Board, Russian Federal Service for Hydrometeorology and Environmental Monitoring. There is information on weather severity in 2008: there was mild weather in spring and severe weather in winter, in January in particular. A survey of physicians has revealed that medical workers are concerned about climate problems and global warming and ascertained weather events mostly affecting the population's health. People worry most frequently about a drastic temperature drop or rise (as high as 71%), atmospheric pressure change (53%), and "when it is too hot in summer (47%).

  6. Climate change: evaluating your local and regional water resources

    USGS Publications Warehouse

    Flint, Lorraine E.; Flint, Alan L.; Thorne, James H.

    2015-01-01

    The BCM is a fine-scale hydrologic model that uses detailed maps of soils, geology, topography, and transient monthly or daily maps of potential evapotranspiration, air temperature, and precipitation to generate maps of recharge, runoff, snow pack, actual evapotranspiration, and climatic water deficit. With these comprehensive environmental inputs and experienced scientific analysis, the BCM provides resource managers with important hydrologic and ecologic understanding of a landscape or basin at hillslope to regional scales. The model is calibrated using historical climate and streamflow data over the range of geologic materials specific to an area. Once calibrated, the model is used to translate climate-change data into hydrologic responses for a defined landscape, to provide managers an understanding of potential ecological risks and threats to water supplies and managed hydrologic systems. Although limited to estimates of unimpaired hydrologic conditions, estimates of impaired conditions, such as agricultural demand, diversions, or reservoir outflows can be incorporated into the calibration of the model to expand its utility. Additionally, the model can be linked to other models, such as groundwater-flow models (that is, MODFLOW) or the integrated hydrologic model (MF-FMP), to provide information about subsurface hydrologic processes. The model can be applied at a relatively small scale, but also can be applied to large-scale national and international river basins.

  7. Tackling regional climate change by leaf albedo bio-geoengineering.

    PubMed

    Ridgwell, Andy; Singarayer, Joy S; Hetherington, Alistair M; Valdes, Paul J

    2009-01-27

    The likelihood that continuing greenhouse-gas emissions will lead to an unmanageable degree of climate change has stimulated the search for planetary-scale technological solutions for reducing global warming ("geoengineering"), typically characterized by the necessity for costly new infrastructures and industries. We suggest that the existing global infrastructure associated with arable agriculture can help, given that crop plants exert an important influence over the climatic energy budget because of differences in their albedo (solar reflectivity) compared to soils and to natural vegetation. Specifically, we propose a "bio-geoengineering" approach to mitigate surface warming, in which crop varieties having specific leaf glossiness and/or canopy morphological traits are specifically chosen to maximize solar reflectivity. We quantify this by modifying the canopy albedo of vegetation in prescribed cropland areas in a global-climate model, and thereby estimate the near-term potential for bio-geoengineering to be a summertime cooling of more than 1 degrees C throughout much of central North America and midlatitude Eurasia, equivalent to seasonally offsetting approximately one-fifth of regional warming due to doubling of atmospheric CO(2). Ultimately, genetic modification of plant leaf waxes or canopy structure could achieve greater temperature reductions, although better characterization of existing intraspecies variability is needed first.

  8. Regional Climate Modeling at ZAMG and climate impact assessment for European ecosystems

    NASA Astrophysics Data System (ADS)

    Anders, I.; Zuvela-Aloise, M.; Matulla, C.

    2010-09-01

    The Austrian society, policy, economy and environment request information on changes in the climate during the last years and especially for the near and remote future. Floodings, landslides, snow avalanches and storms belong to the natural hazards that highly impact Austria's socio-economic and environmental systems. In addition to already applied empirical regional modeling at ZAMG there was started dynamical regional climate modeling (RCM) with the COSMOS-CLM (CCLM, http://www.clm-community.eu/) at ZAMG in 2009. The main objective of the Austrian national project "reclip:century" (in cooperation with other Austrian Institutes) is to provide high resolved data sets of climate simulations for the GAR. A one-way double nesting approach is used. The domain used in the first step is Europe with a spatial resolution of 0.44° (50km). Within this simulation the GAR domain is nested having a resolution of 0.09° (10km). The output of these simulations will be evaluated within the project EVACLIM. This is to be done by comparing the output with a variety of regional scale observational datasets. The results of the simulations will be made available to the impact community. Within the international based project HABIT-CHANGE 10km-resolution climate scenarios will be generated. The data sets produced for two different regions the GAR and the Danube Delta - shall be used as a basis for the work of hydrology modelers and for the development of strategies for adaptation and mitigation Based on the CCLM simulations at ZAMG of about 0.03° (4km) spatial resolution for the Northeast of Austria, the project DISTURBANCE aims to develop integrated models for temperate Alpine forest ecosystems. Important tasks for the forest modeling are not only the assessment of changes in temperature, drought and windstorms but also the interactions between wind damages and bark beetle development which might impact the forest structure and its composition of species. In the project DATAPHEN

  9. Climate variability and wine quality over Portuguese regions

    NASA Astrophysics Data System (ADS)

    Gouveia, Célia M.; Gani, Érico A.; Liberato, Margarida L. R.

    2015-04-01

    The relationship between the characteristics of wine and its geographic origin is frequently used to explain the hierarchy of high-quality wines. Port wine is produced from grapes grown in selected areas of the Douro valley, in Portugal, the so-called Região Demarcada do Douro, the first wine-producing region of the world (dating from 1758). The Douro region presents distinctive climatic, topographic and soil characteristics. Moreover Portugal possesses a large array of native varietals, producing an abundant diversity of different wines. The most protected wines, produced only with some authorised grape varietals in the demarcated regions, are labelled D.O.C. (Denominação de Origem Controlada, similar to the French Appellation d'Origine Contrôlée (AOC)) which secures a superior wine quality. Recent warming trends in Portugal are associated with the significant increase in the frequency and duration of heat waves, and the increase in the frequency of hot days and tropical nights, especially in spring and summer, together with a significant decrease in the frequency of cold waves and frost days (Santo et al., 2014). Moreover a predominantly negative tendency in precipitation indices was also found (de Lima et al., 2014). These trends and associated changes in temperature and precipitation regimes may exert strong influences on agriculture systems. In this work we have performed an analysis of the distinct behaviour of several meteorological fields in vintage versus non-vintage years for Port Wine on one hand and Alentejo and Dão/Bairrada DOC regions on the other hand, during the period spanning from 1964-1995. The relative importance of maximum and minimum temperature, precipitation and frost days is assessed for each individual month of the vegetative cycle and their importance to the wine quality is evaluated. Furthermore, composites of 500 hPa geopotential height and sea level pressure fields over the Euro Atlantic region are also compared for years

  10. Regional Climate Modeling of West African Summer Monsoon Climate: Impact of Historical Boundary Forcing

    NASA Astrophysics Data System (ADS)

    Kebe, I.

    2015-12-01

    In this paper, we analyze and intercompare the performance of an ensemble of three Regional Climate Models (RCMs) driven by three set of Global Climate Models (GCMs), in reproducing seasonal mean climatologies with their annual cycle and the key features of West African summer monsoon over 20 years period (1985-2004) during the present day. The results show that errors in lateral boundary conditions from the GCM members, have an unexpected way on the skill of the RCMs in reproducing regional climate features such as the West African Monsoon features and the annual cycle of precipitation and temperature in terms of outperforming the GCM simulation. It also shows the occurrence of the West African Monsoon jump, the intensification and northward shift of the Saharan Heat Low (SHL) as expressed in some RCMs than the GCMs. Most RCMs also capture the mean annual cycle of precipitation and temperature, including, single and double-peaked during the summer months, in terms of events and amplitude. In a series of RCMs and GCMs experiments between the Sahara region and equatorial Africa, the presence of strong positive meridional temperature gradients at the surface and a strong meridional gradients in the potential temperatures near the surface are obvious, indicating the region of strong vertical shear development enough to establish easterly flow such as the African easterly jet. In addition, the isentropic potential vorticity (IPV) gradient decreases northward in the lower troposphere across northern Africa, with the maximum reversal on the 315-K surface. The region with negative IPV gradient favors the potential instability which has been associated with the growth of easterly waves.

  11. Impacts of peatland forestation on regional climate conditions in Finland

    NASA Astrophysics Data System (ADS)

    Gao, Yao; Markkanen, Tiina; Backman, Leif; Henttonen, Helena M.; Pietikäinen, Joni-Pekka; Laaksonen, Ari

    2014-05-01

    Climate response to anthropogenic land cover change happens more locally and occurs on a shorter time scale than the global warming due to increased GHGs. Over the second half of last Century, peatlands were vastly drained in Finland to stimulate forest growth for timber production. In this study, we investigate the biophysical effects of peatland forestation on near-surface climate conditions in Finland. For this, the regional climate model REMO, developed in Max Plank Institute (currently in Climate Service Center, Germany), provides an effective way. Two sets of 15-year climate simulations were done by REMO, using the historic (1920s; The 1st Finnish National Forest Inventory) and present-day (2000s; the 10th Finnish National Forest Inventory) land cover maps, respectively. The simulated surface air temperature and precipitation were then analyzed. In the most intensive peatland forestation area in Finland, the differences in monthly averaged daily mean surface air temperature show a warming effect around 0.2 to 0.3 K in February and March and reach to 0.5 K in April, whereas a slight cooling effect, less than 0.2 K, is found from May till October. Consequently, the selected snow clearance dates in model gridboxes over that area are advanced 0.5 to 4 days in the mean of 15 years. The monthly averaged precipitation only shows small differences, less than 10 mm/month, in a varied pattern in Finland from April to September. Furthermore, a more detailed analysis was conducted on the peatland forestation area with a 23% decrease in peatland and a 15% increase in forest types. 11 day running means of simulated temperature and energy balance terms, as well as snow depth were averaged over 15 years. Results show a positive feedback induced by peatland forestation between the surface air temperature and snow depth in snow melting period. This is because the warmer temperature caused by lower surface albedo due to more forest in snow cover period leads to a quicker and

  12. Importance of ensembles in projecting regional climate trends

    NASA Astrophysics Data System (ADS)

    Arritt, Raymond; Daniel, Ariele; Groisman, Pavel

    2016-04-01

    We have performed an ensemble of simulations using RegCM4 to examine the ability to reproduce observed trends in precipitation intensity and to project future changes through the 21st century for the central United States. We created a matrix of simulations over the CORDEX North America domain for 1950-2099 by driving the regional model with two different global models (HadGEM2-ES and GFDL-ESM2M, both for RCP8.5), by performing simulations at both 50 km and 25 km grid spacing, and by using three different convective parameterizations. The result is a set of 12 simulations (two GCMs by two resolutions by three convective parameterizations) that can be used to systematically evaluate the influence of simulation design on predicted precipitation. The two global models were selected to bracket the range of climate sensitivity in the CMIP5 models: HadGEM2-ES has the highest ECS of the CMIP5 models, while GFDL-ESM2M has one of the lowestt. Our evaluation metrics differ from many other RCM studies in that we focus on the skill of the models in reproducing past trends rather than the mean climate state. Trends in frequency of extreme precipitation (defined as amounts exceeding 76.2 mm/day) for most simulations are similar to the observed trend but with notable variations depending on RegCM4 configuration and on the driving GCM. There are complex interactions among resolution, choice of convective parameterization, and the driving GCM that carry over into the future climate projections. We also note that biases in the current climate do not correspond to biases in trends. As an example of these points the Emanuel scheme is consistently "wet" (positive bias in precipitation) yet it produced the smallest precipitation increase of the three convective parameterizations when used in simulations driven by HadGEM2-ES. However, it produced the largest increase when driven by GFDL-ESM2M. These findings reiterate that ensembles using multiple RCM configurations and driving GCMs are

  13. Development of ALARO-Climate regional climate model for a very high resolution

    NASA Astrophysics Data System (ADS)

    Skalak, Petr; Farda, Ales; Brozkova, Radmila; Masek, Jan

    2014-05-01

    ALARO-Climate is a new regional climate model (RCM) derived from the ALADIN LAM model family. It is based on the numerical weather prediction model ALARO and developed at the Czech Hydrometeorological Institute. The model is expected to able to work in the so called "grey zone" physics (horizontal resolution of 4 - 7 km) and at the same time retain its ability to be operated in resolutions in between 20 and 50 km, which are typical for contemporary generation of regional climate models. Here we present the main results of the RCM ALARO-Climate model simulations in 25 and 6.25 km resolutions on the longer time-scale (1961-1990). The model was driven by the ERA-40 re-analyses and run on the integration domain of ~ 2500 x 2500 km size covering the central Europe. The simulated model climate was compared with the gridded observation of air temperature (mean, maximum, minimum) and precipitation from the E-OBS version dataset 8. Other simulated parameters (e.g., cloudiness, radiation or components of water cycle) were compared to the ERA-40 re-analyses. The validation of the first ERA-40 simulation in both, 25 km and 6.25 km resolutions, revealed significant cold biases in all seasons and overestimation of precipitation in the selected Central Europe target area (0° - 30° eastern longitude ; 40° - 60° northern latitude). The differences between these simulations were small and thus revealed a robustness of the model's physical parameterization on the resolution change. The series of 25 km resolution simulations with several model adaptations was carried out to study their effect on the simulated properties of climate variables and thus possibly identify a source of major errors in the simulated climate. The current investigation suggests the main reason for biases is related to the model physic. Acknowledgements: This study was performed within the frame of projects ALARO (project P209/11/2405 sponsored by the Czech Science Foundation) and CzechGlobe Centre (CZ.1

  14. Regional impacts of Atlantic Forest deforestation on climate and vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Holm, J. A.; Chambers, J. Q.

    2012-12-01

    effects, regional surface air temperature (C°), precipitation (mm day-1), and emitted longwave radiation (W m-2) were highly affected in the location of the removed forest, and throughout surrounding areas of South America. For example climate patterns of increased temperature and decreased precipitation were affected as far as the Amazon Forest region. The use of fully coupled global climate and terrestrial models to study the effects of large-scale forest removal have been rarely applied. This study successfully showed the valuation of an important tropical forest, and the consequences of large deforestation through the reporting of complex earth-atmosphere interactions between vegetation dynamics and climate.

  15. Projected changes in climate extremes over Qatar and the Arabian Gulf region

    NASA Astrophysics Data System (ADS)

    Kundeti, K.; Kanikicharla, K. K.; Al sulaiti, M.; Khulaifi, M.; Alboinin, N.; Kito, A.

    2015-12-01

    The climate of the State of Qatar and the adjacent region is dominated by subtropical dry, hot desert climate with low annual rainfall, very high temperatures in summer and a big difference between maximum and minimum temperatures, especially in the inland areas. The coastal areas are influenced by the Arabian Gulf, and have lower maximum, but higher minimum temperatures and a higher moisture percentage in the air. The global warming can have profound impact on the mean climate as well as extreme weather events over the Arabian Peninsula that may affect both natural and human systems significantly. Therefore, it is important to assess the future changes in the seasonal/annual mean of temperature and precipitation and also the extremes in temperature and wind events for a country like Qatar. This study assesses the performance of the Coupled Model Inter comparison Project Phase 5 (CMIP5) simulations in present and develops future climate scenarios. The changes in climate extremes are assessed for three future periods 2016-2035, 2046-2065 and 2080-2099 with respect to 1986-2005 (base line) under two RCPs (Representative Concentrate Pathways) - RCP4.5 and RCP8.5. We analyzed the projected changes in temperature and precipitation extremes using several indices including those that capture heat stress. The observations show an increase in warm extremes over many parts in this region that are generally well captured by the models. The results indicate a significant change in frequency and intensity of both temperature and precipitation extremes over many parts of this region which may have serious implications on human health, water resources and the onshore/offshore infrastructure in this region. Data from a high-resolution (20km) AGCM simulation from Meteorological Research Institute of Japan Meteorological Agency for the present (1979-2003) and a future time slice (2075-2099) corresponding to RCP8.5 have also been utilized to assess the impact of climate change on

  16. Mid-Century Ensemble Regional Climate Change Scenarios for the Western United States

    SciTech Connect

    Leung, Lai R.; Qian, Yun; Bian, Xindi; Washington, Warren M.; Han, Jongil; Roads, John O.

    2004-01-01

    To study the impacts of climate change on water resources in the western U.S., global climate simulations were produced using the National Center for Atmospheric Research/Department of Energy (NCAR/DOE) Parallel Climate Model (PCM). The Penn State/NCAR Mesoscale Model (MM5) was used to downscale the PCM control (1995-2015) and three future (2040-2060) climate simulations to yield ensemble regional climate simulations at 40 km spatial resolution for the western U.S. This paper focuses on analyses of regional simulations in the Columbia River and Sacramento-San Joaquin River Basins. Results based on the regional simulations show that by mid-century, the average regional warming of 1-2.5oC strongly affects snowpack in the western U.S. Along coastal mountains, reduction in annual snowpack is about 70%. Besides changes in mean temperature, precipitation, and snowpack, cold season extreme daily precipitation is found to increase by 5 to 15 mm/day (15-20%) along the Cascades and the Sierra. The warming results in increased rainfall over snowfall and reduced snow accumulation (or earlier snowmelt) during the cold season. In the Columbia River Basin, these changes are accompanied by more frequent rain-on-snow events. Overall, they induce higher likelihood of wintertime flooding and reduced runoff and soil moisture in the summer. Such changes could have serious impacts on water resources and agriculture in the western U.S. Changes in surface water and energy budgets in the Columbia River and Sacramento-San Joaquin basins are driven mainly by changes in surface temperature, which are statistically significant at the 0.95 confidence level. Changes in precipitation, however, are spatially incoherent and not statistically significant except for the drying trend during summer.

  17. Regional Scale/Regional Climate Model Development and Its Applications at Goddard

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lau, W.; Qian, J.; Jia, Y.; Wetzel, P.; Chou, M.-D.; Wang, Y.; Lynn, B.

    2000-01-01

    A Regional Land-Atmosphere Climate Simulation System (RELACS) is being developed and implemented at NASA Goddard Space Flight Center. One of the major goals of RELACS is to use a regional scale model (Penn State/NCAR MM5) with improved physical processes and in particular land-related processes, to understand the role of the land surface and its interaction with convection and radiation as well as the water/energy cycles in the Indo-China/South China Sea (SCS)/China, N. America and S. America region.

  18. Assessing Impact of Aerosol Intercontinental Transport on Regional Air Quality and Climate: What Satellites Can Help

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin

    2011-01-01

    Mounting evidence for intercontinental transport of aerosols suggests that aerosols from a region could significantly affect climate and air quality in downwind regions and continents. Current assessment of these impacts for the most part has been based on global model simulations that show large variability. The aerosol intercontinental transport and its influence on air quality and climate involve many processes at local, regional, and intercontinental scales. There is a pressing need to establish modeling systems that bridge the wide range of scales. The modeling systems need to be evaluated and constrained by observations, including satellite measurements. Columnar loadings of dust and combustion aerosols can be derived from the MODIS and MISR measurements of total aerosol optical depth and particle size and shape information. Characteristic transport heights of dust and combustion aerosols can be determined from the CALIPSO lidar and AIRS measurements. CALIPSO liar and OMI UV technique also have a unique capability of detecting aerosols above clouds, which could offer some insights into aerosol lofting processes and the importance of above-cloud transport pathway. In this presentation, I will discuss our efforts of integrating these satellite measurements and models to assess the significance of intercontinental transport of dust and combustion aerosols on regional air quality and climate.

  19. Do volcanic eruptions affect climate? Sulfur gases may cause cooling

    NASA Technical Reports Server (NTRS)

    Self, Stephen; Rampino, Michael R.

    1988-01-01

    The relationship between volcanic eruptions on earth and the observed climatic changes is investigated. The results of the comparison and analyses of volcanologic and climatologic data sets for the years between 1880 and 1980 indicate that changes in temperature caused by even of the largest eruptions recorded during this time were about the same as normal variations in temperature. However, when temperature records for several months or years preceding and following a given eruption were analyzed, a statistically significant temperature decrease of 0.2-0.5 C was found for the periods of one to two years immediately following some of the 19th and 20th century explosive events that prodiced large aerosol clouds (e.g., Krakatau and Agung eruptions). It is suggested that the content of sulfur in the erupted magma determines the size of aerosol cloud producing the cooling effect.

  20. Regional air quality management aspects of climate change: impact of climate mitigation options on regional air emissions.

    PubMed

    Rudokas, Jason; Miller, Paul J; Trail, Marcus A; Russell, Armistead G

    2015-04-21

    We investigate the projected impact of six climate mitigation scenarios on U.S. emissions of carbon dioxide (CO2), sulfur dioxide (SO2), and nitrogen oxides (NOX) associated with energy use in major sectors of the U.S. economy (commercial, residential, industrial, electricity generation, and transportation). We use the EPA U.S. 9-region national database with the MARKet Allocation energy system model to project emissions changes over the 2005 to 2050 time frame. The modeled scenarios are two carbon tax, two low carbon transportation, and two biomass fuel choice scenarios. In the lower carbon tax and both biomass fuel choice scenarios, SO2 and NOX achieve reductions largely through pre-existing rules and policies, with only relatively modest additional changes occurring from the climate mitigation measures. The higher carbon tax scenario projects greater declines in CO2 and SO2 relative to the 2050 reference case, but electricity sector NOX increases. This is a result of reduced investments in power plant NOX controls in earlier years in anticipation of accelerated coal power plant retirements, energy penalties associated with carbon capture systems, and shifting of NOX emissions in later years from power plants subject to a regional NOX cap to those in regions not subject to the cap.

  1. Climate Change Will Affect Nutrient Dispersal In UK Estuaries

    NASA Astrophysics Data System (ADS)

    Bergamaschi, B. A.; Robins, P. E.; Cooper, D.

