Science.gov

Sample records for affect sensitive ecosystems

  1. Ash in fire affected ecosystems

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Jordan, Antonio; Cerda, Artemi; Martin, Deborah

    2015-04-01

    Ash in fire affected ecosystems Ash lefts an important footprint in the ecosystems and has a key role in the immediate period after the fire (Bodi et al., 2014; Pereira et al., 2015). It is an important source of nutrients for plant recover (Pereira et al., 2014a), protects soil from erosion and controls soil hydrological process as runoff, infiltration and water repellency (Cerda and Doerr, 2008; Bodi et al., 2012, Pereira et al., 2014b). Despite the recognition of ash impact and contribution to ecosystems recuperation, it is assumed that we still have little knowledge about the implications of ash in fire affected areas. Regarding this situation we wanted to improve our knowledge in this field and understand the state of the research about fire ash around world. The special issue about "The role of ash in fire affected ecosystems" currently in publication in CATENA born from the necessity of joint efforts, identify research gaps, and discuss future cooperation in this interdisciplinary field. This is the first special issue about fire ash in the international literature. In total it will be published 10 papers focused in different aspects of the impacts of ash in fire affected ecosystems from several parts of the world: • Fire reconstruction using charcoal particles (Burjachs and Espositio, in press) • Ash slurries impact on rheological properties of Runoff (Burns and Gabet, in press) • Methods to analyse ash conductivity and sorbtivity in the laboratory and in the field (Balfour et al., in press) • Termogravimetric and hydrological properties of ash (Dlapa et al. in press) • Effects of ash cover in water infiltration (Leon et al., in press) • Impact of ash in volcanic soils (Dorta Almenar et al., in press; Escuday et al., in press) • Ash PAH and Chemical extracts (Silva et al., in press) • Microbiology (Barreiro et al., in press; Lombao et al., in press) We believe that this special issue will contribute importantly to the better understanding of

  2. Evolutionary diversification in stickleback affects ecosystem functioning.

    PubMed

    Harmon, Luke J; Matthews, Blake; Des Roches, Simone; Chase, Jonathan M; Shurin, Jonathan B; Schluter, Dolph

    2009-04-30

    Explaining the ecological causes of evolutionary diversification is a major focus of biology, but surprisingly little has been said about the effects of evolutionary diversification on ecosystems. The number of species in an ecosystem and their traits are key predictors of many ecosystem-level processes, such as rates of productivity, biomass sequestration and decomposition. Here we demonstrate short-term ecosystem-level effects of adaptive radiation in the threespine stickleback (Gasterosteus aculeatus) over the past 10,000 years. These fish have undergone recent parallel diversification in several lakes in coastal British Columbia, resulting in the formation of two specialized species (benthic and limnetic) from a generalist ancestor. Using a mesocosm experiment, we demonstrate that this diversification has strong effects on ecosystems, affecting prey community structure, total primary production, and the nature of dissolved organic materials that regulate the spectral properties of light transmission in the system. However, these ecosystem effects do not simply increase in their relative strength with increasing specialization and species richness; instead, they reflect the complex and indirect consequences of ecosystem engineering by sticklebacks. It is well known that ecological factors influence adaptive radiation. We demonstrate that adaptive radiation, even over short timescales, can have profound effects on ecosystems.

  3. Watershed geomorphology modifies the temperature sensitivity of aquatic ecosystem metabolism

    NASA Astrophysics Data System (ADS)

    Jankowski, K. J.; Schindler, D.

    2015-12-01

    How carbon cycles are regulated by temperature remains a substantial uncertainty in our understanding of how watersheds will respond to ongoing climate change. Aquatic ecosystems are significant components of carbon flux to the atmosphere and ocean, yet we have limited understanding of how changing thermal regimes will alter rates of ecosystem metabolic processes, and, therefore, aquatic contributions to carbon cycles at watershed to global scales. Watershed geomorphology controls the landscape-scale distribution of organic material that can form the metabolic base of aquatic ecosystems, which will likely affect the temperature sensitivity of aquatic ecosystem metabolism. Across 23 streams in a boreal river basin, we estimated how temperature sensitivity of ecosystem respiration (ER), an important component of the aquatic C cycle, varied among streams with different watershed characteristics. We found that geomorphic conditions imposed strong ultimate controls on temperature sensitivity: ER in streams draining flat watersheds was much more sensitive to temperature than streams draining steeper watersheds. Further, we show that the link between watershed geomorphology and temperature sensitivity was related to changes in the quality of carbon substrates across the gradient in watershed slope. These results suggest that geomorphic conditions will ultimately control how carbon processing responds to warming climate, thereby affecting carbon transport and storage, and likely food web responses, in river networks.

  4. Constructing an Eocene Marine Ecosystem Sensitivity Scale

    NASA Astrophysics Data System (ADS)

    D'haenens, S.; Bornemann, A.; Speijer, R. P.; Hull, P. M.

    2014-12-01

    A key question in the face of current global environmental change is how marine ecosystems will respond and evolve in the future. To answer this, we first need to understand the relationship between environmental and ecosystem change - i.e., the ecosystem sensitivity. Addressing this question requires understanding of how biota respond to (a succession of) sudden environmental perturbations of varying sizes and durations in varying background conditions (i.e., climatic, oceanographic, biotic). Here, we compare new and published data from the Early to Middle Eocene greenhouse world to understand the sensitivity of marine ecosystems to background environmental change and hyperthermal events. This work focuses on the early Paleogene, because it is considered to be a good analog for a future high CO2 world. Newly generated high-resolution multiproxy datasets based on northern Atlantic DSDP Leg 48 and IODP Leg 342 material will allow us to compare the marine ecosystem responses (including bentho-pelagic systems) to abiotic drivers across climatic disruptions of differing magnitude. Initial results of a benthic foraminiferal community comparison including the PETM and ETM2 hyperthermals in the northeastern Atlantic DSDP sites 401 and 5501 suggest that benthic ecosystem sensitivity may actually be non-linearly linked to background climate states as reflected by a range of geochemical proxies (XRF, TOC, CaCO3, grain sizes, XRD clay mineralogy and foraminiferal δ18O, δ13C, Mg/Ca)2,3, in contrast to planktic communities4. Testing the type of scaling across different taxa, communities, initial background conditions and time scales may be the first big step to disentangle the often synergistic effects of environmental change on ecosystems5. References: 1D'haenens et al., 2012, in prep. 2Bornemann et al., 2014, EPSL 3D'haenens et al., 2014, PA 4Gibbs et al., 2012, Biogeosc. 5 Norris et al., 2013, Science

  5. Assessing climate-sensitive ecosystems in the southeastern United States

    USGS Publications Warehouse

    Costanza, Jennifer; Beck, Scott; Pyne, Milo; Terando, Adam; Rubino, Matthew J.; White, Rickie; Collazo, Jaime

    2016-08-11

    Climate change impacts ecosystems in many ways, from effects on species to phenology to wildfire dynamics. Assessing the potential vulnerability of ecosystems to future changes in climate is an important first step in prioritizing and planning for conservation. Although assessments of climate change vulnerability commonly are done for species, fewer have been done for ecosystems. To aid regional conservation planning efforts, we assessed climate change vulnerability for ecosystems in the Southeastern United States and Caribbean.First, we solicited input from experts to create a list of candidate ecosystems for assessment. From that list, 12 ecosystems were selected for a vulnerability assessment that was based on a synthesis of available geographic information system (GIS) data and literature related to 3 components of vulnerability—sensitivity, exposure, and adaptive capacity. This literature and data synthesis comprised “Phase I” of the assessment. Sensitivity is the degree to which the species or processes in the ecosystem are affected by climate. Exposure is the likely future change in important climate and sea level variables. Adaptive capacity is the degree to which ecosystems can adjust to changing conditions. Where available, GIS data relevant to each of these components were used. For example, we summarized observed and projected climate, protected areas existing in 2011, projected sea-level rise, and projected urbanization across each ecosystem’s distribution. These summaries were supplemented with information in the literature, and a short narrative assessment was compiled for each ecosystem. We also summarized all information into a qualitative vulnerability rating for each ecosystem.Next, for 2 of the 12 ecosystems (East Gulf Coastal Plain Near-Coast Pine Flatwoods and Nashville Basin Limestone Glade and Woodland), the NatureServe Habitat Climate Change Vulnerability Index (HCCVI) framework was used as an alternative approach for assessing

  6. Ecosystem sensitivity to climate warming: A modeling approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Warmer atmospheric temperatures will affect ecosystem functioning directly through changes in metabolic rate and tissue damage of organisms. Indirectly, increased temperatures can also affect ecosystem water balance with increased evapotranspiration (from bare-soil evaporation and transpiration) tha...

  7. How Does Climate Change Affect the Bering Sea Ecosystem?

    NASA Astrophysics Data System (ADS)

    Sigler, Michael F.; Harvey, H. Rodger; Ashjian, Carin J.; Lomas, Michael W.; Napp, Jeffrey M.; Stabeno, Phyllis J.; Van Pelt, Thomas I.

    2010-11-01

    The Bering Sea is one of the most productive marine ecosystems in the world, sustaining nearly half of U.S. annual commercial fish catches and providing food and cultural value to thousands of coastal and island residents. Fish and crab are abundant in the Bering Sea; whales, seals, and seabirds migrate there every year. In winter, the topography, latitude, atmosphere, and ocean circulation combine to produce a sea ice advance in the Bering Sea unmatched elsewhere in the Northern Hemisphere, and in spring the retreating ice; longer daylight hours; and nutrient-rich, deep-ocean waters forced up onto the broad continental shelf result in intense marine productivity (Figure 1). This seasonal ice cover is a major driver of Bering Sea ecology, making this ecosystem particularly sensitive to changes in climate. Predicted changes in ice cover in the coming decades have intensified concern about the future of this economically and culturally important region. In response, the North Pacific Research Board (NPRB) and the U.S. National Science Foundation (NSF) entered into a partnership in 2007 to support the Bering Sea Project, a comprehensive $52 million investigation to understand how climate change is affecting the Bering Sea ecosystem, ranging from lower trophic levels (e.g., plankton) to fish, seabirds, marine mammals, and, ultimately, humans. The project integrates two research programs, the NSF Bering Ecosystem Study (BEST) and the NPRB Bering Sea Integrated Ecosystem Research Program (BSIERP), with substantial in-kind contributions from the U.S. National Oceanic and Atmospheric Administration (NOAA) and the U.S. Fish and Wildlife Service.

  8. Increased sensitivity to climate change in disturbed ecosystems.

    PubMed

    Kröel-Dulay, György; Ransijn, Johannes; Schmidt, Inger Kappel; Beier, Claus; De Angelis, Paolo; de Dato, Giovanbattista; Dukes, Jeffrey S; Emmett, Bridget; Estiarte, Marc; Garadnai, János; Kongstad, Jane; Kovács-Láng, Edit; Larsen, Klaus Steenberg; Liberati, Dario; Ogaya, Romà; Riis-Nielsen, Torben; Smith, Andrew R; Sowerby, Alwyn; Tietema, Albert; Penuelas, Josep

    2015-03-24

    Human domination of the biosphere includes changes to disturbance regimes, which push many ecosystems towards early-successional states. Ecological theory predicts that early-successional ecosystems are more sensitive to perturbations than mature systems, but little evidence supports this relationship for the perturbation of climate change. Here we show that vegetation (abundance, species richness and species composition) across seven European shrublands is quite resistant to moderate experimental warming and drought, and responsiveness is associated with the dynamic state of the ecosystem, with recently disturbed sites responding to treatments. Furthermore, most of these responses are not rapid (2-5 years) but emerge over a longer term (7-14 years). These results suggest that successional state influences the sensitivity of ecosystems to climate change, and that ecosystems recovering from disturbances may be sensitive to even modest climatic changes. A research bias towards undisturbed ecosystems might thus lead to an underestimation of the impacts of climate change.

  9. Plant ecology. Anthropogenic environmental changes affect ecosystem stability via biodiversity.

    PubMed

    Hautier, Yann; Tilman, David; Isbell, Forest; Seabloom, Eric W; Borer, Elizabeth T; Reich, Peter B

    2015-04-17

    Human-driven environmental changes may simultaneously affect the biodiversity, productivity, and stability of Earth's ecosystems, but there is no consensus on the causal relationships linking these variables. Data from 12 multiyear experiments that manipulate important anthropogenic drivers, including plant diversity, nitrogen, carbon dioxide, fire, herbivory, and water, show that each driver influences ecosystem productivity. However, the stability of ecosystem productivity is only changed by those drivers that alter biodiversity, with a given decrease in plant species numbers leading to a quantitatively similar decrease in ecosystem stability regardless of which driver caused the biodiversity loss. These results suggest that changes in biodiversity caused by drivers of environmental change may be a major factor determining how global environmental changes affect ecosystem stability.

  10. The Negative Affect Hypothesis of Noise Sensitivity

    PubMed Central

    Shepherd, Daniel; Heinonen-Guzejev, Marja; Heikkilä, Kauko; Dirks, Kim N.; Hautus, Michael J.; Welch, David; McBride, David

    2015-01-01

    Some studies indicate that noise sensitivity is explained by negative affect, a dispositional tendency to negatively evaluate situations and the self. Individuals high in such traits may report a greater sensitivity to other sensory stimuli, such as smell, bright light and pain. However, research investigating the relationship between noise sensitivity and sensitivity to stimuli associated with other sensory modalities has not always supported the notion of a common underlying trait, such as negative affect, driving them. Additionally, other explanations of noise sensitivity based on cognitive processes have existed in the clinical literature for over 50 years. Here, we report on secondary analyses of pre-existing laboratory (n = 74) and epidemiological (n = 1005) data focusing on the relationship between noise sensitivity to and annoyance with a variety of olfactory-related stimuli. In the first study a correlational design examined the relationships between noise sensitivity, noise annoyance, and perceptual ratings of 16 odors. The second study sought differences between mean noise and air pollution annoyance scores across noise sensitivity categories. Results from both analyses failed to support the notion that, by itself, negative affectivity explains sensitivity to noise. PMID:25993104

  11. Drought sensitivity predicts habitat size sensitivity in an aquatic ecosystem.

    PubMed

    Amundrud, Sarah L; Srivastava, Diane S

    2015-07-01

    Species and trophic richness often increase with habitat size. Although many ecological processes have been evoked to explain both patterns, the environmental stress associated with small habitats has rarely been considered. We propose that larger habitats may be species rich simply because their environmental conditions are within the fundamental niche of more species; larger habitats may also have more trophic levels if traits of predators render them vulnerable to environmental stress. We test this hypothesis using the aquatic insect larvae in water-filled bromeliads. In bromeliads, the probability of desiccation is greatest in small plants. For the 10 most common bromeliad insect taxa, we ask whether differences in drought tolerance and regional abundances between taxa predict community and trophic composition over a gradient of bromeliad size. First, we used bromeliad survey data to calculate the mean habitat size of occurrence of each taxon. Comparing the observed mean habitat size of occurrence to that expected from random species assembly based on differences in their regional abundances allowed us to obtain habitat size sensitivity indices (as Z scores) for the various insect taxa. Second, we obtained drought sensitivity indices by subjecting individual insects to drought and measuring the effects on relative growth rates in a mesocosm experiment. We found that drought sensitivity strongly, predicts habitat size sensitivity in bromeliad insects. However, an increase in trophic richness with habitat size could not be explained by an increased sensitivity of predators to drought, but rather by sampling effects, as predators were rare compared to lower trophic levels. This finding suggests that physiological tolerance to environmental stress can be relevant in explaining the universal increase in species with habitat size.

