Science.gov

Sample records for affect ros production

  1. Carnosine inhibits KRAS-mediated HCT116 proliferation by affecting ATP and ROS production.

    PubMed

    Iovine, Barbara; Iannella, Maria Luigia; Nocella, Francesca; Pricolo, Maria Rosaria; Bevilacqua, Maria Assunta

    2012-02-28

    Carnosine is a natural dipeptide that has generated particular interest for its antioxidant, anti-aging and especially for its antiproliferative properties. In this study, we demonstrate that carnosine inhibits the proliferation of human HCT116 colon cancer cells. In this cell line, the activating KRAS mutation induces mitochondrial ROS, the signaling molecules for cell proliferation. We observed that 50-100 mM carnosine decreases ATP and ROS concentration and induces cell cycle arrest in G1 phase. In HCT116 cells these effects are related to decreased ERK1/2 phosphorylation and increased p21waf1 protein. Our findings support the concept that carnosine could inhibit HCT116 cell growth via its antioxidant activity and its ability to affect glycolysis.

  2. UV-B affects photosynthesis, ROS production and motility of the freshwater flagellate, Euglena agilis Carter.

    PubMed

    Kottuparambil, Sreejith; Shin, Woongghi; Brown, Murray T; Han, Taejun

    2012-10-15

    The effects of ultraviolet B (UV-B; 295-320 nm) radiation on certain vital physiological (photosynthesis), biochemical (production of reactive oxygen species - ROS) and behavioral (motility and orientation) characteristics were investigated in the unicellular photoautotroph, Euglena agilis Carter. The photosynthetic performance of E. agilis was recorded after exposure of between 15 and 60 min followed by a period of recovery lasting 6-24h under dim light (5-10 μmol photons m(-2) s(-1)). The maximum quantum yield of PS II (F(v)/F(m)) was reduced to 65% and 14% of initial values immediately following 15 and 30 min UV-B exposure, but recovered to 100 and 86% of the initials, respectively. Values of rETR(max) in E. agilis exposed to 15 min UV-B were similar to those of the initials, but a 30 min UV exposure resulted in 75% reduction of rETR(max) with only a 43% recovery as compared with the initial after 24h recovery. After a 60 min UV-B exposure, there were no Chl a fluorescence signals, and hence no F(v)/F(m) or rETR(max). A UV dose-dependent increase in DCFH-DA fluorescence was found in E. agilis cells, reflecting an increase in ROS production. After exposures to UV-B for between 15 and 60 min, the percentages of motile cells in the population decreased to 76, 39 and 15%, respectively. Following 24h in dim light, the percentage of motile cells increased to between 66% and 95% of the initial value. The velocity of non-irradiated cells was 60 μm s(-1), which decreased to 16-35 μm s(-1) immediately following exposure for 15-60 min. After periods of time in dim light (6, 12 and 24h) velocities had recovered to between 44 and 81% of the initial value. In untreated controls, the r-value was 0.23, indicating random movement of E. agilis, but it increased to 0.35 and 0.72 after exposure to UV-B for 30 and 60 min, respectively. There was a tendency towards vertical downward movement of cells proportional to the duration of exposure. The compactness of E. agilis decreased

  3. Measurement of Mitochondrial ROS Production

    PubMed Central

    Starkov, Anatoly A.

    2011-01-01

    The significance of reactive oxygen species (ROS) as aggravating or primary factors in numerous pathologies is widely recognized, with mitochondria being considered the major intracellular source of ROS. It is not yet possible to routinely measure mitochondrial ROS in animals or cultured cells with a reasonable degree of certainty. However, at the level of isolated mitochondria, one can easily monitor and quantify the rate of ROS production, identify major sites of ROS production, and compare the rates of ROS production in mitochondria isolated from normal and diseased tissue. In this chapter, we describe in detail the most recent and reliable method to measure mitochondrial ROS as the rate of H2O2 emission. This method may be employed with minimal modifications to measure H2O2 production by mitochondria isolated from various tissues and under a wide variety of experimental conditions. PMID:20700717

  4. Optogenetic control of ROS production

    PubMed Central

    Wojtovich, Andrew P.; Foster, Thomas H.

    2014-01-01

    Reactive Oxygen Species (ROS) are known to cause oxidative damage to DNA, proteins and lipids. In addition, recent evidence suggests that ROS can also initiate signaling cascades that respond to stress and modify specific redox-sensitive moieties as a regulatory mechanism. This suggests that ROS are physiologically-relevant signaling molecules. However, these sensor/effector molecules are not uniformly distributed throughout the cell. Moreover, localized ROS damage may elicit site-specific compensatory measures. Thus, the impact of ROS can be likened to that of calcium, a ubiquitous second messenger, leading to the prediction that their effects are exquisitely dependent upon their location, quantity and even the timing of generation. Despite this prediction, ROS signaling is most commonly intuited through the global administration of chemicals that produce ROS or by ROS quenching through global application of antioxidants. Optogenetics, which uses light to control the activity of genetically-encoded effector proteins, provides a means of circumventing this limitation. Photo-inducible genetically-encoded ROS-generating proteins (RGPs) were originally employed for their phototoxic effects and cell ablation. However, reducing irradiance and/or fluence can achieve sub-lethal levels of ROS that may mediate subtle signaling effects. Hence, transgenic expression of RGPs as fusions to native proteins gives researchers a new tool to exert spatial and temporal control over ROS production. This review will focus on the new frontier defined by the experimental use of RGPs to study ROS signaling. PMID:24563855

  5. Molecular mechanisms of ROS production and oxidative stress in diabetes.

    PubMed

    Newsholme, Philip; Cruzat, Vinicius Fernandes; Keane, Kevin Noel; Carlessi, Rodrigo; de Bittencourt, Paulo Ivo Homem

    2016-12-15

    Oxidative stress and chronic inflammation are known to be associated with the development of metabolic diseases, including diabetes. Oxidative stress, an imbalance between oxidative and antioxidative systems of cells and tissues, is a result of over production of oxidative-free radicals and associated reactive oxygen species (ROS). One outcome of excessive levels of ROS is the modification of the structure and function of cellular proteins and lipids, leading to cellular dysfunction including impaired energy metabolism, altered cell signalling and cell cycle control, impaired cell transport mechanisms and overall dysfunctional biological activity, immune activation and inflammation. Nutritional stress, such as that caused by excess high-fat and/or carbohydrate diets, promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation and decreased antioxidant status. In obesity, chronic oxidative stress and associated inflammation are the underlying factors that lead to the development of pathologies such as insulin resistance, dysregulated pathways of metabolism, diabetes and cardiovascular disease through impaired signalling and metabolism resulting in dysfunction to insulin secretion, insulin action and immune responses. However, exercise may counter excessive levels of oxidative stress and thus improve metabolic and inflammatory outcomes. In the present article, we review the cellular and molecular origins and significance of ROS production, the molecular targets and responses describing how oxidative stress affects cell function including mechanisms of insulin secretion and action, from the point of view of possible application of novel diabetic therapies based on redox regulation.

  6. GLP-1 Cleavage Product Reverses Persistent ROS Generation After Transient Hyperglycemia by Disrupting an ROS-Generating Feedback Loop

    PubMed Central

    Giacco, Ferdinando; Du, Xueliang; Carratú, Anna; Gerfen, Gary J.; D’Apolito, Maria; Giardino, Ida; Rasola, Andrea; Marin, Oriano; Divakaruni, Ajit S.; Murphy, Anne N.; Shah, Manasi S.

    2015-01-01

    The assumption underlying current diabetes treatment is that lowering the level of time-averaged glucose concentrations, measured as HbA1c, prevents microvascular complications. However, 89% of variation in risk of retinopathy, microalbuminuria, or albuminuria is due to elements of glycemia not captured by mean HbA1c values. We show that transient exposure to high glucose activates a multicomponent feedback loop that causes a stable left shift of the glucose concentration-reactive oxygen species (ROS) dose-response curve. Feedback loop disruption by the GLP-1 cleavage product GLP-1(9–36)amide reverses the persistent left shift, thereby normalizing persistent overproduction of ROS and its pathophysiologic consequences. These data suggest that hyperglycemic spikes high enough to activate persistent ROS production during subsequent periods of normal glycemia but too brief to affect the HbA1c value are a major determinant of the 89% of diabetes complications risk not captured by HbA1c. The phenomenon and mechanism described in this study provide a basis for the development of both new biomarkers to complement HbA1c and novel therapeutic agents, including GLP-1(9–36)amide, for the prevention and treatment of diabetes complications. PMID:26294429

  7. The Dehydratase ADT3 Affects ROS Homeostasis and Cotyledon Development1[OPEN

    PubMed Central

    Para, Alessia; Muhammad, DurreShahwar; Naldrett, Michael J.; Warpeha, Katherine M.

    2016-01-01

    During the transition from seed to seedling, emerging embryos strategically balance available resources between building up defenses against environmental threats and initiating the developmental program that promotes the switch to autotrophy. We present evidence of a critical role for the phenylalanine (Phe) biosynthetic activity of AROGENATE DEHYDRATASE3 (ADT3) in coordinating reactive oxygen species (ROS) homeostasis and cotyledon development in etiolated Arabidopsis (Arabidopsis thaliana) seedlings. We show that ADT3 is expressed in the cotyledon and shoot apical meristem, mainly in the cytosol, and that the epidermis of adt3 cotyledons contains higher levels of ROS. Genome-wide proteomics of the adt3 mutant revealed a general down-regulation of plastidic proteins and ROS-scavenging enzymes, corroborating the hypothesis that the ADT3 supply of Phe is required to control ROS concentration and distribution to protect cellular components. In addition, loss of ADT3 disrupts cotyledon epidermal patterning by affecting the number and expansion of pavement cells and stomata cell fate specification; we also observed severe alterations in mesophyll cells, which lack oil bodies and normal plastids. Interestingly, up-regulation of the pathway leading to cuticle production is accompanied by an abnormal cuticle structure and/or deposition in the adt3 mutant. Such impairment results in an increase in cell permeability and provides a link to understand the cell defects in the adt3 cotyledon epidermis. We suggest an additional role of Phe in supplying nutrients to the young seedling. PMID:27540109

  8. Docosahexaenoic Acid Sensitizes Leukemia Lymphocytes to Barasertib and Everolimus by ROS-dependent Mechanism Without Affecting the Level of ROS and Viability of Normal Lymphocytes.

    PubMed

    Zhelev, Zhivko; Ivanova, Donika; Lazarova, Desislava; Aoki, Ichio; Bakalova, Rumiana; Saga, Tsuneo

    2016-04-01

    The aim of the present study was: (i) to investigate the possibility of sensitizing leukemia lymphocytes to anticancer drugs using docosahexaenoic acid (DHA); (ii) to find combinations with synergistic cytotoxic effect on leukemia lymphocytes, without or with only very low cytotoxicity towards normal lymphocytes; (iii) and to clarify the role of reactive oxygen species (ROS) in the induction of apoptosis and cytotoxicity by such combinations. The study covered 15 anticancer drugs, conventional and new-generation. Well-expressed synergistic cytotoxic effects were observed after treatment of leukemia lymphocytes (Jurkat) with DHA in combination with: barasertib, lonafarnib, everolimus, and palbociclib. We selected two synergistic combinations, DHA with everolimus or barasertib, and investigated their effects on viability of normal lymphocytes, as well as on the production of ROS and induction of apoptosis in both cell lines (leukemia and normal). At the selected concentrations, DHA, everolimus and barasertib (applied separately) were cytotoxic towards leukemia lymphocytes, but not normal lymphocytes. In leukemia cells, the cytotoxicity of combinations was accompanied by strong induction of apoptosis and production of ROS. In normal lymphocytes, drugs alone and in combination with DHA did not affect the level of ROS and did not induce apoptosis. To our knowledge, the present study is the first to report synergistic ROS-dependent cytotoxicity between DHA and new-generation anticancer drugs, such as everolimus and barasertib, that is cancer cell-specific (particularly for acute lymphoblastic leukemia cells Jurkat). These combinations are harmless to normal lymphocytes and do not induce abnormal production of ROS in these cells. The data suggest that DHA could be used as a supplementary component in anticancer chemotherapy, allowing therapeutic doses of everolimus and barasertib to be reduced, minimizing their side-effects.

  9. Deficiency of DJ-1 Ameliorates Liver Fibrosis through Inhibition of Hepatic ROS Production and Inflammation.

    PubMed

    Yu, Yingxue; Sun, Xuehua; Gu, Jinyang; Yu, Chang; Wen, Yankai; Gao, Yueqiu; Xia, Qiang; Kong, Xiaoni

    2016-01-01

    Liver fibrosis is a global health problem and previous studies have demonstrated that reactive oxygen species (ROS) play important roles in fibrogenesis. Parkinson disease (autosomal recessive, early onset) 7 (Park7) also called DJ-1 has an essential role in modulating cellular ROS levels. DJ-1 therefore may play functions in liver fibrogenesis and modulation of DJ-1 may be a promising therapeutic approach. Here, wild-type (WT) and DJ-1 knockout (DJ-1 KO) mice were administrated with carbon tetrachloride (CCl4) to induce liver fibrosis or acute liver injury. Results showed that DJ-1 depletion significantly blunted liver fibrosis, accompanied by marked reductions in liver injury and ROS production. In the acute CCl4 model, deficiency of DJ-1 showed hepatic protective functions as evidenced by decreased hepatic damage, reduced ROS levels, diminished hepatic inflammation and hepatocyte proliferation compared to WT mice. In vitro hepatic stellate cells (HSCs) activation assays indicated that DJ-1 has no direct effect on the activation of HSCs in the context of with or without TGFβ treatment. Thus our present study demonstrates that in CCl4-induced liver fibrosis, DJ-1 deficiency attenuates mice fibrosis by inhibiting ROS production and liver injury, and further indirectly affecting the activation of HSCs. These results are in line with previous studies that ROS promote HSC activation and fibrosis development, and suggest the therapeutic value of DJ-1 in treatment of liver fibrosis.

  10. Deficiency of DJ-1 Ameliorates Liver Fibrosis through Inhibition of Hepatic ROS Production and Inflammation

    PubMed Central

    Yu, Yingxue; Sun, Xuehua; Gu, Jinyang; Yu, Chang; Wen, Yankai; Gao, Yueqiu; Xia, Qiang; Kong, Xiaoni

    2016-01-01

    Liver fibrosis is a global health problem and previous studies have demonstrated that reactive oxygen species (ROS) play important roles in fibrogenesis. Parkinson disease (autosomal recessive, early onset) 7 (Park7) also called DJ-1 has an essential role in modulating cellular ROS levels. DJ-1 therefore may play functions in liver fibrogenesis and modulation of DJ-1 may be a promising therapeutic approach. Here, wild-type (WT) and DJ-1 knockout (DJ-1 KO) mice were administrated with carbon tetrachloride (CCl4) to induce liver fibrosis or acute liver injury. Results showed that DJ-1 depletion significantly blunted liver fibrosis, accompanied by marked reductions in liver injury and ROS production. In the acute CCl4 model, deficiency of DJ-1 showed hepatic protective functions as evidenced by decreased hepatic damage, reduced ROS levels, diminished hepatic inflammation and hepatocyte proliferation compared to WT mice. In vitro hepatic stellate cells (HSCs) activation assays indicated that DJ-1 has no direct effect on the activation of HSCs in the context of with or without TGFβ treatment. Thus our present study demonstrates that in CCl4-induced liver fibrosis, DJ-1 deficiency attenuates mice fibrosis by inhibiting ROS production and liver injury, and further indirectly affecting the activation of HSCs. These results are in line with previous studies that ROS promote HSC activation and fibrosis development, and suggest the therapeutic value of DJ-1 in treatment of liver fibrosis. PMID:27766037

  11. Heme modulates Trypanosoma cruzi bioenergetics inducing mitochondrial ROS production.

    PubMed

    Nogueira, Natália P; Saraiva, Francis M S; Oliveira, Matheus P; Mendonça, Ana Paula M; Inacio, Job D F; Almeida-Amaral, Elmo E; Menna-Barreto, Rubem F; Laranja, Gustavo A T; Torres, Eduardo J Lopes; Oliveira, Marcus F; Paes, Marcia C

    2017-03-29

    Trypanosoma cruzi is the causative agent of Chagas disease and has a single mitochondrion, an organelle responsible for ATP production and the main site for the formation of reactive oxygen species (ROS). T. cruzi is an obligate intracellular parasite with a complex life cycle that alternates between vertebrate and invertebrate hosts, therefore the development of survival strategies and morphogenetic adaptations to deal with the various environments is mandatory. Over the years our group has been studying the vector-parasite interactions using heme as a physiological oxidant molecule that triggered epimastigote proliferation however, the source of ROS induced by heme remained unknown. In the present study we demonstrate the involvement of heme in the parasite mitochondrial metabolism, decreasing oxygen consumption leading to increased mitochondrial ROS and membrane potential. First, we incubated epimastigotes with carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP), an uncoupler of oxidative phosphorylation, which led to decreased ROS formation and parasite proliferation, even in the presence of heme, correlating mitochondrial ROS and T. cruzi survival. This hypothesis was confirmed after the mitochondria-targeted antioxidant ((2-(2,2,6,6 Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl) triphenylphosphonium chloride (MitoTEMPO) decreased both heme-induced ROS and epimastigote proliferation. Furthermore, heme increased the percentage of tetramethylrhodamine methyl ester (TMRM) positive parasites tremendously-indicating the hyperpolarization and increase of potential of the mitochondrial membrane (ΔΨm). Assessing the mitochondrial functional metabolism, we observed that in comparison to untreated parasites, heme-treated epimastigotes decreased their oxygen consumption, and increased the complex II-III activity. These changes allowed the electron flow into the electron transport system, even though the complex IV (cytochrome c oxidase) activity decreased

  12. Loss of mitochondrial exo/endonuclease EXOG affects mitochondrial respiration and induces ROS-mediated cardiomyocyte hypertrophy.

    PubMed

    Tigchelaar, Wardit; Yu, Hongjuan; de Jong, Anne Margreet; van Gilst, Wiek H; van der Harst, Pim; Westenbrink, B Daan; de Boer, Rudolf A; Silljé, Herman H W

    2015-01-15

    Recently, a locus at the mitochondrial exo/endonuclease EXOG gene, which has been implicated in mitochondrial DNA repair, was associated with cardiac function. The function of EXOG in cardiomyocytes is still elusive. Here we investigated the role of EXOG in mitochondrial function and hypertrophy in cardiomyocytes. Depletion of EXOG in primary neonatal rat ventricular cardiomyocytes (NRVCs) induced a marked increase in cardiomyocyte hypertrophy. Depletion of EXOG, however, did not result in loss of mitochondrial DNA integrity. Although EXOG depletion did not induce fetal gene expression and common hypertrophy pathways were not activated, a clear increase in ribosomal S6 phosphorylation was observed, which readily explains increased protein synthesis. With the use of a Seahorse flux analyzer, it was shown that the mitochondrial oxidative consumption rate (OCR) was increased 2.4-fold in EXOG-depleted NRVCs. Moreover, ATP-linked OCR was 5.2-fold higher. This increase was not explained by mitochondrial biogenesis or alterations in mitochondrial membrane potential. Western blotting confirmed normal levels of the oxidative phosphorylation (OXPHOS) complexes. The increased OCR was accompanied by a 5.4-fold increase in mitochondrial ROS levels. These increased ROS levels could be normalized with specific mitochondrial ROS scavengers (MitoTEMPO, mnSOD). Remarkably, scavenging of excess ROS strongly attenuated the hypertrophic response. In conclusion, loss of EXOG affects normal mitochondrial function resulting in increased mitochondrial respiration, excess ROS production, and cardiomyocyte hypertrophy.

  13. The beetroot component betanin modulates ROS production, DNA damage and apoptosis in human polymorphonuclear neutrophils.

    PubMed

    Zielińska-Przyjemska, Małgorzata; Olejnik, Anna; Kostrzewa, Artur; Łuczak, Michał; Jagodziński, Paweł P; Baer-Dubowska, Wanda

    2012-06-01

    The aim of this study was to evaluate the effect of betanin, one of the beetroot major components, on ROS production, DNA damage and apoptosis in human resting and stimulated with phorbol 12-myristate13-acetate polymorphonuclear neutrophils, one of the key elements of the inflammatory response. Incubation of neutrophils with betanin in the concentration range 2-500 µM resulted in significant inhibition of ROS production (by 15-46%, depending on the ROS detection assay). The antioxidant capacity of betanin was most prominently expressed in the chemiluminescence measurements. This compound decreased also the percentage of DNA in comet tails in stimulated neutrophils, but only at the 24 h time point. In resting neutrophils an increased level of DNA in comet tails was observed. Betanin did not affect the activity of caspase-3, in resting neutrophils, but significantly enhanced the enzyme activity in stimulated neutrophils. The western blot analysis showed, however, an increased level of caspase-3 cleavage products as a result of betanin treatment both in resting and stimulated neutrophils. The results indicate that betanin may be responsible for the effect of beetroot products on neutrophil oxidative metabolism and its consequences, DNA damage and apoptosis. The dose and time dependent effects on these processes require further studies.

  14. SIRT3 Silencing Sensitizes Breast Cancer Cells to Cytotoxic Treatments Through an Increment in ROS Production.

    PubMed

    Torrens-Mas, Margalida; Pons, Daniel Gabriel; Sastre-Serra, Jorge; Oliver, Jordi; Roca, Pilar

    2017-02-01

    SIRT3, the major deacetylase in mitochondria, plays a crucial role modulating ROS production and scavenging by regulating key proteins implicated in mitochondrial turnover and in antioxidant defenses. Therefore, SIRT3 could confer resistance to chemotherapy-induced oxidative stress, leading to a lower ROS production and a higher cell survival. Our aim was to analyze whether SIRT3 silencing in breast cancer cells through a specific siRNA could increase oxidative stress and thus compromise the antioxidant response, resulting in a sensitization of the cells to cisplatin (CDDP) or tamoxifen (TAM). For this purpose, we studied cell viability, ROS production, apoptosis and autophagy in MCF-7 and T47D cell lines treated with these cytotoxic compounds, these either alone, or in combination with SIRT3 silencing. Moreover, protein levels regulated by SIRT3 were also examined and survival curves were analyzed to study the importance of SIRT3 expression for the overall survival of breast cancer patients. When SIRT3 was silenced and combined with cytotoxic treatments, cell viability was highly decreased, and was accompanied by a significant increase in ROS production. While TAM treatment increased autophagic cell death, CDDP significantly triggered apoptosis, whereas SIRT3 silencing produced an enhancement of these two action mechanisms. SIRT3 knockdown also affected PGC-1α and TFAM (mitochondrial biogenesis), and MnSOD and IDH2 (antioxidant defenses) protein levels. Finally, survival curves showed that higher SIRT3 expression is correlated to a poorer prognosis for patients with grade 3 breast cancer. In conclusion, SIRT3 could be a therapeutic target for breast cancer, improving the effectiveness of CDDP and TAM treatments. J. Cell. Biochem. 118: 397-406, 2017. © 2016 Wiley Periodicals, Inc.

  15. Switching on a transient endogenous ROS production in mammalian cells and tissues.

    PubMed

    Carrasco, Elisa; Blázquez-Castro, Alfonso; Calvo, María I; Juarranz, Ángeles; Espada, Jesús

    2016-10-15

    There is a growing interest in the physiological roles of reactive oxygen species (ROS) as essential components of molecular mechanisms regulating key cellular processes, including proliferation, differentiation and apoptosis. This interest has fostered the development of new molecular tools to localize and quantify ROS production in cultured cells and in whole living organisms. An equally important but often neglected aspect in the study of ROS biology is the development of accurate procedures to introduce a ROS source in the biological system under study. At present, this experimental requirement is solved in most cases by an external and systemic administration of ROS, usually hydrogen peroxide. We have previously shown that a photodynamic treatment based on the endogenous photosensitizer protoporphyrin IX and further irradiation of the target with adequate light source can be used to transiently switch on an in situ ROS production in human cultured keratinocytes and in mouse skin in vivo. Using this approach we reported that qualitatively low levels of ROS can activate cell proliferation in cultured cells and promote a transient and reversible hyperproliferative response in the skin, particularly, in the hair follicle stem cell niche, promoting physiological responses like acceleration of hair growth and supporting the notion that a local and transient ROS production can regulate stem cell function and tissue homeostasis in a whole organism. Our principal aim here is to provide a detailed description of this experimental methodology as a useful tool to investigate physiological roles for ROS in vivo in different experimental systems.

  16. Training Effects on ROS Production Determined by Electron Paramagnetic Resonance in Master Swimmers

    PubMed Central

    Mrakic-Sposta, Simona; Gussoni, Maristella; Porcelli, Simone; Pugliese, Lorenzo; Pavei, Gaspare; Bellistri, Giuseppe; Montorsi, Michela; Tacchini, Philippe; Vezzoli, Alessandra

    2015-01-01

    Acute exercise induces an increase in Reactive Oxygen Species (ROS) production dependent on exercise intensity with highest ROS amount generated by strenuous exercise. However, chronic repetition of exercise, that is, exercise training, may reduce exercise-induced oxidative stress. Aim of this study was to evaluate the effects of 6-weeks high-intensity discontinuous training (HIDT), characterized by repeated variations of intensity and changes of redox potential, on ROS production and antioxidant capacity in sixteen master swimmers. Time course changes of ROS generation were assessed by Electron Paramagnetic Resonance in capillary blood by a microinvasive approach. An incremental arm-ergometer exercise (IE) until exhaustion was carried out at both before (PRE) and after (POST) training (Trg) period. A significant (P < 0.01) increase of ROS production from REST to the END of IE in PRE Trg (2.82 ± 0.66 versus 3.28 ± 0.66 µmol·min−1) was observed. HIDT increased peak oxygen consumption (36.1 ± 4.3 versus 40.6 ± 5.7 mL·kg−1·min−1 PRE and POST Trg, resp.) and the antioxidant capacity (+13%) while it significantly decreased the ROS production both at REST (−20%) and after IE (−25%). The observed link between ROS production, adaptive antioxidant defense mechanisms, and peak oxygen consumption provides new insight into the correlation between ROS response pathways and muscle metabolic function. PMID:25874024

  17. Life-history Constraints on the Mechanisms that Control the Rate of ROS Production

    PubMed Central

    Aledo, Juan Carlos

    2014-01-01

    The quest to understand why and how we age has led to numerous lines of investigation that have gradually converged to consider mitochondrial metabolism as a major player. During mitochondrial respiration a small and variable amount of the consumed oxygen is converted to reactive species of oxygen (ROS). For many years, these ROS have been perceived as harmful by-products of respiration. However, evidence from recent years indicates that ROS fulfill important roles as cellular messengers. Results obtained using model organisms suggest that ROS-dependent signalling may even activate beneficial cellular stress responses, which eventually may lead to increased lifespan. Nevertheless, when an overload of ROS cannot be properly disposed of, its accumulation generates oxidative stress, which plays a major part in the ageing process. Comparative studies about the rates of ROS production and oxidative damage accumulation, have led to the idea that the lower rate of mitochondrial oxygen radical generation of long-lived animals with respect to that of their short-lived counterpart, could be a primary cause of their slow ageing rate. A hitherto largely under-appreciated alternative view is that such lower rate of ROS production, rather than a cause may be a consequence of the metabolic constraints imposed for the large body sizes that accompany high lifespans. To help understanding the logical underpinning of this rather heterodox view, herein I review the current literature regarding the mechanisms of ROS formation, with particular emphasis on evolutionary aspects. PMID:24955029

  18. Mitochondrial ROS production correlates with, but does not directly regulate lifespan in Drosophila.

    PubMed

    Sanz, Alberto; Fernández-Ayala, Daniel J M; Stefanatos, Rhoda Ka; Jacobs, Howard T

    2010-04-01

    The Mitochondrial Free Radical Theory of Aging (MFRTA) is currently one of the most widely accepted theories used to explain aging. From MFRTA three basic predictions can be made: long-lived individuals or species should produce fewer mitochondrial Reactive Oxygen Species (mtROS) than short-lived individuals or species; a decrease in mtROS production will increase lifespan; and an increase in mtROS production will decrease lifespan. It is possible to add a further fourth prediction: if ROS is controlling longevity separating these parameters through selection would be impossible. These predictions have been tested in Drosophila melanogaster. Firstly, we studied levels of mtROS production and lifespan of three wild-type strains of Drosophila, Oregon R, Canton S and Dahomey. Oregon R flies live the longest and produce significantly fewer mtROS than both Canton S and Dahomey. These results are therefore in accordance with the first prediction. A new transgenic Drosophila model expressing the Ciona intestinalis Alternative Oxidase (AOX) was used to test the second prediction. In fungi and plants, AOX expression regulates both free radical production and lifespan. In Drosophila, AOX expression decreases mtROS production, but does not increase lifespan. This result contradicts the second prediction of MFRTA. The third prediction was tested in flies mutant for the gene dj-1beta. These flies are characterized by an age-associated decline in locomotor function and increased levels of mtROS production. Nevertheless, dj-1beta mutant flies do not display decreased lifespan, which again is in contradiction with MFRTA. In our final experiment we utilized flies with DAH mitochondrial DNA in an OR nuclear background, and OR mitochondrial DNA in DAH nuclear background. From this, Mitochondrial DNA does not control free radical production, but it does determine longevity of females independently of mtROS production. In summary, these results do not systematically support the

  19. Fucoxanthin Suppresses Lipid Accumulation and ROS Production During Differentiation in 3T3-L1 Adipocytes.

    PubMed

    Seo, Min-Jung; Seo, Young-Jin; Pan, Cheol-Ho; Lee, Ok-Hwan; Kim, Kui-Jin; Lee, Boo-Yong

    2016-11-01

    Fucoxanthin, a pigment from the chloroplasts of marine brown algae, has a number of effects against obesity, diabetes, inflammation and cancer and provides cerebrovascular protection. In this study, we investigated the inhibitory effects of fucoxanthin on lipid accumulation and reactive oxygen species (ROS) production during adipogenesis. Treatment with fucoxanthin suppresses protein levels of the adipogenic transcription factors CCAAT/enhancer-binding protein alpha C/EBPα and peroxisome proliferator-activated receptor-γ and of their target protein, fatty acid binding protein 4. Lipogenesis-related enzymes, such as diglyceride acyltransferase 1 and lysophosphatidic acid acyltransferase-θ, were downregulated by fucoxanthin. The ROS-producing enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) and the NADPH-generating enzyme glucose-6-phosphate dehydrogenase also decreased following fucoxanthin treatment. The adipokine adiponectin and the ROS-scavenging enzymes superoxide dismutase 2, glutathione reductase and catalase were dose-dependently increased by fucoxanthin. Furthermore, lipolysis-related enzymes and superoxide dismutase 1 were slightly decreased, because of the suppression of lipid-generating factors and the cytosolic enzyme NOX4. To confirm these results, we investigated lipid accumulation and ROS production in zebrafish, where fucoxanthin suppressed lipid and triglyceride accumulation, as well as ROS production. Our data suggest that fucoxanthin inhibits lipid accumulation and ROS production by controlling adipogenic and lipogenic factors and ROS-regulating enzymes. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Liver Fibrosis Can Be Induced by High Salt Intake through Excess Reactive Oxygen Species (ROS) Production.

    PubMed

    Wang, Guang; Yeung, Cheung-kwan; Wong, Wing-Yan; Zhang, Nuan; Wei, Yi-fan; Zhang, Jing-li; Yan, Yu; Wong, Ching-yee; Tang, Jun-jie; Chuai, Manli; Lee, Kenneth Ka Ho; Wang, Li-jing; Yang, Xuesong

    2016-02-24

    High salt intake has been known to cause hypertension and other side effects. However, it is still unclear whether it also affects fibrosis in the mature or developing liver. This study demonstrates that high salt exposure in mice (4% NaCl in drinking water) and chick embryo (calculated final osmolality of the egg was 300 mosm/L) could lead to derangement of the hepatic cords and liver fibrosis using H&E, PAS, Masson, and Sirius red staining. Meanwhile, Desmin immunofluorescent staining of mouse and chick embryo livers indicated that hepatic stellate cells were activated after the high salt exposure. pHIS3 and BrdU immunohistological staining of mouse and chick embryo livers indicated that cell proliferation decreased; as well, TUNEL analyses indicated that cell apoptosis increased in the presence of high salt exposure. Next, dihydroethidium staining on the cultured chick hepatocytes indicated the excess ROS was generated following high salt exposure. Furthermore, AAPH (a known inducer of ROS production) treatment also induced the liver fibrosis in chick embryo. Positive Nrf2 and Keap1 immunohistological staining on mouse liver suggested that Nrf2/Keap1 signaling was involved in high salt induced ROS production. Finally, the CCK8 assay was used to determine whether or not the growth inhibitory effect induced by high salt exposure can be rescued by antioxidant vitamin C. Meanwhile, the RT-PCR result indicated that the Nrf2/Keap1 downsteam genes including HO-1, NQO-1, and SOD2 were involved in this process. In sum, these experiments suggest that high salt intake would lead to high risk of liver damage and fibrosis in both adults and developing embryos. The pathological mechanism may be the result from an imbalance between oxidative stress and the antioxidant system.

  1. ROS production during symbiotic infection suppresses pathogenesis-related gene expression.

    PubMed

    Peleg-Grossman, Smadar; Melamed-Book, Naomi; Levine, Alex

    2012-03-01

    Leguminous plants have exclusive ability to form symbiotic relationship with soil bacteria of the genus Rhizobium. Symbiosis is a complex process that involves multiple molecular signaling activities, such as calcium fluxes, production of reactive oxygen species (ROS) and synthesis of nodulation genes. We analyzed the role of ROS in defense gene expression in Medicago truncatula during symbiosis and pathogenesis. Studies in Arabidopsis thaliana showed that the induction of pathogenesis-related (PR) genes during systemic acquired resistance (SAR) is regulated by NPR1 protein, which resides in the cytoplasm as an oligomer. After oxidative burst and return of reducing conditions, the NPR1 undergoes monomerization and becomes translocated to the nucleus, where it functions in PR genes induction. We show that ROS production is both stronger and longer during symbiotic interactions than during interactions with pathogenic, nonhost or common nonpathogenic soil bacteria. Moreover, root cells inoculated with Sinorhizobium meliloti accumulated ROS in the cytosol but not in vacuoles, as opposed to Pseudomonas putida inoculation or salt stress treatment. Furthermore, increased ROS accumulation by addition of H₂O₂ reduced the PR gene expression, while catalase had an opposite effect, establishing that the PR gene expression is opposite to the level of cytoplasmic ROS. In addition, we show that salicylic acid pretreatment significantly reduced ROS production in root cells during symbiotic interaction.

  2. Does the oxidative stress theory of aging explain longevity differences in birds? I. Mitochondrial ROS production.

    PubMed

    Montgomery, Magdalene K; Hulbert, A J; Buttemer, William A

    2012-03-01

    Mitochondrial reactive oxygen species (ROS) production rates are reported to be inversely related to maximum lifespan potential (MLSP) in mammals and also to be higher in short-living mammals compared to short-living birds. The mammal-bird comparison, however, is mainly based on studies of rats and pigeons. To date, there has been no systematic examination of ROS production in birds that differ in MLSP. Here we report a comparison of mitochondrial ROS production in two short-living (quails) and three long-living bird species (parrots) that exhibit, on average, a 5-fold longevity difference. Mitochondrial ROS production was determined both in isolated mitochondria (heart, skeletal muscle and liver) as traditionally done and also in intact erythrocytes. In all four tissues, mitochondrial ROS production was similar in quails and parrots and showed no correspondence with known longevity differences. The lack of a consistent difference between quails and parrots was not due to differences in mitochondrial content as ROS production in relation to oxygen consumption (determined as the free radical leak) showed a similar pattern. These findings cast doubt on the robustness of the oxidative stress theory of aging.

  3. Reactive oxygen species (ROS) production by amoebocytes of Asterias rubens (Echinodermata).

    PubMed

    Coteur, Geoffroy; Warnau, Michel; Jangoux, Michel; Dubois, Philippe

    2002-03-01

    An adapted peroxidase, luminol-enhanced chemiluminescence method in an EDTA-free, Ca++-containing medium is described and used to characterise reactive oxygen species (ROS) production by starfish immunocytes using a standard microplate reader luminometer. ROS production was stimulated by direct interaction of immunocytes with bacteria or bacterial wall components, but not by the soluble stimulant PMA nor the lectin concanavalin A. Produced ROS detected by this method are apparently superoxide anions, hydrogen peroxide and peroxynitrite. Comparison with other chemiluminescence methods indicates that the described method is the only one to detect the stimulation of starfish immunocytes by the Gram-positive bacteria, Micrococcus luteus, a fact that questions previous reports indicating a lack of stimulation by pathogens. The adapted method provides a rapid determination of the overall ROS production, which is suitable for both disease control and immunotoxicological studies in echinoderms.

  4. Coronatine Inhibits Stomatal Closure through Guard Cell-Specific Inhibition of NADPH Oxidase-Dependent ROS Production

    PubMed Central

    Toum, Laila; Torres, Pablo S.; Gallego, Susana M.; Benavídes, María P.; Vojnov, Adrián A.; Gudesblat, Gustavo E.

    2016-01-01

    Microbes trigger stomatal closure through microbe-associated molecular patterns (MAMPs). The bacterial pathogen Pseudomonas syringae pv. tomato (Pst) synthesizes the polyketide toxin coronatine, which inhibits stomatal closure by MAMPs and by the hormone abscisic acid (ABA). The mechanism by which coronatine, a jasmonic acid-isoleucine analog, achieves this effect is not completely clear. Reactive oxygen species (ROS) are essential second messengers in stomatal immunity, therefore we investigated the possible effect of coronatine on their production. We found that coronatine inhibits NADPH oxidase-dependent ROS production induced by ABA, and by the flagellin-derived peptide flg22. This toxin also inhibited NADPH oxidase-dependent stomatal closure induced by darkness, however, it failed to prevent stomatal closure by exogenously applied H2O2 or by salicylic acid, which induces ROS production through peroxidases. Contrary to what was observed on stomata, coronatine did not affect the oxidative burst induced by flg22 in leaf disks. Additionally, we observed that in NADPH oxidase mutants atrbohd and atrbohd/f, as well as in guard cell ABA responsive but flg22 insensitive mutants mpk3, mpk6, npr1-3, and lecrk-VI.2-1, the inhibition of ABA stomatal responses by both coronatine and the NADPH oxidase inhibitor diphenylene iodonium was markedly reduced. Interestingly, coronatine still impaired ABA-induced ROS synthesis in mpk3, mpk6, npr1-3, and lecrk-VI.2-1, suggesting a possible feedback regulation of ROS on other guard cell ABA signaling elements in these mutants. Altogether our results show that inhibition of NADPH oxidase-dependent ROS synthesis in guard cells plays an important role during endophytic colonization by Pst through stomata. PMID:28018388

  5. Contact Sensitizers Induce Skin Inflammation via ROS Production and Hyaluronic Acid Degradation

    PubMed Central

    Esser, Philipp R.; Wölfle, Ute; Dürr, Christoph; von Loewenich, Friederike D.; Schempp, Christoph M.; Freudenberg, Marina A.; Jakob, Thilo; Martin, Stefan F.

    2012-01-01

    Background Allergic contact dermatitis (ACD) represents a severe health problem with increasing worldwide prevalence. It is a T cell-mediated skin disease induced by protein-reactive organic and inorganic chemicals. A key feature of contact allergens is their ability to trigger an innate immune response that leads to skin inflammation. Previous evidence from the mouse contact hypersensitivity (CHS) model suggests a role for endogenous activators of innate immune signaling. Here, we analyzed the role of contact sensitizer induced ROS production and concomitant changes in hyaluronic acid metabolism on CHS responses. Methodology/Principal Findings We analyzed in vitro and in vivo ROS production using fluorescent ROS detection reagents. HA fragmentation was determined by gel electrophoresis. The influence of blocking ROS production and HA degradation by antioxidants, hyaluronidase-inhibitor or p38 MAPK inhibitor was analyzed in the murine CHS model. Here, we demonstrate that organic contact sensitizers induce production of reactive oxygen species (ROS) and a concomitant breakdown of the extracellular matrix (ECM) component hyaluronic acid (HA) to pro-inflammatory low molecular weight fragments in the skin. Importantly, inhibition of either ROS-mediated or enzymatic HA breakdown prevents sensitization as well as elicitation of CHS. Conclusions/Significance These data identify an indirect mechanism of contact sensitizer induced innate inflammatory signaling involving the breakdown of the ECM and generation of endogenous danger signals. Our findings suggest a beneficial role for anti-oxidants and hyaluronidase inhibitors in prevention and treatment of ACD. PMID:22848468

  6. Enhanced aphid detoxification when confronted by a host with elevated ROS production.

    PubMed

    Lei, Jiaxin; Zhu-Salzman, Keyan

    2015-01-01

    Reactive oxygen species (ROS) plays an important role in plant defense responses against bacteria, fungi and insect pests. Most recently, we have demonstrated that loss of Arabidopsis thaliana BOTRYTIS-INDUCED KINASE1 (BIK1) function releases its suppression of aphid-induced H2O2 production and cell death, rendering the bik1 mutant more resistant to green peach aphid (Myzus persicae) than wild-type plants. However, little is known regarding how ROS-related gene expression is correlated with bik1-mediated resistance to aphids, or whether these aphids biochemically respond to the oxidative stress. Here, we show that the bik1 mutant exhibited elevated basal expression of ROS-generating and -responsive genes, but not ROS-metabolizing genes. Conversely, we detected enhanced detoxification enzymatic activities in aphids reared on bik1 plants compared to those on wild-type plants, suggesting that aphids counter the oxidative stress associated with bik1 through elevated metabolic resistance.

  7. RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis

    PubMed Central

    de Rycke, Riet; Fernandez, Ana; Himschoot, Ellie; Van Breusegem, Frank; Périlleux, Claire

    2016-01-01

    Lateral root (LR) emergence represents a highly coordinated process in which the plant hormone auxin plays a central role. Reactive oxygen species (ROS) have been proposed to function as important signals during auxin-regulated LR formation; however, their mode of action is poorly understood. Here, we report that Arabidopsis roots exposed to ROS show increased LR numbers due to the activation of LR pre-branch sites and LR primordia (LRP). Strikingly, ROS treatment can also restore LR formation in pCASP1:shy2-2 and aux1 lax3 mutant lines in which auxin-mediated cell wall accommodation and remodeling in cells overlying the sites of LR formation is disrupted. Specifically, ROS are deposited in the apoplast of these cells during LR emergence, following a spatiotemporal pattern that overlaps the combined expression domains of extracellular ROS donors of the RESPIRATORY BURST OXIDASE HOMOLOGS (RBOH). We also show that disrupting (or enhancing) expression of RBOH in LRP and/or overlying root tissues decelerates (or accelerates) the development and emergence of LRs. We conclude that RBOH-mediated ROS production facilitates LR outgrowth by promoting cell wall remodeling of overlying parental tissues. PMID:27402709

  8. The Regulatory Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and Symbiosis with Clover

    PubMed Central

    Rachwał, Kamila; Boguszewska, Aleksandra; Kopcińska, Joanna; Karaś, Magdalena; Tchórzewski, Marek; Janczarek, Monika

    2016-01-01

    Rhizobium leguminosarum bv. trifolii is capable of establishing a symbiotic relationship with plants from the genus Trifolium. Previously, a regulatory protein encoded by rosR was identified and characterized in this bacterium. RosR possesses a Cys2-His2-type zinc finger motif and belongs to Ros/MucR family of rhizobial transcriptional regulators. Transcriptome profiling of the rosR mutant revealed a role of this protein in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism. Here, we show that a mutation in rosR resulted in considerable changes in R. leguminosarum bv. trifolii protein profiles. Extracellular, membrane, and periplasmic protein profiles of R. leguminosarum bv. trifolii wild type and the rosR mutant were examined, and proteins with substantially different abundances between these strains were identified. Compared with the wild type, extracellular fraction of the rosR mutant contained greater amounts of several proteins, including Ca2+-binding cadherin-like proteins, a RTX-like protein, autoaggregation protein RapA1, and flagellins FlaA and FlaB. In contrast, several proteins involved in the uptake of various substrates were less abundant in the mutant strain (DppA, BraC, and SfuA). In addition, differences were observed in membrane proteins of the mutant and wild-type strains, which mainly concerned various transport system components. Using atomic force microscopy (AFM) imaging, we characterized the topography and surface properties of the rosR mutant and wild-type cells. We found that the mutation in rosR gene also affected surface properties of R. leguminosarum bv. trifolii. The mutant cells were significantly more hydrophobic than the wild-type cells, and their outer membrane was three times more permeable to the hydrophobic dye N-phenyl-1-naphthylamine. The mutation of rosR also caused defects in bacterial symbiotic interaction with clover plants. Compared with

  9. Biological Evaluation of Ferrocenyl Olefins: Cancer Cell Growth Inhibition, ROS Production, and Apoptosis Activity.

    PubMed

    Sun, Aijing; Lin, Junsheng; Pi, Chao; Xu, Ruian; Cui, Xiuling

    2016-03-01

    The antiproliferative effects of various ferrocenyl olefins were evaluated against the cell lines MCF-7 (human breast cancer cells), DLD-1 (human colon adenocarcinoma cells), HUVEC (human umbilical vein endothelial cells), and A549 (human lung carcinoma cells), using the MTT test. IC50 values were determined. Compounds 8, 9, 11, and 12 with high antiproliferative activity were tested for their reactive oxygen species (ROS) production, and cell cycle analysis was performed on A549 cells. The results show that these compounds might perform their antiproliferative activity through inducing ROS generation, apoptosis induction, and cell cycle arrest.

  10. Mitochondrial DNA depletion causes decreased ROS production and resistance to apoptosis

    PubMed Central

    Chen, Hulin; Wang, Junling; Liu, Zhongrong; Yang, Huilan; Zhu, Yingjie; Zhao, Minling; Liu, Yan; Yan, Miaomiao

    2016-01-01

    Mitochondrial DNA (mtDNA) depletion occurs frequently in many diseases including cancer. The present study was designed in order to examine the hypothesis that mtDNA-depleted cells are resistant to apoptosis and to explore the possible mechanisms responsible for this effect. Parental human osteosarcoma 143B cells and mtDNA-deficient (Rho° or ϱ°) 206 cells (derived from 143B cells) were exposed to different doses of solar-simulated ultraviolet (UV) radiation. The effects of solar irradiation on cell morphology were observed under both light and fluorescence microscopes. Furthermore, apoptosis, mitochondrial membrane potential (MMP) disruption and reactive oxygen species (ROS) production were detected and measured by flow cytometry. In both cell lines, apoptosis and ROS production were clearly increased, whereas MMP was slightly decreased. However, apoptosis and ROS production were reduced in the Rho°206 cells compared with the 143B cells. We also performed western blot analysis and demonstrated the increased release of cytosolic Cyt c from mitochondria in the 143B cells compared with that in the Rho°206 cells. Thus, we concluded that Rho°206 cells exhibit more resistance to solar-simulated UV radiation-induced apoptosis at certain doses than 143B cells and this is possibly due to decreased ROS production. PMID:27499009

  11. Respiratory chain components involved in the glycerophosphate dehydrogenase-dependent ROS production by brown adipose tissue mitochondria.

    PubMed

    Vrbacký, Marek; Drahota, Zdenek; Mrácek, Tomás; Vojtísková, Alena; Jesina, Pavel; Stopka, Pavel; Houstek, Josef

    2007-07-01

    Involvement of mammalian mitochondrial glycerophosphate dehydrogenase (mGPDH, EC 1.1.99.5) in reactive oxygen species (ROS) generation was studied in brown adipose tissue mitochondria by different spectroscopic techniques. Spectrofluorometry using ROS-sensitive probes CM-H2DCFDA and Amplex Red was used to determine the glycerophosphate- or succinate-dependent ROS production in mitochondria supplemented with respiratory chain inhibitors antimycin A and myxothiazol. In case of glycerophosphate oxidation, most of the ROS originated directly from mGPDH and coenzyme Q while complex III was a typical site of ROS production in succinate oxidation. Glycerophosphate-dependent ROS production monitored by KCN-insensitive oxygen consumption was highly activated by one-electron acceptor ferricyanide, whereas succinate-dependent ROS production was unaffected. In addition, superoxide anion radical was detected as a mGPDH-related primary ROS species by fluorescent probe dihydroethidium, as well as by electron paramagnetic resonance (EPR) spectroscopy with DMPO spin trap. Altogether, the data obtained demonstrate pronounced differences in the mechanism of ROS production originating from oxidation of glycerophosphate and succinate indicating that electron transfer from mGPDH to coenzyme Q is highly prone to electron leak and superoxide generation.

  12. Peroxisomal polyamine oxidase and NADPH-oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana

    PubMed Central

    Andronis, Efthimios A.; Moschou, Panagiotis N.; Toumi, Imene; Roubelakis-Angelakis, Kalliopi A.

    2014-01-01

    Homeostasis of reactive oxygen species (ROS) in the intracellular compartments is of critical importance as ROS have been linked with nearly all cellular processes and more importantly with diseases and aging. PAs are nitrogenous molecules with an evolutionary conserved role in the regulation of metabolic and energetic status of cells. Recent evidence also suggests that polyamines (PA) are major regulators of ROS homeostasis. In Arabidopsis the backconversion of the PAs spermidine (Spd) and spermine to putrescine and Spd, respectively, is catalyzed by two peroxisomal PA oxidases (AtPAO). However, the physiological role of this pathway remains largely elusive. Here we explore the role of peroxisomal PA backconversion and in particular that catalyzed by the highly expressed AtPAO3 in the regulation of ROS homeostasis and mitochondrial respiratory burst. Exogenous PAs exert an NADPH-oxidase dependent stimulation of oxygen consumption, with Spd exerting the strongest effect. This increase is attenuated by treatment with the NADPH-oxidase blocker diphenyleneiodonium iodide (DPI). Loss-of-function of AtPAO3 gene results to increased NADPH-oxidase-dependent production of superoxide anions (O2•− ), but not H2O2, which activate the mitochondrial alternative oxidase pathway (AOX). On the contrary, overexpression of AtPAO3 results to an increased but balanced production of both H2O2 and O2•− . These results suggest that the ratio of O2•− /H2O2 regulates respiratory chain in mitochondria, with PA-dependent production of O2•− by NADPH-oxidase tilting the balance of electron transfer chain in favor of the AOX pathway. In addition, AtPAO3 seems to be an important component in the regulating module of ROS homeostasis, while a conserved role for PA backconversion and ROS across kingdoms is discussed. PMID:24765099

  13. Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes

    PubMed Central

    Le Douce, Juliette; Logan, Angela; James, Andrew M.; Bonvento, Gilles; Murphy, Michael P.; Bolaños, Juan P.

    2016-01-01

    Neurons depend on oxidative phosphorylation for energy generation, whereas astrocytes do not, a distinctive feature that is essential for neurotransmission and neuronal survival. However, any link between these metabolic differences and the structural organization of the mitochondrial respiratory chain is unknown. Here, we investigated this issue and found that, in neurons, mitochondrial complex I is predominantly assembled into supercomplexes, whereas in astrocytes the abundance of free complex I is higher. The presence of free complex I in astrocytes correlates with the severalfold higher reactive oxygen species (ROS) production by astrocytes compared with neurons. Using a complexomics approach, we found that the complex I subunit NDUFS1 was more abundant in neurons than in astrocytes. Interestingly, NDUFS1 knockdown in neurons decreased the association of complex I into supercomplexes, leading to impaired oxygen consumption and increased mitochondrial ROS. Conversely, overexpression of NDUFS1 in astrocytes promoted complex I incorporation into supercomplexes, decreasing ROS. Thus, complex I assembly into supercomplexes regulates ROS production and may contribute to the bioenergetic differences between neurons and astrocytes. PMID:27799543

  14. Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation

    PubMed Central

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts. PMID:23579616

  15. Oleic, linoleic and linolenic acids increase ros production by fibroblasts via NADPH oxidase activation.

    PubMed

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47 (phox) phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47 (phox) mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts.

  16. Use of Commercial Dry Yeast Products Rich in Mannoproteins for White and Rosé Sparkling Wine Elaboration.

    PubMed

    Pérez-Magariño, Silvia; Martínez-Lapuente, Leticia; Bueno-Herrera, Marta; Ortega-Heras, Miriam; Guadalupe, Zenaida; Ayestarán, Belén

    2015-06-17

    In sparkling wines, mannoproteins released during yeast autolysis largely affect their final quality. This process is very slow and may take several months. The aim of this work was to study the effect of several commercial dry yeast autolysates on the chemical composition, foam, and sensory properties of white and rosé sparkling wines aged on lees for 9 months during two consecutive vintages. The addition of these products in the tirage phase did not affect either the content of phenolic compounds, amino acids, and biogenic amines or the foam properties. The commercial product with the highest mannoprotein content and the highest purity caused significant changes in the volatile composition of the wines and enhanced the fruity aromas in both Verdejo and Godello sparkling wines.

  17. Critical role of mitochondrial ROS is dependent on their site of production on the electron transport chain in ischemic heart.

    PubMed

    Madungwe, Ngonidzashe B; Zilberstein, Netanel F; Feng, Yansheng; Bopassa, Jean C

    2016-01-01

    Reactive oxygen species (ROS) generation has been implicated in many pathologies including ischemia/reperfusion (I/R) injury. This led to multiple studies on antioxidant therapies to treat cardiovascular diseases but paradoxically, results have so far been mixed as ROS production can be beneficial as a signaling mechanism and in cardiac protection via preconditioning interventions. We investigated whether the differential impact of increased ROS in injury as well as in protection could be explained by their site of production on the mitochondrial electron transport chain. Using amplex red to measure ROS production, we found that mitochondria isolated from hearts after I/R produced more ROS than non-ischemic when complex I substrate (glutamate/malate) was used. Interestingly, the substrates of complex II (succinate) and ubiquinone (sn-glycerol 3-phosphate, G3P) produced less ROS in mitochondria from I/R hearts compared to normal healthy hearts. The inhibitors of complex I (rotenone) and complex III (antimycin A) increased ROS production when glutamate/malate and G3P were used; in contrast, they reduced ROS production when the complex II substrate was used. Mitochondrial calcium retention capacity required to induce mitochondrial permeability transition pore (mPTP) opening was measured using calcium green fluorescence and was found to be higher when mitochondria were treated with G3P and succinate compared to glutamate/malate. Furthermore, Langendorff hearts treated with glutamate/malate exhibited reduced cardiac functional recovery and increased myocardial infarct size compared to hearts treated with G3P. Thus, ROS production by the stimulated respiratory chain complexes I and III has opposite roles: cardio-deleterious when produced in complex I and cardio-protective when produced in complex III. The mechanism of these ROS involves the inhibition of the mPTP opening, a key event in cell death following ischemia/reperfusion injury.

  18. Critical role of mitochondrial ROS is dependent on their site of production on the electron transport chain in ischemic heart

    PubMed Central

    Madungwe, Ngonidzashe B; Zilberstein, Netanel F; Feng, Yansheng; Bopassa, Jean C

    2016-01-01

    Abstract: Reactive oxygen species (ROS) generation has been implicated in many pathologies including ischemia/reperfusion (I/R) injury. This led to multiple studies on antioxidant therapies to treat cardiovascular diseases but paradoxically, results have so far been mixed as ROS production can be beneficial as a signaling mechanism and in cardiac protection via preconditioning interventions. We investigated whether the differential impact of increased ROS in injury as well as in protection could be explained by their site of production on the mitochondrial electron transport chain. Using amplex red to measure ROS production, we found that mitochondria isolated from hearts after I/R produced more ROS than non-ischemic when complex I substrate (glutamate/malate) was used. Interestingly, the substrates of complex II (succinate) and ubiquinone (sn-glycerol 3-phosphate, G3P) produced less ROS in mitochondria from I/R hearts compared to normal healthy hearts. The inhibitors of complex I (rotenone) and complex III (antimycin A) increased ROS production when glutamate/malate and G3P were used; in contrast, they reduced ROS production when the complex II substrate was used. Mitochondrial calcium retention capacity required to induce mitochondrial permeability transition pore (mPTP) opening was measured using calcium green fluorescence and was found to be higher when mitochondria were treated with G3P and succinate compared to glutamate/malate. Furthermore, Langendorff hearts treated with glutamate/malate exhibited reduced cardiac functional recovery and increased myocardial infarct size compared to hearts treated with G3P. Thus, ROS production by the stimulated respiratory chain complexes I and III has opposite roles: cardio-deleterious when produced in complex I and cardio-protective when produced in complex III. The mechanism of these ROS involves the inhibition of the mPTP opening, a key event in cell death following ischemia/reperfusion injury. PMID:27679744

  19. The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin.

    PubMed

    Batandier, Cécile; Guigas, Bruno; Detaille, Dominique; El-Mir, M-Yehia; Fontaine, Eric; Rigoulet, M; Leverve, Xavier M

    2006-02-01

    Mitochondrial reactive oxygen species (ROS) production was investigated in mitochondria extracted from liver of rats treated with or without metformin, a mild inhibitor of respiratory chain complex 1 used in type 2 diabetes. A high rate of ROS production, fully suppressed by rotenone, was evidenced in non-phosphorylating mitochondria in the presence of succinate as a single complex 2 substrate. This ROS production was substantially lowered by metformin pretreatment and by any decrease in membrane potential (Delta Phi(m)), redox potential (NADH/NAD), or phosphate potential, as induced by malonate, 2,4-dinitrophenol, or ATP synthesis, respectively. ROS production in the presence of glutamate-malate plus succinate was lower than in the presence of succinate alone, but higher than in the presence of glutamate-malate. Moreover, while rotenone both increased and decreased ROS production at complex 1 depending on forward (glutamate-malate) or reverse (succinate) electron flux, no ROS overproduction was evidenced in the forward direction with metformin. Therefore, we propose that reverse electron flux through complex 1 is an alternative pathway, which leads to a specific metformin-sensitive ROS production.

  20. Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity

    PubMed Central

    Kukat, Alexandra; Dogan, Sukru Anil; Edgar, Daniel; Mourier, Arnaud; Jacoby, Christoph; Maiti, Priyanka; Mauer, Jan; Becker, Christina; Senft, Katharina; Wibom, Rolf; Kudin, Alexei P.; Hultenby, Kjell; Flögel, Ulrich; Rosenkranz, Stephan; Ricquier, Daniel; Kunz, Wolfram S.; Trifunovic, Aleksandra

    2014-01-01

    Although mitochondrial dysfunction is often accompanied by excessive reactive oxygen species (ROS) production, we previously showed that an increase in random somatic mtDNA mutations does not result in increased oxidative stress. Normal levels of ROS and oxidative stress could also be a result of an active compensatory mechanism such as a mild increase in proton leak. Uncoupling protein 2 (UCP2) was proposed to play such a role in many physiological situations. However, we show that upregulation of UCP2 in mtDNA mutator mice is not associated with altered proton leak kinetics or ROS production, challenging the current view on the role of UCP2 in energy metabolism. Instead, our results argue that high UCP2 levels allow better utilization of fatty acid oxidation resulting in a beneficial effect on mitochondrial function in heart, postponing systemic lactic acidosis and resulting in longer lifespan in these mice. This study proposes a novel mechanism for an adaptive response to mitochondrial cardiomyopathy that links changes in metabolism to amelioration of respiratory chain deficiency and longer lifespan. PMID:24945157

  1. Stanniocalcin-1 Protects a Mouse Model from Renal Ischemia-Reperfusion Injury by Affecting ROS-Mediated Multiple Signaling Pathways

    PubMed Central

    Liu, Dajun; Shang, Huiping; Liu, Ying

    2016-01-01

    Stanniocalcin-1 (STC-1) protects against renal ischemia-reperfusion injury (RIRI). However, the molecular mechanisms remain widely unknown. STC-1 inhibits reactive oxygen species (ROS), whereas most ROS-mediated pathways are associated with ischemic injury. Therefore, to explore the mechanism, the effects of STC-1 on ROS-medicated pathways were studied. Non-traumatic vascular clamps were used to establish RIRI mouse models. The serum levels of STC-1, interleukin-6 (IL-6), interferon (IFN) γ, P53, and capase-3 were measured by ELISA kits. Superoxide dismutase (SOD) and malondialdehyde (MDA) were measured by fluorescence spectrofluorometer. All these molecules changed significantly in a RIRI model mouse when compared with those in a sham control. Kidney cells were isolated from sham and model mice. STC-1 was overexpressed or knockout in these kidney cells. The molecules in ROS-medicated pathways were measured by real-time quantitative PCR and Western blot. The results showed that STC-1 is an effective ROS scavenger. The serum levels of STC-1, MDA and SOD activity were increased while the serum levels of IL-6, iIFN-γ, P53, and capase-3 were decreased in a model group when compared with a sham control (p < 0.05). Furthermore, the levels of STC-1,p53, phosphorylated mitogen-activated protein kinase kinase (p-MEKK-1), c-Jun N-terminal kinase (p-JNK), extracellular signal-regulated kinase (p-ERK), IkB kinase (p-IKK), nuclear factor (NF) κB, apoptosis signal-regulating kinase 1 (ASK-1) and caspase-3 changed significantly in kidney cells isolated from a RIRI model when compared to those isolated from a sham control (p < 0.05). Meanwhile, STC-1 overexpression or silence caused significant changes of the levels of these ROS-mediated molecules. Therefore, STC-1 maybe improve anti-inflammation, anti-oxidant and anti-apoptosis activities by affecting ROS-mediated pathways, especially the phospho-modifications of the respective proteins, resulting in the increase of SOD and

  2. Control of ROS and RNS productions in liquid in atmospheric pressure plasma-jet system

    NASA Astrophysics Data System (ADS)

    Uchida, Giichiro; Ito, Taiki; Takenaka, Kosuke; Ikeda, Junichiro; Setsuhara, Yuichi

    2016-09-01

    Non-thermal plasma jets are of current interest in biomedical applications such as wound disinfection and even treatment of cancer tumors. Beneficial therapeutic effects in medical applications are attributed to excited species of oxygen and nitrogen from air. However, to control the production of these species in the plasma jet is difficult because their production is strongly dependent on concentration of nitrogen and oxygen from ambient air into the plasma jet. In this study, we analyze the discharge characteristics and the ROS and RNS productions in liquid in low- and high-frequency plasma-jet systems. Our experiments demonstrated the marked effects of surrounding gas near the plasma jet on ROS and RNS productions in liquid. By controlling the surround gas, the O2 and N2 main plasma jets are selectively produced even in open air. We also show that the concentration ratio of NO2- to H2O2 in liquid is precisely tuned from 0 to 0.18 in deionized water by changing N2 gas ratio (N2 / (N2 +O2)) in the main discharge gas, where high NO2- ratio is obtained at N2 gas ratio at N2 / (N2 +O2) = 0 . 8 . The low-frequency plasma jet with controlled surrounding gas is an effective plasma source for ROS and RNS productions in liquid, and can be a useful tool for biomedical applications. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

  3. ROS production and lipid catabolism in desiccating Shorea robusta seeds during aging.

    PubMed

    Parkhey, Suruchi; Naithani, S C; Keshavkant, S

    2012-08-01

    Reactive oxygen species (ROS) and lipid peroxidation products appear to correlate strongly with the desiccation induced loss of viability in recalcitrant sal seeds. The 100% germination in fresh sal seeds declined with dehydration under natural storage conditions (26 ± 1 °C, relative humidity 52 ± 2%). Seeds became non-viable within 8 days. Desiccation induced disturbances in the metabolic activity of seeds resulted in generation of enormous amounts of ROS that are responsible for cellular damage and viability loss. Oxidative stress in the dehydrating aging sal seeds was further aggravated by inducing lipid peroxidation as the amounts of free fatty acid, conjugated diene, lipid hydroperoxide and secondary free radicals; malondialdehyde and 4-hydroxy-2-nonenal, were also promoted. In addition, significant rise in lipid degrading enzymes; lipase (EC 3.1.1.3) and lipoxygenase (LOX, EC 1.13.11.12) were detected in dehydrating sal seeds. Our results indicated multiple pathways (ROS, lipid peroxidation & lipase and LOX) that operate in the dehydrating recalcitrant sal seeds finally contributing to loss of viability.

  4. Increased ROS production in non-polarized mammary epithelial cells induces monocyte infiltration in 3D culture.

    PubMed

    Li, Linzhang; Chen, Jie; Xiong, Gaofeng; St Clair, Daret K; Xu, Wei; Xu, Ren

    2017-01-01

    Loss of epithelial cell polarity promotes cell invasion and cancer dissemination. Therefore, identification of factors that disrupt polarized acinar formation is crucial. Reactive oxygen species (ROS) drive cancer progression and promote inflammation. Here, we show that the non-polarized breast cancer cell line T4-2 generates significantly higher ROS levels than polarized S1 and T4R cells in three-dimensional (3D) culture, accompanied by induction of the nuclear factor κB (NF-κB) pathway and cytokine expression. Minimizing ROS in T4-2 cells with antioxidants reestablished basal polarity and inhibited cell proliferation. Introducing constitutively activated RAC1 disrupted cell polarity and increased ROS levels, indicating that RAC1 is a crucial regulator that links cell polarity and ROS generation. We also linked monocyte infiltration with disruption of polarized acinar structure using a 3D co-culture system. Gain- and loss-of-function experiments demonstrated that increased ROS in non-polarized cells is necessary and sufficient to enhance monocyte recruitment. ROS also induced cytokine expression and NF-κB activity. These results suggest that increased ROS production in mammary epithelial cell leads to disruption of cell polarity and promotes monocyte infiltration.

  5. Compound C Increases Sestrin2 Expression via Mitochondria-Dependent ROS Production.

    PubMed

    Seo, Kyuhwa; Seo, Suho; Ki, Sung Hwan; Shin, Sang Mi

    2016-01-01

    Compound C is a widely used chemical inhibitor that down-regulates AMP-activated protein kinase (AMPK) activity. However, it has been suggested that compound C exerts AMPK-independent effects in various cells. Here, we investigated whether compound C induces Sestrin2 (SESN2), an antioxidant enzyme induced by diverse stress. In addition, the mechanism responsible for SESN2 induction by compound C was determined. Our results showed that compound C increased SESN2 protein expression in HepG2 cells in a concentration- and time-dependent manner. The induction of SESN2 mRNA was also observed in cells treated with compound C. Increase of SESN2 luciferase activity confirmed transcriptional regulation by compound C and this substance also increased nuclear factor erythroid 2 (NF-E2)-related factor-2 (Nrf2) phosphorylation, which implies that Nrf2 was involved in SESN2 induction. Next, we sought to demonstrate whether production of reactive oxygen species (ROS) accompanied SESN2 expression. Compound C increased ROS production, but this effect was prevented by pretreatment with antioxidants or the mitochondrial complex I inhibitor. Moreover, cyclosporin A, an inhibitor of pore formation in the mitochondrial membrane, attenuated compound C-induced SESN2 induction. However, overexpression of a constitutively active form of AMPK was not able to abolish SESN2 induction by compound C, which implies that its action is independent of AMPK inhibition. In conclusion, this is the first study demonstrating that compound C alters mitochondrial function and induces ROS production, which ultimately leads to phosphorylation of Nrf2 and induction of SESN2.

  6. Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages

    SciTech Connect

    Kim, Mi Jin; Nepal, Saroj; Lee, Eung-Seok; Jeong, Tae Cheon; Kim, Sang-Hyun; Park, Pil-Hoon

    2013-11-15

    Matrix metalloproteinase-12 (MMP-12), an enzyme responsible for degradation of extracellular matrix, plays an important role in the progression of various diseases, including inflammation and fibrosis. Although most of those are pathogenic conditions induced by ethanol ingestion, the effect of ethanol on MMP-12 has not been explored. In the present study, we investigated the effect of ethanol on MMP-12 expression and its potential mechanisms in macrophages. Here, we demonstrated that ethanol treatment increased MMP-12 expression in primary murine peritoneal macrophages and RAW 264.7 macrophages at both mRNA and protein levels. Ethanol treatment also significantly increased the activity of nicotinamide adenine dinucleotide (NADPH) oxidase and the expression of NADPH oxidase-2 (Nox2). Pretreatment with an anti-oxidant (N-acetyl cysteine) or a selective inhibitor of NADPH oxidase (diphenyleneiodonium chloride (DPI)) prevented ethanol-induced MMP-12 expression. Furthermore, knockdown of Nox2 by small interfering RNA (siRNA) prevented ethanol-induced ROS production and MMP-12 expression in RAW 264.7 macrophages, indicating a critical role for Nox2 in ethanol-induced intracellular ROS production and MMP-12 expression in macrophages. We also showed that ethanol-induced Nox2 expression was suppressed by transient transfection with dominant negative IκB-α plasmid or pretreatment with Bay 11-7082, a selective inhibitor of NF-κB, in RAW 264.7 macrophages. In addition, ethanol-induced Nox2 expression was also attenuated by treatment with a selective inhibitor of p38 MAPK, suggesting involvement of p38 MAPK/NF-κB pathway in ethanol-induced Nox2 expression. Taken together, these results demonstrate that ethanol treatment elicited increase in MMP-12 expression via increase in ROS production derived from Nox2 in macrophages. - Highlights: • Ethanol increases ROS production through up-regulation of Nox2 in macrophages. • Enhanced oxidative stress contributes to ethanol

  7. Glucose- and mannose-induced stomatal closure is mediated by ROS production, Ca(2+) and water channel in Vicia faba.

    PubMed

    Li, Yan; Xu, ShanShan; Gao, Jing; Pan, Sha; Wang, GenXuan

    2016-03-01

    Sugars act as vital signaling molecules that regulate plant growth, development and stress responses. However, the effects of sugars on stomatal movement have been unclear. In our study, we explored the effects of monosaccharides such as glucose and mannose on stomatal aperture. Here, we demonstrate that glucose and mannose trigger stomatal closure in a dose- and time-dependent manner in epidermal peels of broad bean (Vicia faba). Pharmacological studies revealed that glucose- and mannose-induced stomatal closure was almost completely inhibited by two reactive oxygen species (ROS) scavengers, catalase (CAT) and reduced glutathione (GSH), was significantly abolished by an NADPH oxidase inhibitor, diphenylene iodonium chloride (DPI), whereas they were hardly affected by a peroxidase inhibitor, salicylhydroxamic acid (SHAM). Furthermore, glucose- and mannose-induced stomatal closure was strongly inhibited by a Ca(2+) channel blocker, LaCl3 , a Ca(2+) chelator, ethyleneglycol-bis(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA) and two water channel blockers, HgCl2 and dimethyl sulfoxide (DMSO); whereas the inhibitory effects of the water channel blockers were essentially abolished by the reversing agent β-mercaptoethanol (β-ME). These results suggest that ROS production mainly via NADPH oxidases, Ca(2+) and water channels are involved in glucose- and mannose-induced stomatal closure.

  8. Chlorella induces stomatal closure via NADPH oxidase-dependent ROS production and its effects on instantaneous water use efficiency in Vicia faba.

    PubMed

    Li, Yan; Xu, Shan-Shan; Gao, Jing; Pan, Sha; Wang, Gen-Xuan

    2014-01-01

    Reactive oxygen species (ROS) have been established to participate in stomatal closure induced by live microbes and microbe-associated molecular patterns (MAMPs). Chlorella as a beneficial microorganism can be expected to trigger stomatal closure via ROS production. Here, we reported that Chlorella induced stomatal closure in a dose-and time-dependent manner in epidermal peels of Vicia faba. Using pharmacological methods in this work, we found that the Chlorella-induced stomatal closure was almost completely abolished by a hydrogen peroxide (H2O2) scavenger, catalase (CAT), significantly suppressed by an NADPH oxidase inhibitor, diphenylene iodonium chloride (DPI), and slightly affected by a peroxidase inhibitor, salicylhydroxamic acid (SHAM), suggesting that ROS production involved in Chlorella-induced stomatal closure is mainly mediated by DPI-sensitive NADPH oxidase. Additionally, Exogenous application of optimal concentrations of Chlorella suspension improved instantaneous water use efficiency (WUEi) in Vicia faba via a reduction in leaf transpiration rate (E) without a parallel reduction in net photosynthetic rate (Pn) assessed by gas-exchange measurements. The chlorophyll fluorescence and content analysis further demonstrated that short-term use of Chlorella did not influence plant photosynthetic reactions center. These results preliminarily reveal that Chlorella can trigger stomatal closure via NADPH oxidase-dependent ROS production in epidermal strips and improve WUEi in leave levels.

  9. Chlorella Induces Stomatal Closure via NADPH Oxidase-Dependent ROS Production and Its Effects on Instantaneous Water Use Efficiency in Vicia faba

    PubMed Central

    Li, Yan; Xu, Shan-Shan; Gao, Jing; Pan, Sha; Wang, Gen-Xuan

    2014-01-01

    Reactive oxygen species (ROS) have been established to participate in stomatal closure induced by live microbes and microbe-associated molecular patterns (MAMPs). Chlorella as a beneficial microorganism can be expected to trigger stomatal closure via ROS production. Here, we reported that Chlorella induced stomatal closure in a dose-and time-dependent manner in epidermal peels of Vicia faba. Using pharmacological methods in this work, we found that the Chlorella-induced stomatal closure was almost completely abolished by a hydrogen peroxide (H2O2) scavenger, catalase (CAT), significantly suppressed by an NADPH oxidase inhibitor, diphenylene iodonium chloride (DPI), and slightly affected by a peroxidase inhibitor, salicylhydroxamic acid (SHAM), suggesting that ROS production involved in Chlorella-induced stomatal closure is mainly mediated by DPI-sensitive NADPH oxidase. Additionally, Exogenous application of optimal concentrations of Chlorella suspension improved instantaneous water use efficiency (WUEi) in Vicia faba via a reduction in leaf transpiration rate (E) without a parallel reduction in net photosynthetic rate (Pn) assessed by gas-exchange measurements. The chlorophyll fluorescence and content analysis further demonstrated that short-term use of Chlorella did not influence plant photosynthetic reactions center. These results preliminarily reveal that Chlorella can trigger stomatal closure via NADPH oxidase-dependent ROS production in epidermal strips and improve WUEi in leave levels. PMID:24687099

  10. Effects of Copper on Hemocyte Apoptosis, ROS Production, and Gene Expression in White Shrimp Litopenaeus vannamei.

    PubMed

    Guo, Hui; Li, Kexu; Wang, Wei; Wang, Chenggui; Shen, Yuchun

    2017-02-25

    Copper, a common chemical contaminant in aquatic environment, is known to be toxic to aquatic life at high concentrations. In the present study, we evaluated the apoptotic cell ratio and ROS production in hemocytes of the white shrimp Litopenaeus vannamei exposed to 1 or 5 mg L(-1) Cu for 0, 3, 6, 12, 24, and 48 h. The expression changes of antioxidant biomarker genes, i.e., copper-zinc superoxide dismutase (Cu-Zn SOD) and catalase (CAT), apoptosis-related genes, i.e., caspase-3 and inhibitor of apoptosis protein (IAP), and a specific biomarker gene of heavy metal pollution, i.e., metallothionein (MT), were also determined in hemocytes. Significant increases in ROS production were observed in both treatment groups at each time points. The apoptotic cell ratios were significantly increased at 6-48 h among shrimp exposed to 1 mg L(-1) Cu and at each time points in 5 mg L(-1) Cu group. These results indicated that Cu would induce oxidative stress and apoptosis in the hemocyte of L. vannamei. Quantitative real-time PCR analysis revealed that the relative expression levels of Cu-Zn SOD, CAT, caspase-3, IAP, and MT were upregulated in a dose-dependent and time-dependent manner, suggesting the involvement of these genes in stress response against Cu exposure.

  11. Cigarette toxicity triggers Leber's hereditary optic neuropathy by affecting mtDNA copy number, oxidative phosphorylation and ROS detoxification pathways

    PubMed Central

    Giordano, L; Deceglie, S; d'Adamo, P; Valentino, M L; La Morgia, C; Fracasso, F; Roberti, M; Cappellari, M; Petrosillo, G; Ciaravolo, S; Parente, D; Giordano, C; Maresca, A; Iommarini, L; Del Dotto, V; Ghelli, A M; Salomao, S R; Berezovsky, A; Belfort, R; Sadun, A A; Carelli, V; Loguercio Polosa, P; Cantatore, P

    2015-01-01

    Leber's hereditary optic neuropathy (LHON), the most frequent mitochondrial disease, is associated with mitochondrial DNA (mtDNA) point mutations affecting Complex I subunits, usually homoplasmic. This blinding disorder is characterized by incomplete penetrance, possibly related to several genetic modifying factors. We recently reported that increased mitochondrial biogenesis in unaffected mutation carriers is a compensatory mechanism, which reduces penetrance. Also, environmental factors such as cigarette smoking have been implicated as disease triggers. To investigate this issue further, we first assessed the relationship between cigarette smoke and mtDNA copy number in blood cells from large cohorts of LHON families, finding that smoking was significantly associated with the lowest mtDNA content in affected individuals. To unwrap the mechanism of tobacco toxicity in LHON, we exposed fibroblasts from affected individuals, unaffected mutation carriers and controls to cigarette smoke condensate (CSC). CSC decreased mtDNA copy number in all cells; moreover, it caused significant reduction of ATP level only in mutated cells including carriers. This implies that the bioenergetic compensation in carriers is hampered by exposure to smoke derivatives. We also observed that in untreated cells the level of carbonylated proteins was highest in affected individuals, whereas the level of several detoxifying enzymes was highest in carriers. Thus, carriers are particularly successful in reactive oxygen species (ROS) scavenging capacity. After CSC exposure, the amount of detoxifying enzymes increased in all cells, but carbonylated proteins increased only in LHON mutant cells, mostly from affected individuals. All considered, it appears that exposure to smoke derivatives has a more deleterious effect in affected individuals, whereas carriers are the most efficient in mitigating ROS rather than recovering bioenergetics. Therefore, the identification of genetic modifiers that

  12. Intravenous Immunoglobulin Prevents Murine Antibody-Mediated Acute Lung Injury at the Level of Neutrophil Reactive Oxygen Species (ROS) Production

    PubMed Central

    Semple, John W.; Kim, Michael; Hou, Jing; McVey, Mark; Lee, Young Jin; Tabuchi, Arata; Kuebler, Wolfgang M.; Chai, Zhong-Wei; Lazarus, Alan H.