    2015-12-01

    It is still largely unclear how nutrients that travel through the catchment-river system are distributed within estuaries. How long will nutrients remain in the estuary, and what proportion will disperse offshore into the oceans? In the UK, where many catchments are relatively small and steep, estuaries react rapidly to rainfall events, which crucially control the mixing process, even though tidal stirring is generally large. Seasonal and short-term variability in estuarine functioning is therefore greater than variabilities over semi-diurnal timescales linked to tidal cycling. We present both published and on-going research that is emerging from an interdisciplinary pan-UK NERC Macronutrient Cycles Programme (macronutrient-cycles.ouce.ox.ac.uk). We pull together intensive field campaigns (Howlett et al. 2015) and model simulations (Robins et al. 2015), and present for the first time coupled simulations of catchment-river-estuary nutrient transport, using a variety of hydrological and hydrodynamic models. We investigate the response of the hydrodynamics and nutrients to extreme flows and storm surge events, and the response to climate change by simulating the IPCC 5th Assessment projections for 2100. On-going research will extend this integrated approach into the macronutrient controls on atmospheric-land exchange. Emerging research from our UK case study suggests that simulating the hourly river hydrograph, rather than daily-averaged, is important for estuarine response and recovery; daily-averaged flowrates, which are commonly used, under-predict the offshore transport of nutrients. Moreover, biogeochemical processing, whilst detected over estuarine residence times, did not measurably alter the estuarine concentrations, due to the much stronger advective fluxes. By simulating past mean and extreme events, using time-series analysis of river flow and tidal level data collected over the past 50 years, we are able to characterise the future estuarine nutrient

  2. Assessing climate change impacts on the rape stem weevil, Ceutorhynchus napi Gyll., based on bias- and non-bias-corrected regional climate change projections.

    PubMed

    Junk, J; Ulber, B; Vidal, S; Eickermann, M

    2015-11-01

    Agricultural production is directly affected by projected increases in air temperature and changes in precipitation. A multi-model ensemble of regional climate change projections indicated shifts towards higher air temperatures and changing precipitation patterns during the summer and winter seasons up to the year 2100 for the region of Goettingen (Lower Saxony, Germany). A second major controlling factor of the agricultural production is the infestation level by pests. Based on long-term field surveys and meteorological observations, a calibration of an existing model describing the migration of the pest insect Ceutorhynchus napi was possible. To assess the impacts of climate on pests under projected changing environmental conditions, we combined the results of regional climate models with the phenological model to describe the crop invasion of this species. In order to reduce systematic differences between the output of the regional climate models and observational data sets, two different bias correction methods were applied: a linear correction for air temperature and a quantile mapping approach for precipitation. Only the results derived from the bias-corrected output of the regional climate models showed satisfying results. An earlier onset, as well as a prolongation of the possible time window for the immigration of Ceutorhynchus napi, was projected by the majority of the ensemble members.

  3. Assessing climate change impacts on the rape stem weevil, Ceutorhynchus napi Gyll., based on bias- and non-bias-corrected regional climate change projections

    NASA Astrophysics Data System (ADS)

    Junk, J.; Ulber, B.; Vidal, S.; Eickermann, M.

    2015-11-01

    Agricultural production is directly affected by projected increases in air temperature and changes in precipitation. A multi-model ensemble of regional climate change projections indicated shifts towards higher air temperatures and changing precipitation patterns during the summer and winter seasons up to the year 2100 for the region of Goettingen (Lower Saxony, Germany). A second major controlling factor of the agricultural production is the infestation level by pests. Based on long-term field surveys and meteorological observations, a calibration of an existing model describing the migration of the pest insect Ceutorhynchus napi was possible. To assess the impacts of climate on pests under projected changing environmental conditions, we combined the results of regional climate models with the phenological model to describe the crop invasion of this species. In order to reduce systematic differences between the output of the regional climate models and observational data sets, two different bias correction methods were applied: a linear correction for air temperature and a quantile mapping approach for precipitation. Only the results derived from the bias-corrected output of the regional climate models showed satisfying results. An earlier onset, as well as a prolongation of the possible time window for the immigration of Ceutorhynchus napi, was projected by the majority of the ensemble members.

  4. Climatic Consequences and Agricultural Impact of Regional Nuclear Conflict

    NASA Astrophysics Data System (ADS)

    Robock, Alan; Mills, Michael; Toon, Owen Brian; Xia, Lili

    2013-04-01

    A nuclear war between India and Pakistan, with each country using 50 Hiroshima-sized atom bombs as airbursts on urban areas, would inject smoke from the resulting fires into the stratosphere. This could produce climate change unprecedented in recorded human history and global-scale ozone depletion, with enhanced ultraviolet (UV) radiation reaching the surface. Simulations with the NCAR Whole Atmosphere Community Climate Model (WACCM), run at higher vertical and horizontal resolution than a previous simulation with the NASA Goddard Institute for Space Studies ModelE, and incorporating ozone chemistry for the first time, show a longer stratospheric residence time for smoke and hence a longer-lasting climate response, with global average surface air temperatures still 1.1 K below normal and global average precipitation 4% below normal after a decade. The erythemal dose from the enhanced UV radiation would greatly increase, in spite of enhanced absorption by the remaining smoke, with the UV index more than 3 units higher in the summer midlatitudes, even after a decade. Scenarios of changes in temperature, precipitation, and downward shortwave radiation from the ModelE and WACCM simulations, applied to the Decision Support System for Agrotechnology Transfer crop model for winter wheat, rice, soybeans, and maize by perturbing observed time series with anomalies from the regional nuclear war simulations, produce decreases of 10-50% in yield averaged over a decade, with larger decreases in the first several years, over several regions in the midlatitudes of the Northern Hemisphere. The impact of the nuclear war simulated here, using much less than 1% of the global nuclear arsenal, would be devastating to world agricultural production and trade, possibly sentencing a billion people now living marginal existences to starvation. The continued environmental threat of the use of even a small number of nuclear weapons must be considered in nuclear policy deliberations in Russia

  5. Statistical Downscaling Of Local Climate In The Alpine Region

    NASA Astrophysics Data System (ADS)

    Kaspar, Severin; Philipp, Andreas; Jacobeit, Jucundus

    2016-04-01

    The impact of climate change on the alpine region was disproportional strong in the past decades compared to the surrounding areas, which becomes manifest in a higher increase in surface air temperature. Beside the thermal changes also implications for the hydrological cycle may be expected, acting as a very important factor not only for the ecosystem but also for mankind, in the form of water security or considering economical aspects like winter tourism etc. Therefore, in climate impact studies, it is necessary to focus on variables with high influence on the hydrological cycle, for example temperature, precipitation, wind, humidity and radiation. The aim of this study is to build statistical downscaling models which are able to reproduce temperature and precipitation at the mountainous alpine weather stations Zugspitze and Sonnblick and to further project these models into the future to identify possible changes in the behavior of these climate variables and with that in the hydrological cycle. Beside facing a in general very complex terrain in this high elevated regions, we have the advantage of a more direct atmospheric influence on the meteorology of the exposed weather stations from the large scale circulation. Two nonlinear statistical methods are developed to model the station-data series on a daily basis: On the one hand a conditional classification approach was used and on the other hand a model based on artificial neural networks (ANNs) was built. The latter is in focus of this presentation. One of the important steps of developing a new model approach is to find a reliable predictor setup with e.g. informative predictor variables or adequate location and size of the spatial domain. The question is: Can we include synoptic background knowledge to identify an optimal domain for an ANN approach? The yet developed ANN setups and configurations show promising results in downscaling both, temperature (up to 80 % of explained variance) and precipitation (up

  6. Climatic trends over Ethiopia: regional signals and drivers

    USGS Publications Warehouse

    Jury, Mark R.; Funk, Christopher C.

    2013-01-01

    This study analyses observed and projected climatic trends over Ethiopia, through analysis of temperature and rainfall records and related meteorological fields. The observed datasets include gridded station records and reanalysis products; while projected trends are analysed from coupled model simulations drawn from the IPCC 4th Assessment. Upward trends in air temperature of + 0.03 °C year−1 and downward trends in rainfall of − 0.4 mm month−1 year−1 have been observed over Ethiopia's southwestern region in the period 1948-2006. These trends are projected to continue to 2050 according to the Geophysical Fluid Dynamics Lab model using the A1B scenario. Large scale forcing derives from the West Indian Ocean where significant warming and increased rainfall are found. Anticyclonic circulations have strengthened over northern and southern Africa, limiting moisture transport from the Gulf of Guinea and Congo. Changes in the regional Walker and Hadley circulations modulate the observed and projected climatic trends. Comparing past and future patterns, the key features spread westward from Ethiopia across the Sahel and serve as an early warning of potential impacts.

  7. Hydrological response to changing climate conditions: Spatial streamflow variability in the boreal region

    NASA Astrophysics Data System (ADS)

    Teutschbein, Claudia; Grabs, Thomas; Karlsen, Reinert H.; Laudon, Hjalmar; Bishop, Kevin

    2016-04-01

    It has long been recognized that streamflow-generating processes are not only dependent on climatic conditions, but also affected by physical catchment properties such as topography, geology, soils and land cover. We hypothesize that these landscape characteristics do not only lead to highly variable hydrologic behavior of rather similar catchments under the same stationary climate conditions (Karlsen et al., 2014), but that they also play a fundamental role for the sensitivity of a catchment to a changing climate (Teutschbein et al., 2015). A multi-model ensemble based on 15 regional climate models was combined with a multi-catchment approach to explore the hydrologic sensitivity of 14 partially nested and rather similar catchments in Northern Sweden to changing climate conditions and the importance of small-scale spatial variability. Current (1981-2010) and future (2061-2090) streamflow was simulated with the HBV model. As expected, projected increases in temperature and precipitation resulted in increased total available streamflow, with lower spring and summer flows, but substantially higher winter streamflow. Furthermore, significant changes in flow durations with lower chances of both high and low flows can be expected in boreal Sweden in the future. This overall trend in projected streamflow pattern changes was comparable among the analyzed catchments while the magnitude of change differed considerably. This suggests that catchments belonging to the same region can show distinctly different degrees of hydrological responses to the same external climate change signal. We reason that differences in spatially distributed physical catchment properties at smaller scales are not only of great importance for current streamflow behavior, but also play a major role as first-order control for the sensitivity of catchments to changing climate conditions. References Karlsen, R.H., T. Grabs, K. Bishop, H. Laudon, and J. Seibert (2014). Landscape controls on

  8. Effects of changes in climate on landscape and regional processes, and feedbacks to the climate system.

    PubMed

    Callaghan, Terry V; Björn, Lars Olof; Chernov, Yuri; Chapin, Terry; Christensen, Torben R; Huntley, Brian; Ims, Rolf A; Johansson, Margareta; Jolly, Dyanna; Jonasson, Sven; Matveyeva, Nadya; Panikov, Nicolai; Oechel, Walter; Shaver, Gus; Schaphoff, Sibyll; Sitch, Stephen

    2004-11-01

    Biological and physical processes in the Arctic system operate at various temporal and spatial scales to impact large-scale feedbacks and interactions with the earth system. There are four main potential feedback mechanisms between the impacts of climate change on the Arctic and the global climate system: albedo, greenhouse gas emissions or uptake by ecosystems, greenhouse gas emissions from methane hydrates, and increased freshwater fluxes that could affect the thermohaline circulation. All these feedbacks are controlled to some extent by changes in ecosystem distribution and character and particularly by large-scale movement of vegetation zones. Indications from a few, full annual measurements of CO2 fluxes are that currently the source areas exceed sink areas in geographical distribution. The little available information on CH4 sources indicates that emissions at the landscape level are of great importance for the total greenhouse balance of the circumpolar North. Energy and water balances of Arctic landscapes are also important feedback mechanisms in a changing climate. Increasing density and spatial expansion of vegetation will cause a lowering of the albedo and more energy to be absorbed on the ground. This effect is likely to exceed the negative feedback of increased C sequestration in greater primary productivity resulting from the displacements of areas of polar desert by tundra, and areas of tundra by forest. The degradation of permafrost has complex consequences for trace gas dynamics. In areas of discontinuous permafrost, warming, will lead to a complete loss of the permafrost. Depending on local hydrological conditions this may in turn lead to a wetting or drying of the environment with subsequent implications for greenhouse gas fluxes. Overall, the complex interactions between processes contributing to feedbacks, variability over time and space in these processes, and insufficient data have generated considerable uncertainties in estimating the net

  9. Large-scale climatic anomalies affect marine predator foraging behaviour and demography.

    PubMed

    Bost, Charles A; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-10-27

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.

  10. Large-scale climatic anomalies affect marine predator foraging behaviour and demography

    NASA Astrophysics Data System (ADS)

    Bost, Charles A.; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-10-01

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.

  11. Effects of different regional climate model resolution and forcing scales on projected hydrologic changes

    NASA Astrophysics Data System (ADS)

    Mendoza, Pablo A.; Mizukami, Naoki; Ikeda, Kyoko; Clark, Martyn P.; Gutmann, Ethan D.; Arnold, Jeffrey R.; Brekke, Levi D.; Rajagopalan, Balaji

    2016-10-01

    We examine the effects of regional climate model (RCM) horizontal resolution and forcing scaling (i.e., spatial aggregation of meteorological datasets) on the portrayal of climate change impacts. Specifically, we assess how the above decisions affect: (i) historical simulation of signature measures of hydrologic behavior, and (ii) projected changes in terms of annual water balance and hydrologic signature measures. To this end, we conduct our study in three catchments located in the headwaters of the Colorado River basin. Meteorological forcings for current and a future climate projection are obtained at three spatial resolutions (4-, 12- and 36-km) from dynamical downscaling with the Weather Research and Forecasting (WRF) regional climate model, and hydrologic changes are computed using four different hydrologic model structures. These projected changes are compared to those obtained from running hydrologic simulations with current and future 4-km WRF climate outputs re-scaled to 12- and 36-km. The results show that the horizontal resolution of WRF simulations heavily affects basin-averaged precipitation amounts, propagating into large differences in simulated signature measures across model structures. The implications of re-scaled forcing datasets on historical performance were primarily observed on simulated runoff seasonality. We also found that the effects of WRF grid resolution on projected changes in mean annual runoff and evapotranspiration may be larger than the effects of hydrologic model choice, which surpasses the effects from re-scaled forcings. Scaling effects on projected variations in hydrologic signature measures were found to be generally smaller than those coming from WRF resolution; however, forcing aggregation in many cases reversed the direction of projected changes in hydrologic behavior.

  12. What Is a Mild Winter? Regional Differences in Within-Species Responses to Climate Change.

    PubMed

    Vetter, Sebastian G; Ruf, Thomas; Bieber, Claudia; Arnold, Walter

    2015-01-01

    Climate change is known to affect ecosystems globally, but our knowledge of its impact on large and widespread mammals, and possibly population-specific responses is still sparse. We investigated large-scale and long-term effects of climate change on local population dynamics using the wild boar (Sus scrofa L.) as a model species. Our results show that population increases across Europe are strongly associated with increasingly mild winters, yet with region-specific threshold temperatures for the onset of exponential growth. Additionally, we found that abundant availability of critical food resources, e.g. beech nuts, can outweigh the negative effects of cold winters on population growth of wild boar. Availability of beech nuts is highly variable and highest in years of beech mast which increased in frequency since 1980, according to our data. We conclude that climate change drives population growth of wild boar directly by relaxing the negative effect of cold winters on survival and reproduction, and indirectly by increasing food availability. However, region-specific responses need to be considered in order to fully understand a species' demographic response to climate change.

  13. What Is a Mild Winter? Regional Differences in Within-Species Responses to Climate Change

    PubMed Central

    Vetter, Sebastian G.; Ruf, Thomas; Bieber, Claudia; Arnold, Walter

    2015-01-01

    Climate change is known to affect ecosystems globally, but our knowledge of its impact on large and widespread mammals, and possibly population-specific responses is still sparse. We investigated large-scale and long-term effects of climate change on local population dynamics using the wild boar (Sus scrofa L.) as a model species. Our results show that population increases across Europe are strongly associated with increasingly mild winters, yet with region-specific threshold temperatures for the onset of exponential growth. Additionally, we found that abundant availability of critical food resources, e.g. beech nuts, can outweigh the negative effects of cold winters on population growth of wild boar. Availability of beech nuts is highly variable and highest in years of beech mast which increased in frequency since 1980, according to our data. We conclude that climate change drives population growth of wild boar directly by relaxing the negative effect of cold winters on survival and reproduction, and indirectly by increasing food availability. However, region-specific responses need to be considered in order to fully understand a species’ demographic response to climate change. PMID:26158846

  14. Investigation of factors affecting intra-annual variability of evapotranspiration and streamflow under different climate conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Dan; Liu, Xiaomang; Zhang, Qi; Liang, Kang; Liu, Changming

    2016-12-01

    Investigating the factors that affect intra-annual evapotranspiration (ET) and streamflow variability is important to regional hydrological cycles and energy balance research. In this study, ET and streamflow variability (defined as their standard deviations) are attributed to precipitation, potential evapotranspiration (ET0) and total water storage change (TWSC) based on a Budyko-based approach at 282 catchments in China. The results show that the Budyko-based approach satisfactorily simulates the intra-annual ET and streamflow variability (R2 of 0.63-0.84). The dominant contributor to ET variability is ET0 under energy-limited condition (aridity index ⩽ 0.76), whereas the dominant contributor is precipitation under equitant (0.76 < aridity index ⩽ 1.35) and water-limited conditions (aridity index ⩾ 1.35). The contribution of ET0 to ET variability decreases with the aridity index, whereas the contribution of precipitation to ET variability increases with the aridity index. However, the dominant contributor to streamflow variability is precipitation under all the three climate conditions, which is unaffected by the aridity index. TWSC enhances ET variability under energy-limited condition and inhibits ET variability under water-limited and equitant conditions. However, TWSC inhibits streamflow variability under all the three climate conditions. In addition, geography and vegetation also influence the contributors to ET and streamflow variability. The effects of geography on the contributors to streamflow variability are larger than that to ET variability. In contrast, the impacts of vegetation on the contributors to ET variability are larger than that to streamflow variability. This study demonstrates that the mechanism of ET variability under different climate conditions is much more complex than that of streamflow variability, suggesting that more attention should be given to ET for water-energy modeling, hydrological predictions and local water management.

  15. EPA Region 10 Climate Change and TMDL Pilot - Project Research Plan

    EPA Science Inventory

    Global climate change affects the fundamental drivers of the hydrological cycle. Evidence is growing that climate change will have significant ramifications for the nation’s freshwater ecosystems, as deviations in atmospheric temperature and precipitation patterns are more ...

  16. Climate change impacts on risks of groundwater pollution by herbicides: a regional scale assessment

    NASA Astrophysics Data System (ADS)

    Steffens, Karin; Moeys, Julien; Lindström, Bodil; Kreuger, Jenny; Lewan, Elisabet; Jarvis, Nick

    2014-05-01

    Groundwater contributes nearly half of the Swedish drinking water supply, which therefore needs to be protected both under present and future climate conditions. Pesticides are sometimes found in Swedish groundwater in concentrations exceeding the EU-drinking water limit and thus constitute a threat. The aim of this study was to assess the present and future risks of groundwater pollution at the regional scale by currently approved herbicides. We identified representative combinations of major crop types and their specific herbicide usage (product, dose and application timing) based on long-term monitoring data from two agricultural catchments in the South-West of Sweden. All these combinations were simulated with the regional version of the pesticide fate model MACRO (called MACRO-SE) for the periods 1970-1999 and 2070-2099 for a major crop production region in South West Sweden. To represent the uncertainty in future climate data, we applied a five-member ensemble based on different climate model projections downscaled with the RCA3-model (Swedish Meteorological and Hydrological Institute). In addition to the direct impacts of changes in the climate, the risks of herbicide leaching in the future will also be affected by likely changes in weed pressure and land use and management practices (e.g. changes in crop rotations and application timings). To assess the relative importance of such factors we performed a preliminary sensitivity analysis which provided us with a hierarchical structure for constructing future herbicide use scenarios for the regional scale model runs. The regional scale analysis gave average concentrations of herbicides leaching to groundwater for a large number of combinations of soils, crops and compounds. The results showed that future scenarios for herbicide use (more autumn-sown crops, more frequent multiple applications on one crop, and a shift from grassland to arable crops such as maize) imply significantly greater risks of herbicide

  17. Hell and High Water: Diminished Septic System Performance in Coastal Regions Due to Climate Change

    PubMed Central

    Cooper, Jennifer A.; Loomis, George W.; Amador, Jose A.