  12. Sensitivity of global terrestrial ecosystems to climate variability.

    PubMed

    Seddon, Alistair W R; Macias-Fauria, Marc; Long, Peter R; Benz, David; Willis, Kathy J

    2016-03-10

    The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems--be they natural or with a strong anthropogenic signature--to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.

  13. How will increases in rainfall intensity affect semiarid ecosystems?

    NASA Astrophysics Data System (ADS)

    Siteur, Koen; Eppinga, Maarten; Karssenberg, Derek; Baudena, Mara; Bierkens, Marc; Rietkerk, Max

    2014-05-01

    Model studies suggest that semiarid ecosystems with patterned vegetation can respond in a non-linear way to climate change. This means that gradual changes can result in a sudden and significant loss of biological productivity, also referred to as desertification. Previous model studies focused on the response of patterned semiarid ecosystems to changes in mean annual rainfall. However, climate projections show that, as a result of global warming, the intensity of rain events may change as well. We studied the effect of changes in rainfall intensity on the functioning of patterned semiarid ecosystems with a spatially explicit model that captures rainwater partitioning and runoff-runon processes with simple event based process descriptions. Analytical and numerical analyses of the model revealed that rainfall intensity is a key parameter in explaining patterning of vegetation in semiarid ecosystems as low mean rainfall intensities do not allow for vegetation patterning to occur. Surprisingly, we found that, for a constant annual rainfall rate, both an increase and a decrease in mean rainfall intensity can trigger desertification. An increase negatively affects productivity as a greater fraction of the rainwater is lost as runoff. This can result in a shift to a bare desert state only if the mean rainfall intensity exceeds the infiltration capacity of bare soil. On the other hand, a decrease in mean rainfall intensity leads to an increased fraction of rainwater infiltrating in bare soils, remaining unavailable to plants. Our findings suggest that considering rainfall intensity as a variable may help in assessing the proximity to regime shifts in patterned semiarid ecosystems and that monitoring losses of resource through runoff and bare soil infiltration could be used to determine ecosystem resilience.

  14. Sensitivity of global terrestrial ecosystems to climate variability

    NASA Astrophysics Data System (ADS)

    Seddon, Alistair W. R.; Macias-Fauria, Marc; Long, Peter R.; Benz, David; Willis, Kathy J.

    2016-03-01

    The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems—be they natural or with a strong anthropogenic signature—to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.

  15. Sensitivity analysis of ecosystem service valuation in a Mediterranean watershed.

    PubMed

    Sánchez-Canales, María; López Benito, Alfredo; Passuello, Ana; Terrado, Marta; Ziv, Guy; Acuña, Vicenç; Schuhmacher, Marta; Elorza, F Javier

    2012-12-01

    The services of natural ecosystems are clearly very important to our societies. In the last years, efforts to conserve and value ecosystem services have been fomented. By way of illustration, the Natural Capital Project integrates ecosystem services into everyday decision making around the world. This project has developed InVEST (a system for Integrated Valuation of Ecosystem Services and Tradeoffs). The InVEST model is a spatially integrated modelling tool that allows us to predict changes in ecosystem services, biodiversity conservation and commodity production levels. Here, InVEST model is applied to a stakeholder-defined scenario of land-use/land-cover change in a Mediterranean region basin (the Llobregat basin, Catalonia, Spain). Of all InVEST modules and sub-modules, only the behaviour of the water provisioning one is investigated in this article. The main novel aspect of this work is the sensitivity analysis (SA) carried out to the InVEST model in order to determine the variability of the model response when the values of three of its main coefficients: Z (seasonal precipitation distribution), prec (annual precipitation) and eto (annual evapotranspiration), change. The SA technique used here is a One-At-a-Time (OAT) screening method known as Morris method, applied over each one of the one hundred and fifty four sub-watersheds in which the Llobregat River basin is divided. As a result, this method provides three sensitivity indices for each one of the sub-watersheds under consideration, which are mapped to study how they are spatially distributed. From their analysis, the study shows that, in the case under consideration and between the limits considered for each factor, the effect of the Z coefficient on the model response is negligible, while the other two need to be accurately determined in order to obtain precise output variables. The results of this study will be applicable to the others watersheds assessed in the Consolider Scarce Project.

  16. Ecosystem carbon storage capacity as affected by disturbance regimes: A general theoretical model

    SciTech Connect

    Weng, Ensheng; Luo, Yiqi; Wang, Weile; Wang, Han; Hayes, Daniel J; McGuire, A. David; Hastings, Alan; Schimel, David

    2012-01-01

    Disturbances have been recognized as a key factor shaping terrestrial ecosystem states and dynamics. A general model that quantitatively describes the relationship between carbon storage and disturbance regime is critical for better understanding large scale terrestrial ecosystem carbon dynamics. We developed a model (REGIME) to quantify ecosystem carbon storage capacities (E[x]) under varying disturbance regimes with an analytical solution E[x] = U {center_dot} {tau}{sub E} {center_dot} {lambda}{lambda} + s {tau} 1, where U is ecosystem carbon influx, {tau}{sub E} is ecosystem carbon residence time, and {tau}{sub 1} is the residence time of the carbon pool affected by disturbances (biomass pool in this study). The disturbance regime is characterized by the mean disturbance interval ({lambda}) and the mean disturbance severity (s). It is a Michaelis-Menten-type equation illustrating the saturation of carbon content with mean disturbance interval. This model analytically integrates the deterministic ecosystem carbon processes with stochastic disturbance events to reveal a general pattern of terrestrial carbon dynamics at large scales. The model allows us to get a sense of the sensitivity of ecosystems to future environmental changes just by a few calculations. According to the REGIME model, for example, approximately 1.8 Pg C will be lost in the high-latitude regions of North America (>45{sup o} N) if fire disturbance intensity increases around 5.7 time the current intensity to the end of the twenty-first century, which will require around 12% increases in net primary productivity (NPP) to maintain stable carbon stocks. If the residence time decreased 10% at the same time additional 12.5% increases in NPP are required to keep current C stocks. The REGIME model also lays the foundation for analytically modeling the interactions between deterministic biogeochemical processes and stochastic disturbance events.

  17. Sensitivity of aquatic ecosystems to climatic and anthropogenic changes: The basin and range, American Southwest and Mexico

    USGS Publications Warehouse

    Grimm, N. B.; Chacon, A.; Dahm, Clifford N.; Hostetler, S.W.; Lind, O.T.; Starkweather, P.L.; Wurtsbaugh, W.W.

    1997-01-01

    Variability and unpredictability are characteristics of the aquatic ecosystems, hydrological patterns and climate of the largely dryland region that encompasses the Basin and Range, American Southwest and western Mexico. Neither hydrological nor climatological models for the region are sufficiently developed to describe the magnitude or direction of change in response to increased carbon dioxide; thus, an attempt to predict specific responses of aquatic ecosystems is premature. Instead, we focus on the sensitivity of rivers, streams, springs, wetlands, reservoirs, and lakes of the region to potential changes in climate, especially those inducing a change in hydrological patterns such as amount, timing and predictability of stream flow. The major sensitivities of aquatic ecosystems are their permanence and even existence in the face of potential reduced net basin supply of water, stability of geomorphological structure and riparian ecotones with alterations in disturbance regimes, and water quality changes resulting from a modified water balance. In all of these respects, aquatic ecosystems of the region are also sensitive to the extensive modifications imposed by human use of water resources, which underscores the difficulty of separating this type of anthropogenic change from climate change. We advocate a focus in future research on reconstruction and analysis of past climates and associated ecosystem characteristics, long-term studies to discriminate directional change vs. year to year variability (including evidence of aquatic ecosystem responses or sensitivity to extremes), and studies of ecosystems affected by human activity. ?? 1997 by John Wiley & Sons, Ltd.

  18. APPROACHES TO ECOSYSTEM AND HUMAN EXPOSURE TO MERCURY FOR SENSITIVE POPULATIONS

    EPA Science Inventory

    Both human and ecosystem exposure studies evaluate exposure of sensitive and vulnerable populations. We will discuss how ecosystem exposure modeling studies completed for input into the US Clean Air Mercury Rule (CAMR) to evaluate the response of aquatic ecosystems to changes in ...

  19. Seeking Energy System Pathways to Reduce Ozone Damage to Ecosystems through Adjoint-based Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Capps, S. L.; Pinder, R. W.; Loughlin, D. H.; Bash, J. O.; Turner, M. D.; Henze, D. K.; Percell, P.; Zhao, S.; Russell, M. G.; Hakami, A.

    2014-12-01

    Tropospheric ozone (O3) affects the productivity of ecosystems in addition to degrading human health. Concentrations of this pollutant are significantly influenced by precursor gas emissions, many of which emanate from energy production and use processes. Energy system optimization models could inform policy decisions that are intended to reduce these harmful effects if the contribution of precursor gas emissions to human health and ecosystem degradation could be elucidated. Nevertheless, determining the degree to which precursor gas emissions harm ecosystems and human health is challenging because of the photochemical production of ozone and the distinct mechanisms by which ozone causes harm to different crops, tree species, and humans. Here, the adjoint of a regional chemical transport model is employed to efficiently calculate the relative influences of ozone precursor gas emissions on ecosystem and human health degradation, which informs an energy system optimization. Specifically, for the summer of 2007 the Community Multiscale Air Quality (CMAQ) model adjoint is used to calculate the location- and sector-specific influences of precursor gas emissions on potential productivity losses for the major crops and sensitive tree species as well as human mortality attributable to chronic ozone exposure in the continental U.S. The atmospheric concentrations are evaluated with 12-km horizontal resolution with crop production and timber biomass data gridded similarly. These location-specific factors inform the energy production and use technologies selected in the MARKet ALlocation (MARKAL) model.

  20. Landscape structure affects the provision of multiple ecosystem services

    NASA Astrophysics Data System (ADS)

    Lamy, T.; Liss, K. N.; Gonzalez, A.; Bennett, E. M.

    2016-12-01

    Understanding how landscape structure, the composition and configuration of land use/land cover (LULC) types, affects the relative supply of ecosystem services (ES), is critical to improving landscape management. While there is a long history of studies on landscape composition, the importance of landscape configuration has only recently become apparent. To understand the role of landscape structure in the provision of multiple ES, we must understand how ES respond to different measures of both composition and configuration of LULC. We used a multivariate framework to quantify the role of landscape configuration and composition in the provision of ten ES in 130 municipalities in an agricultural region in Southern Québec. We identified the relative influence of composition and configuration in the provision of these ES using multiple regression, and on bundles of ES using canonical redundancy analysis. We found that both configuration and composition play a role in explaining variation in the supply of ES, but the relative contribution of composition and configuration varies significantly among ES. We also identified three distinct ES bundles (sets of ES that regularly appear together on the landscape) and found that each bundle was associated with a unique area in the landscape, that mapped to a gradient in the composition and configuration of forest and agricultural LULC. These results show that the distribution of ES on the landscape depends upon both the overall composition of LULC types and their configuration on the landscape. As ES become more widely used to steer land use decision-making, quantifying the roles of configuration and composition in the provision of ES bundles can improve landscape management by helping us understand when and where the spatial pattern of land cover is important for multiple services.

  1. Factors Affecting Shock Sensitivity of Energetic Materials

    NASA Astrophysics Data System (ADS)

    Chakravarty, A.; Gifford, M. J.; Greenaway, M. W.; Proud, W. G.; Field, J. E.

    2002-07-01

    An extensive study has been carried out into the relationships between the particle size of a charge, the density to which it is packed, the presence of inert additives and the sensitivity of the charge to different initiating shocks. The critical parameters for two different shock regimes have been found. The long duration shocks are provided by a commercial detonator and the short duration shocks are imparted using laser-driven flyer plates. It has been shown that the order of sensitivity of charges to different shock regimes varies. In particular, ultrafine materials have been shown to be relatively insensitive to long duration low pressure shocks and sensitive to short duration high pressure shocks. The materials that have been studied include HNS, RDX and PETN.

  2. Factors Affecting Shock Sensitivity of Energeticv Materials

    NASA Astrophysics Data System (ADS)

    Chakravarty, Avic; Gifford, Michael John; Greenaway, Martin; Proud, William; Field, John

    2001-06-01

    An extensive study has been carried out into the relationships between the particle size of a charge, the density to which it is packed, the presence of inert additives and the sensitivity of the charge to different initiating shocks. The critical parameters for three different shock regimes have been found. The long duration shocks are provided by a commercial detonator, the medium duration shocks are provided by an electrically driven flyer-plate and the short duration shocks are imparted using laser-driven flyer plates. It has been shown that the order of sensitivity of charges to different shock regimes varies. In particular, ultrafine materials have been shown to relatively insensitive to long duration low pressure shocks and sensitive to short duration high pressure shocks. The materials that have been studied include HNS, RDX and PETN.

  3. Sensitivity of ecosystem models to the spatial resolution of the NCAR Community Climate Model CCM2

    NASA Astrophysics Data System (ADS)

    Ciret, C.; Henderson-Sellers, A.

    This study evaluates the sensitivity of ecosystem models to changes in the horizontal resolution of version 2 of the National Centre for Atmospheric Research Community Climate Model (CCM2). A previous study has shown that the distributions of natural ecosystems predicted by vegetation models using coarse resolution present-day climate simulations are poorly simulated. It is usually assumed that increasing the spatial resolution of general circulation models (GCMs) will improve the simulation of climate, and hence will increase our level of confidence in the use of GCM output for impacts studies. The principal goals of this study is to investigate this hypothesis and to identify which biomes are more affected by the changes in spatial resolution of the forcing climate. The ecosystem models used are the BIOME-1 model and a version of the Holdridge scheme. The climate simulations come from a set of experiments in which CCM2 was run with increasing horizontal resolutions. The biome distributions predicted using CCM2 climates are compared against biome distributions predicted using observed climate datasets. Results show that increasing the resolution of CCM2 produces a significant improvement of the global-scale vegetation prediction, indicating that a higher level of confidence can be vested in the global-scale prediction of natural ecosystems using medium and high resolution GCMs. However, not all biomes are equally affected by the increased spatial resolution, and although certain biome distributions are improved (e.g. hot desert, tropical seasonal forest), others remain globally poorly predicted even at high resolution (e.g. grasses and xerophytic woods). In addition, these results show that some climatic biases are enhanced with increasing resolution (e.g. in mountain ranges), resulting in the inadequate prediction of biomes.

  4. The changing Mediterranean Sea — a sensitive ecosystem?

    NASA Astrophysics Data System (ADS)

    Turley, Carol M.