    2012-01-01

    Transfusion-related acute lung injury (TRALI) is a leading cause of transfusion-associated mortality that can occur with any type of transfusion and is thought to be primarily due to donor antibodies activating pulmonary neutrophils in recipients. Recently, a large prospective case controlled clinical study of cardiac surgery patients demonstrated that despite implementation of male donors, a high incidence of TRALI still occurred and suggested a need for additional interventions in susceptible patient populations. To examine if intravenous immunoglobulin (IVIg) may be effective, a murine model of antibody-mediated acute lung injury that approximates human TRALI was examined. When BALB/c mice were injected with the anti-major histocompatibility complex class I antibody 34-1-2s, mild shock (reduced rectal temperature) and respiratory distress (dyspnea) were observed and pre-treatment of the mice with 2 g/kg IVIg completely prevented these symptoms. To determine IVIg's usefulness to affect severe lung damage, SCID mice, previously shown to be hypersensitive to 34-1-2s were used. SCID mice treated with 34-1-2s underwent severe shock, lung damage (increased wet/dry ratios) and 40% mortality within 2 hours. Treatment with 2 g/kg IVIg 18 hours before 34-1-2s administration completely protected the mice from all adverse events. Treatment with IVIg after symptoms began also reduced lung damage and mortality. While the prophylactic IVIg administration did not affect 34-1-2s-induced pulmonary neutrophil accumulation, bone marrow-derived neutrophils from the IVIg-treated mice displayed no spontaneous ROS production nor could they be stimulated in vitro with fMLP or 34-1-2s. These results suggest that IVIg prevents murine antibody-mediated acute lung injury at the level of neutrophil ROS production and thus, alleviating tissue damage. PMID:22363629

  13. Dihydroorotate dehydrogenase (DHODH) inhibitors affect ATP depletion, endogenous ROS and mediate S-phase arrest in breast cancer cells.

    PubMed

    Mohamad Fairus, A K; Choudhary, B; Hosahalli, S; Kavitha, N; Shatrah, O

    2017-04-01

    Dihydroorotate dehydrogenase (DHODH) is the key enzyme in de novo biosynthesis of pyrimidine in both prokaryotes and eukaryotes. The de novo pathway of pyrimidine biosynthesis is essential in cancer cells proliferation. Leflunomide is an approved DHODH inhibitor that has been widely used for the treatment of arthritis. Similarly, brequinar sodium is another DHODH inhibitor that showed anti-tumour effect in MC38 colon carcinoma cells when used in combination with fluorouracil. Despite the potential role of DHODH inhibitors in cancer therapy, their mechanisms of action remain obscure and await further elucidation. Here, we evaluated the effect of DHODH inhibitors on the production of ATP and ROS in sensitive and non-sensitive breast cancer cells. Subsequently, the effects of DHODH inhibitors on cell cycle as well as on signalling molecules such as p53, p65 and STAT6 were evaluated in sensitive T-47D and non-sensitive MDAMB-436 cells. The correlations between DHODH protein expression, proliferation speed and sensitivity to DHODH inhibitors were also investigated in a panel of cancer cell lines. DHODH inhibitors-sensitive T-47D and MDAMB-231 cells appeared to preserve ROS production closely to endogenous ROS level whereas the opposite was observed in non-sensitive MDAMB-436 and W3.006 cells. In addition, we observed approximately 90% of intracellular ATP depletion in highly sensitive T-47D and MDAMB-231 cells compared to non-sensitive MDAMB-436 cells. There was significant over-expression of p53, p65 and STAT6 signalling molecules in sensitive cells which may be involved in mediating the S-phase arrest in cell cycle progression. The current study suggests that DHODH inhibitors are most effective in cells that express high levels of DHODH enzyme. The inhibition of cell proliferation by these inhibitors appears to be accompanied by ROS production as well as ATP depletion. The increase in expression of signalling molecules observed may be due to pyrimidine depletion

  14. FTO Inhibits Insulin Secretion and Promotes NF-κB Activation through Positively Regulating ROS Production in Pancreatic β cells

    PubMed Central

    Fan, Hong-Qi; He, Wei; Xu, Kuan-Feng; Wang, Zhi-Xiao; Xu, Xin-Yu; Chen, Heng

    2015-01-01

    FTO (Fat mass and obesity-associated) is associated with increased risk of obesity and type 2 diabetes incurrence. Pancreas islet β cells dysfunction and insulin resistance are major causes of type 2 diabetes. However, whether FTO plays an important functional role in pancreatic β cells as well as the related molecular mechanism is still unclear. In the present study, the tissue expression profile of FTO was firstly determined using quantitative PCR and western blot. FTO is widely expressed in various tissues and presented with relative high expression in pancreas tissue, especially in endocrine pancreas. FTO overexpression in MIN6 cells achieved by lentivirus delivery significantly inhibits insulin secretion in the presence of glucose stimulus as well as KCl. FTO silence has no effect on insulin secretion of MIN6 cells. However, FTO overexpression doesn’t affect the transcription of insulin gene. Furthermore, reactive oxygen species (ROS) production and NF-κB activation are significantly promoted by FTO overexpression. Inhibition of intracellular ROS production by N-acetyl-L-cysteine (NAC) can alleviate NF-κB activation and restore the insulin secretion mediated by FTO overexpression. A whole transcript-microarray is employed to analyze the differential gene expression mediated by FTO overexpression. The genes which are modulated by FTO are involved in many important biological pathways such as G-protein coupled receptor signaling and NF-κB signaling. Therefore, our study indicates that FTO may contribute to pancreas islet β cells dysfunction and the inhibition of FTO activity is a potential target for the treatment of diabetes. PMID:26018652

  15. FTO Inhibits Insulin Secretion and Promotes NF-κB Activation through Positively Regulating ROS Production in Pancreatic β cells.

    PubMed

    Fan, Hong-Qi; He, Wei; Xu, Kuan-Feng; Wang, Zhi-Xiao; Xu, Xin-Yu; Chen, Heng

    2015-01-01

    FTO (Fat mass and obesity-associated) is associated with increased risk of obesity and type 2 diabetes incurrence. Pancreas islet β cells dysfunction and insulin resistance are major causes of type 2 diabetes. However, whether FTO plays an important functional role in pancreatic β cells as well as the related molecular mechanism is still unclear. In the present study, the tissue expression profile of FTO was firstly determined using quantitative PCR and western blot. FTO is widely expressed in various tissues and presented with relative high expression in pancreas tissue, especially in endocrine pancreas. FTO overexpression in MIN6 cells achieved by lentivirus delivery significantly inhibits insulin secretion in the presence of glucose stimulus as well as KCl. FTO silence has no effect on insulin secretion of MIN6 cells. However, FTO overexpression doesn't affect the transcription of insulin gene. Furthermore, reactive oxygen species (ROS) production and NF-κB activation are significantly promoted by FTO overexpression. Inhibition of intracellular ROS production by N-acetyl-L-cysteine (NAC) can alleviate NF-κB activation and restore the insulin secretion mediated by FTO overexpression. A whole transcript-microarray is employed to analyze the differential gene expression mediated by FTO overexpression. The genes which are modulated by FTO are involved in many important biological pathways such as G-protein coupled receptor signaling and NF-κB signaling. Therefore, our study indicates that FTO may contribute to pancreas islet β cells dysfunction and the inhibition of FTO activity is a potential target for the treatment of diabetes.

  16. Oleic/Palmitate Induces Apoptosis in Human Articular Chondrocytes via Upregulation of NOX4 Expression and ROS Production.

    PubMed

    Fu, Dapeng; Lu, Jianmin; Yang, Sheng

    2016-07-01

    The association between obesity and reactive oxygen species (ROS) production in osteoarthritis (OA) patients has already been identified. However, the specific mechanism underlying ROS production and OA progression has never been elucidated. Osteoarthritic cartilage was obtained from patients undergoing total hip arthroplasty, and chondrocytes were isolated from these tissues. The cells were treated with varying concentrations (10,100,500 μM, and 5 mM) of oleic/palmitate (O/P) mixture at different times, that is at 6, 24, and 48 h. Cell viability was determined using MTT assay. ROS production was detected using immunofluorescence and flow cytometry. The protein levels of NOX4 and cleaved-caspase3 were detected using Western blot assay. O/P significantly decreased cell viability at 10, 100, 500 μM, and 5 mM in a dose-dependent manner. Furthermore, the cell viability was reduced by 500 μM O/P mixture at 6, 24, and 48 h in a time-dependent manner. Pretreatment with 500 μM O/P significantly enhanced ROS production and cell apoptosis in chondrocytes. Furthermore, treatment with O/P mixture significantly enhanced the expression of NOX4 and caspase3 activation in a dose- and time- dependent manner. More importantly, inhibition of NOX4 could partially eliminate O/P-induced chondrocytes apoptosis by reducing ROS production. To conclude, O/P treatment enhances ROS production and cell apoptosis mainly by upregulating the protein levels of NOX4 and caspase3 activation in chondrocytes, indicating a potential therapeutic target of OA in obesity patients.

  17. ROS production as a common mechanism of ENaC regulation by EGF, insulin, and IGF-1.

    PubMed

    Ilatovskaya, Daria V; Pavlov, Tengis S; Levchenko, Vladislav; Staruschenko, Alexander

    2013-01-01

    The epithelial Na(+) channel (ENaC) is a key transporter participating in the fine tuning of Na(+) reabsorption in the nephron. ENaC activity is acutely upregulated by epidermal growth factor (EGF), insulin, and insulin-like growth factor-1 (IGF-1). It was also proposed that reactive oxygen species (ROS) have a stimulatory effect on ENaC. Here we studied whether effects of EGF, insulin, and IGF-1 correlate with ROS production in the mouse cortical collecting duct (mpkCCD(c14)) cells. Western blotting confirmed the expression of the NADPH oxidase complex subunits in these cells. Treatment of mpkCCD(c14) cells with EGF, insulin, or IGF-1 evoked an increase in ROS production as measured by CM-H(2)DCF-DA fluorescence. ROS production caused by a xanthine-xanthine oxidase reaction also resulted in a significant elevation in short-circuit current through the mpkCCD(c14) monolayer. Transepithelial current measurements showed an acute increase of amiloride-sensitive current through the mpkCCD(c14) monolayer in response to EGF, insulin, or IGF-1. Pretreatment with the nonselective NADPH oxidase activity inhibitor apocynin blunted both ROS production and increase in ENaC-mediated current in response to these drugs. To further test whether NADPH oxidase subunits are involved in the effect of EGF, we used a stable M-1 cell line with a knockdown of Rac1, which is one of the key subunits of the NADPH oxidase complex, and measured amiloride-sensitive currents in response to EGF. In contrast to control cells, EGF had no effect in Rac1 knockdown cells. We hypothesize that EGF, insulin, and IGF-1 have a common stimulatory effect on ENaC mediated by ROS production.

  18. Salvianolic acid A inhibits angiotensin II-induced proliferation of human umbilical vein endothelial cells by attenuating the production of ROS

    PubMed Central

    Yang, Luan-luan; Li, Dong-ye; Zhang, Yan-bin; Zhu, Man-yi; Chen, Dan; Xu, Tong-da

    2012-01-01

    Aim: To investigate the action of salvianolic acid A (SalA) on angiotensin II (Ang II)-induced proliferation of human umbilical vein endothelial cells (HUVECs) and the possible signaling pathways mediating this action. Methods: Cell proliferation was examined with MTT assay. The expression levels of Src phosphorylation (phospho-Src), Akt phosphorylation (phospho-Akt), and NADPH oxidase 4 (Nox4) in HUVECs were determined by Western blot. The production of reactive oxygen species (ROS) was estimated using fluorescence-activated cell sorting (FACS). Results: SalA (6.25–50 μmol/L) did not affect the viability of HUVECs. Treatment of HUVECs with Ang II (1 μmol/L) markedly increased the cell viability; pretreatment of HUVECs with SalA (12.5, 25 and 50 μmol/L) prevented Ang II-induced increase of the cell viability in a concentration-dependent manner. Treatment of HUVECs with Ang II (1 μmol/L) markedly up-regulated the protein expression levels of phospho-Src, phospho-Akt (473) and Nox4; pretreatment of HUVECs with SalA (12.5, 25 and 50 μmol/L) blocked all the effects in a concentration-dependent manner. Treatment of HUVECs with Ang II (1 μmol/L) dramatically increased ROS production in HUVECs; pretreatment of HUVECs with SalA (12.5, 25 and 50 μmol/L) blocked the ROS production in a concentration-dependent manner. Conclusion: SalA inhibits Ang II-induced proliferation of HUVECs via reducing the expression levels of phospho-Src and phospho-Akt (473), thereby attenuating the production of ROS. PMID:22101169

  19. Effect of captopril and the bradykinin-PKC pathway on ROS production in type 1 diabetic rats.

    PubMed

    Rodrigues de Araujo, Glaucy; Granato de Faria, Karine; Lima, Wanderson Geraldo; Pádua, Bruno da Cruz; Rossoni, Joamyr Victor; Souza, Aline Arlindo; Chianca-Júnior, Deoclecio; Silva, Marcelo Eustáquio; Pedrosa, Maria Lucia; Chaves, Miriam Martins; Costa, Daniela Caldeira

    2011-12-01

    The aim of this study was to investigate the possible effects of captopril as a promoter in modulating the oxidant-antioxidant balance in rats with type 1 diabetes, and the influence of protein kinase C (PKC) pathways in the production of reactive oxygen species (ROS) induced by bradykinin in type 1 diabetic rats. This study evaluated the redox status in both the cardiac tissue and at the cellular level (neutrophils). Two concentrations of captopril were utilized: (i) 5 mg·(kg body mass)(-1), which was considered a therapeutic dose; and (ii) 10 mg·(kg body mass)(-1). Body mass, plasma glucose, and serum insulin were evaluated. To investigate the redox status of the cardiac tissue, we analyzed lipid peroxidation, concentration of carbonylated protein, catalase activity, and the concentration of glutathione. For a more accurate assessment of the possible antioxidant effect of captopril, we also analyzed ROS in neutrophils (in vivo), and ROS production induced by bradykinin and the influence of the PKC pathway in this production (in vitro). Our data show that the hearts of diabetic animals have increased oxidative damage, exemplified by the increased concentration of carbonylated protein and thiobarbituric acid reactive substances (TBARS). However, animals treated with captopril at both concentrations showed lower concentrations of carbonylated protein compared with untreated diabetic animals. We found an increase of catalase activity in the heart of diabetic rats, which was reversed by captopril treatment at both of the dosages tested. Our data showed that captopril was able to reduce ROS production in the neutrophils of diabetic rats at a dose of 10 mg captopril·(kg body mass)(-1). However, the antioxidant effect of captopril is independent of bradykinin. Diabetes induces oxidative stress, and these results suggest that captopril has an antioxidant effect and can modulate the production of ROS in circulating neutrophils.

  20. Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating β-oxidation-dependent mitochondrial ROS production.

    PubMed

    Hall, Christopher J; Boyle, Rachel H; Astin, Jonathan W; Flores, Maria Vega; Oehlers, Stefan H; Sanderson, Leslie E; Ellett, Felix; Lieschke, Graham J; Crosier, Kathryn E; Crosier, Philip S

    2013-08-06

    Evidence suggests the bactericidal activity of mitochondria-derived reactive oxygen species (mROS) directly contributes to killing phagocytozed bacteria. Infection-responsive components that regulate this process remain incompletely understood. We describe a role for the mitochondria-localizing enzyme encoded by Immunoresponsive gene 1 (IRG1) during the utilization of fatty acids as a fuel for oxidative phosphorylation (OXPHOS) and associated mROS production. In a zebrafish infection model, infection-responsive expression of zebrafish irg1 is specific to macrophage-lineage cells and is regulated cooperatively by glucocorticoid and JAK/STAT signaling pathways. Irg1-depleted macrophage-lineage cells are impaired in their ability to utilize fatty acids as an energy substrate for OXPHOS-derived mROS production resulting in defective bactericidal activity. Additionally, the requirement for fatty acid β-oxidation during infection-responsive mROS production and bactericidal activity toward intracellular bacteria is conserved in murine macrophages. These results reveal IRG1 as a key component of the immunometabolism axis, connecting infection, cellular metabolism, and macrophage effector function.

  1. High activity of mitochondrial glycerophosphate dehydrogenase and glycerophosphate-dependent ROS production in prostate cancer cell lines

    SciTech Connect

    Chowdhury, Subir K.R.; Gemin, Adam; Singh, Gurmit; E-mail: gurmit.singh@hrcc.on.ca

    2005-08-12

    Most malignant cells are highly glycolytic and produce high levels of reactive oxygen species (ROS) compared to normal cells. Mitochondrial glycerophosphate dehydrogenase (mGPDH) participates in the reoxidation of cytosolic NADH by delivering reducing equivalents from this molecule into the electron transport chain, thus sustaining glycolysis. Here, we investigate the role of mGPDH in maintaining an increased rate of glycolysis and evaluate glycerophosphate-dependent ROS production in prostate cancer cell lines (LNCaP, DU145, PC3, and CL1). Immunoblot, polarographic, and spectrophotometric analyses revealed that mGPDH abundance and activity was significantly elevated in prostate cancer cell lines when compared to the normal prostate epithelial cell line PNT1A. Furthermore, both the glycolytic capacity and glycerophosphate-dependent ROS production was increased 1.68- to 4.44-fold and 5- to 7-fold, respectively, in prostate cancer cell lines when compared to PNT1A cells. Overall, these data demonstrate that mGPDH is involved in maintaining a high rate of glycolysis and is an important site of electron leakage leading to ROS production in prostate cancer cells.

  2. High activity of mitochondrial glycerophosphate dehydrogenase and glycerophosphate-dependent ROS production in prostate cancer cell lines.

    PubMed

    Chowdhury, Subir K R; Gemin, Adam; Singh, Gurmit

    2005-08-12

    Most malignant cells are highly glycolytic and produce high levels of reactive oxygen species (ROS) compared to normal cells. Mitochondrial glycerophosphate dehydrogenase (mGPDH) participates in the reoxidation of cytosolic NADH by delivering reducing equivalents from this molecule into the electron transport chain, thus sustaining glycolysis. Here, we investigate the role of mGPDH in maintaining an increased rate of glycolysis and evaluate glycerophosphate-dependent ROS production in prostate cancer cell lines (LNCaP, DU145, PC3, and CL1). Immunoblot, polarographic, and spectrophotometric analyses revealed that mGPDH abundance and activity was significantly elevated in prostate cancer cell lines when compared to the normal prostate epithelial cell line PNT1A. Furthermore, both the glycolytic capacity and glycerophosphate-dependent ROS production was increased 1.68- to 4.44-fold and 5- to 7-fold, respectively, in prostate cancer cell lines when compared to PNT1A cells. Overall, these data demonstrate that mGPDH is involved in maintaining a high rate of glycolysis and is an important site of electron leakage leading to ROS production in prostate cancer cells.

  3. DJ-1 links muscle ROS production with metabolic reprogramming and systemic energy homeostasis in mice

    PubMed Central

    Shi, Sally Yu; Lu, Shun-Yan; Sivasubramaniyam, Tharini; Revelo, Xavier S.; Cai, Erica P.; Luk, Cynthia T.; Schroer, Stephanie A.; Patel, Prital; Kim, Raymond H.; Bombardier, Eric; Quadrilatero, Joe; Tupling, A. Russell; Mak, Tak W.; Winer, Daniel A.; Woo, Minna

    2015-01-01

    Reactive oxygen species (ROS) have been linked to a wide variety of pathologies, including obesity and diabetes, but ROS also act as endogenous signalling molecules, regulating numerous biological processes. DJ-1 is one of the most evolutionarily conserved proteins across species, and mutations in DJ-1 have been linked to some cases of Parkinson's disease. Here we show that DJ-1 maintains cellular metabolic homeostasis via modulating ROS levels in murine skeletal muscles, revealing a role of DJ-1 in maintaining efficient fuel utilization. We demonstrate that, in the absence of DJ-1, ROS uncouple mitochondrial respiration and activate AMP-activated protein kinase, which triggers Warburg-like metabolic reprogramming in muscle cells. Accordingly, DJ-1 knockout mice exhibit higher energy expenditure and are protected from obesity, insulin resistance and diabetes in the setting of fuel surplus. Our data suggest that promoting mitochondrial uncoupling may be a potential strategy for the treatment of obesity-associated metabolic disorders. PMID:26077864

  4. Reactive oxygen species (ROS) induced cytokine production and cytotoxicity of PAMAM dendrimers in J774A.1 cells

    SciTech Connect

    Naha, Pratap C.; Davoren, Maria; Lyng, Fiona M.; Byrne, Hugh J.

    2010-07-15

    The immunotoxicity of three generations of polyamidoamine (PAMAM) dendrimers (G-4, G-5 and G-6) was evaluated in mouse macrophage cells in vitro. Using the Alamar blue and MTT assays, a generation dependent cytotoxicity of the PAMAM dendrimers was found whereby G-6 > G-5 > G-4. The toxic response of the PAMAM dendrimers correlated well with the number of surface primary amino groups, with increasing number resulting in an increase in toxic response. An assessment of intracellular ROS generation by the PAMAM dendrimers was performed by measuring the increased fluorescence as a result of intracellular oxidation of Carboxy H{sub 2}DCFDA to DCF both quantitatively using plate reader and qualitatively by confocal laser scanning microscopy. The inflammatory mediators macrophage inflammatory protein-2 (MIP-2), tumour necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6, (IL-6) were measured by the enzyme linked immunosorbant assay (ELISA) following exposure of mouse macrophage cells to PAMAM dendrimers. A generation dependent ROS and cytokine production was found, which correlated well with the cytotoxicological response and therefore number of surface amino groups. A clear time sequence of increased ROS generation (maximum at {approx} 4 h), TNF-{alpha} and IL-6 secretion (maximum at {approx} 24 h), MIP-2 levels and cell death ({approx} 72 h) was observed. The intracellular ROS generation and cytokine production induced cytotoxicity point towards the mechanistic pathway of cell death upon exposure to PAMAM dendrimers.

  5. Prostaglandin E2 is critical for the development of niacin-deficiency-induced photosensitivity via ROS production

    NASA Astrophysics Data System (ADS)

    Sugita, Kazunari; Ikenouchi-Sugita, Atsuko; Nakayama, Yasuko; Yoshioka, Haruna; Nomura, Takashi; Sakabe, Jun-Ichi; Nakahigashi, Kyoko; Kuroda, Etsushi; Uematsu, Satoshi; Nakamura, Jun; Akira, Shizuo; Nakamura, Motonobu; Narumiya, Shuh; Miyachi, Yoshiki; Tokura, Yoshiki; Kabashima, Kenji

    2013-10-01

    Pellagra is a photosensitivity syndrome characterized by three ``D's'': diarrhea, dermatitis, and dementia as a result of niacin deficiency. However, the molecular mechanisms of photosensitivity dermatitis, the hallmark abnormality of this syndrome, remain unclear. We prepared niacin deficient mice in order to develop a murine model of pellagra. Niacin deficiency induced photosensitivity and severe diarrhea with weight loss. In addition, niacin deficient mice exhibited elevated expressions of COX-2 and PGE syntheses (Ptges) mRNA. Consistently, photosensitivity was alleviated by a COX inhibitor, deficiency of Ptges, or blockade of EP4 receptor signaling. Moreover, enhanced PGE2 production in niacin deficiency was mediated via ROS production in keratinocytes. In line with the above murine findings, human skin lesions of pellagra patients confirmed the enhanced expression of Ptges. Niacin deficiency-induced photosensitivity was mediated through EP4 signaling in response to increased PGE2 production via induction of ROS formation.

  6. ROS Production and Scavenging under Anoxia and Re-Oxygenation in Arabidopsis Cells: A Balance between Redox Signaling and Impairment

    PubMed Central

    Paradiso, Annalisa; Caretto, Sofia; Leone, Antonella; Bove, Anna; Nisi, Rossella; De Gara, Laura

    2016-01-01

    Plants can frequently experience low oxygen concentrations due to environmental factors such as flooding or waterlogging. It has been reported that both anoxia and the transition from anoxia to re-oxygenation determine a strong imbalance in the cellular redox state involving the production of reactive oxygen species (ROS) and nitric oxide (NO). Plant cell cultures can be a suitable system to study the response to oxygen deprivation stress since a close control of physicochemical parameters is available when using bioreactors. For this purpose, Arabidopsis cell suspension cultures grown in a stirred bioreactor were subjected to a severe anoxic stress and analyzed during anoxia and re-oxygenation for alteration in ROS and NO as well as in antioxidant enzymes and metabolites. The results obtained by confocal microscopy showed the dramatic increase of ROS, H2O2, and NO during the anoxic shock. All the ascorbate-glutathione related parameters were altered during anoxia but restored during re-oxygenation. Anoxia also induced a slight but significant increase of α-tocopherol levels measured at the end of the treatment. Overall, the evaluation of cell defenses during anoxia and re-oxygenation in Arabidopsis cell cultures revealed that the immediate response involving the overproduction of reactive species activated the antioxidant machinery including ascorbate-glutathione system, α-tocopherol and the ROS-scavenging enzymes ascorbate peroxidase, catalase, and peroxidase making cells able to counteract the stress toward cell survival. PMID:27990148

  7. Curcumin derivative WZ35 efficiently suppresses colon cancer progression through inducing ROS production and ER stress-dependent apoptosis

    PubMed Central

    Zhang, Junru; Feng, Zhiguo; Wang, Chunhua; Zhou, Huiping; Liu, Weidong; Kanchana, Karvannan; Dai, Xuanxuan; Zou, Peng; Gu, Junlian; Cai, Lu; Liang, Guang

    2017-01-01

    Colon cancer is characterized by its fast progression and poor prognosis, and novel agents of treating colon cancer are urgently needed. WZ35, a synthetic curcumin derivative, has been reported to exhibit promising antitumor activity. Here, we investigated the in vitro and in vivo activities of WZ35 and explored the underlying mechanisms in colon cancer cell lines. WZ35 treatment significantly decreased the cell viability associated with G2/M cell cycle arrest and apoptosis induction in colon cancer cell lines. We also show that WZ35 is highly effective in inhibiting tumor growth in a CT26 xenograft mouse model. Mechanistically, WZ35 treatment significantly induced reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress in CT26 cells. Abrogation of ROS production by N-acetylcysteine (NAC) co-treatment almost totally reversed the WZ35-induced cell apoptosis and ER stress activation. Inhibition of p-PERK by GSK2606414 can significantly reverse WZ35-induced cell apoptosis in CT26 cells. Taken together, the curcumin derivative WZ35 exhibited anti-tumor effects in colon cancer cells both in vitro and in vivo, via a ROS-ER stress-mediated mechanism. These findings indicate that activating ROS generation could be an important strategy for the treatment of colon cancers. PMID:28337376

  8. ROS production is essential for the apoptotic function of E2F1 in pheochromocytoma and neuroblastoma cell lines.

    PubMed

    Espada, Lilia; Meo-Evoli, Nathalie; Sancho, Patricia; Real, Sebastian; Fabregat, Isabel; Ambrosio, Santiago; Tauler, Albert

    2012-01-01

    In this study we demonstrate that accumulation of reactive oxygen species (ROS) is essential for E2F1 mediated apoptosis in ER-E2F1 PC12 pheochromocytoma, and SH-SY5Y and SK-N-JD neuroblastoma stable cell lines. In these cells, the ER-E2F1 fusion protein is expressed in the cytosol; the addition of 4-hydroxytamoxifen (OHT) induces its translocation to the nucleus and activation of E2F1target genes. Previously we demonstrated that, in ER-E2F1 PC12 cells, OHT treatment induced apoptosis through activation of caspase-3. Here we show that caspase-8 activity did not change upon treatment with OHT. Moreover, over-expression of Bcl-xL arrested OHT-induced apoptosis; by contrast, over-expression of c-FLIP, did not have any effect on OHT-induced apoptosis. OHT addition induces BimL expression, its translocation to mitochondria and activation of Bax, which is paralleled by diminished mitochondrial enrichment of Bcl-xL. Treatment with a Bax-inhibitory peptide reduced OHT-induced apoptosis. These results point out the essential role of mitochondria on the apoptotic process driven by E2F1. ROS accumulation followed E2F1 induction and treatment with the antioxidant N-acetylcysteine, inhibited E2F1-induced Bax translocation to mitochondria and subsequent apoptosis. The role of ROS in mediating OHT-induced apoptosis was also studied in two neuroblastoma cell lines, SH-SY5Y and SK-N-JD. In SH-SY5Y cells, activation of E2F1 by the addition of OHT induced ROS production and apoptosis, whereas over-expression of E2F1 in SK-N-JD cells failed to induce either response. Transcriptional profiling revealed that many of the genes responsible for scavenging ROS were down-regulated following E2F1-induction in SH-SY5Y, but not in SK-N-JD cells. Finally, inhibition of GSK3β blocked ROS production, Bax activation and the down regulation of ROS scavenging genes. These findings provide an explanation for the apparent contradictory role of E2F1 as an apoptotic agent versus a cell cycle activator.

  9. Iminophosphorane-organogold(III) complexes induce cell death through mitochondrial ROS production

    PubMed Central

    Vela, Laura; Contel, María; Palomera, Luis; Azaceta, Gemma; Marzo, Isabel

    2011-01-01

    Gold compounds are being investigated as potential antitumor drugs. Some gold(III) derivatives have shown to induce cell death in solid tumors but their mechanism of action differs from that of cisplatin, since most of these compounds do not bind to DNA. We have explored cellular events triggered by three different iminophosphorane-organo gold(III) compounds in leukemia cells (a neutral compound with two chloride ligands [Au{κ2-C,N-C6H4(PPh2=N(C6H5)-2}Cl2] 1, and two cationic compounds with either a dithiocarbamate ligand [Au{κ2-C,N-C6H4(PPh2=N(C6H5)-2}(S2CN-Me2)]PF6 2, or a water-soluble phosphine and a chloride ligand [Au{κ2-C,N-C6H4(PPh2=N(C6H5)-2}(P{Cp(m-C6H4-SO3Na)2}3) Cl]PF6 3). All three compounds showed higher toxicity against leukemia cells when compared to normal T-lymphocytes. Compounds 1 and 2 induced both necrosis and apoptosis, while 3 was mainly apoptotic. Necrotic cell death induced by 1 and 2 was Bax/Bak- and caspase-independent, while apoptosis induced by 3 was Bax/Bak-dependent. Reactive oxygen species (ROS) production at the mitochondrial level was a critical step in the antitumor effect of these compounds. PMID:21864808

  10. Hyperglycemia Induces Cellular Hypoxia through Production of Mitochondrial ROS Followed by Suppression of Aquaporin-1.

    PubMed

    Sada, Kiminori; Nishikawa, Takeshi; Kukidome, Daisuke; Yoshinaga, Tomoaki; Kajihara, Nobuhiro; Sonoda, Kazuhiro; Senokuchi, Takafumi; Motoshima, Hiroyuki; Matsumura, Takeshi; Araki, Eiichi

    2016-01-01

    We previously proposed that hyperglycemia-induced mitochondrial reactive oxygen species (mtROS) generation is a key event in the development of diabetic complications. Interestingly, some common aspects exist between hyperglycemia and hypoxia-induced phenomena. Thus, hyperglycemia may induce cellular hypoxia, and this phenomenon may also be involved in the pathogenesis of diabetic complications. In endothelial cells (ECs), cellular hypoxia increased after incubation with high glucose (HG). A similar phenomenon was observed in glomeruli of diabetic mice. HG-induced cellular hypoxia was suppressed by mitochondria blockades or manganese superoxide dismutase (MnSOD) overexpression, which is a specific SOD for mtROS. Overexpression of MnSOD also increased the expression of aquaporin-1 (AQP1), a water and oxygen channel. AQP1 overexpression in ECs suppressed hyperglycemia-induced cellular hypoxia, endothelin-1 and fibronectin overproduction, and apoptosis. Therefore, hyperglycemia-induced cellular hypoxia and mtROS generation may promote hyperglycemic damage in a coordinated manner.

  11. Rho kinase activation and ROS production contributes to the cooling enhanced contraction in cutaneous equine digital veins.

    PubMed

    Zerpa, H; Berhane, Y; Woodcock, H; Elliott, J; Bailey, S R

    2010-07-01

    A decrease in environmental temperature can directly affect the contractility of cutaneous vasculature, mediated in part by alpha(2)-adrenoceptors. Most of the cellular mechanisms underlying the cooling-enhanced contractility to alpha(2)-adrenoceptor agonists have been reported in cutaneous arteries but little information is available on cutaneous veins. To investigate the cellular mechanisms associated with the cooling-enhanced contraction to UK-14304 (alpha(2)-adrenoceptor agonist), isolated equine digital veins (EDVs) were studied at 30 degrees C and 22 degrees C. The effects of inhibitors were studied on the contractile response to UK-14304 (0.1 microM). The cooling-enhanced responses were inhibited by Rho kinase inhibitors [maximum response to UK-14304 95.2 +/- 8% of response to depolarizing Krebs solution (DKS) in control vessels cooled to 22 degrees C, compared with 31.4 +/- 6% in the presence of fasudil 1 microM and 75.8 +/- 6% with Y-27632 0.1 microM] and the effects of these inhibitors were considerably less at 30 degrees C (control response 56.4 +/- 5% of DKS; 34.9 +/- 6% with fasudil 1 microM and 50.6 +/- 9% with Y-27632 0.1 microM). Furthermore, Western blotting showed that one of the downstream targets for Rho kinase activity, ezrin/radixin/moesin, was phosphorylated after cooling and reduced by fasudil (1 microM) only at 22 degrees C. The activation of protein kinase C contributed to the contractile response, but predominantly at 30 degrees C (maximum response 82.3 +/- 9% of DKS for control; 57.7 +/- 10% in the presence of chelerythrine 10 microM) with no significant effect at 22 degrees C. The reduction of the response at 22 degrees C by antioxidants, rotenone (14% reduction), and tempol (21% reduction) suggested the contribution of reactive oxygen species (ROS). No evidence was obtained to support the participation of tyrosine kinase. These data demonstrate that Rho kinase activation and the production of ROS contributes to the cooling

  12. Photocatalytic ROS production and phototoxicity of titanium dioxide nanoparticles is dependent on solar UV radiation spectrum

    EPA Science Inventory

    Generation of reactive oxygen species (ROS) by titanium dioxide nanoparticles (nano-TiO2) and its consequent phototoxicity to Daphnia magna were measured under different solar UV radiation spectrum by applying a series of optical filters in a solar simulator. Removing UVB (280-32...

  13. TRPV1 mediates cell death in rat synovial fibroblasts through calcium entry-dependent ROS production and mitochondrial depolarization

    SciTech Connect

    Hu Fen; Sun Wenwu; Zhao Xiao Ting; Cui Zongjie Yang Wenxiu

    2008-05-16

    Synoviocyte hyperplasia is critical for rheumatoid arthritis, therefore, potentially an important target for therapeutics. It was found in this work that a TRPV1 agonist capsaicin, and acidic solution (pH 5.5) induced increases in cytosolic calcium concentration ([Ca{sup 2+}]{sub c}) and reactive oxygen species (ROS) production in synoviocytes isolated from a rat model of collagen-induced arthritis. The increases in both [Ca{sup 2+}]{sub c} and ROS production were completely abolished in calcium-free buffer or by a TRPV1 antagonist capsazepine. Further experiments revealed that capsaicin and pH 5.5 solution caused mitochondrial membrane depolarization and reduction in cell viability; such effects were inhibited by capsazepine, or the NAD(P)H oxidase inhibitor diphenylene iodonium. Both capsaicin and pH 5.5 buffer induced apoptosis as shown by nuclear condensation and fragmentation. Furthermore, RT-PCR readily detected TRPV1 mRNA expression in the isolated synoviocytes. Taken together, these data indicated that TRPV1 activation triggered synoviocyte death by [Ca{sup 2+}]{sub c} elevation, ROS production, and mitochondrial membrane depolarization.

  14. Testing the vicious cycle theory of mitochondrial ROS production: effects of H2O2 and cumene hydroperoxide treatment on heart mitochondria.

    PubMed

    Sanz, Alberto; Caro, Pilar; Gómez, José; Barja, Gustavo

    2006-04-01

    Vicious cycle theories of aging and oxidative stress propose that ROS produced by the mitochondrial electron transport chain damage the mitochondria leading exponentially to more ROS production and mitochondrial damage. Although this theory is widely discussed in the field of research on aging and oxidative stress, there is little supporting data. Therefore, in order to help clarify to what extent the vicious cycle theory of aging is correct, we have exposed mitochondria in vitro to different concentrations of hydrogen peroxide or cumene-hydroperoxide (0, 30, 100 and 500 muM). We have found that 30 muM hydrogen peroxide (or higher concentrations) inhibit oxygen consumption in state 3 and increase ROS production with pyruvate/malate but not with succinate as substrate, indicating that these effects occur specifically at complex I. Similar levels of cumene-OOH inhibit state 3 respiration with both kinds of substrates, and increase ROS production in both state 4 and state 3 with pyruvate/malate and with succinate. The effects of cumene-OOH on ROS generation are due to action of the peroxide in the complex III or in the complex III plus complex I ROS generators. In all cases, the increase in ROS production occurred at a threshold level of peroxide exposure without further exponential increase in ROS generation. These results are consistent with the idea that ROS production can contribute to increase oxidative stress in old animals, but the results do not fit with a vicious cycle theory in which peroxide generation leads exponentially to more and more ROS production with age.

  15. ROS Hexapod

    NASA Technical Reports Server (NTRS)

    Davis, Kirsch; Bankieris, Derek

    2016-01-01

    As an intern project for NASA Johnson Space Center (JSC), my job was to familiarize myself and operate a Robotics Operating System (ROS). The project outcome will convert existing software assets into ROS using nodes, enabling a robotic Hexapod to communicate and to be functional and controlled by an existing PlayStation 3 (PS3) controller. Existing control algorithms and current libraries have no ROS capabilities within the Hexapod C++ source code. Conversion of C++ codes to ROS will enable existing code to be compatible with ROS, and will be controlled using existing PS3 controller. Furthermore, my job description is to design ROS messages and script programs which will enable assets to participate in the ROS ecosystem. In addition, an open source software (IDE) Arduino board will be integrated in the ecosystem with designing circuitry on a breadboard to add additional behavior with push buttons, potentiometers and other simple elements in the electrical circuitry. Other projects with the Arduino will be a GPS module digital clock that will run off 22 satellites to show accurate real time using a GPS signal and internal patch antenna to communicate with satellites.

  16. Perfluorooctane sulfonate (PFOS) induces reactive oxygen species (ROS) production in human microvascular endothelial cells: role in endothelial permeability

    PubMed Central

    Qian, Yong; Ducatman, Alan; Ward, Rebecca; Leonard, Steve; Bukowski, Valerie; Guo, Nancy Lan; Shi, Xianglin; Vallyathan, Val; Castranova, Vincent

    2011-01-01

    Perfluorooctane sulfonate (PFOS) is a member of perfluoroalkyl acids (PFAA) containing an 8-carbon backbone. PFOS is a man-made chemical with carbon-fluorine bonds that are one of the strongest in organic chemistry and widely used in industry. Human occupational and environmental exposure to PFOS occurs globally. PFOS is non-biodegradable and persistent in the human body and environment. In this study, data demonstrated that exposure of human microvascular endothelial cells (HMVEC) to PFOS induced the production of reactive oxygen species (ROS) at both high and low concentrations. Morphologically, it was found that exposure to PFOS induced actin filament remodeling and endothelial permeability changes in HMVEC. Furthermore, data demonstrated the production of ROS plays a regulatory role in PFOS-induced actin filament remodeling and the increase in endothelial permeability. Our results indicate that the generation of ROS may play a role in PFOS-induced aberrations of the endothelial permeability barrier. The results generated from this study may provide a new insight into the potential adverse effects of PFOS exposure on humans at the cellular level. PMID:20391123

  17. Cysteine dietary supplementation reverses the decrease in mitochondrial ROS production at complex I induced by methionine restriction.

    PubMed

    Gomez, A; Gomez, J; Lopez Torres, M; Naudi, A; Mota-Martorell, N; Pamplona, R; Barja, G

    2015-06-01

    It has been described that dietary cysteine reverses many of the beneficial changes induced by methionine restriction in aging rodents. In this investigation male Wistar rats were subjected to diets low in methionine, supplemented with cysteine, or simultaneously low in methionine and supplemented with cysteine. The results obtained in liver showed that cysteine supplementation reverses the decrease in mitochondrial ROS generation induced by methionine restriction at complex I. Methionine restriction also decreased various markers of oxidative and non-oxidative stress on mitochondrial proteins which were not reversed by cysteine. Instead, cysteine supplementation also lowered protein damage in association with decreases in mTOR activation. The results of the present study add the decrease in mitochondrial ROS production to the various beneficial changes induced by methionine restriction that are reversed by cysteine dietary supplementation.

  18. Biological evaluation of twenty-eight ferrocenyl tetrasubstituted olefins: cancer cell growth inhibition, ROS production and hemolytic activity.

    PubMed

    de Oliveira, Alane Cabral; Hillard, Elizabeth A; Pigeon, Pascal; Rocha, Danilo Damasceno; Rodrigues, Felipe A R; Montenegro, Raquel C; Costa-Lotufo, Letícia V; Goulart, Marilia O F; Jaouen, Gérard

    2011-09-01

    The antiproliferative effects of twenty-eight tetrasubstituted olefins bearing a ferrocenyl group, including six never-reported compounds, were evaluated against SF-295 (human glioblastoma), HCT-8 (human colon cancer), MDA-MB-435 (human melanoma) and HL-60 (human promyelocytic leukemia) using the MTT test. IC(50) values were determined for twenty-three active compounds and of these, ten compounds had IC(50) values lower than 2 μM on one or more cell lines. Of all the compounds, only two produced significant amounts of ROS on HL-60 cells, and ROS production and growth inhibition could not be correlated. The ten most antiproliferative compounds were tested for their hemolytic activity on mouse erythrocytes. Five compounds showing high antiproliferative activity and low hemolytic activity were thus identified for further study.

  19. Trace amounts of Cu²⁺ ions influence ROS production and cytotoxicity of ZnO quantum dots.

    PubMed

    Moussa, Hatem; Merlin, Christophe; Dezanet, Clément; Balan, Lavinia; Medjahdi, Ghouti; Ben-Attia, Mossadok; Schneider, Raphaël

    2016-03-05

    3-Aminopropyltrimethoxysilane (APTMS) was used as ligand to prepare ZnO@APTMS, Cu(2+)-doped ZnO (ZnO:Cu@APTMS) and ZnO quantum dots (QDs) with chemisorbed Cu(2+) ions at their surface (ZnO@APTMS/Cu). The dots have a diameter of ca. 5 nm and their crystalline and phase purities and composition were established by X-ray diffraction, transmission electron microscopy, UV-visible and fluorescence spectroscopies and by X-ray photoelectron spectroscopy. The effect of Cu(2+) location on the ability of the QDs to generate reactive oxygen species (ROS) under light irradiation was investigated. Results obtained demonstrate that all dots are able to produce ROS (OH, O2(-), H2O2 and (1)O2) and that ZnO@APTMS/Cu QDs generate more OH and O2(-) radicals and H2O2 than ZnO@APTMS and ZnO:Cu@APTMS QDs probably via mechanisms associating photo-induced charge carriers and Fenton reactions. In cytotoxicity experiments conducted in the dark or under light exposure, ZnO@APTMS/Cu QDs appeared slightly more deleterious to Escherichia coli cells than the two other QDs, therefore pointing out the importance of the presence of Cu(2+) ions at the periphery of the nanocrystals. On the other hand, with the lack of photo-induced toxicity, it can be inferred that ROS production cannot explain the cytotoxicity associated to the QDs. Our study demonstrates that both the production of ROS from ZnO QDs and their toxicity may be enhanced by chemisorbed Cu(2+) ions, which could be useful for medical or photocatalytic applications.

  20. Hyperglycemia Induces Cellular Hypoxia through Production of Mitochondrial ROS Followed by Suppression of Aquaporin-1

    PubMed Central

    Sada, Kiminori; Nishikawa, Takeshi; Kukidome, Daisuke; Yoshinaga, Tomoaki; Kajihara, Nobuhiro; Sonoda, Kazuhiro; Senokuchi, Takafumi; Motoshima, Hiroyuki; Matsumura, Takeshi; Araki, Eiichi

    2016-01-01

    We previously proposed that hyperglycemia-induced mitochondrial reactive oxygen species (mtROS) generation is a key event in the development of diabetic complications. Interestingly, some common aspects exist between hyperglycemia and hypoxia-induced phenomena. Thus, hyperglycemia may induce cellular hypoxia, and this phenomenon may also be involved in the pathogenesis of diabetic complications. In endothelial cells (ECs), cellular hypoxia increased after incubation with high glucose (HG). A similar phenomenon was observed in glomeruli of diabetic mice. HG-induced cellular hypoxia was suppressed by mitochondria blockades or manganese superoxide dismutase (MnSOD) overexpression, which is a specific SOD for mtROS. Overexpression of MnSOD also increased the expression of aquaporin-1 (AQP1), a water and oxygen channel. AQP1 overexpression in ECs suppressed hyperglycemia-induced cellular hypoxia, endothelin-1 and fibronectin overproduction, and apoptosis. Therefore, hyperglycemia-induced cellular hypoxia and mtROS generation may promote hyperglycemic damage in a coordinated manner. PMID:27383386

  1. ROS Production via P2Y1-PKC-NOX2 Is Triggered by Extracellular ATP after Electrical Stimulation of Skeletal Muscle Cells

    PubMed Central

    Díaz-Vegas, Alexis; Campos, Cristian A.; Contreras-Ferrat, Ariel; Casas, Mariana; Buvinic, Sonja; Jaimovich, Enrique; Espinosa, Alejandra

    2015-01-01

    During exercise, skeletal muscle produces reactive oxygen species (ROS) via NADPH oxidase (NOX2) while inducing cellular adaptations associated with contractile activity. The signals involved in this mechanism are still a matter of study. ATP is released from skeletal muscle during electrical stimulation and can autocrinely signal through purinergic receptors; we searched for an influence of this signal in ROS production. The aim of this work was to characterize ROS production induced by electrical stimulation and extracellular ATP. ROS production was measured using two alternative probes; chloromethyl-2,7- dichlorodihydrofluorescein diacetate or electroporation to express the hydrogen peroxide-sensitive protein Hyper. Electrical stimulation (ES) triggered a transient ROS increase in muscle fibers which was mimicked by extracellular ATP and was prevented by both carbenoxolone and suramin; antagonists of pannexin channel and purinergic receptors respectively. In addition, transient ROS increase was prevented by apyrase, an ecto-nucleotidase. MRS2365, a P2Y1 receptor agonist, induced a large signal while UTPyS (P2Y2 agonist) elicited a much smaller signal, similar to the one seen when using ATP plus MRS2179, an antagonist of P2Y1. Protein kinase C (PKC) inhibitors also blocked ES-induced ROS production. Our results indicate that physiological levels of electrical stimulation induce ROS production in skeletal muscle cells through release of extracellular ATP and activation of P2Y1 receptors. Use of selective NOX2 and PKC inhibitors suggests that ROS production induced by ES or extracellular ATP is mediated by NOX2 activated by PKC. PMID:26053483

  2. ROS Production via P2Y1-PKC-NOX2 Is Triggered by Extracellular ATP after Electrical Stimulation of Skeletal Muscle Cells.

    PubMed

    Díaz-Vegas, Alexis; Campos, Cristian A; Contreras-Ferrat, Ariel; Casas, Mariana; Buvinic, Sonja; Jaimovich, Enrique; Espinosa, Alejandra

    2015-01-01

    During exercise, skeletal muscle produces reactive oxygen species (ROS) via NADPH oxidase (NOX2) while inducing cellular adaptations associated with contractile activity. The signals involved in this mechanism are still a matter of study. ATP is released from skeletal muscle during electrical stimulation and can autocrinely signal through purinergic receptors; we searched for an influence of this signal in ROS production. The aim of this work was to characterize ROS production induced by electrical stimulation and extracellular ATP. ROS production was measured using two alternative probes; chloromethyl-2,7- dichlorodihydrofluorescein diacetate or electroporation to express the hydrogen peroxide-sensitive protein Hyper. Electrical stimulation (ES) triggered a transient ROS increase in muscle fibers which was mimicked by extracellular ATP and was prevented by both carbenoxolone and suramin; antagonists of pannexin channel and purinergic receptors respectively. In addition, transient ROS increase was prevented by apyrase, an ecto-nucleotidase. MRS2365, a P2Y1 receptor agonist, induced a large signal while UTPyS (P2Y2 agonist) elicited a much smaller signal, similar to the one seen when using ATP plus MRS2179, an antagonist of P2Y1. Protein kinase C (PKC) inhibitors also blocked ES-induced ROS production. Our results indicate that physiological levels of electrical stimulation induce ROS production in skeletal muscle cells through release of extracellular ATP and activation of P2Y1 receptors. Use of selective NOX2 and PKC inhibitors suggests that ROS production induced by ES or extracellular ATP is mediated by NOX2 activated by PKC.

  3. Inorganic nanoparticles enhance the production of reactive oxygen species (ROS) during the autoxidation of L-3,4-dihydroxyphenylalanine (L-dopa).

    PubMed

    Luna-Velasco, Antonia; Field, Jim A; Cobo-Curiel, Angel; Sierra-Alvarez, Reyes

    2011-09-01

    Public concerns over the toxicity of nanoparticles (NPs) are growing due to the rapid development of nanotechnology. An important mechanism of nanotoxicity is oxidative stress resulting from reactive oxygen species (ROS). In this study, the chemical production of ROS by inorganic NPs oxidizing the mammalian phenolic compound, L-3,4-dihydroxyphenylalanine (l-dopa) was evaluated using a ROS sensitive dye, 2',7'-diclorodihydrofluorescin (DCFH). CeO(2), Fe(2)O(3) and Fe(0) NPs enhanced ROS production during the autoxidation of L-dopa by more than four-fold in reactions that were dependent on O(2). This is the first report of chemical ROS production due to interaction of phenolic compounds with NPs. Mn(2)O(3) oxidized DCFH in a reaction that did not require O(2) or L-dopa, suggesting a direct redox reaction between the Mn(2)O(3) and the dye. CeO(2), Mn(2)O(3) and to a lesser extent Fe(0) formed clear electron paramagnetic resonance (EPR) signature for hydroxyl radicals when incubated in aerobic aqueous suspensions with spin traps. The results indicate that NPs can generate ROS via chemical reactions with medium components and biomolecules susceptible to oxidation, such as L-dopa. NPs were reactive whereas micron-sized particles were not. The combined assay with L-dopa and DCFH is a method proposed to screen for chemical ROS production by NPs.

  4. Osthole Attenuates Doxorubicin-Induced Apoptosis in PC12 Cells through Inhibition of Mitochondrial Dysfunction and ROS Production

    PubMed Central

    Shokoohinia, Yalda; Hosseinzadeh, Leila; Moieni-Arya, Maryam; Mostafaie, Ali; Mohammadi-Motlagh, Hamid-Reza

    2014-01-01

    Doxorubicin (DOX) is a potent, broad-spectrum chemotherapeutic drug used for treatment of several types of cancers. Despite its effectiveness, it has a wide range of toxic side effects, many of which most likely result from its inherent prooxidant activity. It has been reported that DOX has toxic effects on normal tissues, including brain tissue. In the current study, we investigated the protective effect of osthole isolated from Prangos ferulacea (L.) Lindl. on oxidative stress and apoptosis induced by DOX in PC12 as a neuronal model cell line. PC12 cells were pretreated with osthole 2 h after treatment with different concentrations of DOX. 24 h later, the cell viability, mitochondrial membrane potential (MMP), the activity of caspase-3, the expression ratio of Bax/Bcl-2, and the generation of intracellular ROS were detected. We found that pretreatment with osthole on PC12 cells significantly reduced the loss of cell viability, the activity of caspase-3, the increase in Bax/Bcl-2 ratio, and the generation of intracellular ROS induced by DOX. Moreover, pretreatment with osthole led to an increase in MMP in PC12 cells. In conclusion, our results indicated that pretreatment with nontoxic concentrations of osthole protected PC12 cells from DOX-mediated apoptosis by inhibition of ROS production. PMID:25013759

  5. Tea polyphenols alleviate high fat and high glucose-induced endothelial hyperpermeability by attenuating ROS production via NADPH oxidase pathway

    PubMed Central

    2014-01-01

    Background Hyperglycemia-induced endothelial hyperpermeability is crucial to cardiovascular disorders and macro-vascular complications in diabetes mellitus. The objective of this study is to investigate the effects of green tea polyphenols (GTPs) on endothelial hyperpermeability and the role of nicotinamide adenine dinucleotide phosphate (NADPH) pathway. Methods Male Wistar rats fed on a high fat diet (HF) were treated with GTPs (0, 0.8, 1.6, 3.2 g/L in drinking water) for 26 weeks. Bovine aortic endothelial cells (BAECs) were treated with high glucose (HG, 33 mmol/L) and GTPs (0.0, 0.4, or 4 μg/mL) for 24 hours in vitro. The endothelial permeabilities in rat aorta and monolayer BAECs were measured by Evans blue injection method and efflux of fluorescein isothiocyanate (FITC)-dextran, respectively. The reactive oxygen species (ROS) levels in rat aorta and monolayer BAECs were measured by dihydroethidium (DHE) and 2′, 7′-dichloro-fluorescein diacetate (DCFH-DA) fluorescent probe, respectively. Protein levels of NADPH oxidase subunits were determined by Western-blot. Results HF diet-fed increased the endothelial permeability and ROS levels in rat aorta while HG treatments increased the endothelial permeability and ROS levels in cultured BAECs. Co-treatment with GTPs alleviated those changes both in vivo and in vitro. In in vitro studies, GTPs treatments protected against the HG-induced over-expressions of p22phox and p67phox. Diphenylene iodonium chloride (DPI), an inhibitor of NADPH oxidase, alleviated the hyperpermeability induced by HG. Conclusions GTPs could alleviate endothelial hyperpermeabilities in HF diet-fed rat aorta and in HG treated BAECs. The decrease of ROS production resulting from down-regulation of NADPH oxidase contributed to the alleviation of endothelial hyperpermeability. PMID:24580748

  6. Suppression of ROS Production by Exendin-4 in PSC Attenuates the High Glucose-Induced Islet Fibrosis

    PubMed Central

    Kim, Ji-Won; Park, Shin-Young; You, Young-Hye; Ham, Dong-Sik; Lee, Seung-Hwan; Yang, Hae Kyung; Jeong, In-Kyung; Ko, Seung-Hyun

    2016-01-01

    Pancreatic stellate cells (PSCs) play a major role to fibrotic islet destruction observed in diabetic patients and animal model of diabetes. Exendin-4 (Ex-4) is a potent insulinotropic agent and has been approved for the treatment of type 2 diabetes. However, there have been no reports demonstrating the effects of Ex-4 on pancreatic islet fibrosis. In this study, Ex-4 treatment clearly attenuated fibrotic islet destruction and improved glucose tolerance and islet survival. GLP-1 receptor expression was upregulated during activation and proliferation of PSCs by hyperglycemia. The activation of PKA pathway by Ex-4 plays a role in ROS production and angiotensin II (Ang II) production. Exposure to high glucose stimulated ERK activation and Ang II-TGF- β1 production in PSCs. Interestingly, Ex-4 significantly reduced Ang II and TGF-β1 production by inhibition of ROS production but not ERK phosphorylation. Ex-4 may be useful not only as an anti-diabetic agent but also as an anti-fibrotic agent in type 2 diabetes due to its ability to inhibit PSC activation and proliferation and improve islet fibrosis in OLETF rats. PMID:27977690

  7. ROS Hexapod

    NASA Technical Reports Server (NTRS)

    Davis, Kirsch; Bankieris, Derek

    2016-01-01

    As an intern project for NASA Johnson Space Center (JSC), my job was to familiarize myself and operate a Robotics Operating System (ROS). The project outcome converted existing software assets into ROS using nodes, enabling a robotic Hexapod to communicate to be functional and controlled by an existing PlayStation 3 (PS3) controller. Existing control algorithms and current libraries have no ROS capabilities within the Hexapod C++ source code when the internship started, but that has changed throughout my internship. Conversion of C++ codes to ROS enabled existing code to be compatible with ROS, and is now controlled using an existing PS3 controller. Furthermore, my job description was to design ROS messages and script programs that enabled assets to participate in the ROS ecosystem by subscribing and publishing messages. Software programming source code is written in directories using C++. Testing of software assets included compiling code within the Linux environment using a terminal. The terminal ran the code from a directory. Several problems occurred while compiling code and the code would not compile. So modifying code to where C++ can read the source code were made. Once the code was compiled and ran, the code was uploaded to Hexapod and then controlled by a PS3 controller. The project outcome has the Hexapod fully functional and compatible with ROS and operates using the PlayStation 3 controller. In addition, an open source software (IDE) Arduino board will be integrated into the ecosystem with designing circuitry on a breadboard to add additional behavior with push buttons, potentiometers and other simple elements in the electrical circuitry. Other projects with the Arduino will be a GPS module, digital clock that will run off 22 satellites to show accurate real time using a GPS signal and an internal patch antenna to communicate with satellites. In addition, this internship experience has led me to pursue myself to learn coding more efficiently and

  8. Affective Productions of Mathematical Experience

    ERIC Educational Resources Information Center

    Walshaw, Margaret; Brown, Tony

    2012-01-01

    In underscoring the affective elements of mathematics experience, we work with contemporary readings of the work of Spinoza on the politics of affect, to understand what is included in the cognitive repertoire of the Subject. We draw on those resources to tell a pedagogical tale about the relation between cognition and affect in settings of…

  9. Effects of Mountain Ultra-Marathon Running on ROS Production and Oxidative Damage by Micro-Invasive Analytic Techniques

    PubMed Central

    Mrakic-Sposta, Simona; Gussoni, Maristella; Moretti, Sarah; Pratali, Lorenza; Giardini, Guido; Tacchini, Philippe; Dellanoce, Cinzia; Tonacci, Alessandro; Mastorci, Francesca; Borghini, Andrea; Montorsi, Michela; Vezzoli, Alessandra

    2015-01-01

    Purpose Aiming to gain a detailed insight into the physiological mechanisms involved under extreme conditions, a group of experienced ultra-marathon runners, performing the mountain Tor des Géants® ultra-marathon: 330 km trail-run in Valle d’Aosta, 24000 m of positive and negative elevation changes, was monitored. ROS production rate, antioxidant capacity, oxidative damage and inflammation markers were assessed, adopting micro-invasive analytic techniques. Methods Forty-six male athletes (45.04±8.75 yr, 72.6±8.4 kg, 1.76±0.05 m) were tested. Capillary blood and urine were collected before (Pre-), in the middle (Middle-) and immediately after (Post-) Race. Samples were analyzed for: Reactive Oxygen Species (ROS) production by Electron Paramagnetic Resonance; Antioxidant Capacity by Electrochemistry; oxidative damage (8-hydroxy-2-deoxy Guanosine: 8-OH-dG; 8-isoprostane: 8-isoPGF2α) and nitric oxide metabolites by enzymatic assays; inflammatory biomarkers (plasma and urine interleukin-6: IL-6-P and IL-6-U) by enzyme-linked immunosorbent assays (ELISA); Creatinine and Neopterin by HPLC, hematologic (lactate, glucose and hematocrit) and urine parameters by standard analyses. Results Twenty-five athletes finished the race, while twenty-one dropped out of it. A significant increase (Post-Race vs Pre) of the ROS production rate (2.20±0.27 vs 1.65±0.22 μmol.min-1), oxidative damage biomarkers (8-OH-dG: 6.32±2.38 vs 4.16±1.25 ng.mg-1 Creatinine and 8-isoPGF2α: 1404.0±518.30 vs 822.51±448.91 pg.mg-1Creatinine), inflammatory state (IL-6-P: 66.42±36.92 vs 1.29±0.54 pg.mL-1 and IL-6-U: 1.33±0.56 vs 0.71±0.17 pg.mL1) and lactate production (+190%), associated with a decrease of both antioxidant capacity (-7%) and renal function (i.e. Creatinine level +76%) was found. Conclusions The used micro-invasive analytic methods allowed us to perform most of them before, during and immediately after the race directly in the field, by passing the need of storing and

  10. Inhibitory effect of Agrimonia pilosa Ledeb. on inflammation by suppression of iNOS and ROS production.

    PubMed

    Jung, Chang Hwa; Kim, Jeong-Hyun; Park, SunJu; Kweon, Dae-Hyuk; Kim, Sung-Hoon; Ko, Seong-Gyu

    2010-01-01

    Herbal medicines including Agrimonia pilosa Ledeb. (APL) have been traditionally used to treat inflammations including allergic disease as valuable medicinal properties. To investigate the attenuating ability of APL on inflammation, the NO release and ROS production, which play a key role in inflammatory and immune responses, was first tested using in vitro assay. The 80% ethanol extract of APL showed a significant activity to inhibit NO release and ROS production. In additional extracts from 80% ethanol extract of APL, n-butanol (BuOH) extract displayed the most potent anti-inflammatory effects based on in vitro assay. The extract also significantly reduced nitric oxide in lipopolysaccharide-activated RAW 264.7 macrophage cells (p < 0.05), and suppressed the nitric oxide synthase (iNOS) expression, whereas the extract showed no inhibitory effect on cyclooxygenase-2 (COX-2) expression, suggesting that the BuOH extract of APL could reduce the NO production through suppression of iNOS, but not COX-2. The BuOH extract also showed a significant effect in a carrageenan-induced rat paw edema in vivo model, consistent with our in vitro results. Our findings suggest that the BuOH extract of APL shows a potential anti-inflammatory activity, substantiating its traditional use in medicine.

  11. Modulation of Potassium Channel Activity in the Balance of ROS and ATP Production by Durum Wheat Mitochondria—An Amazing Defense Tool Against Hyperosmotic Stress

    PubMed Central

    Trono, Daniela; Laus, Maura N.; Soccio, Mario; Alfarano, Michela; Pastore, Donato

    2015-01-01

    In plants, the existence of a mitochondrial potassium channel was firstly demonstrated about 15 years ago in durum wheat as an ATP-dependent potassium channel (PmitoKATP). Since then, both properties of the original PmitoKATP and occurrence of different mitochondrial potassium channels in a number of plant species (monocotyledonous and dicotyledonous) and tissues/organs (etiolated and green) have been shown. Here, an overview of the current knowledge is reported; in particular, the issue of PmitoKATP physiological modulation is addressed. Similarities and differences with other potassium channels, as well as possible cross-regulation with other mitochondrial proteins (Plant Uncoupling Protein, Alternative Oxidase, Plant Inner Membrane Anion Channel) are also described. PmitoKATP is inhibited by ATP and activated by superoxide anion, as well as by free fatty acids (FFAs) and acyl-CoAs. Interestingly, channel activation increases electrophoretic potassium uptake across the inner membrane toward the matrix, so collapsing membrane potential (ΔΨ), the main component of the protonmotive force (Δp) in plant mitochondria; moreover, cooperation between PmitoKATP and the K+/H+ antiporter allows a potassium cycle able to dissipate also ΔpH. Interestingly, ΔΨ collapse matches with an active control of mitochondrial reactive oxygen species (ROS) production. Fully open channel is able to lower superoxide anion up to 35-fold compared to a condition of ATP-inhibited channel. On the other hand, ΔΨ collapse by PmitoKATP was unexpectedly found to not affect ATP synthesis via oxidative phosphorylation. This may probably occur by means of a controlled collapse due to ATP inhibition of PmitoKATP; this brake to the channel activity may allow a loss of the bulk phase Δp, but may preserve a non-classically detectable localized driving force for ATP synthesis. This ability may become crucial under environmental/oxidative stress. In particular, under moderate hyperosmotic stress

  12. Kaempferol inhibits the production of ROS to modulate OPN-αvβ3 integrin pathway in HUVECs.

    PubMed

    Xiao, Hong-Bo; Lu, Xiang-Yang; Liu, Zi-Kui; Luo, Zhi-Feng

    2016-06-01

    In the present study, we tested the hypothesis that aldosterone regulates osteopontin (OPN)-related signaling pathways to promote nuclear factor κB (NF-κB) activation in primary human umbilical vein endothelial cells (HUVECs) and that kaempferol, a flavonoid compound, blocks those changes. Aldosterone induced productions of reactive oxygen species (ROS), OPN, interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α) and expression of nicotinamide adenine dinucleotide phosphate-oxidase 4 (Nox4), NF-κB, OPN, alphavbeta3 (αvβ3) integrin, and inhibitor of NF-κB alpha phosphorylation (P-IκBα) in HUVEC. HUVECs were pretreated with kaempferol (0, 1, 3, or 10 μM) for 1 h and exposed to aldosterone (10(-6) M) for 24 h. Kaempferol reduced ROS, OPN, NF-κB, IL-6, and TNF-α levels; Nox4, αvβ3 integrin; and P-IκBα expressions. The effect of aldosterone was also abrogated by spironolactone (10(-6) M). In addition, vitamin C (20 mmol/L) reduced ROS production. Vitamin C and LM609 (10 μg/mL) treatment decreased expressions of OPN, αvβ3 integrin, and NF-κB (P < 0.05 or P < 0.01). The present results suggest that kaempferol may modulate OPN-αvβ3 integrin pathway to inhibit NF-κB activation in HUVECs.

  13. TCS2 Increases Olaquindox-Induced Apoptosis by Upregulation of ROS Production and Downregulation of Autophagy in HEK293 Cells.

    PubMed

    Li, Daowen; Zhao, Kena; Yang, Xiayun; Xiao, Xilong; Tang, Shusheng

    2017-04-07

    Olaquindox, a feed additive, has drawn public attention due to its potential mutagenicity, genotoxicity, hepatoxicity and nephrotoxicity. The purpose of this study was to investigate the role of tuberous sclerosis complex (TSC2) pathways in olaquindox-induced autophagy in human embryonic kidney 293 (HEK293) cells. The results revealed that olaquindox treatment reduced the cell viability of HEK293 cells and downregulated the expression of TSC2 in a dose- and time-dependent manner. Meanwhile, olaquindox treatment markedly induced the production of reactive oxygen species (ROS), cascaded to autophagy, oxidative stress, and apoptotic cell death, which was effectively eliminated by the antioxidant N-acetylcysteine (NAC). Furthermore, overexpression of TSC2 attenuated olaquindox-induced autophagy in contrast to inducing the production of ROS, oxidative stress and apoptosis. Consistently, knockdown of TSC2 upregulated autophagy, and decreased olaquindox-induced cell apoptosis. In conclusion, our findings indicate that TSC2 partly participates in olaquindox-induced autophagy, oxidative stress and apoptosis, and demonstrate that TSC2 has a negative regulation role in olaquindox-induced autophagy in HEK293 cells.

  14. Echinacoside Protects against 6-Hydroxydopamine-Induced Mitochondrial Dysfunction and Inflammatory Responses in PC12 Cells via Reducing ROS Production

    PubMed Central

    Wang, Yue-Hua; Xuan, Zhao-Hong; Tian, Shuo; Du, Guan-Hua

    2015-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DA) neurons at the substantia nigra. Mitochondrial dysfunction and inflammatory responses are involved in the mechanism of cell damage in PD. 6-Hydroxydopamine (6-OHDA), a dopamine analog, specifically damages dopaminergic neurons. Echinacoside (ECH) is a phenylethanoid glycoside isolated from the stems of Cistanche salsa, showing a variety of neuroprotective effects in previous studies. The present study was to investigate its effect against 6-OHDA-induced neurotoxicity and possible mechanisms in PC12 cells. The results showed that 6-OHDA reduced cell viability, decreased oxidation-reduction activity, decreased mitochondrial membrane potential, and induced mitochondria-mediated apoptosis compared with untreated PC12 cells. However, echinacoside treatment significantly attenuated these changes induced by 6-OHDA. In addition, echinacoside also could significantly alleviate the inflammatory responses induced by 6-OHDA. Further research showed that echinacoside could reduce 6-OHDA-induced ROS production in PC12 cells. These results suggest that the underlying mechanism of echinacoside against 6-OHDA-induced neurotoxicity may be involve in attenuating mitochondrial dysfunction and inflammatory responses by reducing ROS production. PMID:25788961

  15. Augmenter of liver regeneration, a protective factor against ROS-induced oxidative damage in muscle tissue of mitochondrial myopathy affected patients.

    PubMed

    Polimeno, Lorenzo; Rossi, Roberta; Mastrodonato, Maria; Montagnani, Monica; Piscitelli, Domenico; Pesetti, Barbara; De Benedictis, Leonarda; Girardi, Bruna; Resta, Leonardo; Napoli, Anna; Francavilla, Antonio

    2013-11-01

    Mitochondria-related myopathies (MM) are a group of different diseases defined by a varying degree of dysfunctions of the mitochondrial respiratory chain which leads to reactive oxygen species (ROS) generation followed by oxidative stress and cellular damage. In mitochondrial myopathy muscle tissue an overexpression of antioxidant enzymes has been documented probably as an attempt to counteract the free radical generation. We previously documented, in human non-pathological muscle fibres, the expression of the augmenter of liver regeneration (ALR), a sulfhydryl oxidase enzyme, whose presence is related to the mitochondria; indeed it has been demonstrated that ALR mainly localizes in the mitochondrial inter-membrane space. Furthermore we reported, in different experimental models, in vivo and in vitro, the anti-apoptotic and anti-oxidative capacities of ALR, achieved by up-regulating Bcl-2 anti-apoptotic family factors and the anti-apoptotic/anti-oxidative secretory isoform of clusterin (sClu). With the present study we aimed to determine ALR, Bcl-2 protein, clusterin and ROS expression in muscle tissue biopsies from MM-affected patients. Non-pathological muscle tissue was used as control. Enzymatic, histochemical, immunohistochemical and immune electron microscopy techniques were performed. The data obtained revealed in MM-derived muscle tissue, compared to non-pathological tissue, the over-expression of ROS, ALR and Bcl-2 and the induction of the nuclear, pro-apoptotic, isoform of clusterin (nCLU).

  16. In vivo ROS production and use of oxidative stress-derived biomarkers to detect the onset of diseases such as Alzheimer's disease, Parkinson's disease, and diabetes.

    PubMed

    Umeno, Aya; Biju, Vasudevanpillai; Yoshida, Yasukazu

    2017-04-03

    Breakthroughs in biochemistry have furthered our understanding of the onset and progression of various diseases, and have advanced the development of new therapeutics. Oxidative stress and reactive oxygen species (ROS) are ubiquitous in biological systems. ROS can be formed non-enzymatically by chemical, photochemical and electron transfer reactions, or as the byproducts of endogenous enzymatic reactions, phagocytosis, and inflammation. Imbalances in ROS homeostasis, caused by impairments in antioxidant enzymes or non-enzymatic antioxidant networks, increase oxidative stress, leading to the deleterious oxidation and chemical modification of biomacromolecules such as lipids, DNA, and proteins. While many ROS are intracellular signaling messengers and most products of oxidative metabolisms are beneficial for normal cellular function, the elevation of ROS levels by light, hyperglycemia, peroxisomes, and certain enzymes causes oxidative stress-sensitive signaling, toxicity, oncogenesis, neurodegenerative diseases, and diabetes. Although the underlying mechanisms of these diseases are manifold, oxidative stress caused by ROS is a major contributing factor in their onset. This review summarizes the relationship between ROS and oxidative stress, with special reference to recent advancements in the detection of biomarkers related to oxidative stress. Further, we will introduce biomarkers for the early detection of neurodegenerative diseases and diabetes, with a focus on our recent work.

  17. TCF2 attenuates FFA-induced damage in islet β-cells by regulating production of insulin and ROS.

    PubMed

    Quan, Xiaojuan; Zhang, Lin; Li, Yingna; Liang, Chunlian

    2014-07-30

    Free fatty acids (FFAs) are cytotoxic to pancreatic islet β-cells and play a crucial role in the diabetes disease process. A recent study revealed a down-regulation of transcription factor 2 (TCF2) levels during FFA-mediated cytotoxicity in pancreatic β-cells. However, its function during this process and the underlying mechanism remains unclear. In this study, treatment with palmitic acid (PA) at high levels (400 and 800 μM) decreased β-cell viability and TCF2 protein expression, along with the glucose-stimulated insulin secretion (GSIS). Western and RT-PCR analysis confirmed the positive regulatory effect of TCF2 on GSIS through promotion of the key regulators pancreatic duodenal homeobox-1 (PDX1) and glucose transporter 2 (GLUT2) in β-cells. In addition, both PI3K/AKT and MEK/ERK showed decreased expression in PA (800 μM)-treated β-cells. Overexpression of TCF2 could effectively restore the inhibitory effect of PA on the activation of PI3K/AKT and MEK/ERK as well as β-cell viability, simultaneously, inhibited PA-induced reactive oxygen species (ROS) generation. After blocking the PI3K/AKT and MAPK/ERK signals with their specific inhibitor, the effect of overexpressed TCF2 on β-cell viability and ROS production was obviously attenuated. Furthermore, a protective effect of TCF2 on GSIS by positive modulation of JNK-PDX1/GLUT2 signaling was also confirmed. Accordingly, our study has confirmed that TCF2 positively modulates insulin secretion and further inhibits ROS generation via the PI3K/AKT and MEK/ERK signaling pathways. Our work may provide a new therapeutic target to achieve prevention and treatment of diabetes.

  18. Inhibition of ROS production through mitochondria-targeted antioxidant and mitochondrial uncoupling increases post-thaw sperm viability in yellow catfish.

    PubMed

    Fang, Lu; Bai, Chenglian; Chen, Yuanhong; Dai, Jun; Xiang, Yang; Ji, Xiaoping; Huang, Changjiang; Dong, Qiaoxiang

    2014-12-01

    Reactive oxygen species (ROS) are one of the main causes for decreased viability in cryopreserved sperm. Many studies have reported the beneficial effect of antioxidant supplements in freezing media for post-thaw sperm quality. In the present study, we explored two new approaches of ROS inhibition in sperm cryopreservation of yellow catfish, namely mitochondrial-targeted antioxidant and metabolic modulator targeting mitochondrial uncoupling pathways. Our study revealed that addition of MitoQ, a compound designed to deliver ubiquinone into mitochondria, significantly decreased ROS production, as well as lipid peroxidation, and increased post-thaw viability. Similarly, sperm incubated with 2,4-dinitrophenol (DNP), a chemical protonophore that induces mitochondrial uncoupling, also had reduced ROS production, as well as lipid peroxidation, and increased post-thaw sperm viability. Conversely, activation of uncoupling protein (UCP2) by 4-hydroxynonenal (HNE) neither reduced ROS production nor increased post-thaw sperm viability. Our findings indicate that ROS inhibition through mitochondrial-targeted antioxidant or mild mitochondrial uncoupling is beneficial for sperm cryopreservation in yellow catfish. Our study provides novel methods to mitigate oxidative stress induced damage in cryopreserved sperm for future applications.

  19. Clostridium perfringens phospholipase C induced ROS production and cytotoxicity require PKC, MEK1 and NFκB activation.

    PubMed

    Monturiol-Gross, Laura; Flores-Díaz, Marietta; Pineda-Padilla, Maria Jose; Castro-Castro, Ana Cristina; Alape-Giron, Alberto

    2014-01-01

    Clostridium perfringens phospholipase C (CpPLC), also called α-toxin, is the most toxic extracellular enzyme produced by this bacteria and is essential for virulence in gas gangrene. At lytic concentrations, CpPLC causes membrane disruption, whereas at sublytic concentrations this toxin causes oxidative stress and activates the MEK/ERK pathway, which contributes to its cytotoxic and myotoxic effects. In the present work, the role of PKC, ERK 1/2 and NFκB signalling pathways in ROS generation induced by CpPLC and their contribution to CpPLC-induced cytotoxicity was evaluated. The results demonstrate that CpPLC induces ROS production through PKC, MEK/ERK and NFκB pathways, the latter being activated by the MEK/ERK signalling cascade. Inhibition of either of these signalling pathways prevents CpPLC's cytotoxic effect. In addition, it was demonstrated that NFκB inhibition leads to a significant reduction in the myotoxicity induced by intramuscular injection of CpPLC in mice. Understanding the role of these signalling pathways could lead towards developing rational therapeutic strategies aimed to reduce cell death during a clostridialmyonecrosis.