    2016-01-01

    Climate change may affect the ability of soil-based onsite wastewater treatment systems (OWTS) to treat wastewater in coastal regions of the Northeastern United States. Higher temperatures and water tables can affect treatment by reducing the volume of unsaturated soil and oxygen available for treatment, which may result in greater transport of pathogens, nutrients, and biochemical oxygen demand (BOD5) to groundwater, jeopardizing public and aquatic ecosystem health. The soil treatment area (STA) of an OWTS removes contaminants as wastewater percolates through the soil. Conventional STAs receive wastewater from the septic tank, with infiltration occurring deeper in the soil profile. In contrast, shallow narrow STAs receive pre-treated wastewater that infiltrates higher in the soil profile, which may make them more resilient to climate change. We used intact soil mesocosms to quantify the water quality functions of a conventional and two types of shallow narrow STAs under present climate (PC; 20°C) and climate change (CC; 25°C, 30 cm elevation in water table). Significantly greater removal of BOD5 was observed under CC for all STA types. Phosphorus removal decreased significantly from 75% (PC) to 66% (CC) in the conventional STA, and from 100% to 71–72% in shallow narrow STAs. No fecal coliform bacteria (FCB) were released under PC, whereas up to 17 and 20 CFU 100 mL-1 were released in conventional and shallow narrow STAs, respectively, under CC. Total N removal increased from 14% (PC) to 19% (CC) in the conventional STA, but decreased in shallow narrow STAs, from 6–7% to less than 3.0%. Differences in removal of FCB and total N were not significant. Leaching of N in excess of inputs was also observed in shallow narrow STAs under CC. Our results indicate that climate change can affect contaminant removal from wastewater, with effects dependent on the contaminant and STA type. PMID:27583363

  18. Climate change scenarios and key climate indices in the Swiss Alpine region

    NASA Astrophysics Data System (ADS)

    Zubler, Elias; Croci-Maspoli, Mischa; Frei, Christoph; Liniger, Mark; Scherrer, Simon; Appenzeller, Christof

    2013-04-01

    For climate adaption and to support climate mitigation policy it is of outermost importance to demonstrate the consequences of climate change on a local level and in user oriented quantities. Here, a framework is presented to apply the Swiss national climate change scenarios CH2011 to climate indices with direct relevance to applications, such as tourism, transportation, agriculture and health. This framework provides results on a high spatial and temporal resolution and can also be applied in mountainous regions such as the Alps. Results are shown for some key indices, such as the number of summer days and tropical nights, growing season length, number of frost days, heating and cooling degree days, and the number of days with fresh snow. Particular focus is given to changes in the vertical distribution for the future periods 2020-2049, 2045-2074 and 2070-2099 relative to the reference period 1980-2009 for the A1B, A2 and RCP3PD scenario. The number of days with fresh snow is approximated using a combination of temperature and precipitation as proxies. Some findings for the latest scenario period are: (1) a doubling of the number of summer days by the end of the century under the business-as-usual scenario A2, (2) tropical nights appear above 1500 m asl, (3) the number of frost days may be reduced by more than 3 months at altitudes higher than 2500 m, (4) an overall reduction of heating degree days of about 30% by the end of the century, but on the other hand an increase in cooling degree days in warm seasons, and (5) the number of days with fresh snow tends to go towards zero at low altitudes. In winter, there is little change in snowfall above 2000 m asl (roughly -3 days) in all scenarios. The largest impact on snowfall is found along the Northern Alpine flank and the Jura (-10 days or roughly -50% in A1B for the winter season). It is also highlighted that the future projections for all indices strongly depend on the chosen scenario and on model uncertainty

  19. A climatological network for regional climate monitoring in Sardinia.

    NASA Astrophysics Data System (ADS)

    Delitala, Alessandro M. S.

    2016-04-01

    In recent years the Region of Sardinia has been working to set-up a Regional Climatological Network of surface stations, in order to monitor climate (either stationary or changing) at sub-synoptic scale and in order to make robust climatological information available to researchers and to local stake-holders. In order to do that, an analysis of long climatological time series has been performed on the different historical networks of meteorological stations that existed over the past two centuries. A set of some hundreds of stations, with about a century of observations of daily precipitation, was identified. An important subset of them was also defined, having long series of observations of temperature, wind, pressure and other quantities. Specific investments were made on important stations sites where observations had been carried for decades, but where the climatological stations did not exist anymore. In the present talk, the Regional Climatological Network of Sardinia will be presented and its consistency discussed. Specific attention will be given to the most important climatological stations which have got more than a century of observations of meteorological quantities. Critical issues of the Regional Climatological Network, like relocation of stations and inhomogeneity of data due to instrumental changes or environmental modifications, will be discussed.

  20. Feature tracking in high-resolution regional climate data

    NASA Astrophysics Data System (ADS)

    Massey, Neil R.

    2016-08-01

    In this paper, a suite of algorithms are presented which facilitate the identification and tracking of storm-indicative features, such as mean sea-level pressure minima, in high resolution regional climate data. The methods employ a hierarchical triangular mesh, which is tailored to the regional climate data by only subdividing triangles, from an initial icosahedron, within the domain of the data. The regional data is then regridded to this triangular mesh at each level of the grid, producing a compact representation of the data at numerous resolutions. Storm indicative features are detected by first subtracting the background field, represented by a low resolution version of the data, which occurs at a lower level in the mesh. Anomalies from this background field are detected, as feature objects, at a mesh level which corresponds to the spatial scale of the feature being detected and then refined to the highest mesh level. These feature objects are expanded to an outer contour and overlapping objects are merged. The centre points of these objects are tracked across timesteps by applying an optimisation scheme which uses five hierarchical rules. Objects are added to tracks based on the highest rule in the scheme they pass and, if two objects pass the same rule, the cost of adding the object to the track. An object exchange scheme ensures that adding an object to a track is locally optimal. An additional track optimisation phase is performed which exchanges segments between tracks and merges tracks to obtain a globally optimal track set. To validate the suite of algorithms they are applied to the ERA-Interim reanalysis dataset and compared to other storm-indicative feature tracking algorithms.

  1. Assessing the effect of domain size over the Caribbean region using the PRECIS regional climate model

    NASA Astrophysics Data System (ADS)

    Centella-Artola, Abel; Taylor, Michael A.; Bezanilla-Morlot, Arnoldo; Martinez-Castro, Daniel; Campbell, Jayaka D.; Stephenson, Tannecia S.; Vichot, Alejandro

    2015-04-01

    This study investigates the sensitivity of the one-way nested PRECIS regional climate model (RCM) to domain size for the Caribbean region. Simulated regional rainfall patterns from experiments using three domains with horizontal resolution of 50 km are compared with ERA reanalysis and observed datasets to determine if there is an optimal RCM configuration with respect to domain size and the ability to reproduce important observed climate features in the Caribbean. Results are presented for the early wet season (May-July) and late wet season (August-October). There is a relative insensitivity to domain size for simulating some important features of the regional circulation and key rainfall characteristics e.g. the Caribbean low level jet and the mid summer drought (MSD). The downscaled precipitation has a systematically negative precipitation bias, even when the domain was extended to the African coast to better represent circulation associated with easterly waves and tropical cyclones. The implications for optimizing modelling efforts within resource-limited regions like the Caribbean are discussed especially in the context of the region's participation in global initiatives such as CORDEX.

  2. Forest ecosystems of temperate climatic regions: from ancient use to climate change.

    PubMed

    Gilliam, Frank S

    2016-12-01

    871 I. 871 II. 874 III. 875 IV. 878 V. 882 884 References 884 SUMMARY: Humans have long utilized resources from all forest biomes, but the most indelible anthropogenic signature has been the expanse of human populations in temperate forests. The purpose of this review is to bring into focus the diverse forests of the temperate region of the biosphere, including those of hardwood, conifer and mixed dominance, with a particular emphasis on crucial challenges for the future of these forested areas. Implicit in the term 'temperate' is that the predominant climate of these forest regions has distinct cyclic, seasonal changes involving periods of growth and dormancy. The specific temporal patterns of seasonal change, however, display an impressive variability among temperate forest regions. In addition to the more apparent current anthropogenic disturbances of temperate forests, such as forest management and conversion to agriculture, human alteration of temperate forests is actually an ancient phenomenon, going as far back as 7000 yr before present (bp). As deep-seated as these past legacies are for temperate forests, all current and future perturbations, including timber harvesting, excess nitrogen deposition, altered species' phenologies, and increasing frequency of drought and fire, must be viewed through the lens of climate change.

  3. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions.

    PubMed

    Heino, Jani; Virkkala, Raimo; Toivonen, Heikki

    2009-02-01

    Current rates of climate change are unprecedented, and biological responses to these changes have also been rapid at the levels of ecosystems, communities, and species. Most research on climate change effects on biodiversity has concentrated on the terrestrial realm, and considerable changes in terrestrial biodiversity and species' distributions have already been detected in response to climate change. The studies that have considered organisms in the freshwater realm have also shown that freshwater biodiversity is highly vulnerable to climate change, with extinction rates and extirpations of freshwater species matching or exceeding those suggested for better-known terrestrial taxa. There is some evidence that freshwater species have exhibited range shifts in response to climate change in the last millennia, centuries, and decades. However, the effects are typically species-specific, with cold-water organisms being generally negatively affected and warm-water organisms positively affected. However, detected range shifts are based on findings from a relatively low number of taxonomic groups, samples from few freshwater ecosystems, and few regions. The lack of a wider knowledge hinders predictions of the responses of much of freshwater biodiversity to climate change and other major anthropogenic stressors. Due to the lack of detailed distributional information for most freshwater taxonomic groups and the absence of distribution-climate models, future studies should aim at furthering our knowledge about these aspects of the ecology of freshwater organisms. Such information is not only important with regard to the basic ecological issue of predicting the responses of freshwater species to climate variables, but also when assessing the applied issue of the capacity of protected areas to accommodate future changes in the distributions of freshwater species. This is a huge challenge, because most current protected areas have not been delineated based on the requirements

  4. How do emission patterns in megacities affect regional air pollution?

    NASA Astrophysics Data System (ADS)

    Heil, A.; Richter, C.; Schroeder, S.; Schultz, M. G.

    2010-12-01

    Megacities around the world show distinctly different emission patterns in terms of absolute amounts and emission ratios of individual chemical compounds due to varying socio-economic developments and technological standards. The emission patterns influence the chemical reactivity of the urban pollution plume, and hence determine air quality in and around megacity areas. In this study, which is part of the European project CITYZEN (megaCITY - Zoom for the ENvironment), the effects of emission changes in four selected megacity areas on air pollution were investigated: BeNeLux (BNL), Istanbul (IST), Pearl River Delta (PRD) and Sao Paulo (SAP). The study aims at answering the question: how would air pollution in megacity X change if it had the same urban emissions per capita as megacity Y? Model simulations with the global chemistry climate model ECHAM5-MOZ were carried out for the year 2001 using a resolution of about 2 degrees in the horizontal and of 31 levels (surface to 10 hPa) in the vertical. The model was driven by meteorological input data from the ECMWF ERA Interim reanalysis. Emissions were taken from the gridded global ACCMIP emission inventory recently established for use in chemistry-climate simulations in connection to the IPCC-AR5 assessments (Lamarque et al. 2010). We carried out sensitivity simulations where emission patterns from each of the megacity areas were replaced by those from all others. This was done on the basis of the per capita emissions for each species and sector averaged over the respective region. Total per capita CO and NMVOC emissions are highest in PRD and lowest in SAP while total per capita NOx emissions are highest in BNL and lowest in SAP. There are strong differences in the relative contribution of the urban sectors to total emissions of individual compounds. As a result, each of the four megacity areas exhibits a very characteristic NMVOC speciation profile which determines the NMVOC-related photochemical ozone (O_3

  5. Evaluation of Local and Regional Phenomena in Regional Scale Climate Simulations (Invited)

    NASA Astrophysics Data System (ADS)

    Kotamarthi, V. R.; Wang, J.; Stein, M.; Ramachandran, S.

    2013-12-01

    Evaluation of regional scale climate models is aimed at capturing the ability of the model for capturing regional and local phenomena on climate scales. Climate variability on smaller spatial and temporal scales is a primary target, followed by extreme event climatology in space and time. We are exploring several new ways for evaluating the models at these scales and with a focus on capturing the spatio-temporal correlations in measurements and model results. Model simulations from 1980 to 2010 over a domain that covers much of North America (600 × 516 grid cells over longitude and latitude) at 12 km resolution using the Nested Regional Climate Model (WRF V3.3.1) were used as the model data set and observational data included PRISM, UDEL, CRU, TRMM and observations from individual stations. Some of these data sets were gridded to the model domain using an application developed by JPL. We have conducted a comparative evaluation of some of these data sets for precipitation and temperature to generate an estimate of the bias introduced by different evaluation data sets for model evaluation. The metrics used for model evaluation range from correlations between observations and model output over specified regions to novel space-time correlations in observations and model output. The space-time correlations were designed to test the model performance in producing correlated phenomena at scales ranging from half degree (50 km) to five degree (more than 500 km). The procedure used for generating these correlations and results from these tests will be presented.

  6. Surgical Care Required for Populations Affected by Climate-related Natural Disasters: A Global Estimation

    PubMed Central

    Lee, Eugenia E.; Stewart, Barclay; Zha, Yuanting A.; Groen, Thomas A.; Burkle, Frederick M.; Kushner, Adam L.

    2016-01-01

    Background: Climate extremes will increase the frequency and severity of natural disasters worldwide.  Climate-related natural disasters were anticipated to affect 375 million people in 2015, more than 50% greater than the yearly average in the previous decade. To inform surgical assistance preparedness, we estimated the number of surgical procedures needed.   Methods: The numbers of people affected by climate-related disasters from 2004 to 2014 were obtained from the Centre for Research of the Epidemiology of Disasters database. Using 5,000 procedures per 100,000 persons as the minimum, baseline estimates were calculated. A linear regression of the number of surgical procedures performed annually and the estimated number of surgical procedures required for climate-related natural disasters was performed. Results: Approximately 140 million people were affected by climate-related natural disasters annually requiring 7.0 million surgical procedures. The greatest need for surgical care was in the People’s Republic of China, India, and the Philippines. Linear regression demonstrated a poor relationship between national surgical capacity and estimated need for surgical care resulting from natural disaster, but countries with the least surgical capacity will have the greatest need for surgical care for persons affected by climate-related natural disasters. Conclusion: As climate extremes increase the frequency and severity of natural disasters, millions will need surgical care beyond baseline needs. Countries with insufficient surgical capacity will have the most need for surgical care for persons affected by climate-related natural disasters. Estimates of surgical are particularly important for countries least equipped to meet surgical care demands given critical human and physical resource deficiencies. PMID:27617165

  7. Climatic Consequences and Agricultural Impact of Regional Nuclear Conflict

    NASA Astrophysics Data System (ADS)

    Toon, O. B.; Robock, A.; Mills, M. J.; Xia, L.

    2013-05-01

    A nuclear war between India and Pakistan, with each country using 50 Hiroshima-sized atom bombs as airbursts on urban areas, would inject smoke from the resulting fires into the stratosphere.This could produce climate change unprecedented in recorded human history and global-scale ozone depletion, with enhanced ultraviolet (UV) radiation reaching the surface.Simulations with the Whole Atmosphere Community Climate Model (WACCM), run at higher vertical and horizontal resolution than a previous simulation with the NASA Goddard Institute for Space Studies ModelE, and incorporating ozone chemistry for the first time, show a longer stratospheric residence time for smoke and hence a longer-lasting climate response, with global average surface air temperatures still 1.1 K below normal and global average precipitation 4% below normal after a decade.The erythemal dose from the enhanced UV radiation would greatly increase, in spite of enhanced absorption by the remaining smoke, with the UV index more than 3 units higher in the summer midlatitudes, even after a decade. Scenarios of changes in temperature, precipitation, and downward shortwave radiation from the ModelE and WACCM simulations, applied to the Decision Support System for Agrotechnology Transfer crop model for winter wheat, rice, soybeans, and maize by perturbing observed time series with anomalies from the regional nuclear war simulations, produce decreases of 10-50% in yield averaged over a decade, with larger decreases in the first several years, over the midlatitudes of the Northern Hemisphere. The impact of the nuclear war simulated here, using much less than 1% of the global nuclear arsenal, would be devastating to world agricultural production and trade, possibly sentencing a billion people now living marginal existences to starvation.The continued environmental threat of the use of even a small number of nuclear weapons must be considered in nuclear policy deliberations in Russia, the U.S., and the rest of

  8. Central America Regional Climate Change Program: Tools for Your Use

    NASA Technical Reports Server (NTRS)

    Irwin, Dan; Irving, Bill; Yeager, Carey

    2006-01-01

    USAID/E-CAM and EGAT's Global Climate Change Team, in partnership with EPA, NASA, Oak Ridge National Lab, and the Central American Commission for Environment and Development (CCAD), have had a significant impact on the region's ability to monitor, mitigate, and adapt to environmental threats. Environmental decision-making tools and data are posted on a website (SERVIR: http://servir.nsstc.nasa.pov/home.html)that provides satellite and geographic data and maps to anybody with an Internet connection. The SERVIR program has been identified as the model for the Global Earth Observation System of Systems (GEOSS) - a major international effort to develop a 21st century system for environmental management and disaster response. In coordination with the USAID/EPA program, NASA has developed a GIs tool that enables countries to examine their forest cover and document changes on an annual basis. This information is used in calculating carbon emissions as part of greenhouse gas inventories, but also serves a valuable monitoring function. In addition, USAID/E-CAM and EGAT's Global Climate Change Team in collaboration with EPA are helping countries meet their obligations as signatories to the United Nations Framework Convention on Climate Change (UNFCCC). EPA is assisting Central American governments to improve the quality of their greenhouse gas emission inventories reported to the UNFCCC through the development of tools and improvements in data quality. New EPA tools developed include software to automatically calculate greenhouse gas emissions for the agricultural and forestry sector inventories, determine key sources of greenhouse gas emissions, and document institutional arrangements. Several of these tools are state of the art and are comparable to tools currently used in the U.S.

  9. Responses of grape berry anthocyanin and titratable acidity to the projected climate change across the Western Australian wine regions.

    PubMed

    Barnuud, Nyamdorj N; Zerihun, Ayalsew; Mpelasoka, Freddie; Gibberd, Mark; Bates, Bryson

    2014-08-01

    More than a century of observations has established that climate influences grape berry composition. Accordingly, the projected global climate change is expected to impact on grape berry composition although the magnitude and direction of impact at regional and subregional scales are not fully known. The aim of this study was to assess potential impacts of climate change on levels of berry anthocyanin and titratable acidity (TA) of the major grapevine varieties grown across all of the Western Australian (WA) wine regions. Grape berry anthocyanin and TA responses across all WA wine regions were projected for 2030, 2050 and 2070 by utilising empirical models that link these berry attributes and climate data downscaled (to ∼5 km resolution) from the csiro_mk3_5 and miroc3_2_medres global climate model outputs under IPCC SRES A2 emissions scenario. Due to the dependence of berry composition on maturity, climate impacts on anthocyanin and TA levels were assessed at a common maturity of 22 °Brix total soluble solids (TSS), which necessitated the determination of when this maturity will be reached for each variety, region and warming scenario, and future period. The results indicate that both anthocyanin and TA levels will be affected negatively by a warming climate, but the magnitude of the impacts will differ between varieties and wine regions. Compared to 1990 levels, median anthocyanins concentrations are projected to decrease, depending on global climate model, by up to 3-12 % and 9-33 % for the northern wine regions by 2030 and 2070, respectively while 2-18 % reductions are projected in the southern wine regions for the same time periods. Patterns of reductions in the median Shiraz berry anthocyanin concentrations are similar to that of Cabernet Sauvignon; however, the magnitude is lower (up to 9-18 % in southern and northern wine regions respectively by 2070). Similarly, uneven declines in TA levels are projected across the study regions. The largest reductions

  10. Effects of climatic changes on anisakid nematodes in polar regions

    NASA Astrophysics Data System (ADS)

    Rokicki, Jerzy

    2009-11-01

    Anisakid nematodes are common in Antarctic, sub-Antarctic, and Arctic areas. Current distributional knowledge of anisakids in the polar regions is reviewed. Climatic variables influence the occurrence and abundance of anisakids, directly influencing their free-living larval stages and also indirectly influencing their predominantly invertebrate (but also vertebrate) hosts. As these parasites can also be pathogenic for humans, the paucity of information available is a source of additional hazard. As fish are a major human dietary component in Arctic and Antarctic areas, and are often eaten without heat processing, a high risk of infection by anisakid larvae might be expected. The present level of knowledge, particularly relating to anisakid larval stages present in fishes, is far from satisfactory. Preliminary molecular studies have revealed the presence of species complexes. Contemporary climate warming is modifying the marine environment and may result in an extension of time during which anisakid eggs can persist and hatch, and of the time period during which newly hatched larvae remain viable. As a result there may be an increase in the extent of anisakid distribution. Continued warming will modify the composition of the parasitic nematode fauna of marine animals, due to changes in feeding habits, as the warming of the sea and any localised reduction in salinity (from freshwater runoff) can be expected to bring about changes in the species composition of pelagic and benthic invertebrates.

  11. Multidecadal simulation of coastal fog with a regional climate model

    NASA Astrophysics Data System (ADS)

    O'Brien, Travis A.; Sloan, Lisa C.; Chuang, Patrick Y.; Faloona, Ian C.; Johnstone, James A.

    2013-06-01

    In order to model stratocumulus clouds and coastal fog, we have coupled the University of Washington boundary layer model to the regional climate model, RegCM (RegCM-UW). By comparing fog occurrences observed at various coastal airports in the western United States, we show that RegCM-UW has success at modeling the spatial and temporal (diurnal, seasonal, and interannual) climatology of northern California coastal fog. The quality of the modeled fog estimate depends on whether coast-adjacent ocean or land grid cells are used; for the model runs shown here, the oceanic grid cells seem to be most appropriate. The interannual variability of oceanic northern California summertime fog, from a multi-decadal simulation, has a high and statistically significant correlation with the observed interannual variability ( r = 0.72), which indicates that RegCM-UW is capable of investigating the response of fog to long-term climatological forcing. While RegCM-UW has a number of aspects that would benefit from further investigation and development, RegCM-UW is a new tool for investigating the climatology of coastal fog and the physical processes that govern it. We expect that with appropriate physical parameterizations and moderate horizontal resolution, other climate models should be capable of simulating coastal fog. The source code for RegCM-UW is publicly available, under the GNU license, through the International Centre for Theoretical Physics.

  12. North American regional climate reconstruction from underground temperatures.

    NASA Astrophysics Data System (ADS)

    Jaume-Santero, Fernando; Beltrami, Hugo; Mareschal, Jean-Claude

    2016-04-01

    Within the framework of the PAGES NorthAmerica2k project, 514 North American temperature-depth profiles were analyzed to infer recent climate changes. The ground surface temperature (GST) histories for the last 500 years were reconstructed from the subsurface temperature anomalies using a singular value decomposition (SVD) inversion that retains four principal components and takes into account time logging differences. Steady-state surface temperature and thermal gradient were estimated by linear regression for the lower 100 meters of the temperature profile, and climate induced subsurface temperature anomalies were estimated as departures from the steady-state conditions. Additionally, a Monte-Carlo method was used to find the range of solutions within a maximum subsurface anomaly error determined by the minimum distance between the model and the data. A regional analysis was performed for the last 5 centuries yielding mean temperature change every 50 years. The GST history results, presented as the mean and 95% confidence interval, show a warming by 1.0°C to 2.5°C during the post industrial era.