    1999-08-01

    I was asked to present a keynote paper on the socio-economic aspects of oceanographic research in the Mediterranean Sea in the Session on From Oceanographic Science to Policy at the International Conference on Progress in Oceanography of the Mediterranean Sea, Rome November 1997. The session was unique in that it included papers from oceanographers, social scientists and economists. For this reason I have aimed this paper towards, what I consider to be, social and economic issues that may have important oceanographic outcomes and vice versa. I have attempted to express them in a manner that can be understood by economists, social scientists, policy makers and oceanographers alike. The Mediterranean is highly populated and the greatest tourist destination in the world, both of which are predicted by UNEP to rise substantially in the future. Its blue waters, however, include some of the most extreme oligotrophic waters in the world such that it is only capable of supplying 50% of its requirements for fish. The relatively clear, pigment poor surface waters of the Mediterranean have a general increasing oligotrophy eastward with substantially lower phytoplankton, benthic and fish production in the eastern basin. The Mediterranean Sea is highly sensitive to climatic changes; it has high evaporation rates, low land runoff from few rivers and seasonal rains resulting in a deficit in its hydrological balance. This has worsened with the damming of rivers such as the Nile. Nutrient depleted Atlantic water flows into the Mediterranean through the narrow Strait of Gibraltar and exits after circulating the basin with nearly 10% more salt content. This hydrological imbalance may have far-reaching consequences in the Atlantic, producing similar climate changes in Northern Europe, to that seen during the last glaciation, and may be linked to a hydrological deficit in the Mediterranean Sea resulting from a decline in the Nile outflow. The basin-wide circulation, hot-dry and

  5. Sensitivity and Thresholds of Ecosystems to Abrupt Climate Change

    NASA Astrophysics Data System (ADS)

    Peteet, D. M.; Peteet, D. M.

    2001-12-01

    Rapid vegetational change is a hallmark of past abrupt climate change, as evidenced from Younger Dryas records in Europe, eastern North America, and the Pacific North American rim. The potential response of future ecosystems to abrupt climate change is targeted, with a focus on particular changes in the hydrological cycle. The vulnerability of ecosystems is notable when particular shifts cross thresholds of precipitation and temperature, as many plants and animals are adapted to specific climatic "windows". Significant forest species compositional changes occur at ecotonal boundaries, which are often the first locations to record a climatic response. Historical forest declines have been linked to stress, and even Pleistocene extinctions have been associated with human interaction at times of rapid climatic shifts. Environmental extremes are risky for reproductive stages, and result in nonlinearities. The role of humans in association with abrupt climate change suggests that many ecosystems may cross thresholds from which they will find it difficult to recover. Sectors particularly vulnerable will be reviewed.

  6. Food-web composition affects cross-ecosystem interactions and subsidies.

    PubMed

    Romero, Gustavo Q; Srivastava, Diane S

    2010-09-01

    1. Ecosystems may affect each other through trophic interactions that cross ecosystem boundaries as well as via the transfer of subsidies, but these effects can vary depending on the identity of species involved in the interaction. 2. In this study, we manipulated two terrestrial bromeliad-living spider species (Aglaoctenus castaneus, Corinna gr. rubripes) that have variable hunting modes, to test their individual and combined effects on aquatic invertebrate community structure and ecosystem processes (i.e. decomposition rate and nitrogen cycling). We predicted that these terrestrial predators can affect aquatic invertebrates and nutrient dynamics within water-filled bromeliads. 3. Aglaoctenus spiders reduced the richness, abundance and biomass of aquatic insect larvae via consumptive or non-consumptive effects on ovipositing terrestrial adults, but effects of the two spider species in combination were usually the linear average of their monoculture effects. In contrast, invertebrates with entirely aquatic life cycles were unaffected or facilitated by spiders. Spiders did not affect either net detritivore biomass or the flux of detrital nitrogen to the bromeliad. Instead, Corinna spiders contributed allochthonous nitrogen to bromeliads. 4. Our results provide the novel observations that predators in one ecosystem not only directly reduce taxa whose life cycles cross-ecosystem boundaries, but also indirectly facilitate taxa whose life cycles are entirely within the second ecosystem. This compensatory response between cross-ecosystem and within-ecosystem taxa may have led to an attenuation of top-down effects across ecosystem boundaries. In addition, our results add to a growing consensus that species identity is an important determinant of community structure and ecosystem functioning. Thus, the composition of both terrestrial and aquatic food webs may affect the strength of cross-ecosystem interactions.

  7. Community history affects the predictability of microbial ecosystem development.

    PubMed

    Pagaling, Eulyn; Strathdee, Fiona; Spears, Bryan M; Cates, Michael E; Allen, Rosalind J; Free, Andrew

    2014-01-01

    Microbial communities mediate crucial biogeochemical, biomedical and biotechnological processes, yet our understanding of their assembly, and our ability to control its outcome, remain poor. Existing evidence presents conflicting views on whether microbial ecosystem assembly is predictable, or inherently unpredictable. We address this issue using a well-controlled laboratory model system, in which source microbial communities colonize a pristine environment to form complex, nutrient-cycling ecosystems. When the source communities colonize a novel environment, final community composition and function (as measured by redox potential) are unpredictable, although a signature of the community's previous history is maintained. However, when the source communities are pre-conditioned to their new habitat, community development is more reproducible. This situation contrasts with some studies of communities of macro-organisms, where strong selection under novel environmental conditions leads to reproducible community structure, whereas communities under weaker selection show more variability. Our results suggest that the microbial rare biosphere may have an important role in the predictability of microbial community development, and that pre-conditioning may help to reduce unpredictability in the design of microbial communities for biotechnological applications.

  8. Community history affects the predictability of microbial ecosystem development

    PubMed Central

    Pagaling, Eulyn; Strathdee, Fiona; Spears, Bryan M; Cates, Michael E; Allen, Rosalind J; Free, Andrew

    2014-01-01

    Microbial communities mediate crucial biogeochemical, biomedical and biotechnological processes, yet our understanding of their assembly, and our ability to control its outcome, remain poor. Existing evidence presents conflicting views on whether microbial ecosystem assembly is predictable, or inherently unpredictable. We address this issue using a well-controlled laboratory model system, in which source microbial communities colonize a pristine environment to form complex, nutrient-cycling ecosystems. When the source communities colonize a novel environment, final community composition and function (as measured by redox potential) are unpredictable, although a signature of the community's previous history is maintained. However, when the source communities are pre-conditioned to their new habitat, community development is more reproducible. This situation contrasts with some studies of communities of macro-organisms, where strong selection under novel environmental conditions leads to reproducible community structure, whereas communities under weaker selection show more variability. Our results suggest that the microbial rare biosphere may have an important role in the predictability of microbial community development, and that pre-conditioning may help to reduce unpredictability in the design of microbial communities for biotechnological applications. PMID:23985743

  9. Plant-trait-based modeling assessment of ecosystem-service sensitivity to land-use change.

    PubMed

    Quétier, Fabien; Lavorel, Sandra; Thuiller, Wilfried; Davies, Ian

    2007-12-01

    Evidence is accumulating that the continued provision of essential ecosystem services is vulnerable to land-use change. Yet, we lack a strong scientific basis for this vulnerability as the processes that drive ecosystem-service delivery often remain unclear. In this paper, we use plant traits to assess ecosystem-service sensitivity to land-use change in subalpine grasslands. We use a trait-based plant classification (plant functional types, PFTs) in a landscape modeling platform to model community dynamics under contrasting but internally consistent land-use change scenarios. We then use predictive models of relevant ecosystem attributes, based on quantitative plant traits, to make projections of ecosystem-service delivery. We show that plant traits and PFTs are effective predictors of relevant ecosystem attributes for a range of ecosystem services including provisioning (fodder), cultural (land stewardship), regulating (landslide and avalanche risk), and supporting services (plant diversity). By analyzing the relative effects of the physical environment and land use on relevant ecosystem attributes, we also show that these ecosystem services are most sensitive to changes in grassland management, supporting current agri-environmental policies aimed at maintaining mowing of subalpine grasslands in Europe.

  10. Can pan-allergens affect the sensitization pattern?

    PubMed

    Ciprandi, Giorgio; Comite, Paola; Bruzzone, Marco; Fontana, Vincenzo

    2017-01-28

    The present study tested the hypothesis that a pan-allergen sensitization may affect the sensitization pattern. For this reason, 22 sensitization pattern allergens (SPA), common in Genoa (Italy), were selected for analyses. Successively, five of them, such as Pru p 3 as representative for LTP family, Bet v 1 and Pru p 1 for PR-10, and Bet v 2 and Pru p 4 for Profilin, were used as target allergens (TA). This retrospective study included 1059 subjects, (396 males and 663 females, mean age 42.8 years). The current study showed that sensitization to a pan-allergen entails higher odds to have other sensitizations. In addition, the co-sensitization pattern depends on the basis of the sensitizing pan-allergen family. LTP-sensitization is strongly associated with peanut sensitization, PR10 and profiling sensitization with hazelnut positivity. This study shows that a pan-allergen sensitization is frequently associated with co-sensitizations and the sensitization pattern depends on the sensitizing pan-allergen.

  11. [Effect of degradation succession process on the temperature sensitivity of ecosystem respiration in alpine Potentilla fruticosa scrub meadow].

    PubMed

    Li, Dong; Luo, Xu-Peng; Cao, Guang-Min; Wu, Qin; Hu, Qi-Wu; Zhuo, Ma-Cuo; Li, Hui-Mei

    2015-03-01

    Grazing is one of the main artificial driving forces for the degradation succession process of alpine meadow. In order to quantitatively study the temperature sensitivity of alpine meadow ecosystem respiration in different degradation stages, we conducted the research in Haibei Alpine Meadow Ecosystem Research Station, CAS from July 2003 to July 2004. The static chamber-chromatography methodology was used to observe the seasonal changes of alpine scrub ecosystem respiration flux during different degradation stages. The results showed that: (1) The seasonal changes of ecosystem respiration flux in different degradation stages of alpine shrub presented a unimodal curve. The maximum appeared in August and the minimum appeared during the period from October to next April. The degradation succession process significantly decreased the ecosystem respiratory CO2 release rate. The respiratory rate ranges of alpine Potentilla fruticosa scrub (GG), Kobresia capillifolia meadow (GC) and bare land (GL) were 34.21-1 168.23, 2.30-1 112.38 and 20.40-509.72 mg (m2 x h)(-1), respectively. The average respiration rate of GG was 1.29 and 2.56 times of that of GC and GL, respectively; (2) Temperature was the main factor that affected the ecosystem respiration rate, and contributed 25% - 79% of the variation of the ecosystem respiration. The degradation succession process significantly changed the correlation between ecosystem respiration rate and temperature. The correlation (R2) between ecosystem respiration rate and each temperature indicator (T(s), T(d) and T(a)) was reduced by 47.23%, 46.95% and 55.28%, respectively when the ground vegetation disappeared and the scrub was degraded into secondary bare land; (3) The difference of Q10 between warm and cool seasons was significant (P < 0.05), and the value of cold season was larger than that of warm season. Degradation succession process apparently changed the temperature sensitivity of ecosystem respiration. The Q10 values of GG, GC

  12. Small but powerful: top predator local extinction affects ecosystem structure and function in an intermittent stream.

    PubMed

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore

  13. [Ecosystem service interactions and their affecting factors in Jinghe watershed at county level].

    PubMed

    Pan, Ying; Zhen, Lin; Long, Xin; Cao, Xiao-Chang

    2012-05-01

    Taking the multiple ecosystem services (grain supply, meat supply, fuel-wood supply, water resource conservation and soil retention) as test objects, this paper analyzed the interactions among these services, the interaction modes and the possible affecting factors in 31 counties of Jinghe watershed. At the county level, there existed great differences in the interactions among different pairs of the ecosystem services. The grain supply showed significant positive correlation with meat supply but negative correlation with soil retention, whereas the water resource conservation showed significant positive correlations with fuel-wood supply and soil retention. As for the interaction modes of the ecosystem services, 24 counties were primarily of regulation services, 3 counties were of supply and regulation services in balance, and 4 counties were primarily of grain supply. The total ecosystem service index of the interaction modes in each county varied greatly, with 5.1 times of difference between the maximum (Jingyuan County) and the minimum value (Yanchi County). The total ecosystem service index was significantly positively correlated with precipitation and soil total nitrogen, and negatively correlated with solar hours. The increase of farmland had negative effects, while that of shrub land and grassland had great positive effects on the total ecosystem service index, but the increase of forestland had less effects.

  14. How does vineyard management intensity affect ecosystem services and disservices - insights from a meta-analysis

    NASA Astrophysics Data System (ADS)

    Winter, Silvia; Zaller, Johann G.; Kratschmer, Sophie; Pachinger, Bärbel; Strauss, Peter; Bauer, Thomas; Paredes, Daniel; Gómez, José A.; Guzmán, Gema; Landa, Blanca; Nicolai, Annegret; Burel, Francoise; Cluzeau, Daniel; Popescu, Daniela; Bunea, Claudiu-Ioan; Potthoff, Martin; Guernion, Muriel; Batáry, Péter

    2016-04-01

    Viticultural agro-ecosystems provide a range of different ecosystem services which are affected by management decisions of winegrowers. At the global scale, vineyards are often high intensity agricultural systems with bare soil or inter-row vegetation consisting of only a few plant species. These systems primarily aim at optimizing wine production by reducing competition for water and nutrients between grapevines and weeds and by preventing the outbreak of pests and diseases. At the same time, this kind of management is often associated with ecosystem disservices such as high rates of soil erosion, degradation of soil structure and fertility, contamination of groundwater and decline of biodiversity. Recently, several initiatives across the world tried to overcome detrimental effects of that management style by creating biodiversity friendly vineyards. The consequences of establishing divers cover crop mixes or tolerating spontaneous vegetation in vineyards for ecosystem services (including yield) overstretching local case studies has not been investigated yet. This meta-analysis will provide an overview of all published studies comparing the effects of different vineyard management practices on a range of different ecosystem services like biodiversity, pest control, pollination, soil conservation and carbon sequestration. The aggregated effect size will point out which management measures can provide the best overall net sum of ecosystem services. This meta-analysis is part of the transdisciplinary BiodivERsA project VineDivers and will ultimately lead into management and policy recommendations for various stakeholder groups engaged in viticulture.

  15. Reinforcement sensitivity underlying treatment-seeking smokers' affect, smoking reinforcement motives, and affective responses.

    PubMed

    Cui, Yong; Robinson, Jason D; Engelmann, Jeffrey M; Lam, Cho Y; Minnix, Jennifer A; Karam-Hage, Maher; Wetter, David W; Dani, John A; Kosten, Thomas R; Cinciripini, Paul M

    2015-06-01

    Nicotine dependence has been suggested to be related to reinforcement sensitivity, which encompasses behavioral predispositions either to avoid aversive (behavioral inhibition) or to approach appetitive (behavioral activation) stimuli. Reinforcement sensitivity may shape motives for nicotine use and offer potential targets for personalized smoking cessation therapy. However, little is known regarding how reinforcement sensitivity is related to motivational processes implicated in the maintenance of smoking. Additionally, women and men differ in reinforcement sensitivity, and such difference may cause distinct relationships between reinforcement sensitivity and motivational processes for female and male smokers. In this study, the authors characterized reinforcement sensitivity in relation to affect, smoking-related reinforcement motives, and affective responses, using self-report and psychophysiological measures, in over 200 smokers before treating them. The Behavioral Inhibition/Activation Scales (BIS/BAS; Carver & White, 1994) was used to measure reinforcement sensitivity. In female and male smokers, BIS was similarly associated with negative affect and negative reinforcement of smoking. However, positive affect was positively associated with BAS Drive scores in male smokers, and this association was reversed in female smokers. BIS was positively associated with corrugator electromyographic reactivity toward negative stimuli and left frontal electroencephalogram alpha asymmetry. Female and male smokers showed similar relationships for these physiological measures. These findings suggest that reinforcement sensitivity underpins important motivational processes (e.g., affect), and gender is a moderating factor for these relationships. Future personalized smoking intervention, particularly among more dependent treatment-seeking smokers, may experiment to target individual differences in reinforcement sensitivity. (PsycINFO Database Record

  16. Drought-Net: An international network to assess terrestrial ecosystem sensitivity to drought

    NASA Astrophysics Data System (ADS)

    Smith, M.; Phillips, R.; Sala, O. E.