  20. Clostridium perfringens Phospholipase C Induced ROS Production and Cytotoxicity Require PKC, MEK1 and NFκB Activation

    PubMed Central

    Monturiol-Gross, Laura; Flores-Díaz, Marietta; Pineda-Padilla, Maria Jose; Castro-Castro, Ana Cristina; Alape-Giron, Alberto

    2014-01-01

    Clostridium perfringens phospholipase C (CpPLC), also called α-toxin, is the most toxic extracellular enzyme produced by this bacteria and is essential for virulence in gas gangrene. At lytic concentrations, CpPLC causes membrane disruption, whereas at sublytic concentrations this toxin causes oxidative stress and activates the MEK/ERK pathway, which contributes to its cytotoxic and myotoxic effects. In the present work, the role of PKC, ERK 1/2 and NFκB signalling pathways in ROS generation induced by CpPLC and their contribution to CpPLC-induced cytotoxicity was evaluated. The results demonstrate that CpPLC induces ROS production through PKC, MEK/ERK and NFκB pathways, the latter being activated by the MEK/ERK signalling cascade. Inhibition of either of these signalling pathways prevents CpPLC's cytotoxic effect. In addition, it was demonstrated that NFκB inhibition leads to a significant reduction in the myotoxicity induced by intramuscular injection of CpPLC in mice. Understanding the role of these signalling pathways could lead towards developing rational therapeutic strategies aimed to reduce cell death during a clostridialmyonecrosis. PMID:24466113

  1. Cordyceps sinensis polysaccharide inhibits PDGF-BB-induced inflammation and ROS production in human mesangial cells.

    PubMed

    Wang, Ying; Wang, Yan; Liu, Dan; Wang, Wang; Zhao, Huan; Wang, Min; Yin, Hongping

    2015-07-10

    CPS-F, a polysaccharide derived from Cordyceps sinensis, is a potential anti-inflammatory and anti-oxidative agent. We demonstrated that CPS-F not only inhibits platelet-derived growth factor BB (PDGF-BB)-induced intracellular reactive oxygen species (ROS) generation, and up-regulation of tumor necrosis factor-α (TNF-α), TNF-α receptor 1 (TNFR1), and monocyte chemotactic protein-1 (MCP-1), but also acts synergistically in combination with MAPK/ERK inhibitor U0126 and PI3K/Akt inhibitor LY294002. Additionally, up-regulation of pro-inflammatory factors was reversed by use of a combination of CPS-F and NADPH oxidase (NOX) inhibitor diphenyleneiodonium chloride (DPI) or silencing of NOX1. Furthermore, CPS-F prevents the PDGF receptor β (PDGFRβ) promoter activity induced by PDGF-BB in transfected cells and ameliorates increased levels of TNF-α, TNFR1, and MCP-1 when PDGFRβ is silenced, thereby suggesting that CPS-F possesses a bidirectional regulatory function. Our findings suggest CPS-F may exert its therapeutic effect for the treatment of glomerulonephritis related to human mesangial cells (HMCs) through the ERK1/2/Akt pathways.

  2. ROS Production and ERK Activity Are Involved in the Effects of d-β-Hydroxybutyrate and Metformin in a Glucose Deficient Condition

    PubMed Central

    Lamichhane, Santosh; Bastola, Tonking; Pariyar, Ramesh; Lee, Eun-Sol; Lee, Ho-Sub; Lee, Dae Ho; Seo, Jungwon

    2017-01-01

    Hypoglycemia, a complication of insulin or sulfonylurea therapy in diabetic patients, leads to brain damage. Furthermore, glucose replenishment following hypoglycemic coma induces neuronal cell death. In this study, we investigated the molecular mechanism underlying glucose deficiency-induced cytotoxicity and the protective effect of d-β-hydroxybutyrate (D-BHB) using SH-SY5Y cells. The cytotoxic mechanism of metformin under glucose deficiency was also examined. Cell viability under 1 mM glucose (glucose deficiency) was significantly decreased which was accompanied by increased production of reactive oxygen species (ROS) and decreased phosphorylation of extracellular signal-regulated kinase (ERK) and glycogen synthase 3 (GSK3β). ROS inhibitor reversed the glucose deficiency-induced cytotoxicity and restored the reduced phosphorylation of ERK and GSK3β. While metformin did not alter cell viability in normal glucose media, it further increased cell death and ROS production under glucose deficiency. However, D-BHB reversed cytotoxicity, ROS production, and the decrease in phosphorylation of ERK and GSK3β induced by the glucose deficiency. ERK inhibitor reversed the D-BHB-induced increase in cell viability under glucose deficiency, whereas GSK3β inhibitor did not restore glucose deficiency-induced cytotoxicity. Finally, the protective effect of D-BHB against glucose deficiency was confirmed in primary neuronal cells. We demonstrate that glucose deficiency-induced cytotoxicity is mediated by ERK inhibition through ROS production, which is attenuated by D-BHB and intensified by metformin. PMID:28335557

  3. The effect of gallic acid on cytotoxicity, Ca(2+) homeostasis and ROS production in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes.

    PubMed

    Hsu, Shu-Shong; Chou, Chiang-Ting; Liao, Wei-Chuan; Shieh, Pochuen; Kuo, Daih-Huang; Kuo, Chun-Chi; Jan, Chung-Ren; Liang, Wei-Zhe

    2016-05-25

    Gallic acid, a polyhydroxylphenolic compound, is widely distributed in various plants, fruits and foods. It has been shown that gallic acid passes into blood brain barrier and reaches the brain tissue of middle cerebral artery occlusion rats. However, the effect of gallic acid on Ca(2+) signaling in glia cells is unknown. This study explored whether gallic acid affected Ca(2+) homeostasis and induced Ca(2+)-associated cytotoxicity in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes. Gallic acid (20-40 μM) concentration-dependently induced cytotoxicity and intracellular Ca(2+) level ([Ca(2+)]i) increases in DBTRG-05MG cells but not in CTX TNA2 cells. In DBTRG-05MG cells, the Ca(2+) response was decreased by half by removal of extracellular Ca(2+). In Ca(2+)-containing medium, gallic acid-induced Ca(2+) entry was inhibited by store-operated Ca(2+) channel inhibitors (2-APB, econazole and SKF96365). In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin abolished gallic acid-induced [Ca(2+)]i increases. Conversely, incubation with gallic acid also abolished thapsigargin-induced [Ca(2+)]i increases. Inhibition of phospholipase C with U73122 abolished gallic acid-induced [Ca(2+)]i increases. Gallic acid significantly caused cytotoxicity in DBTRG-05MG cells, which was partially prevented by prechelating cytosolic Ca(2+) with BAPTA-AM. Moreover, gallic acid activated mitochondrial apoptotic pathways that involved ROS production. Together, in DBTRG-05MG cells but not in CTX TNA2 cells, gallic acid induced [Ca(2+)]i increases by causing Ca(2+) entry via 2-APB, econazole and SKF96365-sensitive store-operated Ca(2+) entry, and phospholipase C-dependent release from the endoplasmic reticulum. This Ca(2+) signal subsequently evoked mitochondrial pathways of apoptosis that involved ROS production.

  4. Advanced glycation end products as an upstream molecule triggers ROS-induced sFlt-1 production in extravillous trophoblasts: a novel bridge between oxidative stress and preeclampsia.

    PubMed

    Huang, Q T; Zhang, M; Zhong, M; Yu, Y H; Liang, W Z; Hang, L L; Gao, Y F; Huang, L P; Wang, Z J

    2013-12-01

    Although abnormal soluble fms-like tyrosine kinase-1 (sFlt-1) production is thought to be an important factor in the pathogenesis of pre-eclampsia, the mechanisms that regulate the production of sFlt-1 during pre-eclampsia are unclear. Accumulation of advanced glycation end products (AGEs) is prevalent in obesity, advanced maternal age, diabetes mellitus, and polycystic ovary syndrome. Alterations in the regulation and signaling of angiogenic pathways have been considered as a link between these conditions and pre-eclampsia. The purpose of this study was to explore the possible effects of AGEs on sFlt-1 secretion in extravillous trophoblasts (EVT). A EVT cell line (HRT-8/SVneo) was treated with various concentrations of AGEs-BSA. The mRNA expression of sFlt-1, vascular endothelial growth factor (VEGF), and placental growth factor (PlGF) in EVT were detected with real-time polymerase chain reaction. The secretion of sFlt-1, VEGF, and PlGF protein from EVT was measured with ELISA. The levels of intracellular reactive oxygen species (ROS) production were determined by DCFH-DA. Exposure of EVT to AGEs-BSA induced increased intracellular ROS generation and overexpression of sFlt-1 at mRNA and protein levels in a dose dependent manner. Anti-RAGE immunoglobulin G or apocynin (an inhibitors of NADPH oxidase) could decrease the intracellular ROS generation and subsequently suppressed the production of sFlt-1 at mRNA and protein levels. Our data suggested that AGEs may be a new class of important mediator in the regulation of angiogenic pathways of EVT. Accumulation of AGEs might contribute to the pathogenesis of preeclampsia by promoting sFlt-1 production through activation of RAGE/NADPH oxidase dependent pathway in EVT.

  5. JAK inhibitors prevent migration of rheumatoid arthritis neutrophils towards interleukin-8, but do not inhibit priming of the respiratory burst or ROS production.

    PubMed

    Mitchell, Thomas S; Moots, Robert J; Wright, Helen L

    2017-04-02

    Neutrophils play a crucial role in the pathophysiology of rheumatoid arthritis (RA), via the release of reactive oxygen species (ROS), proteases and cytokines. Orally-active JAK inhibitors (JAKi), e.g. baricitinib and tofacitinib, have high clinical efficacy in RA but are linked with neutropenia and increased infections. Our aim was to determine the effect of JAK inhibition with baricitinib and tofacitinib on healthy control and RA neutrophil lifespan and function. RA (n=7) and healthy control (n=7) neutrophils were treated with baricitinib or tofacitinib for 30 min, prior to incubation in the absence or presence of GM-CSF or IFNγ. JAKi prevented GM-CSF- and IFNγ-induced apoptosis delay in RA and healthy control neutrophils in a dose-dependent manner. Baricitinib decreased the rate of chemotaxis towards IL-8, but not fMLP, in RA neutrophils. Whilst healthy control neutrophils incubated with GM-CSF became primed to produce ROS in response to stimulation with fMLP and PMA, RA neutrophils produced increased levels of ROS without the need for priming. JAKi prevented ROS release from primed healthy control neutrophils in response to fMLP, but had no effect on ROS production by RA neutrophils. Baricitinib reversed GM-CSF priming of ROS production in response to fMLP in healthy control, but not RA, neutrophils. We conclude that incubation with JAKi prevents chemotaxis of RA neutrophils towards IL-8, but does not prevent the production of ROS or increase the level of apoptosis. This may be due to the in vivo exposure of RA neutrophils to priming agents other than those that activate JAK/STAT signalling. This article is protected by copyright. All rights reserved.

  6. Fluoride Increases Superoxide Production and Impairs the Respiratory Chain in ROS 17/2.8 Osteoblastic Cells

    PubMed Central

    Fina, Brenda Lorena; Lombarte, Mercedes; Rigalli, Juan Pablo; Rigalli, Alfredo

    2014-01-01

    It is known that fluoride produces oxidative stress. Inflammation in bone tissue and an impairment of the respiratory chain of liver have been described in treatments with fluoride. Whether the impairment of the respiratory chain and oxidative stress are related is not known. The aim of this work was to study the effects of fluoride on the production of superoxide radical, the function of the respiratory chain and the increase in oxidative stress in ROS 17/2.8 osteoblastic cells. We measured the effect of fluoride (100 µM) on superoxide production, oxygen consumption, lipid peroxidation and antioxidant enzymes activities of cultured cells following the treatment with fluoride. Fluoride decreased oxygen consumption and increased superoxide production immediately after its addition. Furthermore, chronic treatment with fluoride increased oxidative stress status in osteoblastic cells. These results indicate that fluoride could damage bone tissue by inhibiting the respiratory chain, increasing the production of superoxide radicals and thus of the others reactive oxygen species. PMID:24964137

  7. Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release

    PubMed Central

    Zorov, Dmitry B.; Juhaszova, Magdalena; Sollott, Steven J.

    2014-01-01

    Byproducts of normal mitochondrial metabolism and homeostasis include the buildup of potentially damaging levels of reactive oxygen species (ROS), Ca2+, etc., which must be normalized. Evidence suggests that brief mitochondrial permeability transition pore (mPTP) openings play an important physiological role maintaining healthy mitochondria homeostasis. Adaptive and maladaptive responses to redox stress may involve mitochondrial channels such as mPTP and inner membrane anion channel (IMAC). Their activation causes intra- and intermitochondrial redox-environment changes leading to ROS release. This regenerative cycle of mitochondrial ROS formation and release was named ROS-induced ROS release (RIRR). Brief, reversible mPTP opening-associated ROS release apparently constitutes an adaptive housekeeping function by the timely release from mitochondria of accumulated potentially toxic levels of ROS (and Ca2+). At higher ROS levels, longer mPTP openings may release a ROS burst leading to destruction of mitochondria, and if propagated from mitochondrion to mitochondrion, of the cell itself. The destructive function of RIRR may serve a physiological role by removal of unwanted cells or damaged mitochondria, or cause the pathological elimination of vital and essential mitochondria and cells. The adaptive release of sufficient ROS into the vicinity of mitochondria may also activate local pools of redox-sensitive enzymes involved in protective signaling pathways that limit ischemic damage to mitochondria and cells in that area. Maladaptive mPTP- or IMAC-related RIRR may also be playing a role in aging. Because the mechanism of mitochondrial RIRR highlights the central role of mitochondria-formed ROS, we discuss all of the known ROS-producing sites (shown in vitro) and their relevance to the mitochondrial ROS production in vivo. PMID:24987008

  8. Olaquindox induces DNA damage via the lysosomal and mitochondrial pathway involving ROS production and p53 activation in HEK293 cells.

    PubMed

    Yang, Yang; Jiang, Liping; She, Yan; Chen, Min; Li, Qiujuan; Yang, Guang; Geng, Chengyan; Tang, Liyun; Zhong, Laifu; Jiang, Lijie; Liu, Xiaofang

    2015-11-01

    Olaquindox (OLA) is a potent antibacterial agent used as a feed additive and growth promoter. In this study, the genotoxic potential of OLA was investigated in the human embryonic kidney cell line 293 (HEK293). Results showed that OLA caused significant increases of DNA migration. Lysosomal membrane permeability and mitochondrial membrane potential were reduced after treatment with OLA. OLA was shown to induce ROS production and GSH depletion. The expression of p53 protein is increased in cells incubated with OLA. The activation of p53 and ATM gene was assessed by exposure to OLA. Furthermore, NAC reduced DNA migration, ROS formation, GSH depletion and the expression of the p53 protein and gene. And desipramine significantly decreased AO fluorescence intensity and the expression of the p53 protein and gene. These results support the assumption that OLA exerted genotoxic effects and induced DNA strand breaks in HEK293 cells, possibly through lysosomal-mitochondrial pathway involving ROS production and p53 activation.

  9. 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin induces premature senescence of astrocytes via WNT/β-catenin signaling and ROS production.

    PubMed

    Nie, Xiaoke; Liang, Lingwei; Xi, Hanqing; Jiang, Shengyang; Jiang, Junkang; Tang, Cuiying; Liu, Xipeng; Liu, Suyi; Wan, Chunhua; Zhao, Jianya; Yang, Jianbin

    2015-07-01

    2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) is a ubiquitous environmental contaminant that could exert significant neurotoxicity in the human nervous system. Nevertheless, the molecular mechanism underlying TCDD-mediated neurotoxicity has not been clarified clearly. Herein, we investigated the potential role of TCDD in facilitating premature senescence in astrocytes and the underlying molecular mechanisms. Using the senescence-associated β-galactosidase (SA-β-Gal) assay, we demonstrated that TCDD exposure triggered significant premature senescence of astrocyte cells, which was accompanied by a marked activation of the Wingless and int (WNT)/β-catenin signaling pathway. In addition, TCDD altered the expression of senescence marker proteins, such as p16, p21 and GFAP, which together have been reported to be upregulated in aging astrocytes, in both dose- and time-dependent manners. Further, TCDD led to cell-cycle arrest, F-actin reorganization and the accumulation of cellular reactive oxygen species (ROS). Moreover, the ROS scavenger N-acetylcysteine (NAC) markedly attenuated TCDD-induced ROS production, cellular oxidative damage and astrocyte senescence. Notably, the application of XAV939, an inhibitor of WNT/β-catenin signaling pathway, ameliorated the effect of TCDD on cellular β-catenin level, ROS production, cellular oxidative damage and premature senescence in astrocytes. In summary, our findings indicated that TCDD might induce astrocyte senescence via WNT/β-catenin and ROS-dependent mechanisms.

  10. HSV Infection Induces Production of ROS, which Potentiate Signaling from Pattern Recognition Receptors: Role for S-glutathionylation of TRAF3 and 6

    PubMed Central

    Rahbek, Stine H.; Ichijo, Hidenori; Chen, Zhijian J.; Mieyal, John J.; Hartmann, Rune; Paludan, Søren R.

    2011-01-01

    The innate immune response constitutes the first line of defense against infections. Pattern recognition receptors recognize pathogen structures and trigger intracellular signaling pathways leading to cytokine and chemokine expression. Reactive oxygen species (ROS) are emerging as an important regulator of some of these pathways. ROS directly interact with signaling components or induce other post-translational modifications such as S-glutathionylation, thereby altering target function. Applying live microscopy, we have demonstrated that herpes simplex virus (HSV) infection induces early production of ROS that are required for the activation of NF-κB and IRF-3 pathways and the production of type I IFNs and ISGs. All the known receptors involved in the recognition of HSV were shown to be dependent on the cellular redox levels for successful signaling. In addition, we provide biochemical evidence suggesting S-glutathionylation of TRAF family proteins to be important. In particular, by performing mutational studies we show that S-glutathionylation of a conserved cysteine residue of TRAF3 and TRAF6 is important for ROS-dependent activation of innate immune pathways. In conclusion, these findings demonstrate that ROS are essential for effective activation of signaling pathways leading to a successful innate immune response against HSV infection. PMID:21949653

  11. Pycnogenol® inhibits lipid accumulation in 3T3-L1 adipocytes with the modulation of reactive oxygen species (ROS) production associated with antioxidant enzyme responses.

    PubMed

    Lee, Ok-Hwan; Seo, Min-Jung; Choi, Hyeon-Son; Lee, Boo-Yong

    2012-03-01

    Pycnogenol® is a group of flavonoids with antioxidant effects. Adipogenesis is the process of adipocyte differentiation. It causes the increase of lipids as well as ROS (reactive oxygen species). Lipid accumulation and ROS production were determined in 3 T3-L1 adipocyte, and the effect of Pycnogenol® was evaluated. Lipid accumulation was elevated in adipocyte treated with hydrogen peroxide, one of the ROS. Pycnogenol® showed an inhibitory effect on the lipid accumulation and ROS production during the adipogenesis. We also investigated the molecular events associated with ROS production and lipid accumulation. Our results showed that Pycnogenol® inhibited the mRNA expression of pro-oxidant enzymes, such as NOX4 (NADPH (nicotinamide adenine dinucleotide phosphate hydrogen) oxidase 4), and the NADPH-producing G6PDH (glucose-6-phosphate dehydrogenase) enzyme. In addition, Pycnogenol® suppressed the mRNA abundance of adipogenic transcription factors, PPAR-γ (peroxisome proliferator-activated receptor γ) and C/EBP-α (CCAAT/enhancer binding protein α), and their target gene, aP2 (adipocyte protein 2) responsible for fatty acid transportation. On the other hand, Pycnogenol® increased the abundance of antioxidant proteins such as Cu/Zn-SOD (copper-zinc superoxide dismutase), Mn-SOD (manganese superoxide dismutase), GPx (glutathione peroxidase) and GR (glutathione reductase). Our results suggest that Pycnogenol® inhibits lipid accumulation and ROS production by regulating adipogenic gene expression and pro-/antioxidant enzyme responses in adipocytes.

  12. Cultured senescent myoblasts derived from human vastus lateralis exhibit normal mitochondrial ATP synthesis capacities with correlating concomitant ROS production while whole cell ATP production is decreased.

    PubMed

    Minet, Ariane D; Gaster, Michael

    2012-06-01

    The free radical theory of aging says that increased oxidative stress and mitochondrial dysfunction are associated with old age. In the present study we have investigated the effects of cellular senescence on muscle energetic by comparing mitochondrial content and function in cultured muscle satellite cells at early and late passage numbers. We show that cultured muscle satellite cells undergoing senescence express a reduced mitochondrial mass, decreased whole cell ATP level, normal to increased mitochondrial ATP production under ATP utilization, increased mitochondrial membrane potential and increased superoxide/mitochondrial mass and hydrogen peroxide/mitochondrial mass ratios. Moreover, the increased ROS production correlates with the corresponding mitochondrial ATP production. Thus, myotubes differentiated from human myoblasts undergoing senescence have a reduced mitochondrial content, but the existent mitochondria express normal to increased functional capabilities. The present data suggest that the origin of aging lies outside the mitochondria and that a malfunction in the cell might be preceding and initiating the increase of mitochondrial ATP synthesis and concomitant ROS production in the single mitochondrion in response to decreased mitochondrial mass and reduced extra-mitochondrial energy supply. This then can lead to the increased damage of DNA, lipids and proteins of the mitochondria as postulated by the free radical theory of aging.

  13. Production of Superoxide in Bacteria Is Stress- and Cell State-Dependent: A Gating-Optimized Flow Cytometry Method that Minimizes ROS Measurement Artifacts with Fluorescent Dyes.

    PubMed

    McBee, Megan E; Chionh, Yok H; Sharaf, Mariam L; Ho, Peiying; Cai, Maggie W L; Dedon, Peter C

    2017-01-01

    The role of reactive oxygen species (ROS) in microbial metabolism and stress response has emerged as a major theme in microbiology and infectious disease. Reactive fluorescent dyes have the potential to advance the study of ROS in the complex intracellular environment, especially for high-content and high-throughput analyses. However, current dye-based approaches to measuring intracellular ROS have the potential for significant artifacts. Here, we describe a robust platform for flow cytometric quantification of ROS in bacteria using fluorescent dyes, with ROS measurements in 10s-of-1000s of individual cells under a variety of conditions. False positives and variability among sample types (e.g., bacterial species, stress conditions) are reduced with a flexible four-step gating scheme that accounts for side- and forward-scattered light (morphological changes), background fluorescence, DNA content, and dye uptake to identify cells producing ROS. Using CellROX Green dye with Escherichia coli, Mycobacterium smegmatis, and Mycobacterium bovis BCG as diverse model bacteria, we show that (1) the generation of a quantifiable CellROX Green signal for superoxide, but not hydrogen peroxide-induced hydroxyl radicals, validates this dye as a superoxide detector; (2) the level of dye-detectable superoxide does not correlate with cytotoxicity or antibiotic sensitivity; (3) the non-replicating, antibiotic tolerant state of nutrient-deprived mycobacteria is associated with high levels of superoxide; and (4) antibiotic-induced production of superoxide is idiosyncratic with regard to both the species and the physiological state of the bacteria. We also show that the gating method is applicable to other fluorescent indicator dyes, such as the 5-carboxyfluorescein diacetate acetoxymethyl ester and 5-cyano-2,3-ditolyl tetrazolium chloride for cellular esterase and reductive respiratory activities, respectively. These results demonstrate that properly controlled flow cytometry coupled

  14. Production of Superoxide in Bacteria Is Stress- and Cell State-Dependent: A Gating-Optimized Flow Cytometry Method that Minimizes ROS Measurement Artifacts with Fluorescent Dyes

    PubMed Central

    McBee, Megan E.; Chionh, Yok H.; Sharaf, Mariam L.; Ho, Peiying; Cai, Maggie W. L.; Dedon, Peter C.

    2017-01-01

    The role of reactive oxygen species (ROS) in microbial metabolism and stress response has emerged as a major theme in microbiology and infectious disease. Reactive fluorescent dyes have the potential to advance the study of ROS in the complex intracellular environment, especially for high-content and high-throughput analyses. However, current dye-based approaches to measuring intracellular ROS have the potential for significant artifacts. Here, we describe a robust platform for flow cytometric quantification of ROS in bacteria using fluorescent dyes, with ROS measurements in 10s-of-1000s of individual cells under a variety of conditions. False positives and variability among sample types (e.g., bacterial species, stress conditions) are reduced with a flexible four-step gating scheme that accounts for side- and forward-scattered light (morphological changes), background fluorescence, DNA content, and dye uptake to identify cells producing ROS. Using CellROX Green dye with Escherichia coli, Mycobacterium smegmatis, and Mycobacterium bovis BCG as diverse model bacteria, we show that (1) the generation of a quantifiable CellROX Green signal for superoxide, but not hydrogen peroxide-induced hydroxyl radicals, validates this dye as a superoxide detector; (2) the level of dye-detectable superoxide does not correlate with cytotoxicity or antibiotic sensitivity; (3) the non-replicating, antibiotic tolerant state of nutrient-deprived mycobacteria is associated with high levels of superoxide; and (4) antibiotic-induced production of superoxide is idiosyncratic with regard to both the species and the physiological state of the bacteria. We also show that the gating method is applicable to other fluorescent indicator dyes, such as the 5-carboxyfluorescein diacetate acetoxymethyl ester and 5-cyano-2,3-ditolyl tetrazolium chloride for cellular esterase and reductive respiratory activities, respectively. These results demonstrate that properly controlled flow cytometry coupled

  15. Loss of Msp1p in Schizosaccharomyces pombe induces a ROS-dependent nuclear mutator phenotype that affects mitochondrial fission genes.

    PubMed

    Delerue, Thomas; Khosrobakhsh, Farnoosh; Daloyau, Marlène; Emorine, Laurent Jean; Dedieu, Adrien; Herbert, Christopher J; Bonnefoy, Nathalie; Arnauné-Pelloquin, Laetitia; Belenguer, Pascale

    2016-10-01

    Mitochondria continually fuse and divide to dynamically adapt to changes in metabolism and stress. Mitochondrial dynamics are also required for mitochondrial DNA (mtDNA) integrity; however, the underlying reason is not known. In this study, we examined the link between mitochondrial fusion and mtDNA maintenance in Schizosaccharomyces pombe, which cannot survive without mtDNA, by screening for suppressors of the lethality induced by loss of the dynamin-related large GTPase Msp1p. Our findings reveal that inactivation of Msp1p induces a ROS-dependent nuclear mutator phenotype that affects mitochondrial fission genes involved in suppressing mitochondrial fragmentation and mtDNA depletion. This indicates that mitochondrial fusion is crucial for maintaining the integrity of both mitochondrial and nuclear genetic information. Furthermore, our study suggests that the primary roles of Msp1p are to organize mitochondrial membranes, thus making them competent for fusion, and maintain the integrity of mtDNA.

  16. Concentration-dependent Sildenafil citrate (Viagra) effects on ROS production, energy status, and human sperm function.

    PubMed

    Sousa, Maria Inês; Amaral, Sandra; Tavares, Renata Santos; Paiva, Carla; Ramalho-Santos, João

    2014-04-01

    Literature regarding the effects of sildenafil citrate on sperm function remains controversial. In the present study, we specifically wanted to determine if mitochondrial dysfunction, namely membrane potential, reactive oxygen species production, and changes in energy content, are involved in in vitro sildenafil-induced alterations of human sperm function. Sperm samples of healthy men were incubated in the presence of 0.03, 0.3, and 3 μM sildenafil citrate in a phosphate buffered saline (PBS)-based medium for 2, 3, 12, and 24 hours. Sperm motility and viability were evaluated and mitochondrial function, i.e., mitochondrial membrane potential and mitochondrial superoxide production were assessed using flow-cytometry. Additionally, adenosine triphosphate (ATP) levels were determined by high performance liquid chromatography (HPLC) analysis. Results show a decrease in sperm motility correlated with the level of mitochondria-generated superoxide, without a visible effect on mitochondrial membrane potential or viability upon exposure to sildenafil. The effect on both motility and superoxide production was higher for the intermediate concentration of sildenafil (0.3 µM) indicating that the in vitro effects of sildenafil on human sperm do not vary linearly with drug concentration. Adenosine triphosphate levels also decreased following sildenafil exposure, but this decrease was only detected after a decrease in motility was already evident. These results suggest that along with the level of ATP and mitochondrial function other factors are involved in the early sildenafil-mediated decline in sperm motility. However, the further decrease in ATP levels and increase in mitochondria-generated reactive oxygen species after 24 hours of exposure might further contribute towards declining sperm motility.

  17. Deliberate ROS production and auxin synergistically trigger the asymmetrical division generating the subsidiary cells in Zea mays stomatal complexes.

    PubMed

    Livanos, Pantelis; Galatis, Basil; Apostolakos, Panagiotis

    2016-07-01

    Subsidiary cell generation in Poaceae is an outstanding example of local intercellular stimulation. An inductive stimulus emanates from the guard cell mother cells (GMCs) towards their laterally adjacent subsidiary cell mother cells (SMCs) and triggers the asymmetrical division of the latter. Indole-3-acetic acid (IAA) immunolocalization in Zea mays protoderm confirmed that the GMCs function as local sources of auxin and revealed that auxin is polarly accumulated between GMCs and SMCs in a timely-dependent manner. Besides, staining techniques showed that reactive oxygen species (ROS) exhibit a closely similar, also time-dependent, pattern of appearance suggesting ROS implication in subsidiary cell formation. This phenomenon was further investigated by using the specific NADPH-oxidase inhibitor diphenylene iodonium, the ROS scavenger N-acetyl-cysteine, menadione which leads to ROS overproduction, and H2O2. Treatments with diphenylene iodonium, N-acetyl-cysteine, and menadione specifically blocked SMC polarization and asymmetrical division. In contrast, H2O2 promoted the establishment of SMC polarity and subsequently subsidiary cell formation in "younger" protodermal areas. Surprisingly, H2O2 favored the asymmetrical division of the intervening cells of the stomatal rows leading to the creation of extra apical subsidiary cells. Moreover, H2O2 altered IAA localization, whereas synthetic auxin analogue 1-napthaleneacetic acid enhanced ROS accumulation. Combined treatments with ROS modulators along with 1-napthaleneacetic acid or 2,3,5-triiodobenzoic acid, an auxin efflux inhibitor, confirmed the crosstalk between ROS and auxin functioning during subsidiary cell generation. Collectively, our results demonstrate that ROS are critical partners of auxin during development of Z. mays stomatal complexes. The interplay between auxin and ROS seems to be spatially and temporarily regulated.

  18. Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration.

    PubMed

    Radad, Khaled; Rausch, Wolf-Dieter; Gille, Gabriele

    2006-09-01

    Although the definite etiology of Parkinson's disease is still unclear, increasing evidence has suggested an important role for environmental factors such as exposure to pesticides in increasing the risk of developing Parkinson's disease. In the present study, primary cultures prepared from embryonic mouse mesencephala were applied to investigate the toxic effects and underlying mechanisms of rotenone-induced neuronal cell death relevant to Parkinson's disease. Results revealed that rotenone destroyed dopaminergic neurons in a dose- and time-dependent manner. Consistent with the cytotoxic effect of rotenone as evidenced by dopaminergic cell loss, it significantly increased the release of lactate dehydrogenase into the culture medium, the number of necrotic cells in the culture and the number of nuclei showing apoptotic features. Rotenone exerted toxicity by decreasing the mitochondrial membrane potential, increasing reactive oxygen species production and shifting respiration to a more anaerobic state.

  19. Azoxystrobin-induced excessive reactive oxygen species (ROS) production and inhibition of photosynthesis in the unicellular green algae Chlorella vulgaris.

    PubMed

    Liu, Lei; Zhu, Bin; Wang, Gao-Xue

    2015-05-01

    This study investigated the short-term toxicity of azoxystrobin (AZ), one of strobilurins used as an effective fungicidal agent to control the Asian soybean rust, on aquatic unicellular algae Chlorella vulgaris. The median percentile inhibition concentration (IC₅₀) of AZ for C. vulgaris was found to be 510 μg L(-1). We showed that the algal cells were obviously depressed or shrunk in 300 and 600 μg L(-1) AZ treatments by using the electron microscopy. Furthermore, 19, 75, and 300 μg L(-1) AZ treatments decreased the soluble protein content and chlorophyll concentrations in C. vulgaris and altered the energy-photosynthesis-related mRNA expression levels in 48- and 96-h exposure periods. Simultaneously, our results showed that AZ could increase the total antioxidant capacity (T-AOC) level and compromise superoxide dismutase (SOD), peroxidase (POD), glutathione S transferase (GST), glutathione peroxidase (GPx) activities, and glutathione (GSH) content. These situations might render C. vulgaris more vulnerable to oxidative damage. Overall, the present study indicated that AZ might be toxic to the growth of C. vulgaris, affect energy-photosynthesis-related mRNA expressions, and induce reactive oxygen species (ROS) overproduction in C. vulgaris.

  20. Oxidative Stress Assessment in Response to Ultraendurance Exercise: Thiols Redox Status and ROS Production according to Duration of a Competitive Race

    PubMed Central

    Vezzoli, Alessandra; Dellanoce, Cinzia; Montorsi, Michela; Tonini, Annamaria; Accinni, Roberto

    2016-01-01

    Purpose. Response to an ultraendurance competitive race on thiols redox status, reactive oxygen species (ROS) production, and oxidative stress (OxS) was investigated according to duration. Methods. Twenty-four elite runners were examined: six completed 50 km and eighteen 100 km. Blood and urine samples were collected before and immediately after the race. Erythrocytes and plasma aminothiols by high-performance liquid chromatography, total antioxidant capacity (TAC), and OxS biomarkers (protein carbonyl (PC), thiobarbituric acid-reactive substances (TBARS), 8-isoprostane (8-iso-PGF2α), and 8-OH-2-deoxyguanosine (8-OH-dG)) by immunoenzymatic assays and ROS production by Electron Paramagnetic Resonance were assessed. Results. Significant increases (P between <0.05 and <0.0001) were recorded in plasma total and oxidized aminothiols concentration and TAC (P < 0.0001) only after 100 km: plasmatic (ROS production (+12 versus +29%), PC (+54 versus +115%), and TBARS (+28 versus +55%)) and urinary (8-OH-dG.creatinine−1 (+71 versus +158%) and 8-iso-PGF2α.creatinine−1 (+43 versus +135%)) concentrations for 50 and 100 km (duration 4 h 3′ versus 8 h 42′), respectively. Conclusion. Very prolonged ultraendurance exercise causes an increase in ROS production and OxS depending on specific biomarker examined but always linearly and directly related to exercise duration. Redox status of erythrocytes was preserved. A relationship between running performance and both prerace ROS production and antioxidant-redox status was found in 100 km race. PMID:27504148

  1. Chrysophanol induces necrosis through the production of ROS and alteration of ATP levels in J5 human liver cancer cells

    PubMed Central

    Lu, Chi-Cheng; Yang, Jai-Sing; Huang, An-Cheng; Hsia, Te-Chun; Chou, Su-Tze; Kuo, Chao-Lin; Lu, Hsu-Feng; Lee, Tsung-Han; Wood, W. G.; Chung, Jing-Gung

    2011-01-01

    Anthraquinone compounds have been shown to induce apoptosis in different cancer cell types. Effects of chrysophanol, an anthraquinone compound, on cancer cell death have not been well-studied. The goal of this study was to examine if chrysophanol had cytotoxic effects and if such effects involved apoptosis or necrosis in J5 human liver cancer cells. Chrysophanol induced necrosis in J5 cells in a dose- and time-dependent manner. Non-apoptotic cell death was induced by chrysophanol in J5 cells and was characterized by caspase independence, delayed externalization of phosphatidylserine and plasma membrane disruption. Blockage of apoptotic induction by a general caspase inhibitor (z-VAD-fmk) failed to protect cells against chrysophanol-induced cell death. The levels of ROS production and loss of mitochondrial membrane potential (ΔΨm) were also determined to assess the effects of chrysophanol. However, reductions in ATP levels and increases in LDH activity indicated that chrysophanol stimulated necrotic cell death. In summary, human liver cancer cells treated with chrysophanol exhibited a cellular pattern associated with necrosis and not apoptosis. PMID:20169580

  2. Oxidatively modified high density lipoprotein promotes inflammatory response in human monocytes-macrophages by enhanced production of ROS, TNF-α, MMP-9, and MMP-2.

    PubMed

    Soumyarani, V S; Jayakumari, N

    2012-07-01

    It has been proposed that high-density lipoprotein (HDL) loses its cardioprotective ability through oxidative modifications by reactive oxygen species (ROS) and promote atherogenesis. However, the pro-atherogenic pathways undergone by oxidized HDL remain poorly understood. Since monocytes play a crucial role in atherogenesis, this study was aimed to investigate the influence of both native and oxidized HDL (oxHDL) on monocytes-macrophages functions relevant to atherogenesis. HDL particles were isolated from human blood samples by ultracentrifugation and subjected to in vitro oxidation with CuSO(4). The extent of oxidation was quantitated by measurement of lipid peroxides. Human peripheral blood mononuclear cells were isolated and cultured under standard conditions. Cells were treated with native and oxHDL at varying concentrations for different time intervals and used for several analyses. Intracellular ROS production was assessed based on ROS-mediated DCFH fluorescence of the cells. The release of TNF-α and matrix metalloproteinases (MMPs) was quantitated using ELISA kit and gelatine zymography, respectively. Treatment of cells with oxidized HDL enhanced the production of ROS in a concentration-dependent way, while native HDL had no such effect. Further, the release of TNF-α, MMP-9, and MMP-2 was found to be remarkably higher in cells incubated with oxHDL than that of native HDL. Results demonstrate that oxidative modification of HDL induces pro-inflammatory response and oxidative stress in human monocytes-macrophages.

  3. Photoactivation of ROS production in situ transiently activates cell proliferation in mouse skin and in the hair follicle stem cell niche promoting hair growth and wound healing

    PubMed Central

    Carrasco, Elisa; Calvo, María I.; Blázquez-Castro, Alfonso; Vecchio, Daniela; Zamarrón, Alicia; de Almeida, Irma Joyce Dias; Stockert, Juan C.; Hamblin, Michael R.; Juarranz, Ángeles; Espada, Jesús

    2015-01-01

    The role of reactive oxygen species (ROS) in the regulation of hair follicle cycle and skin homeostasis is poorly characterized. ROS have been traditionally linked to human disease and ageing, but recent findings suggest that can also have beneficial physiological functions in vivo in mammals. To test this hypothesis, we transiently switched on in situ ROS production in mouse skin. This process activated cell proliferation in the tissue and, interestingly, in the bulge region of the hair follicle, a major reservoir of epidermal stem cells, promoting hair growth as well as stimulating tissue repair after severe burn injury. We further show that these effects were associated with a transient Src kinase phosphorylation at Tyr416 and with a strong transcriptional activation of the prolactin family 2 subfamily c of growth factors. Our results point to potentially relevant modes of skin homeostasis regulation and demonstrate that a local and transient ROS production can regulate stem cell and tissue function in the whole organism. PMID:26134949

  4. Naegleria fowleri induces MUC5AC and pro-inflammatory cytokines in human epithelial cells via ROS production and EGFR activation.

    PubMed

    Cervantes-Sandoval, Isaac; Serrano-Luna, José de Jesús; Meza-Cervantez, Patricia; Arroyo, Rossana; Tsutsumi, Víctor; Shibayama, Mineko

    2009-11-01

    Naegleria fowleri is an amoeboflagellate responsible for the fatal central nervous system (CNS) disease primary amoebic meningoencephalitis (PAM). This amoeba gains access to the CNS by invading the olfactory mucosa and crossing the cribriform plate. Studies using a mouse model of infection have shown that the host secretes mucus during the very early stages of infection, and this event is followed by an infiltration of neutrophils into the nasal cavity. In this study, we investigated the role of N. fowleri trophozoites in inducing the expression and secretion of airway mucin and pro-inflammatory mediators. Using the human mucoepidermal cell line NCI-H292, we demonstrated that N. fowleri induced the expression of the MUC5AC gene and protein and the pro-inflammatory mediators interleukin-8 (IL-8) and interleukin-1 beta (IL-1 beta), but not tumour necrosis factor-alpha or chemokine c-c motif ligand 11 (eotaxin). Since the production of reactive oxygen species (ROS) is a common phenomenon involved in the signalling pathways of these molecules, we analysed if trophozoites were capable of causing ROS production in NCI-H292 cells by detecting oxidation of the fluorescent probe 2,7-dichlorofluorescein diacetate. NCI-H292 cells generated ROS after 15-30 min of trophozoite stimulation. Furthermore, the expression of MUC5AC, IL-8 and IL-1 beta was inhibited in the presence of the ROS scavenger DMSO. In addition, the use of an epidermal growth factor receptor inhibitor decreased the expression of MUC5AC and IL-8, but not IL-1 beta. We conclude that N. fowleri induces the expression of some host innate defence mechanisms, such as mucin secretion (MUC5AC) and local inflammation (IL-8 and IL-1 beta) in respiratory epithelial cells via ROS production and suggest that these innate immune mechanisms probably prevent most PAM infections.

  5. The marketing implications of affective product design.

    PubMed

    Seva, Rosemary R; Duh, Henry Been-Lirn; Helander, Martin G

    2007-11-01

    Emotions are compelling human experiences and product designers can take advantage of this by conceptualizing emotion-engendering products that sell well in the market. This study hypothesized that product attributes influence users' emotions and that the relationship is moderated by the adherence of these product attributes to purchase criteria. It was further hypothesized that the emotional experience of the user influences purchase intention. A laboratory study was conducted to validate the hypotheses using mobile phones as test products. Sixty-two participants were asked to assess eight phones from a display of 10 phones and indicate their emotional experiences after assessment. Results suggest that some product attributes can cause intense emotional experience. The attributes relate to the phone's dimensions and the relationship between these dimensions. The study validated the notion of integrating affect in designing products that convey users' personalities.

  6. Methylglyoxal Impairs Insulin Secretion of Pancreatic β-Cells through Increased Production of ROS and Mitochondrial Dysfunction Mediated by Upregulation of UCP2 and MAPKs.

    PubMed

    Bo, Jinshuang; Xie, Shiya; Guo, Yi; Zhang, Chunli; Guan, Yanming; Li, Chunmei; Lu, Jianxin; Meng, Qing H

    2016-01-01

    Methylglyoxal (MG) is a highly reactive glucose metabolic intermediate and a major precursor of advanced glycation end products. MG level is elevated in hyperglycemic disorders such as diabetes mellitus. Substantial evidence has shown that MG is involved in the pathogenesis of diabetes and diabetic complications. We investigated the impact of MG on insulin secretion by MIN6 and INS-1 cells and the potential mechanisms of this effect. Our study demonstrates that MG impaired insulin secretion by MIN6 or ISN-1 cells in a dose-dependent manner. It increased reactive oxygen species (ROS) production and apoptosis rate in MIN6 or ISN-1 cells and inhibited mitochondrial membrane potential (MMP) and ATP production. Furthermore, the expression of UCP2, JNK, and P38 as well as the phosphorylation JNK and P38 was increased by MG. These effects of MG were attenuated by MG scavenger N-acetyl cysteine. Collectively, these data indicate that MG impairs insulin secretion of pancreatic β-cells through increasing ROS production. High levels of ROS can damage β-cells directly via JNK/P38 upregulation and through activation of UCP2 resulting in reduced MMP and ATP production, leading to β-cell dysfunction and impairment of insulin production.

  7. Dose-dependent intracellular reactive oxygen and nitrogen species (ROS/RNS) production from particulate matter exposure: comparison to oxidative potential and chemical composition

    NASA Astrophysics Data System (ADS)

    Tuet, Wing Y.; Fok, Shierly; Verma, Vishal; Tagle Rodriguez, Marlen S.; Grosberg, Anna; Champion, Julie A.; Ng, Nga L.

    2016-11-01

    Elevated particulate matter (PM) concentrations have been associated with cardiopulmonary risks. In this study, alveolar macrophages and ventricular myocytes were exposed to PM extracts from 104 ambient filters collected in multiple rural and urban sites in the greater Atlanta area. PM-induced reactive oxygen/nitrogen species (ROS/RNS) were measured to investigate the effect of chemical composition and determine whether chemical assays are representative of cellular responses. For summer samples, the area under the ROS/RNS dose-response curve per volume of air (AUCvolume) was significantly correlated with dithiothreitol (DTT) activity, water-soluble organic carbon (WSOC), brown carbon, titanium, and iron, while a relatively flat response was observed for winter samples. EC50 was also correlated with max response for all filters investigated, which suggests that certain PM constituents may be involved in cellular protective pathways. Although few metal correlations were observed, exposure to laboratory-prepared metal solutions induced ROS/RNS production, indicating that a lack of correlation does not necessarily translate to a lack of response. Collectively, these results suggest that complex interactions may occur between PM species. Furthermore, the strong correlation between organic species and ROS/RNS response highlights a need to understand the contribution of organic aerosols, especially photochemically driven secondary organic aerosols (SOA), to PM-induced health effects.

  8. Lactate and Pyruvate Are Major Sources of Energy for Stallion Sperm with Dose Effects on Mitochondrial Function, Motility, and ROS Production.

    PubMed

    Darr, Christa R; Varner, Dickson D; Teague, Sheila; Cortopassi, Gino A; Datta, Sandipan; Meyers, Stuart A

    2016-08-01

    Stallion sperm rely primarily on oxidative phosphorylation for production of ATP used in sperm motility and metabolism. The objective of the study was to identify which substrates included in Biggers, Whitten, and Whittingham (BWW) media are key to optimal mitochondrial function through measurements of sperm motility parameters, mitochondrial oxygen consumption, and cellular reactive oxygen species (ROS) production. It was expected that mitochondrial substrates, pyruvate and lactate, would support sperm motility and mitochondrial function better than the glycolytic substrate, glucose, due to direct utilization within the mitochondria. Measurements were performed after incubation in modified BWW media with varying concentrations of lactate, pyruvate, and glucose. The effects of media and duration of incubation on sperm motility, ROS production, and oxygen consumption were determined using a linear mixed-effects model. Duplicate ejaculates from four stallions were used in three separate experiments to determine the effects of substrate availability and concentration on sperm motility and mitochondrial function and the relationship of oxygen consumption with cellular ROS production. The present results indicate that lactate and pyruvate are the most important sources of energy for stallion sperm motility and velocity, and elicit a dose-dependent response. Additionally, lactate and pyruvate are ideal for maximal mitochondrial function, as sperm in these media operate at a very high level of their bioenergetic capability due to the high rate of energy metabolism. Moreover, we found that addition of glucose to the media is not necessary for short-term storage of equine sperm, and may even result in reduction of mitochondrial function. Finally, we have confirmed that ROS production can be the result of mitochondrial dysfunction as well as intense mitochondrial activity.

  9. The edible red alga, Gracilaria verrucosa, inhibits lipid accumulation and ROS production, but improves glucose uptake in 3T3-L1 cells.

    PubMed

    Woo, Mi-Seon; Choi, Hyeon-Son; Lee, Ok-Hwan; Lee, Boo-Yong

    2013-07-01

    Gracilaria verrucosa is a red alga that is widely distributed in seaside areas of many countries. We examined the effect of G. verrucosa extract on adipogenesis, reactive oxygen species (ROS) production, and glucose uptake in 3T3-L1 cells. Oil red O staining and a nitroblue tetrazolium assay showed that G. verrucosa extract inhibited lipid accumulation and ROS production, respectively. mRNA levels of adipogenic transcription factors, peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha, as well as of their target gene, adipocyte protein 2, were reduced upon treatment with G. verrucosa extract. However, G. verrucosa extract increased glucose uptake, glucose transporter-4 expression, and AMP-activated protein kinaseα (AMPKα) phosphorylation compared to the control. Our results suggest that the anti-adipogenic and insulin-sensitive effects of G. verrucosa extract can be recapitulated to activation of AMPKα.

  10. Moderate extracellular acidification inhibits capsaicin-induced cell death through regulating calcium mobilization, NF-{kappa}B translocation and ROS production in synoviocytes

    SciTech Connect

    Hu, Fen; Yang, Shuang; Zhao, Dan; Zhu, Shuyan; Wang, Yuxiang; Li, Junying

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer Moderate extracellular acidification regulates intracellular Ca{sup 2+} mobilization. Black-Right-Pointing-Pointer Moderate acidification activates NF-{kappa}B nuclear translocation in synoviocytes. Black-Right-Pointing-Pointer Moderate acidification depresses the ROS production induced by capsaicin. Black-Right-Pointing-Pointer Moderate acidification inhibits capsaicin-caused synoviocyte death. -- Abstract: We previously show the expression of transient receptor potential vanilloid 1 (TRPV1) in primary synoviocytes from collagen-induced arthritis (CIA) rats. Capsaicin and lowered extracellular pH from 7.4 to 5.5 induce cell death through TRPV1-mediated Ca{sup 2+} entry and reactive oxygen species (ROS) production. However, under the pathological condition in rheumatoid arthritis, the synovial fluid is acidified to a moderate level (about pH 6.8). In the present study, we examined the effects of pH 6.8 on the TRPV1-mediated cell death. Our finding is different or even opposite from what was observed at pH 5.5. We found that the moderate extracellular acidification (from pH 7.4 to 6.8) inhibited the capsaicin-induced Ca{sup 2+} entry through attenuating the activity of TRPV1. In the mean time, it triggered a phospholipse C (PLC)-related Ca{sup 2+} release from intracellular stores. The nuclear translocation of NF-{kappa}B was found at pH 6.8, and this also depends on PLC activation. Moreover, the capsaicin-evoked massive ROS production and cell death were depressed at pH 6.8, both of which are dependent on the activation of PLC and NF-{kappa}B. Taken together, these results suggested that the moderate extracellular acidification inhibited the capsaicin-induced synoviocyte death through regulating Ca{sup 2+} mobilization, activating NF-{kappa}B nuclear translocation and depressing ROS production.

  11. Improved production of phleichrome from the phytopathogenic fungus Cladosporium phlei using synthetic inducers and photodynamic ROS production by phleichrome.

    PubMed

    So, Kum-Kang; Jo, Ik-Su; Chae, Min-Seon; Kim, Jung-Mi; Chung, Hea-Jong; Yang, Moon-Sik; Kim, Beom-Tae; Kim, Jin-Kug; Choi, Jong-Kyung; Kim, Dae-Hyuk

    2015-03-01

    Two different diketopiperazines, cyclo-(L-Pro-L-Leu) and cyclo-(L-Pro-L-Phe), which were isolated from the culture filtrate of Epichloe typhina and found to be inducers of phleichrome production, were chemically synthesized and evaluated for use in the improved production of phleichrome from wild-type and UV-mutagenized strains (M0035) of Cladosporium phlei. When supplemented with PDA and V8 juice agar media, both inducers showed significant increases in the production of phleichrome. Phleichrome production was increased in a dose-dependent manner up to a concentration of maximum yield for both inducers. No further significant induction was observed by supplementing inducers over the concentration of maximum yield. Among the two inducers, cyclo-(L-Pro-L-Phe) showed better inducing capability than cyclo-(L-Pro-L-Leu). The maximum yield was observed from the M0035 strain grown on V8 juice media supplemented with 150 μM cyclo-(L-Pro-L-Phe), which was estimated to be 232.6 mg of phleichrome per gram of mycelia and 10.2 mg of secreted phleichrome per 20 agar-plugs. Interestingly, growth inhibition was observed on V8 juice agar media with 100, 150, and 200 μM cyclo-(L-Pro-L-Phe) but not on PDA with the same amount of inducer, which suggests that the inhibitory effect might be through the overproduction of phleichrome rather than the toxic effect of the inducer itself. Superoxide production by purified phleichrome was dramatically stimulated upon illumination, thus demonstrating photodynamic production of superoxide in vitro by phleichrome.

  12. ROS and ROS-Mediated Cellular Signaling

    PubMed Central

    Zhang, Jixiang; Wang, Xiaoli; Vikash, Vikash; Ye, Qing; Wu, Dandan; Liu, Yulan; Dong, Weiguo

    2016-01-01

    It has long been recognized that an increase of reactive oxygen species (ROS) can modify the cell-signaling proteins and have functional consequences, which successively mediate pathological processes such as atherosclerosis, diabetes, unchecked growth, neurodegeneration, inflammation, and aging. While numerous articles have demonstrated the impacts of ROS on various signaling pathways and clarify the mechanism of action of cell-signaling proteins, their influence on the level of intracellular ROS, and their complex interactions among multiple ROS associated signaling pathways, the systemic summary is necessary. In this review paper, we particularly focus on the pattern of the generation and homeostasis of intracellular ROS, the mechanisms and targets of ROS impacting on cell-signaling proteins (NF-κB, MAPKs, Keap1-Nrf2-ARE, and PI3K-Akt), ion channels and transporters (Ca2+ and mPTP), and modifying protein kinase and Ubiquitination/Proteasome System. PMID:26998193

  13. Revisiting Kadenbach: Electron flux rate through cytochrome c-oxidase determines the ATP-inhibitory effect and subsequent production of ROS.

    PubMed

    Vogt, Sebastian; Rhiel, Annika; Weber, Petra; Ramzan, Rabia

    2016-06-01

    Mitochondrial respiration is the predominant source of ATP. Excessive rates of electron transport cause a higher production of harmful reactive oxygen species (ROS). There are two regulatory mechanisms known. The first, according to Mitchel, is dependent on the mitochondrial membrane potential that drives ATP synthase for ATP production, and the second, the Kadenbach mechanism, is focussed on the binding of ATP to Cytochrome c Oxidase (CytOx) at high ATP/ADP ratios, which results in an allosteric conformational change to CytOx, causing inhibition. In times of stress, ATP-dependent inhibition is switched off and the activity of CytOx is exclusively determined by the membrane potential, leading to an increase in ROS production. The second mechanism for respiratory control depends on the quantity of electron transfer to the Heme aa3 of CytOx. When ATP is bound to CytOx the enzyme is inhibited, and ROS formation is decreased, although the mitochondrial membrane potential is increased.

  14. Liver-X-receptor activator prevents homocysteine-induced production of IgG antibodies from murine B lymphocytes via the ROS-NF-{kappa}B pathway

    SciTech Connect

    Chang Lina; Zhang, Zhenmin; Li Wenjing; Dai Jing; Guan Youfei; Wang Xian . E-mail: xwang@bjmu.edu.cn

    2007-06-08

    Our previous study showed that homosysteine (Hcy) promotes proliferation of mouse splenic B lymphocytes. In this study, we investigated whether Hcy could stimulate the production of IgG antibodies. Hcy significantly increased the production of IgG antibodies from resting B lymphocytes. B lymphocytes from ApoE-knockout mice with hyperhomocysteinemia showed elevated IgG secretion at either the basal Hcy level or in response to lipopolysaccharide. Hcy promoted reactive oxygen species (ROS) formation, and free radical scavengers, MnTMPyP decreased Hcy-induced IgG secretion. The inhibitor of NF-{kappa}B (MG132) also significantly reduced Hcy-induced IgG secretion. Furthermore, Hcy-induced formation of ROS, activation of NF-{kappa}B, and secretion of IgG could be inhibited by the liver-X-receptor (LXR) agonist TO 901317. Thus, our data provide strong evidence that HHcy induces IgG production from murine splenic B lymphocytes both in vitro and in vivo. The mechanism might be through the ROS-NF-{kappa}B pathway and can be attenuated by the activation of LXR.

  15. Revisiting Kadenbach: Electron flux rate through cytochrome c‐oxidase determines the ATP‐inhibitory effect and subsequent production of ROS

    PubMed Central

    Rhiel, Annika; Weber, Petra; Ramzan, Rabia

    2016-01-01

    Mitochondrial respiration is the predominant source of ATP. Excessive rates of electron transport cause a higher production of harmful reactive oxygen species (ROS). There are two regulatory mechanisms known. The first, according to Mitchel, is dependent on the mitochondrial membrane potential that drives ATP synthase for ATP production, and the second, the Kadenbach mechanism, is focussed on the binding of ATP to Cytochrome c Oxidase (CytOx) at high ATP/ADP ratios, which results in an allosteric conformational change to CytOx, causing inhibition. In times of stress, ATP‐dependent inhibition is switched off and the activity of CytOx is exclusively determined by the membrane potential, leading to an increase in ROS production. The second mechanism for respiratory control depends on the quantity of electron transfer to the Heme aa3 of CytOx. When ATP is bound to CytOx the enzyme is inhibited, and ROS formation is decreased, although the mitochondrial membrane potential is increased. PMID:27171124

  16. Effects of TiO2 nanoparticles on ROS production and growth inhibition using freshwater green algae pre-exposed to UV irradiation.

    PubMed

    Fu, Ling; Hamzeh, Mahsa; Dodard, Sabine; Zhao, Yuan H; Sunahara, Geoffrey I

    2015-05-01

    This study investigated the possibility that titanium dioxide nanoparticles (nano-TiO2) toxicity in Pseudokirchneriella subcapitata involves reactive oxygen species (ROS) production, using the dichlorodihydrofluorescein (DCF) assay. Algae were exposed to nano-TiO2 under laboratory fluorescent lamps supplemented with UV irradiation for 3h, with or without a UV filter. Results showed that nano-TiO2 increased ROS production in UV-exposed cells, with or without a UV filter (LOEC values were 250 and 10mg/L, respectively). Sublethal effects of nano-TiO2 on UV pre-exposed algae were also examined. Toxicity studies indicated that exposure to nano-TiO2 agglomerates decreased algal growth following 3h pre-exposure to UV, with or without a UV filter (EC50s were 8.7 and 6.3mg/L, respectively). The present study suggests that the growth inhibitory effects of nano-TiO2 in algae occurred at concentrations lower than those that can elevate DCF fluorescence, and that ROS generation is not directly involved with the sublethal effects of nano-TiO2 in algae.

  17. Effect of CO, NOx and SO2 on ROS production, photosynthesis and ascorbate-glutathione pathway to induce Fragaria×annasa as a hyperaccumulator.

    PubMed

    Muneer, Sowbiya; Kim, Tae Hwan; Choi, Byung Chul; Lee, Beom Seon; Lee, Jeong Hyun

    2014-01-01

    A study was conducted to determine the effect of carbon monoxide (CO), nitroxide (NOx) and sulfur dioxide (SO2) on ROS production, photosynthesis and ascorbate-glutathione pathway in strawberry plants. The results showed that both singlet oxygen (O2(-1)) and hydrogen peroxide (H2O2) content increased in CO, NOx and SO2 treated strawberry leaves. A drastic reduction of primary metabolism of plants (photosynthesis), with the closure of stomata, resulted in a reduction of protein, carbohydrate and sucrose content due to production of reactive oxygen species (ROS) under prolonged exposure of gas stress. The resulting antioxidant enzymes were increased under a low dose of gas stress, whereas they were decreased due to a high dose of gas stress. Our results indicate that increased ROS may act as a signal to induce defense responses to CO, NOx and SO2 gas stress. The increased level of antioxidant enzymes plays a significant role in plant protection due to which strawberry plants can be used as a hyperaccumulator to maintain environmental pollution, however, the defense capacity cannot sufficiently alleviate oxidative damage under prolonged exposure of CO, NOx and SO2 stress.

  18. Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species

    PubMed Central

    Lee, Mi Jin; Lee, Seung Jun; Yun, Su Jin; Jang, Ji-Young; Kang, Hangoo; Kim, Kyongmin; Choi, In-Hong; Park, Sun

    2016-01-01

    The silver nanoparticle (AgNP) is a candidate for anticancer therapy because of its effects on cell survival and signaling. Although numerous reports are available regarding their effect on cell death, the effect of AgNPs on metabolism is not well understood. In this study, we investigated the effect of AgNPs on glucose metabolism in hepatoma cell lines. Lactate release from both HepG2 and Huh7 cells was reduced with 5 nm AgNPs as early as 1 hour after treatment, when cell death did not occur. Treatment with 5 nm AgNPs decreased glucose consumption in HepG2 cells but not in Huh7 cells. Treatment with 5 nm AgNPs reduced nuclear factor erythroid 2-like 2 expression in both cell types without affecting its activation at the early time points after AgNPs’ treatment. Increased reactive oxygen species (ROS) production was detected 1 hour after 5 nm AgNPs’ treatment, and lactate release was restored in the presence of an ROS scavenger. Our results suggest that 5 nm AgNPs affect glucose metabolism by producing ROS. PMID:26730190

  19. Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species.

    PubMed

    Lee, Mi Jin; Lee, Seung Jun; Yun, Su Jin; Jang, Ji-Young; Kang, Hangoo; Kim, Kyongmin; Choi, In-Hong; Park, Sun

    2016-01-01

    The silver nanoparticle (AgNP) is a candidate for anticancer therapy because of its effects on cell survival and signaling. Although numerous reports are available regarding their effect on cell death, the effect of AgNPs on metabolism is not well understood. In this study, we investigated the effect of AgNPs on glucose metabolism in hepatoma cell lines. Lactate release from both HepG2 and Huh7 cells was reduced with 5 nm AgNPs as early as 1 hour after treatment, when cell death did not occur. Treatment with 5 nm AgNPs decreased glucose consumption in HepG2 cells but not in Huh7 cells. Treatment with 5 nm AgNPs reduced nuclear factor erythroid 2-like 2 expression in both cell types without affecting its activation at the early time points after AgNPs' treatment. Increased reactive oxygen species (ROS) production was detected 1 hour after 5 nm AgNPs' treatment, and lactate release was restored in the presence of an ROS scavenger. Our results suggest that 5 nm AgNPs affect glucose metabolism by producing ROS.

  20. Specificity in ROS Signaling and Transcript Signatures

    PubMed Central

    Vaahtera, Lauri; Brosché, Mikael; Wrzaczek, Michael

    2014-01-01

    Abstract Significance: Reactive oxygen species (ROS), important signaling molecules in plants, are involved in developmental control and stress adaptation. ROS production can trigger broad transcriptional changes; however, it is not clear how specificity in transcriptional regulation is achieved. Recent Advances: A large collection of public transcriptome data from the model plant Arabidopsis thaliana is available for analysis. These data can be used for the analysis of biological processes that are associated with ROS signaling and for the identification of suitable transcriptional indicators. Several online tools, such as Genevestigator and Expression Angler, have simplified the task to analyze, interpret, and visualize this wealth of data. Critical Issues: The analysis of the exact transcriptional responses to ROS requires the production of specific ROS in distinct subcellular compartments with precise timing, which is experimentally difficult. Analyses are further complicated by the effect of ROS production in one subcellular location on the ROS accumulation in other compartments. In addition, even subtle differences in the method of ROS production or treatment can lead to significantly different outcomes when various stimuli are compared. Future Directions: Due to the difficulty of inducing ROS production specifically with regard to ROS type, subcellular localization, and timing, we propose that the concept of a “ROS marker gene” should be re-evaluated. We suggest guidelines for the analysis of transcriptional data in ROS signaling. The use of “ROS signatures,” which consist of a set of genes that together can show characteristic and indicative responses, should be preferred over the use of individual marker genes. Antioxid. Redox Signal. 21, 1422–1441. PMID:24180661

  1. The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses.

    PubMed

    Zhang, Ming; Smith, J Andrew C; Harberd, Nicholas P; Jiang, Caifu

    2016-08-01

    Soil salinity is one of the most commonly encountered environmental stresses affecting plant growth and crop productivity. Accordingly, plants have evolved a variety of morphological, physiological and biochemical strategies that enable them to adapt to saline growth conditions. For example, it has long been known that salinity-stress increases both the production of the gaseous stress hormone ethylene and the in planta accumulation of reactive oxygen species (ROS). Recently, there has been significant progress in understanding how the fine-tuning of ethylene biosynthesis and signaling transduction can promote salinity tolerance, and how salinity-induced ROS accumulation also acts as a signal in the mediation of salinity tolerance. Furthermore, recent advances have indicated that ethylene signaling modulates salinity responses largely via regulation of ROS-generating and ROS-scavenging mechanisms. This review focuses on these recent advances in understanding the linked roles of ethylene and ROS in salt tolerance.

  2. Altered cytotoxicity of ROS-inducing compounds by sodium pyruvate in cell culture medium depends on the location of ROS generation.

    PubMed

    Kelts, Jessica L; Cali, James J; Duellman, Sarah J; Shultz, John

    2015-01-01

    Induction of oxidative stress by drugs and other xenobiotics is an important mechanism of cytotoxicity. However, in vitro studies on the relationship between oxidative stress and cytotoxicity in cultured cells is frequently complicated by the fact that cell culture medium components affect reactive oxygen species (ROS) exposures in ways that vary with the mode of ROS production. The objectives of this study were to first determine the mode of ROS induction by certain model compounds when they are applied to cultured cells, and then to determine how ROS induction and cytotoxicity were affected by the ROS-quenching medium component pyruvate. Three compounds, eseroline, benserazide, and pyrogallol induced H2O2 in cell culture media independent of cells. However, another compound, menadione, induced H2O2 in a manner largely dependent on the MDA-MB-231 breast cancer cells used in this study, which is consistent with its known mechanism of inducing ROS through intracellular redox cycling. 1 mM pyruvate, as well as catalase, reduced the H2O2 in culture wells with each ROS inducer tested but it only reduced the cytotoxicity of cell-independent inducers. It reduced the cytotoxicity of benserazide and pyrogallol >10-fold and of eseroline about 2.5-fold, but had no effect on menadione cytotoxicity. From this data, it was concluded that depending on the mechanism of ROS induction, whether intra- or extracellular, a ROS-quenching medium component such as pyruvate will differentially affect the net ROS-induction and cytotoxicity of a test compound.

  3. The chlorinated AHR ligand 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) promotes reactive oxygen species (ROS) production during embryonic development in the killifish (Fundulus heteroclitus)

    USGS Publications Warehouse

    Arzuaga, Xabier; Wassenberg, Deena; Giulio, Richard D.; Elskus, Adria

    2006-01-01

    Exposure to dioxin-like chemicals that activate the aryl hydrocarbon receptor (AHR) can result in increased cellular and tissue production of reactive oxygen species (ROS). Little is known of these effects during early fish development. We used the fish model, Fundulus heteroclitus, to determine if the AHR ligand and pro-oxidant 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) can increase ROS production during killifish development, and to test a novel method for measuring ROS non-invasively in a living organism. The superoxide-sensitive fluorescent dye, dihydroethidium (DHE), was used to detect in ovo ROS production microscopically in developing killifish exposed to PCB126 or vehicle. Both in ovo CYP1A activity (ethoxyresorufin-o-deethylase, EROD) and in ovo ROS were induced by PCB126. In ovo CYP1A activity was inducible by PCB126 concentrations as low as 0.003 nM, with maximal induction occurring at 0.3 nM PCB126. These PCB126 concentrations also significantly increased in ovo ROS production in embryonic liver, ROS being detectable as early as 5 days post-fertilization. These data demonstrate that the pro-oxidant and CYP1A inducer, PCB126, increases both CYP1A activity and ROS production in developing killifish embryos. The superoxide detection assay (SoDA) described in this paper provides a semi-quantitative, easily measured, early indicator of altered ROS production that can be used in conjunction with simultaneous in ovo measurements of CYP1A activity and embryo development to explore functional relationships among biochemical, physiological and developmental responses to AHR ligands.

  4. Natural polyamines and synthetic analogs modify the growth and the morphology of Pyrus communis pollen tubes affecting ROS levels and causing cell death.

    PubMed

    Aloisi, Iris; Cai, Giampiero; Tumiatti, Vincenzo; Minarini, Anna; Del Duca, Stefano

    2015-10-01

    Polyamines (PAs) are small molecules necessary for pollen maturation and tube growth. Their role is often controversial, since they may act as pro-survival factors as well as factors promoting Programmed Cell Death (PCD). The aim of the present work was to evaluate the effect of exogenous PAs on the apical growth of pear (Pyrus communis) pollen tube and to understand if PAs and reactive oxygen species (ROS) are interconnected in the process of tip-growth. In the present study besides natural PAs, also aryl-substituted spermine and methoctramine (Met 6-8-6) analogs were tested. Among the natural PAs, Spm showed strongest effects on tube growth. Spm entered through the pollen tube tip, then diffused in the sub-apical region that underwent drastic morphological changes, showing enlarged tip. Analogs were mostly less efficient than natural PAs but BD23, an asymmetric synthetic PAs bearing a pyridine ring, showed similar effects. These effects were related to the ability of PAs to cause the decrease of ROS level in the apical zone, leading to cell death, counteracted by the caspase-3 inhibitor Ac-DEVD-CHO (DEVD). In conclusions, ROS are essential for pollen germination and a strict correlation between ROS regulation and PA concentration is reported. Moreover, an imbalance between ROS and PAs can be detrimental thereby driving pollen toward cell death.

  5. Plant Natural Product Formononetin Protects Rat Cardiomyocyte H9c2 Cells against Oxygen Glucose Deprivation and Reoxygenation via Inhibiting ROS Formation and Promoting GSK-3β Phosphorylation.

    PubMed

    Cheng, Yuanyuan; Xia, Zhengyuan; Han, Yifan; Rong, Jianhui

    2016-01-01

    The opening of mitochondrial permeability transition pore (mPTP) is a major cause of cell death in ischemia reperfusion injury. Based on our pilot experiments, plant natural product formononetin enhanced the survival of rat cardiomyocyte H9c2 cells during oxygen glucose deprivation (OGD) and reoxygenation. For mechanistic studies, we focused on two major cellular factors, namely, reactive oxygen species (ROS) and glycogen synthase kinase 3β (GSK-3β), in the regulation of mPTP opening. We found that formononetin suppressed the formation of ROS and superoxide in a concentration-dependent manner. Formononetin also rescued OGD/reoxygenation-induced loss of mitochondrial membrane integrity. Further studies suggested that formononetin induced Akt activation and GSK-3β (Ser9) phosphorylation, thereby reducing GSK-3β activity towards mPTP opening. PI3K and PKC inhibitors abolished the effects of formononetin on mPTP opening and GSK-3β phosphorylation. Immunoprecipitation experiments further revealed that formononetin increased the binding of phosphor-GSK-3β to adenine nucleotide translocase (ANT) while it disrupted the complex of ANT with cyclophilin D. Moreover, immunofluorescence revealed that phospho-GSK-3β (Ser9) was mainly deposited in the space between mitochondria and cell nucleus. Collectively, these results indicated that formononetin protected cardiomyocytes from OGD/reoxygenation injury via inhibiting ROS formation and promoting GSK-3β phosphorylation.

  6. Silence of the ROS.

    PubMed

    Agudo, Judith; Brown, Brian D

    2016-03-15

    Reactive oxygen species (ROS) are generated during T cell activation and serve a signaling function but can also be damaging. In this issue of Immunity, Zhang et al. (2016) show that miR-23a prevents ROS-elicited necrosis by suppressing cyclophilin D (PPIF), a regulator of ROS escape from mitochondria.

  7. Pioglitazone reduces angiotensin II-induced COX-2 expression through inhibition of ROS production and ET-1 transcription in vascular cells from spontaneously hypertensive rats.

    PubMed

    Pérez-Girón, Jose V; Palacios, Roberto; Martín, Angela; Hernanz, Raquel; Aguado, Andrea; Martínez-Revelles, Sonia; Barrús, María T; Salaices, Mercedes; Alonso, María J

    2014-06-01

    Glitazones have anti-inflammatory properties by interfering with the transcription of proinflammatory genes, such as cyclooxygenase (COX)-2, and with ROS production, which are increased in hypertension. This study analyzed whether pioglitazone modulates COX-2 expression in hypertension by interfering with ROS and endothelin (ET)-1. In vivo, pioglitazone (2.5 mg·kg(-1)·day(-1), 28 days) reduced the greater levels of COX-2, pre-pro-ET-1, and NADPH oxidase (NOX) expression and activity as well as O2 (·-) production found in aortas from spontaneously hypertensive rats (SHRs). ANG II increased COX-2 and pre-pro-ET-1 levels more in cultured vascular smooth muscle cells from hypertensive rats compared with normotensive rats. The ETA receptor antagonist BQ-123 reduced ANG II-induced COX-2 expression in SHR cells. ANG II also increased NOX-1 expression, NOX activity, and superoxide production in SHR cells; the selective NOX-1 inhibitor ML-171 and catalase reduced ANG II-induced COX-2 and ET-1 transcription. ANG II also increased c-Jun transcription and phospho-JNK1/2, phospho-c-Jun, and p65 NF-κB subunit nuclear protein expression. SP-600125 and lactacystin, JNK and NF-κB inhibitors, respectively, reduced ANG II-induced ET-1, COX-2, and NOX-1 levels and NOX activity. Pioglitazone reduced the effects of ANG II on NOX activity, NOX-1, pre-pro-ET-1, COX-2, and c-Jun mRNA levels, JNK activation, and nuclear phospho-c-Jun and p65 expression. In conclusion, ROS production and ET-1 are involved in ANG II-induced COX-2 expression in SHRs, explaining the greater COX-2 expression observed in this strain. Furthermore, pioglitazone inhibits ANG II-induced COX-2 expression likely by interfering with NF-κB and activator protein-1 proinflammatory pathways and downregulating ROS production and ET-1 transcription, thus contributing to the anti-inflammatory properties of glitazones.

  8. MicroRNA-155 Regulates ROS Production, NO Generation, Apoptosis and Multiple Functions of Human Brain Microvessel Endothelial Cells Under Physiological and Pathological Conditions.

    PubMed

    Liu, Yajing; Pan, Qunwen; Zhao, Yuhui; He, Caixia; Bi, Kexia; Chen, Yusen; Zhao, Bin; Chen, Yanfang; Ma, Xiaotang

    2015-12-01

    The microRNA-155 (miR155) regulates various functions of cells. Dysfunction or injury of endothelial cells (ECs) plays an important role in the pathogenesis of various vascular diseases. In this study, we investigated the role and potential mechanisms of miR155 in human brain microvessel endothelial cells (HBMECs) under physiological and pathological conditions. We detected the effects of miR155 silencing on ROS production, NO generation, apoptosis and functions of HBMECs at basal and in response to oxidized low density lipoprotein (ox-LDL). Western blot and q-PCR were used for analyzing the gene expression of epidermal growth factor receptor (EGFR)/extracellular regulated protein kinases (ERK)/p38 mitogen-activated protein kinase (p38 MAPK), phosphatidylinositol-3-kinase (PI3K) and serine/threonine kinase(Akt), activated caspase-3, and intercellular adhesion molecule-1 (ICAM-1). Results showed that under both basal and challenge situations: (1) Silencing of miR155 decreased apoptosis and reactive oxygen species (ROS) production of HBMECs, whereas, promoted nitric oxide (NO) generation. (2) Silencing of miR155 increased the proliferation, migration, and tube formation ability of HBMECs, while decreased cell adhesion ability. (3) Gene expression analyses showed that EGFR/ERK/p38 MAPK and PI3K/Akt were increased and that activated caspase-3 and ICAM-1 mRNA were decreased after knockdown of miR155. In conclusion, knockdown of miR155 could modulate ROS production, NO generation, apoptosis and function of HBMECs via regulating diverse gene expression, such as caspase-3, ICAM-1 and EGFR/ERK/p38 MAPK and PI3K/Akt pathways.

  9. Mtf-1 lymphoma-susceptibility locus affects retention of large thymocytes with high ROS levels in mice after {gamma}-irradiation

    SciTech Connect

    Maruyama, Masaki; Yamamoto, Takashi; Kohara, Yuki; Katsuragi, Yoshinori; Mishima, Yukio; Aoyagi, Yutaka; Kominami, Ryo; E-mail: rykomina@med.niigata-u.ac.jp

    2007-03-02

    Mouse strains exhibit different susceptibilities to {gamma}-ray-induced thymic lymphomas. Our previous study identified Mtf-1 (metal responsive transcription factor-1) as a candidate susceptibility gene, which is involved in the radiation-induced signaling pathway that regulates the cellular reactive oxygen species (ROS). To reveal the mechanism for the increased susceptibility conferred by Mtf-1 locus, we examined early effects of {gamma}-ray on ROS levels in vivo and its difference between Mtf-1 susceptible and resistant congenic mice. Here, we show the detection of clonally growing thymocytes at 4 weeks after irradiation, indicating the start of clonal expansion at a very early stage. We also show that large thymocytes with higher ROS levels and a proliferation capacity were more numerous in the Mtf-1 susceptible mice than the resistant mice when examined at 7 days after irradiation, although such tendency was not found in mice lacking one allele of Bcl11b tumor suppressor gene. This high retention of the large thymocytes, at a high risk for ROS-induced mutation, is a compensatory proliferation and regeneration response to depletion of the thymocytes after irradiation and the response is likely to augment the development of prelymphoma cells leading to thymic lymphomas.

  10. Mechanical Stretch-Induced Activation of ROS/RNS Signaling in Striated Muscle

    PubMed Central

    Ward, Christopher W.; Prosser, Benjamin L.