  13. Convection-Permitting Regional Climate Simulations over the Contiguous United States Including Potential Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Liu, Changhai; Rasmussen, Roy; Ikeda, Kyoko; Barlage, Michael; Chen, Fei; Clark, Martyn; Dai, Aiguo; Dudhia, Jimy; Gochis, David; Gutmann, Ethan; Li, Yanping; Newman, Andrew; Thompson, Gregory

    2016-04-01

    The WRF model with a domain size of 1360x1016x51 points, using a 4 km spacing to encompass most of North America, is employed to investigate the water cycle and climate change impacts over the Contiguous United States (CONUS). Four suites of numerical experiments are being conducted, consisting of a 13-year retrospective simulation forced with ERA-I reanalysis, a 13-year climate sensitivity or Pseudo-Global Warming (PGW) simulation, and two 10-year CMIP5-based historical/future period simulations based on a revised bias-correction method. The major objectives are: 1) to evaluate high-resolution WRF's capability to capture orographic precipitation and snow mass balance over the western CONUS and convective precipitation over the eastern CONUS; 2) to assess future changes of seasonal snowfall and snowpack and associated hydrological cycles along with their regional variability across the different mountain barriers and elevation dependency, in response to the CMIP5 projected 2071-2100 climate warming; 3) to examine the precipitation changes under the projected global warming, with an emphasis on precipitation extremes and the warm-season precipitation corridor in association with MCS tracks in the central US; and 4) to provide a valuable community dataset for regional climate change and impact studies. Preliminary analysis of the retrospective simulation shows both seasonal/sub-seasonal precipitation and temperature are well reproduced, with precipitation bias being within 10% of the observations and temperature bias being below 1 degree C in most seasons and locations. The observed annual cycle of snow water equivalent (SWE), such as peak time and disappearance time, is also realistically replicated, even though the peak value is somewhat underestimated. The PGW simulation shows a large cold-season warming in northeast US and eastern Canada, possibly associated with snow albedo feedback, and a strong summer warming in north central US in association with

  14. Freezing Rain Diagnostic Study Over Eastern Canada Using the 5th Generation Canadian Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Bresson, É.; Paquin, D.; Laprise, R.; Theriault, J. M.; de Elía, R.

    2015-12-01

    Northeastern North America is often affected by freezing rain events during the cold season. They can have significant consequences (from road accidents, to severe power outages) despite their intensity and duration. The 1998 Ice Storm over Eastern Canada and Northeastern United States is an example of an extreme event with catastrophic consequences. A total of up to 150 mm of ice accumulated during 10 days were observed in some areas. This natural disaster has highlighted the need to better understand how such phenomena will evolve with future climate scenario. The goal is to investigate the feasibility of using regional climate modeling to diagnose the occurrence of freezing rain events over Quebec (Canada). To address this issue, we used the 5th generation of the Canadian Regional Climate Model (CRCM5), from 1979 to 2014. An empirical method (Bourgouin, 2000) developed to determine the type of winter precipitations was chosen to diagnose freezing rain events. The study focused in the Montreal area and the St. Lawrence River Valley (Quebec, Canada). The sensitivity of the model to horizontal resolution was explored by using three resolutions: 0.44°, 0.22° and 0.11°. In general, freezing rain was diagnosed consistently at all resolutions but the higher one (0.11°) produced more realistic results due to a better representation of the orography. Using the higher resolution, the results showed that the climatology of the freezing rain occurrence in the Montreal area is comparable to available observations. It also suggested that the role of the specific orography of the region with the St. Lawrence River Valley can impact the characteristics of freezing rain events in this area. Overall, this study will contribute to a better preparedness for such events in the future. High resolution regional climate simulations are essential to improve the reproduction of local scale orographically-forced phenomena.

  15. Habitat stability affects dispersal and the ability to track climate change.

    PubMed

    Hof, Christian; Brändle, Martin; Dehling, D Matthias; Munguía, Mariana; Brandl, Roland; Araújo, Miguel B; Rahbek, Carsten

    2012-08-23

    Habitat persistence should influence dispersal ability, selecting for stronger dispersal in habitats of lower temporal stability. As standing (lentic) freshwater habitats are on average less persistent over time than running (lotic) habitats, lentic species should show higher dispersal abilities than lotic species. Assuming that climate is an important determinant of species distributions, we hypothesize that lentic species should have distributions that are closer to equilibrium with current climate, and should more rapidly track climatic changes. We tested these hypotheses using datasets from 1988 and 2006 containing all European dragon- and damselfly species. Bioclimatic envelope models showed that lentic species were closer to climatic equilibrium than lotic species. Furthermore, the models over-predicted lotic species ranges more strongly than lentic species ranges, indicating that lentic species track climatic changes more rapidly than lotic species. These results are consistent with the proposed hypothesis that habitat persistence affects the evolution of dispersal.

  16. Climate and chemistry effects of a regional scale nuclear conflict

    NASA Astrophysics Data System (ADS)

    Stenke, A.; Hoyle, C. R.; Luo, B.; Rozanov, E.; Gröbner, J.; Maag, L.; Brönnimann, S.; Peter, T.

    2013-05-01

    Previous studies have highlighted the severity of detrimental effects for life on Earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM) SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size") against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a tremendous self-lofting of the soot particles into the strato- and mesosphere, where they remain for several years. Consequently, the model suggests Earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with massive sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of Northern America and Eurasia to chilling coldness. In the

  17. Assessments of Regional Climate Change and Land-Cover Change Impacts on Fire Weather in the United States

    NASA Astrophysics Data System (ADS)

    Heilman, W. E.; Pei, L.; Tang, Y.; Bian, X.; Zhong, S. S.; Luo, L.; Yu, L.

    2015-12-01

    Wildland fire is recognized as one of the dominant disturbances affecting forests and grasslands throughout the United States (U.S.). The development of long-term wildland fire and fuel management strategies can be aided with an improved understanding of how climate and land-use/land-cover (LULC) changes could potentially affect the occurrence of atmospheric conditions favorable for extreme fire behavior and for prescribed-fire usage as a fuel reduction tactic. Using atmospheric reanalysis data from the North American Regional Reanalysis (NARR) dataset, current and projected LULC data from the U.S. Geological Survey, and regional climate simulations performed with the Weather Research and Forecasting (WRF) model and a suite of North American Regional Climate Change Assessment Program (NARCCAP) modeling systems, we have examined recent trends and potential future changes in fire-weather patterns driven by regional climate and LULC changes. This presentation highlights some of the key findings of the assessments, including the identification of specific areas in the U.S. where future climate conditions may lead to more extreme wildfire behavior as quantified by an operational fire-weather index. The implications for wildland fire and fuels management in the U.S. are also presented.

  18. Using a Coupled Lake Model with WRF to Improve High-Resolution Regional Climate Simulations

    NASA Astrophysics Data System (ADS)

    Mallard, M.; Bullock, R.; Nolte, C. G.; Alapaty, K.; Otte, T.; Gula, J.

    2012-12-01

    Lakes can play a significant role in regional climate by modifying air masses through fluxes of heat and moisture and by modulating inland extremes in temperature. Representing these effects becomes more important as regional climate modeling efforts employ finer grid spacing in order to simulate smaller scales. The Weather Research and Forecasting (WRF) model does not simulate lakes explicitly. Instead, lake points are treated as ocean points, with sea surface temperatures (SSTs) interpolated from the nearest neighboring ocean point in the driving coarse-scale fields. This can result in substantial errors for inland lakes such as the Great Lakes. Although prescribed lake surface temperatures (LSTs) can be used for retrospective modeling applications, this may not be desirable for applications involving downscaling future climate scenarios from a global climate model (GCM). In such downscaling simulations, lakes that impact the regional climate in the area of interest may not be resolved by the coarser global input fields. Explicitly simulating the LST would allow WRF to better represent interannual variability in regions significantly affected by lakes, and the influence of such variability on temperature and precipitation patterns. Therefore, coupling a lake model to WRF may lead to more reliable assessments of the impacts of extreme events on human health and the environment. We employ a version of WRF coupled to the Freshwater Lake model, FLake (Gula and Peltier 2012). FLake is a 1D bulk lake model which provides updated LSTs and ice coverage throughout the integration. This two-layer model uses a temperature-depth profile which includes a homogeneous mixed layer at the surface and a thermocline below. The shape of the thermocline is assumed, based on past theoretical and observational studies. Therefore, additional variables required for FLake to run are minimal, and it does not require tuning for individual lakes. These characteristics are advantageous for a

  19. The Polar Regions and Martian Climate: Studies with a Global Climate Model

    NASA Technical Reports Server (NTRS)

    Wilson, R. J.; Richardson, M. I.; Smith, M. D.

    2003-01-01

    Much of the interest in the polar regions centers on the fact that they likely contain the best record of Martian climate change on time scales from years to eons. This expectation is based upon the observed occurrence of weathering product deposits and volatile reservoirs that are coupled to the climate. Interpretation and understanding of these records requires understanding of the mechanisms that involve the exchange of dust, water, and carbon dioxide between the surface and atmosphere, and the atmospheric redistribution of these species. We will summarize our use of the GFDL Mars general circulation model (MGCM), to exploration aspects of the interaction between the global climate and the polar regions. For example, our studies have shown that while the northern polar cap is the dominant seasonal source for water, it can act as a net annual source or sink for water, depending upon the cap temperatures and the bulk humidity of the atmosphere. This behavior regulates the annual and global average humidity of the atmosphere, as the cap acts as a sink if the atmosphere is too wet and a source if it is too dry. We will then focus our presentation on the ability of the MGCM to simulate the observed diurnal variations of surface temperature. We are particularly interested in assessing the influence of dust aerosol and water ice clouds on simulated surface temperature and the comparison with observations. Surface thermal inertia and albedo are critical boundary inputs for MGCM simulations. Thermal inertia is also of intrinsic interest as it may be related to properties of the surface such as particle size and surface character.

  20. Regional climate response to land surface changes after harvest in the North China Plain under present and possible future climate conditions

    NASA Astrophysics Data System (ADS)

    Cho, Mee-Hyun; Boo, Kyung-On; Lee, Johan; Cho, Chunho; Lim, Gyu-Ho

    2014-04-01

    In this study, we investigated the impacts of land use alterations from harvesting practices on the regional surface climate over the North China Plain. The surface climate responses after harvest in June in regions where double-cropping is practiced were evaluated using observations and model simulations with the global climate model HadGEM2-Atmosphere. Responses were modeled under both present and possible future climate conditions. In the model, double-cropping was represented using the monthly varying fraction of vegetation. This contributed to an improvement in the model simulation over East Asia. Modeling results showed that the land surface was warmer and drier after harvest, and these simulation results were consistent with observations. The bare soil surface after harvest in June had biophysical impacts on the surface climate that were mediated by decreasing evapotranspiration and latent heat flux effects, which increased surface air temperatures and decreased surface humidity. An increase in shortwave radiation also contributed to the rise in temperatures. Under two Representative Concentration Pathways (RCP) scenarios for possible future climate conditions, land conversion induced additional warming in addition to greenhouse gases induced global warming. The RCP 8.5 and RCP 2.6 scenarios demonstrated a warming of 1.0°C and 1.4°C due to harvesting practices in June, respectively. The response magnitude was affected by the climate conditions in each RCP. Our results suggest that potential impacts of harvest on the local climate need to be considered in future projections of CO2-induced warming on a regional scale.

  1. Building America Best Practices Series: Guide to Determining Climate Regions by County

    SciTech Connect

    Gilbride, Theresa L.

    2008-10-01

    This document describes the eight climate region designations used by the US Department of Energy Building America Program. In addition to describing the climate zones, the document includes a complete list of every county in the United States and their climate region designations. The county lists are grouped by state. The doucment is intended to assist builders to easily identify what climate region they are building in and therefore which climate-specific Building America best practices guide would be most appropriate for them.

  2. USDA Midwest and Northern Forests Regional Climate Hub: Assessment of climate change vulnerability and adaptation and mitigation strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Midwest Regional Climate Hub covers the States of Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin and represents one of the most extensive and intensive agricultural systems in the world. The Northern Forests Climate Sub Hub shares this footprint and represents people...

  3. Regional climate models downscaling in the Alpine area with Multimodel SuperEnsemble

    NASA Astrophysics Data System (ADS)

    Cane, D.; Barbarino, S.; Renier, L. A.; Ronchi, C.

    2012-08-01

    The climatic scenarios show a strong signal of warming in the Alpine area already for the mid XXI century. The climate simulations, however, even when obtained with Regional Climate Models (RCMs), are affected by strong errors where compared with observations, due to their difficulties in representing the complex orography of the Alps and limitations in their physical parametrization. Therefore the aim of this work is reducing these model biases using a specific post processing statistic technique to obtain a more suitable projection of climate change scenarios in the Alpine area. For our purposes we use a selection of RCMs runs from the ENSEMBLES project, carefully chosen in order to maximise the variety of leading Global Climate Models and of the RCMs themselves, calculated on the SRES scenario A1B. The reference observation for the Greater Alpine Area are extracted from the European dataset E-OBS produced by the project ENSEMBLES with an available resolution of 25 km. For the study area of Piedmont daily temperature and precipitation observations (1957-present) were carefully gridded on a 14-km grid over Piedmont Region with an Optimal Interpolation technique. Hence, we applied the Multimodel SuperEnsemble technique to temperature fields, reducing the high biases of RCMs temperature field compared to observations in the control period. We propose also the first application to RCMS of a brand new probabilistic Multimodel SuperEnsemble Dressing technique to estimate precipitation fields, already applied successfully to weather forecast models, with careful description of precipitation Probability Density Functions conditioned to the model outputs. This technique reduces the strong precipitation overestimation by RCMs over the alpine chain and reproduces well the monthly behaviour of precipitation in the control period.

  4. Regional climate model downscaling may improve the prediction of alien plant species distributions

    NASA Astrophysics Data System (ADS)

    Liu, Shuyan; Liang, Xin-Zhong; Gao, Wei; Stohlgren, Thomas J.

    2014-12-01

    Distributions of invasive species are commonly predicted with species distribution models that build upon the statistical relationships between observed species presence data and climate data. We used field observations, climate station data, and Maximum Entropy species distribution models for 13 invasive plant species in the United States, and then compared the models with inputs from a General Circulation Model (hereafter GCM-based models) and a downscaled Regional Climate Model (hereafter, RCM-based models).We also compared species distributions based on either GCM-based or RCM-based models for the present (1990-1999) to the future (2046-2055). RCM-based species distribution models replicated observed distributions remarkably better than GCM-based models for all invasive species under the current climate. This was shown for the presence locations of the species, and by using four common statistical metrics to compare modeled distributions. For two widespread invasive taxa ( Bromus tectorum or cheatgrass, and Tamarix spp. or tamarisk), GCM-based models failed miserably to reproduce observed species distributions. In contrast, RCM-based species distribution models closely matched observations. Future species distributions may be significantly affected by using GCM-based inputs. Because invasive plants species often show high resilience and low rates of local extinction, RCM-based species distribution models may perform better than GCM-based species distribution models for planning containment programs for invasive species.

  5. Stochastic downscaling of climate model precipitation outputs in orographically complex regions: 2. Downscaling methodology

    NASA Astrophysics Data System (ADS)

    Bordoy, R.; Burlando, P.

    2014-01-01

    A new methodology of stochastic downscaling of climate model precipitation outputs to subdaily temporal resolution and in a multisite framework is presented. The methodology is based on the reparameterization for future climate of the Spatiotemporal Neyman-Scott Rectangular Pulses model. The reparameterization is carried out by estimating the model parameters as done for the calibration of the model for the historical climate and using future statistics that are obtained: (i) applying to the daily historical statistics a factor of change computed from the control and future climate model outputs and (ii) by rescaling the altered daily statistics according to the scaling properties exhibited by the historical raw moments, in order to generate the future statistics at the temporal resolutions required by the reparameterization procedure. The downscaled scenarios are obtained in a multisite framework accounting for cross correlations among the stations. The methodology represents a robust, efficient, and unique approach to generate multiple series of spatially distributed subdaily precipitation scenarios by Monte Carlo simulation. It presents thus a unique alternative for addressing the internal variability of the precipitation process at high temporal and spatial resolution, as compared to other downscaling techniques, which are affected by both computational and resolution problems. The application of the presented approach is demonstrated for a region of complex orography where the model has proved to provide good results, in order to analyze potential changes in such vulnerable areas.

  6. Regional and seasonal response of a West Nile virus vector to climate change

    PubMed Central

    Morin, Cory W.; Comrie, Andrew C.

    2013-01-01

    Climate change will affect the abundance and seasonality of West Nile virus (WNV) vectors, altering the risk of virus transmission to humans. Using downscaled general circulation model output, we calculate a WNV vector's response to climate change across the southern United States using process-based modeling. In the eastern United States, Culex quinquefasciatus response to projected climate change displays a latitudinal and elevational gradient. Projected summer population depressions as a result of increased immature mortality and habitat drying are most severe in the south and almost absent further north; extended spring and fall survival is ubiquitous. Much of California also exhibits a bimodal pattern. Projected onset of mosquito season is delayed in the southwestern United States because of extremely dry and hot spring and summers; however, increased temperature and late summer and fall rains extend the mosquito season. These results are unique in being a broad-scale calculation of the projected impacts of climate change on a WNV vector. The results show that, despite projected widespread future warming, the future seasonal response of C. quinquefasciatus populations across the southern United States will not be homogeneous, and will depend on specific combinations of local and regional conditions. PMID:24019459

  7. Regional and seasonal response of a West Nile virus vector to climate change.

    PubMed

    Morin, Cory W; Comrie, Andrew C

    2013-09-24

    Climate change will affect the abundance and seasonality of West Nile virus (WNV) vectors, altering the risk of virus transmission to humans. Using downscaled general circulation model output, we calculate a WNV vector's response to climate change across the southern United States using process-based modeling. In the eastern United States, Culex quinquefasciatus response to projected climate change displays a latitudinal and elevational gradient. Projected summer population depressions as a result of increased immature mortality and habitat drying are most severe in the south and almost absent further north; extended spring and fall survival is ubiquitous. Much of California also exhibits a bimodal pattern. Projected onset of mosquito season is delayed in the southwestern United States because of extremely dry and hot spring and summers; however, increased temperature and late summer and fall rains extend the mosquito season. These results are unique in being a broad-scale calculation of the projected impacts of climate change on a WNV vector. The results show that, despite projected widespread future warming, the future seasonal response of C. quinquefasciatus populations across the southern United States will not be homogeneous, and will depend on specific combinations of local and regional conditions.

  8. Impact of regional afforestation on climatic conditions in metropolitan areas: case study of Copenhagen

    NASA Astrophysics Data System (ADS)

    Stysiak, Aleksander Andrzej; Bergen Jensen, Marina; Mahura, Alexander

    2016-04-01

    that well-positioned and well-sized afforestation at the regional scale can significantly affect the spatial distribution, structure and intensity of the temperature field. This study points to vegetation having practical applications in urban and regional planning for modifying local climatic conditions. Keywords: Urban Heat Island, Afforestation, Land cover change, Urban planning, Climate change adaptation, Enviro-HIRLAM

  9. Regional Climate Modeling over the Glaciated Regions of the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Gready, Benjamin P.

    The Canadian Arctic Islands (CAI) contain the largest concentration of terrestrial ice outside of the continental ice sheets. Mass loss from this region has recently increased sharply due to above average summer temperatures. Thus, increasing the understanding of the mechanisms responsible for mass loss from this region is critical. Previously, Regional Climate Models (RCMs) have been utilized to estimate climatic balance over Greenland and Antarctica. This method offers the opportunity to study a full suite of climatic variables over extensive spatially distributed grids. However, there are doubts of the applicability of such models to the CAI, given the relatively complex topography of the CAI. To test RCMs in the CAI, the polar version of the regional climate model MM5 was run at high resolution over Devon Ice Cap. At low altitudes, residuals (computed through comparisons with in situ measurements) in the net radiation budget were driven primarily by residuals in net shortwave (NSW) radiation. Residuals in NSW are largely due to inaccuracies in modeled cloud cover and modeled albedo. Albedo on glaciers and ice sheets is oversimplified in Polar MM5 and its successor, the Polar version of the Weather Research and Forecast model (Polar WRF), and is an obvious place for model improvement. Subsequently, an inline parameterization of albedo for Polar WRF was developed as a function of the depth, temperature and age of snow. The parameterization was able to reproduce elevation gradients of seasonal mean albedo derived from satellite albedo measurements (MODIS MOD10A1 daily albedo), on the western slope of the Greenland Ice Sheet for three years. Feedbacks between modelled albedo and modelled surface energy budget components were identified. The shortwave radiation flux feeds back positively with changes to albedo, whereas the longwave, turbulent and ground energy fluxes all feed back negatively, with a maximum combined magnitude of two thirds of the shortwave feedback

  10. Ethnomedicine use in the war affected region of northwest Pakistan

    PubMed Central

    2014-01-01

    Background North-West of Pakistan is bestowed with medicinal plant resources due to diverse geographical and habitat conditions. The traditional use of plants for curing various diseases forms an important part of the region’s cultural heritage. The study was carried out to document medicinal plants used in Frontier Region (FR) Bannu, an area affected by the “War on Terror”. Methods Fieldwork was carried out in four different seasons (spring, autumn, summer and winter) from March 2012 to February 2013. Data on medicinal plants was collected using structured and semi-structured questionnaires from 250 respondents. The voucher specimens were collected, processed and identified following standard methods. Results Of the 107 species of ethnomedicinal plants reported, fifty percent species are herbaceous. The majority of the reported species were wild (55%) but a substantial proportion are cultivated (29%). For most of the plant species (34%), leaves are the most commonly used part in the preparation of ethnomedicines. The most common use of species is for carminative purposes (14 species), with the next most common use being for blood purification (11 species). The main methods used in the preparation of ethnomedicinal recipes involves grinding and boiling, and nearly all the remedies are taken orally along with ingredients such as water, milk or honey for ease of ingestion. Traditional healers prepare plant remedies using one or more plants. There was a significant correlation (r2 = 0.95) between the age of local people and the number of plants known to them, which indicates that in the coming 20 years, an approximate decrease of 75% in the indigenous knowledge may be expected. Conclusion Traditional medicines are important to the livelihoods of rural communities in the region affected by the Global war on Terrorism. The medicinal recipes are indigenous; however, there is a threat to their future use on account of rapid modernization and terrorist activities

  11. [Carbon source metabolic diversity of soil microbial community under different climate types in the area affected by Wenchuan earthquake].