    2014-12-01

    All ecosystems will be impacted to some extent by climate change, with forecasts for more frequent and severe drought likely to have the greatest impact on terrestrial ecosystems. Terrestrial ecosystems are known to vary dramatically in their responses to drought. However, the factors that may make some ecosystems respond more or less than others remains unknown, but such understanding is critical for predicting drought impacts at regional and continental scales. To effectively forecast terrestrial ecosystem responses to drought, ecologists must assess responses of a range of different ecosystems to drought, and then improve existing models by incorporating the factors that cause such variation in response. Traditional site-based research cannot provide this knowledge because experiments conducted at individual sites are often not directly comparable due to differences in methodologies employed. Coordinated experimental networks, with identical protocols and comparable measurements, are ideally suited for comparative studies at regional to global scales. The US National Science Foundation-funded Drought-Net Research Coordination Network (www.drought-net.org) will advance understanding of the determinants of terrestrial ecosystem responses to drought by bringing together an international group of scientists to conduct two key activities conducted over the next five years: 1) planning and coordinating new research using standardized measurements to leverage the value of existing drought experiments across the globe (Enhancing Existing Experiments, EEE), and 2) finalizing the design and facilitating the establishment of a new international network of coordinated drought experiments (the International Drought Experiment, IDE). The primary goals of these activities are to assess: (1) patterns of differential terrestrial ecosystem sensitivity to drought and (2) potential mechanisms underlying those patterns.

  17. Drought-Net: A global network to assess terrestrial ecosystem sensitivity to drought

    NASA Astrophysics Data System (ADS)

    Smith, Melinda; Sala, Osvaldo; Phillips, Richard

    2015-04-01

    All ecosystems will be impacted to some extent by climate change, with forecasts for more frequent and severe drought likely to have the greatest impact on terrestrial ecosystems. Terrestrial ecosystems are known to vary dramatically in their responses to drought. However, the factors that may make some ecosystems respond more or less than others remains unknown, but such understanding is critical for predicting drought impacts at regional and continental scales. To effectively forecast terrestrial ecosystem responses to drought, ecologists must assess responses of a range of different ecosystems to drought, and then improve existing models by incorporating the factors that cause such variation in response. Traditional site-based research cannot provide this knowledge because experiments conducted at individual sites are often not directly comparable due to differences in methodologies employed. Coordinated experimental networks, with identical protocols and comparable measurements, are ideally suited for comparative studies at regional to global scales. The US National Science Foundation-funded Drought-Net Research Coordination Network (www.drought-net.org) will advance understanding of the determinants of terrestrial ecosystem responses to drought by bringing together an international group of scientists to conduct two key activities conducted over the next five years: 1) planning and coordinating new research using standardized measurements to leverage the value of existing drought experiments across the globe (Enhancing Existing Experiments, EEE), and 2) finalizing the design and facilitating the establishment of a new international network of coordinated drought experiments (the International Drought Experiment, IDE). The primary goals of these activities are to assess: (1) patterns of differential terrestrial ecosystem sensitivity to drought and (2) potential mechanisms underlying those patterns.

  18. Small but Powerful: Top Predator Local Extinction Affects Ecosystem Structure and Function in an Intermittent Stream

    PubMed Central

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators’ extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a ‘mesopredator release’, affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to ‘mesopredator release’, and also to ‘prey release’ despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem’s structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers’ extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been

  19. Comparison of boreal ecosystem model sensitivity to variability in climate and forest site parameters

    NASA Astrophysics Data System (ADS)

    Potter, Christopher S.; Wang, Shusen; Nikolov, Ned T.; McGuire, A. David; Liu, Jane; King, Anthony W.; Kimball, John S.; Grant, Robert F.; Frolking, Steven E.; Clein, Joy S.; Chen, Jing M.; Amthor, Jeffrey S.

    2001-12-01

    Ecosystem models are useful tools for evaluating environmental controls on carbon and water cycles under past or future conditions. In this paper we compare annual carbon and water fluxes from nine boreal spruce forest ecosystem models in a series of sensitivity simulations. For each comparison, a single climate driver or forest site parameter was altered in a separate sensitivity run. Driver and parameter changes were prescribed principally to be large enough to identify and isolate any major differences in model responses, while also remaining within the range of variability that the boreal forest biome may be exposed to over a time period of several decades. The models simulated plant production, autotrophic and heterotrophic respiration, and evapotranspiration (ET) for a black spruce site in the boreal forest of central Canada (56°N). Results revealed that there were common model responses in gross primary production, plant respiration, and ET fluxes to prescribed changes in air temperature or surface irradiance and to decreased precipitation amounts. The models were also similar in their responses to variations in canopy leaf area, leaf nitrogen content, and surface organic layer thickness. The models had different sensitivities to certain parameters, namely the net primary production response to increased CO2 levels, and the response of soil microbial respiration to precipitation inputs and soil wetness. These differences can be explained by the type (or absence) of photosynthesis-CO2 response curves in the models and by response algorithms of litter and humus decomposition to drying effects in organic soils of the boreal spruce ecosystem. Differences in the couplings of photosynthesis and soil respiration to nitrogen availability may also explain divergent model responses. Sensitivity comparisons imply that past conditions of the ecosystem represented in the models' initial standing wood and soil carbon pools, including historical climate patterns and the

  20. Factors Affecting Contrast Sensitivity in Healthy Individuals: A Pilot Study

    PubMed Central

    Karatepe, Arzu Seyhan; Köse, Süheyla; Eğrilmez, Sait

    2017-01-01

    Objectives: To determine the demographic and ocular features affecting contrast sensitivity levels in healthy individuals. Materials and Methods: Seventy-four eyes of 37 subjects (7-65 years old) with refractive errors less than 1.0 diopter, no history of ocular surgery, and 20/20 visual acuity were included in the study. The participants were divided by age into three groups: group 1, 7-19 years, n=11; group 2, 20-49 years, n=15; and group 3, 50-65 years, n=11. All subjects underwent anterior and posterior segment evaluation, intraocular pressure measurements, refraction measurements, and clinical evaluation for strabismus. Contrast static test was performed using Metrovision MonPack 3 vision monitor system after measuring pupil diameter. Photopic and mesopic measurements were taken sequentially from right eyes, left eyes, and both eyes together. Results: Contrast sensitivity at intermediate and high spatial frequencies was lower with increasing age. Binocular measurements were better than monocular, and mesopic measurements were better than photopic measurements at all spatial frequencies. Contrast sensitivity at higher spatial frequency was lower with hyperopic refraction values. Conclusion: Increasing age, small pupil diameter, hyperopia, and photopic conditions were associated with lower contrast sensitivity in healthy individuals. Binocular contrast sensitivity measurements were better than monocular contrast sensitivity measurements in all conditions and spatial frequencies.

  1. [Simulation of carbon cycle in Qianyanzhou artificial masson pine forest ecosystem and sensitivity analysis of model parameters].

    PubMed

    Wang, Yuan; Zhang, Na; Yu, Gui-rui

    2010-07-01

    By using modified carbon-water cycle model EPPML (ecosystem productivity process model for landscape), the carbon absorption and respiration in Qianyanzhou artificial masson pine forest ecosystem in 2003 and 2004 were simulated, and the sensitivity of the model parameters was analyzed. The results showed that EPPML could effectively simulate the carbon cycle process of this ecosystem. The simulated annual values and the seasonal variations of gross primary productivity (GPP), net ecosystem productivity (NEP), and ecosystem respiration (Re) not only fitted well with the measured data, but also reflected the major impacts of extreme weather on carbon flows. The artificial masson pine forest ecosystem in Qianyanzhou was a strong carbon sink in both 2003 and 2004. Due to the coupling of high temperature and severe drought in the growth season in 2003, the carbon absorption in 2003 was lower than that in 2004. The annual NEP in 2003 and 2004 was 481.8 and 516.6 g C x m(-2) x a(-1), respectively. The key climatic factors giving important impacts on the seasonal variations of carbon cycle were solar radiation during early growth season, drought during peak growth season, and precipitation during post-peak growth season. Autotrophic respiration (Ra) and net primary productivity (NPP) had the similar seasonal variations. Soil heterotrophic respiration (Rh) was mainly affected by soil temperature at yearly scale, and by soil water content at monthly scale. During wet growth season, the higher the soil water content, the lower the Rh was; during dry growth season, the higher the precipitation during the earlier two months, the higher the Rh was. The maximum RuBP carboxylation rate at 25 degrees C (Vm25), specific leaf area (SLA), maximum leaf nitrogen content (LNm), average leaf nitrogen content (LN), and conversion coefficient of biomass to carbon (C/B) had the greatest influence on annual NEP. Different carbon cycle process could have different responses to sensitive

  2. [Advances in study of factors affecting soil N mineralization in grassland ecosystems].

    PubMed

    Wang, Changhui; Xing, Xuerong; Han, Xingguo

    2004-11-01

    The biological and non-biological factors affecting soil N availability in grassland ecosystems were reviewed in this paper. Nitrogen cycling in grassland ecosystems is one of the focuses widely concerned. Nitrogen mineralization is affected by many factors in grassland ecosystem, which can be classified into biological and non-biological ones. Biological factors include soil animals, soil microorganisms and plants. Soil animals could accelerate the organic matter to degrade. The species, structure and function of soil microorganisms correlate significantly with N degradation and mineralization. Different vegetation has different effects on soil nitrogen mineralization. The non-biological factors include environmental factors and anthropogenic disturbance, which have direct and obvious effects on N mineralization. The effects of soil temperature and moisture on N mineralization are given more attention, but many phenomena, such as the effects of soil type, soil structure and vegetation type on N mineralization still could not be explained clearly, and no general agreements were reached. Anthropogenic disturbance such as grazing, firing and fertilization influence N mineralization evidently. It is of great significance to understand the N cycling pattern and N availability in different grassland ecosystems all around the world.

  3. The sensitivity of the northwest European continental shelf ecosystem to anthropogenic pressures

    NASA Astrophysics Data System (ADS)

    Wakelin, Sarah; Artioli, Yuri; Holt, Jason; Butenschön, Momme

    2013-04-01

    Anthropogenic pressure is exerted on ecosystems in several ways, through direct drivers such as eutrophication and levels of fishing effort and by changes in the physical environment brought about by climate change. Changes in water temperature, the timing and duration of seasonal stratification, circulation patterns and ocean-shelf exchange all impact on shelf-sea primary production. We use a coupled hydrodynamics-ecosystem model (POLCOMS-ERSEM) to study ecosystem sensitivity to climate change and the anthropogenic drivers of river nutrient loads, impacting on eutrophication, and trawling effort on the northwest European continental shelf, with an emphasis on changes in the North Sea. To force the model we use data from a coupled ocean-atmosphere global model (IPSL-CM4) representative of conditions in the recent past (1983-2000) and possible conditions in the near future (2030-2040) under a business as usual emissions scenario SRES A1B. To study ecosystem sensitivity to direct anthropogenic forcing, we adopt two scenarios impacting on river nutrient loads and trawling effort - one where there is rapid economic growth and limited environmental policies and a second where economic growth is constrained by environmental objectives. The sensitivity of the system to each single driver: climate change, increase in river nutrient loads, decrease in river nutrient loads and reduction in trawling effort is explored. The response of the ecosystem to the combined effects of changes in multiple drivers under the two scenarios of economic growth is also studied. The results are relevant to the Marine Strategy Framework Directive descriptors on marine food webs, eutrophication and biodiversity.

  4. Sensitivity of Prosopis velutina to Summer Rainfall and Consequences for Seasonal Patterns of Ecosystem Carbon Exchange

    NASA Astrophysics Data System (ADS)

    Potts, D. L.; Cable, J. M.; Scott, R. L.; Williams, D. G.; Goodrich, D. C.; Huxman, T. E.

    2005-12-01

    Future changes in dryland vegetation composition will interact with climate variability to influence carbon and water cycling in unforeseen ways. Observed increases in the density of woody plants in North America's savanna ecosystems may be an important terrestrial carbon sink and could alter patterns of regional hydrologic cycling. During the 2005 growing season we compared seasonal patterns of Prosopis velutina plant water status and leaf gas exchange in upland and riparian savannas. Previous work suggested the plant size class constrained alluvial groundwater access and that mature individuals were less sensitive to the onset of summer rains at the riparian site. We predicted that at the upland site, where groundwater was unavailable, mature and juvenile plants would respond similarly to the onset of summer rains. Furthermore, we predicted that this increased sensitivity by the dominant vegetation to seasonal rainfall would be reflected in NEE data collected by eddy-covariance at both sites. Results indicate that mesquite performance and the duration and magnitude of ecosystem carbon exchanges are tightly linked to precipitation at the upland site. Comparing upland and riparian sites demonstrates how seasonal pattern of precipitation, plant-available alluvial groundwater and vegetation structure interact to govern ecosystem carbon balance in savanna ecosystems.

  5. Stress sensitivity and the development of affective disorders.

    PubMed

    Bale, Tracy L

    2006-11-01

    Depressive disorders are the most common form of mental illness in America, affecting females twice as often as males. The great variability of symptoms and responses to therapeutic treatment emphasize the complex underlying neurobiology of disease onset and progression. Evidence from human and animal studies reveals a vital link between individual stress sensitivity and the predisposition toward mood disorders. While the stress response is essential for maintenance of homeostasis and survival, chronic stress and maladaptive responses to stress insults can lead to depression or other affective disorders. A key factor in the mediation of stress responsivity is the neuropeptide corticotropin-releasing factor (CRF). Studies in animal models of heightened stress sensitivity have illustrated the involvement of CRF downstream neurotransmitter targets, including serotonin and norepinephrine, in the profound neurocircuitry failure that may underlie maladaptive coping strategies. Stress sensitivity may also be a risk factor in affective disorder development susceptibility. As females show an increased stress response and recovery time compared to males, they may be at an increased vulnerability for disease. Therefore, examination of sex differences in CRF and downstream targets may aid in the elucidation of the underlying causes of the increased disease presentation in females. While we continue to make progress in our understanding of mood disorder etiology, we still have miles to go before we sleep. As an encouraging number of new animal models of altered stress sensitivity and negative stress coping strategies have been developed, the future looks extremely promising for the possibility of a new generation of drug targets to be developed.