    2014-01-01

    Significance: Mechanical activation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) occurs in striated muscle and affects Ca2+ signaling and contractile function. ROS/RNS signaling is tightly controlled, spatially compartmentalized, and source specific. Recent Advances: Here, we review the evidence that within the contracting myocyte, the trans-membrane protein NADPH oxidase 2 (Nox2) is the primary source of ROS generated during contraction. We also review a newly characterized signaling cascade in cardiac and skeletal muscle in which the microtubule network acts as a mechanotransduction element that activates Nox2-dependent ROS generation during mechanical stretch, a pathway termed X-ROS signaling. Critical Issues: In the heart, X-ROS acts locally and affects the sarcoplasmic reticulum (SR) Ca2+ release channels (ryanodine receptors) and tunes Ca2+ signaling during physiological behavior, but excessive X-ROS can promote Ca2+-dependent arrhythmias in pathology. In skeletal muscle, X-ROS sensitizes Ca2+-permeable sarcolemmal “transient receptor potential” channels, a pathway that is critical for sustaining SR load during repetitive contractions, but when in excess, it is maladaptive in diseases such as Duchenne Musclar dystrophy. Future Directions: New advances in ROS/RNS detection as well as molecular manipulation of signaling pathways will provide critical new mechanistic insights into the details of X-ROS signaling. These efforts will undoubtedly reveal new avenues for therapeutic intervention in the numerous diseases of striated muscle in which altered mechanoactivation of ROS/RNS production has been identified. Antioxid. Redox Signal. 20, 929–936. PMID:23971496

  11. Incidence of the core composition on the stability, the ROS production and the toxicity of CdSe quantum dots.

    PubMed

    Kauffer, Florence-Anaïs; Merlin, Christophe; Balan, Lavinia; Schneider, Raphaël

    2014-03-15

    Mercaptosuccinic acid-capped CdSe and alloyed CdSe(S) QDs were prepared in aqueous solution at 100 and 170°C, respectively. These dots were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-vis and photoluminescence spectroscopies. The dots were found to be of similar size (ca. 2nm) but differ in their composition and surface chemistry. The photostability of the QDs was found to correlate with their ability to produce reactive oxygen species (ROS) upon light activation. CdSe QDs produce hydroxyl radicals immediately after irradiation due to their modest photostability, while CdSe(S) QDs start to generate the hydroxyl radicals only once they start to be bleached (ca. 30min). Cytotoxicity experiments conducted on Escherichia coli cells revealed that CdSe QDs were the more toxic despite being the least loaded in cadmium. In addition, consistent with ROS assays, the cytotoxicity of the CdSe QDs appeared light-dependent and is in accordance with a light-dependent oxidative stress observed with an oxyR-based whole cell biosensor. Our results demonstrate the crucial role played by nanoparticles synthesis process on their PL properties, their stability and their toxicity.

  12. Quantifying transient psychological stress using a novel technique: changes to PMA-induced leukocyte production of ROS in vitro.

    PubMed

    Shelton-Rayner, Graham K; Mian, Rubina; Chandler, Simon; Robertson, Duncan; Macdonald, David W

    2011-01-01

    Although much work has been conducted to quantify the long-term physiological effects of psychological stress, measures of short-term, low-level stress have been more elusive. This study assessed the effect of exposure of volunteers to a mild, brief, psychologically stressful event, on the functional ability of leukocytes in whole blood to respond to phorbol 12-myristate 13-acetate (PMA) in vitro. Volunteers operated a car electric window and adjusted it to 4 pre-determined positions. Between each operation the mechanism's polarity was covertly altered (group B) or remained unaltered (group A). For each treatment group 10 different subjects provided capillary blood samples pre- and post-stressor. Using a chemiluminescent technique termed leukocyte coping capacity, the ability of leukocytes to produce reactive oxygen species (ROS) in vitro was assessed. ROS release differed significantly at 10 min post-stressor between treatment groups, suggesting exposure to acute psychological stress leads to a reduced ability to respond to bacterial challenge.

  13. FBS or BSA Inhibits EGCG Induced Cell Death through Covalent Binding and the Reduction of Intracellular ROS Production

    PubMed Central

    Zhang, Yin; Xu, Yu-Ying; Sun, Wen-Jie; Zhang, Mo-Han; Zheng, Yi-Fan; Shen, Han-Ming; Yang, Jun

    2016-01-01

    Previously we have shown that (−)-epigallocatechin gallate (EGCG) can induce nonapoptotic cell death in human hepatoma HepG2 cells only under serum-free condition. However, the underlying mechanism for serum in determining the cell fate remains to be answered. The effects of fetal bovine serum (FBS) and its major component bovine serum albumin (BSA) on EGCG-induced cell death were investigated in this study. It was found that BSA, just like FBS, can protect cells from EGCG-induced cell death in a dose-dependent manner. Detailed analysis revealed that both FBS and BSA inhibited generation of ROS to protect against toxicity of EGCG. Furthermore, EGCG was shown to bind to certain cellular proteins including caspase-3, PARP, and α-tubulin, but not LC3 nor β-actin, which formed EGCG-protein complexes that were inseparable by SDS-gel. On the other hand, addition of FBS or BSA to culture medium can block the binding of EGCG to these proteins. In silico docking analysis results suggested that BSA had a stronger affinity to EGCG than the other proteins. Taken together, these data indicated that the protective effect of FBS and BSA against EGCG-induced cell death could be due to (1) the decreased generation of ROS and (2) the competitive binding of BSA to EGCG. PMID:27830147

  14. Aging might augment reactive oxygen species (ROS) formation and affect reactive nitrogen species (RNS) level after myocardial ischemia/reperfusion in both humans and rats.

    PubMed

    Fan, Qian; Chen, Mulei; Fang, Xiangyang; Lau, Wayne Bond; Xue, Lei; Zhao, Lina; Zhang, Hui; Liang, Yan-Hong; Bai, Xi; Niu, Hong-Yu; Ye, Jing; Chen, Qing; Yang, Xinchun; Liu, Miaobing

    2013-08-01

    Previous studies indicate aging results in significantly decreased cardiac function and increased myocardial apoptosis after myocardial ischemia/reperfusion (MI/R) in humans or rats. The underlying mechanisms of aging-exacerbated effects remain unknown. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are known to play vital roles in aging-related MI/R injury. Heretofore, the effects of aging upon ROS and RNS formation were not investigated in humans, which is the focus of the current study. Due to experimental limitations with clinical trials, an additional animal experiment was performed. All enrolled acute myocardial infarction (AMI) patients received percutaneous coronary intervention (PCI) therapy. AMI patients were assigned into two groups: adult (age <65, n = 34) and elderly (age ≥65, n = 45) AMI patients. Blood samples were obtained from all study participants at 24 h and 3 days post-PCI. Plasma/white blood cell (WBC) ROS and RNS markers (malondialdehyde (MDA), myeloperoxidase (MPO), reduced glutathione (GSH), inducible nitric oxide synthase (iNOS) activity, NOx, and nitrotyrosine) were determined. The same markers were determined in rat cardiac tissue after 24 h MI/R. Compared to the adult group, elderly patients manifested increased plasma MDA and MPO and decreased plasma GSH concentrations. No significant differences in plasma NOx or nitrotyrosine concentration existed between adult and elderly patients. Furthermore, WBC iNOS activity in elderly patients was significantly decreased compared to the adult group. The measurement of ROS markers in the rat experiments was consistent and supported human study data. Surprisingly, RNS markers (NOx and nitrotyrosine) in blood and heart tissue increased from young to middle-aged rats but decreased from middle age to old age. Aging augments ROS, which might exacerbate MI/R injury. Additionally, our data support aging-induced changes of RNS levels in humans and rats in vivo.

  15. How liability law affects medical productivity.

    PubMed

    Kessler, Daniel P; McClellan, Mark B

    2002-11-01

    Previous research suggests that "direct" reforms to the liability system-reforms designed to reduce the level of compensation to potential claimants-reduce medical expenditures without important consequences for patient health outcomes. We extend this research by identifying the mechanisms through which reforms affect the behavior of health care providers. Although we find that direct reforms improve medical productivity primarily by reducing malpractice claims rates and compensation conditional on a claim, our results suggest that other policies that reduce the time spent and the amount of conflict involved in defending against a claim can also reduce defensive practices substantially. In addition, we find that "malpractice pressure" has a more significant impact on diagnostic rather than therapeutic treatment decisions. Our results provide an empirical foundation for simulating the effects of untried malpractice reforms on health care expenditures and outcomes, based on their predicted effects on the malpractice pressure facing medical providers.

  16. Altered ROS production, NF-κB activation and Interleukin-6 gene expression induced by electrical stimulation of in dystrophic mdx skeletal muscle cells

    PubMed Central

    Henríquez-Olguín, Carlos; Altamirano, Francisco; Valladares, Denisse; López, José R.; Allen, Paul D.; Jaimovich, Enrique

    2015-01-01

    Duchenne Muscular Dystrophy (DMD) is a fatal X-linked genetic disease, caused by mutations in the dystrophin gene, which cause functional loss of this protein. DMD pathology is associated with an increased production of reactive oxygen and nitrogen species (ROS and RNS). The aim of this work was to study the alterations in NF-κB activation and Interleukin-6 (IL-6) expression induced by membrane depolarization in dystrophic mdx myotubes. Membrane depolarization elicited by electrical stimulation (ES) increased p65 phosphorylation, NF-κB transcriptional activity and NF-κB-dependent IL-6 expression in wt myotubes, whereas in mdx myotubes it had the opposite effect. We have previously shown that depolarization-induced intracellular Ca2+ increases and ROS production are necessary for NF-κB activation and stimulation of gene expression in wt myotubes. Dystrophic myotubes showed a reduced amplitude and area under the curve of the Ca2+ transient elicited by ES. On the other hand, ES induced higher ROS production in mdx than wt myotubes, which were blocked by NOX2 inhibitors. Moreover, mRNA expression and protein levels of the NADPH oxidase subunits; p47phox and gp91phox were increased in mdx myotubes. Looking at ROS-dependence of NF-κB activation we found that in wt myotubes external administration of 50µM H2O2 increased NF-κB activity; after administration of 100 and 200 µM H2O2 there was no effect. In mdx myotubes there was a dose-dependent reduction in NF-κB activity in response to external administration of H2O2, with a significant effect of 100 µM and 200 µM, suggesting that ROS levels are critical for NF-κB activity. Prior blockage with NOX2 inhibitors blunted the effects of ES in both NF-κB activation and IL-6 expression. Finally, to ascertain whether stimulation of NF-κB and IL-6 gene expression by the inflammatory pathway is also impaired in mdx myotubes, we studied the effect of lipopolysaccharide (LPS) on both NF-κB activation and IL-6 expression

  17. Altered ROS production, NF-κB activation and interleukin-6 gene expression induced by electrical stimulation in dystrophic mdx skeletal muscle cells.

    PubMed

    Henríquez-Olguín, Carlos; Altamirano, Francisco; Valladares, Denisse; López, José R; Allen, Paul D; Jaimovich, Enrique

    2015-07-01

    Duchenne muscular dystrophy is a fatal X-linked genetic disease, caused by mutations in the dystrophin gene, which cause functional loss of this protein. This pathology is associated with an increased production of reactive oxygen (ROS) and nitrogen species. The aim of this work was to study the alterations in NF-κB activation and interleukin-6 (IL-6) expression induced by membrane depolarization in dystrophic mdx myotubes. Membrane depolarization elicited by electrical stimulation increased p65 phosphorylation, NF-κB transcriptional activity and NF-κB-dependent IL-6 expression in wt myotubes, whereas in mdx myotubes it had the opposite effect. We have previously shown that depolarization-induced intracellular Ca2+ increases and ROS production are necessary for NF-κB activation and stimulation of gene expression in wt myotubes. Dystrophic myotubes showed a reduced amplitude and area under the curve of the Ca2+ transient elicited by electrical stimulation. On the other hand, electrical stimuli induced higher ROS production in mdx than wt myotubes, which were blocked by NOX2 inhibitors. Moreover, mRNA expression and protein levels of the NADPH oxidase subunits: p47phox and gp91phox were increased in mdx myotubes. Looking at ROS-dependence of NF-κB activation we found that in wt myotubes external administration of 50 μM H2O2 increased NF-κB activity; after administration of 100 and 200 μM H2O2 there was no effect. In mdx myotubes there was a dose-dependent reduction in NF-κB activity in response to external administration of H2O2, with a significant effect of 100 μM and 200 μM, suggesting that ROS levels are critical for NF-κB activity. Prior blockage with NOX2 inhibitors blunted the effects of electrical stimuli in both NF-κB activation and IL-6 expression. Finally, to ascertain whether stimulation of NF-κB and IL-6 gene expression by the inflammatory pathway is also impaired in mdx myotubes, we studied the effect of lipopolysaccharide on both NF

  18. Embryopathic effects of thalidomide and its hydrolysis products in rabbit embryo culture: evidence for a prostaglandin H synthase (PHS)-dependent, reactive oxygen species (ROS)-mediated mechanism.

    PubMed

    Lee, Crystal J J; Gonçalves, Luisa L; Wells, Peter G

    2011-07-01

    Thalidomide (TD) causes birth defects in humans and rabbits via several potential mechanisms, including bioactivation by embryonic prostaglandin H synthase (PHS) enzymes to a reactive intermediate that enhances reactive oxygen species (ROS) formation. We show herein that TD in rabbit embryo culture produces relevant embryopathies, including decreases in head/brain development by 28% and limb bud growth by 71% (P<0.05). Two TD hydrolysis products, 2-phthalimidoglutaramic acid (PGMA) and 2-phthalimidoglutaric acid (PGA), were similarly embryopathic, attenuating otic vesicle (ear) and limb bud formation by up to 36 and 77%, respectively (P<0.05). TD, PGMA, and PGA all increased embryonic DNA oxidation measured as 8-oxoguanine (8-oxoG) by up to 2-fold (P<0.05). Co- or pretreatment with the PHS inhibitors eicosatetraynoic acid (ETYA) or acetylsalicylic acid (ASA), or the free-radical spin trap phenylbutylnitrone (PBN), completely blocked embryonic 8-oxoG formation and/or embryopathies initiated by TD, PGMA, and PGA. This is the first demonstration of limb bud embryopathies initiated by TD, as well as its hydrolysis products, in a mammalian embryo culture model of a species susceptible to TD in vivo, indicating that all likely contribute to TD teratogenicity in vivo, in part through PHS-dependent, ROS-mediated mechanisms.

  19. Fisetin inhibits osteoclastogenesis through prevention of RANKL-induced ROS production by Nrf2-mediated up-regulation of phase II antioxidant enzymes.

    PubMed

    Sakai, Eiko; Shimada-Sugawara, Megumi; Yamaguchi, Yu; Sakamoto, Hiroshi; Fumimoto, Reiko; Fukuma, Yutaka; Nishishita, Kazuhisa; Okamoto, Kuniaki; Tsukuba, Takayuki

    2013-01-01

    Osteoclasts (OCLs) are multinucleated bone-resorbing cells that are differentiated by stimulation with receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor. We recently demonstrated that regulation of heme-oxygenase 1 (HO-1), a stress-induced cytoprotective enzyme, also functions in OCL differentiation. In this study, we investigated effects of fisetin, a natural bioactive flavonoid that has been reported to induce HO-1 expression, on the differentiation of macrophages into OCLs. Fisetin inhibited the formation of OCLs in a dose-dependent manner and suppressed the bone-resorbing activity of OCLs. Moreover, fisetin-treated OCLs showed markedly decreased phosphorylation of extracellular signal-regulated kinase, Akt, and Jun N-terminal kinase, but fisetin did not inhibit p38 phosphorylation. Fisetin up-regulated mRNA expression of phase II antioxidant enzymes including HO-1 and interfered with RANKL-mediated reactive oxygen species (ROS) production. Studies with RNA interference showed that suppression of NF-E2-related factor 2 (Nrf2), a key transcription factor for phase II antioxidant enzymes, rescued fisetin-mediated inhibition of OCL differentiation. Furthermore, fisetin significantly decreased RANKL-induced nuclear translocation of cFos and nuclear factor of activated T cells cytoplasmic-1 (NFATc1), which is a transcription factor critical for osteoclastogenic gene regulation. Therefore, fisetin inhibits OCL differentiation through blocking RANKL-mediated ROS production by Nrf2-mediated up-regulation of phase II antioxidant enzymes.

  20. Antrodia camphorata attenuates cigarette smoke-induced ROS production, DNA damage, apoptosis, and inflammation in vascular smooth muscle cells, and atherosclerosis in ApoE-deficient mice.

    PubMed

    Yang, Hsin-Ling; Korivi, Mallikarjuna; Chen, Cheng-Hsien; Peng, Wei-Jung; Chen, Chee-Shan; Li, Mei-Ling; Hsu, Li-Sung; Liao, Jiunn-Wang; Hseu, You-Cheng

    2017-04-03

    Cigarette smoke exposure activates several cellular mechanisms predisposing to atherosclerosis, including oxidative stress, dyslipidemia, and vascular inflammation. Antrodia camphorata, a renowned medicinal mushroom in Taiwan, has been investigated for its antioxidant, anti-inflammatory, and antiatherosclerotic properties in cigarette smoke extracts (CSE)-treated vascular smooth muscle cells (SMCs), and ApoE-deficient mice. Fermented culture broth of Antrodia camphorata (AC, 200-800 µg/mL) possesses effective antioxidant activity against CSE-induced ROS production. Treatment of SMCs (A7r5) with AC (30-120 µg/mL) remarkably ameliorated CSE-induced morphological aberrations and cell death. Suppressed ROS levels by AC corroborate with substantial inhibition of CSE-induced DNA damage in AC-treated A7r5 cells. We found CSE-induced apoptosis through increased Bax/Bcl-2 ratio, was substantially inhibited by AC in A7r5 cells. Notably, upregulated SOD and catalase expressions in AC-treated A7r5 cells perhaps contributed to eradicate the CSE-induced ROS generation, and prevents DNA damage and apoptosis. Besides, AC suppressed AP-1 activity by inhibiting the c-Fos/c-Jun expressions, and NF-κB activation through inhibition of I-κBα degradation against CSE-stimulation. This anti-inflammatory property of AC was accompanied by suppressed CSE-induced VEGF, PDGF, and EGR-1 overexpressions in A7r5 cells. Furthermore, AC protects lung fibroblast (MRC-5) cells from CSE-induced cell death. In vivo data showed that AC oral administration (0.6 mg/d/8-wk) prevents CSE-accelerated atherosclerosis in ApoE-deficient mice. This antiatherosclerotic property was associated with increased serum total antioxidant status, and decreased total cholesterol and triacylglycerol levels. Thus, Antrodia camphorata may be useful for prevention of CSE-induced oxidative stress and diseases.

  1. ROS Are Good.

    PubMed

    Mittler, Ron

    2017-01-01

    Reactive oxygen species (ROS) are thought to play a dual role in plant biology. They are required for many important signaling reactions, but are also toxic byproducts of aerobic metabolism. Recent studies revealed that ROS are necessary for the progression of several basic biological processes including cellular proliferation and differentiation. Moreover, cell death-that was previously thought to be the outcome of ROS directly killing cells by oxidation, in other words via oxidative stress-is now considered to be the result of ROS triggering a physiological or programmed pathway for cell death. This Opinion focuses on the possibility that ROS are beneficial to plants, supporting cellular proliferation, physiological function, and viability, and that maintaining a basal level of ROS in cells is essential for life.

  2. ROS Regulation During Abiotic Stress Responses in Crop Plants.

    PubMed

    You, Jun; Chan, Zhulong

    2015-01-01

    Abiotic stresses such as drought, cold, salt and heat cause reduction of plant growth and loss of crop yield worldwide. Reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide anions (O2 (•-)), hydroxyl radical (OH•) and singlet oxygen ((1)O2) are by-products of physiological metabolisms, and are precisely controlled by enzymatic and non-enzymatic antioxidant defense systems. ROS are significantly accumulated under abiotic stress conditions, which cause oxidative damage and eventually resulting in cell death. Recently, ROS have been also recognized as key players in the complex signaling network of plants stress responses. The involvement of ROS in signal transduction implies that there must be coordinated function of regulation networks to maintain ROS at non-toxic levels in a delicate balancing act between ROS production, involving ROS generating enzymes and the unavoidable production of ROS during basic cellular metabolism, and ROS-scavenging pathways. Increasing evidence showed that ROS play crucial roles in abiotic stress responses of crop plants for the activation of stress-response and defense pathways. More importantly, manipulating ROS levels provides an opportunity to enhance stress tolerances of crop plants under a variety of unfavorable environmental conditions. This review presents an overview of current knowledge about homeostasis regulation of ROS in crop plants. In particular, we summarize the essential proteins that are involved in abiotic stress tolerance of crop plants through ROS regulation. Finally, the challenges toward the improvement of abiotic stress tolerance through ROS regulation in crops are discussed.

  3. ROS Regulation During Abiotic Stress Responses in Crop Plants

    PubMed Central

    You, Jun; Chan, Zhulong

    2015-01-01

    Abiotic stresses such as drought, cold, salt and heat cause reduction of plant growth and loss of crop yield worldwide. Reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide anions (O2•-), hydroxyl radical (OH•) and singlet oxygen (1O2) are by-products of physiological metabolisms, and are precisely controlled by enzymatic and non-enzymatic antioxidant defense systems. ROS are significantly accumulated under abiotic stress conditions, which cause oxidative damage and eventually resulting in cell death. Recently, ROS have been also recognized as key players in the complex signaling network of plants stress responses. The involvement of ROS in signal transduction implies that there must be coordinated function of regulation networks to maintain ROS at non-toxic levels in a delicate balancing act between ROS production, involving ROS generating enzymes and the unavoidable production of ROS during basic cellular metabolism, and ROS-scavenging pathways. Increasing evidence showed that ROS play crucial roles in abiotic stress responses of crop plants for the activation of stress-response and defense pathways. More importantly, manipulating ROS levels provides an opportunity to enhance stress tolerances of crop plants under a variety of unfavorable environmental conditions. This review presents an overview of current knowledge about homeostasis regulation of ROS in crop plants. In particular, we summarize the essential proteins that are involved in abiotic stress tolerance of crop plants through ROS regulation. Finally, the challenges toward the improvement of abiotic stress tolerance through ROS regulation in crops are discussed. PMID:26697045

  4. X-ROS signalling is enhanced and graded by cyclic cardiomyocyte stretch

    PubMed Central

    Prosser, Benjamin L.; Ward, Christopher W.; Lederer, W. Jonathan

    2013-01-01

    Aims A sustained, single stretch of a cardiomyocyte activates a transient production of reactive oxygen species by membrane-located NADPH oxidase 2 (Nox2). This NoX2-dependent ROS (X-ROS) tunes cardiac Ca2+ signalling by reversibly sensitizing sarcoplasmic reticulum Ca2+ release channels. In contrast to static length changes, working heart cells are cyclically stretched and shortened in the living animal. Additionally, this stretch cycle is constantly varied by changes in the pre-load and heart rate. Thus, the objective of this study was (i) to characterize X-ROS signalling during stretch-shortening cycles and (ii) to evaluate how the amplitude (pre-load) and frequency (heart rate) of cell stretch affects X-ROS and Ca2+ signalling. Methods and results Single adult rat cardiomyocytes were attached to MyoTak™-coated micro-rods and stretched, while ROS production and Ca2+ signals were monitored optically. Although a sustained stretch led to only a transient burst of ROS, cyclic stretch-shortening cycles led to a steady-state elevation of ROS production. Importantly, this new redox state was graded by both the amplitude of stretch (3–15%) and cycle frequency (1–4 Hz). Elevated ROS production enhanced Ca2+ signalling sensitivity as measured by the Ca2+ spark rate. Conclusion The steady-state level of ROS production in a cardiomyocyte is graded by the amplitude and frequency of cell stretch. Thus, mechanical changes that depend on the pre-load and heart rate regulate a dynamic redox balance that tunes cellular Ca2+ signalling. PMID:23524301

  5. Carbohydrate derivatives from the roots of Brassica rapa ssp. campestris and their effects on ROS production and glutamate-induced cell death in HT-22 cells.

    PubMed

    Wu, Qian; Cho, Jin-Gyeong; Lee, Dong-Sung; Lee, Dae-Young; Song, Na-Young; Kim, Youn-Chul; Lee, Kyung-Tae; Chung, Hae-Gon; Choi, Myung-Sook; Jeong, Tae-Sook; Ahn, Eun-Mi; Kim, Geum-Soog; Baek, Nam-In

    2013-05-03

    Phytochemical investigation of the roots of Brassica rapa ssp. campestris led to the isolation of three new carbohydrate derivatives, namely sucrose 3,3',4'-triisovalerate (2), sucrose 6,3',4'-triisovalerate (3), and ethanone-1-C-β-d-glucopyranoside (3,7-anhydro-1-deoxy-d-glycero-d-gulo-2-octulose, 6), along with four known carbohydrate derivatives, 2,6,3',4'-tetraisovalerate (1), ethyl β-d-glucopyranoside (4), n-butyl β-d-fructofuranoside (5), and n-pentyl β-d-fructofuranoside (7), which were initially isolated from plants of the Brassica genus. Structures of the isolated compounds were established by spectroscopic analyses, including UV, IR, MS, and NMR. All of the isolated carbohydrate derivatives were evaluated to determine their effect on ROS production and glutamate-induced cell death in HT-22 cells. Compound 6 showed the most significant ROS reduction and a protective effect with IC50 values of 69.4 ± 3.8 μM and 4.96 ± 0.32 μM, respectively, which were equivalent to those of the positive control, Trolox.

  6. Actin depolymerization mediated loss of SNTA1 phosphorylation and Rac1 activity has implications on ROS production, cell migration and apoptosis.

    PubMed

    Bhat, Sehar Saleem; Parray, Arif Ali; Mushtaq, Umar; Fazili, Khalid Majid; Khanday, Firdous Ahmad

    2016-06-01

    Alpha-1-syntrophin (SNTA1) and Rac1 are part of a signaling pathway via the dystrophin glycoprotein complex (DGC). Both SNTA1 and Rac1 proteins are over-expressed in various carcinomas. It is through the DGC signaling pathway that SNTA1 has been shown to act as a link between the extra cellular matrix, the internal cell signaling apparatus and the actin cytoskeleton. SNTA1 is involved in the modulation of the actin cytoskeleton and actin reorganization. Rac1 also controls actin cytoskeletal organization in the cell. In this study, we present the interplay between f-actin, SNTA1 and Rac1. We analyzed the effect of actin depolymerization on SNTA1 tyrosine phosphorylation and Rac1 activity using actin depolymerizing drugs, cytochalasin D and latrunculin A. Our results indicate a marked decrease in the tyrosine phosphorylation of SNTA1 upon actin depolymerization. Results suggest that actin depolymerization mediated loss of SNTA1 phosphorylation leads to loss of interaction between SNTA1 and Rac1, with a concomitant loss of Rac1 activation. The loss of SNTA1tyrosine phosphorylation and Rac1 activity by actin depolymerization results in increased apoptosis, decreased cell migration and decreased reactive oxygen species (ROS) levels in breast carcinoma cells. Collectively, our results present a possible role of f-actin in the SNTA1-Rac1 signaling pathway and implications of actin depolymerization on cell migration, ROS production and apoptosis.

  7. Surface functionalization of titanium dioxide nanoparticles: Photo-stability and reactive oxygen species (ROS) generation

    NASA Astrophysics Data System (ADS)

    Louis, Kacie M.

    Metal oxide nanoparticles are becoming increasingly prevalent in society for applications of sunscreens, cosmetics, paints, biomedical imaging, and photovoltaics. Due to the increased surface area to volume ratio of nanoparticles compared to bulk materials, it is important to know the health and safety impacts of these materials. One mechanism of toxicity of nominally "safe" materials such as TiO 2 is through the photocatalytic generation of reactive oxygen species (ROS). ROS production and ligand degradation can affect the bioavailability of these particles in aqueous organisms. We have investigated ROS generation by functionalized TiO2 nanoparticles and its influence on aggregation and bioavailability and toxicity to zebrafish embryos/larvae. For these studies we investigated anatase TiO2 nanoparticles. For application purposes and solution stability, the TiO2 nanoparticles were functionalized with a variety of ligands such as citrate, 3,4-dihydroxybenzaldehyde, and ascorbate. We quantitatively examined the amount of ROS produced in aqueous solution using fluorescent probes and see that more ROS is produced under UV light than in the dark control. Our measurements show that TiO2 toxicity reaches a maximum for nanoparticles with smaller diameters, and is correlated with surface area dependent changes in ROS generation. In an effort to reduce toxicity through control of the surface and surface ligands, we synthesized anatase nanoparticles of different sizes, functionalized them with different ligands, and examined the resulting ROS generation and ligand stability. Using a modular ligand containing a hydrophobic inner region and a hydrophilic outer region, we synthesized water-stable nanoparticles, via two different chemical reactions, having much-reduced ROS generation and thus reduced toxicity. These results suggest new strategies for making safer nanoparticles while still retaining their desired properties. We also examine the degradation of the different ligands

  8. Oxidative stress and ROS metabolism via down-regulation of sirtuin 3 expression in Cmah-null mice affect hearing loss

    PubMed Central

    Choi, Yun-Jung; Gurunathan, Sangiliyandi; Kim, Jin-Hoi

    2015-01-01

    CMP-Neu5Ac hydroxylase (Cmah) disruption caused several abnormalities and diseases including hearing loss in old age. However, underling molecular mechanisms that give rise to age-related hearing loss (AHL) in Cmah-null mouse are still obscure. In this study, Cmah-null mice showed age-related decline of hearing associated with loss of sensory hair cells, spiral ganglion neurons, and/or stria vascularis degeneration in the cochlea. To identify differential gene expression profiles and pathway associated with AHL, we performed microarray analysis using Illumina MouseRef-8 v2 Expression BeadChip and pathway-focused PCR array in the cochlear tissues of Cmah-null mouse. Pathway and molecular mechanism analysis using differentially expressed genes provided evidences that altered biological pathway due to oxidative damage by low expressed antioxidants and dysregulated reactive oxygen species (ROS) metabolism. Especially, low sirtuin 3 (Sirt3) gene expressions in Cmah-null mice decreased both of downstream regulator (Foxo1 and MnSod) and regulatory transcription factor (Hif1α and Foxo3a) gene expression. Taken together, we suggest that down-regulation of Sirt3 expression leads to oxidative stress and mitochondrial dysfunction by regulation of ROS and that it could alter various signaling pathways in Cmah-null mice with AHL. PMID:26319214

  9. Parameters affecting solvent production by Clostridium pasteurianum

    SciTech Connect

    Dabrock, B.; Bahl, H.; Gottschalk, G. )

    1992-04-01

    The effect of pH, growth rate, phosphate and iron limitation, carbon monoxide, and carbon source on product formation by Clostridium pasteurianum was determined. Under phosphate limitation, glucose was fermented almost exclusively to acetate and butyrate independently of the pH and growth rate. Iron limitation caused lactate production (38 mol/100 mol) from glucose in batch and continuous culture. At 15% (vol/vol) carbon monoxide in the atmosphere, glucose was fermented to ethanol (24 mol/100 mol), lactate (32 mol/100 mol), and butanol (36 mol/100 mol) in addition to the usual products, acetate (38 mol/100 mol) and butyrate (17 mol/100 mol). During glycerol fermentation, a completely different product pattern was found. In continuous culture under phosphate limitation, acetate and butyrate were produced only in trace amounts, whereas ethanol (30 mol/10 mol), butanol (18 mol/100 mol), and 1,3-propanediol (18 mol/100 mol) were the major products. Under iron limitation, the ratio of these products could be changed in favor of 1,3-propanediol (34 mol/100 mol). In addition, lactate was produced in significant amounts (25 mol/100 mol). The tolerance of C. pasteurianum to glycerol was remarkably high; growth was not inhibited by glycerol concentrations up to 17% (wt/vol). Increasing glycerol concentrations favored the production of 1,3-propanediol.

  10. Mitochondrial ROS Produced via Reverse Electron Transport Extend Animal Lifespan.

    PubMed

    Scialò, Filippo; Sriram, Ashwin; Fernández-Ayala, Daniel; Gubina, Nina; Lõhmus, Madis; Nelson, Glyn; Logan, Angela; Cooper, Helen M; Navas, Plácido; Enríquez, Jose Antonio; Murphy, Michael P; Sanz, Alberto

    2016-04-12

    Increased production of reactive oxygen species (ROS) has long been considered a cause of aging. However, recent studies have implicated ROS as essential secondary messengers. Here we show that the site of ROS production significantly contributes to their apparent dual nature. We report that ROS increase with age as mitochondrial function deteriorates. However, we also demonstrate that increasing ROS production specifically through respiratory complex I reverse electron transport extends Drosophila lifespan. Reverse electron transport rescued pathogenesis induced by severe oxidative stress, highlighting the importance of the site of ROS production in signaling. Furthermore, preventing ubiquinone reduction, through knockdown of PINK1, shortens lifespan and accelerates aging; phenotypes that are rescued by increasing reverse electron transport. These results illustrate that the source of a ROS signal is vital in determining its effects on cellular physiology and establish that manipulation of ubiquinone redox state is a valid strategy to delay aging.

  11. Mitochondrial ROS Produced via Reverse Electron Transport Extend Animal Lifespan

    PubMed Central

    Scialò, Filippo; Sriram, Ashwin; Fernández-Ayala, Daniel; Gubina, Nina; Lõhmus, Madis; Nelson, Glyn; Logan, Angela; Cooper, Helen M.; Navas, Plácido; Enríquez, Jose Antonio; Murphy, Michael P.; Sanz, Alberto

    2016-01-01

    Summary Increased production of reactive oxygen species (ROS) has long been considered a cause of aging. However, recent studies have implicated ROS as essential secondary messengers. Here we show that the site of ROS production significantly contributes to their apparent dual nature. We report that ROS increase with age as mitochondrial function deteriorates. However, we also demonstrate that increasing ROS production specifically through respiratory complex I reverse electron transport extends Drosophila lifespan. Reverse electron transport rescued pathogenesis induced by severe oxidative stress, highlighting the importance of the site of ROS production in signaling. Furthermore, preventing ubiquinone reduction, through knockdown of PINK1, shortens lifespan and accelerates aging; phenotypes that are rescued by increasing reverse electron transport. These results illustrate that the source of a ROS signal is vital in determining its effects on cellular physiology and establish that manipulation of ubiquinone redox state is a valid strategy to delay aging. PMID:27076081

  12. Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening

    PubMed Central

    Orr, Adam L.; Ashok, Deepthi; Sarantos, Melissa R.; Shi, Tong; Hughes, Robert E.; Brand, Martin D.

    2013-01-01

    Mitochondrial production of reactive oxygen species is often considered an unavoidable consequence of aerobic metabolism and currently cannot be manipulated without perturbing oxidative phosphorylation. Antioxidants are widely used to suppress effects of reactive oxygen species after formation, but they can never fully prevent immediate effects at the sites of production. To identify site-selective inhibitors of mitochondrial superoxide/H2O2 production that do not interfere with mitochondrial energy metabolism, we developed a robust small-molecule screen and secondary profiling strategy. We describe the discovery and characterization of a compound (N-cyclohexyl-4-(4-nitrophenoxy)benzenesulfonamide; CN-POBS) that selectively inhibits superoxide/H2O2 production from the ubiquinone-binding site of complex I (site IQ) with no effects on superoxide/H2O2 production from other sites or on oxidative phosphorylation. Structure/activity studies identified a core structure that is important for potency and selectivity for site IQ. By employing CN-POBS in mitochondria respiring on NADH-generating substrates, we show that site IQ does not produce significant amounts of superoxide/H2O2 during forward electron transport on glutamate plus malate. Our screening platform promises to facilitate further discovery of direct modulators of mitochondrially-derived oxidative damage and advance our ability to understand and manipulate mitochondrial reactive oxygen species production in both normal and pathological conditions. PMID:23994103

  13. Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening.

    PubMed

    Orr, Adam L; Ashok, Deepthi; Sarantos, Melissa R; Shi, Tong; Hughes, Robert E; Brand, Martin D

    2013-12-01

    Mitochondrial production of reactive oxygen species is often considered an unavoidable consequence of aerobic metabolism and currently cannot be manipulated without perturbing oxidative phosphorylation. Antioxidants are widely used to suppress effects of reactive oxygen species after formation, but they can never fully prevent immediate effects at the sites of production. To identify site-selective inhibitors of mitochondrial superoxide/H2O2 production that do not interfere with mitochondrial energy metabolism, we developed a robust small-molecule screen and secondary profiling strategy. We describe the discovery and characterization of a compound (N-cyclohexyl-4-(4-nitrophenoxy)benzenesulfonamide; CN-POBS) that selectively inhibits superoxide/H2O2 production from the ubiquinone-binding site of complex I (site I(Q)) with no effects on superoxide/H2O2 production from other sites or on oxidative phosphorylation. Structure/activity studies identified a core structure that is important for potency and selectivity for site I(Q). By employing CN-POBS in mitochondria respiring on NADH-generating substrates, we show that site I(Q) does not produce significant amounts of superoxide/H2O2 during forward electron transport on glutamate plus malate. Our screening platform promises to facilitate further discovery of direct modulators of mitochondrially derived oxidative damage and advance our ability to understand and manipulate mitochondrial reactive oxygen species production under both normal and pathological conditions.

  14. Production of hydrogen peroxide and expression of ROS generating genes in peach flower petals in response to host and non-host pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reactive oxygen species (ROS) play dual roles in plant-microbe interactions in that they can either stimulate host resistance or benefit pathogen virulence. Accumulation of ROS was determined in peach petals in response to Monilinia fructicola (a compatible pathogen) and Penicillium digitatum (an i...

  15. Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD.

    PubMed

    Liu, Yukun; He, Chengzhong

    2016-05-01

    Reactive oxygen species (ROS) are constantly produced in plants, as the metabolic by-products or as the signaling components in stress responses. High levels of ROS are harmful to plants. In contrast, ROS play important roles in plant physiology, including abiotic and biotic tolerance, development, and cellular signaling. Therefore, ROS production needs to be tightly regulated to balance their function. Respiratory burst oxidase homologue (RBOH) proteins, also known as plant nicotinamide adenine dinucleotide phosphate oxidases, are well studied enzymatic ROS-generating systems in plants. The regulatory mechanisms of RBOH-dependent ROS production in stress responses have been intensively studied. This has greatly advanced our knowledge of the mechanisms that regulate plant ROS production. This review attempts to integrate the regulatory mechanisms of RBOHD-dependent ROS production by discussing the recent advance. AtRBOHD-dependent ROS production could provide a valuable reference for studying ROS production in plant stress responses.

  16. Endogenous Cytokinin Overproduction Modulates ROS Homeostasis and Decreases Salt Stress Resistance in Arabidopsis Thaliana

    PubMed Central

    Wang, Yanping; Shen, Wenzhong; Chan, Zhulong; Wu, Yan

    2015-01-01

    Cytokinins in plants are crucial for numerous biological processes, including seed germination, cell division and differentiation, floral initiation and adaptation to abiotic stresses. The salt stress can promote reactive oxygen species (ROS) production in plants which are highly toxic and ultimately results in oxidative stress. However, the correlation between endogenous cytokinin production and ROS homeostasis in responding to salt stress is poorly understood. In this study, we analyzed the correlation of overexpressing the cytokinin biosynthetic gene AtIPT8 (adenosine phosphate-isopentenyl transferase 8) and the response of salt stress in Arabidopsis. Overproduction of cytokinins, which was resulted by the inducible overexpression of AtIPT8, significantly inhibited the primary root growth and true leaf emergence, especially under the conditions of exogenous salt, glucose and mannitol treatments. Upon cytokinin overproduction, the salt stress resistance was declined, and resulted in less survival rates and chlorophyll content. Interestingly, ROS production was obviously increased with the salt treatment, accompanied by endogenously overproduced cytokinins. The activities of catalase (CAT) and superoxide dismutase (SOD), which are responsible for scavenging ROS, were also affected. Transcription profiling revealed that the differential expressions of ROS-producing and scavenging related genes, the photosynthesis-related genes and stress responsive genes were existed in transgenic plants of overproducing cytokinins. Our results suggested that broken in the homeostasis of cytokinins in plant cells could modulate the salt stress responses through a ROS-mediated regulation in Arabidopsis. PMID:26635831

  17. Endogenous Cytokinin Overproduction Modulates ROS Homeostasis and Decreases Salt Stress Resistance in Arabidopsis Thaliana.

    PubMed

    Wang, Yanping; Shen, Wenzhong; Chan, Zhulong; Wu, Yan

    2015-01-01

    Cytokinins in plants are crucial for numerous biological processes, including seed germination, cell division and differentiation, floral initiation and adaptation to abiotic stresses. The salt stress can promote reactive oxygen species (ROS) production in plants which are highly toxic and ultimately results in oxidative stress. However, the correlation between endogenous cytokinin production and ROS homeostasis in responding to salt stress is poorly understood. In this study, we analyzed the correlation of overexpressing the cytokinin biosynthetic gene AtIPT8 (adenosine phosphate-isopentenyl transferase 8) and the response of salt stress in Arabidopsis. Overproduction of cytokinins, which was resulted by the inducible overexpression of AtIPT8, significantly inhibited the primary root growth and true leaf emergence, especially under the conditions of exogenous salt, glucose and mannitol treatments. Upon cytokinin overproduction, the salt stress resistance was declined, and resulted in less survival rates and chlorophyll content. Interestingly, ROS production was obviously increased with the salt treatment, accompanied by endogenously overproduced cytokinins. The activities of catalase (CAT) and superoxide dismutase (SOD), which are responsible for scavenging ROS, were also affected. Transcription profiling revealed that the differential expressions of ROS-producing and scavenging related genes, the photosynthesis-related genes and stress responsive genes were existed in transgenic plants of overproducing cytokinins. Our results suggested that broken in the homeostasis of cytokinins in plant cells could modulate the salt stress responses through a ROS-mediated regulation in Arabidopsis.

  18. Dietary açai modulates ROS production by neutrophils and gene expression of liver antioxidant enzymes in rats

    PubMed Central

    Guerra, Joyce Ferreira da Costa; Magalhães, Cíntia Lopes de Brito; Costa, Daniela Caldeira; Silva, Marcelo Eustáquio; Pedrosa, Maria Lúcia

    2011-01-01

    Açai (Euterpe oleracea Mart.) has recently emerged as a promising source of natural antioxidants. Because increased oxidative stress and impaired antioxidant defense mechanisms are important factors in the development of diabetic complications and many health claims have been reported for açai, the present study was undertaken to evaluate the possible protective effects of açai on the production of reactive oxygen species by neutrophils and on the liver antioxidant defense system in control and streptozotocin-induced diabetic rats. Diet supplementation with 2% açai was found to increase mRNA levels for gamma-glutamylcysteine synthetase and glutathione peroxidase in liver tissue and to decrease reactive oxygen species production by neutrophils. Compared to control animals, diabetic rats exhibited lower levels of mRNA coding for Zn-superoxide dismutase, glutathione peroxidase and gamma-glutamylcysteine synthetase and higher levels of reactive oxygen species production by neutrophils, thiobarbituric acid-reactive substances and carbonyl proteins in hepatic tissues. Although açai supplementation was not effective in restore gene expression of antioxidant enzymes in diabetic rats, it showed a protective effect, decreasing thiobarbituric acid-reactive substances levels and increasing reduced glutathione content in the liver. These findings suggest that açai can modulate reactive oxygen species production by neutrophils and that it has a significant favorable effect on the liver antioxidant defense system under fisiological conditions of oxidative stress and partially revert deleterious effects of diabetes in the liver. PMID:22128218

  19. Inhibition of tomato (Solanum lycopersicum L.) root growth by cyanamide is not always accompanied with enhancement of ROS production

    PubMed Central

    Soltys, Dorota; Gniazdowska, Agnieszka; Bogatek, Renata

    2013-01-01

    Mode of action of allelochemicals in target plants is currently widely studied. Cyanamide is one of the newly discovered allelochemical, biosynthesized in hairy vetch. Recently, it has been recognized that cyanamide is plant growth inhibitor, which affects mitosis in root tip cells and causes,e.g., disorder in phytohormonal balance. We also demonstrated that CA may act as oxidative stress agent but it strictly depends on plant species, exposure time and doses. Roots of tomato seedling treated with water solution of 1.2 mM cyanamide did not exhibit elevated reactive oxygen species concentration during the whole culture period. PMID:23428892

  20. PPAR Activation Induces M1 Macrophage Polarization via cPLA2-COX-2 Inhibition, Activating ROS Production against Leishmania mexicana

    PubMed Central

    Díaz-Gandarilla, J. A.; Osorio-Trujillo, C.; Hernández-Ramírez, V. I.; Talamás-Rohana, P.

    2013-01-01

    Defence against Leishmania depends upon Th1 inflammatory response and, a major problem in susceptible models, is the turnoff of the leishmanicidal activity of macrophages with IL-10, IL-4, and COX-2 upregulation, as well as immunosuppressive PGE2, all together inhibiting the respiratory burst. Peroxisome proliferator-activated receptors (PPAR) activation is responsible for macrophages polarization on Leishmania susceptible models where microbicide functions are deactivated. In this paper, we demonstrated that, at least for L. mexicana, PPAR activation, mainly PPARγ, induced macrophage activation through their polarization towards M1 profile with the increase of microbicide activity against intracellular pathogen L. mexicana. PPAR activation induced IL-10 downregulation, whereas the production of proinflammatory cytokines such as TNF-α, IL-1β, and IL-6 remained high. Moreover, PPAR agonists treatment induced the deactivation of cPLA2-COX-2-prostaglandins pathway together with an increase in TLR4 expression, all of whose criteria meet the M1 macrophage profile. Finally, parasite burden, in treated macrophages, was lower than that in infected nontreated macrophages, most probably associated with the increase of respiratory burst in these treated cells. Based on the above data, we conclude that PPAR agonists used in this work induces M1 macrophages polarization via inhibition of cPLA2 and the increase of aggressive microbicidal activity via reactive oxygen species (ROS) production. PMID:23555077

  1. Double-dose β-glucan treatment in WSSV-challenged shrimp reduces viral replication but causes mortality possibly due to excessive ROS production.

    PubMed

    Thitamadee, Siripong; Srisala, Jiraporn; Taengchaiyaphum, Suparat; Sritunyalucksana, Kallaya

    2014-10-01

    In our research efforts to reduce the impact of white spot syndrome virus (WSSV) disease outbreaks in shrimp aquaculture, we studied the effect of β-glucan administration to activate the prophenoloxidase (proPO) enzymatic cascade prior to WSSV challenge. Injection of a single dose of β-glucan (5 μg/g) prior to WSSV challenge resulted in activation of the proPO system and reduced shrimp mortality (25-50%) when compared to controls (100%). By contrast, no significant reduction was observed using yellow head virus (YHV) in a similar protocol. We subsequently hypothesized that administration of a second dose of β-glucan after WSSV challenge might reduce shrimp mortality further. Surprisingly, the opposite occurred, and mortality of the WSSV-infected shrimp increased to 100% after the second β-glucan dose. Both immunofluorescence and RT-PCR assays revealed low WSSV levels in hemocytes of shrimp collected after the second dose of β-glucan administration, suggesting that the cause of increased mortality was unlikely to be increased WSSV replication. We found from measured phenoloxidase acitivity (PO) and H2O2 production that the higher mortality may have resulted from a combination of WSSV infection plus over-production of reactive oxygen species (ROS) stimulated by two doses of β-glucan. Thus, caution may be prudent in continuous or prolonged activation of the shrimp immune system by β-glucan administration lest it exacerbate shrimp mortality in the event of WSSV infection.

  2. Rat Humanin is encoded and translated in mitochondria and is localized to the mitochondrial compartment where it regulates ROS production.

    PubMed

    Paharkova, Vladislava; Alvarez, Griselda; Nakamura, Hiromi; Cohen, Pinchas; Lee, Kuk-Wha

    2015-09-15

    Evidence for the putative mitochondrial origin of the Humanin (HN) peptide has been lacking, although its cytoprotective activity has been demonstrated in a variety of organismal and cellular systems. We sought to establish proof-of-principle for a mitochondria-derived peptide (MDP) in a rat-derived cellular system as the rat HN sequence is predicted to lack nuclear insertions of mitochondrial origin (NUMT). We found that the rat HN (Rattin; rHN) homologue is derived from the mitochondrial genome as evidenced by decreased production in Rho-0 cells, and that peptide translation occurs in the mitochondria as it is unaffected by cycloheximide. Rat HN localizes to the mitochondria in cellular subfractionation and immunohistochemical studies. Addition of a HN analogue to isolated mitochondria from rat INS-1 beta cells reduced hydrogen peroxide production by 55%. In summary, a locally bioactive peptide is derived and translated from an open reading frame (ORF) within rat mitochondrial DNA encoding 16S rRNA.

  3. Upregulation of arginase activity contributes to intracellular ROS production induced by high glucose in H9c2 cells.

    PubMed

    Zhou, Lu; Sun, Chuan-Bo; Liu, Chao; Fan, Yue; Zhu, Hong-Yi; Wu, Xiao-Wei; Hu, Liang; Li, Qing-Ping

    2015-01-01

    Arginase is upregulated in some tissues under diabetes states. Arginase can compete with nitroxide synthase (NOS) for the common substrate L-arginine and thus increases oxidative stress by NOS uncoupling. We want to analyze whether arginase is upregulated and contribute to oxidative stress in H9c2 cells during high glucose treatment. H9c2 cells were cultured in normal or high glucose DMEM. Arginase activity increased in parallel with increased cell death and oxidative stress. Arginase inhibitor N ω-hydroxy-nor-l-arginine (nor-NOHA) and NOS inhibitor N ω-nitro-l-arginine methyl ester (L-NAME) could reverse these effects. Despite of upregulated NOS activity, NO production was impaired which could be preserved by nor-NOHA, suggesting a decreased substrate availability of NOS due to increased arginase activity. L-arginine supplementation decreased superoxide production while it could not protect cells from death. Upregulated arginase activity in H9c2 treated with high glucose can cause NOS uncoupling and subsequently reactive oxygen species augmentation and cell death. These findings suggest that arginase will be a novel therapeutic target for treatment of diabetic cardiomyopathy.

  4. Physicochemical properties of iron oxide nanoparticles that contribute to cellular ROS-dependent signaling and acellular production of hydroxyl radical.

    PubMed

    Vogel, Christoph F A; Charrier, Jessica G; Wu, Dalei; McFall, Alexander S; Li, Wen; Abid, Aamir; Kennedy, Ian M; Anastasio, Cort

    2016-01-01

    While nanoparticles (NPs) are increasingly used in a variety of consumer products and medical applications, some of these materials have potential health concerns. Macrophages are the primary responders to particles that initiate oxidative stress and inflammatory reactions. Here, we utilized six flame-synthesized, engineered iron oxide NPs with various physicochemical properties (e.g. Fe oxidation state and crystal size) to study their interactions with RAW 264.7 macrophages, their iron solubilities, and their abilities to produce hydroxyl radical in an acellular assay. Both iron solubility and hydroxyl radical production varied between NPs depending on crystalline diameter and surface area of the particles, but not on iron oxidation state. Macrophage treatment with the iron oxide NPs showed a dose-dependent increase of heme oxygenase 1 (HO-1) and NAD(P)H:quinone oxidoreductase (NQO-1). The nuclear factor (NF)-erythroid-derived 2 (E2)-related factor 2 (Nrf2) modulates the transcriptional activity of antioxidant response element (ARE)-driven genes, such as HO-1 and NQO-1. Here, we show that the iron oxide NPs activate Nrf2, leading to its increased nuclear accumulation and enhanced Nrf2 DNA-binding activity in NP-treated RAW 264.7 macrophages. Iron solubility and acellular hydroxyl radical generation depend on the physical properties of the NPs, especially crystalline diameter; however, these properties are weakly linked to the activation of cellular signaling of Nrf2 and the expression of oxidative stress markers. Overall, our work shows for the first time that iron oxide nanoparticles induce cellular marker genes of oxidative stress and that this effect is transcriptionally mediated through the Nrf2-ARE signaling pathway in macrophages.

  5. Lower oxidative DNA damage despite greater ROS production in muscles from rats selectively bred for high running capacity.

    PubMed

    Tweedie, Constance; Romestaing, Caroline; Burelle, Yan; Safdar, Adeel; Tarnopolsky, Mark A; Seadon, Scott; Britton, Steven L; Koch, Lauren G; Hepple, Russell T

    2011-03-01

    Artificial selection in rat has yielded high-capacity runners (HCR) and low-capacity runners (LCR) that differ in intrinsic (untrained) aerobic exercise ability and metabolic disease risk. To gain insight into how oxygen metabolism may have been affected by selection, we compared mitochondrial function, oxidative DNA damage (8-dihydroxy-guanosine; 8dOHG), and antioxidant enzyme activities in soleus muscle (Sol) and gastrocnemius muscle (Gas) of adult and aged LCR vs. HCR rats. In Sol of adult HCR rats, maximal ADP-stimulated respiration was 37% greater, whereas in Gas of adult HCR rats, there was a 23% greater complex IV-driven respiratory capacity and 54% greater leak as a fraction of electron transport capacity (suggesting looser mitochondrial coupling) vs. LCR rats. H(2)O(2) emission per gram of muscle was 24-26% greater for both muscles in adult HCR rats vs. LCR, although H(2)O(2) emission in Gas was 17% lower in HCR, after normalizing for citrate synthase activity (marker of mitochondrial content). Despite greater H(2)O(2) emission, 8dOHG levels were 62-78% lower in HCR rats due to 62-96% higher superoxide dismutase activity in both muscles and 47% higher catalase activity in Sol muscle in adult HCR rats, with no evidence for higher 8 oxoguanine glycosylase (OGG1; DNA repair enzyme) protein expression. We conclude that genetic segregation for high running capacity has generated a molecular network of cellular adaptations, facilitating a superior response to oxidative stress.

  6. Mediating the potent ROS toxicity of acrolein in neurons with silica nanoparticles and a natural product approach

    NASA Astrophysics Data System (ADS)

    White-Schenk, Désirée.; Shi, Riyi; Leary, James F.

    2014-03-01

    Acrolein, a very reactive aldehyde, is a culprit in the biochemical cascade after primary, mechanical spinal cord injury (SCI), which leads to the destruction of tissue initially unharmed, referred to as "secondary injury". Additionally, in models of multiple sclerosis (MS) and some clinical research, acrolein levels are significantly increased. Due to its ability to make more copies of itself in the presence of tissue via lipid peroxidation, researchers believe that acrolein plays a role in the increased destruction of the central nervous system in both SCI and MS. Hydralazine, an FDAapproved hypotensive drug, has been shown to scavenge acrolein, but its side effects and short half life at the appropriate dose for acrolein scavenging must be improved for beneficial clinical translation. Therefore, a nanomedical approach has been designed using silica nanoparticles as a porous delivery vehicle hydralazine. The silica particles are formed in a one-step method that incorporates poly(ethylene) glycol (PEG), a stealth molecule, directly onto the nanoparticles. As an additional avenue for study, a natural product in green tea, epigallocatechin gallate (EGCG), has been explored for its ability to react with acrolein, disabling its reactive capabilities. Upon demonstration of attenuating acrolein, EGCG's delivery may also be improved using the nanomedical approach. The current work exposes the potential of using silica nanoparticles as a delivery vehicle and EGCG's antioxidant capabilities in B35 neuroblastoma cells exposed to acrolein. We also measure nanotoxicity to individual rat neurons using high-throughput image scanning cytometry.

  7. TGFβ regulates persistent neuroinflammation by controlling Th1 polarization and ROS production via monocyte‐derived dendritic cells

    PubMed Central

    Parsa, Roham; Lund, Harald; Tosevski, Ivana; Zhang, Xing‐Mei; Malipiero, Ursula; Beckervordersandforth, Jan; Merkler, Doron; Prinz, Marco; Gyllenberg, Alexandra; James, Tojo; Warnecke, Andreas; Hillert, Jan; Alfredsson, Lars; Kockum, Ingrid; Olsson, Tomas; Fontana, Adriano; Suter, Tobias

    2016-01-01

    Intracerebral levels of Transforming Growth Factor beta (TGFβ) rise rapidly during the onset of experimental autoimmune encephalomyelitis (EAE), a mouse model of Multiple Sclerosis (MS). We addressed the role of TGFβ responsiveness in EAE by targeting the TGFβ receptor in myeloid cells, determining that Tgfbr2 was specifically targeted in monocyte‐derived dendritic cells (moDCs) but not in CNS resident microglia by using bone‐marrow chimeric mice. TGFβ responsiveness in moDCs was necessary for the remission phase since LysMCreTgfbr2fl/fl mice developed a chronic form of EAE characterized by severe demyelination and extensive infiltration of activated moDCs in the CNS. Tgfbr2 deficiency resulted in increased moDC IL‐12 secretion that skewed T cells to produce IFN‐γ, which in turn enhanced the production of moDC‐derived reactive oxygen species that promote oxidative damage and demyelination. We identified SNPs in the human NOX2 (CYBB) gene that associated with the severity of MS, and significantly increased CYBB expression was recorded in PBMCs from both MS patients and from MS severity risk allele rs72619425‐A carrying individuals. We thus identify a novel myeloid cell‐T cell activation loop active in the CNS during chronic disease that could be therapeutically targeted. GLIA 2016;64:1925–1937 PMID:27479807

  8. Improved ROS measurement in root hair cells.

    PubMed

    Juárez, Silvina Paola Denita; Mangano, Silvina; Estevez, José M

    2015-01-01

    Reactive oxygen species (ROS) are recognized as important signaling components in various processes in plants. ROS are produced for NADPH oxidase in different subcellular compartments and they are involved for a wide range of stimuli, such as cell cycle, growth, plant defenses, abiotic stress responses, and abscisic acid signaling in guard cells. In Arabidopsis, root hairs ROS also play a key role in root hair growth and they control the activity of calcium channels required for polar growth (Takeda et al. Science 319:1241-1244, 2008). The production of reactive oxygen species is under a specific molecular control in order to avoid detrimental side effects. Here we describe a protocol to detect ROS by oxidation of a derivative of fluorescein: 2',7-dihidro dicloro fluorescein (H2DCFDA).

  9. Effects of individual and a mixture of pharmaceuticals and personal-care products on cytotoxicity, EROD activity and ROS production in a rainbow trout gonadal cell line (RTG-2).

    PubMed

    Fernández, Carlos; Carbonell, Gregoria; Babín, Mar

    2013-11-01

    The presence of pharmaceuticals and personal-care products (PPCPs) in aquatic environments is of concern. Although measured concentrations of individual substances are low, little consideration has been given to the likely chronic nature of the exposures or to the potential for mixture effects. The purpose of the present study was to use the RTG-2 rainbow trout cell line to analyse sub-lethal and cytotoxic effects of PPCPs present in a wastewater-treatment-plant (WWTP) effluents and their mixtures. Interactions with cytochrome P450 1A enzyme, oxidative stress, cellular senescence and cell viability were assessed using 7-ethoxyresorufin-o-deethylase (EROD), reactive oxygen species (ROS), ß-galactosidase (ß-gal) and neutral red (NR) uptake assays, respectively. Not all of the compounds that were tested exhibited significant effects. The lowest-observed-effect concentrations and half maximal effective concentrations (EC50 ) were within the range 0.15 to 784.47 µg l(-1) . Clear dose-response curves were found for cells exposed to different mixtures of PPCPs. The lowest-observed-effect concentrations and concentrations causing EC50 were within the range 0.05 to 54.61 µg l(-1) . Four out the seven tested mixtures induced EROD activity. ROS production was detected in two mixtures. The ß-gal inhibition response was observed in six out the seven tested mixtures and occurred at a higher concentration than was observed for EROD induction activity or ROS generation. The present study clearly shows that the stress response through which cells mount a homeostatic response to toxicants can be potentially used for an initial, rapid and cost-effective assessment of the complex mixtures of PPCP that present in WWTP effluents are difficult and expensive to analyse chemically.

  10. Tetrabromobisphenol A (TBBPA)-stimulated reactive oxygen species (ROS) production in cell-free model using the 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) assay-limitations of method.

    PubMed

    Szychowski, Konrad A; Rybczyńska-Tkaczyk, Kamila; Leja, Marcin L; Wójtowicz, Anna K; Gmiński, Jan

    2016-06-01

    Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant, applied in a variety of commercial and household products, mainly electronic ones. Since the production of reactive oxygen species (ROS) is considered one of the principal cytotoxicity mechanisms, numerous studies undertake that aspect of TBBPA's mechanism of action. The present study verifies if the fluorogenic substrate 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) should be used to detect ROS production induced by TBBPA. To determine the ability of TBBPA alone to stimulate the conversion of H2DCFDA to its fluorescent product 2',7'-dichlorofluorescein (DCF), we used a cell-free model. In the experiments we check different cultured media also in combination with free radical scavenger N-acetyl-l-cysteine (NAC). Additionally, experiments with stable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH·) have been made. The presented data showed that TBBPA in all tested concentrations interacts with H2DCFDA in phosphate-buffered saline (PBS) buffer while in micromolar concentrations in the DMEM/F12 medium with and without serum. The addition of NAC inhibited the interaction of TBBPA with H2DCFDA. Experiments with DPPH· showed that, in the presence of NAC, TBBPA acts like a free radical. TBBPA has similar properties to free radical and is susceptible to free radical scavenging properties of NAC. Our results indicated that H2DCFDA assay cannot be used to evaluate cellular ROS production in TBBPA studies. The study connected with TBBPA-stimulated ROS production in cell culture models using the H2DCFDA assay should be revised using a different method. However, due to the free radical-like nature of TBBPA, it can be very difficult. Therefore, further investigation of the nature of TBBPA as a compound with similar properties to free radical is required.

  11. Inhibition of ROS production, autophagy or apoptosis signaling reversed the anticancer properties of Antrodia salmonea in triple-negative breast cancer (MDA-MB-231) cells.

    PubMed

    Chang, Chia-Ting; Korivi, Mallikarjuna; Huang, Hui-Chi; Thiyagarajan, Varadharajan; Lin, Kai-Yuan; Huang, Pei-Jane; Liu, Jer-Yuh; Hseu, You-Cheng; Yang, Hsin-Ling

    2017-05-01

    We investigated the in vitro and in vivo anticancer properties of Antrodia salmonea (AS), a well-known edible/medicinal mushroom in Taiwan, on human triple-negative breast cancer (MDA-MB-231) cells and xenografted nude mice; and revealed the underlying molecular mechanisms involved in autophagic- and apoptotic-cell death. Treatment of MDA-MB-231 cells with fermented culture broth of AS (0-200 μg/mL) inhibited cell viability/growth. AS-induced autophagy was evidenced via increased LC3-II accumulation, GFP-LC3 puncta and AVOs formation in MDA-MB-231 cells. These events are associated with increased ATG7, decreased p-mTOR, vanished SQSTM1/p62 expressions and dysregulated Beclin-1/Bcl-2 ratio. AS-induced apoptosis/necrosis through increased DNA fragmentation, Annexin-V/PI stained cells and Bax expression. Both mitochondrial (caspase-9/caspase-3/PARP) and death-receptor (caspase-8/FasL/Fas) signaling pathways are involved in execution of apoptosis. Interestingly, blockade of AS-induced ROS production by N-acetylcysteine pretreatment substantially attenuated AS-induced autophagy, mitochondrial dysfunction and autophagic/apoptotic-cell death. Inhibition of apoptosis by Z-VAD-FMK suppressed AS-induced autophagic-death (decreased LC3-II/AVOs). Similarly, inhibition of autophagy by 3-methyladenine/chloroquine diminished AS-induced apoptosis (decreased DNA fragmentation/caspase-3) in MDA-MB-231 cells. Bioluminescence imaging further confirmed that AS inhibited breast tumor growth in living MDA-MB-231-luciferase-injected nude mice. Taken together, AS crucially involved in execution/propagation of autophagic- or apoptotic-death of MDA-MB-231 cells, and decreased tumor growth in xenografted nude mice.

  12. Metabolic differences in temperamental Brahman cattle can affect productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many factors may adversely affect the growth and productivity of livestock. These include stressors associated with management practices, such as weaning, handling relative to transportation, and vaccination, that can modulate growth through the production of stress-related hormones (i.e., cortisol,...

  13. Investigation of atmospheric particle-bound reactive oxidative species (ROS): Their sources, characterization, and measurement

    NASA Astrophysics Data System (ADS)

    Venkatachari, Prasanna

    The relationships between the observed ROS concentrations in the New York City PMTACS study and various other atmospheric indicator species such as O3, HOx radicals, organic carbon (OC), elemental carbon (EC) and secondary organic carbon (SOC), as well as the statistical significance of any observable correlations were explored. A statistically significant moderate positive correlation between the O3 and the ROS concentrations, that indicated the local intensity of photochemistry was a moderate factor affecting the formation of particulate ROS in the daytime atmosphere, was observed. The results of the comparison between ROS and HO x concentrations indicated the existence of, at best, a weak positive correlation. The lack of a more positive correlation of the particle-bound ROS, both with ozone as well as other gas phase oxidants, showed the decoupling of the particulate matter ROS from the gas phase oxidants. The comparison of ROS concentrations with OC, EC, and SOC concentrations revealed a statistically significant relationship (P-value < 0.05) only in the case of ROS and SOC. EC and OC, in general exhibited weak, negative correlations with the observed ROS concentrations. The consistency of the positive relationships between ROS and SOC for all the periods suggested that the measured ROS was photochemically driven. The absence of any statistical relevance of primary EC and OC concentrations on the ROS concentrations suggested that primary emissions, especially from motor vehicles, were not a major source of the measured particle-bound ROS. An important objective of this work was to develop a system that could provide a stable throughput of particle-bound ROS, and characterize it in terms of particle size distribution, concentrations, and formed products, such that the results obtained could be viewed in the perspective of atmospheric processes and measurements. A ROS-bearing particle generator was developed, that could deliver known exposures of ROS. It was

  14. Activation of the ACE2/Ang-(1-7)/Mas pathway reduces oxygen-glucose deprivation induced tissue swelling, ROS production, and cell death in mouse brain with angiotensin II overproduction

    PubMed Central

    Zheng, Jiaolin; Li, Guangze; Chen, Shuzhen; Chen, Ji; Buck, Joshua; Zhu, Yulan; Xia, Huijing; Lazartigues, Eric; Chen, Yanfang; Olson, James E.

    2014-01-01

    We previously demonstrated that mice which overexpress human renin and angiotensinogen (R+A+) show enhanced cerebral damage in both in vivo and in vitro experimental ischemia models. Angiotensin converting enzyme 2 (ACE2) counteracts the effects of angiotensin (Ang-II) by transforming it into Ang-(1-7), thus reducing the ligand for the AT1 receptor and increasing stimulation of the Mas receptor. Triple transgenic mice, SARA, which specifically overexpress ACE2 in neurons of R+A+ mice were used to study the role of ACE2 in ischemic stroke using oxygen and glucose deprivation (OGD) of brain slices as an in vitro model. We examined tissue swelling, the production of reactive oxygen species (ROS), and cell death in cerebral cortex (CX) and the hippocampal CA1 region during OGD. Expression levels of NADPH oxidase isoforms, Nox2 and Nox4 were measured using western blots. Results show that SARA mice and R+A+ mice treated with the Mas receptor agonist Ang-(1-7) had less swelling, cell death, and ROS production in CX and CA1 areas compared to those in R+A+ animals. Treatment of slices from SARA mice with the Mas antagonist A779 eliminated this protection. Finally, western blots revealed less Nox2 and Nox4 expression in SARA mice compared with R+A+ mice both before and after OGD. We suggest that reduced brain swelling and cell death observed in SARA animals exposed to OGD results from diminished ROS production coupled with lower expression of NADPH oxidases. Thus, the ACE2/Ang-(1-7)/Mas receptor pathway plays a protective role in brain ischemic damage by counteracting the detrimental effects of Ang-II-induced ROS production. PMID:24814023

  15. Taurocholate-induced nitric oxide signaling and the ensuing production of reactive oxygen species lead to an increase in epithelial permeability in cultivated mouse gastric epithelium.

    PubMed

    Mustonen, Harri; Kiviluoto, Tuula; Puolakkainen, Pauli; Paimela, Hannu; Mentula, Panu; Kemppainen, Esko; Kivilaakso, Eero

    2008-12-01

    We have here elucidated whether ulcerogenic agents affect the production of NO and reactive oxygen species (ROS). The ulcerogenic agents dose dependently induced NO and ROS production in mouse gastric epithelial cells. Taurocholate (TC, 5 mM) exposure did not affect cell viability, but it increased inducible nitric oxide synthase (iNOS) expression, NO production, ROS production, and epithelial permeability. Epithelial permeability was inhibited with NOS inhibitors or antioxidants. Oxidative stress induced by acetylsalicylic acid (ASA) and ethanol was not inhibited with NOS inhibitors. ASA induced ROS production even at low concentrations (1 mM), which did not affect cell viability. Ethanol-induced ROS production was linked to cell viability, suggesting direct oxidative stress caused by ethanol. Taurocholate-induced NO signaling and the ensuing production of ROS might contribute to initiation of defensive or adaptive cellular mechanisms. ASA-induced ROS signaling might have similar effects, whereas ethanol induced direct oxidative stress, having an influence on cell viability.

  16. A wave of reactive oxygen species (ROS)-induced ROS release in a sea of excitable mitochondria.

    PubMed

    Brady, Nathan R; Hamacher-Brady, Anne; Westerhoff, Hans V; Gottlieb, Roberta A

    2006-01-01

    Once considered simply as the main source of ATP, mitochondria are now implicated in the control of many additional aspects of cell physiology, such as calcium signaling, and pathology, as in injury incurred on ischemia and subsequent reperfusion (I/R). Mitochondrial respiration is ordinarily accompanied by low-level ROS production, but they can respond to elevated ROS concentrations by increasing their own ROS production, a phenomenon termed ROS-induced ROS release (RIRR). Two modes of RIRR have been described. In the first mode of RIRR, enhanced ROS leads to mitochondrial depolarization via activation of the MPTP, yielding a short-lived burst of ROS originating from the mitochondrial electron transport chain (ETC). The second mode of RIRR is MPTP independent but is regulated by the mitochondrial benzodiazepine receptor (mBzR). Increased ROS in the mitochondrion triggers opening of the inner mitochondrial membrane anion channel (IMAC), resulting in a brief increase in ETC-derived ROS. Both modes of RIRR have been shown to transmit localized mitochondrial perturbations throughout the cardiac cell in the form of oscillations or waves but are kinetically distinct and may involve different ROS that serve as second messengers. In this review, we discuss the mechanisms of these different modes of RIRR.

  17. Relations between affective music and speech: evidence from dynamics of affective piano performance and speech production

    PubMed Central

    Liu, Xiaoluan; Xu, Yi

    2015-01-01

    This study compares affective piano performance with speech production from the perspective of dynamics: unlike previous research, this study uses finger force and articulatory effort as indexes reflecting the dynamics of affective piano performance and speech production respectively. Moreover, for the first time physical constraints such as piano fingerings and speech articulatory constraints are included due to their potential contribution to different patterns of dynamics. A piano performance experiment and speech production experiment were conducted in four emotions: anger, fear, happiness and sadness. The results show that in both piano performance and speech production, anger and happiness generally have high dynamics while sadness has the lowest dynamics. Fingerings interact with fear in the piano experiment and articulatory constraints interact with anger in the speech experiment, i.e., large physical constraints produce significantly higher dynamics than small physical constraints in piano performance under the condition of fear and in speech production under the condition of anger. Using production experiments, this study firstly supports previous perception studies on relations between affective music and speech. Moreover, this is the first study to show quantitative evidence for the importance of considering motor aspects such as dynamics in comparing music performance and speech production in which motor mechanisms play a crucial role. PMID:26217252

  18. Relations between affective music and speech: evidence from dynamics of affective piano performance and speech production.

    PubMed

    Liu, Xiaoluan; Xu, Yi

    2015-01-01

    This study compares affective piano performance with speech production from the perspective of dynamics: unlike previous research, this study uses finger force and articulatory effort as indexes reflecting the dynamics of affective piano performance and speech production respectively. Moreover, for the first time physical constraints such as piano fingerings and speech articulatory constraints are included due to their potential contribution to different patterns of dynamics. A piano performance experiment and speech production experiment were conducted in four emotions: anger, fear, happiness and sadness. The results show that in both piano performance and speech production, anger and happiness generally have high dynamics while sadness has the lowest dynamics. Fingerings interact with fear in the piano experiment and articulatory constraints interact with anger in the speech experiment, i.e., large physical constraints produce significantly higher dynamics than small physical constraints in piano performance under the condition of fear and in speech production under the condition of anger. Using production experiments, this study firstly supports previous perception studies on relations between affective music and speech. Moreover, this is the first study to show quantitative evidence for the importance of considering motor aspects such as dynamics in comparing music performance and speech production in which motor mechanisms play a crucial role.

  19. ROS homeostasis as a prerequisite for the accomplishment of plant cytokinesis.

    PubMed

    Livanos, Pantelis; Galatis, Basil; Quader, Hartmut; Apostolakos, Panagiotis

    2017-01-01

    Reactive oxygen species (ROS) are emerging players in several biological processes. The present work investigates their potential involvement in plant cytokinesis by the application of reagents disturbing ROS homeostasis in root-tip cells of Triticum turgidum. In particular, the NADPH-oxidase inhibitor diphenylene iodonium, the ROS scavenger N-acetyl-cysteine, and menadione that leads to ROS overproduction were used. The effects on cytokinetic cells were examined using light, fluorescence, and transmission electron microscopy. ROS imbalance had a great impact on the cytokinetic process including the following: (a) formation of atypical "phragmoplasts" incapable of guiding vesicles to the equatorial plane, (b) inhibition of the dictyosomal and/or endosomal vesicle production that provides the developing cell plates with membranous and matrix polysaccharidic material, (c) disturbance of the fusion processes between vesicles arriving on the cell plate plane, (d) disruption of endocytic vesicle production that mediates the removal of the excess membrane material from the developing cell plate, and (e) the persistence of large callose depositions in treated cell plates. Consequently, either elevated or low ROS levels in cytokinetic root-tip cells resulted in a total inhibition of cell plate assembly or the formation of aberrant cell plates, depending on the stage of the affected cytokinetic cells. The latter failed to expand towards cell cortex and hence to give rise to complete daughter cell wall. These data revealed for the first time the necessity of ROS homeostasis for accomplishment of plant cytokinesis, since it seems to be a prerequisite for almost every aspect of this process.

  20. Neuroprotective strategies involving ROS in Alzheimer’s disease

    PubMed Central

    Dumont, Magali; Beal, M. Flint

    2010-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disorder in which oxidative stress is a key hallmark. It occurs early in disease pathogenesis and can exacerbate its progression. Several causes of oxidative stress have been determined over the years. First, mitochondria play an important role in the generation and accumulation of free radicals. In addition to mitochondria, inflammation can also induce oxidative damage, especially via microglia, and microglia are also important for Aβ clearance. In AD, both mitochondrial function and inflammatory response are affected, leading to increased ROS formation and oxidative damage to lipid, proteins and nucleic acids. Some other sources have also been identified. From these findings, various neuroprotective strategies against ROS-mediated damages have been elaborated in AD research. This review recapitulates some of the major strategies used to prevent oxidative stress and disease progression. Outcomes from in vitro and in vivo studies using models of AD are encouraging. However, only a few clinical trials have provided positive results in terms of slowing down cognitive decline. Nonetheless, there is still hope for improved compounds that would better target pathways implicated in ROS production. In fact, facilitating the endogenous antioxidant system by modulating transcription has great promise for AD therapy. PMID:21130159

  1. Product design enhancement using apparent usability and affective quality.

    PubMed

    Seva, Rosemary R; Gosiaco, Katherine Grace T; Santos, Ma Crea Eurice D; Pangilinan, Denise Mae L

    2011-03-01

    In this study, apparent usability and affective quality were integrated in a design framework called the Usability Perception and Emotion Enhancement Model (UPEEM). The UPEEM was validated using structural equation modeling (SEM). The methodology consists of four phases namely product selection, attribute identification, design alternative generation, and design alternative evaluation. The first stage involved the selection of a product that highly involves the consumer. In the attribute identification stage, design elements of the product were identified. The possible values of these elements were also determined for use in the experimentation process. Design of experiments was used to identify how the attributes will be varied in the design alternative stage and which of the attributes significantly contribute to affective quality, apparent usability, and desirability in the design evaluation stage. Results suggest that product attributes related to form are relevant in eliciting intense affect and perception of usability in mobile phones especially those directly related to functionality and aesthetics. This study considered only four product attributes among so many due to the constraints of the research design employed. Attributes related to aesthetic perception of a product enhance apparent usability such as those related to dimensional ratios.