    PubMed

    Zhang, Guang-Shuai; Lin, Yong-Ming; Ma, Rui-Feng; Deng, Hao-Jun; Du, Kun; Wu, Cheng-Zhen; Hong, Wei

    2015-02-01

    The MS8.0 Wenchuan earthquake in 2008 led to huge damage to land covers in northwest Sichuan, one of the critical fragile eco-regions in China which can be divided into Semi-arid dry hot climate zone (SDHC) and Subtropical humid monsoon climate zone (SHMC). Using the method of Bilog-ECO-microplate technique, this paper aimed to determine the functional diversity of soil microbial community in the earthquake-affected areas which can be divided into undamaged area (U), recover area (R) and damaged area without recovery (D) under different climate types, in order to provide scientific basis for ecological recovery. The results indicated that the average-well-color-development (AWCD) in undamaged area and recovery area showed SDHC > SHMC, which was contrary to the AWCD in the damaged area without recovery. The AWCD of damaged area without recovery was the lowest in both climate zones. The number of carbon source utilization types of soil microbial in SHMC zone was significantly higher than that in SDHC zone. The carbon source utilization types in both climate zones presented a trend of recover area > undamaged area > damaged area without recovery. The carbon source metabolic diversity characteristic of soil microbial community was significantly different in different climate zones. The diversity index and evenness index both showed a ranking of undamaged area > recover area > damaged area without recovery. In addition, the recovery area had the highest richness index. The soil microbial carbon sources metabolism characteristic was affected by soil nutrient, aboveground vegetation biomass and vegetation coverage to some extent. In conclusion, earthquake and its secondary disasters influenced the carbon source metabolic diversity characteristic of soil microbial community mainly through the change of aboveground vegetation and soil environmental factors.

  12. Potential Effects of Climate Changes on Aquatic Systems: Laurentian Great Lakes and Precambrian Shield Region

    NASA Astrophysics Data System (ADS)

    Magnuson, J. J.; Webster, K. E.; Assel, R. A.; Bowser, C. J.; Dillon, P. J.; Eaton, J. G.; Evans, H. E.; Fee, E. J.; Hall, R. I.; Mortsch, L. R.; Schindler, D. W.; Quinn, F. H.

    1997-06-01

    The region studied includes the Laurentian Great Lakes and a diversity of smaller glacial lakes, streams and wetlands south of permanent permafrost and towards the southern extent of Wisconsin glaciation. We emphasize lakes and quantitative implications. The region is warmer and wetter than it has been over most of the last 12000 years. Since 1911 observed air temperatures have increased by about 0·11°C per decade in spring and 0·06°C in winter; annual precipitation has increased by about 2·1% per decade. Ice thaw phenologies since the 1850s indicate a late winter warming of about 2·5°C. In future scenarios for a doubled CO2 climate, air temperature increases in summer and winter and precipitation decreases (summer) in western Ontario but increases (winter) in western Ontario, northern Minnesota, Wisconsin and Michigan. Such changes in climate have altered and would further alter hydrological and other physical features of lakes. Warmer climates, i.e. 2 × CO2 climates, would lower net basin water supplies, stream flows and water levels owing to increased evaporation in excess of precipitation. Water levels have been responsive to drought and future scenarios for the Great Lakes simulate levels 0·2 to 2·5 m lower. Human adaptation to such changes is expensive. Warmer climates would decrease the spatial extent of ice cover on the Great Lakes; small lakes, especially to the south, would no longer freeze over every year. Temperature simulations for stratified lakes are 1-7°C warmer for surface waters, and 6°C cooler to 8°C warmer for deep waters. Thermocline depth would change (4 m shallower to 3·5 m deeper) with warmer climates alone; deepening owing to increases in light penetration would occur with reduced input of dissolved organic carbon (DOC) from dryer catchments. Dissolved oxygen would decrease below the thermocline. These physical changes would in turn affect the phytoplankton, zooplankton, benthos and fishes. Annual phytoplankton production may

  13. Quantification of the uncertainties in soil and vegetation parameterizations for regional climate predictions

    NASA Astrophysics Data System (ADS)

    Breil, Marcus; Schädler, Gerd

    2016-04-01

    The aim of the german research program MiKlip II is the development of an operational climate prediction system that can provide reliable forecasts on a decadal time scale. Thereby, one goal of MiKlip II is to investigate the feasibility of regional climate predictions. Results of recent studies indicate that the regional climate is significantly affected by the interactions between the soil, the vegetation and the atmosphere. Thus, within the framework of MiKlip II a workpackage was established to assess the impact of these interactions on the regional decadal climate predictability. In a Regional Climate Model (RCM) the soil-vegetation-atmosphere interactions are represented in a Land Surface Model (LSM). Thereby, the LSM describes the current state of the land surface by calculating the soil temperature, the soil water content and the turbulent heat fluxes, serving the RCM as lower boundary condition. To be able to solve the corresponding equations, soil and vegetation processes are parameterized within the LSM. Such parameterizations are mainly derived from observations. But in most cases observations are temporally and spatially limited and consequently not able to represent the diversity of nature completely. Thus, soil and vegetation parameterizations always exhibit a certain degree of uncertainty. In the presented study, the uncertainties within a LSM are assessed by stochastic variations of the relevant parameterizations in VEG3D, a LSM developed at the Karlsruhe Institute of Technology (KIT). In a first step, stand-alone simulations of VEG3D are realized with varying soil and vegetation parameters, to identify sensitive model parameters. In a second step, VEG3D is coupled to the RCM COSMO-CLM. With this new model system regional decadal hindcast simulations, driven by global simulations of the Max-Planck-Institute for Meteorology Earth System Model (MPI-ESM), are performed for the CORDEX-EU domain in a resolution of 0.22°. The identified sensitive model

  14. Assessment of projected climate change signals over central Africa based on a multitude of global and regional climate projections

    NASA Astrophysics Data System (ADS)

    Hänsler, Andreas; Saeed, Fahad; Jacob, Daniela

    2013-04-01

    It is well accepted within the scientific community that only a large ensemble of different projections will allow achieving robust climate change information for a specific region. In the framework of the project "Climate changes scenarios for the Congo basin" (funded by the German Ministry for Environment, Nature Conservation and Nuclear Safety) a regional climate change assessment is conducted by the Climate Service Center (CSC) over the greater Congo basin region. The analysis is based on a state-of-the-art multi-model multi-scenario ensemble of global and regional climate change projections. In this ensemble the results of several GCM projections from the CMIP3 and the CMIP5 projects are combined with some of the recently downscaled regional CORDEX-Africa projections. Altogether data from 77 different climate change projections are analysed; separated into 31 projections for a "high" and 46 for a "low" emission scenario. In the study several parameters and indices related to temperature and precipitation are considered for the assessment of projected climate change. The large size of the analyzed ensemble is expected to be useful for not only quantifying the magnitude of projected changes, but also to analyze their robustness as well. Moreover, potential differences between projected changes from GCMs and RCMs can also be analysed.

  15. Assessment of projected climate change signals over central Africa based on a multitude of global and regional climate projections

    NASA Astrophysics Data System (ADS)

    Haensler, A.; Saeed, F.; Jacob, D.

    2013-05-01

    It is well accepted within the scientific community that only a large ensemble of different projections will allow achieving robust climate change information for a specific region. In the framework of the project "Climate changes scenarios for the Congo basin" (funded by the German Ministry for Environment, Nature Conservation and Nuclear Safety) a regional climate change assessment is conducted by the Climate Service Center (CSC) over the greater Congo basin region. The analysis is based on a state-of-the-art multi-model multi-scenario ensemble of global and regional climate change projections. In this ensemble the results of several GCM projections from the CMIP3 and the CMIP5 projects are combined with some of the recently downscaled regional CORDEX-Africa projections. Altogether data from 77 different climate change projections are analysed; separated into 31 projections for a "high" and 46 for a "low" emission scenario. In the study several parameters and indices related to temperature and precipitation are considered for the assessment of projected climate change. The large size of the analyzed ensemble is expected to be useful for not only quantifying the magnitude of projected changes, but also to analyze their robustness as well. Moreover, potential differences between projected changes from GCMs and RCMs can also be analysed.

  16. California Wintertime Precipitation in Regional and Global Climate Models

    SciTech Connect

    Caldwell, P M

    2009-04-27

    In this paper, wintertime precipitation from a variety of observational datasets, regional climate models (RCMs), and general circulation models (GCMs) is averaged over the state of California (CA) and compared. Several averaging methodologies are considered and all are found to give similar values when model grid spacing is less than 3{sup o}. This suggests that CA is a reasonable size for regional intercomparisons using modern GCMs. Results show that reanalysis-forced RCMs tend to significantly overpredict CA precipitation. This appears to be due mainly to overprediction of extreme events; RCM precipitation frequency is generally underpredicted. Overprediction is also reflected in wintertime precipitation variability, which tends to be too high for RCMs on both daily and interannual scales. Wintertime precipitation in most (but not all) GCMs is underestimated. This is in contrast to previous studies based on global blended gauge/satellite observations which are shown here to underestimate precipitation relative to higher-resolution gauge-only datasets. Several GCMs provide reasonable daily precipitation distributions, a trait which doesn't seem tied to model resolution. GCM daily and interannual variability is generally underpredicted.

  17. Zooming in on cirrus with the Canadian Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Stefanof, C.; Stefanof, A.; Beaulne, A.; Munoz Alpizar, R.; Szyrmer, W.; Blanchet, J.

    2004-05-01

    The Canadian Regional Climate Model plus a microphysical scheme: two-moments microphysics with three hydrometeor categories (cloud liquid water, pristine ice crystals and larger precipitation crystals) is used to test the simulation in forecast mode using ECMWF data at 0.4 X 0.4 degree. We are zooming in on cirrus at higher resolutions (9, 1.8, 0.36 km). We are currently using the data set measured in APEX-E3, measurements of radar, lidar, passive instruments and interpreted microphysics for some flights (G-II, C404, B200). The radar and lidar data are available for high level cirrus. The south west of Japon is the flight region. The dates are March 20, March 27 and April 2, 2003. We first focus on the March 27 frontal system. We did a rigorous synoptical analysis for the cases. The cirrus at 360 m resolution are simulated. The cloud structure and some similarities between model simulation and observations will be presented.

  18. Diagnosis of precipitation variability in nested regional climate models

    NASA Astrophysics Data System (ADS)

    Arritt, R.; PIRCS Participants

    2003-04-01

    In order to assess reasons for model-to-model variability of precipitation in regional climate models (RCMs) we have evaluated 60-day simulations over the continental U.S. in June-July 1993 from thirteen simulations using different RCMs. The hydrologic cycles in the simulations were compared both to each other and to observations for a subregion of the upper Mississippi River Basin (UMRB), containing the region of maximum 60-day accumulated precipitation in all RCMs and station reports. All RCMs produced positive precipitation (P) minus evaporation (E) and recycling ratios that were within the range estimated from observations. RCM E was sensitive to radiation parameterization, but inter-model variability of E was spread evenly about estimates of observed E. In contrast, most RCMs produced P that was below the range of P from observations, accounting for the low values of simulated P-E compared to observations. Nine of the 13 RCMs reproduced qualitatively the observed daily cycles of P and moisture flux convergence (C), with maximum P and C occurring simultaneously at night. Three of the four driest RCMs had maximum precipitation in the afternoon, suggesting that in these RCMs afternoon destabilization by insolation had excessive influence on production of precipitation. Thus a key indicator of the ability of RCMs in this collection to properly simulate P is their ability to simulate the observed nocturnal maximum of P, indicating that the failure to resolve the diurnal cycle is closely related to overall bias in precipitation.

  19. Regional Climate Simulation with a Variable Resolution Stretched Grid GCM: The Regional Down-Scaling Effects

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.; Takacs, Lawrence L.; Suarez, Max; Sawyer, William; Govindaraju, Ravi C.

    1999-01-01

    The results obtained with the variable resolution stretched grid (SG) GEOS GCM (Goddard Earth Observing System General Circulation Models) are discussed, with the emphasis on the regional down-scaling effects and their dependence on the stretched grid design and parameters. A variable resolution SG-GCM and SG-DAS using a global stretched grid with fine resolution over an area of interest, is a viable new approach to REGIONAL and subregional CLIMATE studies and applications. The stretched grid approach is an ideal tool for representing regional to global scale interactions. It is an alternative to the widely used nested grid approach introduced a decade ago as a pioneering step in regional climate modeling. The GEOS SG-GCM is used for simulations of the anomalous U.S. climate events of 1988 drought and 1993 flood, with enhanced regional resolution. The height low level jet, precipitation and other diagnostic patterns are successfully simulated and show the efficient down-scaling over the area of interest the U.S. An imitation of the nested grid approach is performed using the developed SG-DAS (Data Assimilation System) that incorporates the SG-GCM. The SG-DAS is run with withholding data over the area of interest. The design immitates the nested grid framework with boundary conditions provided from analyses. No boundary condition buffer is needed for the case due to the global domain of integration used for the SG-GCM and SG-DAS. The experiments based on the newly developed versions of the GEOS SG-GCM and SG-DAS, with finer 0.5 degree (and higher) regional resolution, are briefly discussed. The major aspects of parallelization of the SG-GCM code are outlined. The KEY OBJECTIVES of the study are: 1) obtaining an efficient DOWN-SCALING over the area of interest with fine and very fine resolution; 2) providing CONSISTENT interactions between regional and global scales including the consistent representation of regional ENERGY and WATER BALANCES; 3) providing a high

  20. Climate Change Responses of Hydrologic Flowpaths in Mountainous and Polar Regions

    NASA Astrophysics Data System (ADS)

    Godsey, S.; Gooseff, M. N.; Kirchner, J. W.; Tague, C.

    2009-12-01

    Hydrologic processes in mountainous and polar regions may respond differently to changes in the catchment energy budget that are anticipated to occur as climate changes. In the Sierra Nevada Mountains of California, warmer winter temperatures are expected to shift the phase of precipitation from snow to rain across a range of elevations. We examine whether this phase change will alter subsequent low flow regimes during the dry Mediterranean summers of this region. We show that changes in the phase of precipitation as well as changes in evapotranspiration losses from vegetation are key drivers in the hydrologic response of these mountains to climate change. In northern Alaska, the depth of the active layer above permafrost evolves over space and time, affecting subsurface flowpaths. Large changes in water or energy flows may lead to catastrophic loss of ground ice, known as thermokarst development. Thermokarst features can deliver large pulses of sediment and nutrients to lakes and streams, and further alter the hydrology because they expose previously insulated permafrost to the ground surface, and thus higher heat fluxes. Here we show the spatial and temporal development of the active layer inside of and outside of thermokarst features over the course of the warming season. We explore the importance of changes in subsurface topography as a driver of hydrologic response to climate change in arctic tundra catchments.

  1. Using climate regionalization to understand Climate Forecast System Version 2 (CFSv2) precipitation performance for the Conterminous United States (CONUS)

    NASA Astrophysics Data System (ADS)

    Regonda, Satish K.; Zaitchik, Benjamin F.; Badr, Hamada S.; Rodell, Matthew

    2016-06-01

    Dynamically based seasonal forecasts are prone to systematic spatial biases due to imperfections in the underlying global climate model (GCM). This can result in low-forecast skill when the GCM misplaces teleconnections or fails to resolve geographic barriers, even if the prediction of large-scale dynamics is accurate. To characterize and address this issue, this study applies objective climate regionalization to identify discrepancies between the Climate Forecast System Version 2 (CFSv2) and precipitation observations across the Contiguous United States (CONUS). Regionalization shows that CFSv2 1 month forecasts capture the general spatial character of warm season precipitation variability but that forecast regions systematically differ from observation in some transition zones. CFSv2 predictive skill for these misclassified areas is systematically reduced relative to correctly regionalized areas and CONUS as a whole. In these incorrectly regionalized areas, higher skill can be obtained by using a regional-scale forecast in place of the local grid cell prediction.

  2. Using Climate Regionalization to Understand Climate Forecast System Version 2 (CFSv2) Precipitation Performance for the Conterminous United States (CONUS)

    NASA Technical Reports Server (NTRS)

    Regonda, Satish K.; Zaitchik, Benjamin F.; Badr, Hamada S.; Rodell, Matthew

    2016-01-01

    Dynamically based seasonal forecasts are prone to systematic spatial biases due to imperfections in the underlying global climate model (GCM). This can result in low-forecast skill when the GCM misplaces teleconnections or fails to resolve geographic barriers, even if the prediction of large-scale dynamics is accurate. To characterize and address this issue, this study applies objective climate regionalization to identify discrepancies between the Climate Forecast SystemVersion 2 (CFSv2) and precipitation observations across the Contiguous United States (CONUS). Regionalization shows that CFSv2 1 month forecasts capture the general spatial character of warm season precipitation variability but that forecast regions systematically differ from observation in some transition zones. CFSv2 predictive skill for these misclassified areas is systematically reduced relative to correctly regionalized areas and CONUS as a whole. In these incorrectly regionalized areas, higher skill can be obtained by using a regional-scale forecast in place of the local grid cell prediction.

  3. Characterizing Mediterranean Land Surfaces as Component of the Regional Climate System by Remote Sensing

    NASA Technical Reports Server (NTRS)

    Bolle, H.-J.; Koslowsky, D.; Menenti, M.; Nerry, F.; Otterman, Joseph; Starr, D.

    1998-01-01

    Extensive areas in the Mediterranean region are subject to land degradation and desertification. The high variability of the coupling between the surface and the atmosphere affects the regional climate. Relevant surface characteristics, such as spectral reflectance, surface emissivity in the thermal-infrared region, and vegetation indices, serve as "primary" level indicators for the state of the surface. Their spatial, seasonal and interannual variability can be monitored from satellites. Using relationships between these primary data and combining them with prior information about the land surfaces (such as topography, dominant soil type, land use, collateral ground measurements and models), a second layer of information is built up which specifies the land surfaces as a component of the regional climate system. To this category of parameters which are directly involved in the exchange of energy, momentum and mass between the surface and the atmosphere, belong broadband albedo, thermodynamic surface temperature, vegetation types, vegetation cover density, soil top moisture, and soil heat flux. Information about these parameters finally leads to the computation of sensible and latent heat fluxes. The methodology was tested with pilot data sets. Full resolution, properly calibrated and normalized NOAA-AVHRR multi-annual primary data sets are presently compiled for the whole Mediterranean area, to study interannual variability and longer term trends.

  4. Regional Approach for Linking Ecosystem Services and Livelihood Strategies Under Climate Change of Pastoral Communities in the Mongolian Steppe Ecosystem

    NASA Astrophysics Data System (ADS)

    Ojima, D. S.; Galvin, K.; Togtohyn, C.

    2012-12-01

    Dramatic changes due to climate and land use dynamics in the Mongolian Plateau affecting ecosystem services and agro-pastoral systems in Mongolia. Recently, market forces and development strategies are affecting land and water resources of the pastoral communities which are being further stressed due to climatic changes. Evaluation of pastoral systems, where humans depend on livestock and grassland ecosystem services, have demonstrated the vulnerability of the social-ecological system to climate change. Current social-ecological changes in ecosystem services are affecting land productivity and carrying capacity, land-atmosphere interactions, water resources, and livelihood strategies. The general trend involves greater intensification of resource exploitation at the expense of traditional patterns of extensive range utilization. Thus we expect climate-land use-land cover relationships to be crucially modified by the social-economic forces. The analysis incorporates information about the social-economic transitions taking place in the region which affect land-use, food security, and ecosystem dynamics. The region of study extends from the Mongolian plateau in Mongolia. Our research indicate that sustainability of pastoral systems in the region needs to integrate the impact of climate change on ecosystem services with socio-economic changes shaping the livelihood strategies of pastoral systems in the region. Adaptation strategies which incorporate integrated analysis of landscape management and livelihood strategies provides a framework which links ecosystem services to critical resource assets. Analysis of the available livelihood assets provides insights to the adaptive capacity of various agents in a region or in a community. Sustainable development pathways which enable the development of these adaptive capacity elements will lead to more effective adaptive management strategies for pastoral land use and herder's living standards. Pastoralists will have the

  5. Regionalization and Evaluation of Impacts of Climate Change on Mexican Coasts

    NASA Astrophysics Data System (ADS)

    Nava-Sanchez, E. H.; Murillo-Jimenez, J. M.; Godinez-Orta, L.; Morales-Perez, R. A.