  6. Hunger state affects both olfactory abilities and gustatory sensitivity.

    PubMed

    Hanci, Deniz; Altun, Huseyin

    2016-07-01

    Chemical senses such as odor, taste and appearance are directly related with appetite. Understanding the relation between appetite and flavor is getting more important due to increasing number of obese patients worldwide. The literature on the studies investigating the change in olfactory abilities and gustatory sensitivity mostly performed using food-related odors and tastes rather than standardized tests were developed to study olfaction and gustation. Therefore, results are inconsistent and the relationship between olfactory and gustatory sensitivity with respect to the actual state of human satiety is still not completely understood. Here, for the first time in literature, we investigated the change in both olfactory abilities and gustatory sensitivity in hunger and in satiety using 123 subjects (37 men, 86 women; mean age 31.4 years, age range 21-41 years). The standardized Sniffin' Sticks Extended Test and Taste Strips were used for olfactory testing and gustatory sensitivity, respectively. TDI score (range 1-48) was calculated as the collective scores of odor threshold (T), odor discrimination (D) and odor identification (I). The evaluation was performed in two successive days where the hunger state of test subjects was confirmed by blood glucose test strips (mean blood glucose level 90.0 ± 5.6 mg/dl in hunger and 131.4 ± 8.1 mg/dl in satiety). The results indicated statistically significant decrease in olfaction in satiety compared to hunger (mean TDI 39.3 ± 1.1 in hunger, 37.4 ± 1.1 in satiety, p < 0.001). The comparison of gustatory sensitivity indicated significantly higher sensitivity to sweet, sour and salty in hunger (p < 0.001), but significantly higher sensitivity to bitter tastant in satiety (p < 0.001). With this prospective study, we were able to show that both olfactory abilities and gustatory sensitivity were affected by hunger state.

  7. Loss of Rare Fish Species from Tropical Floodplain Food Webs Affects Community Structure and Ecosystem Multifunctionality in a Mesocosm Experiment

    PubMed Central

    Pendleton, Richard M.; Hoeinghaus, David J.; Gomes, Luiz C.; Agostinho, Angelo A.

    2014-01-01

    Experiments with realistic scenarios of species loss from multitrophic ecosystems may improve insight into how biodiversity affects ecosystem functioning. Using 1000 L mesocoms, we examined effects of nonrandom species loss on community structure and ecosystem functioning of experimental food webs based on multitrophic tropical floodplain lagoon ecosystems. Realistic biodiversity scenarios were developed based on long-term field surveys, and experimental assemblages replicated sequential loss of rare species which occurred across all trophic levels of these complex food webs. Response variables represented multiple components of ecosystem functioning, including nutrient cycling, primary and secondary production, organic matter accumulation and whole ecosystem metabolism. Species richness significantly affected ecosystem function, even after statistically controlling for potentially confounding factors such as total biomass and direct trophic interactions. Overall, loss of rare species was generally associated with lower nutrient concentrations, phytoplankton and zooplankton densities, and whole ecosystem metabolism when compared with more diverse assemblages. This pattern was also observed for overall ecosystem multifunctionality, a combined metric representing the ability of an ecosystem to simultaneously maintain multiple functions. One key exception was attributed to time-dependent effects of intraguild predation, which initially increased values for most ecosystem response variables, but resulted in decreases over time likely due to reduced nutrient remineralization by surviving predators. At the same time, loss of species did not result in strong trophic cascades, possibly a result of compensation and complexity of these multitrophic ecosystems along with a dominance of bottom-up effects. Our results indicate that although rare species may comprise minor components of communities, their loss can have profound ecosystem consequences across multiple trophic

  8. Loss of rare fish species from tropical floodplain food webs affects community structure and ecosystem multifunctionality in a mesocosm experiment.

    PubMed

    Pendleton, Richard M; Hoeinghaus, David J; Gomes, Luiz C; Agostinho, Angelo A

    2014-01-01

    Experiments with realistic scenarios of species loss from multitrophic ecosystems may improve insight into how biodiversity affects ecosystem functioning. Using 1000 L mesocoms, we examined effects of nonrandom species loss on community structure and ecosystem functioning of experimental food webs based on multitrophic tropical floodplain lagoon ecosystems. Realistic biodiversity scenarios were developed based on long-term field surveys, and experimental assemblages replicated sequential loss of rare species which occurred across all trophic levels of these complex food webs. Response variables represented multiple components of ecosystem functioning, including nutrient cycling, primary and secondary production, organic matter accumulation and whole ecosystem metabolism. Species richness significantly affected ecosystem function, even after statistically controlling for potentially confounding factors such as total biomass and direct trophic interactions. Overall, loss of rare species was generally associated with lower nutrient concentrations, phytoplankton and zooplankton densities, and whole ecosystem metabolism when compared with more diverse assemblages. This pattern was also observed for overall ecosystem multifunctionality, a combined metric representing the ability of an ecosystem to simultaneously maintain multiple functions. One key exception was attributed to time-dependent effects of intraguild predation, which initially increased values for most ecosystem response variables, but resulted in decreases over time likely due to reduced nutrient remineralization by surviving predators. At the same time, loss of species did not result in strong trophic cascades, possibly a result of compensation and complexity of these multitrophic ecosystems along with a dominance of bottom-up effects. Our results indicate that although rare species may comprise minor components of communities, their loss can have profound ecosystem consequences across multiple trophic

  9. Herbivore and predator diversity interactively affect ecosystem properties in an experimental marine community.

    PubMed

    Douglass, James G; Duffy, J Emmett; Bruno, John F

    2008-06-01

    Interacting changes in predator and prey diversity likely influence ecosystem properties but have rarely been experimentally tested. We manipulated the species richness of herbivores and predators in an experimental benthic marine community and measured their effects on predator, herbivore and primary producer performance. Predator composition and richness strongly affected several community and population responses, mostly via sampling effects. However, some predators survived better in polycultures than in monocultures, suggesting complementarity due to stronger intra- than interspecific interactions. Predator effects also differed between additive and substitutive designs, emphasizing that the relationship between diversity and abundance in an assemblage can strongly influence whether and how diversity effects are realized. Changing herbivore richness and predator richness interacted to influence both total herbivore abundance and predatory crab growth, but these interactive diversity effects were weak. Overall, the presence and richness of predators dominated biotic effects on community and ecosystem properties.

  10. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China.

    PubMed

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C; Sang, Weiguo

    2015-03-13

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  11. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China

    PubMed Central

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C.; Sang, Weiguo

    2015-01-01

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning. PMID:25766381

  12. Sensitivity analysis of a model of CO2 exchange in tundra ecosystems by the adjoint method

    SciTech Connect

    Waelbroek, C.; Louis, J.F. |

    1995-02-01

    A model of net primary production (NPP), decomposition, and nitrogen cycling in tundra ecosystems has been developed. The adjoint technique is used to study the sensitivity of the computed annual net CO2 flux to perturbation in initial conditions, climatic inputs, and model`s main parameters describing current seasonal CO2 exchange in wet sedge tundra at Barrow, Alaska. The results show that net CO2 flux is most sensitive to parameters characterizing litter chemical composition and more sensitive to decomposition parameters than to NPP parameters. This underlines the fact that in nutrient-limited ecosystems, decomposition drives net CO2 exchange by controlling mineralization of main nutrients. The results also indicate that the short-term (1 year) response of wet sedge tundra to CO2-induced warming is a significant increase in CO2 emission, creating a positive feedback to atmosphreic CO2 accumulation. However, a cloudiness increase during the same year can severely alter this response and lead to either a slight decrease or a strong increase in emitted CO2, depending on its exact timing. These results demonstrate that the adjoint method is well suited to study systems encountering regime changes, as a single run of the adjoint model provides sensitivities of the net CO2 flux to perturbations in all parameters and variables at any time of the year. Moreover, it is shown that large errors due to the presence of thresholds can be avoided by first delimiting the range of applicability of the adjoint results.

  13. Sensitivity analysis of a model of CO2 exchange in tundra ecosystems by the adjoint method

    NASA Technical Reports Server (NTRS)

    Waelbroek, C.; Louis, J.-F.

    1995-01-01

    A model of net primary production (NPP), decomposition, and nitrogen cycling in tundra ecosystems has been developed. The adjoint technique is used to study the sensitivity of the computed annual net CO2 flux to perturbation in initial conditions, climatic inputs, and model's main parameters describing current seasonal CO2 exchange in wet sedge tundra at Barrow, Alaska. The results show that net CO2 flux is most sensitive to parameters characterizing litter chemical composition and more sensitive to decomposition parameters than to NPP parameters. This underlines the fact that in nutrient-limited ecosystems, decomposition drives net CO2 exchange by controlling mineralization of main nutrients. The results also indicate that the short-term (1 year) response of wet sedge tundra to CO2-induced warming is a significant increase in CO2 emission, creating a positive feedback to atmosphreic CO2 accumulation. However, a cloudiness increase during the same year can severely alter this response and lead to either a slight decrease or a strong increase in emitted CO2, depending on its exact timing. These results demonstrate that the adjoint method is well suited to study systems encountering regime changes, as a single run of the adjoint model provides sensitivities of the net CO2 flux to perturbations in all parameters and variables at any time of the year. Moreover, it is shown that large errors due to the presence of thresholds can be avoided by first delimiting the range of applicability of the adjoint results.

  14. Global sensitivity analysis, probabilistic calibration, and predictive assessment for the data assimilation linked ecosystem carbon model

    DOE PAGES

    Safta, C.; Ricciuto, Daniel M.; Sargsyan, Khachik; ...

    2015-07-01

    In this paper we propose a probabilistic framework for an uncertainty quantification (UQ) study of a carbon cycle model and focus on the comparison between steady-state and transient simulation setups. A global sensitivity analysis (GSA) study indicates the parameters and parameter couplings that are important at different times of the year for quantities of interest (QoIs) obtained with the data assimilation linked ecosystem carbon (DALEC) model. We then employ a Bayesian approach and a statistical model error term to calibrate the parameters of DALEC using net ecosystem exchange (NEE) observations at the Harvard Forest site. The calibration results are employedmore » in the second part of the paper to assess the predictive skill of the model via posterior predictive checks.« less

  15. Global sensitivity analysis, probabilistic calibration, and predictive assessment for the data assimilation linked ecosystem carbon model

    SciTech Connect

    Safta, C.; Ricciuto, Daniel M.; Sargsyan, Khachik; Debusschere, B.; Najm, H. N.; Williams, M.; Thornton, Peter E.

    2015-07-01

    In this paper we propose a probabilistic framework for an uncertainty quantification (UQ) study of a carbon cycle model and focus on the comparison between steady-state and transient simulation setups. A global sensitivity analysis (GSA) study indicates the parameters and parameter couplings that are important at different times of the year for quantities of interest (QoIs) obtained with the data assimilation linked ecosystem carbon (DALEC) model. We then employ a Bayesian approach and a statistical model error term to calibrate the parameters of DALEC using net ecosystem exchange (NEE) observations at the Harvard Forest site. The calibration results are employed in the second part of the paper to assess the predictive skill of the model via posterior predictive checks.

  16. Soil CO2 dynamics and fluxes as affected by tree harvest in an experimental sand ecosystem

    NASA Astrophysics Data System (ADS)

    Keller, C. K.; White, T. M.; O'Brien, R.; Smith, J. L.

    2006-09-01

    Soil CO2 production is a key process in ecosystem C exchange, and global change predictions require understanding of how ecosystem disturbance affects this process. We monitored CO2 levels in soil gas and as bicarbonate in drainage from an experimental red pine ecosystem, for 1 year before and 3 years after its aboveground biomass was removed. Lack of physical disturbance, strict prevention of plant regrowth, and a comparison ecosystem without rooted plants facilitated isolation of the microclimatic and biochemical effects of instantaneous canopy removal and cessation of photosynthesis. Preharvest gas-phase CO2 levels fluctuated with growing-season soil temperature but reached their greatest levels (up to 10,000 ppmV) during late winter beneath snow and ice cover. This pattern, and the annual CO2 efflux of ˜500 g C m-2 yr-1, continued for 2 years following harvest; the efflux declined by half in the third year. The surprising continuity of preharvest and postharvest rates of soil CO2 production reflects the replacement of root respiration with microbial respiration of root and litter substrates of declining lability, but boosted by soil temperature increases. Mass balance is consistent with a bulk root+litter exponential decay time (-1/k) of 4-6 years, such that most of the subsurface biomass accumulated over 15 years of tree growth would be lost in a decade after the harvest. The preharvest bicarbonate C efflux, which was less than 0.1% of the gas-phase efflux, trebled after the harvest owing to elimination of evapotranspiration and consequent increases in drainage while soil CO2 levels remained high. A large fraction of this "hydrospheric" sink for atmospheric CO2 is attributed to weathering under high soil CO2 levels before spring snowmelt and soil-water flushing. These observations suggest that disturbance may enhance long-term chemical-weathering CO2 sinks.

  17. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis.

    PubMed

    Zhou, Guiyao; Zhou, Xuhui; He, Yanghui; Shao, Junjiong; Hu, Zhenhong; Liu, Ruiqiang; Zhou, Huimin; Hosseinibai, Shahla

    2017-03-01

    Livestock grazing activities potentially alter ecosystem carbon (C) and nitrogen (N) cycles in grassland ecosystems. Despite the fact that numerous individual studies and a few meta-analyses had been conducted, how grazing, especially its intensity, affects belowground C and N cycling in grasslands remains unclear. In this study, we performed a comprehensive meta-analysis of 115 published studies to examine the responses of 19 variables associated with belowground C and N cycling to livestock grazing in global grasslands. Our results showed that, on average, grazing significantly decreased belowground C and N pools in grassland ecosystems, with the largest decreases in microbial biomass C and N (21.62% and 24.40%, respectively). In contrast, belowground fluxes, including soil respiration, soil net N mineralization and soil N nitrification increased by 4.25%, 34.67% and 25.87%, respectively, in grazed grasslands compared to ungrazed ones. More importantly, grazing intensity significantly affected the magnitude (even direction) of changes in the majority of the assessed belowground C and N pools and fluxes, and C : N ratio as well as soil moisture. Specifically,light grazing contributed to soil C and N sequestration whereas moderate and heavy grazing significantly increased C and N losses. In addition, soil depth, livestock type and climatic conditions influenced the responses of selected variables to livestock grazing to some degree. Our findings highlight the importance of the effects of grazing intensity on belowground C and N cycling, which may need to be incorporated into regional and global models for predicting effects of human disturbance on global grasslands and assessing the climate-biosphere feedbacks.

  18. Sensitivity of riparian ecosystems in arid and semiarid environments to moisture pulses

    NASA Astrophysics Data System (ADS)

    Williams, D. G.; Scott, R. L.; Huxman, T. E.; Goodrich, D. C.; Lin, G.