  2. Targeting TRPM2 in ROS-Coupled Diseases.

    PubMed

    Yamamoto, Shinichiro; Shimizu, Shunichi

    2016-09-07

    Under pathological conditions such as inflammation and ischemia-reperfusion injury large amounts of reactive oxygen species (ROS) are generated which, in return, contribute to the development and exacerbation of disease. The second member of the transient receptor potential (TRP) melastatin subfamily, TRPM2, is a Ca(2+)-permeable non-selective cation channel, activated by ROS in an ADP-ribose mediated fashion. In other words, TRPM2 functions as a transducer that converts oxidative stress into Ca(2+) signaling. There is good evidence that TRPM2 plays an important role in ROS-coupled diseases. For example, in monocytes the influx of Ca(2+) through TRPM2 activated by ROS contributes to the aggravation of inflammation via chemokine production. In this review, the focus is on TRPM2 as a molecular linker between ROS and Ca(2+) signaling in ROS-coupled diseases.

  3. Targeting TRPM2 in ROS-Coupled Diseases

    PubMed Central

    Yamamoto, Shinichiro; Shimizu, Shunichi

    2016-01-01

    Under pathological conditions such as inflammation and ischemia-reperfusion injury large amounts of reactive oxygen species (ROS) are generated which, in return, contribute to the development and exacerbation of disease. The second member of the transient receptor potential (TRP) melastatin subfamily, TRPM2, is a Ca2+-permeable non-selective cation channel, activated by ROS in an ADP-ribose mediated fashion. In other words, TRPM2 functions as a transducer that converts oxidative stress into Ca2+ signaling. There is good evidence that TRPM2 plays an important role in ROS-coupled diseases. For example, in monocytes the influx of Ca2+ through TRPM2 activated by ROS contributes to the aggravation of inflammation via chemokine production. In this review, the focus is on TRPM2 as a molecular linker between ROS and Ca2+ signaling in ROS-coupled diseases. PMID:27618067

  4. Aging and Ambiguous ROS. System Genetics Analysis.

    PubMed

    Baranov, Vladislav S; Baranova, Elena V

    2017-01-01

    Famous Free Radical Theory (FRT) of aging, the 50th year anniversary of which is celebrated in 2015 postulates a crucial role of Reactive Oxygen Species (ROS) in aging. Still it is the most robust theory of aging as mitochondria ROS production (mtROSp) correlates well with four principal ''rules" of aging being universal, endogenous, progressive, and deleterious. Vast number of experiments in different species prove mutagenic effect of ROS and their carcinogenic properties. So far, FRT stimulates the search of new pharmaceuticals with antioxidant activity. However, some recent experimental data and clinical findings render doubt to ROS as a principal senescence drivers and come in conflict with original version of FRT. Growth stimulating effects of ROS and their modest antitumor properties support these objections. One should remember that FRT is only one of the numerous theories of aging. Molecular mechanisms of senescence involve all living systems and numerous metabolic pathways which are also variable owing to the unique properties of individual genome and unique epigenetic modulations operating throughout the lifetime thus making aging a unique private matter. Universal theory of aging that incorporates and explains all known and suggested mechanisms of aging, is illusive. However, knowledge of unique peculiarities of individual genome, its feasible editing and efficient epigenetic regulation of metabolic pathways give a chance to postpone aging and extend period of active longevity.

  5. Phytohormones Signaling Pathways and ROS Involvement in Seed Germination.

    PubMed

    Oracz, Krystyna; Karpiński, Stanisław

    2016-01-01

    Phytohormones and reactive oxygen species (ROS) are major determinants of the regulation of development and stress responses in plants. During life cycle of these organisms, signaling networks of plant growth regulators and ROS interact in order to render an appropriate developmental and environmental response. In plant's photosynthetic (e.g., leaves) and non-photosynthetic (e.g., seeds) tissues, enhanced and suboptimal ROS production is usually associated with stress, which in extreme cases can be lethal to cells, a whole organ or even an organism. However, controlled production of ROS is appreciated for cellular signaling. Despite the current progress that has been made in plant biology and increasing number of findings that have revealed roles of ROS and hormonal signaling in germination, some questions still arise, e.g., what are the downstream protein targets modified by ROS enabling stimulus-specific cellular responses of the seed? Or which molecular regulators allow ROS/phytohormones interactions and what is their function in seed life? In this particular review the role of some transcription factors, kinases and phosphatases is discussed, especially those which usually known to be involved in ROS and hormonal signal transduction under stress in plants, may also play a role in the regulation of processes occurring in seeds. The summarized recent findings regarding particular ROS- and phytohormones-related regulatory proteins, as well as their integration, allowed to propose a novel, possible model of action of LESION SIMULATING DISEASE 1, ENHANCED DISEASE SUSCEPTIBILITY 1, and PHYTOALEXIN DEFICIENT 4 functioning during seeds life.

  6. Cysteines under ROS attack in plants: a proteomics view.

    PubMed

    Akter, Salma; Huang, Jingjing; Waszczak, Cezary; Jacques, Silke; Gevaert, Kris; Van Breusegem, Frank; Messens, Joris

    2015-05-01

    Plants generate reactive oxygen species (ROS) as part of their metabolism and in response to various external stress factors, potentially causing significant damage to biomolecules and cell structures. During the course of evolution, plants have adapted to ROS toxicity, and use ROS as signalling messengers that activate defence responses. Cysteine (Cys) residues in proteins are one of the most sensitive targets for ROS-mediated post-translational modifications, and they have become key residues for ROS signalling studies. The reactivity of Cys residues towards ROS, and their ability to react to different oxidation states, allow them to appear at the crossroads of highly dynamic oxidative events. As such, a redox-active cysteine can be present as S-glutathionylated (-SSG), disulfide bonded (S-S), sulfenylated (-SOH), sulfinylated (-SO2H), and sulfonylated (-SO3H). The sulfenic acid (-SOH) form has been considered as part of ROS-sensing pathways, as it leads to further modifications which affect protein structure and function. Redox proteomic studies are required to understand how and why cysteines undergo oxidative post-translational modifications and to identify the ROS-sensor proteins. Here, we update current knowledge of cysteine reactivity with ROS. Further, we give an overview of proteomic techniques that have been applied to identify different redox-modified cysteines in plants. There is a particular focus on the identification of sulfenylated proteins, which have the potential to be involved in plant signal transduction.

  7. Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks

    PubMed Central

    Sandalio, L. M.; Romero-Puertas, M. C.

    2015-01-01

    Background Peroxisomes are highly dynamic, metabolically active organelles that used to be regarded as a sink for H2O2 generated in different organelles. However, peroxisomes are now considered to have a more complex function, containing different metabolic pathways, and they are an important source of reactive oxygen species (ROS), nitric oxide (NO) and reactive nitrogen species (RNS). Over-accumulation of ROS and RNS can give rise oxidative and nitrosative stress, but when produced at low concentrations they can act as signalling molecules. Scope This review focuses on the production of ROS and RNS in peroxisomes and their regulation by antioxidants. ROS production is associated with metabolic pathways such as photorespiration and fatty acid β-oxidation, and disturbances in any of these processes can be perceived by the cell as an alarm that triggers defence responses. Genetic and pharmacological studies have shown that photorespiratory H2O2 can affect nuclear gene expression, regulating the response to pathogen infection and light intensity. Proteomic studies have shown that peroxisomal proteins are targets for oxidative modification, S-nitrosylation and nitration and have highlighted the importance of these modifications in regulating peroxisomal metabolism and signalling networks. The morphology, size, number and speed of movement of peroxisomes can also change in response to oxidative stress, meaning that an ROS/redox receptor is required. Information available on the production and detection of NO/RNS in peroxisomes is more limited. Peroxisomal homeostasis is critical for maintaining the cellular redox balance and is regulated by ROS, peroxisomal proteases and autophagic processes. Conclusions Peroxisomes play a key role in many aspects of plant development and acclimation to stress conditions. These organelles can sense ROS/redox changes in the cell and thus trigger rapid and specific responses to environmental cues involving changes in peroxisomal

  8. Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-κB pathways.

    PubMed

    Park, Junghyung; Min, Ju-Sik; Kim, Bokyung; Chae, Un-Bin; Yun, Jong Won; Choi, Myung-Sook; Kong, Il-Keun; Chang, Kyu-Tae; Lee, Dong-Seok

    2015-01-01

    Activation of microglia cells in the brain contributes to neurodegenerative processes promoted by many neurotoxic factors such as pro-inflammatory cytokines and nitric oxide (NO). Reactive oxygen species (ROS) actively affect microglia-associated neurodegenerative diseases through their role as pro-inflammatory molecules and modulators of pro-inflammatory processes. Although the ROS which involved in microglia activation are thought to be generated primarily by NADPH oxidase (NOX) and involved in the immune response, mitochondrial ROS have also been proposed as important regulators of the inflammatory response in the innate immune system. However, the role of mitochondrial ROS in microglial activation has yet to be fully elucidated. In this study, we demonstrate that inhibition of mitochondrial ROS by treatment with Mito-TEMPO effectively suppressed the level of mitochondrial and intracellular ROS. Mito-TEMPO treatment also significantly prevented LPS-induced increase in the TNF-α, IL-1β, IL-6, iNOS and Cox-2 in BV-2 and primary microglia cells. Furthermore, LPS-induced suppression of mitochondrial ROS generation not only affected LPS-stimulated activation of MAPKs, including ERK, JNK, and p38, but also regulated IκB activation and NF-κB nuclear localization. These results indicate that mitochondria constitute a major source of ROS generation in LPS-mediated activated microglia cells. Additionally, suppression of LPS-induced mitochondrial ROS plays a role in modulating the production of pro-inflammatory mediators by preventing MAPK and NF-κB activation in microglia cells. Our findings suggest that a potential strategy in the development of therapy for inflammation-associated degenerative neurological diseases involves targeting the regulation of mitochondrial ROS in microglial cells.

  9. MET2 affects production of hydrogen sulfide during wine fermentation.

    PubMed

    Huang, Chien; Roncoroni, Miguel; Gardner, Richard C

    2014-08-01

    The production of hydrogen sulfide (H2S) during yeast fermentation contributes negatively to wine aroma. We have mapped naturally occurring mutations in commercial wine strains that affect production of H2S. A dominant R310G mutant allele of MET2, which encodes homoserine O-acetyltransferase, is present in several wine yeast strains as well as in the main lab strain S288c. Reciprocal hemizygosity and allele swap experiments demonstrated that the MET2 R310G allele confers reduced H2S production. Mutations were also identified in genes encoding the two subunits of sulfite reductase, MET5 and MET10, which were associated with reduced H2S production. The most severe of these, an allele of MET10, showed five additional phenotypes: reduced growth rate on sulfate, elevated secretion of sulfite, and reduced production in wine of three volatile sulfur compounds: methionol, carbon disulfide and methylthioacetate. Alleles of MET5 and MET10, but not MET2, affected H2S production measured by colour assays on BiGGY indicator agar, but MET2 effects were seen when bismuth was added to agar plates made with Sauvignon blanc grape juice. Collectively, the data are consistent with the hypothesis that H2S production during wine fermentation results predominantly from enzyme activity in the sulfur assimilation pathway. Lower H2S production results from mutations that reduce the activity of sulfite reductase, the enzyme that produces H2S, or that increase the activity of L-homoserine-O-acetyltransferase, which produces substrate for the next step in the sulfur assimilation pathway.

  10. The effect of electrochemically simulated titanium cathodic corrosion products on ROS production and metabolic activity of osteoblasts and monocytes/macrophages.

    PubMed

    Kalbacova, Marie; Roessler, Sophie; Hempel, Ute; Tsaryk, Roman; Peters, Kirsten; Scharnweber, Dieter; Kirkpatrick, James C; Dieter, Peter

    2007-08-01

    Nowadays aseptic loosening is the most common cause of orthopaedic implant failure. Some of its reasons have already been described up to now; however, others remain still hypothetical. Besides the inflammatory response to wear particles originating at different sources, the role of reactive oxygen species as products of cellular reactions and/or as a result of the process of corrosion of an implant leading to implant failure has recently been discussed too. In the present study, we used a galvanostatic polarization to simulate the cathodic partial reaction of the corrosion process at a titanium alloy surface. With respect to cells occurring at the interface of a metal implant, the behaviour of osteoblasts and monocytes/macrophages was investigated. It has been found that cathodic polarization of Ti6Al4V induces an increase in the level of intracellular reactive oxygen species as well as suppressing the metabolic activity of cells in a dose-dependent manner. This is in agreement with the results obtained with cells after external addition of hydrogen peroxide as another kind of oxidative stress. In both approaches, monocytes/macrophages show a higher tolerance to oxidative stress than osteoblasts. It could be concluded that the electrochemical setup developed induced intracellular changes occurring during oxidative stress and it could be used for future detailed analysis of the consequences of corrosion processes for cellular reactions.

  11. AGE, RAGE, and ROS in diabetic nephropathy.

    PubMed

    Tan, Adeline L Y; Forbes, Josephine M; Cooper, Mark E

    2007-03-01

    Diabetic nephropathy is a major cause of morbidity and mortality in diabetic patients. Two key mechanisms implicated in the development of diabetic nephropathy include advanced glycation and oxidative stress. Advanced glycation is the irreversible attachment of reducing sugars onto amino groups of proteins to form advanced glycation end products (AGEs). AGE modification of proteins may lead to alterations in normal function by inducing cross-linking of extracellular matrices. Intracellular formation of AGEs also can cause generalized cellular dysfunction. Furthermore, AGEs can mediate their effects via specific receptors, such as the receptor for AGE (RAGE), activating diverse signal transduction cascades and downstream pathways, including generation of reactive oxygen species (ROS). Oxidative stress occurs as a result of the imbalance between ROS production and antioxidant defenses. Sources of ROS include the mitochondria, auto-oxidation of glucose, and enzymatic pathways including nicotinamide adenine dinucleotide phosphate reduced (NAD[P]H) oxidase. Beyond the current treatments to treat diabetic complications such as the optimization of blood pressure and glycemic control, it is predicted that new therapies designed to target AGEs, including AGE formation inhibitors and cross-link breakers, as well as targeting ROS using novel highly specific antioxidants, will become part of the treatment regimen for diabetic renal disease.

  12. Dehydroepiandrosterone ameliorates H2O2-induced Leydig cells oxidation damage and apoptosis through inhibition of ROS production and activation of PI3K/Akt pathways.

    PubMed

    Ding, Xiao; Wang, Dian; Li, Longlong; Ma, Haitian

    2016-01-01

    Dehydroepiandrosterone (DHEA) is widely used as a nutritional supplement, and administration of DHEA produces a number of beneficial effects in the elderly. Many researchers have suggested that DHEA exerts it function after conversion into more biologically active hormones in peripheral target cells. The actions of DHEA in Leydig cells, a major target cell of DHEA biotransformation in males, are not clear. The present study found that DHEA increased cell viability and decreased reactive oxygen species (ROS) and malondialdehyde contents in H2O2-induced Leydig cells. DHEA significantly increased the activities of superoxide dismutase, catalase and peroxidase, and decreased the DNA damage in H2O2-induced Leydig cells. Apoptosis was significant decreased in H2O2-induced Leydig cells after DHEA treatment. DHEA inhibited the loss of mitochondrial membrane potential (ΔΨm) and the upregulation of the caspase-3 protein level induced by H2O2 in Leydig cells. DHEA also reversed the decrease in PI3K and p-Akt protein levels induced by H2O2. These data showed that DHEA could ameliorate H2O2-induced oxidative damage by increasing anti-oxidative enzyme activities, which resulted in reduced ROS content, and decreased apoptosis, mainly by preventing the loss of ΔΨm and inhibiting caspase-3 protein levels via activation of PI3K/Akt signaling pathways. These results increase our understanding of the molecular mechanism of the anti-ageing effect of DHEA.

  13. Parameters Affecting Ethyl Ester Production by Saccharomyces cerevisiae during Fermentation▿

    PubMed Central

    Saerens, S. M. G.; Delvaux, F.; Verstrepen, K. J.; Van Dijck, P.; Thevelein, J. M.; Delvaux, F. R.

    2008-01-01

    Volatile esters are responsible for the fruity character of fermented beverages and thus constitute a vital group of aromatic compounds in beer and wine. Many fermentation parameters are known to affect volatile ester production. In order to obtain insight into the production of ethyl esters during fermentation, we investigated the influence of several fermentation variables. A higher level of unsaturated fatty acids in the fermentation medium resulted in a general decrease in ethyl ester production. On the other hand, a higher fermentation temperature resulted in greater ethyl octanoate and decanoate production, while a higher carbon or nitrogen content of the fermentation medium resulted in only moderate changes in ethyl ester production. Analysis of the expression of the ethyl ester biosynthesis genes EEB1 and EHT1 after addition of medium-chain fatty acid precursors suggested that the expression level is not the limiting factor for ethyl ester production, as opposed to acetate ester production. Together with the previous demonstration that provision of medium-chain fatty acids, which are the substrates for ethyl ester formation, to the fermentation medium causes a strong increase in the formation of the corresponding ethyl esters, this result further supports the hypothesis that precursor availability has an important role in ethyl ester production. We concluded that, at least in our fermentation conditions and with our yeast strain, the fatty acid precursor level rather than the activity of the biosynthetic enzymes is the major limiting factor for ethyl ester production. The expression level and activity of the fatty acid biosynthetic enzymes therefore appear to be prime targets for flavor modification by alteration of process parameters or through strain selection. PMID:17993562

  14. Factors affecting methane production and mitigation in ruminants.

    PubMed

    Shibata, Masaki; Terada, Fuminori

    2010-02-01

    Methane (CH(4)) is the second most important greenhouse gas (GHG) and that emitted from enteric fermentation in livestock is the single largest source of emissions in Japan. Many factors influence ruminant CH(4) production, including level of intake, type and quality of feeds and environmental temperature. The objectives of this review are to identify the factors affecting CH(4) production in ruminants, to examine technologies for the mitigation of CH(4) emissions from ruminants, and to identify areas requiring further research. The following equation for CH(4) prediction was formulated using only dry matter intake (DMI) and has been adopted in Japan to estimate emissions from ruminant livestock for the National GHG Inventory Report: Y = -17.766 + 42.793X - 0.849X(2), where Y is CH(4) production (L/day) and X is DMI (kg/day). Technologies for the mitigation of CH(4) emissions from ruminants include increasing productivity by improving nutritional management, the manipulation of ruminal fermentation by changing feed composition, the addition of CH(4) inhibitors, and defaunation. Considering the importance of ruminant livestock, it is essential to establish economically feasible ways of reducing ruminant CH(4) production while improving productivity; it is therefore critical to conduct a full system analysis to select the best combination of approaches or new technologies to be applied under long-term field conditions.

  15. Genetic disorders coupled to ROS deficiency

    PubMed Central

    O’Neill, Sharon; Brault, Julie; Stasia, Marie-Jose; Knaus, Ulla G.

    2015-01-01

    Maintaining the redox balance between generation and elimination of reactive oxygen species (ROS) is critical for health. Disturbances such as continuously elevated ROS levels will result in oxidative stress and development of disease, but likewise, insufficient ROS production will be detrimental to health. Reduced or even complete loss of ROS generation originates mainly from inactivating variants in genes encoding for NADPH oxidase complexes. In particular, deficiency in phagocyte Nox2 oxidase function due to genetic variants (CYBB, CYBA, NCF1, NCF2, NCF4) has been recognized as a direct cause of chronic granulomatous disease (CGD), an inherited immune disorder. More recently, additional diseases have been linked to functionally altered variants in genes encoding for other NADPH oxidases, such as for DUOX2/DUOXA2 in congenital hypothyroidism, or for the Nox2 complex, NOX1 and DUOX2 as risk factors for inflammatory bowel disease. A comprehensive overview of novel developments in terms of Nox/Duox-deficiency disorders is presented, combined with insights gained from structure–function studies that will aid in predicting functional defects of clinical variants. PMID:26210446

  16. Rhizobium leguminosarum bv. trifolii rosR is required for interaction with clover, biofilm formation and adaptation to the environment

    PubMed Central

    2010-01-01

    Background Rhizobium leguminosarum bv. trifolii is a symbiotic nitrogen-fixing bacterium that elicits nodules on roots of host plants Trifolium spp. Bacterial surface polysaccharides are crucial for establishment of a successful symbiosis with legumes that form indeterminate-type nodules, such as Trifolium, Pisum, Vicia, and Medicago spp. and aid the bacterium in withstanding osmotic and other environmental stresses. Recently, the R. leguminosarum bv. trifolii RosR regulatory protein which controls exopolysaccharide production has been identified and characterized. Results In this work, we extend our earlier studies to the characterization of rosR mutants which exhibit pleiotropic phenotypes. The mutants produce three times less exopolysaccharide than the wild type, and the low-molecular-weight fraction in that polymer is greatly reduced. Mutation in rosR also results in quantitative alterations in the polysaccharide constituent of lipopolysaccharide. The rosR mutants are more sensitive to surface-active detergents, antibiotics of the beta-lactam group and some osmolytes, indicating changes in the bacterial membranes. In addition, the rosR mutants exhibit significant decrease in motility and form a biofilm on plastic surfaces, which differs significantly in depth, architecture, and bacterial viability from that of the wild type. The most striking effect of rosR mutation is the considerably decreased attachment and colonization of root hairs, indicating that the mutation affects the first stage of the invasion process. Infection threads initiate at a drastically reduced rate and frequently abort before they reach the base of root hairs. Although these mutants form nodules on clover, they are unable to fix nitrogen and are outcompeted by the wild type in mixed inoculations, demonstrating that functional rosR is important for competitive nodulation. Conclusions This report demonstrates the significant role RosR regulatory protein plays in bacterial stress adaptation

  17. Palmitic acid induces interleukin-1β secretion via NLRP3 inflammasomes and inflammatory responses through ROS production in human placental cells.

    PubMed

    Shirasuna, Koumei; Takano, Hiroki; Seno, Kotomi; Ohtsu, Ayaka; Karasawa, Tadayoshi; Takahashi, Masafumi; Ohkuchi, Akihide; Suzuki, Hirotada; Matsubara, Shigeki; Iwata, Hisataka; Kuwayama, Takehito

    2016-08-01

    Maternal obesity, a major risk factor for adverse pregnancy complications, results in inflammatory cytokine release in the placenta. Levels of free fatty acids are elevated in the plasma of obese human. These fatty acids include obesity-related palmitic acids, which is a major saturated fatty acid, that promotes inflammatory responses. Increasing evidence indicates that nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasomes mediate inflammatory responses induced by endogenous danger signals. We hypothesized that inflammatory responses associated with gestational obesity cause inflammation. To test this hypothesis, we investigated the effect of palmitic acid on the activation of NLRP3 inflammasomes and inflammatory responses in a human Sw.71 trophoblast cell line. Palmitic acid stimulated caspase-1 activation and markedly increased interleukin (IL)-1β secretion in Sw.71 cells. Treatment with a caspase-1 inhibitor diminished palmitic acid-induced IL-1β release. In addition, NLRP3 and caspase-1 genome editing using a CRISPR/Cas9 system in Sw.71 cells suppressed IL-1β secretion, which was stimulated by palmitic acid. Moreover, palmitic acid stimulated caspase-3 activation and inflammatory cytokine secretion (e.g., IL-6 and IL-8). Palmitic acid-induced cytokine secretion were dependent on caspase-3 activation. In addition, palmitic acid-induced IL-1β, IL-6, and IL-8 secretion was depended on reactive oxygen species (ROS) generation. In conclusion, palmitic acid caused activation of NLRP3 inflammasomes and inflammatory responses, inducing IL-1β, IL-6, and IL-8 secretion, which is associated with ROS generation, in human Sw.71 placental cells. We suggest that obesity-related palmitic acid induces placental inflammation, resulting in association with pregnancy complications.

  18. Chemoreception in the context of the general biology of ROS.

    PubMed

    Gonzalez, C; Agapito, M T; Rocher, A; Gonzalez-Martin, M C; Vega-Agapito, V; Gomez-Niño, A; Rigual, R; Castañeda, J; Obeso, A

    2007-07-01

    Superoxide anion is the most important reactive oxygen species (ROS) primarily generated in cells. The main cellular constituents with capabilities to generate superoxide anion are NADPH oxidases and mitochondrial respiratory chain. The emphasis of our article is centered in critically examining hypotheses proposing that ROS generated by NADPH oxidase and mitochondria are key elements in O(2)-sensing and hypoxic responses generation in carotid body chemoreceptor cells. Available data indicate that chemoreceptor cells express a specific isoform of NADPH oxidase that is activated by hypoxia; generated ROS acting as negative modulators of the carotid body (CB) hypoxic responses. Literature is also consistent in supporting that poisoned respiratory chain can produce high amounts of ROS, making mitochondrial ROS potential triggers-modulators of the CB activation elicited by mitochondrial venoms. However, most data favour the notion that levels of hypoxia, capable of strongly activating chemoreceptor cells, would not increase the rate of ROS production in mitochondria, making mitochondrial ROS unlikely triggers of hypoxic responses in the CB. Finally, we review recent literature on heme oxygenases from two perspectives, as potential O(2)-sensors in chemoreceptor cells and as generators of bilirubin which is considered to be a ROS scavenger of major quantitative importance in mammalian cells.

  19. Bicarbonate Modulates Photoreceptor Guanylate Cyclase (ROS-GC) Catalytic Activity.

    PubMed

    Duda, Teresa; Wen, Xiao-Hong; Isayama, Tomoki; Sharma, Rameshwar K; Makino, Clint L

    2015-04-24

    By generating the second messenger cGMP in retinal rods and cones, ROS-GC plays a central role in visual transduction. Guanylate cyclase-activating proteins (GCAPs) link cGMP synthesis to the light-induced fall in [Ca(2+)]i to help set absolute sensitivity and assure prompt recovery of the response to light. The present report discloses a surprising feature of this system: ROS-GC is a sensor of bicarbonate. Recombinant ROS-GCs synthesized cGMP from GTP at faster rates in the presence of bicarbonate with an ED50 of 27 mM for ROS-GC1 and 39 mM for ROS-GC2. The effect required neither Ca(2+) nor use of the GCAPs domains; however, stimulation of ROS-GC1 was more powerful in the presence of GCAP1 or GCAP2 at low [Ca(2+)]. When applied to retinal photoreceptors, bicarbonate enhanced the circulating current, decreased sensitivity to flashes, and accelerated flash response kinetics. Bicarbonate was effective when applied either to the outer or inner segment of red-sensitive cones. In contrast, bicarbonate exerted an effect when applied to the inner segment of rods but had little efficacy when applied to the outer segment. The findings define a new regulatory mechanism of the ROS-GC system that affects visual transduction and is likely to affect the course of retinal diseases caused by cGMP toxicity.

  20. Bicarbonate Modulates Photoreceptor Guanylate Cyclase (ROS-GC) Catalytic Activity*

    PubMed Central

    Duda, Teresa; Wen, Xiao-Hong; Isayama, Tomoki; Sharma, Rameshwar K.; Makino, Clint L.

    2015-01-01

    By generating the second messenger cGMP in retinal rods and cones, ROS-GC plays a central role in visual transduction. Guanylate cyclase-activating proteins (GCAPs) link cGMP synthesis to the light-induced fall in [Ca2+]i to help set absolute sensitivity and assure prompt recovery of the response to light. The present report discloses a surprising feature of this system: ROS-GC is a sensor of bicarbonate. Recombinant ROS-GCs synthesized cGMP from GTP at faster rates in the presence of bicarbonate with an ED50 of 27 mm for ROS-GC1 and 39 mm for ROS-GC2. The effect required neither Ca2+ nor use of the GCAPs domains; however, stimulation of ROS-GC1 was more powerful in the presence of GCAP1 or GCAP2 at low [Ca2+]. When applied to retinal photoreceptors, bicarbonate enhanced the circulating current, decreased sensitivity to flashes, and accelerated flash response kinetics. Bicarbonate was effective when applied either to the outer or inner segment of red-sensitive cones. In contrast, bicarbonate exerted an effect when applied to the inner segment of rods but had little efficacy when applied to the outer segment. The findings define a new regulatory mechanism of the ROS-GC system that affects visual transduction and is likely to affect the course of retinal diseases caused by cGMP toxicity. PMID:25767116

  1. ROS sets the stage for macrophage differentiation.

    PubMed

    Covarrubias, Anthony; Byles, Vanessa; Horng, Tiffany

    2013-08-01

    While M1 macrophages are highly pro-inflammatory and microbicidal, M2 macrophages and the related tumor associated macrophages (TAMs) regulate tissue remodeling and angiogenesis and can display immunomodulatory activity. In July issue of Cell Research, Zhang et al. show that ROS production, critical for the activation and functions of M1 macrophages, is necessary for the differentiation of M2 macrophages and TAMs, and that antioxidant therapy blocks TAM differentiation and tumorigenesis in mouse models of cancer.

  2. Enhanced dynamic instability of microtubules in a ROS free inert environment.

    PubMed

    Islam, Md Sirajul; Kabir, Arif Md Rashedul; Inoue, Daisuke; Sada, Kazuki; Kakugo, Akira

    2016-04-01

    Reactive oxygen species (ROS), one of the regulators in various biological processes, have recently been suspected to modulate microtubule (MT) dynamics in cells. However due to complicated cellular environment and unavailability of any in vitro investigation, no detail is understood yet. Here, by performing simple in vitro investigations, we have unveiled the effect of ROS on MT dynamics. By studying dynamic instability of MTs in a ROS free environment and comparing with that in the presence of ROS, we disclosed that MTs showed enhanced dynamics in the ROS free environment. All the parameters that define dynamic instability of MTs e.g., growth and shrinkage rates, rescue and catastrophe frequencies were significantly affected by the presence of ROS. This work clearly reveals the role of ROS in modulating MT dynamics in vitro, and would be a great help in understanding the role of ROS in regulation of MT dynamics in cells.

  3. Factors affecting the estimate of primary production from space

    NASA Technical Reports Server (NTRS)

    Balch, W. M.; Byrne, C. F.

    1994-01-01

    Remote sensing of primary production in the euphotic zone has been based mostly on visible-band and water-leaving radiance measured with the coastal zone color scanner. There are some robust, simple relationships for calculating integral production based on surface measurements, but they also require knowledge for photoadaptive parameters such as maximum photosynthesis which currently cannot be obtained from spave. A 17,000-station data set is used to show that space-based estimates of maximum photosynthesis could improve predictions of psi, the water column light utiliztion index, which is an important term in many primary productivity models. Temperature is also examined as a factor for predicting hydrographic structure and primary production. A simple model is used to relate temperature and maximum photosynthesis; the model incorporates (1) the positive relationship between maximum photosynthesis and temperature and (2) the strongly negative relationship between temperature and nitrate in the ocean (which directly affects maximum growth rates via nitrogen limitation). Since these two factors relate to carbon and nitrogen, 'balanced carbon/nitrogen assimilation' was calculated using the Redfield ratio, It is expected that the relationship between maximum balanced carbon assimilation versus temperature is concave-down, with the peak dependent on nitrate uptake kinetics, temperature-nitrate relationships,a nd the carbon chlorophyll ration. These predictions were compared with the sea truth data. The minimum turnover time for nitrate was also calculated using this approach. Lastly, sea surface temperature gradients were used to predict the slope of isotherms (a proxy for the slope of isopycnals in many waters). Sea truth data show that at size scales of several hundred kilometers, surface temperature gradients can provide information on the slope of isotherms in the top 200 m of the water column. This is directly relevant to the supply of nutrients into the surface

  4. Key Role of ROS in the Process of 15-Lipoxygenase/15-Hydroxyeicosatetraenoiccid-Induced Pulmonary Vascular Remodeling in Hypoxia Pulmonary Hypertension

    PubMed Central

    Qiu, Yanli; Liu, Gaofeng; Sheng, Tingting; Yu, Xiufeng; Wang, Shuang; Zhu, Daling

    2016-01-01

    We previously reported that 15-lipoxygenase (15-LO) and its metabolite 15-hydroxyeicosatetraenoic acid (15-HETE) were up-regulated in pulmonary arterial cells from both pulmonary artery hypertension patients and hypoxic rats and that these factors mediated the progression of pulmonary hypertension (PH) by affecting the proliferation and apoptosis of pulmonary arterial (PA) cells. However, the underlying mechanisms of the remodeling induced by 15-HETE have remained unclear. As reactive oxygen species (ROS) and 15-LO are both induced by hypoxia, it is possible that ROS are involved in the events of hypoxia-induced 15-LO expression that lead to PH. We employed immunohistochemistry, tube formation assays, bromodeoxyuridine (BrdU) incorporation assays, and cell cycle analyses to explore the role of ROS in the process of 15-HETE-mediated hypoxic pulmonary hypertension (HPH). We found that exogenous 15-HETE facilitated the generation of ROS and that this effect was mainly localized to mitochondria. In particular, the mitochondrial electron transport chain and nicotinamide-adenine dinucleotide phosphate oxidase 4 (Nox4) were responsible for the significant 15-HETE-stimulated increase in ROS production. Moreover, ROS induced by 15-HETE stimulated endothelial cell (EC) migration and promoted pulmonary artery smooth muscle cell (PASMC) proliferation under hypoxia via the p38 MAPK pathway. These results indicated that 15-HETE-regulated ROS mediated hypoxia-induced pulmonary vascular remodeling (PVR) via the p38 MAPK pathway. PMID:26871724

  5. Key Role of ROS in the Process of 15-Lipoxygenase/15-Hydroxyeicosatetraenoiccid-Induced Pulmonary Vascular Remodeling in Hypoxia Pulmonary Hypertension.

    PubMed

    Li, Qian; Mao, Min; Qiu, Yanli; Liu, Gaofeng; Sheng, Tingting; Yu, Xiufeng; Wang, Shuang; Zhu, Daling

    2016-01-01

    We previously reported that 15-lipoxygenase (15-LO) and its metabolite 15-hydroxyeicosatetraenoic acid (15-HETE) were up-regulated in pulmonary arterial cells from both pulmonary artery hypertension patients and hypoxic rats and that these factors mediated the progression of pulmonary hypertension (PH) by affecting the proliferation and apoptosis of pulmonary arterial (PA) cells. However, the underlying mechanisms of the remodeling induced by 15-HETE have remained unclear. As reactive oxygen species (ROS) and 15-LO are both induced by hypoxia, it is possible that ROS are involved in the events of hypoxia-induced 15-LO expression that lead to PH. We employed immunohistochemistry, tube formation assays, bromodeoxyuridine (BrdU) incorporation assays, and cell cycle analyses to explore the role of ROS in the process of 15-HETE-mediated hypoxic pulmonary hypertension (HPH). We found that exogenous 15-HETE facilitated the generation of ROS and that this effect was mainly localized to mitochondria. In particular, the mitochondrial electron transport chain and nicotinamide-adenine dinucleotide phosphate oxidase 4 (Nox4) were responsible for the significant 15-HETE-stimulated increase in ROS production. Moreover, ROS induced by 15-HETE stimulated endothelial cell (EC) migration and promoted pulmonary artery smooth muscle cell (PASMC) proliferation under hypoxia via the p38 MAPK pathway. These results indicated that 15-HETE-regulated ROS mediated hypoxia-induced pulmonary vascular remodeling (PVR) via the p38 MAPK pathway.

  6. Identification of ROS using oxidized DCFDA and flow-cytometry.

    PubMed

    Eruslanov, Evgeniy; Kusmartsev, Sergei

    2010-01-01

    Cells constantly generate reactive oxygen species (ROS) during aerobic metabolism. The ROS generation plays an important protective and functional role in the immune system. The cell is armed with a powerful antioxidant defense system to combat excessive production of ROS. Oxidative stress occurs in cells when the generation of ROS overwhelms the cells' natural antioxidant defenses. ROS and the oxidative damage are thought to play an important role in many human diseases including cancer, atherosclerosis, other neurodegenerative diseases and diabetes. Thus, establishing their precise role requires the ability to measure ROS accurately and the oxidative damage that they cause. There are many methods for measuring free radical production in cells. The most straightforward techniques use cell permeable fluorescent and chemiluminescent probes. 2'-7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) is one of the most widely used techniques for directly measuring the redox state of a cell. It has several advantages over other techniques developed. It is very easy to use, extremely sensitive to changes in the redox state of a cell, inexpensive and can be used to follow changes in ROS over time.

  7. High glucose upregulates BACE1-mediated Aβ production through ROS-dependent HIF-1α and LXRα/ABCA1-regulated lipid raft reorganization in SK-N-MC cells

    PubMed Central

    Lee, Hyun Jik; Ryu, Jung Min; Jung, Young Hyun; Lee, Sei-Jung; Kim, Jeong Yeon; Lee, Sang Hun; Hwang, In Koo; Seong, Je Kyung; Han, Ho Jae

    2016-01-01

    There is an accumulation of evidence indicating that the risk of Alzheimer’s disease is associated with diabetes mellitus, an indicator of high glucose concentrations in blood plasma. This study investigated the effect of high glucose on BACE1 expression and amyloidogenesis in vivo, and we present details of the mechanism associated with those effects. Our results, using ZLC and ZDF rat models, showed that ZDF rats have high levels of amyloid-beta (Aβ), phosphorylated tau, BACE1, and APP-C99. In vitro result with mouse hippocampal neuron and SK-N-MC, high glucose stimulated Aβ secretion and apoptosis in a dose-dependent manner. In addition, high glucose increased BACE1 and APP-C99 expressions, which were reversed by a reactive oxygen species (ROS) scavenger. Indeed, high glucose increased intracellular ROS levels and HIF-1α expression, associated with regulation of BACE1 and Liver X Receptor α (LXRα). In addition, high glucose induced ATP-binding cassette transporter A1 (ABCA1) down-regulation, was associated with LXR-induced lipid raft reorganization and BACE1 localization on the lipid raft. Furthermore, silencing of BACE1 expression was shown to regulate Aβ secretion and apoptosis of SK-N-MC. In conclusion, high glucose upregulates BACE1 expression and activity through HIF-1α and LXRα/ABCA1-regulated lipid raft reorganization, leading to Aβ production and apoptosis of SK-N-MC. PMID:27829662

  8. High glucose upregulates BACE1-mediated Aβ production through ROS-dependent HIF-1α and LXRα/ABCA1-regulated lipid raft reorganization in SK-N-MC cells.

    PubMed

    Lee, Hyun Jik; Ryu, Jung Min; Jung, Young Hyun; Lee, Sei-Jung; Kim, Jeong Yeon; Lee, Sang Hun; Hwang, In Koo; Seong, Je Kyung; Han, Ho Jae

    2016-11-10

    There is an accumulation of evidence indicating that the risk of Alzheimer's disease is associated with diabetes mellitus, an indicator of high glucose concentrations in blood plasma. This study investigated the effect of high glucose on BACE1 expression and amyloidogenesis in vivo, and we present details of the mechanism associated with those effects. Our results, using ZLC and ZDF rat models, showed that ZDF rats have high levels of amyloid-beta (Aβ), phosphorylated tau, BACE1, and APP-C99. In vitro result with mouse hippocampal neuron and SK-N-MC, high glucose stimulated Aβ secretion and apoptosis in a dose-dependent manner. In addition, high glucose increased BACE1 and APP-C99 expressions, which were reversed by a reactive oxygen species (ROS) scavenger. Indeed, high glucose increased intracellular ROS levels and HIF-1α expression, associated with regulation of BACE1 and Liver X Receptor α (LXRα). In addition, high glucose induced ATP-binding cassette transporter A1 (ABCA1) down-regulation, was associated with LXR-induced lipid raft reorganization and BACE1 localization on the lipid raft. Furthermore, silencing of BACE1 expression was shown to regulate Aβ secretion and apoptosis of SK-N-MC. In conclusion, high glucose upregulates BACE1 expression and activity through HIF-1α and LXRα/ABCA1-regulated lipid raft reorganization, leading to Aβ production and apoptosis of SK-N-MC.

  9. In vivo ROS and redox potential fluorescent detection in plants: Present approaches and future perspectives.

    PubMed

    Ortega-Villasante, Cristina; Burén, Stefan; Barón-Sola, Ángel; Martínez, Flor; Hernández, Luis E

    2016-10-15

    Reactive oxygen species (ROS) are metabolic by-products in aerobic organisms including plants. Endogenously produced ROS act as cellular messengers and redox regulators involved in several plant biological processes, but excessive accumulation of ROS cause oxidative stress and cell damage. Understanding ROS signalling and stress responses requires precise imaging and quantification of local, subcellular and global ROS dynamics with high selectivity, sensitivity, and spatiotemporal resolution. Several fluorescent vital dyes have been tested so far, which helped to provide relevant spatially resolved information of oxidative stress dynamics in plants subjected to harmful environmental conditions. However, certain plant characteristics, such as high background fluorescence of plant tissues in vivo and antioxidant mechanisms, can interfere with ROS detection. The development of improved small-molecule fluorescent dyes and protein-based ROS sensors targeted to subcellular compartments will enable in vivo monitoring of ROS and redox changes in photosynthetic organisms.

  10. Does word frequency affect lexical selection in speech production?

    PubMed

    Navarrete, Eduardo; Basagni, Benedetta; Alario, F-Xavier; Costa, Albert

    2006-10-01

    We evaluated whether lexical selection in speech production is affected by word frequency by means of two experiments. In Experiment 1 participants named pictures using utterances with the structure "pronoun + verb + adjective". In Experiment 2 participants had to perform a gender decision task on the same pictures. Access to the noun's grammatical gender is needed in both tasks, and therefore lexical selection (lemma retrieval) is required. However, retrieval of the phonological properties (lexeme retrieval) of the referent noun is not needed to perform the tasks. In both experiments we observed faster latencies for high-frequency pictures than for low-frequency pictures. This frequency effect was stable over four repetitions of the stimuli. Our results suggest that lexical selection (lemma retrieval) is sensitive to word frequency. This interpretation runs against the hypothesis that a word's frequency exerts its effects only at the level at which the phonological properties of words are retrieved.

  11. Modulation of ROS levels in fibroblasts by altering mitochondria regulates the process of wound healing.

    PubMed

    Janda, Jaroslav; Nfonsam, Valentine; Calienes, Fernanda; Sligh, James E; Jandova, Jana

    2016-05-01

    Mitochondria are the major source of reactive oxygen species (ROS) in fibroblasts which are thought to be crucial regulators of wound healing with a potential to affect the expression of nuclear genes involved in this process. ROS generated by mitochondria are involved in all stages of tissue repair process but the regulation of ROS-generating system in fibroblasts still remains poorly understood. The purpose of this study was to better understand molecular mechanisms of how the regulation of ROS levels generated by mitochondria may influence the process of wound repair. Cybrid model system of mtDNA variations was used to study the functional consequences of altered ROS levels on wound healing responses in a uniform nuclear background of cultured ρ(0) fibroblasts. Mitochondrial ROS in cybrids were modulated by antioxidants that quench ROS to examine their ability to close the wound. Real-time PCR arrays were used to investigate whether ROS generated by specific mtDNA variants have the ability to alter expression of some key nuclear-encoded genes central to the wound healing response and oxidative stress. Our data suggest levels of mitochondrial ROS affect expression of some nuclear encoded genes central to wound healing response and oxidative stress and modulation of mitochondrial ROS by antioxidants positively affects in vitro process of wound closure. Thus, regulation of mitochondrial ROS-generating system in fibroblasts can be used as effective natural redox-based strategy to help treat non-healing wounds.

  12. Fibulin-5 blocks microenvironmental ROS in pancreatic cancer

    PubMed Central

    Wang, Miao; Topalovski, Mary; Toombs, Jason E.; Wright, Christopher M.; Moore, Zachary R.; Boothman, David A.; Yanagisawa, Hiromi; Wang, Huamin; Witkiewicz, Agnieszka; Castrillon, Diego H.; Brekken, Rolf A.

    2015-01-01

    Elevated oxidative stress is an aberration seen in many solid tumors, and exploiting this biochemical difference has the potential to enhance the efficacy of anti-cancer agents. Homeostasis of reactive oxygen species (ROS) is important for normal cell function, but excessive production of ROS can result in cellular toxicity and therefore ROS levels must be balanced finely. Here, we highlight the relationship between the extracellular matrix and ROS production by reporting a novel function of the matricellular protein Fibulin-5 (Fbln5). We employed genetically engineered mouse models of pancreatic ductal adenocarcinoma (PDA) and found that mutation of the integrin-binding domain of Fbln5 led to decreased tumor growth, increased survival, and enhanced chemoresponse to standard PDA therapies. Through mechanistic investigations, we found that improved survival was due to increased levels of oxidative stress in Fbln5 mutant tumors. Furthermore, loss of the Fbln5-integrin interaction augmented fibronectin signaling, driving integrin-induced ROS production in a 5-lipooxygenase-dependent manner. These data indicate that Fbln5 promotes PDA progression by functioning as a molecular rheostat that modulates cell-ECM interactions to reduce ROS production and thus tip the balance in favor of tumor cell survival and treatment-refractory disease. PMID:26577699

  13. Phytohormones Signaling Pathways and ROS Involvement in Seed Germination

    PubMed Central

    Oracz, Krystyna; Karpiński, Stanisław

    2016-01-01

    Phytohormones and reactive oxygen species (ROS) are major determinants of the regulation of development and stress responses in plants. During life cycle of these organisms, signaling networks of plant growth regulators and ROS interact in order to render an appropriate developmental and environmental response. In plant’s photosynthetic (e.g., leaves) and non-photosynthetic (e.g., seeds) tissues, enhanced and suboptimal ROS production is usually associated with stress, which in extreme cases can be lethal to cells, a whole organ or even an organism. However, controlled production of ROS is appreciated for cellular signaling. Despite the current progress that has been made in plant biology and increasing number of findings that have revealed roles of ROS and hormonal signaling in germination, some questions still arise, e.g., what are the downstream protein targets modified by ROS enabling stimulus-specific cellular responses of the seed? Or which molecular regulators allow ROS/phytohormones interactions and what is their function in seed life? In this particular review the role of some transcription factors, kinases and phosphatases is discussed, especially those which usually known to be involved in ROS and hormonal signal transduction under stress in plants, may also play a role in the regulation of processes occurring in seeds. The summarized recent findings regarding particular ROS- and phytohormones-related regulatory proteins, as well as their integration, allowed to propose a novel, possible model of action of LESION SIMULATING DISEASE 1, ENHANCED DISEASE SUSCEPTIBILITY 1, and PHYTOALEXIN DEFICIENT 4 functioning during seeds life. PMID:27379144

  14. Initial pH of medium affects organic acids production but do not affect phosphate solubilization

    PubMed Central

    Marra, Leandro M.; de Oliveira-Longatti, Silvia M.; Soares, Cláudio R.F.S.; de Lima, José M.; Olivares, Fabio L.; Moreira, Fatima M.S.

    2015-01-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization. PMID:26273251

  15. Differential immunotoxic effects of ethanol on murine EL-4 lymphoma and normal lymphocytes is mediated through increased ROS production and activation of p38MAPK.

    PubMed

    Premachandran, Sudha; Khan, Nazir M; Thakur, Vikas S; Shukla, Jyoti; Poduval, T B

    2012-08-01

    Ethanol has been used to achieve thymic depletion in myasthenia gravis patients. Ethanol (95%) has also been used widely in the therapy of many tumors including hepatocellular carcinoma. In light of these findings, we delineated the differential immunotoxic behavior and mechanism of lower concentration of ethanol towards murine EL-4 lymphoma and its normal counterpart lymphocytes. EL-4 lymphoma and normal lymphocytes were cultured with ethanol (0%-5%) for 6 h and cytotoxicity was measured by various methods. EL-4 cells treated with ethanol showed concentration-dependent loss of viability at 2%-5% ethanol concentration and exhibit proliferative arrest at preG1 stage. Acridine-orange and ethidium-bromide staining indicated that ethanol induced death in EL-4 cells, by induction of both apoptosis and necrosis which was further supported by findings of DNA-fragmentation and trypan blue dye exclusion test. However, treatment of lymphocytes with similar concentration of ethanol did not show any death-associated parameters. Furthermore, ethanol induced significantly higher ROS generation in EL-4 cells as compared to lymphocytes and caused PARP cleavage and activation of apoptotic proteins like p53 and Bax, in EL-4 cells and not in normal lymphocytes. In addition, ethanol exposure to EL-4 cells led to phosphorylation of p38MAPK, and upregulation of death receptor Fas (CD95). Taken together, these results suggest that ethanol upto a concentration of 5% caused no significant immunotoxicity towards normal lymphocytes and induced cell death in EL-4 cells via phosphorylation of p38MAPK and regulation of p53 leading to further activation of both extrinsic (Fas) and intrinsic (Bax) apoptotic markers.

  16. Hitting the Bull’s-Eye in Metastatic Cancers—NSAIDs Elevate ROS in Mitochondria, Inducing Malignant Cell Death

    PubMed Central

    Ralph, Stephen John; Pritchard, Rhys; Rodríguez-Enríquez, Sara; Moreno-Sánchez, Rafael; Ralph, Raymond Keith

    2015-01-01

    Tumor metastases that impede the function of vital organs are a major cause of cancer related mortality. Mitochondrial oxidative stress induced by hypoxia, low nutrient levels, or other stresses, such as genotoxic events, act as key drivers of the malignant changes in primary tumors to enhance their progression to metastasis. Emerging evidence now indicates that mitochondrial modifications and mutations resulting from oxidative stress, and leading to OxPhos stimulation and/or enhanced reactive oxygen species (ROS) production, are essential for promoting and sustaining the highly metastatic phenotype. Moreover, the modified mitochondria in emerging or existing metastatic cancer cells, by their irreversible differences, provide opportunities for selectively targeting their mitochondrial functions with a one-two punch. The first blow would block their anti-oxidative defense, followed by the knockout blow—promoting production of excess ROS, capitulating the terminal stage—activation of the mitochondrial permeability transition pore (mPTP), specifically killing metastatic cancer cells or their precursors. This review links a wide area of research relevant to cellular mechanisms that affect mitochondria activity as a major source of ROS production driving the pro-oxidative state in metastatic cancer cells. Each of the important aspects affecting mitochondrial function are discussed including: hypoxia, HIFs and PGC1 induced metabolic changes, increased ROS production to induce a more pro-oxidative state with reduced antioxidant defenses. It then focuses on how the mitochondria, as a major source of ROS in metastatic cancer cells driving the pro-oxidative state of malignancy enables targeting drugs affecting many of these altered processes and why the NSAIDs are an excellent example of mitochondria-targeted agents that provide a one-two knockout activating the mPTP and their efficacy as selective anticancer metastasis drugs. PMID:25688484

  17. Reactive Oxygen Species (ROS): Beneficial Companions of Plants’ Developmental Processes

    PubMed Central

    Singh, Rachana; Singh, Samiksha; Parihar, Parul; Mishra, Rohit K.; Tripathi, Durgesh K.; Singh, Vijay P.; Chauhan, Devendra K.; Prasad, Sheo M.

    2016-01-01

    Reactive oxygen species (ROS) are generated inevitably in the redox reactions of plants, including respiration and photosynthesis. In earlier studies, ROS were considered as toxic by-products of aerobic pathways of the metabolism. But in recent years, concept about ROS has changed because they also participate in developmental processes of plants by acting as signaling molecules. In plants, ROS regulate many developmental processes such as cell proliferation and differentiation, programmed cell death, seed germination, gravitropism, root hair growth and pollen tube development, senescence, etc. Despite much progress, a comprehensive update of advances in the understanding of the mechanisms evoked by ROS that mediate in cell proliferation and development are fragmentry and the matter of ROS perception and the signaling cascade remains open. Therefore, keeping in view the above facts, an attempt has been made in this article to summarize the recent findings regarding updates made in the regulatory action of ROS at various plant developmental stages, which are still not well-known. PMID:27729914

  18. Optimal ROS Signaling Is Critical for Nuclear Reprogramming.

    PubMed

    Zhou, Gang; Meng, Shu; Li, Yanhui; Ghebre, Yohannes T; Cooke, John P

    2016-05-03

    Efficient nuclear reprogramming of somatic cells to pluripotency requires activation of innate immunity. Because innate immune activation triggers reactive oxygen species (ROS) signaling, we sought to determine whether there was a role of ROS signaling in nuclear reprogramming. We examined ROS production during the reprogramming of doxycycline (dox)-inducible mouse embryonic fibroblasts (MEFs) carrying the Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc [OSKM]) into induced pluripotent stem cells (iPSCs). ROS generation was substantially increased with the onset of reprogramming. Depletion of ROS via antioxidants or Nox inhibitors substantially decreased reprogramming efficiency. Similarly, both knockdown and knockout of p22(phox)-a critical subunit of the Nox (1-4) complex-decreased reprogramming efficiency. However, excessive ROS generation using genetic and pharmacological approaches also impaired reprogramming. Overall, our data indicate that ROS signaling is activated early with nuclear reprogramming, and optimal levels of ROS signaling are essential to induce pluripotency.

  19. Methyl Jasmonate Regulates Podophyllotoxin Accumulation in Podophyllum hexandrum by Altering the ROS-Responsive Podophyllotoxin Pathway Gene Expression Additionally through the Down Regulation of Few Interfering miRNAs.

    PubMed

    Hazra, Saptarshi; Bhattacharyya, Dipto; Chattopadhyay, Sharmila

    2017-01-01

    Podophylloxin (ptox), primarily obtained from Podophyllum hexandrum, is the precursor for semi-synthetic anticancer drugs viz. etoposide, etopophos, and teniposide. Previous studies established that methyl jasmonate (MeJA) treated cell culture of P. hexandrum accumulate ptox significantly. However, the molecular mechanism of MeJA induced ptox accumulation is yet to be explored. Here, we demonstrate that MeJA induces reactive oxygen species (ROS) production, which stimulates ptox accumulation significantly and up regulates three ROS-responsive ptox biosynthetic genes, namely, PhCAD3, PhCAD4 (cinnamyl alcohol dehydrogenase), and NAC3 by increasing their mRNA stability. Classic uncoupler of oxidative phosphorylation, carbonylcyanide m-chlorophenylhydrazone, as well as H2O2 treatment induced the ROS generation and consequently, enhanced the ptox production. However, when the ROS was inhibited with NADPH oxidase inhibitor diphenylene iodonium and Superoxide dismutase inhibitor diethyldithio-carbamic acid, the ROS inhibiting agent, the ptox production was decreased significantly. We also noted that, MeJA up regulated other ptox biosynthetic pathway genes which are not affected by the MeJA induced ROS. Further, these ROS non-responsive genes were controlled by MeJA through the down regulation of five secondary metabolites biosynthesis specific miRNAs viz. miR172i, miR035, miR1438, miR2275, and miR8291. Finally, this study suggested two possible mechanisms through which MeJA modulates the ptox biosynthesis: primarily by increasing the mRNA stability of ROS-responsive genes and secondly, by the up regulation of ROS non-responsive genes through the down regulation of some ROS non-responsive miRNAs.

  20. Methyl Jasmonate Regulates Podophyllotoxin Accumulation in Podophyllum hexandrum by Altering the ROS-Responsive Podophyllotoxin Pathway Gene Expression Additionally through the Down Regulation of Few Interfering miRNAs

    PubMed Central

    Hazra, Saptarshi; Bhattacharyya, Dipto; Chattopadhyay, Sharmila

    2017-01-01

    Podophylloxin (ptox), primarily obtained from Podophyllum hexandrum, is the precursor for semi-synthetic anticancer drugs viz. etoposide, etopophos, and teniposide. Previous studies established that methyl jasmonate (MeJA) treated cell culture of P. hexandrum accumulate ptox significantly. However, the molecular mechanism of MeJA induced ptox accumulation is yet to be explored. Here, we demonstrate that MeJA induces reactive oxygen species (ROS) production, which stimulates ptox accumulation significantly and up regulates three ROS-responsive ptox biosynthetic genes, namely, PhCAD3, PhCAD4 (cinnamyl alcohol dehydrogenase), and NAC3 by increasing their mRNA stability. Classic uncoupler of oxidative phosphorylation, carbonylcyanide m-chlorophenylhydrazone, as well as H2O2 treatment induced the ROS generation and consequently, enhanced the ptox production. However, when the ROS was inhibited with NADPH oxidase inhibitor diphenylene iodonium and Superoxide dismutase inhibitor diethyldithio-carbamic acid, the ROS inhibiting agent, the ptox production was decreased significantly. We also noted that, MeJA up regulated other ptox biosynthetic pathway genes which are not affected by the MeJA induced ROS. Further, these ROS non-responsive genes were controlled by MeJA through the down regulation of five secondary metabolites biosynthesis specific miRNAs viz. miR172i, miR035, miR1438, miR2275, and miR8291. Finally, this study suggested two possible mechanisms through which MeJA modulates the ptox biosynthesis: primarily by increasing the mRNA stability of ROS-responsive genes and secondly, by the up regulation of ROS non-responsive genes through the down regulation of some ROS non-responsive miRNAs. PMID:28261233

  1. Resveratrol inhibits TIGAR to promote ROS induced apoptosis and autophagy.

    PubMed

    Kumar, Bhupender; Iqbal, Mohammad Askandar; Singh, Rajnish Kumar; Bamezai, Rameshwar N K

    2015-11-01

    Resveratrol has been shown to exhibit its anti-cancer effect through a variety of mechanisms. Here, TIGAR (TP53-Induced Glycolysis and Apoptosis Regulator) was identified as an important target of resveratrol for exhibiting ROS-dependent-consequences on apoptosis and autophagy. Resveratrol treatment decreased TIGAR protein irrespective of cell line used. Down-regulated TIGAR protein triggered a drop in reduced-glutathione levels which resulted in sustained ROS, responsible for apoptosis and autophagy. Over-expression and silencing experiments demonstrated the importance of TIGAR in affecting the ROS-dependent anti-cancer effects of resveratrol. Resveratrol treated cells exhibited autophagy to escape apoptosis, however, chloroquine treatment along with resveratrol, blocked protective autophagy and facilitated apoptosis. Collectively, results unravel the effects of resveratrol on TIGAR in mediating its ROS dependent influence and suggest a better combination therapy of resveratrol and chloroquine for probable cancer treatment.

  2. A Reaction-Diffusion Model of ROS-Induced ROS Release in a Mitochondrial Network

    PubMed Central

    Zhou, Lufang; Aon, Miguel A.; Almas, Tabish; Cortassa, Sonia; Winslow, Raimond L.; O'Rourke, Brian

    2010-01-01

    Loss of mitochondrial function is a fundamental determinant of cell injury and death. In heart cells under metabolic stress, we have previously described how the abrupt collapse or oscillation of the mitochondrial energy state is synchronized across the mitochondrial network by local interactions dependent upon reactive oxygen species (ROS). Here, we develop a mathematical model of ROS-induced ROS release (RIRR) based on reaction-diffusion (RD-RIRR) in one- and two-dimensional mitochondrial networks. The nodes of the RD-RIRR network are comprised of models of individual mitochondria that include a mechanism of ROS-dependent oscillation based on the interplay between ROS production, transport, and scavenging; and incorporating the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and Ca2+ handling. Local mitochondrial interaction is mediated by superoxide (O2 .−) diffusion and the O2 .−-dependent activation of an inner membrane anion channel (IMAC). In a 2D network composed of 500 mitochondria, model simulations reveal ΔΨm depolarization waves similar to those observed when isolated guinea pig cardiomyocytes are subjected to a localized laser-flash or antioxidant depletion. The sensitivity of the propagation rate of the depolarization wave to O2.− diffusion, production, and scavenging in the reaction-diffusion model is similar to that observed experimentally. In addition, we present novel experimental evidence, obtained in permeabilized cardiomyocytes, confirming that ΔΨm depolarization is mediated specifically by O2 .−. The present work demonstrates that the observed emergent macroscopic properties of the mitochondrial network can be reproduced in a reaction-diffusion model of RIRR. Moreover, the findings have uncovered a novel aspect of the synchronization mechanism, which is that clusters of mitochondria that are oscillating can entrain mitochondria that would otherwise display stable dynamics. The work identifies the fundamental mechanisms

  3. New insights into an old story: pollen ROS also play a role in hay fever.

    PubMed

    Speranza, Anna; Scoccianti, Valeria

    2012-08-01

    Reactive oxygen species (ROS) can exhibit negative and benign traits. In plants, ROS levels increase markedly during periods of environmental stress, and defense against pathogen attack. ROS form naturally as a by-product of normal oxygen metabolism, and evenly play an essential role in cell growth. The short ROS lifespan makes them ideal molecules to act in cell signaling, a role they share in both plants and animals. A particular plant organism, the pollen grain, may closely interact with human mucosa and an allergic inflammatory response often results. Pollen grain ROS represent a first, crucial signal which primes and magnifies a cascade of events in the allergic response.

  4. DspA/E Contributes to Apoplastic Accumulation of ROS in Non-host A. thaliana.

    PubMed

    Launay, Alban; Patrit, Oriane; Wénès, Estelle; Fagard, Mathilde

    2016-01-01

    The bacterium Erwinia amylovora is responsible for the fire blight disease of Maleae, which provokes necrotic symptoms on aerial parts. The pathogenicity of this bacterium in hosts relies on its type three-secretion system (T3SS), a molecular syringe that allows the bacterium to inject effectors into the plant cell. E. amylovora-triggered disease in host plants is associated with the T3SS-dependent production of reactive oxygen species (ROS), although ROS are generally associated with resistance in other pathosystems. We showed previously that E. amylovora can multiply transiently in the non-host plant Arabidopsis thaliana and that a T3SS-dependent production of intracellular ROS occurs during this interaction. In the present work we characterize the localization and source of hydrogen peroxide accumulation following E. amylovora infection. Transmission electron microscope (TEM) analysis of infected tissues showed that hydrogen peroxide accumulation occurs in the cytosol, plastids, peroxisomes, and mitochondria as well as in the apoplast. Furthermore, TEM analysis showed that an E. amylovora dspA/E-deficient strain does not induce hydrogen peroxide accumulation in the apoplast. Consistently, a transgenic line expressing DspA/E accumulated ROS in the apoplast. The NADPH oxidase-deficient rbohD mutant showed a very strong reduction in hydrogen peroxide accumulation in response to E. amylovora inoculation. However, we did not find an increase in bacterial titers of E. amylovora in the rbohD mutant and the rbohD mutation did not suppress the toxicity of DspA/E when introgressed into a DspA/E-expressing transgenic line. Co-inoculation of E. amylovora with cycloheximide (CHX), which we found previously to suppress callose deposition and allow strong multiplication of E. amylovora in A. thaliana leaves, led to a strong reduction of apoplastic ROS accumulation but did not affect intracellular ROS. Our data strongly suggest that apoplastic ROS accumulation is one layer of

  5. DspA/E Contributes to Apoplastic Accumulation of ROS in Non-host A. thaliana

    PubMed Central

    Launay, Alban; Patrit, Oriane; Wénès, Estelle; Fagard, Mathilde

    2016-01-01

    The bacterium Erwinia amylovora is responsible for the fire blight disease of Maleae, which provokes necrotic symptoms on aerial parts. The pathogenicity of this bacterium in hosts relies on its type three-secretion system (T3SS), a molecular syringe that allows the bacterium to inject effectors into the plant cell. E. amylovora-triggered disease in host plants is associated with the T3SS-dependent production of reactive oxygen species (ROS), although ROS are generally associated with resistance in other pathosystems. We showed previously that E. amylovora can multiply transiently in the non-host plant Arabidopsis thaliana and that a T3SS-dependent production of intracellular ROS occurs during this interaction. In the present work we characterize the localization and source of hydrogen peroxide accumulation following E. amylovora infection. Transmission electron microscope (TEM) analysis of infected tissues showed that hydrogen peroxide accumulation occurs in the cytosol, plastids, peroxisomes, and mitochondria as well as in the apoplast. Furthermore, TEM analysis showed that an E. amylovora dspA/E-deficient strain does not induce hydrogen peroxide accumulation in the apoplast. Consistently, a transgenic line expressing DspA/E accumulated ROS in the apoplast. The NADPH oxidase-deficient rbohD mutant showed a very strong reduction in hydrogen peroxide accumulation in response to E. amylovora inoculation. However, we did not find an increase in bacterial titers of E. amylovora in the rbohD mutant and the rbohD mutation did not suppress the toxicity of DspA/E when introgressed into a DspA/E-expressing transgenic line. Co-inoculation of E. amylovora with cycloheximide (CHX), which we found previously to suppress callose deposition and allow strong multiplication of E. amylovora in A. thaliana leaves, led to a strong reduction of apoplastic ROS accumulation but did not affect intracellular ROS. Our data strongly suggest that apoplastic ROS accumulation is one layer of

  6. Analysis of Management Behavior Assessments and Affect on Productivity

    DTIC Science & Technology

    2005-06-10

    Analysis of Management Behavior 23 VARIABLES (Behavioral Attributes) Individual and Org. Behavior Individual and Org. Behavor - ILeader’ship...Independent Management Response Affect on Emnployee Beliefs of Management Behavor Manageent Affect Employee Beliefs Sum of Squares df Mean Square F* sig...IncepenteenlMnaemnt Respone Affect on Enployee Beliefs of vknagement Behavor Mamgent Affect FEmployee Beliefs Sum of Squares df Mean Square F* sig

  7. ROS and RNS in plant physiology: an overview.

    PubMed

    Del Río, Luis A

    2015-05-01

    The production of reactive oxygen species (ROS) is the unavoidable consequence of aerobic life. ROS is a collective term that includes both oxygen radicals, like superoxide (O 2. -) and hydroxyl (·OH) radicals, and other non-radicals such as hydrogen peroxide (H2O2), singlet oxygen ((1)O2 or (1)Δg), etc. In plants, ROS are produced in different cell compartments and are oxidizing species, particularly hydroxyl radicals and singlet oxygen, that can produce serious damage in biological systems (oxidative stress). However, plant cells also have an array of antioxidants which, normally, can scavenge the excess oxidants produced and so avoid deleterious effects on the plant cell bio-molecules. The concept of 'oxidative stress' was re-evaluated in recent years and the term 'oxidative signalling' was created. This means that ROS production, apart from being a potentially harmful process, is also an important component of the signalling network that plants use for their development and for responding to environmental challenges. It is known that ROS play an important role regulating numerous biological processes such as growth, development, response to biotic and environmental stresses, and programmed cell death. The term reactive nitrogen species (RNS) includes radicals like nitric oxide (NO· ) and nitric dioxide (NO2.), as well as non-radicals such as nitrous acid (HNO2) and dinitrogen tetroxide (N2O4), among others. RNS are also produced in plants although the generating systems have still not been fully characterized. Nitric oxide (NO·) has an important function as a key signalling molecule in plant growth, development, and senescence, and RNS, like ROS, also play an important role as signalling molecules in the response to environmental (abiotic) stress. Similarly, NO· is a key mediator, in co-operation with ROS, in the defence response to pathogen attacks in plants. ROS and RNS have been demonstrated to have an increasingly important role in biology and medicine.

  8. Emotions, affects and the production of social life.

    PubMed

    Fox, Nick J

    2015-06-01

    While many aspects of social life possess an emotional component, sociology needs to explore explicitly the part emotions play in producing the social world and human history. This paper turns away from individualistic and anthropocentric emphases upon the experience of feelings and emotions, attending instead to an exploration of flows of 'affect' (meaning simply a capacity to affect or be affected) between bodies, things, social institutions and abstractions. It establishes a materialist sociology of affects that acknowledges emotions as a part, but only a part, of a more generalized affective flow that produces bodies and the social world. From this perspective, emotions are not a peculiarly remarkable outcome of the confluence of biology and culture, but part of a continuum of affectivity that links human bodies to their physical and social environment. This enhances sociological understanding of the part emotions play in shaping actions and capacities in many settings of sociological concern.

  9. A P-Loop NTPase Regulates Quiescent Center Cell Division and Distal Stem Cell Identity through the Regulation of ROS Homeostasis in Arabidopsis Root

    PubMed Central

    Yu, Qianqian; Tian, Huiyu; Liu, Jiajia; Zhang, Bing; Li, Xugang; Ding, Zhaojun

    2016-01-01

    Reactive oxygen species (ROS) are recognized as important regulators of cell division and differentiation. The Arabidopsis thaliana P-loop NTPase encoded by APP1 affects root stem cell niche identity through its control of local ROS homeostasis. The disruption of APP1 is accompanied by a reduction in ROS level, a rise in the rate of cell division in the quiescent center (QC) and the promotion of root distal stem cell (DSC) differentiation. Both the higher level of ROS induced in the app1 mutant by exposure to methyl viologen (MV), and treatment with hydrogen peroxide (H2O2) rescued the mutant phenotype, implying that both the increased rate of cell division in the QC and the enhancement in root DSC differentiation can be attributed to a low level of ROS. APP1 is expressed in the root apical meristem cell mitochondria, and its product is associated with ATP hydrolase activity. The key transcription factors, which are defining root distal stem niche, such as SCARECROW (SCR) and SHORT ROOT (SHR) are both significantly down-regulated at both the transcriptional and protein level in the app1 mutant, indicating that SHR and SCR are important downstream targets of APP1-regulated ROS signaling to control the identity of root QC and DSCs. PMID:27583367

  10. 20-HETE increases NADPH oxidase-derived ROS production and stimulates the L-type Ca2+ channel via a PKC-dependent mechanism in cardiomyocytes

    PubMed Central

    Han, Yong; Bao, Yuyan; Li, Wei; Li, Xingting; Shen, Xin; Wang, Xu; Yao, Fanrong; O'Rourke, Stephen T.; Sun, Chengwen

    2010-01-01

    The production of 20-hydroxyeicosatetraenoic acid (20-HETE) is increased during ischemia-reperfusion, and inhibition of 20-HETE production has been shown to reduce infarct size caused by ischemia. This study was aimed to discover the molecular mechanism underlying the action of 20-HETE in cardiac myocytes. The effect of 20-HETE on L-type Ca2+ currents (ICa,L) was examined in rat isolated cardiomyocytes by patch-clamp recording in the whole cell mode. Superfusion of cardiomyocytes with 20-HETE (10–100 nM) resulted in a concentration-dependent increase in ICa,L, and this action of 20-HETE was attenuated by a specific NADPH oxidase inhibitor, gp91ds-tat (5 μM), or a superoxide scavenger, polyethylene glycol-superoxide dismutase (25 U/ml), suggesting that NADPH-oxidase-derived superoxide is involved in the stimulatory action of 20-HETE on ICa,L. Treatment of cardiomyocytes with 20-HETE (100 nM) increased both NADPH oxidase activity and superoxide production by approximately twofold. To study the molecular mechanism mediating the 20-HETE-induced increase in NADPH oxidase activity, PKC activity was measured in cardiomyocytes. Incubation of the cells with 20-HETE (100 nM) significantly increased PKC activity, and pretreatment of cardiomyocytes with a selective PKC inhibitor, GF-109203 (1 μM), attenuated the 20-HETE-induced increases in ICa,L and in NADPH oxidase activity. In summary, 20-HETE stimulates NADPH oxidase-derived superoxide production, which activates L-type Ca2+ channels via a PKC-dependent mechanism in cardiomyocytes. 20-HETE and 20-HETE-producing enzymes could be novel targets for the treatment of cardiac ischemic diseases. PMID:20675568

  11. ROS production in homogenate from the body wall of sea cucumber Stichopus japonicus under UVA irradiation: ESR spin-trapping study.

    PubMed

    Qi, Hang; Dong, Xiu-fang; Zhao, Ya-ping; Li, Nan; Fu, Hui; Feng, Ding-ding; Liu, Li; Yu, Chen-xu

    2016-02-01

    Sea cucumber Stichopus japonicus (S. japonicus) shows a strong ability of autolysis, which leads to severe deterioration in sea cucumber quality during processing and storage. In this study, to further characterize the mechanism of sea cucumber autolysis, hydroxyl radical production induced by ultraviolet A (UVA) irradiation was investigated. Homogenate from the body wall of S. japonicas was prepared and subjected to UVA irradiation at room temperature. Electron Spin Resonance (ESR) spectra of the treated samples were subsequently recorded. The results showed that hydroxyl radicals (OH) became more abundant while the time of UVA treatment and the homogenate concentration were increased. Addition of superoxide dismutase (SOD), catalase, EDTA, desferal, NaN3 and D2O to the homogenate samples led to different degrees of inhibition on OH production. Metal cations and pH also showed different effects on OH production. These results indicated that OH was produced in the homogenate with a possible pathway as follows: O2(-) → H2O2 → OH, suggesting that OH might be a critical factor in UVA-induced S. japonicus autolysis.

  12. Discourse Goals Affect the Process and Product of Nominal Metaphor Production.

    PubMed

    Utsumi, Akira; Sakamoto, Maki

    2015-10-01

    Although a large number of studies have addressed metaphor comprehension, only a few attempts have so far been made at exploring the process of metaphor production. Therefore, in this paper, we address the problem of how people generate nominal metaphors or identify an apt vehicle for a given topic of nominal metaphors. Specifically, we examine how the process and product of metaphor production differ between two discourse goals of metaphor, namely an explanatory purpose (e.g., to clarify) and a literary purpose (e.g., to aesthetically pleasing). Experiment 1 analyzed the metaphors (or vehicles) generated in the metaphor production task, and demonstrated that people identified more prototypical exemplars of the property to be attributed to the topic as a vehicle for explanatory metaphors than for literary metaphors. In addition, it was found that metaphors generated for the explanatory purpose were more apt and conventional, and had high topic-vehicle similarity than those generated for the literary purpose, while metaphors generated for the literary purpose were more familiar and imageable than those for the explanatory purpose. Experiment 2 used a priming paradigm to assess the online availability of prototypical and less prototypical members of the topic property during metaphor production. The result was that both prototypical and less prototypical members were activated in producing literary metaphors, while neither members were activated in the production of explanatory metaphors. These findings indicate that the process of metaphor production is affected by discourse goals of metaphor; less prototypical members of the category are searched for a vehicle during the production of literary metaphors, and thus literary metaphors are generated with less prototypical vehicles than explanatory metaphors.

  13. Measurement of OH, NO, O and N atoms in helium plasma jet for ROS/RNS controlled biomedical processes

    NASA Astrophysics Data System (ADS)

    Yonemori, Seiya; Kamakura, Taku; Ono, Ryo

    2014-10-01

    Atmospheric-pressure plasmas are of emerging interest for new plasma applications such as cancer treatment, cell activation and sterilization. In those biomedical processes, reactive oxygen/nitrogen species (ROS/RNS) are said that they play significant role. It is though that active species give oxidative stress and induce biomedical reactions. In this study, we measured OH, NO, O and N atoms using laser induced fluorescence (LIF) measurement and found that voltage polarity affect particular ROS. When negative high voltage was applied to the plasma jet, O atom density was tripled compared to the case of positive applied voltage. In that case, O atom density was around 3 × 1015 [cm-3] at maximum. In contrast, OH and NO density did not change their density depending on the polarity of applied voltage, measured as in order of 1013 and 1014 [cm-3] at maximum, respectively. From ICCD imaging measurement, it could be seen that negative high voltage enhanced secondary emission in plasma bullet propagation and it can affect the effective production of particular ROS. Since ROS/RNS dose can be a quantitative criterion to control plasma biomedical application, those measurement results is able to be applied for in vivo and in vitro plasma biomedical experiments. This study is supported by the Grant-in-Aid for Science Research by the Ministry of Education, Culture, Sport, Science and Technology.

  14. Testing the Oxidative Stress Hypothesis of Aging in Primate Fibroblasts: Is There a Correlation Between Species Longevity and Cellular ROS Production?

    PubMed Central

    Csiszar, Anna; Podlutsky, Andrej; Podlutskaya, Natalia; Sonntag, William E.; Merlin, Steven Z.; Philipp, Eva E. R.; Doyle, Kristian; Davila, Antonio; Recchia, Fabio A.; Ballabh, Praveen; Pinto, John T.

    2012-01-01

    The present study was conducted to test predictions of the oxidative stress theory of aging assessing reactive oxygen species production and oxidative stress resistance in cultured fibroblasts from 13 primate species ranging in body size from 0.25 to 120 kg and in longevity from 20 to 90 years. We assessed both basal and stress-induced reactive oxygen species production in fibroblasts from five great apes (human, chimpanzee, bonobo, gorilla, and orangutan), four Old World monkeys (baboon, rhesus and crested black macaques, and patas monkey), three New World monkeys (common marmoset, red-bellied tamarin, and woolly monkey), and one lemur (ring-tailed lemur). Measurements of cellular MitoSox fluorescence, an indicator of mitochondrial superoxide (O2·−) generation, showed an inverse correlation between longevity and steady state or metabolic stress–induced mitochondrial O2·− production, but this correlation was lost when the effects of body mass were removed, and the data were analyzed using phylogenetically independent contrasts. Fibroblasts from longer-lived primate species also exhibited superior resistance to H2O2-induced apoptotic cell death than cells from shorter-living primates. After correction for body mass and lack of phylogenetic independence, this correlation, although still discernible, fell short of significance by regression analysis. Thus, increased longevity in this sample of primates is not causally associated with low cellular reactive oxygen species generation, but further studies are warranted to test the association between increased cellular resistance to oxidative stressor and primate longevity. PMID:22219516

  15. SUGV baseline autonomy using ROS

    NASA Astrophysics Data System (ADS)

    Stump, Ethan; Sadler, Laurel; Baran, David

    2011-05-01

    Currently, the 3000+ robotic systems fielded in theater are entirely teleoperated. This constant dependence on operator control introduces several problems, including a large cognitive load on the operator and a limited ability for the operator to maintain an appropriate level of situational awareness of his surroundings. One solution to reduce the dependence on teleoperation is to develop autonomous behaviors for the robot to reduce the strain on the operator. We consider mapping and navigation to be fundamental to the development of useful field autonomy for small unmanned ground vehicles (SUGVs). To this end, we have developed baseline autonomous capabilities for our SUGV platforms, making use of the open-source Robot Operating System (ROS) software from Willow Garage, Inc. Their implementations of mapping and navigation are drawn from the most successful published academic algorithms in robotics. In this paper, we describe how we bridged our previous work with the Packbot Explorer to incorporate a new processing payload, new sensors, and the ROS system configured to perform the high-level autonomy tasks of mapping and waypoint navigation. We document our most successful parameter selection for the ROS navigation software in an indoor environment and present results of a mapping experiment.