    2009-04-01

    Mexican coasts exhibit a high variety of geoforms and processes, and consequently, are exposed to a variability of types and impact levels of geological hazards. Tropical cyclones are the most devastating hazards for the Mexican coast, although, impact levels are higher on the southern coast of both Atlantic and Pacific oceans. The second dangerous geo-hazards are earthquakes and tsunamis, which affect all Pacific coast, causing more damage the earthquakes generated in the Cocos Trench. For seismic hazards, there is a regionalization of the Mexican territory, however, even though the high levels of damages caused by other natural hazards, there is a lack of initiatives for performing atlas of natural hazards or coastal management plans. Exceptions are the local scale atlas of natural hazards by the Mexican Geological Survey or some other local scale atlas made with several errors by non experience private consultant companies. Our work shows results of analyses of coastal geological hazards associated to global warming such as the sea level rise, and the increase in strength of some coastal processes. Initially, due to the high diversity in coastal environments for the Mexican coast, it was considered that, a regional characterization of the coastal zone, and the gathering of environmental data for determining levels of impact of the various coastal hazards, as an evaluation of coastal vulnerability. Thus, the basic criteria for defining Coastal Regions, in order of importance, were the following: geomorphology, climate, geology, tectonics, and oceanography. Also, some anthropogenic factors were taken in account for the coastal regionalization, such as civil construction along the coastline, land used and modification of the fluvial system. The analysis of such criteria, allows us to classify the Mexican coasts in 10 Coastal Regions. On the Pacific coast regions are: (I) Pacific Coast of Baja California, (II) Gulf Coast of Baja California, (III) Coastal Plain of

  6. How The Rapid Climatic Variability of The Last Ice Age Affected Neandertal Extinction and Cultural Changes During The Upper Palaeolithic

    NASA Astrophysics Data System (ADS)

    D'Errico, F.; Sanchez Goñi, M.-F.; Vanhaeren, M.; Grousset, F.; Valladas, H.

    We present a synthesis of the results obtained in the framework of a multidisciplinary research project funded by the ECLIPSE CNRS program the objectif of which is to explore possible relationships between cultural and climatic changes during the OIS 1- 3. With this goal in mind, a comprehensive database including European Palaeolithic sites location and C14 conventional and AMS dates was created and correlated to climatic variations as established by continental and marine proxies. This database in- cludes the C14 dates from living sites and painted caves as well as palaeoclimatic data (isotopes, pollen, foraminifers, alkenones, Ice Rafted Detritus) from IMAGES marine cores and, in particular, from two cores retrieved off the Iberian margin. Correlation of archeological and climatic data for the Middle-Upper Palaeolithic transition indicates that at a global scale, climate was not the driving force determining the colonisation of Europe by Anatomically Modern Humans. At a regional scale, however, climate might have conditionned the timing of this colonisation and of neandertal extinction, particularly in the mediterranean area. We also found that a clear and previously unde- tected synchronism exists between the beginning of each Heinrich events (4 to1) and the developpment of Upper Palaeolithic cultures (Aurignacian, Gravettian, Solutrean and Magdalenian respectively). Cave art also seems affected by the climatic variabil- ity. We discovered that a major gap in cave art production corresponding to the period between 22.7 and 19.4 ky 14C BP (26 and 23.3 cal ky BP) is contemporary with the Heinrich 2 climatic deterioration.

  7. Land use and land cover change impacts on the regional climate of non-Amazonian South America: A review

    NASA Astrophysics Data System (ADS)

    Salazar, Alvaro; Baldi, Germán; Hirota, Marina; Syktus, Jozef; McAlpine, Clive

    2015-05-01

    Land use and land cover change (LUCC) affects regional climate through modifications in the water balance and energy budget. These impacts are frequently expressed by: changes in the amount and frequency of precipitation and alteration of surface temperatures. In South America, most of the studies of the effects of LUCC on the local and regional climate have focused on the Amazon region (54 studies), whereas LUCC within non-Amazonian regions have been largely undermined regardless their potential importance in regulating the regional climate (19 studies). We estimated that 3.6 million km2 of the original natural vegetation cover in non-Amazonian South America were converted into other types of land use, which is about 4 times greater than the historical Amazon deforestation. Moreover, there is evidence showing that LUCC within such fairly neglected ecosystems cause significant reductions in precipitation and increases in surface temperatures, with occasional impacts affecting neighboring or remote areas. We explore the implications of these findings in the context of water security, climatic extremes and future research priorities.

  8. Observational uncertainty of Arctic sea-ice concentration significantly affects seasonal climate forecasts

    NASA Astrophysics Data System (ADS)

    Bunzel, Felix; Notz, Dirk; Baehr, Johanna; Müller, Wolfgang; Fröhlich, Kristina

    2016-04-01

    We examine how the choice of a particular satellite-retrieved sea-ice concentration dataset used for initialising seasonal climate forecasts impacts the prediction skill of Arctic sea-ice area and Northern hemispheric 2-meter air temperatures. To do so, we performed two assimilation runs with the Max Planck Institute Earth System Model (MPI-ESM) from 1979 to 2012, where atmospheric and oceanic parameters as well as sea-ice concentration were assimilated using Newtonian relaxation. The two assimilation runs differ only in the sea-ice concentration dataset used for assimilating sea ice. In the first run, we use sea-ice concentrations as derived by the NASA-Team algorithm, while in the second run we use sea-ice concentrations as derived from the Bootstrap algorithm. A major difference between these two sea-ice concentration data products involves the treatment of melt ponds. While for both products melt ponds appear as open water in the raw satellite data, the Bootstrap algorithm more strongly attempts to offset this systematic bias by synthetically increasing the retrieved ice concentration during summer months. For each year of the two assimilation runs we performed a 10-member ensemble of hindcast experiments starting on 1 May and 1 November with a hindcast length of 6 months. For hindcasts started in November, initial differences in Arctic sea-ice area and surface temperature decrease rapidly throughout the freezing period. For hindcasts started in May, initial sea-ice area differences increase over time. By the end of the melting period, this causes significant differences in 2-meter air temperature of regionally more than 3°C. Hindcast skill for surface temperatures over Europe and North America is higher with Bootstrap initialization during summer and with NASA Team initialisation during winter. This implies that the choice of the sea-ice data product and, thus, the observational uncertainty also affects forecasts of teleconnections that depend on Northern

  9. The Atlantic Multi-Decadal Oscillation Impact on Regional Climate

    NASA Astrophysics Data System (ADS)

    Werner, Rolf; Valev, Dimitar; Atanassov, Atanas; Danov, Dimitar; Guineva, Veneta; Kirillov, Andrey S.

    2016-07-01

    The Atlantic multi-decadal oscillation (AMO) shows a period of about 60-70 years. Over the time span from 1860 up to 2014 the AMO has had a strong climate impact on the Northern Hemisphere. The AMO is considered to be related to the Atlantic overturning circulation, but the origin of the oscillation is not fully understood up till now. To study the AMO impact on climate, the Hadcrut4, Crut4 and HadSST3 temperature data sets have been employed in the current study. The influence of the AMO on the zonal and meridional temperature distribution has been investigated in detail. The strongest zonal AMO impact was obtained in the Arctic region. The results indicated that the AMO influence on temperature at Southern latitudes was opposite in phase compared to the temperature influence in the Northern Hemisphere, in agreement with the well known heat transfer phenomenon from South to North Atlantic. In the Northern Hemisphere the strongest AMO temperature impact was found over the Atlantic and America. In the West from American continent, over the Pacific, the AMO impact was the lowest obtained over the whole Northern Hemisphere. The Rocky Mountains and Sierra Madre, connected with it southwards, built up an atmospheric circulation barrier preventing a strong propagation of the AMO temperature signal westerly. The amplitude of the AMO index itself was greater during summer-fall. However stronger AMO influence on the Northern Hemisphere temperatures was found during the fall-winter season, when the differences between the Northern Hemisphere temperatures and the temperatures in the tropics were the greatest.

  10. The Alpine snow-albedo feedback in regional climate models

    NASA Astrophysics Data System (ADS)

    Winter, Kevin J.-P. M.; Kotlarski, Sven; Scherrer, Simon C.; Schär, Christoph

    2017-02-01

    The effect of the snow-albedo feedback (SAF) on 2m temperatures and their future changes in the European Alps is investigated in the ENSEMBLES regional climate models (RCMs) with a focus on the spring season. A total of 14 re-analysis-driven RCM experiments covering the period 1961-2000 and 10 GCM-driven transient climate change projections for 1950-2099 are analysed. A positive springtime SAF is found in all RCMs, but the range of the diagnosed SAF is large. Results are compared against an observation-based SAF estimate. For some RCMs, values very close to this estimate are found; other models show a considerable overestimation of the SAF. Net shortwave radiation has the largest influence of all components of the energy balance on the diagnosed SAF and can partly explain its spatial variability. Model deficiencies in reproducing 2m temperatures above snow and ice and associated cold temperature biases at high elevations seem to contribute to a SAF overestimation in several RCMs. The diagnosed SAF in the observational period strongly influences the estimated SAF contribution to twenty first century temperature changes in the European Alps. This contribution is subject to a clear elevation dependency that is governed by the elevation-dependent change in the number of snow days. Elevations of maximum SAF contribution range from 1500 to 2000 m in spring and are found above 2000 m in summer. Here, a SAF contribution to the total simulated temperature change between 0 and 0.5 °C until 2099 (multi-model mean in spring: 0.26 °C) or 0 and 14 % (multi-model mean in spring: 8 %) is obtained for models showing a realistic SAF. These numbers represent a well-funded but only approximate estimate of the SAF contribution to future warming, and a remaining contribution of model-specific SAF misrepresentations cannot be ruled out.

  11. Relating Regional Arctic Sea Ice and climate extremes over Europe

    NASA Astrophysics Data System (ADS)

    Ionita-Scholz, Monica; Grosfeld, Klaus; Lohmann, Gerrit; Scholz, Patrick

    2016-04-01

    The potential increase of temperature extremes under climate change is a major threat to society, as temperature extremes have a deep impact on environment, hydrology, agriculture, society and economy. Hence, the analysis of the mechanisms underlying their occurrence, including their relationships with the large-scale atmospheric circulation and sea ice concentration, is of major importance. At the same time, the decline in Arctic sea ice cover during the last 30 years has been widely documented and it is clear that this change is having profound impacts at regional as well as planetary scale. As such, this study aims to investigate the relation between the autumn regional sea ice concentration variability and cold winters in Europe, as identified by the numbers of cold nights (TN10p), cold days (TX10p), ice days (ID) and consecutive frost days (CFD). We analyze the relationship between Arctic sea ice variation in autumn (September-October-November) averaged over eight different Arctic regions (Barents/Kara Seas, Beaufort Sea, Chukchi/Bering Seas, Central Arctic, Greenland Sea, Labrador Sea/Baffin Bay, Laptev/East Siberian Seas and Northern Hemisphere) and variations in atmospheric circulation and climate extreme indices in the following winter season over Europe using composite map analysis. Based on the composite map analysis it is shown that the response of the winter extreme temperatures over Europe is highly correlated/connected to changes in Arctic sea ice variability. However, this signal is not symmetrical for the case of high and low sea ice years. Moreover, the response of temperatures extreme over Europe to sea ice variability over the different Arctic regions differs substantially. The regions which have the strongest impact on the extreme winter temperature over Europe are: Barents/Kara Seas, Beaufort Sea, Central Arctic and the Northern Hemisphere. For the years of high sea ice concentration in the Barents/Kara Seas there is a reduction in the number

  12. Effects of lateral boundary condition resolution and update frequency on regional climate model predictions

    NASA Astrophysics Data System (ADS)

    Pankatz, Klaus; Kerkweg, Astrid

    2015-04-01

    The work presented is part of the joint project "DecReg" ("Regional decadal predictability") which is in turn part of the project "MiKlip" ("Decadal predictions"), an effort funded by the German Federal Ministry of Education and Research to improve decadal predictions on a global and regional scale. In MiKlip, one big question is if regional climate modeling shows "added value", i.e. to evaluate, if regional climate models (RCM) produce better results than the driving models. However, the scope of this study is to look more closely at the setup specific details of regional climate modeling. As regional models only simulate a small domain, they have to inherit information about the state of the atmosphere at their lateral boundaries from external data sets. There are many unresolved questions concerning the setup of lateral boundary conditions (LBC). External data sets come from global models or from global reanalysis data-sets. A temporal resolution of six hours is common for this kind of data. This is mainly due to the fact, that storage space is a limiting factor, especially for climate simulations. However, theoretically, the coupling frequency could be as high as the time step of the driving model. Meanwhile, it is unclear if a more frequent update of the LBCs has a significant effect on the climate in the domain of the RCM. The first study examines how the RCM reacts to a higher update frequency. The study is based on a 30 year time slice experiment for three update frequencies of the LBC, namely six hours, one hour and six minutes. The evaluation of means, standard deviations and statistics of the climate in the regional domain shows only small deviations, some statistically significant though, of 2m temperature, sea level pressure and precipitation. The second part of the first study assesses parameters linked to cyclone activity, which is affected by the LBC update frequency. Differences in track density and strength are found when comparing the simulations

  13. The Regional Integrated Sciences and Assessments (RISA) Program, Climate Services, and Meeting the National Climate Change Adaptation Challenge

    NASA Astrophysics Data System (ADS)

    Overpeck, J. T.; Udall, B.; Miles, E.; Dow, K.; Anderson, C.; Cayan, D.; Dettinger, M.; Hartmann, H.; Jones, J.; Mote, P.; Ray, A.; Shafer, M.; White, D.

    2008-12-01

    The NOAA-led RISA Program has grown steadily to nine regions and a focus that includes both natural climate variability and human-driven climate change. The RISAs are, at their core, university-based and heavily invested in partnerships, particularly with stakeholders, NOAA, and other federal agencies. RISA research, assessment and partnerships have led to new operational climate services within NOAA and other agencies, and have become important foundations in the development of local, state and regional climate change adaptation initiatives. The RISA experience indicates that a national climate service is needed, and must include: (1) services prioritized based on stakeholder needs; (2) sustained, ongoing regional interactions with users, (3) a commitment to improve climate literacy; (4) support for assessment as an ongoing, iterative process; (5) full recognition that stakeholder decisions are seldom made using climate information alone; (6) strong interagency partnership; (7) national implementation and regional in focus; (8) capability spanning local, state, tribal, regional, national and international space scales, and weeks to millennia time scales; and (9) institutional design and scientific support flexible enough to assure the effort is nimble enough to respond to rapidly-changing stakeholder needs. The RISA experience also highlights the central role that universities must play in national climate change adaptation programs. Universities have a tradition of trusted regional stakeholder partnerships, as well as the interdisciplinary expertise - including social science, ecosystem science, law, and economics - required to meet stakeholder climate-related needs; project workforce can also shift rapidly in universities. Universities have a proven ability to build and sustain interagency partnerships. Universities excel in most forms of education and training. And universities often have proven entrepreneurship, technology transfer and private sector

  14. Analysis of regional albedo characteristics and its influence in the regional climate model REMO

    NASA Astrophysics Data System (ADS)

    Preuschmann, S.; Jacob, D.

    2010-09-01

    The effects of land-use changes on climate have a high priority in climate impact researches. Nevertheless it is not trivial to integrate land-use changes in the Regional atmospherical climate Model REMO (Jacob 2001) so that characteristics of a typical land-use type can be created and therewith systematical effects can be analyzed. As in many regional dynamical climate models, REMO is calculating in the target resolution with parameters which are independent of land-use classes. Considering only one of these parameters, e.g. the albedo, the processing chain (Rechid et al. 2008) to construct the underlying model-albedo uses a number of assumptions which levels phase and amplitude of the albedo-cycle of a regional typical land cover. The albedo data product ALBEDOMAP (Fischer et al. 2006) of the Medium Resolution Imaging Spectrometer (MERIS) on the ESA platform ENVISAT is used as comparative data set. The annual cycle of the ALBEDOMAP data exceeds the modeled variability of the annual albedo cycle permanently in some cases by a factor of ten. Results of REMO-sensitivity studies show, that even small changes in the albedo about one percent is influencing the simulation. Within this study the relevance of characteristically surface information concerning land-use change for fine resolutions in REMO were shown. Fischer, J. ; Preusker, R.; Muller, J.-P. & M. Zühlke (2007): ALBEDOMAP -Validation Report - ESA AO/1-4559/04/I-LG, Online-Publikation: http://www.brockmann-consult.de/albedomap/pdf/MERIS-AlbedoMap-Validation-1.0.pdf. Jacob, D. (2001): A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin; Meteorol. Amtos. Phys., 77, 61-73, 2001. Rechid, D.; Raddatz, T. & D. Jacob (2008): Parameterization of snow-free land surface albedo as a function of vegetation phenology based on MODIS data and applied in climate modelling.; Theor. Appl. Climatol., DOI 10.1007/s00704-008-0003-y.

  15. Shifts in climate suitability for wine production as a result of climate change in a temperate climate wine region of Romania

    NASA Astrophysics Data System (ADS)

    Irimia, Liviu Mihai; Patriche, Cristian Valeriu; Quenol, Hervé; Sfîcă, Lucian; Foss, Chris

    2017-01-01

    Climate change is causing important shifts in the suitability of regions for wine production. Fine scale mapping of these shifts helps us to understand the evolution of vineyard climates, and to find solutions through viticultural adaptation. The aim of this study is to identify and map the structural and spatial shifts that occurred in the climatic suitability for wine production of the Cotnari wine growing region (Romania) between 1961 and 2013. Discontinuities in trends of temperature were identified, and the averages and trends of 13 climatic parameters for the 1961 to 1980 and 1981 to 2013 time periods were analysed. Using the averages of these climatic parameters, climate suitability for wine production was calculated at a resolution of 30 m and mapped for each time period, and the changes analysed. The results indicate shifts in the area's historic climatic profile, due to an increase of heliothermal resources and precipitation constancy. The area's climate suitability for wine production was modified by the loss of climate suitability for white table wines, sparkling wines and wine for distillates; shifts in suitability to higher altitudes by about 67 m, and a 48.6% decrease in the area suitable for quality white wines; and the occurrence of suitable climates for red wines at lower altitudes. The study showed that climate suitability for wine production has a multi-level spatial structure, with classes requiring a cooler climate being located at a higher altitude than those requiring a warmer climate. Climate change has therefore resulted in the shift of climate suitability classes for wine production to higher altitudes.

  16. Customization of regional climate model (RegCM4) over Indian region

    NASA Astrophysics Data System (ADS)

    Nayak, S.; Mandal, M.; Maity, S.

    2017-01-01

    The regional climate model (RegCM4) is customized for 10-year climate simulation over Indian region through sensitivity studies on cumulus convection and land surface parameterization schemes. The model is configured over 30° E-120° E and 15° S-45° N at 30-km horizontal resolution with 23 vertical levels. Six 10-year (1991-2000) simulations are conducted with the combinations of two land surface schemes (BATS, CLM3.5) and three cumulus convection schemes (Kuo, Grell, MIT). The simulated annual and seasonal climatology of surface temperature and precipitation are compared with CRU observations. The interannual variability of these two parameters is also analyzed. The results indicate that the model simulated climatology is sensitive to the convection as well as land surface parameterization. The analysis of surface temperature (precipitation) climatology indicates that the model with CLM produces warmer (dryer) climatology, particularly over India. The warmer (dryer) climatology is due to the higher sensible heat flux (lower evapotranspiration) in CLM. The model with MIT convection scheme simulated wetter and warmer climatology (higher precipitation and temperature) with smaller Bowen ratio over southern India compared to that with the Grell and Kuo schemes. This indicates that a land surface scheme produces warmer but drier climatology with sensible heating contributing to warming where as a convection scheme warmer but wetter climatology with latent heat contributing to warming. The climatology of surface temperature over India is better simulated by the model with BATS land surface model in combination with MIT convection scheme while the precipitation climatology is better simulated with BATS land surface model in combination with Grell convection scheme. Overall, the modeling system with the combination of Grell convection and BATS land surface scheme provides better climate simulation over the Indian region.

  17. IMPACT OF CLIMATE VARIATION AND CHANGE ON MID-ATLANTIC REGION HYDROLOGY AND WATER RESOURCES

    EPA Science Inventory

    The sensitivity of hydrology and water resources to climate variation and climate change is assessed for the Mid-Atlantic Region (MAR) of the United States. Observed streamflow, groundwater, and water-quality data are shown to vary in association with climate variation. Projectio...

  18. Climate services for adapting landslide hazard prevention measures in the Vrancea Seismic Region

    NASA Astrophysics Data System (ADS)

    Micu, Dana; Balteanu, Dan; Jurchescu, Marta; Sima, Mihaela; Micu, Mihai

    2014-05-01

    The Vrancea Seismic Region is covering an area of about 8 000 km2 in the Romanian Curvature Carpathians and Subcarpathians and it is considered one of Europe's most intensely multi-hazard-affected areas. Due to its geomorphic traits (heterogeneous morphostructural units of flysch mountains and molasse hills and depressions), the area is strongly impacted by extreme hydro-meteorological events which are potentially enhancing the numerous damages inflicted to a dense network of human settlements. An a priori knowledge of future climate change is a useful climate service for local authorities to develop regional adapting strategies and adequate prevention/preparedness frameworks. This paper aims at integrating the results of the high-resolution climate projections over the 21st century (within the FP7 ECLISE project) into the regional landslide hazard assessment. The requirements of users (Civil Protection, Land management, local authorities) for this area refer to reliable and high-resolution spatial data on landslide and flood hazard for short and medium-term risk management strategies. An insight into the future behavior of climate variability in the Vrancea Seismic Region, based on future climate projections of three regional models, under three RCPs (2.6, 4.5, 8.6), suggests a clear warming, both annually and seasonally and a rather limited annual precipitation decrease, but with a strong change of seasonality. A landslide inventory of 2485 cases (shallow and medium seated earth, debris and rock slides and earth and debris flows) was obtained based on large scale geomorphological mapping and aerial photos support (GeoEye, DigitalGlobe; provided by GoogleEarth and BingMaps). The landslides are uniformly distributed across the area, being considered representative for the entire morphostructural environment. Landslide susceptibility map was obtained using multivariate statistical analysis (logistic regression), while a relative landslide hazard index was computed

  19. Extending Lkn Climate Regionalization with Spatial Regularization: AN Application to Epidemiological Research

    NASA Astrophysics Data System (ADS)

    Liss, Alexander; Gel, Yulia R.; Kulinkina, Alexandra; Naumova, Elena N.