    2006-10-01

    Structural and functional dynamics of riparian vegetation in arid and semiarid basins are controlled by hydrological processes operating at local, landscape and catchment scales. However, the importance of growing-season precipitation as a control on evapotranspiration (ET) and carbon cycling in these ecosystems varies considerably across the riparian landscape, depending largely on access to the near-surface water table. Here we describe key findings from ongoing ecohydrological studies along the Upper San Pedro River (USPR) in semiarid, south-eastern Arizona, USA. Depth to the water table varies substantially across the riparian landscape along the USPR drainage, and is a key factor controlling the sensitivity of cottonwood (Populus fremontii) water-source use, transpiration rate and photosynthetic metabolism to inputs of monsoonal moisture during the growing season. Landscape-scale functional variation in cottonwood forests has been incorporated into spatially explicit ET models for estimating water balance components along the USPR. However, of greater importance for understanding controls on water and carbon exchange processes in the riparian corridor is the conversion of sacaton (Sporobolus spp.) grasslands on pre-entrenchment floodplain terraces to communities dominated by the deep-rooted woody legume, mesquite (Prosopis velutina). Mesquite is now the dominant cover in the riparian corridor and has increased by more than 300% in the USPR basin since 1972. The physiognomic shift from grassland to mesquite woodland on pre-entrenchment floodplain terraces alters the sensitivity of ET and CO2 exchange to inputs of growing-season precipitation. Because mature mesquite shrubs and trees have greater access to groundwater in these habitats than sacaton, ET and gross ecosystem production (GEP) are relatively decoupled from variation in monsoonal precipitation. However, decomposition of litter and soil organic matter in floodplain ecosystems remains highly coupled to

  19. Nutrient addition differentially affects ecological processes of Avicennia germinans in nitrogen versus phosphorus limited mangrove ecosystems

    USGS Publications Warehouse

    Feller, Ilka C.; Lovelock, C.E.; McKee, K.L.

    2007-01-01

    Nutrient over-enrichment is a major threat to marine environments, but system-specific attributes of coastal ecosystems may result in differences in their sensitivity and susceptibility to eutrophication. We used fertilization experiments in nitrogen (N)- and phosphorus (P)-limited mangrove forests to test the hypothesis that alleviating different kinds of nutrient limitation may have different effects on ecosystem structure and function in natural systems. We compared a broad range of ecological processes to determine if these systems have different thresholds where shifts might occur in nutrient limitation. Growth responses indicated N limitation in Avicennia germinans (black mangrove) forests in the Indian River Lagoon (IRL), Florida, and P limitation at Twin Cays, Belize. When nutrient deficiency was relieved, A. germinans grew out of its stunted form by increasing wood relative to leaf biomass and shoot length relative to lateral growth. At the P-limited site, P enrichment (+P) increased specific leaf area, N resorption, and P uptake, but had no effect on P resorption. At the N-limited site, +N increased both N and P resorption, but did not alter biomass allocation. Herbivory was greater at the P-limited site and was unaffected by +P, whereas +N led to increased herbivory at the N-limited site. The responses to nutrient enrichment depended on the ecological process and limiting nutrient and suggested that N- versus P-limited mangroves do have different thresholds. +P had a greater effect on more ecological processes at Twin Cays than did +N at the IRL, which indicated that the P-limited site was more sensitive to nutrient loading. Because of this sensitivity, eutrophication is more likely to cause a shift in nutrient limitation at P-limited Twin Cays than N-limited IRL. ?? 2007 Springer Science+Business Media, LLC.

  20. Irrigation agriculture affects organic matter decomposition in semi-arid terrestrial and aquatic ecosystems.

    PubMed

    Arroita, Maite; Causapé, Jesús; Comín, Francisco A; Díez, Joserra; Jimenez, Juan José; Lacarta, Juan; Lorente, Carmen; Merchán, Daniel; Muñiz, Selene; Navarro, Enrique; Val, Jonatan; Elosegi, Arturo

    2013-12-15

    Many dryland areas are being converted into intensively managed irrigation crops, what can disrupt the hydrological regime, degrade soil and water quality, enhance siltation, erosion and bank instability, and affect biological communities. Still, the impacts of irrigation schemes on the functioning of terrestrial and aquatic ecosystems are poorly understood. Here we assess the effects of irrigation agriculture on breakdown of coarse organic matter in soil and water. We measured breakdown rates of alder and holm oak leaves, and of poplar sticks in terrestrial and aquatic sites following a gradient of increasing irrigation agriculture in a semi-arid Mediterranean basin transformed into irrigation agriculture in 50% of its surface. Spatial patterns of stick breakdown paralleled those of leaf breakdown. In soil, stick breakdown rates were extremely low in non-irrigated sites (0.0001-0.0003 day(-1)), and increased with the intensity of agriculture (0.0018-0.0044 day(-1)). In water, stick breakdown rates ranged from 0.0005 to 0.001 day(-1), and increased with the area of the basin subject to irrigation agriculture. Results showed that irrigation agriculture affects functioning of both terrestrial and aquatic ecosystems, accelerating decomposition of organic matter, especially in soil. These changes can have important consequences for global carbon budgets.

  1. Realistic changes in seaweed biodiversity affect multiple ecosystem functions on a rocky shore.

    PubMed

    Bracken, Matthew E S; Williams, Susan L

    2013-09-01

    Given current threats to biodiversity, understanding the effects of diversity changes on the functions and services associated with intact ecosystems is of paramount importance. However, limited realism in most biodiversity studies makes it difficult to link the large and growing body of evidence for important functional consequences of biodiversity change to real-world losses of biodiversity. Here, we explored two methods of incorporating realism into biodiversity research: (1) the use of two-, five-, and eight-species assemblages that mimicked those that we observed in surveys of seaweed biodiversity patterns on a northern California (USA) rocky shore and the explicit comparison of those assemblages to random assemblages compiled from the same local species pool; and (2) the measurement of two fundamental ecosystem functions, nitrate uptake and photosynthesis, both of which contribute to growth of primary producers. Specifically, we measured nitrate uptake rates of seaweed assemblages as a function of initial nitrate concentrations and photosynthetic rates as a function of irradiance levels for both realistic and random assemblages of seaweeds. We only observed changes in ecosystem functioning along a richness gradient for realistic assemblages, and both maximum nitrate uptake rates (V(max)) and photosynthetic light use efficiency values (alpha(p) = P(max)/I(K)) were higher in realistic assemblages than in random assemblages. Furthermore, the parameter affected by changes in richness depended on the function being measured. Both V(max) and alpha(p) declined with increasing richness in nonrandom assemblages due to a combination of species identity effects (for V(max) and overyielding effects (for both V(max) and alpha(p)). In contrast, neither nitrate uptake efficiency values (alpha(N) = V(max)/K(s)), nor maximum photosynthetic rates (Pmax) changed along the gradient in seaweed species richness. Furthermore, overyielding was only evident in realistic assemblages

  2. Climate sensitivity of global terrestrial ecosystems' subdaily carbon, water, and energy dynamics.

    NASA Astrophysics Data System (ADS)

    Yu, R.; Ruddell, B. L.; Childers, D. L.; Kang, M.

    2015-12-01

    Abstract: Under the context of global climate change, it is important to understand the direction and magnitude of different ecosystems respond to climate at the global level. In this study, we applied dynamical process network (DPN) approach combined with eco-climate system sensitivity model and used the global FLUXNET eddy covariance measurements (subdaily net ecosystem exchange of CO2, air temperature, and precipitation) to access eco-climate system sensitivity to climate and biophysical factors at the flux site level. For the first time, eco-climate system sensitivity was estimated at the global flux sites and extrapolated to all possible land covers by employing artificial neural network approach and using the MODIS phenology and land cover products, the long-term climate GLDAS-2 product, and the GMTED2010 Global Grid elevation dataset. We produced the seasonal eco-climate system DPN maps, which revealed how global carbon dynamics driven by temperature and precipitation. We also found that the eco-climate system dynamical process structures are more sensitive to temperature, whether directly or indirectly via phenology. Interestingly, if temperature continues rising, the temperature-NEE coupling may increase in tropical rain forest areas while decrease in tropical desert or Savanna areas, which means that rising temperature in the future could lead to more carbon sequestration in tropical forests whereas less carbon sequestration in tropical drylands. At the same time, phenology showed a positive effect on the temperature-NEE coupling at all pixels, which suggests increased greenness may increase temperature driven carbon dynamics and consequently carbon sequestration globally. Precipitation showed relatively strong influence on the precipitation-NEE coupling, especially indirectly via phenology. This study has the potential to conduct eco-climate system short-term and long-term forecasting.

  3. Ecosystem-based management of a Mediterranean urban wastewater system: a sensitivity analysis of the operational degrees of freedom.

    PubMed

    Corominas, Lluís; Neumann, Marc B

    2014-10-01

    Urban wastewater systems discharge organic matter, nutrients and other pollutants (including toxic substances) to receiving waters, even after removing more than 90% of incoming pollutants from human activities. Understanding their interactions with the receiving water bodies is essential for the implementation of ecosystem-based management strategies. Using mathematical modeling and sensitivity analysis we quantified how 19 operational variables of an urban wastewater system affect river water quality. The mathematical model of the Congost system (in the Besòs catchment, Spain) characterizes the dynamic interactions between sewers, storage tanks, wastewater treatment plants and the river. The sensitivity analysis shows that the use of storage tanks for peak shaving and the use of a connection between two neighboring wastewater treatment plants are the most important factors influencing river water quality. We study how the sensitivity of the water quality variables towards changes in the operational variables varies along the river due to discharge locations and river self-purification processes. We demonstrate how to use the approach to identify interactions and how to discard non-influential operational variables.

  4. Land use affects the net ecosystem CO(2) exchange and its components in mountain grasslands.

    PubMed

    Schmitt, M; Bahn, M; Wohlfahrt, G; Tappeiner, U; Cernusca, A

    2010-08-01

    Changes in land use and management have been strongly affecting mountain grassland, however, their effects on the net ecosystem exchange of CO(2) (NEE) and its components have not yet been well documented. We analysed chamber-based estimates of NEE, gross primary productivity (GPP), ecosystem respiration (R) and light use efficiency (LUE) of six mountain grasslands differing in land use and management, and thus site fertility, for the growing seasons of 2002 to 2008. The main findings of the study are that: (1) land use and management affected seasonal NEE, GPP and R, which all decreased from managed to unmanaged grasslands; (2) these changes were explained by differences in leaf area index (LAI), biomass and leaf-area-independent changes that were likely related to photosynthetic physiology; (3) diurnal variations of NEE were primarily controlled by photosynthetically active photon flux density and soil and air temperature; seasonal variations were associated with changes in LAI; (4) parameters of light response curves were generally closely related to each other, and the ratio of R at a reference temperature/ maximum GPP was nearly constant across the sites; (5) similarly to our study, maximum GPP and R for other grasslands on the globe decreased with decreasing land use intensity, while their ratio remained remarkably constant. We conclude that decreasing intensity of management and, in particular, abandonment of mountain grassland lead to a decrease in NEE and its component processes. While GPP and R are generally closely coupled during most of the growing season, GPP is more immediately and strongly affected by land management (mowing, grazing) and season. This suggests that management and growing season length, as well as their possible future changes, may play an important role for the annual C balance of mountain grassland.

  5. Producing fractional rangeland component predictions in a sagebrush ecosystem, a Wyoming sensitivity analysis

    USGS Publications Warehouse

    Xian, George; Homer, Collin G.; Granneman, Brian; Meyer, Debra K.

    2012-01-01

    high-resolution remote sensing data (Homer and others, 2012). This method has proven its utility; however, to develop these products across even larger areas will require additional cost efficiencies to ensure that an adequate product can be developed for the lowest cost possible. Given the vast geographic extent of shrubland ecosystems in the western United States, identifying cost efficiencies with optimal training data development and subsequent application to medium resolution satellite imagery provide the most likely areas for methodological efficiency gains. The primary objective of this research was to conduct a series of sensitivity tests to evaluate the most optimal and practical way to develop Landsat scale information for estimating the extent and distribution of sagebrush ecosystem components over large areas in the conterminous United States. An existing dataset of sagebrush components developed from extensive field measurements, high-resolution satellite imagery, and medium resolution Landsat imagery in Wyoming was used as the reference database (Homer and others, 2012). Statistical analysis was performed to analyze the relation between the accuracy of sagebrush components and the amount and distribution of training data on Landsat scenes needed to obtain accurate predictions.

  6. Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing.

    PubMed

    Eldridge, David J; Poore, Alistair G B; Ruiz-Colmenero, Marta; Letnic, Mike; Soliveres, Santiago

    2016-06-01

    Reports of positive or neutral effects of grazing on plant species richness have prompted calls for livestock grazing to be used as a tool for managing land for conservation. Grazing effects, however, are likely to vary among different response variables, types, and intensity of grazing, and across abiotic conditions. We aimed to examine how grazing affects ecosystem structure, function, and composition. We compiled a database of 7615 records reporting an effect of grazing by sheep and cattle on 278 biotic and abiotic response variables for published studies across Australia. Using these data, we derived three ecosystem measures based on structure, function, and composition, which were compared against six contrasts of grazing pressure, ranging from low to heavy, two different herbivores (sheep, cattle), and across three different climatic zones. Grazing reduced structure (by 35%), function (24%), and composition (10%). Structure and function (but not composition) declined more when grazed by sheep and cattle together than sheep alone. Grazing reduced plant biomass (40%), animal richness (15%), and plant and animal abundance, and plant and litter cover (25%), but had no effect on plant richness nor soil function. The negative effects of grazing on plant biomass, plant cover, and soil function were more pronounced in drier environments. Grazing effects on plant and animal richness and composition were constant, or even declined, with increasing aridity. Our study represents a comprehensive continental assessment of the implications of grazing for managing Australian rangelands. Grazing effects were largely negative, even at very low levels of grazing. Overall, our results suggest that livestock grazing in Australia is unlikely to produce positive outcomes for ecosystem structure, function, and composition or even as a blanket conservation tool unless reduction in specific response variables is an explicit management objective.

  7. Sensitivity of Spruce/Moss Boreal Forest Net Ecosystem Productivity to Seasonal Anomalies in Weather

    NASA Technical Reports Server (NTRS)

    Frolking, Steve

    1997-01-01

    Abstract. A process-oriented, daily time step model of a spruce/moss boreal ecosystem simulated 1994 and 1995 productivity for a Boreal Ecosystem-Atmosphere Study site near Thompson, Manitoba. Simulated black spruce net primary productivity (NPP) was 139 g C m(exp -2) in 1994 and 112 in 1995; feathermoss NPP was 13.0 g C m(exp -2) in 1994 and 9.7 in 1995; decomposition was 126 g C m(exp -2) in 1994 and 130 in 1995; net ecosystem productivity (NEP) was an uptake of 26.3 g C m(exp -2)in 1994 and 2.5 in 1995. A very dry period for the first half of the 1995 summer was the major cause of that year's lower productivity. Sensitivity simulations explored the impact of 2-month long warmer, cooler, wetter, and drier spells on ecosystem productivity. Warmer summers decreased spruce NPP, moss NPP, and NEP; cooler summers had the opposite effect. Earlier snowmelt (due to either warmer spring temperatures or reduced winter precipitation) increased moss and spruce NPP; later snowmelt had the opposite effect. The largest effect on decomposition was a 5% reduction due to a drier summer. One-month droughts (April through October) were also imposed on 1975 base year weather. Early summer droughts reduced moss annual NPP by -30-40%; summer droughts reduced spruce annual NPP by 10%; late summer droughts increased moss NPP by about 20% due to reduced respiration; May to September monthly droughts reduced heterotrophic respiration by about 10%. Variability in NEP was up to roughly +/- 35%. Finally, 1975 growing season precipitation was redistributed into frequent, small rainstorms and infrequent, large rainstorms. These changes had no effect on spruce NPP. Frequent rainstorms increased decomposition by a few percent, moss NPP by 50%, and NEP by 20%. Infrequent rainstorms decreased decomposition by 5%, moss NPP by 50% and NEP by 15%. The impact of anomalous weather patterns on productivity of this ecosystem depended on their timing during the year. Multiyear data sets are necessary to

  8. Variations in Maternal 5-HTTLPR Affect Observed Sensitive Parenting

    ERIC Educational Resources Information Center

    Cents, Rolieke A. M.; Kok, Rianne; Tiemeier, Henning; Lucassen, Nicole; Székely, Eszter; Bakermans-Kranenburg, Marian J.; Hofman, Albert; Jaddoe, Vincent W. V.; IJzendoorn, Marinus H.; Verhulst, Frank C.; Lambregtse-van den Berg, Mijke P.