  16. A low temperature-inducible protein AtSRC2 enhances the ROS-producing activity of NADPH oxidase AtRbohF.

    PubMed

    Kawarazaki, Tomoko; Kimura, Sachie; Iizuka, Ayako; Hanamata, Shigeru; Nibori, Hitomi; Michikawa, Masataka; Imai, Aya; Abe, Mitsutomo; Kaya, Hidetaka; Kuchitsu, Kazuyuki

    2013-12-01

    Reactive oxygen species (ROS) produced by NADPH oxidases play critical roles in plant environmental responses. Arabidopsis thaliana NADPH oxidase AtRbohF-mediated ROS-production is involved in abiotic stress responses. Because overproduction of ROS is highly toxic to cells, the activity of AtRbohF needs to be tightly regulated in response to diverse stimuli. The ROS-producing activity of AtRbohF is activated by Ca(2+) and protein phosphorylation, but other regulatory factors for AtRbohF are mostly unknown. In this study, we screened for proteins that interact with the N-terminal cytosolic region of AtRbohF by a yeast two-hybrid screen, and isolated AtSRC2, an A. thaliana homolog of SRC2 (soybean gene regulated by cold-2). A co-immunoprecipitation assay revealed that AtSRC2 interacts with the N-terminal region of AtRbohF in plant cells. Intracellular localization of GFP-tagged AtSRC2 was partially overlapped with that of GFP-tagged AtRbohF at the cell periphery. Co-expression of AtSRC2 enhanced the Ca(2+)-dependent ROS-producing activity of AtRbohF in HEK293T cells, but did not affect its phosphorylation-dependent activation. Low-temperature treatment induced expression of the AtSRC2 gene in Arabidopsis roots in proportion to levels of ROS production that was partially dependent on AtRbohF. Our findings suggest that AtSRC2 is a novel activator of Ca(2+)-dependent AtRbohF-mediated ROS production and may play a role in cold responses.

  17. Pneumolysin induces cellular senescence by increasing ROS production and activation of MAPK/NF-κB signal pathway in glial cells.

    PubMed

    Kwon, Ii-Seul; Kim, Jinwook; Rhee, Dong-Kwon; Kim, Byung-Oh; Pyo, Suhkneung

    2017-02-20

    Senescence is an irreversible proliferation arrest that is induced by various stress stimuli including genotoxin. Pneumolysin (PLY) is a pathogenicity factor unique to Streptococcus pneumoniae that is important in pneumococcal-induced diseases such as otitis media, meningitis and pneumonia. However, the cell fate response to the toxin is mechanistically unclear. We investigated the effect of PLY on cellular senescence in BV-2 microglial cells. Exposure to PLY resulted in changes in the expression of phospho-p53, p21, p16, pRb and CDK2 and increased the number of senescence associated β-gal positive cells. PLY-treatment also increased PAI-1 expression and cell proliferation arrest in concentration- and time-dependent manners. PLY induced NF-κB activation and phosphorylation of SIRT-1, ERK1/2, JNK, and p38 MAPK. In addition, PLY increased the production of reactive oxygen species. Overall, the results suggest that PLY regulates microglial cellular senescence by enhancing production of reactive oxygen species, activation of MAPK and NF-κB, and phosphorylation of SIRT-1.

  18. Puerarin ameliorates heat stress-induced oxidative damage and apoptosis in bovine Sertoli cells by suppressing ROS production and upregulating Hsp72 expression.

    PubMed

    Cong, Xia; Zhang, Qian; Li, Huatao; Jiang, Zhongling; Cao, Rongfeng; Gao, Shansong; Tian, Wenru

    2017-01-15

    Puerarin, a bioactive isoflavone glucoside extracted from radix Puerariae, has been proven to possess many biological activities. However, the role of puerarin in protecting bovine Sertoli cells (bSCs) under heat stress conditions remains to be clarified. The present study aimed to explore the possible protective mechanism of puerarin for primary cultured bSCs subjected to heat stress. Bovine Sertoli cells were treated with 15 μM of puerarin before they were exposed to 42 °C for 1 hour. The dose of puerarin (15 μM) was determined on the basis of cell viability. The results showed that puerarin treatment suppressed the production of reactive oxygen species and decreased the oxidative damage of the bSCs subjected to heat stress, as indicated by changes in superoxide dismutase, catalase, and glutathione peroxidase activities and malondialdehyde content. Moreover, puerarin treatment also suppressed the initiation of mitochondria-dependent apoptotic pathway, as revealed by changes in Bax to Bcl-2 ratio, mitochondrial membrane potential, cytochrome C release, caspase-3 activation, and apoptotic rate compared with the heat stress group. In addition, puerarin treatment increased Hsp72 expression in the bSCs with no apparent cellular cytotoxicity compared with the control group. Furthermore, increased Hsp72 was detected in the heat stress plus puerarin group compared with the heat stress group. In conclusion, puerarin attenuates heat stress-induced oxidative damage and apoptosis of bSCs by suppressing reactive oxygen species production and upregulating Hsp72 expression.

  19. Soybean Salt Tolerance 1 (GmST1) Reduces ROS Production, Enhances ABA Sensitivity, and Abiotic Stress Tolerance in Arabidopsis thaliana

    PubMed Central

    Ren, Shuxin; Lyle, Chimera; Jiang, Guo-liang; Penumala, Abhishek

    2016-01-01

    Abiotic stresses, including high soil salinity, significantly reduce crop production worldwide. Salt tolerance in plants is a complex trait and is regulated by multiple mechanisms. Understanding the mechanisms and dissecting the components on their regulatory pathways will provide new insights, leading to novel strategies for the improvement of salt tolerance in agricultural and economic crops of importance. Here we report that soybean salt tolerance 1, named GmST1, exhibited strong tolerance to salt stress in the Arabidopsis transgenic lines. The GmST1-overexpressed Arabidopsis also increased sensitivity to ABA and decreased production of reactive oxygen species under salt stress. In addition, GmST1 significantly improved drought tolerance in Arabidopsis transgenic lines. GmST1 belongs to a 3-prime part of Glyma.03g171600 gene in the current version of soybean genome sequence annotation. However, comparative reverse transcription-polymerase chain reaction analysis around Glyma.03g171600 genomic region confirmed that GmST1 might serve as an intact gene in soybean leaf tissues. Unlike Glyma.03g171600 which was not expressed in leaves, GmST1 was strongly induced by salt treatment in the leaf tissues. By promoter analysis, a TATA box was detected to be positioned close to GmST1 start codon and a putative ABRE and a DRE cis-acting elements were identified at about 1 kb upstream of GmST1 gene. The data also indicated that GmST1-transgenic lines survived under drought stress and showed a significantly lower water loss than non-transgenic lines. In summary, our results suggest that overexpression of GmST1 significantly improves Arabidopsis tolerance to both salt and drought stresses and the gene may be a potential candidate for genetic engineering of salt- and drought-tolerant crops. PMID:27148284

  20. TRPs as chemosensors (ROS, RNS, RCS, gasotransmitters).

    PubMed

    Shimizu, Shunichi; Takahashi, Nobuaki; Mori, Yasuo

    2014-01-01

    The transient receptor potential (trp) gene superfamily encodes TRP proteins that act as multimodal sensor cation channels for a wide variety of stimuli from outside and inside the cell. Upon chemical or physical stimulation of cells, TRP channels transduce electrical and/or Ca(2+) signals via their cation channel activities. These functional features of TRP channels allow the body to react and adapt to different forms of environmental changes. Indeed, members of one class of TRP channels have emerged as sensors of reactive oxygen species (ROS), reactive nitrogen species (RNS), reactive carbonyl species (RCS), and gaseous messenger molecules including molecular oxygen (O2), hydrogen sulfide (H2S), and carbon dioxide (CO2). Hydrogen peroxide (H2O2), an ROS, triggers the production of ADP-ribose, which binds and activates TRPM2. In addition to TRPM2, TRPC5, TRPV1, and TRPA1 are also activated by H2O2 via modification of cysteine (Cys) free sulfhydryl groups. Nitric oxide (NO), a vasoactive gaseous molecule, regulates TRP channels directly via Cys S-nitrosylation or indirectly via cyclic GMP (cGMP)/protein kinase G (PKG)-dependent phosphorylation. Anoxia induced by O2-glucose deprivation and severe hypoxia activates TRPM7 and TRPC6, respectively, whereas TRPA1 serves as a sensor of mild hypoxia and hyperoxia in vagal and sensory neurons. TRPA1 also detects other gaseous molecules, such as hydrogen sulfide (H2S) and carbon dioxide (CO2). In this review, we highlight our current knowledge of TRP channels as chemosensors for ROS, RNS, RCS, and gaseous molecules and discuss their functional impacts on physiological and pathological events.

  1. Statistical frequency in perception affects children's lexical production.

    PubMed

    Richtsmeier, Peter T; Gerken, LouAnn; Goffman, Lisa; Hogan, Tiffany

    2009-06-01

    Children's early word production is influenced by the statistical frequency of speech sounds and combinations. Three experiments asked whether this production effect can be explained by a perceptual learning mechanism that is sensitive to word-token frequency and/or variability. Four-year-olds were exposed to nonwords that were either frequent (presented 10 times) or infrequent (presented once). When the frequent nonwords were spoken by the same talker, children showed no significant effect of perceptual frequency on production. When the frequent nonwords were spoken by different talkers, children produced them with fewer errors and shorter latencies. The results implicate token variability in perceptual learning.

  2. Transpiration affects soil CO2 production in a dry grassland

    NASA Astrophysics Data System (ADS)

    Balogh, János; Fóti, Szilvia; Pintér, Krisztina; Burri, Susanne; Eugster, Werner; Papp, Marianna; Nagy, Zoltán

    2014-05-01

    Although soil CO2 efflux can be highly variable on the diel time scale, it is often measured during daytime only. However, to get a full understanding of soil CO2 efflux and its impact on carbon cycle processes, looking at diurnal processes is crucial. Therefore, our aim was to investigate how diel variation in soil CO2 efflux from a dry, sandy grassland in Hungary depends on variations in potential drivers, such as gross primary production (GPP) and evapotranspiration (ET). In order to reach this goal, we combined measurements of CO2 and H2O fluxes by eddy covariance, soil chambers and soil CO2 gradient system. Surface CO2 fluxes were partitioned into the three CO2 production components originating from the three soil layers to clarify the timing and the source of the CO2 within the top 50 cm of the soil. CO2 production rates during the growing season were higher during nighttime than during daytime. This diel course was not only driven by soil temperature and soil moisture, but also by ET. This was shown by changes of ET causing a hysteresis loop in the diel response of CO2 production to soil temperature. CO2 production was coupled to soil temperature at night and during midday (12-14 h), when ET remained relatively constant. However, when ET was changing over time, CO2 production was decoupled from soil temperature. In order to disentangle these effects, we carried out time-lag analyses between CO2 production and efflux residuals after having subtracted the main effects of soil temperature and soil water content from measured CO2 fluxes. The results showed a strong negative correlation between ET rates and residuals of soil CO2 production, and a less strong, but still significantly time-lagged positive correlation between GPP and residuals of soil CO2 production. Thus, we could show that there is a rapid negative response of soil CO2 production rates to transpiration (suggesting CO2 transport in the xylem stream) and a delayed positive response to GPP

  3. Anti-Inflammatory Potential of Ethanolic Leaf Extract of Eupatorium adenophorum Spreng. Through Alteration in Production of TNF-α, ROS and Expression of Certain Genes

    PubMed Central

    Chakravarty, Ashim K.; Mazumder, Tamal; Chatterjee, Shankar N.

    2011-01-01

    Search for a novel anti-inflammatory agent from a herbal source, such as Eupatorium adenophorum Spreng., a plant from the Eastern Himalayas, is of prime interest in the present investigation. Inflammation causes tissue destruction and development of diseases such as asthma, rheumatoid arthritis, and so forth. The ethanolic leaf extract of E. adenophorum (EEA) was administered intravenously and in other cases topically at the site of delayed type hypersensitivity (DTH) reaction in mouse foot paw induced with dinitrofluorobenzene. EEA can effectively inhibit DTH reaction and bring back normalcy to the paw much earlier than the controls. Efficacy of EEA on regulatory mechanisms for inflammation has also been considered. Intravenous administration of EEA increased the number of CD4+ T cells in spleen and tumor necrosis factor (TNF)-α in serum of DTH mice. Initially it was difficult to reconcile with the anti-inflammatory role of EEA and simultaneous induction of TNF-α, an established pro-inflammatory cytokine. EEA induces higher expression of TNF-α gene and amount of the cytokine in serum. We discussed the other role of TNF-α, its involvement in repairing tissue damage incurred in course of inflammatory reaction. EEA also induces TGF-β encoding a cytokine involved in tissue repair mechanism. EEA inhibits expression of another pro-inflammatory cytokine gene IL-1β and downregulates cycloxygenase 2 (COX2) gene responsible for metabolism of inflammatory mediators like prostaglandins. Furthermore, anti-inflammatory role of EEA is also revealed through its inhibition of hydroxyl radical generation. Notably EEA does not necessarily affect the expression of other inflammation-related genes such as IL-6, IL-10 and IKK. The present study reports and analyzes for the first time the anti-inflammatory property of the leaf extract of E. adenophorum. PMID:21808653

  4. Methylation-independent DNA Binding Modulates Specificity of Repressor of Silencing 1 (ROS1) and Facilitates Demethylation in Long Substrates*

    PubMed Central

    Ponferrada-Marín, María Isabel; Martínez-Macías, María Isabel; Morales-Ruiz, Teresa; Roldán-Arjona, Teresa; Ariza, Rafael R.

    2010-01-01

    DNA cytosine methylation is an epigenetic mark that promotes gene silencing and performs critical roles during reproduction and development in both plants and animals. The genomic distribution of DNA methylation is the dynamic outcome of opposing methylation and demethylation processes. In plants, active demethylation occurs through a base excision repair pathway initiated by 5-methycytosine (5-meC) DNA glycosylases of the REPRESSOR OF SILENCING 1 (ROS1)/DEMETER (DME) family. To gain insight into the mechanism by which Arabidopsis ROS1 recognizes and excises 5-meC, we have identified those protein regions that are required for efficient DNA binding and catalysis. We have found that a short N-terminal lysine-rich domain conserved in members of the ROS1/DME family mediates strong methylation-independent binding of ROS1 to DNA and is required for efficient activity on 5-meC·G, but not for T·G processing. Removal of this domain does not significantly affect 5-meC excision from short molecules, but strongly decreases ROS1 activity on long DNA substrates. This region is not required for product binding and is not involved in the distributive behavior of the enzyme on substrates containing multiple 5-meC residues. Altogether, our results suggest that methylation-independent DNA binding allows ROS1 to perform a highly redundant search for efficient excision of a nondamaged, correctly paired base such as 5-meC in long stretches of DNA. These findings may have implications for understanding the evolution of structure and target specificity in DNA glycosylases. PMID:20489198

  5. Nanoparticle-based hyperthermia distinctly impacts production of ROS, expression of Ki-67, TOP2A, and TPX2, and induction of apoptosis in pancreatic cancer

    PubMed Central

    Ludwig, Robert; Teran, Francisco J; Teichgraeber, Ulf; Hilger, Ingrid

    2017-01-01

    So far, the therapeutic outcome of hyperthermia has shown heterogeneous responses depending on how thermal stress is applied. We studied whether extrinsic heating (EH, hot air) and intrinsic heating (magnetic heating [MH] mediated by nanoparticles) induce distinct effects on pancreatic cancer cells (PANC-1 and BxPC-3 cells). The impact of MH (100 µg magnetic nanoparticles [MNP]/mL; H=23.9 kA/m; f=410 kHz) was always superior to that of EH. The thermal effects were confirmed by the following observations: 1) decreased number of vital cells, 2) altered expression of pro-caspases, and 3) production of reactive oxygen species, and 4) altered mRNA expression of Ki-67, TOP2A, and TPX2. The MH treatment of tumor xenografts significantly (P≤0.05) reduced tumor volumes. This means that different therapeutic outcomes of hyperthermia are related to the different responses cells exert to thermal stress. In particular, intratumoral MH is a valuable tool for the treatment of pancreatic cancers. PMID:28223795

  6. Effects of low intensity static magnetic field on FTIR spectra and ROS production in SH-SY5Y neuronal-like cells.

    PubMed

    Calabrò, Emanuele; Condello, Salvatore; Currò, Monica; Ferlazzo, Nadia; Caccamo, Daniela; Magazù, Salvatore; Ientile, Riccardo

    2013-12-01

    Biological effects of man-made electromagnetic fields (EMFs) have been studied so far by experimental approaches exposing animals and cell cultures to EMFs. However, the evidence for cell toxicity induced by static magnetic field (SMF) is still uncertain. We investigated the effects produced by the exposure of human SH-SY5Y neuronal-like cells to a uniform magnetic field at intensities of 2.2 mT, which is less than the recommended public exposure limits set by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). A decrease of membrane mitochondrial potential up to 30% was measured after 24 h of exposure to SMF in SH-SY5Y cells, and this effect was associated with reactive oxygen species production increase. Fourier transform infrared spectroscopy (FTIR) analysis showed that exposure to a static magnetic intensity around 2.2 mT changed the secondary structure of cellular proteins and lipid components. The vibration bands relative to the methylene group increased significantly after 4 h of exposure, whereas further exposure up to 24 h produced evident shifts of amide I and II modes and a relative increase in β-sheet contents with respect to α-helix components. Our study demonstrated that a moderate SMF causes alteration in cell homeostasis, as indicated by FTIR spectroscopy observations of changes in protein structures that are part of cell response to magnetic field exposure.

  7. Nanoparticle-based hyperthermia distinctly impacts production of ROS, expression of Ki-67, TOP2A, and TPX2, and induction of apoptosis in pancreatic cancer.

    PubMed

    Ludwig, Robert; Teran, Francisco J; Teichgraeber, Ulf; Hilger, Ingrid

    2017-01-01

    So far, the therapeutic outcome of hyperthermia has shown heterogeneous responses depending on how thermal stress is applied. We studied whether extrinsic heating (EH, hot air) and intrinsic heating (magnetic heating [MH] mediated by nanoparticles) induce distinct effects on pancreatic cancer cells (PANC-1 and BxPC-3 cells). The impact of MH (100 µg magnetic nanoparticles [MNP]/mL; H=23.9 kA/m; f=410 kHz) was always superior to that of EH. The thermal effects were confirmed by the following observations: 1) decreased number of vital cells, 2) altered expression of pro-caspases, and 3) production of reactive oxygen species, and 4) altered mRNA expression of Ki-67, TOP2A, and TPX2. The MH treatment of tumor xenografts significantly (P≤0.05) reduced tumor volumes. This means that different therapeutic outcomes of hyperthermia are related to the different responses cells exert to thermal stress. In particular, intratumoral MH is a valuable tool for the treatment of pancreatic cancers.

  8. Some factors affecting tannase production by Aspergillus niger Van Tieghem

    PubMed Central

    Aboubakr, Hamada A.; El-Sahn, Malak A.; El-Banna, Amr A.

    2013-01-01

    One variable at a time procedure was used to evaluate the effect of qualitative variables on the production of tannase from Aspergillus niger Van Tieghem. These variables including: fermentation technique, agitation condition, tannins source, adding carbohydrates incorporation with tannic acid, nitrogen source type and divalent cations. Submerged fermentation under intermittent shaking gave the highest total tannase activity. Maximum extracellular tannase activity (305 units/50 mL) was attained in medium containing tannic acid as tannins source and sodium nitrate as nitrogen source at 30 °C for 96 h. All added carbohydrates showed significant adverse effects on the production of tannase. All tested divalent cations significantly decreased tannase production. Moreover, split plot design was carried out to study the effect of fermentation temperature and fermentation time on tannase production. The results indicated maximum tannase production (312.7 units/50 mL) at 35 °C for 96 h. In other words, increasing fermentation temperature from 30 °C to 35 °C resulted in increasing tannase production. PMID:24294255

  9. Some factors affecting tannase production by Aspergillus niger Van Tieghem.

    PubMed

    Aboubakr, Hamada A; El-Sahn, Malak A; El-Banna, Amr A

    2013-01-01

    One variable at a time procedure was used to evaluate the effect of qualitative variables on the production of tannase from Aspergillus niger Van Tieghem. These variables including: fermentation technique, agitation condition, tannins source, adding carbohydrates incorporation with tannic acid, nitrogen source type and divalent cations. Submerged fermentation under intermittent shaking gave the highest total tannase activity. Maximum extracellular tannase activity (305 units/50 mL) was attained in medium containing tannic acid as tannins source and sodium nitrate as nitrogen source at 30 °C for 96 h. All added carbohydrates showed significant adverse effects on the production of tannase. All tested divalent cations significantly decreased tannase production. Moreover, split plot design was carried out to study the effect of fermentation temperature and fermentation time on tannase production. The results indicated maximum tannase production (312.7 units/50 mL) at 35 °C for 96 h. In other words, increasing fermentation temperature from 30 °C to 35 °C resulted in increasing tannase production.

  10. ROS Generation in Peroxisomes and its Role in Cell Signaling.

    PubMed

    Del Río, Luis A; López-Huertas, Eduardo

    2016-07-01

    In plant cells, as in most eukaryotic organisms, peroxisomes are probably the major sites of intracellular H2O2 production, as a result of their essentially oxidative type of metabolism. In recent years, it has become increasingly clear that peroxisomes carry out essential functions in eukaryotic cells. The generation of the important messenger molecule hydrogen peroxide (H2O2) by animal and plant peroxisomes and the presence of catalase in these organelles has been known for many years, but the generation of superoxide radicals (O2(·(-)) ) and the occurrence of the metalloenzyme superoxide dismutase was reported for the first time in peroxisomes from plant origin. Further research showed the presence in plant peroxisomes of a complex battery of antioxidant systems apart from catalase. The evidence available of reactive oxygen species (ROS) production in peroxisomes is presented, and the different antioxidant systems characterized in these organelles and their possible functions are described. Peroxisomes appear to have a ROS-mediated role in abiotic stress situations induced by the heavy metal cadmium (Cd) and the xenobiotic 2,4-D, and also in the oxidative reactions of leaf senescence. The toxicity of Cd and 2,4-D has an effect on the ROS metabolism and speed of movement (dynamics) of peroxisomes. The regulation of ROS production in peroxisomes can take place by post-translational modifications of those proteins involved in their production and/or scavenging. In recent years, different studies have been carried out on the proteome of ROS metabolism in peroxisomes. Diverse evidence obtained indicates that peroxisomes are an important cellular source of different signaling molecules, including ROS, involved in distinct processes of high physiological importance, and might play an important role in the maintenance of cellular redox homeostasis.

  11. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS

    PubMed Central

    Gaude, Edoardo; Aksentijević, Dunja; Sundier, Stephanie Y.; Robb, Ellen L.; Logan, Angela; Nadtochiy, Sergiy M.; Ord, Emily N. J.; Smith, Anthony C.; Eyassu, Filmon; Shirley, Rachel; Hu, Chou-Hui; Dare, Anna J.; James, Andrew M.; Rogatti, Sebastian; Hartley, Richard C.; Eaton, Simon; Costa, Ana S.H.; Brookes, Paul S.; Davidson, Sean M.; Duchen, Michael R.; Saeb-Parsy, Kourosh; Shattock, Michael J.; Robinson, Alan J.; Work, Lorraine M.; Frezza, Christian; Krieg, Thomas; Murphy, Michael P.

    2014-01-01

    Ischaemia-reperfusion (IR) injury occurs when blood supply to an organ is disrupted and then restored, and underlies many disorders, notably heart attack and stroke. While reperfusion of ischaemic tissue is essential for survival, it also initiates oxidative damage, cell death, and aberrant immune responses through generation of mitochondrial reactive oxygen species (ROS)1-5. Although mitochondrial ROS production in IR is established, it has generally been considered a non-specific response to reperfusion1,3. Here, we developed a comparative in vivo metabolomic analysis and unexpectedly identified widely conserved metabolic pathways responsible for mitochondrial ROS production during IR. We showed that selective accumulation of the citric acid cycle (CAC) intermediate succinate is a universal metabolic signature of ischaemia in a range of tissues and is responsible for mitochondrial ROS production during reperfusion. Ischaemic succinate accumulation arises from reversal of succinate dehydrogenase (SDH), which in turn is driven by fumarate overflow from purine nucleotide breakdown and partial reversal of the malate/aspartate shuttle. Upon reperfusion, the accumulated succinate is rapidly re-oxidised by SDH, driving extensive ROS generation by reverse electron transport (RET) at mitochondrial complex I. Decreasing ischaemic succinate accumulation by pharmacological inhibition is sufficient to ameliorate in vivo IR injury in murine models of heart attack and stroke. Thus, we have identified a conserved metabolic response of tissues to ischaemia and reperfusion that unifies many hitherto unconnected aspects of IR injury. Furthermore, these findings reveal a novel pathway for metabolic control of ROS production in vivo, while demonstrating that inhibition of ischaemic succinate accumulation and its oxidation upon subsequent reperfusion is a potential therapeutic target to decrease IR injury in a range of pathologies. PMID:25383517

  12. Evaluation of changes in lipid peroxidation, ROS production, surface structures, secondary metabolites and yield of linseed (Linum usitatissimum L.) under individual and combined stress of ultraviolet-B and ozone using open top chambers.

    PubMed

    Tripathi, Ruchika; Agrawal, S B

    2013-08-01

    The individual and interactive effects of supplemental UV-B (sUV-B) (ambient + 7.2 kJ m(-2) d(-1)) and elevated O3 (ambient + 10 ppb) were evaluated under field conditions using open top chambers on two cultivars, Padmini and T-397 of linseed (Linum usitatissimum L.). Mean monthly surface level of O3 concentrations varied from 27.7 ppb to 59.0 ppb during the experimental period. Both UV-B and O03 induced the production of ROS (H2O2 and O2*-), resulting in significant damage of membranes due to lipid peroxidation and electrolyte leakage. Synthesis of secondary metabolites (flavonoids, anthocyanin, lignin and wax) was also enhanced in all the treatments, whereas biomass and yield were reduced. Alterations in frequency of stomata and wax distribution were also observed through scanning electron microscopy (SEM). Cultivar Padmini was found to be more sensitive because of higher damage of membrane vis-a-vis reduction in biomass and seed yield. However, concentrations of flavonoids, anthocyanin, lignin and wax were higher in T-397, suggesting its relative resistance against applied stress. Combined exposure of sUV-B and O3 was less harmful, as compared to their individual treatment. Among the three treatments, O3 was found to be more detrimental for overall growth and sUV-B for economic yield.

  13. Temperature can interact with landscape factors to affect songbird productivity.

    PubMed

    Cox, W Andrew; Thompson, Frank R; Reidy, Jennifer L; Faaborg, John

    2013-04-01

    Increased temperatures and more extreme weather patterns associated with global climate change can interact with other factors that regulate animal populations, but many climate change studies do not incorporate other threats to wildlife in their analyses. We used 20 years of nest-monitoring data from study sites across a gradient of habitat fragmentation in Missouri, USA, to investigate the relative influence of weather variables (temperature and precipitation) and landscape factors (forest cover and edge density) on the number of young produced per nest attempt (i.e., productivity) for three species of songbirds. We detected a strong forest cover × temperature interaction for the Acadian Flycatcher (Empidonax virescens) on productivity. Greater forest cover resulted in greater productivity because of reduced brood parasitism and increased nest survival, whereas greater temperatures reduced productivity in highly forested landscapes because of increased nest predation but had no effect in less forested landscapes. The Indigo Bunting (Passerina cyanea) exhibited a similar pattern, albeit with a marginal forest cover × temperature interaction. By contrast, productivity of the Northern Cardinal (Cardinalis cardinalis) was not influenced by landscape effects or temperature. Our results highlight a potential difficulty of managing wildlife in response to global change such as habitat fragmentation and climate warming, as the habitat associated with the greatest productivity for flycatchers was also that most negatively influenced by high temperatures. The influence of high temperatures on nest predation (and therefore, nest predators) underscores the need to acknowledge the potential complexity of species' responses to climate change by incorporating a more thorough consideration of community ecology in the development of models of climate impacts on wildlife.

  14. MPA-capped CdTe quantum dots exposure causes neurotoxic effects in nematode Caenorhabditis elegans by affecting the transporters and receptors of glutamate, serotonin and dopamine at the genetic level, or by increasing ROS, or both

    NASA Astrophysics Data System (ADS)

    Wu, Tianshu; He, Keyu; Zhan, Qinglin; Ang, Shengjun; Ying, Jiali; Zhang, Shihan; Zhang, Ting; Xue, Yuying; Tang, Meng

    2015-12-01

    As quantum dots (QDs) are widely used in biomedical applications, the number of studies focusing on their biological properties is increasing. While several studies have attempted to evaluate the toxicity of QDs towards neural cells, the in vivo toxic effects on the nervous system and the molecular mechanisms are unclear. The aim of the present study was to investigate the neurotoxic effects and the underlying mechanisms of water-soluble cadmium telluride (CdTe) QDs capped with 3-mercaptopropionic acid (MPA) in Caenorhabditis elegans (C. elegans). Our results showed that exposure to MPA-capped CdTe QDs induced behavioral defects, including alterations to body bending, head thrashing, pharyngeal pumping and defecation intervals, as well as impaired learning and memory behavior plasticity, based on chemotaxis or thermotaxis, in a dose-, time- and size-dependent manner. Further investigations suggested that MPA-capped CdTe QDs exposure inhibited the transporters and receptors of glutamate, serotonin and dopamine in C. elegans at the genetic level within 24 h, while opposite results were observed after 72 h. Additionally, excessive reactive oxygen species (ROS) generation was observed in the CdTe QD-treated worms, which confirmed the common nanotoxicity mechanism of oxidative stress damage, and might overcome the increased gene expression of neurotransmitter transporters and receptors in C. elegans induced by long-term QD exposure, resulting in more severe behavioral impairments.

  15. Sex of littermate twin affects lifetime ewe productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ewe productivity is synonymous with annual litter-weight weaned (LWW) per ewe exposed to rams for breeding, and LWW is largely a function of number of lambs born (NLB) and weaned (NLW). Selecting for LWW should increase litter size and numbers of ewe-ram co-twins. Thus, we used historical records to...

  16. Affected functional networks associated with sentence production in classic galactosemia.

    PubMed

    Timmers, Inge; van den Hurk, Job; Hofman, Paul Am; Zimmermann, Luc Ji; Uludağ, Kâmil; Jansma, Bernadette M; Rubio-Gozalbo, M Estela

    2015-08-07

    Patients with the inherited metabolic disorder classic galactosemia have language production impairments in several planning stages. Here, we assessed potential deviations in recruitment and connectivity across brain areas responsible for language production that may explain these deficits. We used functional magnetic resonance imaging (fMRI) to study neural activity and connectivity while participants carried out a language production task. This study included 13 adolescent patients and 13 age- and gender-matched healthy controls. Participants passively watched or actively described an animated visual scene using two conditions, varying in syntactic complexity (single words versus a sentence). Results showed that patients recruited additional and more extensive brain regions during sentence production. Both groups showed modulations with syntactic complexity in left inferior frontal gyrus (IFG), a region associated with syntactic planning, and in right insula. In addition, patients showed a modulation with syntax in left superior temporal gyrus (STG), whereas the controls did not. Further, patients showed increased activity in right STG and right supplementary motor area (SMA). The functional connectivity data showed similar patterns, with more extensive connectivity with frontal and motor regions, and restricted and weaker connectivity with superior temporal regions. Patients also showed higher baseline cerebral blood flow (CBF) in right IFG and trends towards higher CBF in bilateral STG, SMA and the insula. Taken together, the data demonstrate that language abnormalities in classic galactosemia are associated with specific changes within the language network. These changes point towards impairments related to both syntactic planning and speech motor planning in these patients.

  17. Redox-optimized ROS balance: a unifying hypothesis

    PubMed Central

    Aon, M.A.; Cortassa, S.; O’Rourke, B.

    2010-01-01

    While it is generally accepted that mitochondrial reactive oxygen species (ROS) balance depends on the both rate of single electron reduction of O2 to superoxide (O2.−) by the electron transport chain and the rate of scavenging by intracellular antioxidant pathways, considerable controversy exists regarding the conditions leading to oxidative stress in intact cells versus isolated mitochondria. Here, we postulate that mitochondria have been evolutionarily optimized to maximize energy output while keeping ROS overflow to a minimum by operating in an intermediate redox state. We show that at the extremes of reduction or oxidation of the redox couples involved in electron transport (NADH/NAD+) or ROS scavenging (NADPH/NADP+, GSH/GSSG), respectively, ROS balance is lost. This results in a net overflow of ROS that increases as one moves farther away from the optimal redox potential. At more reduced mitochondrial redox potentials, ROS production exceeds scavenging, while under more oxidizing conditions (e.g., at higher workloads) antioxidant defenses can be compromised and eventually overwhelmed. Experimental support for this hypothesis is provided in both cardiomyocytes and in isolated mitochondria from guinea pig hearts. The model reconciles, within a single framework, observations that isolated mitochondria tend to display increased oxidative stress at high reduction potentials (and high mitochondrial membrane potential, ΔΨm), whereas intact cardiac cells can display oxidative stress either when mitochondria become more uncoupled (i.e., low ΔΨm) or when mitochondria are maximally reduced (as in ischemia or hypoxia). The continuum described by the model has the potential to account for many disparate experimental observations and also provides a rationale for graded physiological ROS signaling at redox potentials near the minimum. PMID:20175987

  18. Silica particles cause NADPH oxidase–independent ROS generation and transient phagolysosomal leakage

    PubMed Central

    Joshi, Gaurav N.; Goetjen, Alexandra M.; Knecht, David A.

    2015-01-01

    Chronic inhalation of silica particles causes lung fibrosis and silicosis. Silica taken up by alveolar macrophages causes phagolysosomal membrane damage and leakage of lysosomal material into the cytoplasm to initiate apoptosis. We investigated the role of reactive oxygen species (ROS) in this membrane damage by studying the spatiotemporal generation of ROS. In macrophages, ROS generated by NADPH oxidase 2 (NOX2) was detected in phagolysosomes containing either silica particles or nontoxic latex particles. ROS was only detected in the cytoplasm of cells treated with silica and appeared in parallel with an increase in phagosomal ROS, as well as several hours later associated with mitochondrial production of ROS late in apoptosis. Pharmacological inhibition of NOX activity did not prevent silica-induced phagolysosomal leakage but delayed it. In Cos7 cells, which do not express NOX2, ROS was detected in silica-containing phagolysosomes that leaked. ROS was not detected in phagolysosomes containing latex particles. Leakage of silica-containing phagolysosomes in both cell types was transient, and after resealing of the membrane, endolysosomal fusion continued. These results demonstrate that silica particles can generate phagosomal ROS independent of NOX activity, and we propose that this silica-generated ROS can cause phagolysosomal leakage to initiate apoptosis. PMID:26202463

  19. Insect-transmitted viruses affecting tomato production in western North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect-transmitted viruses cause significant losses annually for tomato production in western North America (California and western Mexico). Considerable variability exists among viruses impacting production throughout the region. This is influenced by variable climatic conditions which affect vec...

  20. Mechanism of Cisplatin-Induced Cytotoxicity Is Correlated to Impaired Metabolism Due to Mitochondrial ROS Generation

    PubMed Central

    Shim, Wooyoung; Anwar, Muhammad Ayaz; Kwon, Ji-Woong; Kwon, Hyuk-Kwon; Kim, Hyung Joong; Jeong, Hyobin; Kim, Hwan Myung; Hwang, Daehee; Kim, Hyung Sik; Choi, Sangdun

    2015-01-01

    The chemotherapeutic use of cisplatin is limited by its severe side effects. In this study, by conducting different omics data analyses, we demonstrated that cisplatin induces cell death in a proximal tubular cell line by suppressing glycolysis- and tricarboxylic acid (TCA)/mitochondria-related genes. Furthermore, analysis of the urine from cisplatin-treated rats revealed the lower expression levels of enzymes involved in glycolysis, TCA cycle, and genes related to mitochondrial stability and confirmed the cisplatin-related metabolic abnormalities. Additionally, an increase in the level of p53, which directly inhibits glycolysis, has been observed. Inhibition of p53 restored glycolysis and significantly reduced the rate of cell death at 24 h and 48 h due to p53 inhibition. The foremost reason of cisplatin-related cytotoxicity has been correlated to the generation of mitochondrial reactive oxygen species (ROS) that influence multiple pathways. Abnormalities in these pathways resulted in the collapse of mitochondrial energy production, which in turn sensitized the cells to death. The quenching of ROS led to the amelioration of the affected pathways. Considering these observations, it can be concluded that there is a significant correlation between cisplatin and metabolic dysfunctions involving mROS as the major player. PMID:26247588

  1. Factors affecting the bioaccessibility of fluoride from seafood products.

    PubMed

    Rocha, R A; de la Fuente, B; Clemente, M J; Ruiz, A; Vélez, D; Devesa, V

    2013-09-01

    Fluoride is considered important for health because of its beneficial effect on the prevention of dental caries and on bone development in the child population. However, excessive intake has negative effects. The main pathway for exposure is oral, through consumption of drinking water, and some food products. Therefore its bioaccessibility (quantity of the element solubilized during the digestive process) is a parameter to be considered when estimating the risk/benefit associated with this element. The aim of the present study was to evaluate the influence of the digestion phase, gastrointestinal digestion factors (pH, pepsin and bile salt concentrations) and the presence of cations on the bioaccessibility of fluoride from seafood products. The results show that the solubilization of fluoride takes place entirely during the gastric phase. Its bioaccessibility is strongly influenced by conditions that favor the formation of insoluble complexes of fluoride with other elements present in the matrix. The factors that are most influential in reducing its bioaccessibility are the increase in pH in the gastric phase, the presence of cations, especially in the intestinal phase, and a low concentration of bile salts.

  2. 40 CFR 63.5984 - What emission limits must I meet for tire production affected sources?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tire production affected sources? 63.5984 Section 63.5984 Protection of Environment ENVIRONMENTAL... POLLUTANTS FOR SOURCE CATEGORIES National Emissions Standards for Hazardous Air Pollutants: Rubber Tire Manufacturing Emission Limits for Tire Production Affected Sources § 63.5984 What emission limits must I...

  3. 40 CFR Table 3 to Subpart Nnnnn of... - Performance Test Requirements for HCl Production Affected Sources

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 14 2011-07-01 2011-07-01 false Performance Test Requirements for HCl... Requirements for HCl Production Affected Sources As stated in § 63.9020, you must comply with the following requirements for performance tests for HCl production for each affected source. For each HCl process vent...

  4. Sequences affecting the regulation of solvent production in Clostridium acetobutylicum.

    PubMed

    Scotcher, Miles C; Huang, Ke-xue; Harrison, Mary L; Rudolph, Frederick B; Bennett, George N

    2003-07-01

    The high solvent phenotype of Clostridium acetobutylicum mutants B and H was complemented by the introduction of a plasmid that contains either an intact or partially-deleted copy of solR, restoring acetone and butanol production to wild-type levels. This demonstrates that the solR open reading frame on pSOLThi is not required to restore solvent levels. The promoter region upstream of alcohol dehydrogense E (adhE) was examined in efforts to identify sites that play major roles in the control of expression. A series of adhE promoter fragments was constructed and the expression of each in acid- and solvent-phases of growth was analyzed using a chloramphenicol acetyl-transferase reporter system. Our results show that a region beyond the 0A box is needed for full induction of the promoter. Additionally, we show that the presence of sequences around a possible processing site designated S2 may have a negative role in the regulation of adhE expression.

  5. Clinorotation affects morphology and ethylene production in soybean seedlings

    NASA Technical Reports Server (NTRS)

    Hilaire, E.; Peterson, B. V.; Guikema, J. A.; Brown, C. S.; Sager, J. C. (Principal Investigator)

    1996-01-01

    The microgravity environment of spaceflight influences growth, morphology and metabolism in etiolated germinating soybean. To determine if clinorotation will similarly impact these processes, we conducted ground-based studies in conjunction with two space experiment opportunities. Soybean (Glycine max [L.] Merr.) seeds were planted within BRIC (Biological Research In Canister) canisters and grown for seven days at 20 degrees C under clinorotation (1 rpm) conditions or in a stationary upright mode. Gas samples were taken daily and plants were harvested after seven days for measurement of growth and morphology. Compared to the stationary upright controls, plants exposed to clinorotation exhibited increased root length (125% greater) and fresh weight (42% greater), whereas shoot length and fresh weight decreased by 33% and 16% respectively. Plants grown under clinorotation produced twice as much ethylene as the stationary controls. Seedlings treated with triiodo benzoic acid (TIBA), an auxin transport inhibitor, under clinorotation produced 50% less ethylene than the untreated control subjected to the same gravity treatment, whereas a treatment with 2,4-D increased ethylene by five-fold in the clinorotated plants. These data suggest that slow clinorotation influences biomass partitioning and ethylene production in etiolated soybean plants.

  6. Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain.

    PubMed

    Jiang, Jian; Briedé, Jacob J; Jennen, Danyel G J; Van Summeren, Anke; Saritas-Brauers, Karen; Schaart, Gert; Kleinjans, Jos C S; de Kok, Theo M C M

    2015-04-16

    Acetaminophen (APAP) overdosage results in hepatotoxicity, but the underlying molecular mechanisms are still not completely understood. In the current study, we focused on mitochondrial-specific oxidative liver injury induced by APAP exposure. Owning to genetic polymorphisms in the CYP2E1 gene or varying inducibility by xenobiotics, the CYP2E1 mRNA level and protein activity vary extensively among individuals. As CYP2E1 is a known ROS generating enzyme, we chose HepG2 to minimize CYP2E1-induced ROS formation, which will help us better understand the APAP induced mitochondrial-specific hepatotoxicity in a subpopulation with low CYP2E1 activity. HepG2 cells were exposed to a low and toxic dose (0.5 and 10mM) of APAP and analyzed at four time points for genome-wide gene expression. Mitochondria were isolated and electron spin resonance spectroscopy was performed to measure the formation of mitochondrial ROS. The yield of ATP was measured to confirm the impact of the toxic dose of APAP on cellular energy production. Our results indicate that 10mM APAP significantly influences the expression of mitochondrial protein-encoding genes in association with an increase in mitochondrial ROS formation. Additionally, 10mM APAP affects the expression of genes encoding the subunits of electron transport chain (ETC) complexes, which may alter normal mitochondrial functions by disrupting the assembly, stability, and structural integrity of ETC complexes, leading to a measurable depletion of ATP, and cell death. The expression of mitochondrium-specific antioxidant enzyme, SOD2, is reduced which may limit the ROS scavenging ability and cause imbalance of the mitochondrial ROS homeostasis. Overall, transcriptome analysis reveals the molecular processes involved in the observed APAP-induced increase of mitochondrial ROS formation and the associated APAP-induced oxidative stress.

  7. Hyperoxia-induced p47phox activation and ROS generation is mediated through S1P transporter Spns2, and S1P/S1P1&2 signaling axis in lung endothelium.

    PubMed

    Harijith, Anantha; Pendyala, Srikanth; Ebenezer, David L; Ha, Alison W; Fu, Panfeng; Wang, Yue-Ting; Ma, Ke; Toth, Peter T; Berdyshev, Evgeny V; Kanteti, Prasad; Natarajan, Viswanathan

    2016-08-01

    Hyperoxia-induced lung injury adversely affects ICU patients and neonates on ventilator assisted breathing. The underlying culprit appears to be reactive oxygen species (ROS)-induced lung damage. The major contributor of hyperoxia-induced ROS is activation of the multiprotein enzyme complex NADPH oxidase. Sphingosine-1-phosphate (S1P) signaling is known to be involved in hyperoxia-mediated ROS generation; however, the mechanism(s) of S1P-induced NADPH oxidase activation is unclear. Here, we investigated various steps in the S1P signaling pathway mediating ROS production in response to hyperoxia in lung endothelium. Of the two closely related sphingosine kinases (SphKs)1 and 2, which synthesize S1P from sphingosine, only Sphk1(-/-) mice conferred protection against hyperoxia-induced lung injury. S1P is metabolized predominantly by S1P lyase and partial deletion of Sgpl1 (Sgpl1(+/-)) in mice accentuated lung injury. Hyperoxia stimulated S1P accumulation in human lung microvascular endothelial cells (HLMVECs), and downregulation of S1P transporter spinster homolog 2 (Spns2) or S1P receptors S1P1&2, but not S1P3, using specific siRNA attenuated hyperoxia-induced p47(phox) translocation to cell periphery and ROS generation in HLMVECs. These results suggest a role for Spns2 and S1P1&2 in hyperoxia-mediated ROS generation. In addition, p47(phox) (phox:phagocyte oxidase) activation and ROS generation was also reduced by PF543, a specific SphK1 inhibitor in HLMVECs. Our data indicate a novel role for Spns2 and S1P1&2 in the activation of p47(phox) and production of ROS involved in hyperoxia-mediated lung injury in neonatal and adult mice.

  8. Oxidative Stress in the Hypothalamus: the Importance of Calcium Signaling and Mitochondrial ROS in Body Weight Regulation.

    PubMed

    Gyengesi, Erika; Paxinos, George; Andrews, Zane B

    2012-12-01

    A considerable amount of evidence shows that reactive oxygen species (ROS) in the mammalian brain are directly responsible for cell and tissue function and dysfunction. Excessive reactive oxygen species contribute to various conditions including inflammation, diabetes mellitus, neurodegenerative diseases, tumor formation, and mental disorders such as depression. Increased intracellular calcium levels have toxic roles leading to cell death. However, the exact connection between reactive oxygen production and high calcium stress is not yet fully understood. In this review, we focus on the role of reactive oxygen species and calcium stress in hypothalamic arcuate neurons controlling feeding. We revisit the role of NPY and POMC neurons in the regulation of appetite and energy homeostasis, and consider how ROS and intracellular calcium levels affect these neurons. These novel insights give a new direction to research on hypothalamic mechanisms regulating energy homeostasis and may offer novel treatment strategies for obesity and type-2 diabetes.

  9. Photosensitizing nanoparticles and the modulation of ROS generation

    PubMed Central

    Tada, Dayane B.; Baptista, Mauricio S.

    2015-01-01

    The association of PhotoSensitizer (PS) molecules with nanoparticles (NPs) forming photosensitizing NPs, has emerged as a therapeutic strategy to improve PS tumor targeting, to protect PS from deactivation reactions and to enhance both PS solubility and circulation time. Since association with NPs usually alters PS photophysical and photochemical properties, photosensitizing NPs are an important tool to modulate ROS generation. Depending on the design of the photosensitizing NP, i.e., type of PS, the NP material and the method applied for the construction of the photosensitizing NP, the deactivation routes of the excited state can be controlled, allowing the generation of either singlet oxygen or other reactive oxygen species (ROS). Controlling the type of generated ROS is desirable not only in biomedical applications, as in Photodynamic Therapy where the type of ROS affects therapeutic efficiency, but also in other technological relevant fields like energy conversion, where the electron and energy transfer processes are necessary to increase the efficiency of photoconversion cells. The current review highlights some of the recent developments in the design of Photosensitizing NPs aimed at modulating the primary photochemical events after light absorption. PMID:26075198

  10. Quantifying ROS levels using CM-H2DCFDA and HyPer.

    PubMed

    Oparka, Monika; Walczak, Jarosław; Malinska, Dominika; van Oppen, Lisanne M P E; Szczepanowska, Joanna; Koopman, Werner J H; Wieckowski, Mariusz R

    2016-10-15

    At low levels, reactive oxygen species (ROS) can act as signaling molecules within cells. When ROS production greatly exceeds the capacity of endogenous antioxidant systems, or antioxidant levels are reduced, ROS levels increase further. The latter is associated with induction of oxidative stress and associated signal transduction and characterized by ROS-induced changes in cellular redox homeostasis and/or damaging effects on biomolecules (e.g. DNA, proteins and lipids). Given the complex mechanisms involved in ROS production and removal, in combination with the lack of reporter molecules that are truly specific for a particular type of ROS, quantification of (sub)cellular ROS levels is a challenging task. In this chapter we describe two strategies to measure ROS: one approach to assess general oxidant levels using the chemical reporter CM-H2DCFDA (5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate), and a second approach allowing more specific analysis of cytosolic hydrogen peroxide (H2O2) levels using protein-based sensors (HyPer and SypHer).

  11. The ROS-mediated pathway coupled with the MAPK-p38 signalling pathway and antioxidant system plays roles in the responses of Mytilus edulis haemocytes induced by BDE-47.

    PubMed

    Jiang, Yongshun; Tang, Xuexi; Zhou, Bin; Sun, Tianli; Chen, Hongmei; Zhao, Xinyu; Wang, You

    2017-03-18

    Our previous study found that BDE-47 could change the immune function of haemocytes in Mytilus edulis, and reactive oxygen species (ROS) might be involved in the process of physiological alteration. Here, we aimed to better understand this relationship. To accomplish this, we analysed changes in different ROS as well as various antioxidant system components. Additionally, the expression of MAPK-p38, a signalling protein regulated by ROS that helps to regulate numerous cellular processes, was also analysed. BDE-47 was given at low, medium, and high amounts. The results showed that (1) BDE-47 significantly affected ROS component levels in haemocytes. O2(-) content was increased under all conditions. H2O2 content was also increased under all conditions, except in the middle concentration group. In contrast, OH content was increased in the low and middle concentration groups and decreased in the high concentration group. (2) Estimations of the antioxidant systems revealed concentration-dependent changes. Catalase activity was increased throughout the experiment, while superoxide dismutase (SOD) exhibited a decreasing trend in the tested groups with an increase of exposure time. On day 21, only the high concentration group showed a slight increase in SOD activity compared to the control. Furthermore, glutathione peroxidase and glutathione reductase activity increased in the low and middle concentration groups but decreased in the high concentration group. The GSH/GSSG ratio increased for all treatments over time, indicating that changes in redox status occurred. (3) MAPK-p38 was activated following BDE-47 exposure. Based on our previous study, we speculate that BDE-47 exposure induces ROS production and affects the ROS-mediated pathway, which may explain the resultant functional damage observed in haemocytes. Furthermore, BDE-47 also affected the antioxidant system and altered redox status, although these changes did not ameliorate the damage caused by ROS.

  12. The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans.

    PubMed

    Yee, Callista; Yang, Wen; Hekimi, Siegfried

    2014-05-08

    The increased longevity of the C. elegans electron transport chain mutants isp-1 and nuo-6 is mediated by mitochondrial ROS (mtROS) signaling. Here we show that the mtROS signal is relayed by the conserved, mitochondria-associated, intrinsic apoptosis signaling pathway (CED-9/Bcl2, CED-4/Apaf1, and CED-3/Casp9) triggered by CED-13, an alternative BH3-only protein. Activation of the pathway by an elevation of mtROS does not affect apoptosis but protects from the consequences of mitochondrial dysfunction by triggering a unique pattern of gene expression that modulates stress sensitivity and promotes survival. In vertebrates, mtROS induce apoptosis through the intrinsic pathway to protect from severely damaged cells. Our observations in nematodes demonstrate that sensing of mtROS by the apoptotic pathway can, independently of apoptosis, elicit protective mechanisms that keep the organism alive under stressful conditions. This results in extended longevity when mtROS generation is inappropriately elevated. These findings clarify the relationships between mitochondria, ROS, apoptosis, and aging.

  13. ROS: Crucial Intermediators in the Pathogenesis of Intervertebral Disc Degeneration

    PubMed Central

    Yang, Minghui; Lan, Minghong; Liu, Chang; Zhang, Yang; Huang, Bo

    2017-01-01

    Excessive reactive oxygen species (ROS) generation in degenerative intervertebral disc (IVD) indicates the contribution of oxidative stress to IVD degeneration (IDD), giving a novel insight into the pathogenesis of IDD. ROS are crucial intermediators in the signaling network of disc cells. They regulate the matrix metabolism, proinflammatory phenotype, apoptosis, autophagy, and senescence of disc cells. Oxidative stress not only reinforces matrix degradation and inflammation, but also promotes the decrease in the number of viable and functional cells in the microenvironment of IVDs. Moreover, ROS modify matrix proteins in IVDs to cause oxidative damage of disc extracellular matrix, impairing the mechanical function of IVDs. Consequently, the progression of IDD is accelerated. Therefore, a therapeutic strategy targeting oxidative stress would provide a novel perspective for IDD treatment. Various antioxidants have been proposed as effective drugs for IDD treatment. Antioxidant supplementation suppresses ROS production in disc cells to promote the matrix synthesis of disc cells and to prevent disc cells from death and senescence in vitro. However, there is not enough in vivo evidence to support the efficiency of antioxidant supplementation to retard the process of IDD. Further investigations based on in vivo and clinical studies will be required to develop effective antioxidative therapies for IDD. PMID:28392887

  14. Reactive Oxygen Species (ROS) generation by lunar simulants

    NASA Astrophysics Data System (ADS)

    Kaur, Jasmeet; Rickman, Douglas; Schoonen, Martin A.

    2016-05-01

    .5 h. By contrast ROS is formed rapidly within 30 min when simulants are dispersed in DI, but then the concentration either stabilizes or decreases over time. The results indicate that mechanical stress and the absence of molecular oxygen and water, which are important environmental characteristics of the lunar environment, can lead to enhanced production of ROS in general. However, compositional difference among simulants is the most important factor in governing the production of ROS. Simulants with glass content in excess of 40 wt% appear to produce as much as of order of magnitude more ROS than simulants with lower glass content.

  15. Controlled Delivery of Extracellular ROS Based on Hematoporphyrin-Incorporated Polyurethane Film for Enhanced Proliferation of Endothelial Cells.

    PubMed

    Koo, Min-Ah; Kim, Bong-Jin; Lee, Mi Hee; Kwon, Byeong-Ju; Kim, Min Sung; Seon, Gyeung Mi; Kim, Dohyun; Nam, Ki Chang; Wang, Kangkyun; Kim, Yong-Rok; Park, Jong-Chul

    2016-10-04

    The principle of photodynamic treatment (PDT) involves the administration of photosensitizer (PS) at diseased tissues, followed by light irradiation to produce reactive oxygen species (ROS). In cells, a moderate increase in ROS plays an important role as signaling molecule to promote cell proliferation, whereas a severe increase of ROS causes cell damage. Previous studies have shown that low levels of ROS stimulate cell growth through PS drugs-treating PDT and non-thermal plasma treatment. However, these methods have side effects which are associated with low tissue selectivity and remaining of PS residues. To overcome such shortcomings, we designed hematoporphyrin-incorporated polyurethane (PU) film induced generation of extracellular ROS with singlet oxygen and free radicals. The film can easily control ROS production rate by regulating several parameters including light dose, PS dose. Also, its use facilitates targeted delivery of ROS to the specific lesion. Our study demonstrated that extracellular ROS could induce the formation of intracellular ROS. In vascular endothelial cells, a moderated increase in intracellular ROS also stimulated cell proliferation and cell cycle progression by accurate control of optimum levels of ROS with hematoporphyrin-incorporated polymer films. This modulation of cellular growth is expected to be an effective strategy for the design of next generation PDT.

  16. Estrogen potentiates reactive oxygen species (ROS) tolerance to initiate carcinogenesis and promote cancer malignant transformation.

    PubMed

    Tian, Hui; Gao, Zhen; Wang, Gang; Li, Huizhong; Zheng, JunNian

    2016-01-01

    Estrogen-mediated high reactive oxygen species (ROS) tolerance plays an important role in driving carcinogenesis. ROS overproduction acts as the significant effector to increase genomic instability and transduce redox-related signal pathway. Especially, estrogen-mediated mitochondrial ROS promote the mutations in mitochondrial DNA (mtDNA) and the damage to mitochondrial proteins. Moreover, estrogen-mediated ROS contribute to the alteration of energy metabolism and modulate several redox-sensitive proteins responsible for cell proliferation and anti-apoptosis. On the other hand, estrogen simultaneously performs the antioxidative beneficial functions, which protects cancer cells from the potential cytotoxic effects of estrogen-mediated ROS through activation of nuclear factor-erythroid-2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) antioxidant response. Consequently, estrogen potentiates the high ROS tolerance through increase of ROS production as well as acceleration of ROS elimination, which ultimately results in estrogen-mediated carcinogenesis and malignant transformation. However, this overdependence on antioxidant response system to resist ROS-mediated cytotoxicity also represents the "Achilles' Heel" of estrogen-mediated cancer cells. In other words, the destruction of the high ROS tolerance using antioxidant inhibitors may provide a novel and efficacious measure to selectively eliminate these cancer cells without harming normal cells. Of course, it will be necessary to define the exact situation of ROS homeostasis in the different cellular microenvironment and further decipher the mechanisms of redox regulation, which is consequently used as a new avenue to optimize the clinical therapy for estrogen-mediated cancer.

  17. Fluoxetine a novel anti-hepatitis C virus agent via ROS-, JNK-, and PPARβ/γ-dependent pathways.

    PubMed

    Young, Kung-Chia; Bai, Chyi-Huey; Su, Hui-Chen; Tsai, Pei-Ju; Pu, Chien-Yu; Liao, Chao-Sheng; Lin, Yu-Min; Lai, Hsin-Wen; Chong, Lee-Won; Tsai, Yau-Sheng; Tsao, Chiung-Wen

    2014-10-01

    More than 20% of chronic hepatitis C (CHC) patients receiving interferon-alpha (IFN-α)-based anti-hepatitis C virus (HCV) therapy experienced significant depression, which was relieved by treatment with fluoxetine. However, whether and how fluoxetine affected directly the anti-HCV therapy remained unclear. Here, we demonstrated that fluoxetine inhibited HCV infection and blocked the production of reactive oxygen species (ROS) and lipid accumulation in Huh7.5 cells. Fluoxetine facilitated the IFN-α-mediated antiviral actions via activations of signal transducer and activator of transcription (STAT)-1 and c-Jun amino-terminal kinases (JNK). Alternatively, fluoxetine elevated peroxisome proliferator-activated receptor (PPAR) response element activity under HCV infection. The inhibitory effects of fluoxetine on HCV infection and lipid accumulation, but not production of ROS, were partially reversed by the PPAR-β, -γ, and JNK antagonists. Furthermore, fluoxetine intervention to the IFN-α-2b regimen facilitated to reduce HCV titer and alanine transaminase level for CHC patients. Therefore, fluoxetine intervention to the IFN-α-2b regimen improved the efficacy of anti-HCV treatment, which might be related to blockades of ROS generation and lipid accumulation and activation of host antiviral JNK/STAT-1 and PPARβ/γ signals.

  18. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging

    PubMed Central

    Hossain, Mohammad A.; Bhattacharjee, Soumen; Armin, Saed-Moucheshi; Qian, Pingping; Xin, Wang; Li, Hong-Yu; Burritt, David J.; Fujita, Masayuki; Tran, Lam-Son P.

    2015-01-01

    Plants are constantly challenged by various abiotic stresses that negatively affect growth and productivity worldwide. During the course of their evolution, plants have developed sophisticated mechanisms to recognize external signals allowing them to respond appropriately to environmental conditions, although the degree of adjustability or tolerance to specific stresses differs from species to species. Overproduction of reactive oxygen species (ROS; hydrogen peroxide, H2O2; superoxide, O2⋅-; hydroxyl radical, OH⋅ and singlet oxygen, 1O2) is enhanced under abiotic and/or biotic stresses, which can cause oxidative damage to plant macromolecules and cell structures, leading to inhibition of plant growth and development, or to death. Among the various ROS, freely diffusible and relatively long-lived H2O2 acts as a central player in stress signal transduction pathways. These pathways can then activate multiple acclamatory responses that reinforce resistance to various abiotic and biotic stressors. To utilize H2O2 as a signaling molecule, non-toxic levels must be maintained in a delicate balancing act between H2O2 production and scavenging. Several recent studies have demonstrated that the H2O2-priming can enhance abiotic stress tolerance by modulating ROS detoxification and by regulating multiple stress-responsive pathways and gene expression. Despite the importance of the H2O2-priming, little is known about how this process improves the tolerance of plants to stress. Understanding the mechanisms of H2O2-priming-induced abiotic stress tolerance will be valuable for identifying biotechnological strategies to improve abiotic stress tolerance in crop plants. This review is an overview of our current knowledge of the possible mechanisms associated with H2O2-induced abiotic oxidative stress tolerance in plants, with special reference to antioxidant metabolism. PMID:26136756

  19. HIV protease inhibitors elicit volume-sensitive Cl− current in cardiac myocytes via mitochondrial ROS

    PubMed Central

    Deng, Wu; Baki, Lia; Yin, Jun; Zhou, Huiping; Baumgarten, Clive M.

    2010-01-01

    HIV protease inhibitors (HIV PI) reduce morbidity and mortality of HIV infection but cause multiple untoward effects. Because certain HIV PI evoke production of reactive oxygen species (ROS) and volume-sensitive Cl− current (ICl,swell) is activated by ROS, we tested whether HIV PI stimulate ICl,swell in ventricular myocytes. Ritonavir and lopinavir elicited outwardly-rectifying Cl− currents under isosmotic conditions that were abolished by the selective ICl,swell-blocker DCPIB. In contrast, amprenavir, nelfinavir, and raltegravir, an integrase inhibitor, did not modulate ICl,swell acutely. Ritonavir also reduced action potential duration, but amprenavir did not. ICl,swell activation was attributed to ROS because ebselen, an H2O2, scavenger, suppressed ritonavir- and lopinavir-induced ICl,swell. Major ROS sources in cardiomyocytes are sarcolemmal NADPH oxidase and mitochondria. The specific NADPH oxidase inhibitor apocynin failed to block ritonavir- or lopinavir-induced currents, although it blocks ICl,swell elicited by osmotic swelling or stretch. In contrast, rotenone, a mitochondrial e− transport inhibitor, suppressed both ritonavir- and lopinavir-induced ICl,swell. ROS production was measured in HL-1 cardiomyocytes with C-H2DCFDA-AM and mitochondrial membrane potential (ΔΨm) with JC-1. Flow cytometry confirmed that ritonavir and lopinavir but not amprenavir, nelfinavir, or raltegravir augmented ROS production, and HIV PI-induced ROS production was suppressed by rotenone but not NADPH oxidase blockade. Moreover, ritonavir, but not amprenavir, depolarized ΔΨm. These data suggest ritonavir and lopinavir activated ICl,swell via mitochondrial ROS production that was independent of NADPH oxidase. ROS-dependent modulation of ICl,swell and other ion channels by HIV PI may contribute to some of their actions in heart and perhaps other tissues. PMID:20736017

  20. Past and future climate patterns affecting temperate, sub-tropical and tropical horticultural crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial horticultural crop production will be impacted by climate change effects on temperature, water availability, solar radiation, air pollution, and carbon dioxide. Horticultural crop value is derived from both the quantity and the quality of the harvested product; both of which are affected ...

  1. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles.

    PubMed

    Abdal Dayem, Ahmed; Hossain, Mohammed Kawser; Lee, Soo Bin; Kim, Kyeongseok; Saha, Subbroto Kumar; Yang, Gwang-Mo; Choi, Hye Yeon; Cho, Ssang-Goo

    2017-01-10

    Nanoparticles (NPs) possess unique physical and chemical properties that make them appropriate for various applications. The structural alteration of metallic NPs leads to different biological functions, specifically resulting in different potentials for the generation of reactive oxygen species (ROS). The amount of ROS produced by metallic NPs correlates with particle size, shape, surface area, and chemistry. ROS possess multiple functions in cellular biology, with ROS generation a key factor in metallic NP-induced toxicity, as well as modulation of cellular signaling involved in cell death, proliferation, and differentiation. In this review, we briefly explained NP classes and their biomedical applications and describe the sources and roles of ROS in NP-related biological functions in vitro and in vivo. Furthermore, we also described the roles of metal NP-induced ROS generation in stem cell biology. Although the roles of ROS in metallic NP-related biological functions requires further investigation, modulation and characterization of metallic NP-induced ROS production are promising in the application of metallic NPs in the areas of regenerative medicine and medical devices.

  2. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles

    PubMed Central

    Abdal Dayem, Ahmed; Hossain, Mohammed Kawser; Lee, Soo Bin; Kim, Kyeongseok; Saha, Subbroto Kumar; Yang, Gwang-Mo; Choi, Hye Yeon; Cho, Ssang-Goo

    2017-01-01

    Nanoparticles (NPs) possess unique physical and chemical properties that make them appropriate for various applications. The structural alteration of metallic NPs leads to different biological functions, specifically resulting in different potentials for the generation of reactive oxygen species (ROS). The amount of ROS produced by metallic NPs correlates with particle size, shape, surface area, and chemistry. ROS possess multiple functions in cellular biology, with ROS generation a key factor in metallic NP-induced toxicity, as well as modulation of cellular signaling involved in cell death, proliferation, and differentiation. In this review, we briefly explained NP classes and their biomedical applications and describe the sources and roles of ROS in NP-related biological functions in vitro and in vivo. Furthermore, we also described the roles of metal NP-induced ROS generation in stem cell biology. Although the roles of ROS in metallic NP-related biological functions requires further investigation, modulation and characterization of metallic NP-induced ROS production are promising in the application of metallic NPs in the areas of regenerative medicine and medical devices. PMID:28075405

  3. PKC/ROS-Mediated NLRP3 Inflammasome Activation Is Attenuated by Leishmania Zinc-Metalloprotease during Infection

    PubMed Central

    Jung, Jee Yong; Chang, Kwang-Poo; Olivier, Martin

    2015-01-01

    Parasites of the Leishmania genus infect and survive within macrophages by inhibiting several microbicidal molecules, such as nitric oxide and pro-inflammatory cytokines. In this context, various species of Leishmania have been reported to inhibit or reduce the production of IL-1β both in vitro and in vivo. However, the mechanism whereby Leishmania parasites are able to affect IL-1β production and secretion by macrophages is still not fully understood. Dependent on the stimulus at hand, the maturation of IL-1β is facilitated by different inflammasome complexes. The NLRP3 inflammasome has been shown to be of pivotal importance in the detection of danger molecules such as inorganic crystals like asbestos, silica and malarial hemozoin, (HZ) as well as infectious agents. In the present work, we investigated whether Leishmania parasites modulate NLRP3 inflammasome activation. Using PMA-differentiated THP-1 cells, we demonstrate that Leishmania infection effectively inhibits macrophage IL-1β production upon stimulation. In this context, the expression and activity of the metalloprotease GP63 - a critical virulence factor expressed by all infectious Leishmania species - is a prerequisite for a Leishmania-mediated reduction of IL-1β secretion. Accordingly, L. mexicana, purified GP63 and GP63-containing exosomes, caused the inhibition of macrophage IL-1β production. Leishmania-dependent suppression of IL-1β secretion is accompanied by an inhibition of reactive oxygen species (ROS) production that has previously been shown to be associated with NLRP3 inflammasome activation. The observed loss of ROS production was due to an impaired PKC-mediated protein phosphorylation. Furthermore, ROS-independent inflammasome activation was inhibited, possibly due to an observed GP63-dependent cleavage of inflammasome and inflammasome-related proteins. Collectively for the first time, we herein provide evidence that the protozoan parasite Leishmania, through its surface

  4. Production of arabitol from glycerol: strain screening and study of factors affecting production yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycerol is a major byproduct from biodiesel production, and developing new uses for glycerol is imperative to overall economics and sustainability of the biodiesel industry. With the aim of producing xylitol and/or arabitol as the value-added products from glycerol, 214 yeast strains, many osmotole...

  5. Mitochondrial flashes: new insights into mitochondrial ROS signalling and beyond

    PubMed Central

    Hou, Tingting; Wang, Xianhua; Ma, Qi; Cheng, Heping

    2014-01-01

    Respiratory mitochondria undergo stochastic, intermittent bursts of superoxide production accompanied by transient depolarization of the mitochondrial membrane potential and reversible opening of the membrane permeability transition pore. These discrete events were named ‘superoxide flashes’ for the reactive oxygen species (ROS) signal involved, and ‘mitochondrial flashes’ (mitoflashes) for the entirety of the multifaceted and intertwined mitochondrial processes. In contrast to the flashless basal ROS production of ‘homeostatic ROS’ for redox regulation, bursting ROS production during mitoflashes may provide ‘signalling ROS’ at the organelle level, fulfilling distinctly different cell functions. Mounting evidence indicates that mitoflash frequency is richly regulated over a broad range, and represents a novel, universal, and ‘digital’ readout of mitochondrial functional status and of the mitochondrial stress response. An emerging view is that mitoflashes participate in vital processes including metabolism, cell differentiation, the stress response and ageing. These recent advances shed new light on the role of mitochondrial functional dynamics in health and disease. PMID:25038239

  6. Lysosome-controlled efficient ROS overproduction against cancer cells with a high pH-responsive catalytic nanosystem

    NASA Astrophysics Data System (ADS)

    Fu, Jingke; Shao, Yiran; Wang, Liyao; Zhu, Yingchun

    2015-04-01

    Excess reactive oxygen species (ROS) have been proved to damage cancer cells efficiently. ROS overproduction is thus greatly desirable for cancer therapy. To date, ROS production is generally uncontrollable and outside cells, which always bring severe side-effects in the vasculature. Since most ROS share a very short half-life and primarily react close to their site of formation, it would be more efficient if excess ROS are controllably produced inside cancer cells. Herein, we report an efficient lysosome-controlled ROS overproduction via a pH-responsive catalytic nanosystem (FeOx-MSNs), which catalyze the decomposition of H2O2 to produce considerable ROS selectively inside the acidic lysosomes (pH 5.0) of cancer cells. After a further incorporation of ROS-sensitive TMB into the nanosystem (FeOx-MSNs-TMB), both a distinct cell labeling and an efficient death of breast carcinoma cells are obtained. This lysosome-controlled efficient ROS overproduction suggests promising applications in cancer treatments.Excess reactive oxygen species (ROS) have been proved to damage cancer cells efficiently. ROS overproduction is thus greatly desirable for cancer therapy. To date, ROS production is generally uncontrollable and outside cells, which always bring severe side-effects in the vasculature. Since most ROS share a very short half-life and primarily react close to their site of formation, it would be more efficient if excess ROS are controllably produced inside cancer cells. Herein, we report an efficient lysosome-controlled ROS overproduction via a pH-responsive catalytic nanosystem (FeOx-MSNs), which catalyze the decomposition of H2O2 to produce considerable ROS selectively inside the acidic lysosomes (pH 5.0) of cancer cells. After a further incorporation of ROS-sensitive TMB into the nanosystem (FeOx-MSNs-TMB), both a distinct cell labeling and an efficient death of breast carcinoma cells are obtained. This lysosome-controlled efficient ROS overproduction suggests

  7. 40 CFR 63.5987 - What are my alternatives for meeting the emission limits for tire cord production affected sources?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the emission limits for tire cord production affected sources? 63.5987 Section 63.5987 Protection of... Pollutants: Rubber Tire Manufacturing Emission Limits for Tire Cord Production Affected Sources § 63.5987 What are my alternatives for meeting the emission limits for tire cord production affected sources?...

  8. Harnessing host ROS-generating machinery for the robust genome replication of a plant RNA virus.

    PubMed

    Hyodo, Kiwamu; Hashimoto, Kenji; Kuchitsu, Kazuyuki; Suzuki, Nobuhiro; Okuno, Tetsuro

    2017-02-14

    As sessile organisms, plants have to accommodate to rapid changes in their surrounding environment. Reactive oxygen species (ROS) act as signaling molecules to transduce biotic and abiotic stimuli into plant stress adaptations. It is established that a respiratory burst oxidase homolog B of Nicotiana benthamiana (NbRBOHB) produces ROS in response to microbe-associated molecular patterns to inhibit pathogen infection. Plant viruses are also known as causative agents of ROS induction in infected plants; however, the function of ROS in plant-virus interactions remains obscure. Here, we show that the replication of red clover necrotic mosaic virus (RCNMV), a plant positive-strand RNA [(+)RNA] virus, requires NbRBOHB-mediated ROS production. The RCNMV replication protein p27 plays a pivotal role in this process, redirecting the subcellular localization of NbRBOHB and a subgroup II calcium-dependent protein kinase of N. benthamiana (NbCDPKiso2) from the plasma membrane to the p27-containing intracellular aggregate structures. p27 also induces an intracellular ROS burst in an RBOH-dependent manner. NbCDPKiso2 was shown to be an activator of the p27-triggered ROS accumulations and to be required for RCNMV replication. Importantly, this RBOH-derived ROS is essential for robust viral RNA replication. The need for RBOH-derived ROS was demonstrated for the replication of another (+)RNA virus, brome mosaic virus, suggesting that this characteristic is true for plant (+)RNA viruses. Collectively, our findings revealed a hitherto unknown viral strategy whereby the host ROS-generating machinery is diverted for robust viral RNA replication.

  9. Extracellular ATP activates MAPK and ROS signaling during injury response in the fungus Trichoderma atroviride

    PubMed Central

    Medina-Castellanos, Elizabeth; Esquivel-Naranjo, Edgardo U.; Heil, Martin; Herrera-Estrella, Alfredo

    2014-01-01

    The response to mechanical damage is crucial for the survival of multicellular organisms, enabling their adaptation to hostile environments. Trichoderma atroviride, a filamentous fungus of great importance in the biological control of plant diseases, responds to mechanical damage by activating regenerative processes and asexual reproduction (conidiation). During this response, reactive oxygen species (ROS) are produced by the NADPH oxidase complex. To understand the underlying early signaling events, we evaluated molecules such as extracellular ATP (eATP) and Ca2+ that are known to trigger wound-induced responses in plants and animals. Concretely, we investigated the activation of mitogen-activated protein kinase (MAPK) pathways by eATP, Ca2+, and ROS. Indeed, application of exogenous ATP and Ca2+ triggered conidiation. Furthermore, eATP promoted the Nox1-dependent production of ROS and activated a MAPK pathway. Mutants in the MAPK-encoding genes tmk1 and tmk3 were affected in wound-induced conidiation, and phosphorylation of both Tmk1 and Tmk3 was triggered by eATP. We conclude that in this fungus, eATP acts as a damage-associated molecular pattern (DAMP). Our data indicate the existence of an eATP receptor and suggest that in fungi, eATP triggers pathways that converge to regulate asexual reproduction genes that are required for injury-induced conidiation. By contrast, Ca2+ is more likely to act as a downstream second messenger. The early steps of mechanical damage response in T. atroviride share conserved elements with those known from plants and animals. PMID:25484887

  10. Differential production of reactive oxygen species in distinct brain regions of hypoglycemic mice.

    PubMed

    Amador-Alvarado, Leticia; Montiel, Teresa; Massieu, Lourdes

    2014-09-01

    Hypoglycemia is a serious complication of insulin therapy in patients suffering from type 1 Diabetes Mellitus. Severe hypoglycemia leading to coma (isoelectricity) induces massive neuronal death in vulnerable brain regions such as the hippocampus, the striatum and the cerebral cortex. It has been suggested that the production of reactive oxygen species (ROS) and oxidative stress is involved in hypoglycemic brain damage, and that ROS generation is stimulated by glucose reintroduction (GR) after the hypoglycemic coma. However, the distribution of ROS in discrete brain regions has not been studied in detail. Using the oxidation sensitive marker dihydroethidium (DHE) we have investigated the distribution of ROS in different regions of the mouse brain during prolonged severe hypoglycemia without isoelectricity, as well as the effect of GR on ROS levels. Results show that ROS generation increases in the hippocampus, the cerebral cortex and the striatum after prolonged severe hypoglycemia before the coma. The hippocampus showed the largest increases in ROS levels. GR further stimulated ROS production in the hippocampus and the striatum while in the cerebral cortex, only the somatosensory and parietal areas were significantly affected by GR. Results suggest that ROS are differentially produced during the hypoglycemic insult and that a different response to GR is present among distinct brain regions.

  11. A guided search genetic algorithm using mined rules for optimal affective product design

    NASA Astrophysics Data System (ADS)

    Fung, Chris K. Y.; Kwong, C. K.; Chan, Kit Yan; Jiang, H.

    2014-08-01

    Affective design is an important aspect of new product development, especially for consumer products, to achieve a competitive edge in the marketplace. It can help companies to develop new products that can better satisfy the emotional needs of customers. However, product designers usually encounter difficulties in determining the optimal settings of the design attributes for affective design. In this article, a novel guided search genetic algorithm (GA) approach is proposed to determine the optimal design attribute settings for affective design. The optimization model formulated based on the proposed approach applied constraints and guided search operators, which were formulated based on mined rules, to guide the GA search and to achieve desirable solutions. A case study on the affective design of mobile phones was conducted to illustrate the proposed approach and validate its effectiveness. Validation tests were conducted, and the results show that the guided search GA approach outperforms the GA approach without the guided search strategy in terms of GA convergence and computational time. In addition, the guided search optimization model is capable of improving GA to generate good solutions for affective design.