    2016-06-01

    Regional climate is a critical factor in public health research, adaptation studies, climate change burden analysis, and decision support frameworks. Existing climate regionalization schemes are not well suited for these tasks as they rarely take population density into account. In this work, we are extending our recently developed method for automated climate regionalization (LKN-method) to incorporate the spatial features of target population. The LKN method consists of the data limiting step (L-step) to reduce dimensionality by applying principal component analysis, a classification step (K-step) to produce hierarchical candidate regions using k-means unsupervised classification algorithm, and a nomination step (N-step) to determine the number of candidate climate regions using cluster validity indexes. LKN method uses a comprehensive set of multiple satellite data streams, arranged as time series, and allows us to define homogeneous climate regions. The proposed approach extends the LKN method to include regularization terms reflecting the spatial distribution of target population. Such tailoring allows us to determine the optimal number and spatial distribution of climate regions and thus, to ensure more uniform population coverage across selected climate categories. We demonstrate how the extended LKN method produces climate regionalization can be better tailored to epidemiological research in the context of decision support framework.

  20. Regional zooplankton biodiversity provides limited buffering of pond ecosystems against climate change.

    PubMed

    Thompson, Patrick L; Shurin, Jonathan B

    2012-01-01

    1. Climate change and other human-driven environmental perturbations are causing reductions in biodiversity and impacting the functioning of ecosystems on a global scale. Metacommunity theory suggests that ecosystem connectivity may reduce the magnitude of these impacts if the regional species pool contains functionally redundant species that differ in their environmental tolerances. Dispersal may increase the resistance of local ecosystems to environmental stress by providing regional species with traits adapted to novel conditions. 2. We tested this theory by subjecting freshwater zooplankton communities in mesocosms that were either connected to or isolated from the larger regional species pool to a factorial manipulation of experimental warming and increased salinity. 3. Compensation by regional taxa depended on the source of stress. Warming tolerant regional taxa partially compensated for reductions in heat sensitive local taxa but similar compensation did not occur under increased salinity. 4. Dispersal-mediated species invasions dampened the effects of warming on summer net ecosystem productivity. However, this buffering effect did not occur in the fall or for periphyton growth, the only other ecosystem function affected by the stress treatments. 5. The results indicate that regional biodiversity can provide insurance in a dynamic environment but that the buffering capacity is limited to some ecosystem processes and sources of stress. Maintaining regional biodiversity and habitat connectivity may therefore provide some limited insurance for local ecosystems in changing environments, but is unable to impart resistance against all sources of environmental stress.

  1. Scale dependence of the simulated impact of Amazonian deforestation on regional climate

    NASA Astrophysics Data System (ADS)

    Pitman, A. J.; Lorenz, R.

    2016-09-01

    Using a global climate model, Amazonian deforestation experiments are conducted perturbing 1, 9, 25, 81 and 121 grid points, each with 5 ensemble members. All experiments show warming and drying over Amazonia. The impact of deforestation on temperature, averaged either over the affected area or a wider area, decreases by a factor of two as the scale of the perturbation increases from 1 to 121 grid points. This is associated with changes in the surface energy balance and consequential impacts on the atmosphere above the regions deforested. For precipitation, as the scale of deforestation increases from 9 to 121 grid points, the reduction in rainfall over the perturbed area decreases from ˜1.5 to ˜1 mm d-1. However, if the surrounding area is considered and large deforestation perturbations made, compensatory increases in precipitation occur such that there is little net change. This is largely associated with changes in horizontal advection of moisture. Disagreements between climate model experiments on how Amazonian deforestation affects precipitation and temperature are, at least in part, due to the spatial scale of the region deforested, differences in the areas used to calculate averages and whether areas surrounding deforestation are included in the overall averages.

  2. Climate Change and Mortality in Vienna—A Human Biometeorological Analysis Based on Regional Climate Modeling

    PubMed Central

    Muthers, Stefan; Matzarakis, Andreas; Koch, Elisabeth

    2010-01-01

    The potential development of heat-related mortality in the 21th century for Vienna (Austria) was assessed by the use of two regional climate models based on the IPCC emissions scenarios A1B and B1. Heat stress was described with the human-biometeorological index PET (Physiologically Equivalent Temperature). Based on the relation between heat stress and mortality in 1970–2007, we developed two approaches to estimate the increases with and without long-term adaptation. Until 2011–2040 no significant changes will take place compared to 1970–2000, but in the following decades heat-related mortality could increase up to 129% until the end of the century, if no adaptation takes place. The strongest increase occurred due to extreme heat stress (PET ≥ 41 °C). With long-term adaptation the increase is less pronounced, but still notable. This encourages the requirement for additional adaptation measurements. PMID:20717552

  3. Sensitivity of soil moisture initialization for decadal predictions under different regional climatic conditions in Europe

    NASA Astrophysics Data System (ADS)

    Khodayar, S.; Sehlinger, A.; Feldmann, H.; Kottmeier, C.

    2015-12-01

    The impact of soil initialization is investigated through perturbation simulations with the regional climate model COSMO-CLM. The focus of the investigation is to assess the sensitivity of simulated extreme periods, dry and wet, to soil moisture initialization in different climatic regions over Europe and to establish the necessary spin up time within the framework of decadal predictions for these regions. Sensitivity experiments consisted of a reference simulation from 1968 to 1999 and 5 simulations from 1972 to 1983. The Effective Drought Index (EDI) is used to select and quantify drought status in the reference run to establish the simulation time period for the sensitivity experiments. Different soil initialization procedures are investigated. The sensitivity of the decadal predictions to soil moisture initial conditions is investigated through the analysis of water cycle components' (WCC) variability. In an episodic time scale the local effects of soil moisture on the boundary-layer and the propagated effects on the large-scale dynamics are analysed. The results show: (a) COSMO-CLM reproduces the observed features of the drought index. (b) Soil moisture initialization exerts a relevant impact on WCC, e.g., precipitation distribution and intensity. (c) Regional characteristics strongly impact the response of the WCC. Precipitation and evapotranspiration deviations are larger for humid regions. (d) The initial soil conditions (wet/dry), the regional characteristics (humid/dry) and the annual period (wet/dry) play a key role in the time that soil needs to restore quasi-equilibrium and the impact on the atmospheric conditions. Humid areas, and for all regions, a humid initialization, exhibit shorter spin up times, also soil reacts more sensitive when initialised during dry periods. (e) The initial soil perturbation may markedly modify atmospheric pressure field, wind circulation systems and atmospheric water vapour distribution affecting atmospheric stability

  4. Building America Best Practices Series: Volume 7.1: Guide to Determining Climate Regions by County

    SciTech Connect

    Baechler, Michael C.; Williamson, Jennifer L.; Gilbride, Theresa L.; Cole, Pamala C.; Hefty, Marye G.; Love, Pat M.

    2010-08-30

    This report for DOE's Building America program helps builders identify which Building America climate region they are building in. The guide includes maps comparing the Building America regions with climate designations used in the International Energy Conservation Code for Residential Buildings and lists all U.S. counties by climate zone. A very brief history of the development of the Building America climate map and descriptions of each climate zone are provided. This report is available on the Building America website www.buildingamerica.gov.

  5. The Use of Statistical Downscaling to Project Regional Climate Changes as they Relate to Future Energy Production

    NASA Astrophysics Data System (ADS)

    Werth, D. W.; O'Steen, L.; Chen, K.; Altinakar, M. S.; Garrett, A.; Aleman, S.; Ramalingam, V.

    2010-12-01

    Global climate change has the potential for profound impacts on society, and poses significant challenges to government and industry in the areas of energy security and sustainability. Given that the ability to exploit energy resources often depends on the climate, the possibility of climate change means we cannot simply assume that the untapped potential of today will still exist in the future. Predictions of future climate are generally based on global climate models (GCMs) which, due to computational limitations, are run at spatial resolutions of hundreds of kilometers. While the results from these models can predict climatic trends averaged over large spatial and temporal scales, their ability to describe the effects of atmospheric phenomena that affect weather on regional to local scales is inadequate. We propose the use of several optimized statistical downscaling techniques that can infer climate change at the local scale from coarse resolution GCM predictions, and apply the results to assess future sustainability for two sources of energy production dependent on adequate water resources: nuclear power (through the dissipation of waste heat from cooling towers, ponds, etc.) and hydroelectric power. All methods will be trained with 20th century data, and applied to data from the years 2040-2049 to get the local-scale changes. Models of cooling tower operation and hydropower potential will then use the downscaled data to predict the possible changes in energy production, and the implications of climate change on plant siting, design, and contribution to the future energy grid can then be examined.

  6. Climate and chemistry effects of a regional scale nuclear conflict

    NASA Astrophysics Data System (ADS)

    Stenke, A.; Hoyle, C. R.; Luo, B.; Rozanov, E.; Gröbner, J.; Maag, L.; Brönnimann, S.; Peter, T.

    2013-10-01

    Previous studies have highlighted the severity of detrimental effects for life on earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM) SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size") against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a rapid self-lofting of the soot particles into the strato- and mesosphere within a few days after emission, where they remain for several years. Consequently, the model suggests earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with an increase in sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of North America and Eurasia to a

  7. Regional influence of climate patterns on the wave climate of the southwestern Pacific: The New Zealand region

    NASA Astrophysics Data System (ADS)

    Godoi, Victor A.; Bryan, Karin R.; Gorman, Richard M.

    2016-06-01

    This work investigates how the wave climate around New Zealand and the southwest Pacific is modulated by the Pacific Decadal Oscillation (PDO), El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), Zonal Wave-number-3 Pattern (ZW3), and Southern Annular Mode (SAM) during the period 1958-2001. Their respective climate indices were correlated with modeled mean wave parameters extracted from a 45 year (1957-2002) wave hindcast carried out with the WAVEWATCH III model using the wind and ice fields from the ERA-40 reanalysis project. The correlation was performed using the Pearson's correlation coefficient and the wavelet spectral analysis. Prior to that, mean annual and interannual variabilities and trends in significant wave height (Hs) were computed over 44 years (1958-2001). In general, higher annual and interannual variabilities were found along the coastline, in regions dominated by local winds. An increasing trend in Hs was found around the country, with values varying between 1 and 6 cm/decade at the shoreline. The greatest Hs trends were identified to the south of 48°S, suggesting a relationship with the positive trend in the SAM. Seasonal to decadal time scales of the SAM strongly influenced wave parameters throughout the period analyzed. In addition, larger waves were observed during extreme ENSO and IOD events at interannual time scale, while they were more evident at seasonal and intraseasonal time scales in the correlations with the ZW3. Negative phases of the ZW3 and ENSO and positive phases of the IOD, PDO, and SAM resulted in larger waves around most parts of New Zealand.

  8. Himalayan Wintertime Climate Variability: Large-Scale Atmospheric Circulation and Regional Precipitation

    NASA Astrophysics Data System (ADS)

    Cannon, Forest Glen

    The future state of High Mountain Asia's (HMA) glaciers is of critical importance to water security throughout densely populated regions of Asia. Without understanding regional climatic influences, the prediction of terrestrial water fluxes is not possible. Glacier records in the eastern and central Himalaya (CH) yield some of the world's most rapid retreat rates. However, there are a number of steady state or positive mass-balance glaciers in the Karakoram and western Himalaya (KH) regions. The goal of this research is to investigate multi-annual variations in synoptic wintertime weather as a contributing factor to regional mass-balance trends. Winter Westerly Disturbances (WWD) are the primary climatic influence within HMA during the boreal winter. This research investigates variations and changes in WWD over the period 1979--2010 and relationships with extreme precipitation in the KH and CH using multiple datasets. It is demonstrated that extreme precipitation events occurring in the KH and CH are often spatiotemporally independent, suggesting differing behavior of WWD affecting each region. The wavelet power spectrum of 200hPa geopotential height anomalies is used to characterize the frequency and magnitude of individual disturbances and to distinguish synoptic scale variability through time. This analysis exhibits an enhancement in the strength and frequency of WWD in the KH and indicates an increase in local extreme precipitation events. In contrast, the CH is observed to experience weakening influence of these disturbances and consequently, a decrease in extreme precipitation. Additionally, peak melt season temperatures are observed to decrease (increase) in the KH (CH) during the study period. This study also investigates multi-annual variability of WWD and teleconnections with some known modes of climate variability affecting central Asia, including the Arctic Oscillation, the El Nino Southern Oscillation, and the Siberian High. Although there is clear

  9. Climatic Data Integration and Analysis - Regional Approaches to Climate Change for Pacific Northwest Agriculture (REACCH PNA)

    NASA Astrophysics Data System (ADS)

    Seamon, E.; Gessler, P. E.; Flathers, E.; Sheneman, L.; Gollberg, G.

    2013-12-01

    The Regional Approaches to Climate Change for Pacific Northwest Agriculture (REACCH PNA) is a five-year USDA/NIFA-funded coordinated agriculture project to examine the sustainability of cereal crop production systems in the Pacific Northwest, in relationship to ongoing climate change. As part of this effort, an extensive data management system has been developed to enable researchers, students, and the public, to upload, manage, and analyze various data. The REACCH PNA data management team has developed three core systems to encompass cyberinfrastructure and data management needs: 1) the reacchpna.org portal (https://www.reacchpna.org) is the entry point for all public and secure information, with secure access by REACCH PNA members for data analysis, uploading, and informational review; 2) the REACCH PNA Data Repository is a replicated, redundant database server environment that allows for file and database storage and access to all core data; and 3) the REACCH PNA Libraries which are functional groupings of data for REACCH PNA members and the public, based on their access level. These libraries are accessible thru our https://www.reacchpna.org portal. The developed system is structured in a virtual server environment (data, applications, web) that includes a geospatial database/geospatial web server for web mapping services (ArcGIS Server), use of ESRI's Geoportal Server for data discovery and metadata management (under the ISO 19115-2 standard), Thematic Realtime Environmental Distributed Data Services (THREDDS) for data cataloging, and Interactive Python notebook server (IPython) technology for data analysis. REACCH systems are housed and maintained by the Northwest Knowledge Network project (www.northwestknowledge.net), which provides data management services to support research. Initial project data harvesting and meta-tagging efforts have resulted in the interrogation and loading of over 10 terabytes of climate model output, regional entomological data

  10. Holocene fire activity in the Carpathian region: regional climate vs. local controls

    NASA Astrophysics Data System (ADS)

    Florescu, Gabriela; Feurdean, Angelica

    2015-04-01

    Introduction. Fire drives significant changes in ecosystem structure and function, diversity, species evolution, biomass dynamics and atmospheric composition. Palaeodata and model-based studies have pointed towards a strong connection between fire activity, climate, vegetation and people. Nevertheless, the relative importance of these factors appears to be strongly variable and a better understanding of these factors and their interaction needs a thorough investigation over multiple spatial (local to global) and temporal (years to millennia) scales. In this respect, sedimentary charcoal, associated with other proxies of climate, vegetation and human impact, represents a powerful tool of investigating changes in past fire activity, especially in regions with scarce fire dataset such as the CE Europe. Aim. To increase the spatial and temporal coverage of charcoal records and facilitate a more critical examination of the patterns, drivers and consequences of biomass burning over multiple spatial and temporal scales in CE Europe, we have investigated 6 fossil sequences in the Carpathian region (northern Romania). These are located in different geographical settings, in terms of elevation, vegetation composition, topography and land-use. Specific questions are: i) determine trends in timing and magnitude of fire activity, as well as similarities and differences between elevations; ii) disentangle the importance of regional from local controls in fire activity; iii) evaluate ecological consequences of fire on landscape composition, structure and diversity. Methods. We first determine the recent trends in fire activity (the last 150 years) from charcoal data and compare them with instrumental records of temperature, precipitation, site history and topography for a better understanding of the relationship between sedimentary charcoal and historical fire activity. We then statistically quantify centennial to millennial trends in fire activity (frequency, magnitude) based on

  11. The Changing Climate Toward Occupational Regulation: How Does It Affect Cosmetology Board Members?

    ERIC Educational Resources Information Center

    Shimberg, Benjamin

    This document contains two letters. The first letter, which might have been written by a cosmetology licensing board member to his mother, illustrates the changing climate toward occupational regulations and how it might affect the attitudes of a board member. The second letter, the mother's reply, attempts to put some of the changes into a…

  12. Past and future climate patterns affecting temperate, sub-tropical and tropical horticultural crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial horticultural crop production will be impacted by climate change effects on temperature, water availability, solar radiation, air pollution, and carbon dioxide. Horticultural crop value is derived from both the quantity and the quality of the harvested product; both of which are affected ...

  13. Regional climatic effects of atmospheric SO2 on Mars

    NASA Technical Reports Server (NTRS)

    Postawko, S. E.; Fanale, F. P.

    1992-01-01

    The conditions under which the valley networks on Mars may have formed remains controversial. The magnitude of an atmospheric greenhouse effect by an early massive CO2 atmosphere has recently been questioned by Kasting. Recent calculations indicate that if solar luminosity were less than about 86 percent of its current value, formation of CO2 clouds in the Martian atmosphere would depress the atmospheric lapse rate and reduce the magnitude of surface warming. In light of recent revisions of magma generation on Mars during each Martian epoch, and the suggestions by Wanke et al. that the role of liquid SO2 should be more carefully explored, we have recalculated the potential greenhouse warming by atmospheric SO2 on Mars, with an emphasis on more localized effects. In the vicinity of an active eruption, the concentration of atmospheric SO2 will be higher than if it is assumed that the erupted SO2 is instantaneously globally distributed. The local steady-state concentration of SO2 is a function of the rate at which it is released, its atmospheric lifetime, and the rate at which local winds act to disperse the SO2. We have made estimates of eruption rates, length of eruption, and dispersion rates of volcanically released SO2, for a variety of atmospheric conditions and atmospheric lifetimes of SO2 to explore the maximum regional climatic effect of SO2.

  14. Evidence for a physical linkage between galactic cosmic rays and regional climate time series

    USGS Publications Warehouse

    Perry, C.A.

    2007-01-01

    The effects of solar variability on regional climate time series were examined using a sequence of physical connections between total solar irradiance (TSI) modulated by galactic cosmic rays (GCRs), and ocean and atmospheric patterns that affect precipitation and streamflow. The solar energy reaching the Earth's surface and its oceans is thought to be controlled through an interaction between TSI and GCRs, which are theorized to ionize the atmosphere and increase cloud formation and its resultant albedo. High (low) GCR flux may promote cloudiness (clear skies) and higher (lower) albedo at the same time that TSI is lowest (highest) in the solar cycle which in turn creates cooler (warmer) ocean temperature anomalies. These anomalies have been shown to affect atmospheric flow patterns and ultimately affect precipitation over the Midwestern United States. This investigation identified a relation among TSI and geomagnetic index aa (GI-AA), and streamflow in the Mississippi River Basin for the period 1878-2004. The GI-AA was used as a proxy for GCRs. The lag time between the solar signal and streamflow in the Mississippi River at St. Louis, Missouri is approximately 34 years. The current drought (1999-2007) in the Mississippi River Basin appears to be caused by a period of lower solar activity that occurred between 1963 and 1977. There appears to be a solar "fingerprint" that can be detected in climatic time series in other regions of the world, with each series having a unique lag time between the solar signal and the hydroclimatic response. A progression of increasing lag times can be spatially linked to the ocean conveyor belt, which may transport the solar signal over a time span of several decades. The lag times for any one region vary slightly and may be linked to the fluctuations in the velocity of the ocean conveyor belt.

  15. AUTH Regional Climate Model Contributions to EURO-CORDEX. Part II

    NASA Technical Reports Server (NTRS)

    Katragkou, E.; Gkotovou, I.; Kartsios, S.; Pavlidis, V.; Tsigaridis, K.; Trail, M.; Nazarenko, L.; Karacostas, Theodore S.

    2017-01-01

    Regional climate downscaling techniques are being increasingly used to provide higher-resolution climate information than is available directly from contemporary global climate models. The Coordinated Regional Climate Downscaling Experiment (CORDEX) initiative was build to foster communication and knowledge exchange between regional climate modelers. The Department of Meteorology and Climatology of the Aristotle University of Thessaloniki has been contributing to the CORDEX initiative since 2010, with regional climate model simulations over the European domain (EURO-CORDEX). Results of this work are presented here, including two hindcasts and a historical simulation with the Weather Research Forecasting model (WRF), driven by ERA-interim reanalysis and the NASA Earth System Goddard Institute for Space Studies (GISS) ModelE2, respectively. Model simulations are evaluated with the EOBS climatology and the model performance is assessed.

  16. GCM Hindcasts for SST Forced Climate Variability over Agriculturally Intensive Regions

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.; Shah, Kathryn P.; Chandler, Mark A.; Rind, David

    1998-01-01

    The ability to forecast seasonal climate is of great practical interest. One of the most obvious benefits would be agriculture, for which various preparations (planting, machinery, irrigation, manpower) would be enabled. The expectation of being able to make such forecasts far enough in advance (on the order of 9 months) hinges on components of the system with the longest persistence or predictability. The mixed results of El Nino forecasts has raised the hope that tropical Pacific sea surface temperatures (SST) fall into this category. For agriculturally-relevant forecasts to be made, and utilized, requires several conditions. The SST in the regions that affect agricultural areas must be forecast successfully, many months in advance. The climate response to such sea surface temperatures must then be ascertained, either through the use of historical empirical studies or models (e.g., GCMS). For practical applications, the agricultural production must be strongly influenced by climate, and farmers on either the local level or through commercial concerns must be able to adjust to using such forecasts. In a continuing series of papers, we will explore each of these components. This article concerns the question of utilizing SST to forecast the climate in several regions of agricultural production. We optimize the possibility of doing so successfully by using observed SST in a hindcast mode (i.e., a perfect forecast), and we also use the globally observed values (rather than just those from the tropical Pacific, for which predictability has been shown). This then is the ideal situation; in subsequent papers we will explore degrading the results by using only tropical Pacific SSTs, and then using only

  17. Regional Climate Models Downscaling in the Alpine Area with Multimodel SuperEnsemble

    NASA Astrophysics Data System (ADS)

    Cane, D.; Barbarino, S.; Renier, L.; Ronchi, C.