    2014-01-01

    Background: Little is known about the genetic determinants of sensitive parenting. Two earlier studies examined the effect of the serotonin transporter polymorphism (5-HTTLPR) on sensitive parenting, but reported opposite results. In a large cohort we further examined whether 5-HTTLPR is a predictor of observed maternal sensitivity and whether…

  9. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem

    NASA Astrophysics Data System (ADS)

    Zaller, Johann G.; Heigl, Florian; Ruess, Liliane; Grabmaier, Andrea

    2014-07-01

    Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules. Herbicide application and earthworms increased soil hyphal biomass and tended to reduce soil water infiltration after a simulated heavy rainfall. Herbicide application in interaction with AMF led to slightly heavier but less active earthworms. Leaching of glyphosate after a simulated rainfall was substantial and altered by earthworms and AMF. These sizeable changes provide impetus for more general attention to side-effects of glyphosate-based herbicides on key soil organisms and their associated ecosystem services.

  10. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem

    PubMed Central

    Zaller, Johann G.; Heigl, Florian; Ruess, Liliane; Grabmaier, Andrea

    2014-01-01

    Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules. Herbicide application and earthworms increased soil hyphal biomass and tended to reduce soil water infiltration after a simulated heavy rainfall. Herbicide application in interaction with AMF led to slightly heavier but less active earthworms. Leaching of glyphosate after a simulated rainfall was substantial and altered by earthworms and AMF. These sizeable changes provide impetus for more general attention to side-effects of glyphosate-based herbicides on key soil organisms and their associated ecosystem services. PMID:25005713

  11. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem.

    PubMed

    Zaller, Johann G; Heigl, Florian; Ruess, Liliane; Grabmaier, Andrea

    2014-07-09

    Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules. Herbicide application and earthworms increased soil hyphal biomass and tended to reduce soil water infiltration after a simulated heavy rainfall. Herbicide application in interaction with AMF led to slightly heavier but less active earthworms. Leaching of glyphosate after a simulated rainfall was substantial and altered by earthworms and AMF. These sizeable changes provide impetus for more general attention to side-effects of glyphosate-based herbicides on key soil organisms and their associated ecosystem services.

  12. Occurrence of perchloroethylene in surface water and fish in a river ecosystem affected by groundwater contamination.

    PubMed

    Wittlingerová, Zdena; Macháčková, Jiřina; Petruželková, Anna; Zimová, Magdalena

    2016-03-01

    Long-term monitoring of the content of perchloroethylene (PCE) in a river ecosystem affected by groundwater contamination was performed at a site in the Czech Republic. The quality of surface water was monitored quarterly between 1994 and 2013, and fish were collected from the affected ecosystem to analyse the content of PCE in their tissue in 1998, 2011 and 2012. Concentrations of PCE (9-140 μg/kg) in the tissue of fish collected from the contaminated part of the river were elevated compared to the part of the river unaffected by the contamination (ND to 5 μg/kg PCE). The quality of surface water has improved as a result of groundwater remediation during the evaluated period. Before the remedial action, PCE concentrations ranged from 30 to 95 μg/L (1994-1997). Following commencement of remedial activities in September 1997, a decrease in the content of PCE in the surface water to 7.3 μg/L (1998) and further to 1 μg/L (2011) and 1.1 μg/L (2012) led to a progressive decrease in the average concentration of PCE in the fish muscle tissue from 79 μg/kg (1998) to 24 (2011) and 30 μg/kg (2012), respectively. It was determined that the bioconcentration of PCE does not have a linear dependence because the decrease in contamination in the fish muscle tissue is not directly proportional to the decrease in contamination in the river water. The observed average bioconcentration factors were 24 and 28 for the lower concentrations of PCE and 11 for the higher concentrations of PCE in the river. In terms of age, length and weight of the collected fish, weight had the greatest significance for bioconcentration, followed by the length, with age being evaluated as a less significant factor.

  13. Can plant phloem properties affect the link between ecosystem assimilation and respiration?

    NASA Astrophysics Data System (ADS)

    Mencuccini, M.; Hölttä, T.; Sevanto, S.; Nikinmaa, E.

    2012-04-01

    Phloem transport of carbohydrates in plants under field conditions is currently not well understood. This is largely the result of the lack of techniques suitable for measuring phloem physiological properties continuously under field conditions. This lack of knowledge is currently hampering our efforts to link ecosystem-level processes of carbon fixation, allocation and use, especially belowground. On theoretical grounds, the properties of the transport pathway from canopy to roots must be important in affecting the link between carbon assimilation and respiration, but it is unclear whether their effect is partially or entirely masked by processes occurring in other parts of the ecosystem. One can also predict the characteristic time scales over which these effects should occur and, as consequence, predict whether the transfer of turgor and osmotic signals from the site of carbon assimilation to the sites of carbon use are likely to control respiration. We will present two sources of evidence suggesting that the properties of the phloem transport system may affect processes that are dependent on the supply of carbon substrate, such as root or soil respiration. Firstly, we will summarize the results of a literature survey on soil and ecosystem respiration where the speed of transfer of photosynthetic sugars from the plant canopy to the soil surface was determined. Estimates of the transfer speed could be grouped according to whether the study employed isotopic or canopy soil flux-based techniques. These two groups provided very different estimates of transfer times likely because transport of sucrose molecules, and pressure-concentration waves, in phloem differed. Secondly, we will argue that simultaneous measurements of bark and xylem diameters provide a novel tool to determine the continuous variations of phloem turgor in vivo in the field. We will present a model that interprets these changes in xylem and live bark diameters and present data testing the model

  14. Leveraging atmospheric CO2 observations to constrain the climate sensitivity of terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Keppel-Aleks, G.

    2015-12-01

    A significant challenge in understanding, and therefore modeling, the response of terrestrial carbon cycling to climate and environmental drivers is that vegetation varies on spatial scales of order a few kilometers whereas Earth system models (ESMs) are run with characteristic length scales of order 100 km. Atmospheric CO2 provides a constraint on carbon fluxes at spatial scales compatible with the resolution of ESMs due to the fact that atmospheric mixing renders a single site representative of fluxes within a large spatial footprint. The variations in atmospheric CO2 at both seasonal and interannual timescales largely reflect terrestrial influence. I discuss the use of atmospheric CO2 observations to benchmark model carbon fluxes over a range of spatial scales. I also discuss how simple models can be used to test functional relationships between the CO2 growth rate and climate variations. In particular, I show how atmospheric CO2 provides constraints on ecosystem sensitivity to climate drivers in the tropics, where tropical forests and semi-arid ecosystems are thought to account for much of the variability in the contemporary carbon sink.

  15. Nitrogen deposition and sensitive ecosystems: a case study from the San Francisco Bay Area

    NASA Astrophysics Data System (ADS)

    Weiss, S. B.

    2001-12-01

    Nitrogen deposition from urban smog can greatly affect local ecosystems. This paper examines a complex situation in the Santa Clara Valley, CA where N-deposition from existing, new, and proposed developments threatens an ecosystem supporting numerous rare, threatened, and endangered species. Grasslands on nutrient-poor serpentinitic soils are being invaded by nutrient-demanding introduced annual grasses, driven by dry N-deposition of about 10 kg ha-1 yr-1. These grass invasions threaten the native biodiversity of the serpentinitic grasslands, including the federally-protected Bay checkerspot butterfly. Additional NOx and NH3 sources planned for the region include a 600 MW natural gas fired power plant, industrial parks that may eventually draw 20,000 to 50,000 additional cars per day, 25,000 housing units, and associated highway improvements. Ongoing mitigation proposals include purchase and long-term management of hundreds of hectares of habitat. The situation is a model for understanding N-deposition from a scientific and policy viewpoint. Fundamental biogeochemical questions include: 1) What are the relative contributions of NOx and NH3 to increased N-deposition? NH3 slip from power plant NOx scrubbers can release more reactive nitrogen than is removed as NOx, and modern automobiles release NH3 in addition to NOx. 2) How are N-emissions transported, chemically modified, and deposited on the local ecosystems, and are these processes adequately captured in regulatory models? How do point sources differ from line sources such as a heavily traveled freeway? 3) What are the effects of chronic N-deposition on the ecosystem, and is there a critical load or a steady cumulative effect? 4) What are the effects of management such as fire, grazing, mowing on N-cycling and plant composition? Policy issues include: 1) What are the incremental impacts of individual projects relative to high background deposition, 2) What margin of safety should be built into modeling and

  16. Soil biota can change after exotic plant invasion: Does this affect ecosystem processes?

    USGS Publications Warehouse

    Belnap, J.; Phillips, S.L.; Sherrod, S.K.; Moldenke, A.

    2005-01-01

    Invasion of the exotic annual grass Bromus tectorum into stands of the native perennial grass Hilaria jamesii significantly reduced the abundance of soil biota, especially microarthropods and nematodes. Effects of invasion on active and total bacterial and fungal biomass were variable, although populations generally increased after 50+ years of invasion. The invasion of Bromus also resulted in a decrease in richness and a species shift in plants, microarthropods, fungi, and nematodes. However, despite the depauperate soil fauna at the invaded sites, no effects were seen on cellulose decomposition rates, nitrogen mineralization rates, or vascular plant growth. When Hilaria was planted into soils from not-invaded, recently invaded, and historically invaded sites (all currently or once dominated by Hilaria), germination and survivorship were not affected. In contrast, aboveground Hilaria biomass was significantly greater in recently invaded soils than in the other two soils. We attributed the Hilaria response to differences in soil nutrients present before the invasion, especially soil nitrogen, phosphorus, and potassium, as these nutrients were elevated in the soils that produced the greatest Hilaria biomass. Our data suggest that it is not soil biotic richness per se that determines soil process rates or plant productivity, but instead that either (1) the presence of a few critical soil food web taxa can keep ecosystem function high, (2) nutrient loss is very slow in this ecosystem, and/or (3) these processes are microbially driven. However, the presence of Bromus may reduce key soil nutrients over time and thus may eventually suppress native plant success. ?? 2005 by the Ecological Society of America.

  17. How Stock of Origin Affects Performance of Individuals across a Meta-Ecosystem: An Example from Sockeye Salmon

    PubMed Central

    Griffiths, Jennifer R.; Schindler, Daniel E.; Seeb, Lisa W.

    2013-01-01

    Connectivity among diverse habitats can buffer populations from adverse environmental conditions, influence the functioning of meta-ecosystems, and ultimately affect the reliability of ecosystem services. This stabilizing effect on populations is proposed to derive from complementarity in growth and survival conditions experienced by individuals in the different habitats that comprise meta-ecosystems. Here we use the fine scale differentiation of salmon populations between diverse lake habitats to assess how rearing habitat and stock of origin affect the body condition of juvenile sockeye salmon. We use genetic markers (single nucleotide polymorphisms) to assign individuals of unknown origin to stock group and in turn characterize ecologically relevant attributes across habitats and stocks. Our analyses show that the body condition of juvenile salmon is related to the productivity of alternative habitats across the watershed, irrespective of their stock of origin. Emigrants and residents with genetic origins in the high productivity lake were also differentiated by their body condition, poor and high respectively. These emigrants represented a substantial proportion of juvenile sockeye salmon rearing in the lower productivity lake habitat. Despite emigrants originating from the more productive lake, they did not differ in body condition from the individuals spawned in the lower productivity, recipient habitat. Genetic tools allowed us to assess the performance of different stocks groups across the diverse habitats comprising their meta-ecosystem. The ability to characterize the ecological consequences of meta-ecosystem connectivity can help develop strategies to protect and restore ecosystems and the services they provide to humans. PMID:23505539

  18. Ultraviolet radiation affects invasibility of lake ecosystems by warm-water fish.

    PubMed

    Tucker, Andrew J; Williamson, Craig E; Rose, Kevin C; Oris, James T; Connelly, Sandra J; Olson, Mark H; Mitchell, David L

    2010-03-01

    Predicting where species invasions will occur remains a substantial challenge in ecology, but identifying factors that ultimately constrain the distribution of potential invaders could facilitate successful prediction. Whereas ultraviolet radiation (UVR) is recognized as an important factor controlling species distribution and community composition, the role of UVR in a habitat invasibility context has not been explored. Here we examine how underwater UVR can regulate warm-water fish invasion. In Lake Tahoe, California and Nevada, USA, established populations of exotic bluegill sunfish (Lepomis macrochirus) are currently limited to turbid, low-UVR embayments. An in situ incubation experiment that manipulated incident UVR exposure of larval bluegill, combined with an assessment of UVR exposure levels in nearshore habitats around Lake Tahoe, demonstrates that UVR can mediate habitat invasibility. Our findings suggest that the susceptibility to invasion by UVR sensitive species may increase in transparent aquatic systems threatened by declining water quality, and they highlight the importance of abiotic factors as regulators of invasion risk in ecosystems.

  19. Importance and sensitivity of parameters affecting the Zion Seismic Risk

    SciTech Connect

    George, L.L.; O'Connell, W.J.

    1985-06-01

    This report presents the results of a study on the importance and sensitivity of structures, systems, equipment, components and design parameters used in the Zion Seismic Risk Calculations. This study is part of the Seismic Safety Margins Research Program (SSMRP) supported by the NRC Office of Nuclear Regulatory Research. The objective of this study is to provide the NRC with results on the importance and sensitivity of parameters used to evaluate seismic risk. These results can assist the NRC in making decisions dealing with the allocation of research resources on seismic issues. This study uses marginal analysis in addition to importance and sensitivity analysis to identify subject areas (input parameter areas) for improvements that reduce risk, estimate how much the improvement dfforts reduce risk, and rank the subject areas for improvements. Importance analysis identifies the systems, components, and parameters that are important to risk. Sensitivity analysis estimates the change in risk per unit improvement. Marginal analysis indicates the reduction in risk or uncertainty for improvement effort made in each subject area. The results described in this study were generated using the SEISIM (Systematic Evaluation of Important Safety Improvement Measures) and CHAIN computer codes. Part 1 of the SEISIM computer code generated the failure probabilities and risk values. Part 2 of SEISIM, along with the CHAIN computer code, generated the importance and sensitivity measures.