  12. Production of cercosporin toxin by the phytopathogenic Cercospora fungi is affected by diverse environmental signals.

    PubMed

    You, Bang-Jau; Lee, Miin-Hui; Chung, Kuang-Ren

    2008-04-01

    Cercosporin is a polyketide phytotoxin produced by many phytopathogenic Cercospora spp. We investigated environmental signals that have elaborate control of cercosporin production. Light is the most critical factor for cercosporin production. Cercospora nicotianae accumulated substantial quantities of cercosporin only when grown on a particular potato dextrose agar under light but produced little cercosporin on other brands of potato dextrose agar or media with defined ingredients. In addition to light regulation, numerous factors including salts, buffers, and ions markedly affected cercosporin production. By contrast, pH had little effect on cercosporin production. Depletion or alteration of the carbon or nitrogen sources also affected cercosporin production. Production of cercosporin was elevated to varying levels by metal ions, such as cobalt, ferric, manganese, and zinc. Significant differences in cercosporin production were observed among various Cercospora species. Further, regulation of cercosporin production by phosphate buffer, ammonium, LiCl, but not metal ions appeared to occur at transcriptional levels. Expression of the genes involved in cercosporin biosynthesis and regulation decreased markedly and was closely concomitant with the amounts of cercosporin reduced as the fungus was grown on medium containing phosphate, LiCl, ammonium, or dimethyl sulfoxide. The results reveal the complexity of cercosporin production at the physiological and genetic levels. A model delineating regulatory controls of cercosporin biosynthesis is proposed and discussed.

  13. Purple Nutsedge Tuber Productivity as Affected by Organic Mulches in a Watermelon Production System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research was conducted in Isabela, Puerto Rico, to determine the tuber productivity of the weed purple nutsedge (PN) and the yield of ‘Crimson Sweet' watermelon when grown with or without organic soil bed mulches [hays of millet (Pennisetum glaucum), nutsedge (Cyperus rotundus), sunnhemp (Crotalaria...

  14. LOX-1 and ROS, inseparable factors in the process of endothelial damage.

    PubMed

    Lubrano, V; Balzan, S

    2014-08-01

    Lectin-like oxidized low-density lipoprotein (LOX-1) has been identified in endothelial cells as the main receptor of oxidized low-density lipoprotein (OxLDL). LOX-1 is upregulated in the presence of pathological conditions including atherosclerosis, hypertension, and diabetes because it acts as a mediator of "endothelial dysfunction". It promotes the generation of superoxide anion (O2(-)), the inhibition of nitric oxide (NO) production and the increment of endothelial adhesiveness to monocytes. Recently, it was reported that OxLDL, binding to LOX-1, determined a significant increase in the generation of reactive oxygen species (ROS), suggesting the involvement of signaling pathways such as mitogen-activated protein kinases (MAPKs). It is now generally accepted that ROS act indirectly on the modulation of LOX-1 expression because ROS oxidize native LDL. Moreover, LOX-1 activation per se may stimulate ROS generation. Accordingly, our findings showed that high levels of ROS can directly increase LOX-1 production in microvascular endothelial cells (HMEC-1). It has been reported that OxLDL, usually > 20 μg protein/ml, induced apoptosis in a variety of cell types. At low concentrations (< 5 μg protein/ml) OxLDL appears to be associated with cell proliferation and low levels of ROS-induced capillary tube formation in endothelial cells. Our data and those of the literature indicate the existence of a direct control of LOX-1 by ROS. Although ROS in large amounts clearly have detrimental effects on cell biology, small amounts of ROS could have a beneficial effect, suggesting its therapeutic potential for reducing ischemic tissue.

  15. Differential effects of buffer pH on Ca2+-induced ROS emission with inhibited mitochondrial complexes I and III

    PubMed Central

    Lindsay, Daniel P.; Camara, Amadou K. S.; Stowe, David F.; Lubbe, Ryan; Aldakkak, Mohammed

    2015-01-01

    Excessive mitochondrial reactive oxygen species (ROS) emission is a critical component in the etiology of ischemic injury. Complex I and complex III of the electron transport chain are considered the primary sources of ROS emission during cardiac ischemia and reperfusion (IR) injury. Several factors modulate ischemic ROS emission, such as an increase in extra-matrix Ca2+, a decrease in extra-matrix pH, and a change in substrate utilization. Here we examined the combined effects of these factors on ROS emission from respiratory complexes I and III under conditions of simulated IR injury. Guinea pig heart mitochondria were suspended in experimental buffer at a given pH and incubated with or without CaCl2. Mitochondria were then treated with either pyruvate, a complex I substrate, followed by rotenone, a complex I inhibitor, or succinate, a complex II substrate, followed by antimycin A, a complex III inhibitor. H2O2 release rate and matrix volume were compared with and without adding CaCl2 and at pH 7.15, 6.9, or 6.5 with pyruvate + rotenone or succinate + antimycin A to simulate conditions that may occur during in vivo cardiac IR injury. We found a large increase in H2O2 release with high [CaCl2] and pyruvate + rotenone at pH 6.9, but not at pHs 7.15 or 6.5. Large increases in H2O2 release rate also occurred at each pH with high [CaCl2] and succinate + antimycin A, with the highest levels observed at pH 7.15. The increases in H2O2 release were associated with significant mitochondrial swelling, and both H2O2 release and swelling were abolished by cyclosporine A, a desensitizer of the mitochondrial permeability transition pore (mPTP). These results indicate that ROS production by complex I and by complex III is differently affected by buffer pH and Ca2+ loading with mPTP opening. The study suggests that changes in the levels of cytosolic Ca2+ and pH during IR alter the relative amounts of ROS produced at mitochondrial respiratory complex I and complex III. PMID

  16. Demographic and Academic Factors Affecting Research Productivity at the University of KwaZulu-Natal

    ERIC Educational Resources Information Center

    North, D.; Zewotir, T.; Murray, M.

    2011-01-01

    Research output affects both the strength and funding of universities. Accordingly university academic staff members are under pressure to be active and productive in research. Though all academics have research interest, all are not producing research output which is accredited by the Department of Education (DOE). We analyzed the demographic and…

  17. Factors that Affect Student Motivation in a Dairy Products Elective Course

    ERIC Educational Resources Information Center

    Ismail, Baraem; Hayes, Kirby

    2005-01-01

    Student motivation is influenced by instructional approach. Motivation is a function of initiating and sustaining goal-directed behavior. The objective of this study was to identify factors (positive and negative) that affect motivation in a junior-level dairy products elective course. Student attitudes were surveyed each year half-way through the…

  18. Factors affecting pheromone production by the pepper weevil, Anthonomus eugenii Cano (Coleoptera: Curculionidae) and collection efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several factors which might affect pheromone production by male pepper weevils, Anthonomus eugenii Cano (Coleoptera: Curculionidae), were investigated. Included were a comparison of porous polymer adsorbents (Tenax versus Super Q), the effect of male age, the effect of time of day, the effect of mal...

  19. 75 FR 50033 - WTO Dispute Settlement Proceeding Regarding United States-Measures Affecting the Production and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... From the Federal Register Online via the Government Publishing Office OFFICE OF THE UNITED STATES TRADE REPRESENTATIVE WTO Dispute Settlement Proceeding Regarding United States-- Measures Affecting the Production and Sale of Clove Cigarettes AGENCY: Office of the United States Trade Representative....

  20. Quantification of Basal and Stimulated ROS Levels as Predictors of Islet Potency and Function

    PubMed Central

    Armann, B.; Hanson, M. S.; Hatch, E.; Steffen, A.; Fernandez, L. A.

    2009-01-01

    We have developed a luminol-based assay using intact islets, which allows for quantification of reactive oxygen species (ROS). In addition, an index capable of characterizing metabolic and mitochondrial integrity prior to transplantation was created based on the capacity of islets to respond to high glucose and rotenone (mitochondrial respiratory chain complex I inhibitor) by production of ROS. To validate this assay, lipid peroxidation and antioxidative defense capacity were evaluated by detection of malondialdehyde (MDA) levels and glutathione peroxidase activity (GPx), respectively. Also, flow cytometric analyses of ROS (dihydroethidine), apoptosis (Annexin V, active caspases), necrosis (Topro3), and mitochondrial membrane potential (JC-1) were done in parallel to correlate with changes in luminol-measured ROS. ATP/ADP ratios were quantified by HPLC and the predictive value of ROS measurement on islet functional potency was correlated with capacity to reverse diabetes in a streptozotocin-induced diabetic NOD.scid mouse model as well as in human transplant recipients. Our data demonstrate that levels of ROS in islets correlate with the percentage of apoptotic cells and their functional potency in vivo. The ROS indices following glucose and rotenone exposure are indicative of metabolic potency and mitochondrial integrity and can be used as surrogate markers to evaluate the quality of islets prior to transplantation. PMID:17227556

  1. Modeling Local X-ROS and Calcium Signaling in the Heart.

    PubMed

    Limbu, Sarita; Hoang-Trong, Tuan M; Prosser, Benjamin L; Lederer, W Jonathan; Jafri, M Saleet

    2015-11-17

    Stretching single ventricular cardiac myocytes has been shown experimentally to activate transmembrane nicotinamide adenine dinucleotide phosphate oxidase type 2 to produce reactive oxygen species (ROS) and increase the Ca2+ spark rate in a process called X-ROS signaling. The increase in Ca2+ spark rate is thought to be due to an increase in ryanodine receptor type 2 (RyR2) open probability by direct oxidation of the RyR2 protein complex. In this article, a computational model is used to examine the regulation of ROS and calcium homeostasis by local, subcellular X-ROS signaling and its role in cardiac excitation-contraction coupling. To this end, a four-state RyR2 model was developed that includes an X-ROS-dependent RyR2 mode switch. When activated, [Ca2+]i-sensitive RyR2 open probability increases, and the Ca2+ spark rate changes in a manner consistent with experimental observations. This, to our knowledge, new model is used to study the transient effects of diastolic stretching and subsequent ROS production on RyR2 open probability, Ca2+ sparks, and the myoplasmic calcium concentration ([Ca2+]i) during excitation-contraction coupling. The model yields several predictions: 1) [ROS] is produced locally near the RyR2 complex during X-ROS signaling and increases by an order of magnitude more than the global ROS signal during myocyte stretching; 2) X-ROS activation just before the action potential, corresponding to ventricular filling during diastole, increases the magnitude of the Ca2+ transient; 3) during prolonged stretching, the X-ROS-induced increase in Ca2+ spark rate is transient, so that long-sustained stretching does not significantly increase sarcoplasmic reticulum Ca2+ leak; and 4) when the chemical reducing capacity of the cell is decreased, activation of X-ROS signaling increases sarcoplasmic reticulum Ca2+ leak and contributes to global oxidative stress, thereby increases the possibility of arrhythmia. The model provides quantitative information not

  2. Oxygen Consumption and Usage During Physical Exercise: The Balance Between Oxidative Stress and ROS-Dependent Adaptive Signaling

    PubMed Central

    Zhao, Zhongfu; Koltai, Erika; Ohno, Hideki; Atalay, Mustafa

    2013-01-01

    Abstract The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein–protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling. Antioxid. Redox Signal. 18, 1208–1246. PMID:22978553

  3. Analysis of extrinsic and intrinsic factors affecting event related desynchronization production.

    PubMed

    Takata, Yohei; Kondo, Toshiyuki; Saeki, Midori; Izawa, Jun; Takeda, Kotaro; Otaka, Yohei; It, Koji

    2012-01-01

    Recently there has been an increase in the number of stroke patients with motor paralysis. Appropriate re-afferent sensory feedback synchronized with a voluntary motor intention would be effective for promoting neural plasticity in the stroke rehabilitation. Therefore, BCI technology is considered to be a promising approach in the neuro-rehabilitation. To estimate human motor intention, an event-related desynchronization (ERD), a feature of electroencephalogram (EEG) evoked by motor execution or motor imagery is usually used. However, there exists various factors that affect ERD production, and its neural mechanism is still an open question. As a preliminary stage, we evaluate mutual effects of intrinsic (voluntary motor imagery) and extrinsic (visual and somatosensory stimuli) factors on the ERD production. Experimental results indicate that these three factors are not always additively interacting with each other and affecting the ERD production.

  4. Endoplasmic Reticulum Stress and Associated ROS

    PubMed Central

    Zeeshan, Hafiz Maher Ali; Lee, Geum Hwa; Kim, Hyung-Ryong; Chae, Han-Jung

    2016-01-01

    The endoplasmic reticulum (ER) is a fascinating network of tubules through which secretory and transmembrane proteins enter unfolded and exit as either folded or misfolded proteins, after which they are directed either toward other organelles or to degradation, respectively. The ER redox environment dictates the fate of entering proteins, and the level of redox signaling mediators modulates the level of reactive oxygen species (ROS). Accumulating evidence suggests the interrelation of ER stress and ROS with redox signaling mediators such as protein disulfide isomerase (PDI)-endoplasmic reticulum oxidoreductin (ERO)-1, glutathione (GSH)/glutathione disuphide (GSSG), NADPH oxidase 4 (Nox4), NADPH-P450 reductase (NPR), and calcium. Here, we reviewed persistent ER stress and protein misfolding-initiated ROS cascades and their significant roles in the pathogenesis of multiple human disorders, including neurodegenerative diseases, diabetes mellitus, atherosclerosis, inflammation, ischemia, and kidney and liver diseases. PMID:26950115

  5. Mitochondrial ROS Signaling in Organismal Homeostasis

    PubMed Central

    Shadel, Gerald S.; Horvath, Tamas L.

    2015-01-01

    Summary Generation, transformation, and utilization of organic molecules in support of cellular differentiation, growth, and maintenance are basic tenets that define life. In eukaryotes, mitochondrial oxygen consumption plays a central role in these processes. During the process of oxidative phosphorylation, mitochondria utilize oxygen to generate ATP from organic fuel molecules but in the process also produce reactive oxygen species (ROS). While ROS have long been appreciated for their damage-promoting, detrimental effects, there is now a greater understanding of their roles as signaling molecules. Here, we review mitochondrial ROS-mediated signaling pathways with an emphasis on how they are involved in various basal and adaptive physiological responses that control organismal homeostasis. PMID:26496603

  6. Mitochondrial ROS Metabolism: 10 Years Later

    PubMed Central

    Kushnareva, Y. E.; Murphy, A. N.

    2015-01-01

    The role of mitochondria in oxidative stress is well recognized, but many questions are still to be answered. This article is intended to update our comprehensive review in 2005 by highlighting the progress in understanding of mitochondrial reactive oxygen species (ROS) metabolism over the past 10 years. We review the recently identified or re-appraised sources of ROS generation in mitochondria, such as p66shc protein, succinate dehydrogenase, and recently discovered properties of the mitochondrial antioxidant system. We also reflect upon some controversies, disputes, and misconceptions that confound the field. PMID:26071769

  7. Phonological similarity affects production of gestures, even in the absence of overt speech

    PubMed Central

    Nozari, Nazbanou; Göksun, Tilbe; Thompson-Schill, Sharon L.; Chatterjee, Anjan

    2015-01-01

    Highlights Does phonological similarity affect gesture production in the absence of speech?Participants produced gestures from pictures with no words presented or spoken.Same pictures and gestures but different training labels were used.Phonologically similar labels led to more errors in subsequent gestures.Thus, phonological similarity affects gesture production in the absence of speech. Are manual gestures affected by inner speech? This study tested the hypothesis that phonological form influences gesture by investigating whether phonological similarity between words that describe motion gestures creates interference for production of those gestures in the absence of overt speech. Participants learned to respond to a picture of a bottle by gesturing to open the bottle's cap, and to a picture of long hair by gesturing to twirl the hair. In one condition, the gestures were introduced with phonologically-similar labels “twist” and “twirl” (similar condition), while in the other condition, they were introduced with phonologically-dissimilar labels “unscrew” and “twirl” (dissimilar condition). During the actual experiment, labels were not produced and participants only gestured by looking at pictures. In both conditions, participants also gestured to a control pair that was used as a baseline. Participants made significantly more errors on gestures in the similar than dissimilar condition after correction for baseline differences. This finding shows the influence of phonology on gesture production in the absence of overt speech and poses new constraints on the locus of the interaction between language and gesture systems. PMID:26441724

  8. 40 CFR Table 4 to Subpart III of... - Compliance Requirements for Slabstock Foam Production Affected Sources Complying With the Source...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Foam Production Affected Sources Complying With the Source-Wide Emission Limitation 4 Table 4 to... Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production Pt. 63, Subpt. III, Table 4 Table 4 to Subpart III of Part 63—Compliance Requirements for Slabstock Foam Production Affected...

  9. Does Dietary Mitigation of Enteric Methane Production Affect Rumen Function and Animal Productivity in Dairy Cows?

    PubMed Central

    Veneman, Jolien B.; Muetzel, Stefan; Hart, Kenton J.; Faulkner, Catherine L.; Moorby, Jon M.; Perdok, Hink B.; Newbold, Charles J.

    2015-01-01

    It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; P<0.02) and increased hydrogen (P<0.03) emissions in both experiments. Furthermore, the effect of nitrate on gaseous emissions was accompanied by an increased rumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/ g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations. PMID:26509835

  10. Surfactin inducing mitochondria-dependent ROS to activate MAPKs, NF-κB and inflammasomes in macrophages for adjuvant activity.

    PubMed

    Gan, Ping; Gao, Zhenqiu; Zhao, Xiuyun; Qi, Gaofu

    2016-12-14

    Surfactin, a natural lipopeptide, can be used both as parenteral and non-parenteral adjuvant for eliciting immune response. However, the mechanisms that confer its adjuvant properties have not been fully explored. By staining with NHS-Rhodamine B labeled surfactin and Mito-Tracker Green, we found surfactin could penetrate into macrophages to bind with mitochondria, following induce ROS that could be inhibited by mitochondria-dependent ROS inhibitor. ROS enhanced p38 MAPK and JNK expression, as well their phorsphorylation, following activated NF-κB nuclear translocation in macrophages that was obviously inhibited by mitochondria-dependent ROS inhibitor. However, inhibition of ROS production only weakened p38 MAPK and JNK expression, but not their phosphorylation in macrophages. As a result, surfaction could activate NF-κB to release TNF-α by the mitochondria-dependent ROS signalling pathway. ROS also induced macrophages apoptosis to release endogenous danger signals, following activated inflammasomes of NLRP1, NLRP3, IPAF and AIM2 in vitro and only NLRP1 in vivo, as well caspase-1 and IL-1 in macrophages, which were significantly inhibited by pre-treatment with ROS inhibitors. Collectively, surfactin as a kind of non-pathogen-associated molecular patterns, modulates host innate immunity by multiple signalling pathways, including induction of mitochondria-dependent ROS, activating MAPKs and NF-κB, and inducing cell apoptosis to realease endogenous danger signals for activation of inflammasomes.

  11. Surfactin inducing mitochondria-dependent ROS to activate MAPKs, NF-κB and inflammasomes in macrophages for adjuvant activity

    PubMed Central

    Gan, Ping; Gao, Zhenqiu; Zhao, Xiuyun; Qi, Gaofu

    2016-01-01

    Surfactin, a natural lipopeptide, can be used both as parenteral and non-parenteral adjuvant for eliciting immune response. However, the mechanisms that confer its adjuvant properties have not been fully explored. By staining with NHS-Rhodamine B labeled surfactin and Mito-Tracker Green, we found surfactin could penetrate into macrophages to bind with mitochondria, following induce ROS that could be inhibited by mitochondria-dependent ROS inhibitor. ROS enhanced p38 MAPK and JNK expression, as well their phorsphorylation, following activated NF-κB nuclear translocation in macrophages that was obviously inhibited by mitochondria-dependent ROS inhibitor. However, inhibition of ROS production only weakened p38 MAPK and JNK expression, but not their phosphorylation in macrophages. As a result, surfaction could activate NF-κB to release TNF-α by the mitochondria-dependent ROS signalling pathway. ROS also induced macrophages apoptosis to release endogenous danger signals, following activated inflammasomes of NLRP1, NLRP3, IPAF and AIM2 in vitro and only NLRP1 in vivo, as well caspase-1 and IL-1 in macrophages, which were significantly inhibited by pre-treatment with ROS inhibitors. Collectively, surfactin as a kind of non-pathogen-associated molecular patterns, modulates host innate immunity by multiple signalling pathways, including induction of mitochondria-dependent ROS, activating MAPKs and NF-κB, and inducing cell apoptosis to realease endogenous danger signals for activation of inflammasomes. PMID:27966632

  12. Lysosome-controlled efficient ROS overproduction against cancer cells with a high pH-responsive catalytic nanosystem.

    PubMed

    Fu, Jingke; Shao, Yiran; Wang, Liyao; Zhu, Yingchun

    2015-04-28

    Excess reactive oxygen species (ROS) have been proved to damage cancer cells efficiently. ROS overproduction is thus greatly desirable for cancer therapy. To date, ROS production is generally uncontrollable and outside cells, which always bring severe side-effects in the vasculature. Since most ROS share a very short half-life and primarily react close to their site of formation, it would be more efficient if excess ROS are controllably produced inside cancer cells. Herein, we report an efficient lysosome-controlled ROS overproduction via a pH-responsive catalytic nanosystem (FeOx-MSNs), which catalyze the decomposition of H2O2 to produce considerable ROS selectively inside the acidic lysosomes (pH 5.0) of cancer cells. After a further incorporation of ROS-sensitive TMB into the nanosystem (FeOx-MSNs-TMB), both a distinct cell labeling and an efficient death of breast carcinoma cells are obtained. This lysosome-controlled efficient ROS overproduction suggests promising applications in cancer treatments.

  13. Quality and safety aspects of meat products as affected by various physical manipulations of packaging materials.

    PubMed

    Lee, Keun Taik

    2010-09-01

    This article explores the effects of physically manipulated packaging materials on the quality and safety of meat products. Recently, innovative measures for improving quality and extending the shelf-life of packaged meat products have been developed, utilizing technologies including barrier film, active packaging, nanotechnology, microperforation, irradiation, plasma and far-infrared ray (FIR) treatments. Despite these developments, each technology has peculiar drawbacks which will need to be addressed by meat scientists in the future. To develop successful meat packaging systems, key product characteristics affecting stability, environmental conditions during storage until consumption, and consumers' packaging expectations must all be taken into consideration. Furthermore, the safety issues related to packaging materials must also be taken into account when processing, packaging and storing meat products.

  14. Heat shock induces production of reactive oxygen species and increases inner mitochondrial membrane potential in winter wheat cells.

    PubMed

    Fedyaeva, A V; Stepanov, A V; Lyubushkina, I V; Pobezhimova, T P; Rikhvanov, E G

    2014-11-01

    Heat shock leads to oxidative stress. Excessive ROS (reactive oxygen species) accumulation could be responsible for expression of genes of heat-shock proteins or for cell death. It is known that in isolated mammalian mitochondria high protonic potential on the inner membrane actuates the production of ROS. Changes in viability, ROS content, and mitochondrial membrane potential value have been studied in winter wheat (Triticum aestivum L.) cultured cells under heat treatment. Elevation of temperature to 37-50°C was found to induce elevated ROS generation and increased mitochondrial membrane potential, but it did not affect viability immediately after treatment. More severe heat exposure (55-60°C) was not accompanied by mitochondrial potential elevation and increased ROS production, but it led to instant cell death. A positive correlation between mitochondrial potential and ROS production was observed. Depolarization of the mitochondrial membrane by the protonophore CCCP inhibited ROS generation under the heating conditions. These data suggest that temperature elevation leads to mitochondrial membrane hyperpolarization in winter wheat cultured cells, which in turn causes the increased ROS production.

  15. N-acetylcysteine attenuates hexavalent chromium-induced hypersensitivity through inhibition of cell death, ROS-related signaling and cytokine expression.

    PubMed

    Lee, Yu-Hsuan; Su, Shih-Bin; Huang, Chien-Cheng; Sheu, Hamm-Ming; Tsai, Jui-Chen; Lin, Chia-Ho; Wang, Ying-Jan; Wang, Bour-Jr

    2014-01-01

    Chromium hypersensitivity (chromium-induced allergic contact dermatitis) is an important issue in occupational skin disease. Hexavalent chromium (Cr (VI)) can activate the Akt, Nuclear factor κB (NF-κB), and Mitogen-activated protein kinase (MAPK) pathways and induce cell death, via the effects of reactive oxygen species (ROS). Recently, cell death stimuli have been proposed to regulate the release of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1). However, the exact effects of ROS on the signaling molecules and cytotoxicity involved in Cr(VI)-induced hypersensitivity have not yet been fully demonstrated. N-acetylcysteine (NAC) could increase glutathione levels in the skin and act as an antioxidant. In this study, we investigated the effects of NAC on attenuating the Cr(VI)-triggered ROS signaling in both normal keratinocyte cells (HaCaT cells) and a guinea pig (GP) model. The results showed the induction of apoptosis, autophagy and ROS were observed after different concentrations of Cr(VI) treatment. HaCaT cells pretreated with NAC exhibited a decrease in apoptosis and autophagy, which could affect cell viability. In addition, Cr (VI) activated the Akt, NF-κB and MAPK pathways thereby increasing IL-1α and TNF-α production. However, all of these stimulation phenomena could be inhibited by NAC in both of in vitro and in vivo studies. These novel findings indicate that NAC may prevent the development of chromium hypersensitivity by inhibiting of ROS-induced cell death and cytokine expression.

  16. Functional consequences of a rod outer segment membrane guanylate cyclase (ROS-GC1) gene mutation linked with Leber's congenital amaurosis.

    PubMed

    Duda, T; Venkataraman, V; Goraczniak, R; Lange, C; Koch, K W; Sharma, R K

    1999-01-12

    ROS-GC1 is the original member of the subfamily of membrane guanylate cyclases with two Ca2+ switches, which have been defined as CRM1 and CRM2. These are separately located within the intracellular domain of the cyclase. CRM1 switches on the enzyme at nanomolar concentrations of Ca2+ and is linked with phototransduction; the other stimulates at micromolar Ca2+ concentrations and is predicted to be linked with retinal synaptic activity. Ca2+ acts indirectly via Ca2+-binding proteins, GCAP1 and CD-GCAP. GCAP1 is a modulator of the CRM1 switch, and CD-GCAP turns on the CRM2 switch. A Leber's congenital amaurosis, termed LCA1, involves F514S point mutation in ROS-GC1. The present study shows that the mutation severely damages its intrinsic cyclase activity and inactivates its CRM1 switch but does not affect the CRM2 switch. In addition, on the basis of the established modulatory features of ROS-GC1, it is predicted that, in two other forms of LCA1 involving deletion of nt 460C or 693C, there is a frameshift in ROS-GC1 gene, which results in the nonexpression of the cyclase. For the first time, the findings define the linkage of distinct molecular forms of LCA to ROS-GC1 in precise biochemical terms; they also explain the reasons for the insufficient production of cyclic GMP in photoreceptors to sustain phototransduction, which ultimately leads to the degeneration of the photoreceptors.

  17. Exposure to electromagnetic field attenuates oxygen-glucose deprivation-induced microglial cell death by reducing intracellular Ca(2+) and ROS.

    PubMed

    Duong, Cao Nguyen; Kim, Jae Young

    2016-01-01

    Purpose The aim of this research was to demonstrate the protective effects of electromagnetic field (EMF) exposure on the human microglial cell line, HMO6, against ischemic cell death induced by in vitro oxygen-glucose deprivation (OGD). Materials and methods HMO6 cells were cultured for 4 h under OGD with or without exposure to EMF with different combinations of frequencies and intensities (10, 50, or 100 Hz/1 mT and 50 Hz/0.01, 0.1, or 1 mT). Cell survival, intracellular calcium and reactive oxygen species (ROS) levels were measured. Results OGD caused significant HMO6 cell death as well as elevation of intracellular Ca(2+) and ROS levels. Among different combinations of EMF frequencies and intensities, 50 Hz/1 mT EMF was the most potent to attenuate OGD-induced cell death and intracellular Ca(2+) and ROS levels. A significant but less potent protective effect was also found at 10 Hz/1 mT, whereas no protective effect was found at other combinations of EMF. A xanthine oxidase inhibitor reversed OGD-induced ROS production and cell death, while NADPH oxidase and mitochondrial respiration chain complex II inhibitors did not affect cell death. Conclusions 50 Hz/1 mT EMF protects human microglial cells from OGD-induced cell death by interfering with OGD-induced elevation of intracellular Ca(2+) and ROS levels, and xanthine oxidase is one of the main mediators involved in OGD-induced HMO6 cell death. Non-invasive treatment of EMF radiation may be clinically useful to attenuate hypoxic-ischemic brain injury.

  18. Manure phosphorus extractability as affected by aluminum- and iron by-products and aerobic composting.

    PubMed

    Dao, T H; Sikora, L J; Hamasaki, A; Chaney, R L

    2001-01-01

    Shifts in manure phosphorus (P) chemical forms and pool sizes induced by water treatment residuals and industrial mineral by-products are largely undefined. We conducted a manure P fractionation study to determine mechanisms of reduction of dissolved reactive phosphorus (DRP) in poultry manure upon mineral by-product additions. The effects of composting on the P immobilization efficacy of the by-products were determined using laboratory self-heating composting simulators. The mineral by-products included an aluminum-water treatment residual (Al-WTR) and an iron-rich titanium-processing by-product. The noncomposted manure averaged 0.11 g g(-1) of total P as DRP forms. The by-products significantly reduced manure DRP, by an average of 39 and 48% in the Al- and the Fe-treated manure, respectively. The by-products also reduced the 0.5 M NH4F-extractable phosphorus (FEP) fraction. Shifts in P forms between FEP and 0.1 M NaOH-extractable phosphorus (SHEP) depended upon the Al and Fe contents of the by-products while the combined FEP + SHEP pool remained constant. Phosphate sorption measurements supported the observations that the Fe-rich by-product was more effective at reducing manure DRP and enhancing the formation of SHEP forms at the expense of FEP than the Al-WTR. Composting had no effect on the efficacy of either by-product to reduce DRP. Potential mechanisms of enhanced P stabilization in treated manure upon composting included chemical shifts from the DRP and FEP fractions to the citrate-bicarbonate-dithionite extractable P fraction. Thus, the choice of P immobilization agents affected the stability of immobilized P forms and should be taken into consideration in developing manure processing and nutrient stabilization methods.

  19. ROS Enhances CXCR4-mediated Functions through Inactivation of PTEN in Prostate Cancer Cells

    PubMed Central

    Chetram, Mahandranauth A.; Don-Salu-Hewage, Ayesha S.; Hinton, Cimona V.

    2011-01-01

    Inactivation of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is heavily implicated in the tumorigenesis of prostate cancer. Conversely, the upregulation of the chemokine (CXC) receptor 4 (CXCR4) is associated with prostate cancer progression and metastasis. Studies have shown that loss of PTEN permits CXCR4-mediated functions in prostate cancer cells. Loss of PTEN function is typically due to genetic and epigenetic modulations, as well as active site oxidation by reactive oxygen species (ROS); likewise ROS upregulates CXCR4 expression. Herein, we show that ROS accumulation permitted CXCR4-mediated functions through PTEN catalytic inactivation. ROS increased p-AKT and CXCR4 expression, which were abrogated by a ROS scavenger in prostate cancer cells. ROS mediated PTEN inactivation but did not affect expression, yet enhanced cell migration and invasion in a CXCR4-dependent manner. Collectively, our studies add to the body of knowledge on the regulatory role of PTEN in CXCR4-mediated cancer progression, and hopefully, will contribute to the development of therapies that target the tumor microenvironment, which have great potential for the better management of a metastatic disease. PMID:21627959

  20. Spatiotemporal Production of Reactive Oxygen Species by NADPH Oxidase Is Critical for Tapetal Programmed Cell Death and Pollen Development in Arabidopsis[C][W

    PubMed Central

    Xie, Hong-Tao; Wan, Zhi-Yuan; Li, Sha; Zhang, Yan

    2014-01-01

    Male sterility in angiosperms has wide applications in agriculture, particularly in hybrid crop breeding and gene flow control. Microspores develop adjacent to the tapetum, a layer of cells that provides nutrients for pollen development and materials for pollen wall formation. Proper pollen development requires programmed cell death (PCD) of the tapetum, which requires transcriptional cascades and proteolytic enzymes. Reactive oxygen species (ROS) also affect tapetal PCD, and failures in ROS scavenging cause male sterility. However, many aspects of tapetal PCD remain unclear, including what sources generate ROS, whether ROS production has a temporal pattern, and how the ROS-producing system interacts with the tapetal transcriptional network. We report here that stage-specific expression of NADPH oxidases in the Arabidopsis thaliana tapetum contributes to a temporal peak of ROS production. Genetic interference with the temporal ROS pattern, by manipulating RESPIRATORY-BURST OXIDASE HOMOLOG (RBOH) genes, affected the timing of tapetal PCD and resulted in aborted male gametophytes. We further show that the tapetal transcriptional network regulates RBOH expression, indicating that the temporal pattern of ROS production intimately connects to other signaling pathways regulated by the tapetal transcriptional network to ensure the proper timing of tapetal PCD. PMID:24808050

  1. Overproduction of NOX-derived ROS in AML promotes proliferation and is associated with defective oxidative stress signaling.

    PubMed

    Hole, Paul S; Zabkiewicz, Joanna; Munje, Chinmay; Newton, Zarabeth; Pearn, Lorna; White, Paul; Marquez, Nuria; Hills, Robert K; Burnett, Alan K; Tonks, Alex; Darley, Richard L

    2013-11-07

    Excessive production of reactive oxygen species (ROS) is frequently observed in cancer and is known to strongly influence hematopoietic cell function. Here we report that extracellular ROS production is strongly elevated (mean >10-fold) in >60% of acute myeloid leukemia (AML) patients and that this increase is attributable to constitutive activation of nicotinamide adenine dinucleotide phosphate oxidases (NOX). In contrast, overproduction of mitochondrial ROS was rarely observed. Elevated ROS was found to be associated with lowered glutathione levels and depletion of antioxidant defense proteins. We also show for the first time that the levels of ROS generated were able to strongly promote the proliferation of AML cell lines, primary AML blasts, and, to a lesser extent, normal CD34(+) cells, and that the response to ROS is limited by the activation of the oxidative stress pathway mediated though p38(MAPK). Consistent with this, we observed that p38(MAPK) responses were attenuated in patients expressing high levels of ROS. These data show that overproduction of NOX-derived ROS can promote the proliferation of AML blasts and that they also develop mechanisms to suppress the stress signaling that would normally limit this response. Together these adaptations would be predicted to confer a competitive advantage to the leukemic clone.

  2. A review on factors affecting microcystins production by algae in aquatic environments.

    PubMed

    Dai, Ruihua; Wang, Pinfei; Jia, Peili; Zhang, Yi; Chu, Xincheng; Wang, Yifei

    2016-03-01

    Microcystins, a toxin produced by Microcystis aeruginosa have become a global environmental issue in recent years. As a consequence of eutrophication, microcystins have become widely disseminated in drinking water sources, seriously impairing drinking water quality. This review focuses on the relationship between microcystins synthesis and physical, chemical, and biological environmental factors that are significant in controlling their production. Light intensity and temperature are the more important physical factors, and in many cases, an optimum level for these two factors has been observed. Nitrogen and phosphorus are the key chemical factors causing frequent occurrence of harmful algal blooms and microcystins production. The absorption of nutrients and metabolic activities of algae are affected by different concentrations and forms of nitrogen and phosphorus, leading to variations in microcystins production Metal ions and emerging pollutants are other significant chemical factors, whose comprehensive impact is still being studied. Algae can also interact with biological agents like predators and competitors in aquatic environments, and such interactions are suggested to promote MCs production and release. This review further highlights areas that require further research in order to gain a better understanding of microcystins production. It provides a theoretical basis for the control of microcystins production and releasing into aquatic environments.

  3. Factors affecting RFID adoption in the agricultural product distribution industry: empirical evidence from China.

    PubMed

    Shi, Ping; Yan, Bo

    2016-01-01

    We conducted an exploratory investigation of factors influencing the adoption of radio frequency identification (RFID) methods in the agricultural product distribution industry. Through a literature review and field research, and based on the technology-organization-environment (TOE) theoretical framework, this paper analyzes factors influencing RFID adoption in the agricultural product distribution industry in reference to three contexts: technological, organizational, and environmental contexts. An empirical analysis of the TOE framework was conducted by applying structural equation modeling based on actual data from a questionnaire survey on the agricultural product distribution industry in China. The results show that employee resistance and uncertainty are not supported by the model. Technological compatibility, perceived effectiveness, organizational size, upper management support, trust between enterprises, technical knowledge, competitive pressure and support from the Chinese government, which are supported by the model, have significantly positive effects on RFID adoption. Meanwhile, organizational size has the strongest positive effect, while competitive pressure levels have the smallest effect. Technological complexities and costs have significantly negative effects on RFID adoption, with cost being the most significantly negative influencing factor. These research findings will afford enterprises in the agricultural products supply chain with a stronger understanding of the factors that influence RFID adoption in the agricultural product distribution industry. In addition, these findings will help enterprises remain aware of how these factors affect RFID adoption and will thus help enterprises make more accurate and rational decisions by promoting RFID application in the agricultural product distribution industry.

  4. Proximity to forest edge does not affect crop production despite pollen limitation.

    PubMed

    Chacoff, Natacha P; Aizen, Marcelo A; Aschero, Valeria

    2008-04-22

    A decline in pollination function has been linked to agriculture expansion and intensification. In northwest Argentina, pollinator visits to grapefruit, a self-compatible but pollinator-dependent crop, decline by approximately 50% at 1km from forest edges. We evaluated whether this decrease in visitation also reduces the pollination service in this crop. We analysed the quantity and quality of pollen deposited on stigmas, and associated limitation of fruit production at increasing distances (edge: 10, 100, 500 and 1000m) from the remnants of Yungas forest. We also examined the quantitative and qualitative efficiency of honeybees as pollen vectors. Pollen receipt and pollen tubes in styles decreased with increasing distance from forest edge; however, this decline did not affect fruit production. Supplementation of natural pollen with self- and cross-pollen revealed that both pollen quantity and quality limited fruit production. Despite pollen limitation, honeybees cannot raise fruit production because they often do not deposit sufficient high-quality pollen per visit to elicit fruit development. However, declines in visitation frequency well below seven visits during a flower's lifespan could decrease production beyond current yields. In this context, the preservation of forest remnants, which act as pollinator sources, could contribute to resilience in crop production. Like wild plants, pollen limitation of the yield among animal-pollinated crops may be common and indicative not only of pollinator scarcity, but also of poor pollination quality, whereby pollinator efficiency, rather than just abundance, can play a broader role than previously appreciated.

  5. Spatial pattern affects diversity-productivity relationships in experimental meadow communities

    NASA Astrophysics Data System (ADS)

    Lamošová, Tereza; Doležal, Jiří; Lanta, Vojtěch; Lepš, Jan

    2010-05-01

    Plant species create aggregations of conspecifics as a consequence of limited seed dispersal, clonal growth and heterogeneous environment. Such intraspecific aggregation increases the importance of intraspecific competition relative to interspecific competition which may slow down competitive exclusion and promote species coexistence. To examine how spatial aggregation impacts the functioning of experimental assemblages of varying species richness, eight perennial grassland species of different growth form were grown in random and aggregated patterns in monocultures, two-, four-, and eight-species mixtures. In mixtures with an aggregated pattern, monospecific clumps were interspecifically segregated. Mixed model ANOVA was used to test (i) how the total productivity and productivity of individual species is affected by the number of species in a mixture, and (ii) how these relationships are affected by spatial pattern of sown plants. The main patterns of productivity response to species richness conform to other studies: non-transgressive overyielding is omnipresent (the productivity of mixtures is higher than the average of its constituent species so that the net diversity, selection and complementarity effects are positive), whereas transgressive overyielding is found only in a minority of cases (average of log(overyielding) being close to zero or negative). The theoretical prediction that plants in a random pattern should produce more than in an aggregated pattern (the distances to neighbours are smaller and consequently the competition among neighbours stronger) was confirmed in monocultures of all the eight species. The situation is more complicated in mixtures, probably as a consequence of complicated interplay between interspecific and intraspecific competition. The most productive species ( Achillea, Holcus, Plantago) were competitively superior and increased their relative productivity with mixture richness. The intraspecific competition of these species is

  6. Establishing the subcellular localization of photodynamically-induced ROS using 3,3'-diaminobenzidine: A methodological proposal, with a proof-of-concept demonstration.

    PubMed

    Stockert, Juan C; Blázquez-Castro, Alfonso

    2016-10-15

    The critical involvement of reactive oxygen species (ROS) in both physiological and pathological processes in cell biology makes their detection and assessment a fundamental topic in biomedical research. Established methodologies to study ROS in cell biology take advantage of oxidation reactions between the ROS and a reduced probe. After reacting the probe reveals the presence of ROS either by the appearance of colour (chromogenic reaction) or fluorescence (fluorogenic reaction). However current methodologies rarely allow for a site-specific detection of ROS production. Here we propose a colorimetric reaction driven by the oxidation of 3,3'-diaminobenzidine (DAB) by photodynamically-produced ROS that allows for fine detection of the ROS production site. The introduced methodology is fast, easy to implement and permits cellular resolution at the submicrometric level. Although the basic protocol is proved in a photodynamic model of ROS generation, the principle is applicable to many different scenarios of intracellular ROS production. As a consequence this proposed methodology should greatly complement other techniques aiming at establishing a precise subcellular localization of ROS generation.

  7. Toxaphene, but not beryllium, induces human neutrophil chemotaxis and apoptosis via reactive oxygen species (ROS): involvement of caspases and ROS in the degradation of cytoskeletal proteins.

    PubMed

    Lavastre, Valérie; Roberge, Charles J; Pelletier, Martin; Gauthier, Marc; Girard, Denis

    2002-07-01

    Chemicals of environmental concern are known to alter the immune system. Recent data indicate that some contaminants possess proinflammatory properties by activating neutrophils, an area of research that is still poorly investigated. We have previously documented that toxaphene activates human neutrophils to produce reactive oxygen species (ROS) and accelerates apoptosis by a yet unknown mechanism. In this study, we found that toxaphene induces another neutrophil function, chemotaxis. Furthermore, we found that toxaphene induces both chemotaxis and apoptosis via a ROS-dependent mechanism, since these responses were blocked by the addition of catalase to the culture. In addition, toxaphene was found to induce the degradation of the cytoskeletal proteins gelsolin, paxillin, and vimentin during apoptosis, and this was reversed by the addition of z-VAD-FMK (caspase inhibitor) or catalase, demonstrating the importance of caspases and ROS in this process. In contrast to toxaphene, we found that beryllium does not induce superoxide production, and, this correlates with its inability to induce chemotaxis and apoptosis. We conclude that toxaphene induces chemotaxis and apoptosis via ROS and that caspases and ROS are involved in the degradation of cytoskeletal proteins.

  8. Fermentation Conditions that Affect Clavulanic Acid Production in Streptomyces clavuligerus: A Systematic Review

    PubMed Central

    Ser, Hooi-Leng; Law, Jodi Woan-Fei; Chaiyakunapruk, Nathorn; Jacob, Sabrina Anne; Palanisamy, Uma Devi; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2016-01-01

    The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO), from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g., olive oil, corn oil) could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.). Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus. PMID:27148211

  9. Akt mediated ROS-dependent selective targeting of mutant KRAS tumors.

    PubMed

    Iskandar, Kartini; Rezlan, Majidah; Pervaiz, Shazib

    2014-10-01

    Reactive oxygen species (ROS) play a critical role in a variety of cellular processes, ranging from cell survival and proliferation to cell death. Previously, we reported the ability of a small molecule compound, C1, to induce ROS dependent autophagy associated apoptosis in human cancer cell lines and primary tumor cells (Wong C. et al. 2010). Our ongoing investigations have unraveled a hitherto undefined novel signaling network involving hyper-phosphorylation of Akt and Akt-mediated ROS production in cancer cell lines. Interestingly, drug-induced Akt activation is selectively seen in cell lines that carry mutant KRAS; HCT116 cells that carry the V13D KRAS mutation respond favorably to C1 while HT29 cells expressing wild type KRAS are relatively resistant. Of note, not only does the compound target mutant KRAS expressing cells but also induces RAS activation as evidenced by the PAK pull down assay. Corroborating this, pharmacological inhibition as well as siRNA mediated silencing of KRAS or Akt, blocked C1-induced ROS production and rescued tumor colony forming ability in HCT116 cells. To further confirm the involvement of KRAS, we made use of mutant KRAS transformed RWPE-1 prostate epithelial cells. Notably, drug-induced ROS generation and death sensitivity was significantly higher in RWPE-1-KRAS cells than the RWPE-1-vector cells, thus confirming the results obtained with mutant KRAS colorectal carcinoma cell line. Lastly, we made use of HCT116 mutant KRAS knockout cells (KO) where the mutant KRAS allele had been deleted, thus expressing a single wild-type KRAS allele. Exposure of the KO cells to C1 failed to induce Akt activation and mitochondrial ROS production. Taken together, results show the involvement of activated Akt in ROS-mediated selective targeting of mutant KRAS expressing tumors, which could have therapeutic implications given the paucity of chemotherapeutic strategies specifically targeting KRAS mutant cancers.

  10. The inhibitory effects of carnosic acid on cervical cancer cells growth by promoting apoptosis via ROS-regulated signaling pathway.

    PubMed

    Su, Ke; Wang, Chun-Fang; Zhang, Ying; Cai, Yu-Jie; Zhang, Yan-Yan; Zhao, Qian

    2016-08-01

    Cervical cancer has been the fourth most common cancer killing many women across the world. Carnosic acid (CA), as a phenolic diterpene, has been suggested to against cancer, exerting protective effects associated with inflammatory cytokines. It is aimed to demonstrate the therapeutic role of carnosic acid against cervical cancer and indicate its underlying molecular mechanisms. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) was performed to assess the possible anti-proliferative effects of carnosic acid. And also, colony formation was used to further estimate carnosic acid's ability in suppressing cervical cancer cells proliferation. Flow cytometry assays were performed here to indicate the alterations of cervical cancer cells cycle and the development of apoptosis. Western blot assays and RT-PCR were also applied to clarify the apoptosis-associated signaling pathways affected by reactive oxygen species (ROS) generation. And immunofluorescence was used to detect ROS-positive cells. In vivo experiments, CaSki xenograft model samples of nude mice were involved to further elucidate the effects of carnosic acid. In our results, we found that carnosic acid exerted anti-tumor ability in vitro supported by up-regulation of apoptosis and ROS production in cervical cancer cells. Also, acceleration of ROS led to the phospharylation of (c-Jun N-terminal kinase (JNK) and its-related signals, as well as activation of Endoplasmic Reticulum (ER) stress, promoting the progression of apoptosis via stimulating Caspase3 expression. The development and growth of xenograft tumors in nude mice were found to be inhibited by the administration of carnosic acid for five weeks. And the suppressed role of carnosic acid in proliferation of cervical cancer cells and apoptosis of nude mice with tumor tissues were observed in our study. Taken together, our data indicated that carnosic acid resulted in apoptosis both in vitro and vivo experiments via promoting ROS and

  11. 40 CFR 63.5994 - How do I conduct tests and procedures for tire production affected sources?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Rubber Tire Manufacturing Testing and Initial Compliance Requirements for Tire Production Affected... to determine the mass percent of HAP in cements and solvents. To determine the HAP content in the cements and solvents used at your tire production affected source, use EPA Method 311 of appendix A...

  12. 40 CFR 63.5994 - How do I conduct tests and procedures for tire production affected sources?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: Rubber Tire Manufacturing Testing and Initial Compliance Requirements for Tire Production Affected... to determine the mass percent of HAP in cements and solvents. To determine the HAP content in the cements and solvents used at your tire production affected source, use EPA Method 311 of appendix A...

  13. 40 CFR 63.5996 - How do I demonstrate initial compliance with the emission limits for tire production affected...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with the emission limits for tire production affected sources? 63.5996 Section 63.5996 Protection of... Pollutants: Rubber Tire Manufacturing Testing and Initial Compliance Requirements for Tire Production Affected Sources § 63.5996 How do I demonstrate initial compliance with the emission limits for...

  14. 40 CFR Table 12 to Subpart Xxxx of... - Continuous Compliance With the Emission Limits for Tire Cord Production Affected Sources

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Limits for Tire Cord Production Affected Sources 12 Table 12 to Subpart XXXX of Part 63 Protection of... Pollutants: Rubber Tire Manufacturing Pt. 63, Subpt. XXXX, Table 12 Table 12 to Subpart XXXX of Part 63—Continuous Compliance With the Emission Limits for Tire Cord Production Affected Sources As stated in §...

  15. 40 CFR 63.5986 - What emission limits must I meet for tire cord production affected sources?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tire cord production affected sources? 63.5986 Section 63.5986 Protection of Environment ENVIRONMENTAL... POLLUTANTS FOR SOURCE CATEGORIES National Emissions Standards for Hazardous Air Pollutants: Rubber Tire Manufacturing Emission Limits for Tire Cord Production Affected Sources § 63.5986 What emission limits must...

  16. 40 CFR Table 7 to Subpart Xxxx of... - Initial Compliance With the Emission Limits for Tire Cord Production Affected Sources

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Limits for Tire Cord Production Affected Sources 7 Table 7 to Subpart XXXX of Part 63 Protection of... Pollutants: Rubber Tire Manufacturing Pt. 63, Subpt. XXXX, Table 7 Table 7 to Subpart XXXX of Part 63—Initial Compliance With the Emission Limits for Tire Cord Production Affected Sources As stated in § 63.5999,...

  17. Climate change induced rainfall patterns affect wheat productivity and agroecosystem functioning dependent on soil types

    NASA Astrophysics Data System (ADS)

    Tabi Tataw, James; Baier, Fabian; Krottenthaler, Florian; Pachler, Bernadette; Schwaiger, Elisabeth; Whylidal, Stefan; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas; Zaller, Johann G.

    2014-05-01

    Wheat is a crop of global importance supplying more than half of the world's population with carbohydrates. We examined, whether climate change induced rainfall patterns towards less frequent but heavier events alter wheat agroecosystem productivity and functioning under three different soil types. Therefore, in a full-factorial experiment Triticum aestivum L. was cultivated in 3 m2 lysimeter plots containing the soil types sandy calcaric phaeozem, gleyic phaeozem or calcic chernozem. Prognosticated rainfall patterns based on regionalised climate change model calculations were compared with current long-term rainfall patterns; each treatment combination was replicated three times. Future rainfall patterns significantly reduced wheat growth and yield, reduced the leaf area index, accelerated crop development, reduced arbuscular mycorrhizal fungi colonisation of roots, increased weed density and the stable carbon isotope signature (δ13C) of both old and young wheat leaves. Different soil types affected wheat growth and yield, ecosystem root production as well as weed abundance and biomass. The interaction between climate and soil type was significant only for the harvest index. Our results suggest that even slight changes in rainfall patterns can significantly affect the functioning of wheat agroecosystems. These rainfall effects seemed to be little influenced by soil types suggesting more general impacts of climate change across different soil types. Wheat production under future conditions will likely become more challenging as further concurrent climate change factors become prevalent.

  18. Differential phenolic production in leaves of Vitis vinifera cv. Alvarinho affected with esca disease.

    PubMed

    Lima, Marta R M; Felgueiras, Mafalda L; Cunha, Ana; Chicau, Gisela; Ferreres, Federico; Dias, Alberto C P

    2017-03-01

    Esca is a destructive disease of complex etiology affecting grapevines worldwide. A major constraint to the study and control of esca is that the disease is not diagnosed until external leaf and/or fruit symptoms are visible; however external symptoms usually appear several years after infection onset. We studied the phenolic content of V. vinifera cv. Alvarinho leaves using high performance liquid chromatography-diode array detection-mass spectrometry (HPLC-DAD-MS)/LC-MS. Leaves from affected cordons with and without visible symptoms (diseased and apparently healthy leaves, respectively) and leaves from asymptomatic cordons (healthy leaves) were analyzed. Application of principal components analysis (PCA) to HPLC data showed a clear separation between diseased, apparently healthy, and healthy leaves, with the apparently healthy leaves clustered in a medial position. Several compounds were highly correlated with diseased leaves indicating a differential phenolic production due to esca disease in V. vinifera cv. Alvarinho leaves. Total phenolic production was shown to significantly increase in diseased leaves, compared to healthy leaves, with apparently healthy leaves containing a medial amount. Trans-caffeoyltartaric acid, trans-coumaroyl-tartaric acid, quercetin-3-O-glucoside, quercetin-3-O-galactoside, kaempferol-3-glucoside and myricetin were identified among the compounds associated with disease and their content shown to change similarly to total phenolic production. This study shows that it is possible to discriminate between diseased, healthy and apparently healthy leaves by applying PCA to HPLC data.

  19. Do non-native plant species affect the shape of productivity-diversity relationships?

    USGS Publications Warehouse

    Drake, J.M.; Cleland, E.E.; Horner-Devine, M. C.; Fleishman, E.; Bowles, C.; Smith, M.D.; Carney, K.; Emery, S.; Gramling, J.; Vandermast, D.B.; Grace, J.B.

    2008-01-01

    The relationship between ecosystem processes and species richness is an active area of research and speculation. Both theoretical and experimental studies have been conducted in numerous ecosystems. One finding of these studies is that the shape of the relationship between productivity and species richness varies considerably among ecosystems and at different spatial scales, though little is known about the relative importance of physical and biological mechanisms causing this variation. Moreover, despite widespread concern about changes in species' global distributions, it remains unclear if and how such large-scale changes may affect this relationship. We present a new conceptual model of how invasive species might modulate relationships between primary production and species richness. We tested this model using long-term data on relationships between aboveground net primary production and species richness in six North American terrestrial ecosystems. We show that primary production and abundance of non-native species are both significant predictors of species richness, though we fail to detect effects of invasion extent on the shapes of the relationship between species richness and primary production.

  20. Physical factors affecting the cost and efficiency of sound production in the treefrog Hyla versicolor.

    PubMed

    McLister, J D

    2001-01-01

    The metabolic cost, energy output and efficiency (i.e. the ratio of energy output to metabolic cost) of sound production were compared among male grey treefrogs (Hyla versicolor) as a function of body size and temperature. The effects of call length (in notes per call) and dominant frequency (in kHz) were also considered. Cost, determined from the amount of oxygen consumed, averaged 12.1 mJ per note and was dependent only upon body mass. Acoustic energy per note, determined from oscillograms of recorded calls, averaged 0.34 mJ and was dependent only upon temperature. Conventional theory suggests that the efficiency of sound production should be a function of the ratio of the linear size of the radiating structures to the wavelength of the sound generated (i.e. efficiency is assumed to be a function of the product of mass(0.33) and frequency), but efficiency in H. versicolor was found to be a function of the product of temperature(2.1) and mass(-1.08). Adjusting for temperature and body mass, the efficiency of sound production in H. versicolor (average 2.4 %) is greater than the efficiency of other frog species for which data are available. Temperature may affect acoustic energy output because trunk muscle contraction speed increases with temperature, which increases the velocity of airflow across the vocal cords.

  1. ROS Mediated Stress Response in Illuminated Cattle Feces Derived DOM

    EPA Science Inventory

    Bacterial exposure to exogenous reactive oxygen species (ROS) is known to increase theexpression of oxidative stress related genes and has been linked to acquisition of antibioticresistance (AR). ROS, including hydrogen peroxide (H202), singlet oxygen e o 2), andhydroxyl radicals...

  2. Nuclear DNA content affects the productivity of conifer forests by altering hydraulic architecture

    NASA Astrophysics Data System (ADS)

    Alday, Josu; Resco de Dios, Víctor

    2014-05-01

    Predictions of future global climate rely on feedbacks between terrestrial vegetation and the global carbon cycle, but the exact mechanisms underlying this relationship are still being discussed. One of the key knowledge gaps lies on the scaling of cellular processes to the ecosystem level. Here we examine whether an under-explored plant trait, inter-specific variation in the bulk amount of DNA in unreplicated somatic cells (2C DNA content), can explain inter-specific variation in the maximum productivity of conifer forests. We expected 2C DNA content to be negatively related to conifer productivity because: 1) it is positively correlated with cell volume (which, in turn, potentially affects structural features such as leaf mass area, a strong predictor of photosynthetic capacity); 2) it is positively correlated with stomatal size (with larger stomata leading to lower overall stomatal conductance and, by extension, lower CO2 uptake); and 3) larger genome sizes may reduce P availability in RNA (which has been hypothesized to slow growth). We present the results of regression and independent contrasts in different monospecific forests encompassing a 52º latitudinal gradient, each being dominated by 1 of 35 different conifer species. Contrary to expectations, we observed a positive correlation between genome size and maximum Gross Primary Productivity (R2 = 0.47) and also between genome size maximum tree height (R2 = 0.27). This correlation was apparently driven by the effects of genome size on stem hydraulics, since 2C DNA was positively correlated with wood density (R2 = 0.40) and also with resistance to cavitation (P50, R2 = 0.28). That is, increased genome sizes have a positive effect on the productivity of conifer forests by affecting the vascular tissues to increase their capacity for water transport. Our results shed a new light on the evolution of the vascular system of conifer forests and how they affect ecosystem productivity, and indicate the potential to

  3. Inhibition of SH2-domain-containing inositol 5-phosphatase (SHIP2) ameliorates palmitate induced-apoptosis through regulating Akt/FOXO1 pathway and ROS production in HepG2 cells

    SciTech Connect

    Gorgani-Firuzjaee, Sattar; Adeli, Khosrow; Meshkani, Reza

    2015-08-21

    The serine–threonine kinase Akt regulates proliferation and survival by phosphorylating a network of protein substrates; however, the role of a negative regulator of the Akt pathway, the SH2-domain-containing inositol 5-phosphatase (SHIP2) in apoptosis of the hepatocytes, remains unknown. In the present study, we studied the molecular mechanisms linking SHIP2 expression to apoptosis using overexpression or suppression of SHIP2 gene in HepG2 cells exposed to palmitate (0.5 mM). Overexpression of the dominant negative mutant SHIP2 (SHIP2-DN) significantly reduced palmitate-induced apoptosis in HepG2 cells, as these cells had increased cell viability, decreased apoptotic cell death and reduced the activity of caspase-3, cytochrome c and poly (ADP-ribose) polymerase. Overexpression of the wild-type SHIP2 gene led to a massive apoptosis in HepG2 cells. The protection from palmitate-induced apoptosis by SHIP2 inhibition was accompanied by a decrease in the generation of reactive oxygen species (ROS). In addition, SHIP2 inhibition was accompanied by an increased Akt and FOXO-1 phosphorylation, whereas overexpression of the wild-type SHIP2 gene had the opposite effects. Taken together, these findings suggest that SHIP2 expression level is an important determinant of hepatic lipoapotosis and its inhibition can potentially be a target in treatment of hepatic lipoapoptosis in diabetic patients. - Highlights: • Lipoapoptosis is the major contributor to the development of NAFLD. • The PI3-K/Akt pathway regulates apoptosis in different cells. • The role of negative regulator of this pathway, SHIP2 in lipoapoptosis is unknown. • SHIP2 inhibition significantly reduces palmitate-induced apoptosis in HepG2 cells. • SHIP2 inhibition prevents palmitate induced-apoptosis by regulating Akt/FOXO1 pathway.

  4. Condition-dependent ejaculate production affects male mating behavior in the common bedbug Cimex lectularius.

    PubMed

    Kaldun, Bettina; Otti, Oliver

    2016-04-01

    Food availability in the environment is often low and variable, constraining organisms in their resource allocation to different life-history traits. For example, variation in food availability is likely to induce condition-dependent investment in reproduction. Further, diet has been shown to affect ejaculate size, composition and quality. How these effects translate into male reproductive success or change male mating behavior is still largely unknown. Here, we concentrated on the effect of meal size on ejaculate production, male reproductive success and mating behavior in the common bedbug Cimex lectularius. We analyzed the production of sperm and seminal fluid within three different feeding regimes in six different populations. Males receiving large meals produced significantly more sperm and seminal fluid than males receiving small meals or no meals at all. While such condition-dependent ejaculate production did not affect the number of offspring produced after a single mating, food-restricted males could perform significantly fewer matings than fully fed males. Therefore, in a multiple mating context food-restricted males paid a fitness cost and might have to adjust their mating strategy according to the ejaculate available to them. Our results indicate that meal size has no direct effect on ejaculate quality, but food availability forces a condition-dependent mating rate on males. Environmental variation translating into variation in male reproductive traits reveals that natural selection can interact with sexual selection and shape reproductive traits. As males can modulate their ejaculate size depending on the mating situation, future studies are needed to elucidate whether environmental variation affecting the amount of ejaculate available might induce different mating strategies.

  5. Does humor in radio advertising affect recognition of novel product brand names?

    PubMed

    Berg, E M; Lippman, L G

    2001-04-01

    The authors proposed that item selection during shopping is based on brand name recognition rather than recall. College students rated advertisements and news stories of a simulated radio program for level of amusement (orienting activity) before participating in a surprise recognition test. Humor level of the advertisements was varied systematically, and content was controlled. According to signal detection analysis, humor did not affect the strength of recognition memory for brand names (nonsense units). However, brand names and product types were significantly more likely to be associated when appearing in humorous advertisements than in nonhumorous advertisements. The results are compared with prior findings concerning humor and recall.

  6. Phonological Neighborhood Competition Affects Spoken Word Production Irrespective of Sentential Context

    PubMed Central

    Fox, Neal P.; Reilly, Megan; Blumstein, Sheila E.

    2015-01-01

    Two experiments examined the influence of phonologically similar neighbors on articulation of words’ initial stop consonants in order to investigate the conditions under which lexically-conditioned phonetic variation arises. In Experiment 1, participants produced words in isolation. Results showed that the voice-onset time (VOT) of a target’s initial voiceless stop was predicted by its overall neighborhood density, but not by its having a voicing minimal pair. In Experiment 2, participants read aloud the same targets after semantically predictive sentence contexts and after neutral sentence contexts. Results showed that, although VOTs were shorter in words produced after predictive contexts, the neighborhood density effect on VOT production persisted irrespective of context. These findings suggest that global competition from a word’s neighborhood affects spoken word production independently of contextual modulation and support models in which activation cascades automatically and obligatorily among all of a selected target word’s phonological neighbors during acoustic-phonetic encoding. PMID:26124538

  7. ROS scavenging activity and muscle damage prevention in eccentric exercise in rats.

    PubMed

    Maruhashi, Yoshinobu; Kitaoka, Katsuhiko; Yoshiki, Yumiko; Nakamura, Ryuichi; Okano, Akira; Nakamura, Kenichi; Tsuyama, Takeshi; Shima, Yohsuke; Tomita, Katsuro

    2007-08-01

    Depending on intensity, eccentric exercise is experimentally and clinically documented to have opposing dual effects on skeletal muscle; intense eccentric exercise damages muscle, but daily low-load eccentric exercise prevents damage. To clarify the mechanisms of this dual effect, microscopic damage and oxidative stress were studied in rat quadriceps muscle. Oxidative stress was estimated from an immunostaining of advanced glycation end-products (AGE) and a measurement of muscle tissue preparations, the ability to scavenge reactive oxygen species (ROS). Intense eccentric downhill running (IEE) induced muscle damage that was, microscopically apparent 3 days later. Since AGE-positive cells and decreased ROS scavenging activity were observed earlier (on the day after IEE), cellular damage may be related to ROS production. Intense concentric uphill running (ICE) induced an immediate but transient decrease in ROS scavenging activity, which recovered within a day. Neither AGE-positive cells nor microscopic damage was observed after ICE. Since each contracting muscle fiber develops greater tension during eccentric rather than concentric exercise, the initial trigger of IEE-induced muscle damage may be damage to muscle fibers and connective tissues at the subcellular level. Daily low-load training of eccentric downhill running (LET), but not concentric uphill running, efficiently prevented muscle damage after subsequent IEE. No evident elevation of ROS scavenging activity was evident after LET. We concluded that LET prevents IEE-induced muscle damage not through elevated ROS scavenging activity, but through a suppression of initial subcellular damage that triggers subsequent ROS-producing processes, resulting in cellular delayed damage.

  8. Urea-induced ROS cause endothelial dysfunction in chronic renal failure

    PubMed Central

    D'Apolito, Maria; Du, Xueliang; Pisanelli, Daniela; Pettoello-Mantovani, Massimo; Campanozzi, Angelo; Giacco, Ferdinando; Maffione, Angela Bruna; Colia, Anna Laura; Brownlee, Michael; Giardino, Ida

    2015-01-01

    Objective The pathogenic events responsible for accelerated atherosclerosis in patients with chronic renal failure (CRF) are poorly understood. Here we investigate the hypothesis that concentrations of urea associated with CRF and increased ROS production in adipocytes might also increase ROS production directly in arterial endothelial cells, causing the same pathophysiologic changes seen with hyperglycemia. Methods Primary cultures of human aortic endothelial cells (HAEC) were exposed to 20 mM urea for 48 hrs. C57BL/6J wild-type mice underwent 5/6 nephrectomy or a sham operation. Randomized groups of 5/6 nephrectomized mice and their controls were also injected i.p. with a SOD/catalase mimetic (MnTBAP) for 15 days starting immediately after the final surgical procedure. Results Urea at concentrations seen in CRF induced mitochondrial ROS production in cultured HAEC. Urea-induced ROS caused the activation of endothelial pro-inflammatory pathways through the inhibition of GAPDH, including increased protein kinase C isoforms activity, increased hexosamine pathway activity, and accumulation of intracellular AGEs (advanced glycation end products). Urea-induced ROS directly inactivated the anti-atherosclerosis enzyme PGI2 synthase and also caused ER stress. Normalization of mitochondrial ROS production prevented each of these effects of urea. In uremic mice, treatment with MnTBAP prevented aortic oxidative stress, PGI2 synthase activity reduction and increased expression of the pro-inflammatory proteins TNFα, IL-6, VCAM1, Endoglin, and MCP-1. Conclusions Taken together, these data show that urea itself, at levels common in patients with CRF, causes endothelial dysfunction and activation of proatherogenic pathways. PMID:25682038

  9. How the mitochondrion was shaped by radical differences in substrates: what carnitine shuttles and uncoupling tell us about mitochondrial evolution in response to ROS.

    PubMed

    Speijer, Dave

    2014-07-01

    As free-living organisms, alpha-proteobacteria produce reactive oxygen species (ROS) that diffuse into the surroundings; once constrained inside the archaeal ancestor of eukaryotes, however, ROS production presented evolutionary pressures - especially because the alpha-proteobacterial symbiont made more ROS, from a variety of substrates. I previously proposed that ratios of electrons coming from FADH2 and NADH (F/N ratios) correlate with ROS production levels during respiration, glucose breakdown having a much lower F/N ratio than longer fatty acid (FA) breakdown. Evidently, higher endogenous ROS formation did not hinder eukaryotic evolution, so how were its disadvantages mitigated? I propose that the resulting selection pressures favoured the evolution of a variety of eukaryotic 'innovations': peroxisomes for FA breakdown, carnitine shuttles, the linkage of beta-oxidation to antioxidant properties, uncoupling proteins (UCPs) and using mitochondrial uncoupling during beta-oxidation to reduce ROS. Recently observed relationships between peroxisomes and mitochondria further support the model.

  10. How do strategic decisions and operative practices affect operating room productivity?

    PubMed

    Peltokorpi, Antti

    2011-12-01

    Surgical operating rooms are cost-intensive parts of health service production. Managing operating units efficiently is essential when hospitals and healthcare systems aim to maximize health outcomes with limited resources. Previous research about operating room management has focused on studying the effect of management practices and decisions on efficiency by utilizing mainly modeling approach or before-after analysis in single hospital case. The purpose of this research is to analyze the synergic effect of strategic decisions and operative management practices on operating room productivity and to use a multiple case study method enabling statistical hypothesis testing with empirical data. 11 hypotheses that propose connections between the use of strategic and operative practices and productivity were tested in a multi-hospital study that included 26 units. The results indicate that operative practices, such as personnel management, case scheduling and performance measurement, affect productivity more remarkably than do strategic decisions that relate to, e.g., units' size, scope or academic status. Units with different strategic positions should apply different operative practices: Focused hospital units benefit most from sophisticated case scheduling and parallel processing whereas central and ambulatory units should apply flexible working hours, incentives and multi-skilled personnel. Operating units should be more active in applying management practices which are adequate for their strategic orientation.

  11. Factors Affecting Pheromone Production by the Pepper Weevil, Anthonomus eugenii Cano (Coleoptera: Curculionidae) and Collection Efficiency

    PubMed Central

    Eller, Fred J.; Palmquist, Debra E.

    2014-01-01

    Several factors affecting pheromone production by male pepper weevils, Anthonomus eugenii Cano (Coleoptera: Curculionidae) as well as collection efficiency were investigated. Factors studied included: porous polymer adsorbents (Tenax versus Super Q), male age, time of day, male density, and male diet. Super Q was found to be a superior adsorbent for the male-produced alcohols and geranic acid as well as the plant-produced E-β-ocimene. Pheromone production increased with male age up to about age 15 days old and then tapered off. Male pepper weevils produced the highest amount of pheromone between noon and 2 pm (i.e., 4 to 6 h after “lights on”) and were producing ca. 800 ng/h during this period. Thereafter, pheromone production decreased and was extremely low during the scotophase (i.e., ca. 12 ng/h). Male pepper weevil density had a significant effect on both release rate and pheromone composition. Pheromone production on a per male basis was highest for individual males and the percentage of geranic acid in the blend was lowest for individual males. Male pepper weevils produced only extremely low amounts of pheromone when feeding on artificial diet; however, they produced very high amounts when on fresh peppers. Together, this information will be useful in designing better attractant lures for pepper weevils. PMID:26462948

  12. Factors Affecting Pheromone Production by the Pepper Weevil, Anthonomus eugenii Cano (Coleoptera: Curculionidae) and Collection Efficiency.

    PubMed

    Eller, Fred J; Palmquist, Debra E

    2014-11-18

    Several factors affecting pheromone production by male pepper weevils, Anthonomus eugenii Cano (Coleoptera: Curculionidae) as well as collection efficiency were investigated. Factors studied included: porous polymer adsorbents (Tenax versus Super Q), male age, time of day, male density, and male diet. Super Q was found to be a superior adsorbent for the male-produced alcohols and geranic acid as well as the plant-produced E-β-ocimene. Pheromone production increased with male age up to about age 15 days old and then tapered off. Male pepper weevils produced the highest amount of pheromone between noon and 2 pm (i.e., 4 to 6 h after "lights on") and were producing ca. 800 ng/h during this period. Thereafter, pheromone production decreased and was extremely low during the scotophase (i.e., ca. 12 ng/h). Male pepper weevil density had a significant effect on both release rate and pheromone composition. Pheromone production on a per male basis was highest for individual males and the percentage of geranic acid in the blend was lowest for individual males. Male pepper weevils produced only extremely low amounts of pheromone when feeding on artificial diet; however, they produced very high amounts when on fresh peppers. Together, this information will be useful in designing better attractant lures for pepper weevils.

  13. Soil water repellency affects production and transport of CO2 and CH4 in soil

    NASA Astrophysics Data System (ADS)

    Urbanek, Emilia; Qassem, Khalid

    2016-04-01

    Soil moisture is known to be vital in controlling both the production and transport of C gases in soil. Water availability regulates the decomposition rates of soil organic matter by the microorganisms, while the proportion of water/air filled pores controls the transport of gases within the soil and at the soil-atmosphere interface. Many experimental studies and process models looking at soil C gas fluxes assume that soil water is uniformly distributed and soil is easily wettable. Most soils, however, exhibit some degree of soil water repellency (i.e. hydrophobicity) and do not wet spontaneously when dry or moderately moist. They have restricted infiltration and conductivity of water, which also results in extremely heterogeneous soil water distribution. This is a world-wide occurring phenomenon which is particularly common under permanent vegetation e.g. forest, grass and shrub vegetation. This study investigates the effect of soil water repellency on microbial respiration, CO2 transport within the soil and C gas fluxes between the soil and the atmosphere. The results from the field monitoring and laboratory experiments show that soil water repellency results in non-uniform water distribution in the soil which affects the CO2 and CH4 gas fluxes. The main conclusion from the study is that water repellency not only affects the water relations in the soil, but has also a great impact on greenhouse gas production and transport and therefore should be included as an important parameter during the sites monitoring and modelling of gas fluxes.

  14. Electrostatics in the environment: How they may affect health and productivity

    NASA Astrophysics Data System (ADS)

    Jamieson, K. S.; Simon, H. M. Ap; Bell, J. N. B.

    2008-12-01

    Lifestyles and the built environment have changed considerably during the past century and have greatly influenced the electric field, small air ion and charged submicron aerosol regimes to which individuals are often exposed. In particular the use of electrical items, synthetic materials/finishes and low humidity levels that can lead to the generation of high electrostatic charges, along with inadequate grounding protocols and building techniques which create 'Faraday cage'-like conditions, have all greatly altered the electromagnetic nature of the microclimates many people occupy for prolonged periods of time. It is suggested that the type, polarity and strengths of electric fields individuals are exposed to may affect their likelihood of succumbing to ill-health through influencing biological functioning, oxygen-uptake and retention rates of inhaled submicron contaminants to a far greater degree than previously realised. These factors can also influence the degree of local surface contamination and adhesion that occurs. It is further suggested that both health and work productivity can be affected by such factors, and that improved 'best practice' electro-hygiene/productivity protocols should be adopted wherever practical.

  15. Leucine metabolism regulates TRI6 expression and affects deoxynivalenol production and virulence in Fusarium graminearum.

    PubMed

    Subramaniam, Rajagopal; Narayanan, Swara; Walkowiak, Sean; Wang, Li; Joshi, Manisha; Rocheleau, Hélène; Ouellet, Thérèse; Harris, Linda J

    2015-11-01

    TRI6 is a positive regulator of the trichothecene gene cluster and the production of trichothecene mycotoxins [deoxynivalenol (DON)] and acetylated forms such as 15-Acetyl-DON) in the cereal pathogen Fusarium graminearum. As a global transcriptional regulator, TRI6 expression is modulated by nitrogen-limiting conditions, sources of nitrogen and carbon, pH and light. However, the mechanism by which these diverse environmental factors affect TRI6 expression remains underexplored. In our effort to understand how nutrients affect TRI6 regulation, comparative digital expression profiling was performed with a wild-type F. graminearum and a Δtri6 mutant strain, grown in nutrient-rich conditions. Analysis showed that TRI6 negatively regulates genes of the branched-chain amino acid (BCAA) metabolic pathway. Feeding studies with deletion mutants of MCC, encoding methylcrotonyl-CoA-carboxylase, one of the key enzymes of leucine metabolism, showed that addition of leucine specifically down-regulated TRI6 expression and reduced 15-ADON accumulation. Constitutive expression of TRI6 in the Δmcc mutant strain restored 15-ADON production. A combination of cellophane breach assays and pathogenicity experiments on wheat demonstrated that disrupting the leucine metabolic pathway significantly reduced disease. These findings suggest a complex interaction between one of the primary metabolic pathways with a global regulator of mycotoxin biosynthesis and virulence in F. graminearum.

  16. TITER AND PRODUCT AFFECTS THE DISTRIBUTION OF GENE EXPRESSION AFTER INTRAPUTAMINAL CONVECTION-ENHANCED DELIVERY

    PubMed Central

    Emborg, Marina E.; Hurley, Samuel A.; Joers, Valerie; Tromp, Do P.M.; Swanson, Christine R.; Ohshima-Hosoyama, Sachiko; Bondarenko, Viktorya; Cummisford, Kyle; Sonnemans, Marc; Hermening, Stephan; Blits, Bas; Alexander, Andrew L.

    2014-01-01

    Background Efficacy and safety of intracerebral gene therapy for brain disorders, like Parkinson’s disease, depends on appropriate distribution of gene expression. Objectives To assess if the distribution of gene expression is affected by vector titer and protein type. Methods Four adult macaque monkeys seronegative for adeno-associated virus 5 (AAV5) received in the right and left ventral postcommisural putamen 30μl inoculation of a high or low titer suspension of AAV5 encoding glial derived neurotrophic factor (GDNF) or green fluorescent protein (GFP). Inoculations were performed using convection enhanced delivery and intraoperative MRI (IMRI). Results IMRI confirmed targeting and infusion cloud irradiating from the catheter tip into surrounding area. Postmortem analysis six weeks after surgery revealed GFP and GDNF expression ipsilateral to the injection side that had a titer-dependent distribution. GFP and GDNF expression was also observed in fibers in the Substantia Nigra (SN) pars reticulata (pr), demonstrating anterograde transport. Few GFP-positive neurons were present in the SN pars compacta (pc), possibly by direct retrograde transport of the vector. GDNF was present in many SNpc and SNpr neurons. Conclusions After controlling for target and infusate volume, intracerebral distribution of gene product is affected by vector titer and product biology. PMID:24943657

  17. Fusobacterium nucleatum-Induced Impairment of Autophagic Flux Enhances the Expression of Proinflammatory Cytokines via ROS in Caco-2 Cells

    PubMed Central

    Jia, Yin-ping; Zhu, Pan; Fang, Yao; Zhang, Zhu-jun; Mao, Xu-hu; Li, Qian; Zeng, Dong-Zhu

    2016-01-01

    Fusobacterium nucleatum (F. nucleatum) plays a critical role in gastrointestinal inflammation. However, the exact mechanism by which F. nucleatum contributes to inflammation is unclear. In the present study, it was revealed that F. nucleatum could induce the production of proinflammatory cytokines (IL-8, IL-1β and TNF-α) and reactive oxygen species (ROS) in Caco-2 colorectal) adenocarcinoma cells. Furthermore, ROS scavengers (NAC or Tiron) could decrease the production of proinflammatory cytokines during F. nucleatum infection. In addition, we observed that autophagy is impaired in Caco-2 cells after F. nucleatum infection. The production of proinflammatory cytokines and ROS induced by F. nucleatum was enhanced with either autophagy pharmacologic inhibitors (3-methyladenine, bafilomycin A1) or RNA interference in essential autophagy genes (ATG5 or ATG12) in Caco-2 cells. Taken together, these results indicate that F. nucleatum-induced impairment of autophagic flux enhances the expression of proinflammatory cytokines via ROS in Caco-2 Cells. PMID:27828984

  18. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy.