    2012-04-01

    The climatic scenarios show a strong signal of warming in the Alpine area already for the mid XXI century. The climate simulation, however, even when obtained with Regional Climate Models (RCMs), are affected by strong errors where compared with observations in the control period, due to their difficulties in representing the complex orography of the Alps and limitations in their physical parametrization. In this work we use a selection of RCMs runs from the ENSEMBLES project, carefully chosen in order to maximise the variety of leading Global Climate Models and of the RCMs themselves, calculated on the SRES scenario A1B. The reference observation for the Greater Alpine Area are extracted from the European dataset E-OBS produced by the project ENSEMBLES with an available resolution of 25 km. For the study area of Piemonte daily temperature and precipitation observations (1957-present) were carefully gridded on a 14-km grid over Piemonte Region with an Optimal Interpolation technique. We applied the Multimodel SuperEnsemble technique to temperature fields, reducing the high biases of RCMs temperature field compared to observations in the control period. We propose also the first application to RCMs of a brand new probabilistic Multimodel SuperEnsemble Dressing technique to estimate precipitation fields, already applied successfully to weather forecast models, with careful description of precipitation Probability Density Functions conditioned to the model outputs. This technique reduces the strong precipitation overestimation by RCMs over the alpine chain and reproduces the monthly behaviour of observed precipitation in the control period far better than the direct model outputs.

  18. REGIONAL COORDINATION OF NOAA/NATIONAL WEATHER SERVICE CLIMATE SERVICES IN THE WEST (Invited)

    NASA Astrophysics Data System (ADS)

    Bair, A.

    2009-12-01

    The climate services program is an important component in the National Weather Service’s (NWS) mission, and is one of the National Oceanic and Atmospheric Administration’s (NOAA) top five priorities. The Western Region NWS started building a regional and local climate services program in late 2001, with input from local NWS offices and key partners. The original goals of the Western Region climate services program were to strive to provide climate services that were useful, easily accessible, well understood, coordinated and supported by partners, and reflect customer needs. While the program has evolved, and lessons have been learned, these goals are still guiding the program. Regional and local level Climate Services are a fundamental part of NOAA/NWS’s current and future role in providing climate services. There is an ever growing demand for climate information and services to aid the public in decision-making and no single entity alone can provide the range of information and services needed. Coordination and building strong partnerships at the local and regional levels is the key to providing optimal climate services. Over the past 8 years, Western Region NWS has embarked on numerous coordination efforts to build the regional and local climate services programs, such as: collaboration (both internally and externally to NOAA) meetings and projects, internal staff training, surveys, and outreach efforts. In order to gain regional and local buy-in from the NWS staff, multiple committees were utilized to plan and develop goals and structure for the program. While the regional and local climate services program in the NWS Western Region has had many successes, there have been several important lessons learned from efforts that have not been as successful. These lessons, along with past experience, close coordination with partners, and the need to constantly improve/change the program as the climate changes, form the basis for future program development and

  19. Is land surface processes representation a possible weak link in current Regional Climate Models?

    NASA Astrophysics Data System (ADS)

    Davin, Edouard L.; Maisonnave, Eric; Seneviratne, Sonia I.

    2016-07-01

    The representation of land surface processes and fluxes in climate models critically affects the simulation of near-surface climate over land. Here we present an evaluation of COSMO-CLM2, a model which couples the COSMO-CLM Regional Climate Model to the Community Land Model (CLM4.0). CLM4.0 provides a more detailed representation of land processes compared to the native land surface scheme in COSMO-CLM. We perform historical reanalysis-driven simulations over Europe with COSMO-CLM2 following the EURO-CORDEX intercomparison protocol. We then evaluate simulations performed with COSMO-CLM2, the standard COSMO-CLM and other EURO-CORDEX RCMs against various observational datasets of temperature, precipitation and surface fluxes. Overall, the results indicate that COSMO-CLM2 outperforms both the standard COSMO-CLM and the other EURO-CORDEX models in simulating sensible, latent and surface radiative fluxes as well as 2-meter temperature across different seasons and regions. The performance improvement is particularly strong for turbulent fluxes and for daily maximum temperatures and more modest for daily minimum temperature, suggesting that land surface processes affect daytime even more than nighttime conditions. COSMO-CLM2 also alleviates a long-standing issue of overestimation of interannual summer temperature variability present in most EURO-CORDEX RCMs. Finally, we show that several factors contribute to these improvements, including the representation of evapotranspiration, radiative fluxes and ground heat flux. Overall, these results demonstrate that land processes represent a key area of development to tackle current deficiencies in RCMs.

  20. Use of regional climate model output for hydrologic simulations

    USGS Publications Warehouse

    Hay, L.E.; Clark, M.P.; Wilby, R.L.; Gutowski, W.J.; Leavesley, G.H.; Pan, Z.; Arritt, R.W.; Takle, E.S.

    2002-01-01

    Daily precipitation and maximum and minimum temperature time series from a regional climate model (RegCM2) configured using the continental United States as a domain and run on a 52-km (approximately) spatial resolution were used as input to a distributed hydrologic model for one rainfall-dominated basin (Alapaha River at Statenville, Georgia) and three snowmelt-dominated basins (Animas River at Durango. Colorado; east fork of the Carson River near Gardnerville, Nevada: and Cle Elum River near Roslyn, Washington). For comparison purposes, spatially averaged daily datasets of precipitation and maximum and minimum temperature were developed from measured data for each basin. These datasets included precipitation and temperature data for all stations (hereafter, All-Sta) located within the area of the RegCM2 output used for each basin, but excluded station data used to calibrate the hydrologic model. Both the RegCM2 output and All-Sta data capture the gross aspects of the seasonal cycles of precipitation and temperature. However, in all four basins, the RegCM2- and All-Sta-based simulations of runoff show little skill on a daily basis [Nash-Sutcliffe (NS) values range from 0.05 to 0.37 for RegCM2 and -0.08 to 0.65 for All-Sta]. When the precipitation and temperature biases are corrected in the RegCM2 output and All-Sta data (Bias-RegCM2 and Bias-All, respectively) the accuracy of the daily runoff simulations improve dramatically for the snowmelt-dominated basins (NS values range from 0.41 to 0.66 for RegCM2 and 0.60 to 0.76 for All-Sta). In the rainfall-dominated basin, runoff simulations based on the Bias-RegCM2 output show no skill (NS value of 0.09) whereas Bias-All simulated runoff improves (NS value improved from - 0.08 to 0.72). These results indicate that measured data at the coarse resolution of the RegCM2 output can be made appropriate for basin-scale modeling through bias correction (essentially a magnitude correction). However, RegCM2 output, even when bias

  1. CLIMATE IMPACTS ON NUTRIENT FLUXES IN STREAM FLOW IN THE MID-ATLANTIC REGION

    EPA Science Inventory

    As part of a national assessment process, researchers of the Mid-Atlantic Regional Assessment (MARA) are studying the impacts of climate variation and change on the natural and social systems of the Mid-Atlantic Region. This poster presents research investigating climate impacts ...

  2. Sensitivity of WRF Regional Climate Simulations to Choice of Land Use Dataset

    EPA Science Inventory

    The goal of this study is to assess the sensitivity of regional climate simulations run with the Weather Research and Forecasting (WRF) model to the choice of datasets representing land use and land cover (LULC). Within a regional climate modeling application, an accurate repres...

  3. Linking the uncertainty of low frequency variability in tropical forcing in regional climate change

    SciTech Connect

    Forest, Chris E.; Barsugli, Joseph J.; Li, Wei

    2015-02-20

    The project utilizes multiple atmospheric general circulation models (AGCMs) to examine the regional climate sensitivity to tropical sea surface temperature forcing through a series of ensemble experiments. The overall goal for this work is to use the global teleconnection operator (GTO) as a metric to assess the impact of model structural differences on the uncertainties in regional climate variability.

  4. Climatic variability between SST and river discharge at Amazon region

    NASA Astrophysics Data System (ADS)

    Silva, M. E.; Silva, E. R. L.

    2012-04-01

    Climatic variability, related both to precipitation and river discharge, has been associated to ocean variability. Authors commonly relate Pacific sea surface temperature (SST) variation to South America (SA) precipitation. Zonal displacement of Walker cell, with intensified subsidence over northern portion of SA, Subtropical Jet strengthening/weakening over extratropical latitudes of SA are, respectively, dynamical reasons scientifically accepted for increasing and depletion of precipitation at the respective areas. Many studies point out the influence of tropical Atlantic SST anomalies in relation to precipitation/river discharge variability over northeast of Brazil. Aliseos variability at tropical Atlantic is also a physic process that contributes to explain precipitation and river flow variability over SA, mainly over the north portion. In this study, we aim to investigate the temporal correlation between SST, mainly from Pacific and Atlantic oceans, and rivers discharge at the Amazon region. Ji-Parana, Madeira and Tapajós river discharge in monthly and annual scale, between 1968 and 2008, were the time series selected to reach the purpose. Time series for river discharge were obtained from Agência Nacional de Águas (ANA, in Portuguese) and, SST data were obtained from CDC/NOAA. Before linear correlation computations between river discharge and SST have been made, seasonal cycle and linear tendency were removed from all original time series. Areas better correlated to river discharge at Amazon region show oceanic patterns apparently associated to PDO (Pacific Decadal Oscillation) and ENSO (El Niño-South Oscillation) variability, with absolute values greater than 0.3 and reaching 0.5 or 0.6. The spatial pattern observed at Pacific basin is similar to that showed by the first mode of PCA (Principal Component Analysis), such seen in many studies (the "horse shoe" pattern). In general, negative correlation values appear far more to the west of Pacific basin

  5. Climate change induced rainfall patterns affect wheat productivity and agroecosystem functioning dependent on soil types

    NASA Astrophysics Data System (ADS)

    Tabi Tataw, James; Baier, Fabian; Krottenthaler, Florian; Pachler, Bernadette; Schwaiger, Elisabeth; Whylidal, Stefan; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas; Zaller, Johann G.

    2014-05-01

    Wheat is a crop of global importance supplying more than half of the world's population with carbohydrates. We examined, whether climate change induced rainfall patterns towards less frequent but heavier events alter wheat agroecosystem productivity and functioning under three different soil types. Therefore, in a full-factorial experiment Triticum aestivum L. was cultivated in 3 m2 lysimeter plots containing the soil types sandy calcaric phaeozem, gleyic phaeozem or calcic chernozem. Prognosticated rainfall patterns based on regionalised climate change model calculations were compared with current long-term rainfall patterns; each treatment combination was replicated three times. Future rainfall patterns significantly reduced wheat growth and yield, reduced the leaf area index, accelerated crop development, reduced arbuscular mycorrhizal fungi colonisation of roots, increased weed density and the stable carbon isotope signature (δ13C) of both old and young wheat leaves. Different soil types affected wheat growth and yield, ecosystem root production as well as weed abundance and biomass. The interaction between climate and soil type was significant only for the harvest index. Our results suggest that even slight changes in rainfall patterns can significantly affect the functioning of wheat agroecosystems. These rainfall effects seemed to be little influenced by soil types suggesting more general impacts of climate change across different soil types. Wheat production under future conditions will likely become more challenging as further concurrent climate change factors become prevalent.

  6. Investigating the Influence of Climate Changes on Rodent Communities at a Regional-Scale (MIS 1-3, Southwestern France).

    PubMed

    Royer, Aurélien; Montuire, Sophie; Legendre, Serge; Discamps, Emmanuel; Jeannet, Marcel; Lécuyer, Christophe

    2016-01-01

    Terrestrial ecosystems have continuously evolved throughout the Late Pleistocene and the Holocene, deeply affected by both progressive environmental and climatic modifications, as well as by abrupt and large climatic changes such as the Heinrich or Dansgaard-Oeschger events. Yet, the impacts of these different events on terrestrial mammalian communities are poorly known, as is the role played by potential refugia on geographical species distributions. This study examines community changes in rodents of southwestern France between 50 and 10 ky BP by integrating 94 dated faunal assemblages coming from 37 archaeological sites. This work reveals that faunal distributions were modified in response to abrupt and brief climatic events, such as Heinrich events, without actually modifying the rodent community on a regional scale. However, the succession of events which operated between the Late Pleistocene and the Holocene gradually led to establishing a new rodent community at the regional scale, with intermediate communities occurring between the Bølling and the Allerød.

  7. Mechanisms Linking Land Use and Regional Climate Changes in West Africa

    NASA Astrophysics Data System (ADS)

    Wang, G.; Ahmed, K. F.; Yu, M.; JI, Z.; Pal, J. S.

    2014-12-01

    Land use land cover change is an important driver for regional climate changes in West Africa due to the strong land-atmosphere coupling. On the other hand, land use is also strongly influenced by climate changes due to the primarily rain-fed agriculture in this region and the relatively low capacity to adapt. It is therefore important that projections for future climate changes or land use changes account for the impact of the feedback between land use and climate. Land use influences regional climate through several different pathways, including changes in surface biogeophysical properties (e.g., surface albedo, Bowen ratio, surface roughness) that have been widely studied, and changes in the dynamic properties of the land surface influencing dust emission. The relative importance of these two pathways is likely to be model dependent and region dependent. In this study the effects of these two pathways will be evaluated and compared, based on results from a modeling framework that includes a regional climate-vegetation model, a crop growth model, an agricultural economics model, and a land use allocation model. This will be conducted in the context of future land use and climate change projections, with the ultimate objective to assess how agricultural land use in West Africa may change driven by climate and socioeconomic changes, and how the resulting land use change may further modify regional climate in the future.

  8. High and dry: high elevations disproportionately exposed to regional climate change in Mediterranean-climate landscapes

    USGS Publications Warehouse

    McCullough, Ian M.; Davis, Frank W.; Dingman, John R.; Flint, Lorraine E.; Flint, Alan L.; Serra-Diaz, Josep M.; Syphard, Alexandra D.; Moritz, Max A.; Hannah, Lee; Franklin, Janet

    2016-01-01

    In moisture-limited, Mediterranean-climate landscapes, high elevations may experience the greatest exposure to climate change in the 21st century. High elevation species may thus be especially vulnerable to continued climate change as habitats shrink and historically energy-limited locations become increasingly moisture-limited in the future.

  9. The climate of the Iberian Peninsula during the last five centuries from a regional climate model perspective.

    NASA Astrophysics Data System (ADS)

    Gomez-Navarro, J. J.; Montavez, J. P.; Jerez, S.; Garcia-Valero, J. A.; Jimenez-Guerrero, P.; Zorita, E.; Gonzalez-Rouco, J. F.

    2009-09-01

    During the last years the use of paleoclimate simulations with models of different complexity has become an usual tool in paleoclimate studies. Progress in understanding climate variability leans on simulation and reconstruction efforts. Exercises blending both approaches present a great potential for answering questions relevant for both the simulation and reconstruction of past climate, and depend on the specific peculiarities of proxies and methods involved in climate reconstructions, as well as on the realism and limitations of model simulations. Most of paleoclimate integrations available in the literature covering the last millennium have been performed with relative rough resolution which does not allow to analyze regional climate features that can be of interest in the context of proxies evidence. In this work we present a new high resolution (30 km) regional climate simulation over the Iberian Peninsula of the last five. The regional simulations were performed with a climate version of the MM5 model coupled to the Noah LSM. The driving conditions used follow the Erik1 experiment, performed with the ECHO-G global circulation model. The results indicate that the seasonal modes of variation for near surface air temperature and precipitation obtained within the regional paleoclimate experiment are consistent with the obtained using the observational databases and equivalent to regional climate integrations driven by reanalysis data. On the other hand, the main modes of variation show strong signals in historical periods such as the Maunder and Dalton Minimum. Finally, some preliminary comparisons between the global and the regional model against reconstructions are also reported in this contribution.

  10. Causal Chains Arising from Climate Change in Mountain Regions: the Core Program of the Mountain Research Initiative

    NASA Astrophysics Data System (ADS)

    Greenwood, G. B.

    2014-12-01

    Mountains are a widespread terrestrial feature, covering from 12 to 24 percent of the world's terrestrial surface, depending of the definition. Topographic relief is central to the definition of mountains, to the benefits and costs accruing to society and to the cascade of changes expected from climate change. Mountains capture and store water, particularly important in arid regions and in all areas for energy production. In temperate and boreal regions, mountains have a great range in population densities, from empty to urban, while tropical mountains are often densely settled and farmed. Mountain regions contain a wide range of habitats, important for biodiversity, and for primary, secondary and tertiary sectors of the economy. Climate change interacts with this relief and consequent diversity. Elevation itself may accentuate warming (elevationi dependent warming) in some mountain regions. Even average warming starts complex chains of causality that reverberate through the diverse social ecological mountain systems affecting both the highlands and adjacent lowlands. A single feature of climate change such as higher snow lines affect the climate through albedo, the water cycle through changes in timing of release , water quality through the weathering of newly exposed material, geomorphology through enhanced erosion, plant communities through changes in climatic water balance, and animal and human communities through changes in habitat conditions and resource availabilities. Understanding these causal changes presents a particular interdisciplinary challenge to researchers, from assessing the existence and magnitude of elevation dependent warming and monitoring the full suite of changes within the social ecological system to climate change, to understanding how social ecological systems respond through individual and institutional behavior with repercussions on the long-term sustainability of these systems.

  11. Impact of anthropogenic aerosols on regional climate change in Beijing, China

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Liou, K. N.; He, C.; Lee, W. L.; Gu, Y.; Li, Q.; Leung, L. R.

    2015-12-01

    Anthropogenic aerosols affect regional climate significantly through radiative (direct and semi-direct) and indirect effects, but the magnitude of these effects over megacities are subject to large uncertainty. In this study, we evaluated the effects of anthropogenic aerosols on regional climate change in Beijing, China using the online-coupled Weather Research and Forecasting/Chemistry Model (WRF/Chem) with the Fu-Liou-Gu radiation scheme and a spatial resolution of 4km. We further updated this radiation scheme with a geometric-optics surface-wave (GOS) approach for the computation of light absorption and scattering by black carbon (BC) particles in which aggregation shape and internal mixing properties are accounted for. In addition, we incorporated in WRF/Chem a 3D radiative transfer parameterization in conjunction with high-resolution digital data for city buildings and landscape to improve the simulation of boundary-layer, surface solar fluxes and associated sensible/latent heat fluxes. Preliminary simulated meteorological parameters, fine particles (PM2.5) and their chemical components agree well with observational data in terms of both magnitude and spatio-temporal variations. The effects of anthropogenic aerosols, including BC, on radiative forcing, surface temperature, wind speed, humidity, cloud water path, and precipitation are quantified on the basis of simulation results. With several preliminary sensitivity runs, we found that meteorological parameters and aerosol radiative effects simulated with the incorporation of improved BC absorption and 3-D radiation parameterizations deviate substantially from simulation results using the conventional homogeneous/core-shell configuration for BC and the plane-parallel model for radiative transfer. Understanding of the aerosol effects on regional climate change over megacities must consider the complex shape and mixing state of aerosol aggregates and 3D radiative transfer effects over city landscape.

  12. Evaluation of multiple regional climate models for summer climate extremes over East Asia

    NASA Astrophysics Data System (ADS)

    Park, Changyong; Min, Seung-Ki; Lee, Donghyun; Cha, Dong-Hyun; Suh, Myoung-Seok; Kang, Hyun-Suk; Hong, Song-You; Lee, Dong-Kyou; Baek, Hee-Jeong; Boo, Kyung-On; Kwon, Won-Tae

    2016-04-01

    In this study, five regional climate models (RCMs) participating in the CORDEX-East Asia project (HadGEM3-RA, RegCM4, SNU-MM5, SNU-WRF, and YSU-RSM) are evaluated in terms of their performances in simulating the climatology of summer extremes in East Asia. Seasonal maxima of daily mean temperature and precipitation are analyzed using the generalized extreme value method. RCMs show systematic bias patterns in both seasonal means and extremes. A cold bias is located along the coast, whereas a warm bias occurs in northern China. Overall, wet bias occurs in East Asia, but with a substantial dry bias centered in South Korea. This dry bias appears to be related to the colder ocean surface around South Korea, positioning the monsoonal front further south compared to observations. Taylor diagram analyses reveal that the models simulate temperature means more accurately compared to extremes because of the higher spatial correlation, whereas precipitation extremes are simulated better than their means because of the higher spatial variability. The latter implies that extreme rainfall events can be captured more accurately by RCMs compared to the driving GCM despite poorer simulation of mean rainfall. Inter-RCM analysis indicates a close relationship between the means and extremes in terms of model skills, but it does not show a clear relationship between temperature and precipitation. Sub-regional analysis largely supports the mean-extreme skill relationship. Analyses of frequency and intensity distributions of daily data for three selected sub-regions suggest that overall shifts of temperature distribution and biases in moderate-heavy precipitations contribute importantly to the seasonal mean biases.

  13. The Climate Shift and the Climate Variability in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Lopez Parages, Jorge; Rodriguez-Fonseca, Belen

    2010-05-01

    The so-called "climate shift" (CS) was defined at the beginning of the nineties as a dramatic change between 1976-77 in the basic state of the tropical Pacific and in the ENSO dynamics. Nowadays, the 1976-1977 shift is interpreted as a phase change in a decadal scale oscillation (the Pacific Decadal Oscillation, PDO, Mantua et al. 1997) lasting from about 1976 to 1988 (Trenberth and Hurrell 1994, Miller et al. 1994). However, several changes in the global climate have been reported after the CS; as changes in the air-sea interactions and in the tropical and extratropical teleconnection patterns. The climate variability of the Mediter