    PubMed

    Yang, Yuhui; Karakhanova, Svetlana; Hartwig, Werner; D'Haese, Jan G; Philippov, Pavel P; Werner, Jens; Bazhin, Alexandr V

    2016-12-01

    Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc.

  19. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process.

    PubMed

    Dunnill, Christopher; Patton, Thomas; Brennan, James; Barrett, John; Dryden, Matthew; Cooke, Jonathan; Leaper, David; Georgopoulos, Nikolaos T

    2017-02-01

    Reactive oxygen species (ROS) play a pivotal role in the orchestration of the normal wound-healing response. They act as secondary messengers to many immunocytes and non-lymphoid cells, which are involved in the repair process, and appear to be important in coordinating the recruitment of lymphoid cells to the wound site and effective tissue repair. ROS also possess the ability to regulate the formation of blood vessels (angiogenesis) at the wound site and the optimal perfusion of blood into the wound-healing area. ROS act in the host's defence through phagocytes that induce an ROS burst onto the pathogens present in wounds, leading to their destruction, and during this period, excess ROS leakage into the surrounding environment has further bacteriostatic effects. In light of these important roles of ROS in wound healing and the continued quest for therapeutic strategies to treat wounds in general and chronic wounds, such as diabetic foot ulcers, venous and arterial leg ulcers and pressure ulcers in particular, the manipulation of ROS represents a promising avenue for improving wound-healing responses when they are stalled. This article presents a review of the evidence supporting the critical role of ROS in wound healing and infection control at the wound site, and some of the new emerging concepts associated with ROS modulation and its potential in improving wound healing are discussed.

  20. Identification of genes affecting production of the adhesion organelle of Caulobacter crescentus CB2.

    PubMed Central

    Mitchell, D; Smit, J

    1990-01-01

    Transposon (Tn5) mutagenesis was used to identify regions in the genome involved with production, regulation, or attachment to the cell surface of the adhesive holdfast of the freshwater bacterium Caulobacter crescentus CB2. A total of 12,000 independently selected transposon insertion mutants were screened for defects in adhesion to cellulose acetate; 77 mutants were detected and examined by Southern blot hybridization mapping methods and pulsed-field gel electrophoresis. Ten unique sites of Tn5 insertion affecting holdfast function were identified that were clustered in four regions of the genome. Representative mutants of the 10 Tn5 insertion sites were examined by a variety of methods for differences in their phenotype leading to the loss of adhesiveness. Four phenotypes were identified: no holdfast production, production of a smaller or an altered holdfast, production of a holdfast that was unable to remain attached to the cell, and a fourth category in which a possible alteration of the stalk was related to impaired adhesion of the cell. With the possible exception of the last class, no pleiotropic mutants (those with multiple defects in the polar region of the cell) were detected among the adhesion-defective mutants. This was unexpected, since holdfast deficiency is often a characteristic of pleiotropic mutants obtained when selecting for loss of other polar structures. Overall, the evidence suggests that we have identified regions containing structural genes for the holdfast, genes involved with proper attachment or positioning on the caulobacter surface, and possibly regions that regulate the levels of holdfast production. Images PMID:2168382

  1. Dietary PUFA Intervention Affects Fatty Acid- and Micronutrient Profiles of Beef and Related Beef Products

    PubMed Central

    Dannenberger, Dirk; Nuernberg, Karin; Herdmann, Andrea; Nuernberg, Gerd; Hagemann, Elke; Kienast, Walter

    2013-01-01

    The study investigated the dietary impact of 18:3n-3 vs. 18:2n-6 on fatty acid- and micronutrient concentration of beef muscle and the extent of diet- and processing-induced changes of lipid- and micronutrient concentrations of beef products made thereof (German Corned beef (GCB), tea sausage spread (TSS), scalded sausage (SS)). Beef and beef products were obtained from German Holstein bulls which either received a control diet consisting of maize silage and concentrate with soybean meal (41%), or an experimental diet of grass silage and concentrate plus rapeseed cake (12%) and linseed oil (3%). The study revealed that upon an 18:3n-3 vs. 18:2n-6 intervention the amounts of 18:3n-3, EPA and Σn-3 LC-PUFA were significantly increased by 2.6, 2.3 and 1.7 fold, respectively. Experimental diet significantly increased β-carotene contents, and the γ-tocopherol contents were decreased. During beef processing, n-3 PUFA from beef were found to be product-specifically transferred into the corresponding beef products. 18:3n-3 and Σn-3 LC-PUFA contents were found to be 1.4 and 1.5 times higher in GCB from grass silage- than maize silage-fed bulls. The trace element contents in GCB (iron, copper, zinc, selenium) were not affected by the diet; however γ-tocopherol contents were decreased by experimental diet. In conclusion, dietary n-3 PUFA were completely transferred into beef products unaffected by beef processing conditions. PMID:28239116

  2. Docosahexaenoic diet supplementation, exercise and temperature affect cytokine production by lipopolysaccharide-stimulated mononuclear cells.

    PubMed

    Capó, Xavier; Martorell, Miquel; Sureda, Antoni; Batle, Juan Miguel; Tur, Josep Antoni; Pons, Antoni

    2016-09-01

    Acute exercise induces changes in peripheral mononuclear cells' (PBMCs) capabilities to produce cytokines. The aim was to investigate the effect of docosahexaenoic acid (DHA) diet supplementation on cytokine production, by lipopolysaccharide (LPS)-stimulated PBMCs after exercise, and the in vitro influence of temperature. Fifteen male soccer players were randomly assigned to a placebo or an experimental group. The experimental group consumed an almond-based beverage enriched with DHA (1.16 g DHA/day) for 8 weeks, whereas the placebo group consumed a similar non-enriched beverage. Blood samples were taken before and after the nutritional intervention in basal conditions and 2 h after acute exercise. Nutritional intervention significantly increased the DHA content in erythrocytes only in experimental group (from 34 ± 3.6 to 43 ± 3.6 nmols DHA/10(9) erythrocytes). Exercise significantly increased Toll-like receptor 4 (TLR4) in PBMCs but only in the placebo group (203 %). Exercise also significantly increased IL6, IL8, VEGF, INFγ, TNFα, IL1α, IL1β, MCP1, and EGG production rates by LPS-stimulated PBMCs, and this response was attenuated by DHA supplementation. Temperature but not DHA also affected the pattern of cytokine production increasing IL6, IL8, IL1β, and MCP1 synthesis. The higher change was evidenced in IL1β increasing the production rate at 39.5 °C from 3.19 ± 0.77 to 22.4 ± 6.1 pg/h 10(6) PBMC in placebo and from 2.36 ± 0.11 to 10.6 ± 0.38 pg/h 10(6) PBMC in the supplemented group. The profile of affected cytokines differs between temperature and exercise, suggesting a different PBMC activation pathway. DHA diet supplementation only attenuated cytokine production after exercise and not that induced by temperature.

  3. Tryptophan affects both gastrointestinal melatonin production and interrenal activity in stressed and nonstressed rainbow trout.

    PubMed

    Lepage, Olivier; Larson, Earl T; Mayer, Ian; Winberg, Svante

    2005-05-01

    The present experiments were designed to test the hypothesis that elevated dietary levels of l-tryptophan (Trp) result in elevated plasma levels of melatonin and that this increase in plasma melatonin concentration is caused by elevated melatonin production and secretion by the gastro-intestinal-tract (GIT). Feeding juvenile rainbow trout (Oncorhynchus mykiss) Trp-supplemented feed for 7 days resulted in elevated daytime plasma levels of melatonin and reduced poststress plasma cortisol concentrations. Nighttime plasma melatonin concentrations were, however, not affected by elevated dietary Trp. Moreover, stress caused a reduction in daytime plasma levels of melatonin in fish fed Trp-supplemented feed, an effect that was counteracted by treatment with an alpha-receptor antagonist. These results clearly suggest that elevated dietary intake of Trp results in an increase in the GIT production of melatonin in rainbow trout. A suggestion that was further supported by the results from an in vitro experiment demonstrating that addition of Trp to the incubation medium stimulates melatonin production and release by incubated rainbow trout GIT. The results from this study led us to suggest a possible mechanism for melatonin in mediating the effects of elevated dietary Trp on poststress plasma cortisol concentrations and aggressive behavior in rainbow trout.

  4. Greenhouse tomato limited cluster production systems: crop management practices affect yield

    NASA Technical Reports Server (NTRS)

    Logendra, L. S.; Gianfagna, T. J.; Specca, D. R.; Janes, H. W.

    2001-01-01

    Limited-cluster production systems may be a useful strategy to increase crop production and profitability for the greenhouse tomato (Lycopersicon esculentum Mill). In this study, using an ebb-and-flood hydroponics system, we modified plant architecture and spacing and determined the effects on fruit yield and harvest index at two light levels. Single-cluster plants pruned to allow two leaves above the cluster had 25% higher fruit yields than did plants pruned directly above the cluster; this was due to an increase in fruit weight, not fruit number. Both fruit yield and harvest index were greater for all single-cluster plants at the higher light level because of increases in both fruit weight and fruit number. Fruit yield for two-cluster plants was 30% to 40% higher than for single-cluster plants, and there was little difference in the dates or length of the harvest period. Fruit yield for three-cluster plants was not significantly different from that of two-cluster plants; moreover, the harvest period was delayed by 5 days. Plant density (5.5, 7.4, 9.2 plants/m2) affected fruit yield/plant, but not fruit yield/unit area. Given the higher costs for materials and labor associated with higher plant densities, a two-cluster crop at 5.5 plants/m2 with two leaves above the cluster was the best of the production system strategies tested.

  5. Agent-patient similarity affects sentence structure in language production: evidence from subject omissions in Mandarin.

    PubMed

    Hsiao, Yaling; Gao, Yannan; MacDonald, Maryellen C

    2014-01-01

    Interference effects from semantically similar items are well-known in studies of single word production, where the presence of semantically similar distractor words slows picture naming. This article examines the consequences of this interference in sentence production and tests the hypothesis that in situations of high similarity-based interference, producers are more likely to omit one of the interfering elements than when there is low semantic similarity and thus low interference. This work investigated language production in Mandarin, which allows subject noun phrases to be omitted in discourse contexts in which the subject entity has been previously mentioned in the discourse. We hypothesize that Mandarin speakers omit the subject more often when the subject and the object entities are conceptually similar. A corpus analysis of simple transitive sentences found higher rates of subject omission when both the subject and object were animate (potentially yielding similarity-based interference) than when the subject was animate and object was inanimate. A second study manipulated subject-object animacy in a picture description task and replicated this result: participants omitted the animate subject more often when the object was also animate than when it was inanimate. These results suggest that similarity-based interference affects sentence forms, particularly when the agent of the action is mentioned in the sentence. Alternatives and mechanisms for this effect are discussed.

  6. Entamoeba histolytica induces cell death of HT29 colonic epithelial cells via NOX1-derived ROS.

    PubMed

    Kim, Kyeong Ah; Kim, Ju Young; Lee, Young Ah; Min, Arim; Bahk, Young Yil; Shin, Myeong Heon

    2013-02-01

    Entamoeba histolytica, which causes amoebic colitis and occasionally liver abscess in humans, is able to induce host cell death. However, signaling mechanisms of colon cell death induced by E. histolytica are not fully elucidated. In this study, we investigated the signaling role of NOX in cell death of HT29 colonic epithelial cells induced by E. histolytica. Incubation of HT29 cells with amoebic trophozoites resulted in DNA fragmentation that is a hallmark of apoptotic cell death. In addition, E. histolytica generate intracellular reactive oxygen species (ROS) in a contact-dependent manner. Inhibition of intracellular ROS level with treatment with DPI, an inhibitor of NADPH oxidases (NOXs), decreased Entamoeba-induced ROS generation and cell death in HT29 cells. However, pan-caspase inhibitor did not affect E. histolytica-induced HT29 cell death. In HT29 cells, catalytic subunit NOX1 and regulatory subunit Rac1 for NOX1 activation were highly expressed. We next investigated whether NADPH oxidase 1 (NOX1)-derived ROS is closely associated with HT29 cell death induced by E. histolytica. Suppression of Rac1 by siRNA significantly inhibited Entamoeba-induced cell death. Moreover, knockdown of NOX1 by siRNA, effectively inhibited E. histolytica-triggered DNA fragmentation in HT29 cells. These results suggest that NOX1-derived ROS is required for apoptotic cell death in HT29 colon epithelial cells induced by E. histolytica.

  7. ROS-generating/ARE-activating capacity of metals in roadway particulate matter deposited in urban environment.

    PubMed

    Shuster-Meiseles, Timor; Shafer, Martin M; Heo, Jongbae; Pardo, Michal; Antkiewicz, Dagmara S; Schauer, James J; Rudich, Assaf; Rudich, Yinon

    2016-04-01

    In this study we investigated the possible causal role for soluble metal species extracted from roadway traffic emissions in promoting particulate matter (PM)-induced reactive oxygen species (ROS) production and antioxidant response element (ARE) promoter activation. To this end, these responses have been evaluated in alveolar macrophage and epithelial lung cells that have been exposed to 'Unfiltered', 'Filtered' and 'Filtered+Chelexed' water extracts of PM samples collected from the roadway urban environments of Thessaloniki, Milan and London. Except for Thessaloniki, our results demonstrate that filtration resulted in a minor decrease in ROS activity of the fine PM fraction, suggesting that ROS activity is attributed mainly to water-soluble PM species. In contrast to ROS, ARE activity was mediated predominantly by the water-soluble component of PM present in both the fine and coarse extracts. Further removal of metals by Chelex treatment from filtered water extracts showed that soluble metal species are the major factors mediating ROS and ARE activities of the soluble fraction, especially in the London PM extracts. Finally, utilizing step-wise multiple-regression analysis, we show that 87% and 78% of the total variance observed in ROS and ARE assays, respectively, is accounted for by changes in soluble metal concentration. Using a statistical analysis we find that As, Zn and Fe best predict the ROS-generating/ARE-activating capacity of the near roadway particulate matter in the pulmonary cells studied. Collectively, our findings imply that soluble metals present in roadside PM are potential drivers of both pro- and anti-oxidative effects of PM in respiratory tract.

  8. Environmental factors influencing trace house gas production in permafrost-affected soils

    NASA Astrophysics Data System (ADS)

    Walz, Josefine; Knoblauch, Christian; Böhme, Luisa; Pfeiffer, Eva-Maria

    2016-04-01

    The permafrost-carbon feedback has been identified as a major feedback mechanism to climate change. Soil organic matter (SOM) decomposition in the active layer and thawing permafrost is an important source of atmospheric carbon dioxide (CO2) and methane (CH4). Decomposability and potential CO2 and CH4 production are connected to the quality of SOM. SOM quality varies with vegetation composition, soil type, and soil depth. The regulating factors affecting SOM decomposition in permafrost landscapes are not well understood. Here, we incubated permafrost-affected soils from a polygonal tundra landscape in the Lena Delta, Northeast Siberia, to examine the influence of soil depth, oxygen availability, incubation temperature, and fresh organic matter addition on trace gas production. CO2 production was always highest in topsoil (0 - 10 cm). Subsoil (10 - 50 cm) and permafrost (50 - 90 cm) carbon did not differ significantly in their decomposability. Under anaerobic conditions, less SOM was decomposed than under aerobic conditions. However, in the absence of oxygen, CH4 can also be formed, which has a substantially higher warming potential than CO2. But, within the four-month incubation period (approximate period of thaw), methanogenesis played only a minor role with CH4 contributing 1-30% to the total anaerobic carbon release. Temperature and fresh organic matter addition had a positive effect on SOM decomposition. Across a temperature gradient (1, 4, 8°C) aerobic decomposition in topsoil was less sensitive to temperature than in subsoil or permafrost. The addition of labile plant organic matter (13C-labelled Carex aquatilis, a dominant species in the region) significantly increased overall CO2 production across different depths and temperatures. Partitioning the total amount of CO2 in samples amended with Carex material into SOM-derived CO2 and Carex-derived CO2, however, revealed that most of the additional CO2 could be assigned to the organic carbon from the amendment

  9. The human c-ros gene (ROS) is located at chromosome region 6q16----6q22.

    PubMed

    Nagarajan, L; Louie, E; Tsujimoto, Y; Balduzzi, P C; Huebner, K; Croce, C M

    1986-09-01

    The human homolog, c-ros, of the transforming gene, v-ros, of the avian sarcoma virus, UR2, has been isolated from a human genomic library. A single-copy fragment from the human c-ros genomic clone has been used to map the human c-ros homolog (ROS) to human chromosome region 6q16----6q22 by somatic cell hybrid analysis and chromosomal in situ hybridization. Thus, the c-ros gene joins the c-myb oncogene, which is distal to the c-ros gene on the long arm of human chromosome 6, as a candidate for involvement in chromosome 6q deletions and rearrangements seen in various malignancies.

  10. Preparing for Rectal Microbicides: Sociocultural Factors Affecting Product Uptake Among Potential South American Users

    PubMed Central

    Kinsler, Janni J.; Imrie, John; Nureña, César R.; Ruiz, Lucía; Galarza, Luis Fernando; Sánchez, Jorge; Cunningham, William E.

    2014-01-01

    Objectives. We examined views on rectal microbicides (RMs), a potential HIV prevention option, among men who have sex with men and transgender women in 3 South American cities. Methods. During September 2009 to September 2010, we conducted 10 focus groups and 36 in-depth interviews (n = 140) in Lima and Iquitos, Peru, and Guayaquil, Ecuador, to examine 5 RM domains: knowledge, thoughts and opinions about RM as an HIV prevention tool, use, condoms, and social concerns. We coded emergent themes in recorded and transcribed data sets and extracted representative quotes. We collected sociodemographic information with a self-administered questionnaire. Results. RM issues identified included limited knowledge; concerns regarding plausibility, side effects, and efficacy; impact on condom use; target users (insertive vs receptive partners); and access concerns. Conclusions. Understanding the sociocultural issues affecting RMs is critical to their uptake and should be addressed prior to product launch. PMID:24825222

  11. Quality of shrimp analogue product as affected by addition of modified potato starch.

    PubMed

    Remya, S; Basu, S; Venkateshwarlu, G; Mohan, C O

    2015-07-01

    The present study was aimed to investigate the effects of addition of modified potato starch on the biochemical and textural properties of shrimp analogue/imitation shrimp, a popular value-added product prepared from surimi. Three batches of shrimp analogues were prepared with 0 % (NPS), 50 % (CPS) and 100 % (MPS) of modified starch incorporation and various quality attributes were monitored at regular intervals during frozen storage (-20 °C). Loss of myofibrillar protein was least for the shrimp analogue sample added with 100 % modified potato starch. The expressible moisture content of MPS (2.48 %) was less affected by long term storage compared to CPS (3.38 %) and NPS (3.99 %). During extended low temperature storage, the textural quality of sea food analogue was highly influenced by the type of starch added to it. The percentage of modified potato starch added to shrimp analogue significantly (p ≤ 0.05) affected its hardness and fracturability. MPS samples did not show significant changes in hardness during storage as compared to other two samples. Springiness of shrimp analogue increased 2.57, 1.5 and 1.77 times with the storage period for samples with NPS, CPS and MPS, respectively. Addition of modified potato starch improved the sensory quality and textural properties of shrimp analogue and reduced the quality degradation during frozen storage as compared to NPS which contained only native potato starch.

  12. Caenorhabditis elegans as a model for understanding ROS function in physiology and disease.

    PubMed

    Miranda-Vizuete, Antonio; Veal, Elizabeth A

    2017-04-01

    ROS (reactive oxygen species) are potentially damaging by-products of aerobic metabolism which, unchecked, can have detrimental effects on cell function. However, it is now widely accepted that, at physiological levels, certain ROS play important roles in cell signaling, acting as second messengers to regulate cell choices that contribute to the development, adaptation and survival of plants and animals. Despite important recent advances in the biochemical tools available to study redox-signaling, the molecular mechanisms underlying most of these responses remain poorly understood, particularly in multicellular organisms. As we will review here, C. elegans has emerged as a powerful animal model to elucidate these and other aspects of redox biology.

  13. ROS, Notch, and Wnt signaling pathways: crosstalk between three major regulators of cardiovascular biology.

    PubMed

    Caliceti, C; Nigro, P; Rizzo, P; Ferrari, R

    2014-01-01

    Reactive oxygen species (ROS), traditionally viewed as toxic by-products that cause damage to biomolecules, now are clearly recognized as key modulators in a variety of biological processes and pathological states. The development and regulation of the cardiovascular system require orchestrated activities; Notch and Wnt/β -catenin signaling pathways are implicated in many aspects of them, including cardiomyocytes and smooth muscle cells survival, angiogenesis, progenitor cells recruitment and differentiation, arteriovenous specification, vascular cell migration, and cardiac remodelling. Several novel findings regarding the role of ROS in Notch and Wnt/β-catenin modulation prompted us to review their emerging function in the cardiovascular system during embryogenesis and postnatally.

  14. Astragalus polysaccharide improves cardiac function in doxorubicin-induced cardiomyopathy through ROS-p38 signaling

    PubMed Central

    Zhou, Liangliang; Chen, Lanping; Wang, Jing; Deng, Yijun

    2015-01-01

    Doxorubicin (DOX) is widely used as an antitumor agent, but it is significantly challenged by clinical workers due to the severe and acute cardiotoxitity. Astragalus polysaccharide (APS) is characterized by an anti-inflammation and anti-oxidant features. In the current study, we explored the effects and specific mechanisms of APS on DOX-induced-cardiomyopathy in mouse primary myocardial cells. To explore the effect of DOX on ROS production, DHE staining and flow cytometry analysis were used in primary cardiomyocytes treated with 1 μM DOX for 24 h. MTT assay was applied to determine the effect of DOX on cell viability. The effects of DOX on rat cardiomyocytes apoptosis by Hoechst staining and annexin V-PI staining, while caspase3 activity was determined using an assay kit. Two-dimensional echocardiography of rats was performed to determine left ventricular fraction and relative wall thickness. Activation of p38 and Akt was analyzed using western blot. ROS production was significantly enhanced by DOX stimulation in primary cardiomyocytes. DOX reduced rat cardiomyocytes viability in a time- and dose-dependent manner. DOX induced apoptosis in rat cardiomyocytes via activation of caspase-3. Cardiac function was significantly impaired by enhanced p38 activation. APS treatment reduced DOX-induced rat cardiomyocytes apoptosis by decreasing ROS production. To conclude, APS reduced DOX-induced cell apoptosis and ROS production by reduced activation of p38 signaling pathway. PMID:26885153

  15. Resveratrol inhibits renal interstitial fibrosis in diabetic nephropathy by regulating AMPK/NOX4/ROS pathway.

    PubMed

    He, Ting; Xiong, Jiachuan; Nie, Ling; Yu, Yanlin; Guan, Xu; Xu, Xinli; Xiao, Tangli; Yang, Ke; Liu, Liang; Zhang, Daohai; Huang, Yunjian; Zhang, Jingbo; Wang, Junping; Sharma, Kumar; Zhao, Jinghong

    2016-12-01

    Renal interstitial fibrosis is a major pathologic feature of diabetic nephropathy, while the pathogenesis and therapeutic interventions of diabetic renal interstitial fibrosis are not well established. In this study, we first demonstrated that high glucose could induce renal fibroblast (NRK-49F) cell proliferation and activation to myofibroblasts, accompanied by a significant increase in the intracellular levels of reactive oxygen species (ROS) derived from nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4). ROS-mediated ERK1/2 activation was found to play a crucial role in high glucose-induced fibroblast proliferation and activation. Resveratrol, like the NOX4-targeting small interfering RNA (siRNA), markedly inhibited high glucose-induced fibroblast proliferation and activation by reducing NOX4-derived ROS production. It was then revealed that the increase in the expression of NOX4 induced by high glucose was due to the inactivation of AMP-activated protein kinase (AMPK), which could be reversed by resveratrol. Further in vivo investigation demonstrated that resveratrol treatment significantly attenuated renal fibrosis in db/db mice, accompanied by an evident increase in phospho-AMPK and decrease in NOX4. In summary, our results suggest that high glucose can directly promote renal fibroblasts proliferation and activation in a ROS-dependent manner, and resveratrol is a potential therapeutic agent against diabetic renal fibrosis via regulation of AMPK/NOX4/ROS signaling.

  16. NADPH oxidase-derived ROS and the regulation of pulmonary vessel tone

    PubMed Central

    Frazziano, G.; Champion, H. C.

    2012-01-01

    Pulmonary vessel constriction results from an imbalance between vasodilator and vasoconstrictor factors released by the endothelium including nitric oxide, endothelin, prostanoids, and reactive oxygen species (ROS). ROS, generated by a variety of enzymatic sources (such as mitochondria and NADPH oxidases, a.k.a. Nox), appear to play a pivotal role in vascular homeostasis, whereas elevated levels effect vascular disease. The pulmonary circulation is very sensitive to changes in the partial pressure of oxygen and differs from the systemic circulation in its response to this change. In fact, the pulmonary vessels contract in response to low oxygen tension, whereas systemic vessels dilate. Growing evidence suggests that ROS production and ROS-related pathways may be key factors that underlie this differential response to oxygen tension. A major emphasis of our laboratory is the role of Nox isozymes in cardiovascular disease. In this review, we will focus our attention on the role of Nox-derived ROS in the control of pulmonary vascular tone. PMID:22427511

  17. Sublethal vancomycin-induced ROS mediating antibiotic resistance in Staphylococcus aureus.

    PubMed

    Li, Gui-qiu; Quan, Feng; Qu, Ting; Lu, Juan; Chen, Shu-lan; Cui, Lan-ying; Guo, Da-wen; Wang, Yong-chen

    2015-09-30

    Staphylococcus aureus is the leading cause of many human infectious diseases. Besides infectious dangers, S. aureus is well-known for the quickly developed drug resistance. Although great efforts have been made, mechanisms underlying the antibiotic effects of S. aureus are still not well clarified. Recently, reports have shown that oxidative stress connects with bactericidal antibiotics [Dwyer et al. (2009) Curr. Opin. Microbiol. 12: , 482-489]. Based on this point, we demonstrate that reactive oxygen species (ROS) induced by sublethal vancomycin may be partly responsible for the antibiotic resistance in heterogeneous vancomycin resistant S. aureus (hVRSA). Sublethal vancomycin treatment may induce protective ROS productions in hVRSA, whereas reduction in ROS level in hVRSA strains may increase their vancomycin susceptibility. Moreover, low dose of ROS in VSSA (vancomycin susceptible S. aureus) strains may promote their survival under vancomycin conditions. Our findings reveal that modest ROS generation may be protective for vancomycin resistance in hVRSA. These results recover novel insights into the relationship between oxidative stress and bacterial resistance, which has important applications for further use of antibiotics and development of therapeutics strategies for hVRSA.

  18. ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases

    PubMed Central

    Davalli, Pierpaola; Mitic, Tijana; Caporali, Andrea; Lauriola, Angela; D'Arca, Domenico

    2016-01-01

    The aging process worsens the human body functions at multiple levels, thus causing its gradual decrease to resist stress, damage, and disease. Besides changes in gene expression and metabolic control, the aging rate has been associated with the production of high levels of Reactive Oxygen Species (ROS) and/or Reactive Nitrosative Species (RNS). Specific increases of ROS level have been demonstrated as potentially critical for induction and maintenance of cell senescence process. Causal connection between ROS, aging, age-related pathologies, and cell senescence is studied intensely. Senescent cells have been proposed as a target for interventions to delay the aging and its related diseases or to improve the diseases treatment. Therapeutic interventions towards senescent cells might allow restoring the health and curing the diseases that share basal processes, rather than curing each disease in separate and symptomatic way. Here, we review observations on ROS ability of inducing cell senescence through novel mechanisms that underpin aging processes. Particular emphasis is addressed to the novel mechanisms of ROS involvement in epigenetic regulation of cell senescence and aging, with the aim to individuate specific pathways, which might promote healthy lifespan and improve aging. PMID:27247702

  19. Cell Intrinsic Galectin-3 Attenuates Neutrophil ROS-Dependent Killing of Candida by Modulating CR3 Downstream Syk Activation

    PubMed Central

    Wu, Sheng-Yang; Huang, Juin-Hua; Chen, Wen-Yu; Chan, Yi-Chen; Lin, Chun-Hung; Chen, Yee-Chun; Liu, Fu-Tong; Wu-Hsieh, Betty A.

    2017-01-01

    Invasive candidiasis is a leading cause of nosocomial bloodstream infection. Neutrophils are the important effector cells in host resistance to candidiasis. To investigate the modulation of neutrophil fungicidal function will advance our knowledge on the control of candidiasis. While recombinant galectin-3 enhances neutrophil phagocytosis of Candida, we found that intracellular galectin-3 downregulates neutrophil fungicidal functions. Co-immunoprecipitation and immunofluorescence staining reveal that cytosolic gal3 physically interacts with Syk in neutrophils after Candida stimulation. Gal3−/− neutrophils have higher level of Syk activation as well as greater abilities to generate reactive oxygen species (ROS) and kill Candida than gal3+/+ cells. While galectin-3 deficiency modulates neutrophil and macrophage activation and the recruitment of monocytes and dendritic cells, the deficiency does not affect the numbers of infiltrating neutrophils or macrophages. Galectin-3 deficiency ameliorates systemic candidiasis by reducing fungal burden, renal pathology, and mortality. Adoptive transfer experiments demonstrate that cell intrinsic galectin-3 negatively regulates neutrophil effector functions against candidiasis. Reducing galectin-3 expression or activity by siRNA or gal3 inhibitor TD139 enhances human neutrophil ROS production. Mice treated with TD139 have enhanced ability to clear the fungus. Our work unravels the mechanism by which galectin-3 regulates Syk-dependent neutrophil fungicidal functions and raises the possibility that blocking gal3 in neutrophils may be a promising therapeutic strategy for treating systemic candidiasis. PMID:28217127

  20. Targeting extracellular ROS signaling of tumor cells.

    PubMed

    Bauer, Georg

    2014-04-01

    Expression of membrane-associated NADPH oxidase (NOX1) represents a characteristic feature of malignant cells. NOX1-derived extracellular superoxide anions are the basis for autocrine stimulation of proliferation, but also drive the HOCl and the NO/peroxynitrite signaling pathways. This may cause the elimination of transformed cells. Tumor cells express membrane-associated catalase that efficiently protects the cells against apoptosis-inducing reactive oxygen species (ROS) signaling. Membrane-associated superoxide dismutase (SOD) plays a co-modulatory protective role that is functionally interrelated with the protective effect mediated by catalase. Due to the co-localization of NOX1, catalase and SOD on the outer membrane of tumor cells, specific inhibition of membrane-associated SOD causes superoxide anion-dependent inhibition of catalase. This establishes a strong apoptotic signaling through the NO/peroxynitrite pathway. In parallel, it causes a drastic decrease in the concentration of proliferation-stimulating H2O2. Knowledge of the biochemical network on the surface of tumor cells should, therefore, allow development of specific novel strategies for tumor therapy, based on the specific features of tumor cell-specific extracellular ROS interactions.

  1. Thiazide diuretics affect osteocalcin production in human osteoblasts at the transcription level without affecting vitamin D3 receptors.

    PubMed

    Lajeunesse, D; Delalandre, A; Guggino, S E

    2000-05-01

    Besides their natriuretic and calciuretic effect, thiazide diuretics have been shown to decrease bone loss rate and improve bone mineral density. Clinical evidence suggests a specific role of thiazides on osteoblasts, because it reduces serum osteocalcin (OC), an osteoblast-specific protein, yet the mechanisms implicated are unknown. We therefore investigated the role of hydrochlorothiazide (HCTZ) on OC production by the human osteoblast-like cell line MG-63. HCTZ dose-dependently (1-100 microM) inhibited 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]-induced OC release by these cells (maximal effect, -40-50% and p < 0.005 by analysis of variance [ANOVA]) as measured by ELISA. This effect of HCTZ on OC release was caused by a direct effect on OC gene expression because Northern blot analysis revealed that OC messenger RNA (mRNA) levels were reduced in the presence of increasing doses of the diuretic (-47.2+/-4.0%; p < 0.0001 by paired ANOVA with 100 microM 13.6+/-0.49 pmol/mg protein/15 minutes; p < 0.05) in MG-63 cells. Reducing extracellular Ca2+ concentration with 0.5 mM EDTA or 0.5 mM ethylene glycol-bis(beta-amino ethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) only partly prevented the inhibitory effect of the diuretic on OC secretion (maximal effect, -22.5+/-6.9%), suggesting that thiazide-dependent Ca2+ influx is not sufficient to elicit the inhibition of OC secretion. Because OC production is strictly dependent on the presence of 1,25(OH)2D3 in human osteoblasts, we next evaluated the possible role of HCTZ on vitamin D3 receptors (VDR) at the mRNA and protein levels. Both Northern and Western blot analyses showed no effect of HCTZ (1-100 microM) on VDR levels. The presence of EGTA in the culture media reduced slightly the VDR mRNA levels under basal condition but this was not modified in the presence of increasing levels of HCTZ. The OC gene promoter also is under the control of transcription factors such as Yin Yang 1 (YY1) and cFOS. Western blot analysis revealed

  2. Mitochondrial ROS and cancer drug resistance: Implications for therapy.

    PubMed

    Okon, Imoh S; Zou, Ming-Hui

    2015-10-01

    Under physiological conditions, a well-coordinated and balanced redox system exists to ensure that reactive oxygen species (ROS) are appropriately utilized to accomplish specific functions, such as signaling and protein regulation. The influence of ROS within malignant cells, whether for good or bad may depend on several factors, such as tumor and tissue type, disease stage, treatment strategy, as well as duration, specificity and levels of ROS. What then are the known roles of ROS in cancer? Firstly, ROS significantly impacts cancer phenotypes. Secondly, the oxidative ROS property responsible for killing cancer cells, also impact secondary signaling networks. Thirdly, a strong correlation exist between ROS and genetic instability which may promote mutations. Finally, emerging observations suggest a role for mitochondrial ROS in cancer drug resistance, with implications for therapy. The mitochondria is a key regulator of metabolic-redox (meta-redox) alterations within cancer cells. Like a double-edged sword, mitochondrial ROS perturbations in cancer therapy may be beneficial or detrimental. However, harnessing ROS-specific cancer-targeting benefits remain a major challenge.

  3. Nanomedicine in the ROS-Mediated Pathophysiology: Applications and Clinical Advances

    PubMed Central

    Nash, Kevin M.; Ahmed, Salahuddin

    2015-01-01

    Reactive oxygen species (ROS) are important in regulating normal cell physiological functions, but when produced in excess lead to the augmented pathogenesis of various diseases. Among these ischemia reperfusion injury, Alzheimer’s disease and rheumatoid arthritis, are particularly important. Since ROS can be counteracted by a variety of antioxidants, natural and synthetic antioxidants have been developed. However, due to the ubiquitous production of ROS in living systems, poor in vivo efficiency of these agents and lack of target specificity, the current clinical modalities to treat oxidative stress damage are limited. Advances in the developing field of nanomedicine have yielded nanoparticles that can prolong antioxidant activity, and target specificity of these agents. Thus, catalytic antioxidants such as recombinant superoxide dismutase (SOD), in combination with platinum and cerium oxide nanoparticles manifest higher efficacy at smaller doses with potentially lower toxicity. This article reviews recent advances in antioxidant nanoparticles and their applications to manage oxidative stress-mediated diseases. PMID:26255114

  4. Selection of barley grain affects ruminal fermentation, starch digestibility, and productivity of lactating dairy cows.

    PubMed

    Silveira, C; Oba, M; Yang, W Z; Beauchemin, K A

    2007-06-01

    The objective of this study was to evaluate the effects of 2 lots of barley grain cultivars differing in expected ruminal starch degradation on dry matter (DM) intake, ruminal fermentation, ruminal and total tract digestibility, and milk production of dairy cows when provided at 2 concentrations in the diet. Four primiparous ruminally cannulated (123 +/- 69 d in milk; mean +/- SD) and 4 multiparous ruminally and duodenally cannulated (46 +/- 14 d in milk) cows were used in a 4 x 4 Latin Square design with a 2 x 2 factorial arrangement of treatments with 16-d periods. Primiparous and multiparous cows were assigned to different squares. Treatments were 2 dietary starch concentrations (30 vs. 23% of dietary DM) and 2 lots of barley grain cultivars (Xena vs. Dillon) differing in expected ruminal starch degradation. Xena had higher starch concentration (58.7 vs. 50.0%) and greater in vitro 6-h starch digestibility (78.0 vs. 73.5%) compared with Dillon. All experimental diets were formulated to supply 18.3% crude protein and 20.0% forage neutral detergent fiber. Dry matter intake and milk yield were not affected by treatment. Milk fat concentration (3.55 vs. 3.29%) was greater for cows fed Dillon compared with Xena, but was not affected by dietary starch concentration. Ruminal starch digestion was greater for cows fed high-starch diets compared with those fed low-starch diets (4.55 vs. 2.49 kg/d), and tended to be greater for cows fed Xena compared with those fed Dillon (3.85 vs. 3.19 kg/d). Ruminal acetate concentration was lower, and propionate concentration was greater, for cows fed Xena or high-starch diets compared with cows fed Dillon or low-starch diets, respectively. Furthermore, cows fed Xena or high-starch diets had longer duration that ruminal pH was below 5.8 (6.6 vs. 4.0 and 6.4 vs. 4.2 h/d) and greater total tract starch digestibility (94.3 vs. 93.0 and 94.3 vs. 93.0%) compared with cows fed Dillon or low-starch diets, respectively. These results

  5. Klebsiella pneumoniae yfiRNB operon affects biofilm formation, polysaccharide production and drug susceptibility.

    PubMed

    Huertas, Mónica G; Zárate, Lina; Acosta, Iván C; Posada, Leonardo; Cruz, Diana P; Lozano, Marcela; Zambrano, María M

    2014-12-01

    Klebsiella pneumoniae is an opportunistic pathogen important in hospital-acquired infections, which are complicated by the rise of drug-resistant strains and the capacity of cells to adhere to surfaces and form biofilms. In this work, we carried out an analysis of the genes in the K. pneumoniae yfiRNB operon, previously implicated in biofilm formation. The results indicated that in addition to the previously reported effect on type 3 fimbriae expression, this operon also affected biofilm formation due to changes in cellulose as part of the extracellular matrix. Deletion of yfiR resulted in enhanced biofilm formation and an altered colony phenotype indicative of cellulose overproduction when grown on solid indicator media. Extraction of polysaccharides and treatment with cellulase were consistent with the presence of cellulose in biofilms. The enhanced cellulose production did not, however, correlate with virulence as assessed using a Caenorhabditis elegans assay. In addition, cells bearing mutations in genes of the yfiRNB operon varied with respect to the WT control in terms of susceptibility to the antibiotics amikacin, ciprofloxacin, imipenem and meropenem. These results indicated that the yfiRNB operon is implicated in the production of exopolysaccharides that alter cell surface characteristics and the capacity to form biofilms--a phenotype that does not necessarily correlate with properties related with survival, such as resistance to antibiotics.

  6. Developmental and communicative factors affecting VOT production in English and Arabic bilingual and monolingual speakers

    NASA Astrophysics Data System (ADS)

    Khattab, Ghada

    2004-05-01

    VOT patterns were investigated in the production of three Lebanese-English bilinguals' aged 5, 7, and 10, six aged-matched monolingual controls from the bilinguals' immediate communities, and the parents of bilinguals and monolinguals. The aim was to examine the extent to which children exposed to two languages acquire separate VOT patterns for each language and to determine the factors that affect such acquisition. Results showed that VOT patterns for each bilingual child differed significantly across the two languages. But while the contrast in English resembled a monolingual-like model, that for Arabic exhibited persisting developmental features; explanations were offered in terms of the relationship between input and complexity of voicing lead production. Evidence was used from developmental changes that were noted for two of the bilingual subjects over a period of 18 months. English code-switches produced by the bilinguals during Arabic sessions exhibited different VOT patterns from those produced during English sessions, which underlined the importance of taking the language context into consideration. Finally, results from monolinguals and bilinguals showed that the short lag categories for the two languages were different despite a degree of overlap. Such findings require finer divisions of the three universal VOT categories to account for language-specific patterns.

  7. Factors affecting current production in microbial fuel cells using different industrial wastewaters.

    PubMed

    Velasquez-Orta, S B; Head, I M; Curtis, T P; Scott, K

    2011-04-01

    This study evaluated how different types of industrial wastewaters (bakery, brewery, paper and dairy) affect the performance of identical microbial fuel cells (MFCs); and the microbial composition and electrochemistry of MFC anodes. MFCs fed with paper wastewater produced the highest current density (125 ± 2 mA/m(2)) at least five times higher than dairy (25 ± 1 mA/m(2)), brewery and bakery wastewaters (10 ± 1 mA/m(2)). Such high current production was independent of substrate degradability. A comprehensive study was conducted to determine the factor driving current production when using the paper effluent. The microbial composition of anodic biofilms differed according to the type of wastewater used, and only MFC anodes fed with paper wastewater showed redox activity at -134 ± 5 mV vs NHE. Electrochemical analysis of this redox activity indicated that anodic bacteria produced a putative electron shuttling compound that increased the electron transfer rate through diffusion, and as a result the overall MFC performance.

  8. Tassel Removal Positively Affects Biomass Production Coupled with Significantly Increasing Stem Digestibility in Switchgrass

    PubMed Central

    Zhao, Chunqiao; Fan, Xifeng; Hou, Xincun; Zhu, Yi; Yue, Yuesen; Zhang, Shuang; Wu, Juying

    2015-01-01

    In this study, tassels of Cave-in-Rock (upland) and Alamo (lowland) were removed at or near tassel emergence to explore its effects on biomass production and quality. Tassel-removed (TR) Cave-in-Rock and Alamo both exhibited a significant (P<0.05) increase in plant heights (not including tassel length), tiller number, and aboveground biomass dry weight (10% and 12%, 30% and 13%, 13% and 18%, respectively by variety) compared to a control (CK) treatment. Notably, total sugar yields of TR Cave-in-Rock and Alamo stems increased significantly (P<0.05 or 0.01) by 19% and 19%, 21% and 14%, 52% and 18%, respectively by variety, compared to those of control switchgrass under 3 treatments by direct enzymatic hydrolysis (DEH), enzymatic hydrolysis after 1% NaOH pretreatment (EHAL) and enzymatic hydrolysis after 1% H2SO4 pretreatment (EHAC). These differences were mainly due to significantly (P<0.05 or 0.01) higher cellulose content, lower cellulose crystallinity indexes (CrI) caused by higher arabinose (Ara) substitution in xylans, and lower S/G ratio in lignin. However, the increases of nitrogen (N) and sulphur (S) concentration negatively affects the combustion quality of switchgrass aboveground biomass. This work provides information for increasing biomass production and quality in switchgrass and also facilitates the inhibition of gene dispersal of switchgrass in China. PMID:25849123

  9. Tassel removal positively affects biomass production coupled with significantly increasing stem digestibility in switchgrass.

    PubMed

    Zhao, Chunqiao; Fan, Xifeng; Hou, Xincun; Zhu, Yi; Yue, Yuesen; Zhang, Shuang; Wu, Juying

    2015-01-01

    In this study, tassels of Cave-in-Rock (upland) and Alamo (lowland) were removed at or near tassel emergence to explore its effects on biomass production and quality. Tassel-removed (TR) Cave-in-Rock and Alamo both exhibited a significant (P<0.05) increase in plant heights (not including tassel length), tiller number, and aboveground biomass dry weight (10% and 12%, 30% and 13%, 13% and 18%, respectively by variety) compared to a control (CK) treatment. Notably, total sugar yields of TR Cave-in-Rock and Alamo stems increased significantly (P<0.05 or 0.01) by 19% and 19%, 21% and 14%, 52% and 18%, respectively by variety, compared to those of control switchgrass under 3 treatments by direct enzymatic hydrolysis (DEH), enzymatic hydrolysis after 1% NaOH pretreatment (EHAL) and enzymatic hydrolysis after 1% H2SO4 pretreatment (EHAC). These differences were mainly due to significantly (P<0.05 or 0.01) higher cellulose content, lower cellulose crystallinity indexes (CrI) caused by higher arabinose (Ara) substitution in xylans, and lower S/G ratio in lignin. However, the increases of nitrogen (N) and sulphur (S) concentration negatively affects the combustion quality of switchgrass aboveground biomass. This work provides information for increasing biomass production and quality in switchgrass and also facilitates the inhibition of gene dispersal of switchgrass in China.

  10. Flavone inhibits migration through DLC1/RhoA pathway by decreasing ROS generation in breast cancer cells.

    PubMed

    Zhu, Wenzhen; Ma, Long; Yang, Bingwu; Zheng, Zhaodi; Chai, Rongfei; Liu, Tingting; Liu, Zhaojun; Song, Taiyu; Li, Fenglin; Li, Guorong

    2016-05-01

    Tumor suppressor protein deleted in liver cancer 1 (DLC1) is a RhoGTPase-activating protein (RhoGAP) and inhibits cancer cell migration by inactivating downstream target protein RhoA. A few studies have reported the regulations of reactive oxygen species (ROS) on RhoGAP. In this study, we investigated flavone (the core structure of flavonoids)-induced regulation on ROS generation and DLC1/RhoA pathway in MCF-7 and MDA-MB-231 breast cancer cells and explored whether flavone-induced upregulation of DLC1 is mediated by ROS. Our results showed that flavone decreased ROS production and inhibited cell migration through DLC1/RhoA pathway. To further investigate the role of ROS in flavone-induced regulation on DLC1/RhoA pathway, hydrogen peroxide was added to restore the ROS levels. Flavone-induced upregulation of DLC1 expression, downregulation of RhoA activity, and inhibition of cell migration were all restrained by hydrogen peroxide. We also found that flavone increased DLC1 stability by inhibiting DLC1 protein degradation in breast cancer cells. In summary, our study demonstrated that flavone inhibited cell migration through DLC1/RhoA pathway by decreasing ROS generation and suppressed DLC1 degradation in MCF-7 and MDA-MB-231 breast cancer cells.

  11. Patterns of ROS Accumulation in the Stigmas of Angiosperms and Visions into Their Multi-Functionality in Plant Reproduction

    PubMed Central

    Zafra, Adoración; Rejón, Juan D.; Hiscock, Simon J.; Alché, Juan de Dios

    2016-01-01

    Accumulation of reactive oxygen species (ROS) in the stigma of several plant species has been investigated. Four developmental stages (unopened flower buds, recently opened flowers, dehiscent anthers, and flowers after fertilization) were analyzed by confocal laser scanning microscopy using the ROS-specific probe DCFH2-DA. In all plants scrutinized, the presence of ROS in the stigmas was detected at higher levels during those developmental phases considered “receptive” to pollen interaction. In addition, these molecules were also present at early (unopened flower) or later (post-fertilization) stages, by following differential patterns depending on the different species. The biological significance of the presence ROS may differ between these stages, including defense functions, signaling and senescence. Pollen-stigma signaling is likely involved in the different mechanisms of self-incompatibility in these plants. The study also register a general decrease in the presence of ROS in the stigmas upon pollination, when NO is supposedly produced in an active manner by pollen grains. Finally, the distribution of ROS in primitive Angiosperms of the genus Magnolia was determined. The production of such chemical species in these plants was several orders of magnitude higher than in the remaining species evoking a massive displacement toward the defense function. This might indicate that signaling functions of ROS/NO in the stigma evolved later, as fine tune likely involved in specialized interactions like self-incompatibility. PMID:27547207

  12. Patterns of ROS Accumulation in the Stigmas of Angiosperms and Visions into Their Multi-Functionality in Plant Reproduction.

    PubMed

    Zafra, Adoración; Rejón, Juan D; Hiscock, Simon J; Alché, Juan de Dios

    2016-01-01

    Accumulation of reactive oxygen species (ROS) in the stigma of several plant species has been investigated. Four developmental stages (unopened flower buds, recently opened flowers, dehiscent anthers, and flowers after fertilization) were analyzed by confocal laser scanning microscopy using the ROS-specific probe DCFH2-DA. In all plants scrutinized, the presence of ROS in the stigmas was detected at higher levels during those developmental phases considered "receptive" to pollen interaction. In addition, these molecules were also present at early (unopened flower) or later (post-fertilization) stages, by following differential patterns depending on the different species. The biological significance of the presence ROS may differ between these stages, including defense functions, signaling and senescence. Pollen-stigma signaling is likely involved in the different mechanisms of self-incompatibility in these plants. The study also register a general decrease in the presence of ROS in the stigmas upon pollination, when NO is supposedly produced in an active manner by pollen grains. Finally, the distribution of ROS in primitive Angiosperms of the genus Magnolia was determined. The production of such chemical species in these plants was several orders of magnitude higher than in the remaining species evoking a massive displacement toward the defense function. This might indicate that signaling functions of ROS/NO in the stigma evolved later, as fine tune likely involved in specialized interactions like self-incompatibility.

  13. Oestrous sheep serum balances ROS levels to supply in vitro capacitation of ram spermatozoa.

    PubMed

    Del Olmo, E; García-Álvarez, O; Maroto-Morales, A; Ramón, M; Iniesta-Cuerda, M; Martinez-Pastor, F; Montoro, V; Soler, A J; Garde, J J; Fernández-Santos, M R

    2016-10-01

    Reactive oxygen species (ROS) are fundamental for intracellular signalling. In spermatozoa, they are involved both to apoptosis and to capacitation, and changes in ROS levels can alter the balance between these two processes. Oestrous sheep serum (OSS) is considered an efficient agent for in vitro capacitation of ram spermatozoa. We have explored the effects of OSS on ram sperm physiology, especially on ROS production, during in vitro capacitation. Semen samples from 15 rams were cryopreserved. After thawing, samples were submitted to four treatments: control (CTL), 10% OSS supplementation for in vitro sperm capacitation, caspase inhibitor (INH, Z-VAD-FMK 100 μM) and OSS (10%) plus caspase inhibitor (I + E). Sperm samples were incubated for 30 min at 38.5°C and 5% CO2 and evaluated motility and kinetic parameters by computer-assisted semen analysis (CASA) and viability (propidium iodide), apoptotic-like membrane changes (YO-PRO-1), acrosomal status (PNA-FITC), intracellular calcium (FLUO-3), membrane fluidity (M540) and ROS production (CM-H2 DCFDA) by flow cytometry. OSS induced changes in kinetic parameters compatible with capacitation, with a decrease in the percentage of progressive motility and linearity, and an increase in the amplitude of the lateral displacement of the sperm head (p < .05). Moreover, OSS increased the proportion of M540+ viable spermatozoa, YO-PRO-1+ and acrosome-reacted spermatozoa (p < .05). After incubation, OSS and I+E achieved lower ROS levels (p < .05). Ca(2+) levels did not change with the incubation, but were slightly higher (p < .05) when both OSS and the inhibitor were present. We suggest that OSS may modulate ROS levels, allowing intracellular signalling for capacitation to occur while preventing higher levels that could trigger apoptosis.

  14. Involvement of ROS in Curcumin-induced Autophagic Cell Death.

    PubMed

    Lee, Youn Ju; Kim, Nam-Yi; Suh, Young-Ah; Lee, Chuhee

    2011-02-01

    Many anticancer agents as well as ionizing radiation have been shown to induce autophagy which is originally described as a protein recycling process and recently reported to play a crucial role in various disorders. In HCT116 human colon cancer cells, we found that curcumin, a polyphenolic phytochemical extracted from the plant Curcuma longa, markedly induced the conversion of microtubule-associated protein 1 light chain 3 (LC3)-I to LC3-II and degradation of sequestome-1 (SQSTM1) which is a marker of autophagosome degradation. Moreover, we found that curcumin caused GFP-LC3 formation puncta, a marker of autophagosome, and decrease of GFP-LC3 and SQSTM1 protein level in GFP-LC3 expressing HCT116 cells. It was further confirmed that treatment of cells with hydrogen peroxide induced increase of LC3 conversion and decrease of GFP-LC3 and SQSTM1 levels, but these changes by curcumin were almost completely blocked in the presence of antioxidant, N-acetylcystein (NAC), indicating that curcumin leads to reactive oxygen species (ROS) production, which results in autophagosome development and autolysosomal degradation. In parallel with NAC, SQSTM1 degradation was also diminished by bafilomycin A, a potent inhibitor of autophagosome-lysosome fusion, and cell viability assay was further confirmed that cucurmin-induced cell death was partially blocked by bafilomycin A as well as NAC. We also observed that NAC abolished curcumin-induced activation of extracelluar signal-regulated kinases (ERK) 1/2 and p38 mitogen-activated protein kinases (MAPK), but not Jun N-terminal kinase (JNK). However, the activation of ERK1/2 and p38 MAPK seemed to have no effect on the curcumin-induced autophagy, since both the conversion of LC3 protein and SQSTM1 degradation by curcumin was not changed in the presence of NAC. Taken together, our data suggest that curcumin induced ROS production, which resulted in autophagic activation and concomitant cell death in HCT116 human colon cancer cell

  15. Involvement of ROS in Curcumin-induced Autophagic Cell Death

    PubMed Central

    Lee, Youn Ju; Kim, Nam-Yi; Suh, Young-Ah

    2011-01-01

    Many anticancer agents as well as ionizing radiation have been shown to induce autophagy which is originally described as a protein recycling process and recently reported to play a crucial role in various disorders. In HCT116 human colon cancer cells, we found that curcumin, a polyphenolic phytochemical extracted from the plant Curcuma longa, markedly induced the conversion of microtubule-associated protein 1 light chain 3 (LC3)-I to LC3-II and degradation of sequestome-1 (SQSTM1) which is a marker of autophagosome degradation. Moreover, we found that curcumin caused GFP-LC3 formation puncta, a marker of autophagosome, and decrease of GFP-LC3 and SQSTM1 protein level in GFP-LC3 expressing HCT116 cells. It was further confirmed that treatment of cells with hydrogen peroxide induced increase of LC3 conversion and decrease of GFP-LC3 and SQSTM1 levels, but these changes by curcumin were almost completely blocked in the presence of antioxidant, N-acetylcystein (NAC), indicating that curcumin leads to reactive oxygen species (ROS) production, which results in autophagosome development and autolysosomal degradation. In parallel with NAC, SQSTM1 degradation was also diminished by bafilomycin A, a potent inhibitor of autophagosome-lysosome fusion, and cell viability assay was further confirmed that cucurmin-induced cell death was partially blocked by bafilomycin A as well as NAC. We also observed that NAC abolished curcumin-induced activation of extracelluar signal-regulated kinases (ERK) 1/2 and p38 mitogen-activated protein kinases (MAPK), but not Jun N-terminal kinase (JNK). However, the activation of ERK1/2 and p38 MAPK seemed to have no effect on the curcumin-induced autophagy, since both the conversion of LC3 protein and SQSTM1 degradation by curcumin was not changed in the presence of NAC. Taken together, our data suggest that curcumin induced ROS production, which resulted in autophagic activation and concomitant cell death in HCT116 human colon cancer cell

  16. Characterisation of TNF block haplotypes affecting the production of TNF and LTA.

    PubMed

    Tan, J H; Temple, S E L; Kee, C; Waterer, G W; Tan, C R T; Gut, I; Price, P

    2011-02-01

    Polymorphisms in the central major histocompatibility complex (MHC) (particularly TNF and adjacent genes) associate with several immunopathological diseases and with susceptibility to pneumonia. The MHC is characterised by strong linkage disequilibrium (LD), so identification of loci affecting disease must be based on haplotypes. We have defined 31 tumour necrosis factor (TNF) block haplotypes (denoted FV1-31) in Caucasians, Asians and Australian Aboriginals. This study correlates the carriage of TNF block haplotypes with TNF and lymphotoxin alpha (LTA) protein production by peripheral blood mononuclear cells from 205 healthy Caucasian subjects, following in vitro stimulation with Streptococcus pneumoniae (S. pneumoniae; gram-positive bacteria), Escherichia coli (E. coli; gram-negative bacteria) or TNF over 4, 8 and 24 h. Fifteen haplotypes were present at >1%, accounting for 94.5% of the cohort. The haplotypes were grouped into five families based on common alleles. Following stimulation, cells from carriers of the FV10 haplotype (family 2) produced less LTA compared with non-FV10 carriers. Carriers of the FV18 haplotype (family 4) produced more LTA than other donors. Induction of TNF by S. pneumoniae following 24 h stimulation was also greater in donors with FV18. The FV18 haplotype associated with the 44.1 MHC ancestral haplotype (HLA-A2, -C5, -B44, -DRB1*0401 and -DQB1*0301) that has few disease associations. FV16 occurred in the 8.1 MHC haplotype (HLA-A2, B8, DR3) that is associated with multiple immunopathological diseases. FV16 did not affect TNF or LTA levels. The findings suggest that many genetic variations critical in vivo are not effectively modelled by short-term cultures.

  17. Proteomic analysis of reactive oxygen species (ROS)-related proteins in rice roots.

    PubMed

    Kim, Sang Gon; Kim, Sun Tae; Kang, Sun Young; Wang, Yiming; Kim, Wook; Kang, Kyu Young

    2008-02-01

    To investigate the rice root proteome, we applied the PEG fractionation technique combined with two-dimensional gel electrophoresis which rendered more well-separated protein spots. Out of the 295 chosen proteins, 93 were identified by MALDI-TOF mass spectrometry. The proteins were classified as relating to metabolism (38.7%), reactive oxygen species (ROS)-related proteins (22.5%), protein processing/degradation (8.6%), stress/defense (7.5%), energy (6.5%) and signal transduction (5.4%). The high percentage of ROS-related proteins found in rice root brings us to assess the roles of ROS on rice root growth. Treatment with ROS quenching chemicals such as reduced glutathione (GSH), diphenyleneiodonium (DPI) and ascorbate inhibited root growth dose-dependently. Forty-nine proteins identified were either up- or down-regulated by GSH treatment, of which 14 were ROS-related proteins, such noticeably modulated ones as glutathione-S-transferase (GST), superoxide dismutases (SOD) and L-ascorbate peroxidases. The protein levels of four GSTs (NS4, 8, 56 and 57), three APXs (NS46, 49 and 50) and MnSOD (NS45) were strongly reduced by GSH treatment but slightly reduced by ascorbate and DPI. Ascorbate and DPI strongly inhibited expression levels of a catalase A (NP23) and an APX (NS65) but did not affect APXs (NS46, 49 and 50) protein levels. Northern analysis demonstrated that changes in transcript levels of five genes--GST (NS4), GST (NS43), Mn-SOD (NS45), APX (NS50) and APX (NS46/49) in response to ROS quenching chemicals were coherent with patterns shown in two-dimensional electrophoresis analyses. Taken together, we suggest that these proteins may take part in an important role in maintaining cellular redox homeostasis during rice root growth.

  18. ROS Homeostasis Regulates Somatic Embryogenesis via the Regulation of Auxin Signaling in Cotton*

    PubMed Central

    Zhou, Ting; Yang, Xiyan; Guo, Kai; Deng, Jinwu; Xu, Jiao; Gao, Wenhui; Lindsey, Keith; Zhang, Xianlong

    2016-01-01

    Somatic embryogenesis (S.E.) is a versatile model for understanding the mechanisms of plant embryogenesis and a useful tool for plant propagation. To decipher the intricate molecular program and potentially to control the parameters affecting the frequency of S.E., a proteomics approach based on two-dimensional gel electrophoresis (2-DE) combined with MALDI-TOF/TOF was used. A total of 149 unique differentially expressed proteins (DEPs) were identified at different stages of cotton S.E. compared with the initial control (0 h explants). The expression profile and functional annotation of these DEPs revealed that S.E. activated stress-related proteins, including several reactive oxygen species (ROS)-scavenging enzymes. Proteins implicated in metabolic, developmental, and reproductive processes were also identified. Further experiments were performed to confirm the role of ROS-scavenging enzymes, suggesting the involvement of ROS homeostasis during S.E. in cotton. Suppressing the expression of specifically identified GhAPX proteins resulted in the inhibition of dedifferentiation. Accelerated redifferentiation was observed in the suppression lines of GhAPXs or GhGSTL3 in parallel with the alteration of endogenous ascorbate metabolism and accumulation of endogenous H2O2 content. Moreover, disrupting endogenous redox homeostasis through the application of high concentrations of DPI, H2O2, BSO, or GSH inhibited the dedifferentiation of cotton explants. Mild oxidation induced through BSO treatment facilitated the transition from embryogenic calluses (ECs) to somatic embryos. Meanwhile, auxin homeostasis was altered through the perturbation of ROS homeostasis by chemical treatments or suppression of ROS-scavenging proteins, along with the activating/suppressing the transcription of genes related to auxin transportation and signaling. These results show that stress responses are activated during S.E. and may regulate the ROS homeostasis by interacting with auxin signaling

  19. Utilizing Robot Operating System (ROS) in Robot Vision and Control

    DTIC Science & Technology

    2015-09-01

    OPERATING SYSTEM (ROS) IN ROBOT VISION AND CONTROL by Joshua S. Lum September 2015 Thesis Advisor: Xiaoping Yun Co-Advisor: Zac Staples...Master’s Thesis 4. TITLE AND SUBTITLE UTILIZING ROBOT OPERATING SYSTEM (ROS) IN ROBOT VISION AND CONTROL 5. FUNDING NUMBERS 6. AUTHOR(S) Lum, Joshua S...release; distribution is unlimited UTILIZING ROBOT OPERATING SYSTEM (ROS) IN ROBOT VISION AND CONTROL Joshua S. Lum Captain, United States

  20. Aluminium-induced excessive ROS causes cellular damage and metabolic shifts in black gram Vigna mungo (L.) Hepper.

    PubMed

    Chowra, Umakanta; Yanase, Emiko; Koyama, Hiroyuki; Panda, Sanjib Kumar

    2017-01-01

    Aluminium-induced oxidative damage caused by excessive ROS production was evaluated in black gram pulse crop. Black gram plants were treated with different aluminium (Al(3+)) concentrations (10, 50 and 100 μM with pH 4.7) and further the effects of Al(3+) were characterised by means of root growth inhibition, histochemical assay, ROS content analysis, protein carbonylation quantification and (1)H-NMR analysis. The results showed that aluminium induces excessive ROS production which leads to cellular damage, root injury, stunt root growth and other metabolic shifts. In black gram, Al(3+) induces cellular damage at the earliest stage of stress which was characterised from histochemical analysis. From this study, it was observed that prolonged stress can activate certain aluminium detoxification defence mechanism. Probably excessive ROS triggers such defence mechanism in black gram. Al(3+) can induce excessive ROS initially in the root region then transported to other parts of the plant. As much as the Al(3+) concentration increases, the rate of cellular injury and ROS production also increases. But after 72 h of stress, plants showed a lowered ROS level and cellular damage which indicates the upregulation of defensive mechanisms. Metabolic shift analysis also showed that the black gram plant under stress has less metabolic content after 24 h of treatment, but gradually, it was increased after 72 h of treatment. It was assumed that ROS played the most important role as a signalling molecule for aluminium stress in black gram.

  1. Plant Products Affect Growth and Digestive Efficiency of Cultured Florida Pompano (Trachinotus carolinus) Fed Compounded Diets

    PubMed Central

    Lech, Gregory P.; Reigh, Robert C.

    2012-01-01

    Costs of compounded diets containing fish meal as a primary protein source can be expected to rise as fish meal prices increase in response to static supply and growing demand. Alternatives to fish meal are needed to reduce production costs in many aquaculture enterprises. Some plant proteins are potential replacements for fish meal because of their amino acid composition, lower cost and wide availability. In this study, we measured utilization of soybean meal (SBM) and soy protein concentrate (SPC) by Florida pompano fed compounded diets, to determine the efficacy of these products as fish meal replacements. We also calculated apparent digestibility coefficients (ADCs) for canola meal (CM), corn gluten meal (CGM), and distillers dried grains with solubles (DDGS), following typical methods for digestibility trials. Juvenile Florida pompano were fed fish-meal-free diets containing graded levels of SBM and SPC, and weight gain was compared to a control diet that contained SBM, SPC, and fish meal. Fish fed diets that contained 25–30 percent SBM in combination with 43–39 percent SPC had weight gain equivalent to fish fed the control diet with fish meal, while weight gain of fish fed other soy combinations was significantly less than that of the control group. Apparent crude protein digestibility of CGM was significantly higher than that of DDGS but not significantly different from CM. Apparent energy digestibility of DDGS was significantly lower than CGM but significantly higher than CM. Findings suggested that composition of the reference diet used in a digestibility trial affects the values of calculated ADCs, in addition to the chemical and physical attributes of the test ingredient. PMID:22536344

  2. Physical processes affecting availability of dissolved silicate for diatom production in the Arabian Sea

    NASA Technical Reports Server (NTRS)

    Young, David K.; Kindle, John C.

    1994-01-01

    A passive tracer to represent dissolved silicate concentrations, with biologically realistic uptake kinetics, is successfully incorporated into a three-dimensional, eddy-resolving, ocean circulation model of the Indian Ocean. Hypotheses are tested to evaluate physical processes which potentially affect the availability of silicate for diatom production in the Arabian Sea. An alternative mechanism is offered to the idea that open ocean upwelling is primarily responsible for the high, vertical nutrient flux and consequent large-scale phytoplankton bloom in the northwestern Arabian Sea during the southwest monsoon. Model results show that dissolved silicate in surface waters available for uptake by diatoms is primarily influenced by the intensity of nearshore upwelling from soutwest monsoonal wind forcing and by the offshore advective transport of surface waters. The upwelling, which in the model occurs within 200 +/- 50 km of the coast, appears to be a result of a combination of coastal upwelling, Elkman pumping, and divergence of the coastal flow as it turns offshore. Localized intensifications of silicate concentrations appear to be hydrodynamically driven and geographically correlated to coastal topographic features. The absence of diatoms in sediments of the eastern Arabian Basin is consistent with modeled distributional patterns of dissolved silicate resulting from limited westward advection of upwelled coastal waters from the western continental margin of India and rapid uptake of available silicate by diatoms. Concentrations of modeled silicate become sufficiently low to become unavailable for diatom production in the eastern Arabian Sea, a region between 61 deg E and 70 deg E at 8 deg N on the south, with the east and west boundaries converging on the north at approximately 67 deg E, 20 deg N.

  3. Denitrifying Bacterial Communities Affect Current Production and Nitrous Oxide Accumulation in a Microbial Fuel Cell

    PubMed Central

    Vilar-Sanz, Ariadna; Puig, Sebastià; García-Lledó, Arantzazu; Trias, Rosalia; Balaguer, M. Dolors; Colprim, Jesús; Bañeras, Lluís

    2013-01-01

    The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A·m−3 NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A·m−3 NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation. PMID:23717427

  4. Plant products affect growth and digestive efficiency of cultured Florida pompano (Trachinotus carolinus) fed compounded diets.

    PubMed

    Lech, Gregory P; Reigh, Robert C

    2012-01-01

    Costs of compounded diets containing fish meal as a primary protein source can be expected to rise as fish meal prices increase in response to static supply and growing demand. Alternatives to fish meal are needed to reduce production costs in many aquaculture enterprises. Some plant proteins are potential replacements for fish meal because of their amino acid composition, lower cost and wide availability. In this study, we measured utilization of soybean meal (SBM) and soy protein concentrate (SPC) by Florida pompano fed compounded diets, to determine the efficacy of these products as fish meal replacements. We also calculated apparent digestibility coefficients (ADCs) for canola meal (CM), corn gluten meal (CGM), and distillers dried grains with solubles (DDGS), following typical methods for digestibility trials. Juvenile Florida pompano were fed fish-meal-free diets containing graded levels of SBM and SPC, and weight gain was compared to a control diet that contained SBM, SPC, and fish meal. Fish fed diets that contained 25-30 percent SBM in combination with 43-39 percent SPC had weight gain equivalent to fish fed the control diet with fish meal, while weight gain of fish fed other soy combinations was significantly less than that of the control group. Apparent crude protein digestibility of CGM was significantly higher than that of DDGS but not significantly different from CM. Apparent energy digestibility of DDGS was significantly lower than CGM but significantly higher than CM. Findings suggested that composition of the reference diet used in a digestibility trial affects the values of calculated ADCs, in addition to the chemical and physical attributes of the test ingredient.

  5. Assessment of Cultivation Factors that Affect Biomass and Geraniol Production in Transgenic Tobacco Cell Suspension Cultures

    PubMed Central

    Vasilev, Nikolay; Schmitz, Christian; Grömping, Ulrike; Fischer, Rainer; Schillberg, Stefan

    2014-01-01

    A large-scale statistical experimental design was used to determine essential cultivation parameters that affect biomass accumulation and geraniol production in transgenic tobacco (Nicotiana tabacum cv. Samsun NN) cell suspension cultures. The carbohydrate source played a major role in determining the geraniol yield and factors such as filling volume, inoculum size and light were less important. Sucrose, filling volume and inoculum size had a positive effect on geraniol yield by boosting growth of plant cell cultures whereas illumination of the cultures stimulated the geraniol biosynthesis. We also found that the carbohydrates sucrose and mannitol showed polarizing effects on biomass and geraniol accumulation. Factors such as shaking frequency, the presence of conditioned medium and solubilizers had minor influence on both plant cell growth and geraniol content. When cells were cultivated under the screened conditions for all the investigated factors, the cultures produced ∼5.2 mg/l geraniol after 12 days of cultivation in shaking flasks which is comparable to the yield obtained in microbial expression systems. Our data suggest that industrial experimental designs based on orthogonal arrays are suitable for the selection of initial cultivation parameters prior to the essential medium optimization steps. Such designs are particularly beneficial in the early optimization steps when many factors must be screened, increasing the statistical power of the experiments without increasing the demand on time and resources. PMID:25117009

  6. γδ T cells affect IL-4 production and B-cell tolerance

    PubMed Central

    Huang, Yafei; Heiser, Ryan A.; Detanico, Thiago O.; Getahun, Andrew; Kirchenbaum, Greg A.; Casper, Tamara L.; Aydintug, M. Kemal; Carding, Simon R.; Ikuta, Koichi; Huang, Hua; Cambier, John C.; Wysocki, Lawrence J.; O’Brien, Rebecca L.; Born, Willi K.

    2015-01-01

    γδ T cells can influence specific antibody responses. Here, we report that mice deficient in individual γδ T-cell subsets have altered levels of serum antibodies, including all major subclasses, sometimes regardless of the presence of αβ T cells. One strain with a partial γδ deficiency that increases IgE antibodies also displayed increases in IL-4–producing T cells (both residual γδ T cells and αβ T cells) and in systemic IL-4 levels. Its B cells expressed IL-4–regulated inhibitory receptors (CD5, CD22, and CD32) at diminished levels, whereas IL-4–inducible IL-4 receptor α and MHCII were increased. They also showed signs of activation and spontaneously formed germinal centers. These mice displayed IgE-dependent features found in hyper-IgE syndrome and developed antichromatin, antinuclear, and anticytoplasmic autoantibodies. In contrast, mice deficient in all γδ T cells had nearly unchanged Ig levels and did not develop autoantibodies. Removing IL-4 abrogated the increases in IgE, antichromatin antibodies, and autoantibodies in the partially γδ-deficient mice. Our data suggest that γδ T cells, controlled by their own cross-talk, affect IL-4 production, B-cell activation, and B-cell tolerance. PMID:25535377

  7. Could Crop Height Affect the Wind Resource at Agriculturally Productive Wind Farm Sites?

    NASA Astrophysics Data System (ADS)

    Vanderwende, Brian; Lundquist, Julie K.

    2016-03-01

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. These considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.

  8. Bioprospecting for microbial products that affect ice crystal formation and growth.

    PubMed

    Christner, Brent C

    2010-01-01

    At low temperatures, some organisms produce proteins that affect ice nucleation, ice crystal structure, and/or the process of recrystallization. Based on their ice-interacting properties, these proteins provide an advantage to species that commonly experience the phase change from water to ice or rarely experience temperatures above the melting point. Substances that bind, inhibit or enhance, and control the size, shape, and growth of ice crystals could offer new possibilities for a number of agricultural, biomedical, and industrial applications. Since their discovery more than 40 years ago, ice nucleating and structuring proteins have been used in cryopreservation, frozen food preparation, transgenic crops, and even weather modification. Ice-interacting proteins have demonstrated commercial value in industrial applications; however, the full biotechnological potential of these products has yet to be fully realized. The Earth's cold biosphere contains an almost endless diversity of microorganisms to bioprospect for microbial compounds with novel ice-interacting properties. Microorganisms are the most appropriate biochemical factories to cost effectively produce ice nucleating and structuring proteins on large commercial scales.

  9. Predicting the Affects of Climate Change on Evapotranspiration and Agricultural Productivity of Semi-arid Basins

    NASA Astrophysics Data System (ADS)

    Peri, L.; Tyler, S. W.; Zheng, C.; Pohll, G. M.; Yao, Y.

    2013-12-01

    Many arid and semi-arid regions around the world are experiencing water shortages that have become increasingly problematic. Since the late 1800s, upstream diversions in Nevada's Walker River have delivered irrigation supply to the surrounding agricultural fields resulting in a dramatic water level decline of the terminal Walker Lake. Salinity has also increased because the only outflow from the lake is evaporation from the lake surface. The Heihe River basin of northwestern China, a similar semi-arid catchment, is also facing losses from evaporation of terminal locations, agricultural diversions and evapotranspiration (ET) of crops. Irrigated agriculture is now experiencing increased competition for use of diminishing water resources while a demand for ecological conservation continues to grow. It is important to understand how the existing agriculture in these regions will respond as climate changes. Predicting the affects of climate change on groundwater flow, surface water flow, ET and agricultural productivity of the Walker and Heihe River basins is essential for future conservation of water resources. ET estimates from remote sensing techniques can provide estimates of crop water consumption. By determining similarities of both hydrologic cycles, critical components missing in both systems can be determined and predictions of impacts of climate change and human management strategies can be assessed.

  10. Technologies that affect the weaning rate in beef cattle production systems.

    PubMed

    Dill, Matheus Dhein; Pereira, Gabriel Ribas; Costa, João Batista Gonçalves; Canellas, Leonardo Canali; Peripolli, Vanessa; Neto, José Braccini; Sant'Anna, Danilo Menezes; McManus, Concepta; Barcellos, Júlio Otávio Jardim

    2015-10-01

    We investigated the differences between weaning rates and technologies adopted by farmers in cow-calf production systems in Rio Grande do Sul State, Brazil. Interviews were carried out with 73 farmers about 48 technologies that could affect reproductive performance. Data were analyzed by multivariate analysis using a non-hierarchical cluster method. The level of significance was set at P < 0.05. Three distinct clusters of farmers were created (R (2) = 0.90), named as low (LWR), intermediate (IWR), and high (HWR) weaning rate, with 100, 91, and 96 % of the farmers identified within their respective groups and average weaning rates of 59, 72, and 83 %, respectively. IWR and HWR farmers used more improved natural pasture, fixed-time artificial insemination, selection for birth weight, and proteinated salt compared to LWR. HWR farmers used more stocking rate control, and IWR farmers used more ultrasound to evaluate reproductive performance compared to the LWR group. IWR and HWR adopted more technologies related to nutrition and reproductive aspects of the herd in comparison to LWR. We concluded that farmers with higher technology use on farm had higher weaning rates which could be used to benefit less efficient farmers.

  11. Could crop height affect the wind resource at agriculturally productive wind farm sites?

    SciTech Connect

    Vanderwende, Brian; Lundquist, Julie K.

    2015-11-07

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.

  12. Factors affecting yield and safety of protein production from cassava by Cephalosporium eichhorniae

    SciTech Connect

    Mikami, Y.; Gregory, K.F.; Levadoux, W.L.; Balagopalan, C.; Whitwill, S.T.

    1982-01-01

    The properties of C. eichhorniae 152 (ATCC 38255) affecting protein production from cassava carbohydrate, for use as an animal feed, were studied. This strain is a true thermophile, showing optimum growth at 45-47 degrees, maximum protein yield at 45 degrees, and no growth at 25 degrees. It has an optimum pH of approximately 3.8 and is obligately acidophilic, being unable to sustain growth at pH of more th