  20. FACTORS AFFECTING SENSITIVITY OF CHEMICAL AND ECOLOGICAL RESPONSES OF MARINE EMBAYMEMTS TO NITROGEN LOADING

    EPA Science Inventory

    This paper summarizes an ongoing examination of the primary factors that affect sensitivity of marine embayment responses to nitrogen loading. Included is a discussion of two methods for using these factors: classification of embayments into discrete sensitivity classes and norma...

  1. Does ecohydrological connectivity affect sensitivity to environmental change?

    EPA Science Inventory

    Our goal is to understand the influences of complex terrain on the sensitivity of carbon and water cycle processes to environmental drivers at different scales. Gravity-driven flowpaths of air and water transport material and energy across and through landscapes, creating connec...

  2. Lighting conditions affect testosterone feedback sensitivity in castrated rats.

    PubMed

    Porkka-Heiskanen, T; Laakso, M L; Stenberg, D; Johansson, G; Peder, M

    1989-01-01

    It has been shown in the Syrian hamster that a short photoperiod sensitizes the hypothalamo-hypophyseal axis of castrated animals to the negative feedback effect of testosterone. There is some evidence that even the reproductive system of the rat, which is generally considered not to be very sensitive to light, can respond to changes in illumination. Therefore, we found it of interest to examine whether alterations in lighting conditions produce changes of sensitivity in the negative feedback effect of testosterone in the rat. We kept intact, castrated, and castrated testosterone-treated animals either in periodic (L:D 12:12) or constant light for 7 days starting 4 weeks after castration. In all 3 testosterone-injected groups, serum luteinizing hormone (LH) was lower in constant than in periodic light. Exogenous testosterone did not decrease the castration-induced elevations of pituitary LH and follicle-stimulating hormone (FSH). On the contrary, testosterone increased the pituitary contents of LH and FSH, especially in constant light. We conclude that, in constant light, the hypothalamo-hypophyseal axis of the castrated rat becomes more sensitive to the negative feedback action of testosterone.

  3. Municipal sludge metal contamination of old-field ecosystems: Do liming and tilling affect remediation

    SciTech Connect

    Benninger-Truax, M.; Taylor, D.H. . Dept. of Zoology)

    1993-10-01

    Mechanisms of ecosystem recovery following 11 years of sewage sludge disposal were addressed by examining the effects of tilling and/or liming on soil chemistry and the heavy metal (Cd, Cu, Pb, and Zn) concentrations in soil, earthworms, vegetation, spiders, and crickets. In 1989 and 1990, subplots in each of three former 0.1-ha, long-term treatments (sludge, fertilizer, and control) were either unmanipulated or manipulated via tilling and/or liming. Liming significantly increased the pH of soil from the long-term sludge and fertilizer plots, and the combination of tilling and liming affected the heavy metal concentrations in earthworms, as lower concentrations of Cd, Cu, Pb, and Zn were found in earthworms collected from subplots that had been both tilled and limed. However, most observed significant differences in heavy metal concentrations reflected the long-term treatments, as heavy metal concentrations tended to be greater in the soil and biota collected from sludge-treated plots. Thus, heavy metals remained in the soil in forms available to the biota, regardless of the cessation of sludge application or subplot manipulations (liming and/or tilling) for two years following cessation of sludge application.

  4. Quantifying causal mechanisms to determine how protected areas affect poverty through changes in ecosystem services and infrastructure.

    PubMed

    Ferraro, Paul J; Hanauer, Merlin M

    2014-03-18

    To develop effective environmental policies, we must understand the mechanisms through which the policies affect social and environmental outcomes. Unfortunately, empirical evidence about these mechanisms is limited, and little guidance for quantifying them exists. We develop an approach to quantifying the mechanisms through which protected areas affect poverty. We focus on three mechanisms: changes in tourism and recreational services; changes in infrastructure in the form of road networks, health clinics, and schools; and changes in regulating and provisioning ecosystem services and foregone production activities that arise from land-use restrictions. The contributions of ecotourism and other ecosystem services to poverty alleviation in the context of a real environmental program have not yet been empirically estimated. Nearly two-thirds of the poverty reduction associated with the establishment of Costa Rican protected areas is causally attributable to opportunities afforded by tourism. Although protected areas reduced deforestation and increased regrowth, these land cover changes neither reduced nor exacerbated poverty, on average. Protected areas did not, on average, affect our measures of infrastructure and thus did not contribute to poverty reduction through this mechanism. We attribute the remaining poverty reduction to unobserved dimensions of our mechanisms or to other mechanisms. Our study empirically estimates previously unidentified contributions of ecotourism and other ecosystem services to poverty alleviation in the context of a real environmental program. We demonstrate that, with existing data and appropriate empirical methods, conservation scientists and policymakers can begin to elucidate the mechanisms through which ecosystem conservation programs affect human welfare.

  5. Nitrogen and carbon cycling in a grassland community ecosystem as affected by elevated atmospheric CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing global atmospheric CO2 concentration has led to concerns regarding its potential effects on terrestrial ecosystem and the long-term storage of C and N in soil. This study examined responses to elevated CO2 in a grass ecosystem invaded with a leguminous shrub Acacia farnesiana (L.) Willd (...

  6. Quantifying the sensitivity of ephemeral streams to land disturbance activities in arid ecosystems at the watershed scale.

    PubMed

    O'Connor, Ben L; Hamada, Yuki; Bowen, Esther E; Grippo, Mark A; Hartmann, Heidi M; Patton, Terri L; Van Lonkhuyzen, Robert A; Carr, Adrianne E

    2014-11-01

    Large areas of public lands administered by the Bureau of Land Management and located in arid regions of the southwestern United States are being considered for the development of utility-scale solar energy facilities. Land-disturbing activities in these desert, alluvium-filled valleys have the potential to adversely affect the hydrologic and ecologic functions of ephemeral streams. Regulation and management of ephemeral streams typically falls under a spectrum of federal, state, and local programs, but scientifically based guidelines for protecting ephemeral streams with respect to land-development activities are largely nonexistent. This study developed an assessment approach for quantifying the sensitivity to land disturbance of ephemeral stream reaches located in proposed solar energy zones (SEZs). The ephemeral stream assessment approach used publicly-available geospatial data on hydrology, topography, surficial geology, and soil characteristics, as well as high-resolution aerial imagery. These datasets were used to inform a professional judgment-based score index of potential land disturbance impacts on selected critical functions of ephemeral streams, including flow and sediment conveyance, ecological habitat value, and groundwater recharge. The total sensitivity scores (sum of scores for the critical stream functions of flow and sediment conveyance, ecological habitats, and groundwater recharge) were used to identify highly sensitive stream reaches to inform decisions on developable areas in SEZs. Total sensitivity scores typically reflected the scores of the individual stream functions; some exceptions pertain to groundwater recharge and ecological habitats. The primary limitations of this assessment approach were the lack of high-resolution identification of ephemeral stream channels in the existing National Hydrography Dataset, and the lack of mechanistic processes describing potential impacts on ephemeral stream functions at the watershed scale. The

  7. Using species sensitivity distribution approach to assess the risks of commonly detected agricultural pesticides to Australia's tropical freshwater ecosystems.

    PubMed

    Pathiratne, Asoka; Kroon, Frederieke J

    2016-02-01

    To assess the potential impacts of agricultural pesticides on tropical freshwater ecosystems, the present study developed temperature-specific, freshwater species protection concentrations (i.e., ecotoxicity threshold values) for 8 pesticides commonly detected in Australia's tropical freshwaters. Because relevant toxicity data for native tropical freshwater species to assess the ecological risks were mostly absent, scientifically robust toxicity data obtained at ≥20 °C were used for ecologically relevant taxonomic groups representing primary producers and consumers. Species sensitivity distribution (SSD) curves were subsequently generated for predicted chronic exposure using Burrlioz 2.0 software with mixed chronic and converted acute data relevant to exposure conditions at ≥20 °C. Ecotoxicity threshold values for tropical freshwater ecosystem protection were generated for ametryn, atrazine, diuron, metolachlor, and imidacloprid (all moderate reliability), as well as simazine, hexazinone, and tebuthiuron (all low reliability). Using these SSD curves, the retrospective risk assessments for recently reported pesticide concentrations highlight that the herbicides ametryn, atrazine, and diuron are of major concern for ecological health in Australia's tropical freshwater ecosystems. The insecticide imidacloprid also appears to pose an emerging threat to the most sensitive species in tropical freshwater ecosystems. The exposed temperature-specific approach may be applied to develop water quality guideline values for other environmental contaminants detected in tropical freshwater ecosystems until reliable and relevant toxicity data are generated using representative native species.

  8. The response of ecosystem water-use efficiency to rising atmospheric CO2 concentrations: sensitivity and large-scale biogeochemical implications.

    PubMed

    Knauer, Jürgen; Zaehle, Sönke; Reichstein, Markus; Medlyn, Belinda E; Forkel, Matthias; Hagemann, Stefan; Werner, Christiane

    2017-03-01

    Ecosystem water-use efficiency (WUE) is an important metric linking the global land carbon and water cycles. Eddy covariance-based estimates of WUE in temperate/boreal forests have recently been found to show a strong and unexpected increase over the 1992-2010 period, which has been attributed to the effects of rising atmospheric CO2 concentrations on plant physiology. To test this hypothesis, we forced the observed trend in the process-based land surface model JSBACH by increasing the sensitivity of stomatal conductance (gs ) to atmospheric CO2 concentration. We compared the simulated continental discharge, evapotranspiration (ET), and the seasonal CO2 exchange with observations across the extratropical northern hemisphere. The increased simulated WUE led to substantial changes in surface hydrology at the continental scale, including a significant decrease in ET and a significant increase in continental runoff, both of which are inconsistent with large-scale observations. The simulated seasonal amplitude of atmospheric CO2 decreased over time, in contrast to the observed upward trend across ground-based measurement sites. Our results provide strong indications that the recent, large-scale WUE trend is considerably smaller than that estimated for these forest ecosystems. They emphasize the decreasing CO2 sensitivity of WUE with increasing scale, which affects the physiological interpretation of changes in ecosystem WUE.

  9. Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems

    SciTech Connect

    Greg Thoma; John Veil; Fred Limp; Jackson Cothren; Bruce Gorham; Malcolm Williamson; Peter Smith; Bob Sullivan

    2009-05-31

    This report describes work performed during the initial period of the project 'Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems.' The specific region that is within the scope of this study is the Fayetteville Shale Play. This is an unconventional, tight formation, natural gas play that currently has approximately 1.5 million acres under lease, primarily to Southwestern Energy Incorporated and Chesapeake Energy Incorporated. The currently active play encompasses a region from approximately Fort Smith, AR east to Little Rock, AR approximately 50 miles wide (from North to South). The initial estimates for this field put it almost on par with the Barnett Shale play in Texas. It is anticipated that thousands of wells will be drilled during the next several years; this will entail installation of massive support infrastructure of roads and pipelines, as well as drilling fluid disposal pits and infrastructure to handle millions of gallons of fracturing fluids. This project focuses on gas production in Arkansas as the test bed for application of proactive risk management decision support system for natural gas exploration and production. The activities covered in this report include meetings with representative stakeholders, development of initial content and design for an educational web site, and development and preliminary testing of an interactive mapping utility designed to provide users with information that will allow avoidance of sensitive areas during the development of the Fayetteville Shale Play. These tools have been presented to both regulatory and industrial stakeholder groups, and their feedback has been incorporated into the project.

  10. Bi-directional exchange of ammonia in a pine forest ecosystem - a model sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Moravek, Alexander; Hrdina, Amy; Murphy, Jennifer

    2016-04-01

    Ammonia (NH3) is a key component in the global nitrogen cycle and of great importance for atmospheric chemistry, neutralizing atmospheric acids and leading to the formation of aerosol particles. For understanding the role of NH3 in both natural and anthropogenically influenced environments, the knowledge of processes regulating its exchange between ecosystems and the atmosphere is essential. A two-layer canopy compensation point model is used to evaluate the NH3 exchange in a pine forest in the Colorado Rocky Mountains. The net flux comprises the NH3 exchange of leaf stomata, its deposition to leaf cuticles and exchange with the forest ground. As key parameters the model uses in-canopy NH3 mixing ratios as well as leaf and soil emission potentials measured at the site in summer 2015. A sensitivity analysis is performed to evaluate the major exchange pathways as well as the model's constraints. In addition, the NH3 exchange is examined for an extended range of environmental conditions, such as droughts or varying concentrations of atmospheric pollutants, in order to investigate their influence on the overall net exchange.

  11. Plant Species and Functional Group Combinations Affect Green Roof Ecosystem Functions

    PubMed Central

    Lundholm, Jeremy; MacIvor, J. Scott; MacDougall, Zachary; Ranalli, Melissa

    2010-01-01

    Background Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. Methodology/Principal Findings We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Conclusions/Significance Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms

  12. Macrofauna assemblage composition and soil moisture interact to affect soil ecosystem functions

    NASA Astrophysics Data System (ADS)

    Collison, E. J.; Riutta, T.; Slade, E. M.

    2013-02-01

    Changing climatic conditions and habitat fragmentation are predicted to alter the soil moisture conditions of temperate forests. It is not well understood how the soil macrofauna community will respond to changes in soil moisture, and how changes to species diversity and community composition may affect ecosystem functions, such as litter decomposition and soil fluxes. Moreover, few studies have considered the interactions between the abiotic and biotic factors that regulate soil processes. Here we attempt to disentangle the interactive effects of two of the main factors that regulate soil processes at small scales - moisture and macrofauna assemblage composition. The response of assemblages of three common temperate soil invertebrates (Glomeris marginata Villers, Porcellio scaber Latreille and Philoscia muscorum Scopoli) to two contrasting soil moisture levels was examined in a series of laboratory mesocosm experiments. The contribution of the invertebrates to the leaf litter mass loss of two common temperate tree species of contrasting litter quality (easily decomposing Fraxinus excelsior L. and recalcitrant Quercus robur L.) and to soil CO2 fluxes were measured. Both moisture conditions and litter type influenced the functioning of the invertebrate assemblages, which was greater in high moisture conditions compared with low moisture conditions and on good quality vs. recalcitrant litter. In high moisture conditions, all macrofauna assemblages functioned at equal rates, whereas in low moisture conditions there were pronounced differences in litter mass loss among the assemblages. This indicates that species identity and assemblage composition are more important when moisture is limited. We suggest that complementarity between macrofauna species may mitigate the reduced functioning of some species, highlighting the importance of maintaining macrofauna species richness.

  13. Genetic interactions affecting touch sensitivity in Caenorhabditis elegans.

    PubMed

    Gu, G; Caldwell, G A; Chalfie, M

    1996-06-25

    At least 13 genes (mec-1, mec-2, mec-4-10, mec-12, mec-14, mec-15, and mec-18) are needed for the response to gentle touch by 6 touch receptor neurons in the nematode Caenorhabditis elegans. Several, otherwise recessive alleles of some of these genes act as dominant enhancer mutations of temperature-sensitive alleles of mec-4, mec-5, mec-6, mec-12, and mec-15. Screens for additional dominant enhancers of mec-4 and mec-5 yielded mutations in previously known genes. In addition, some mec-7 alleles showed allele-specific, dominant suppression of the mec-15 touch-insensitive (Mec) phenotype. The dominant enhancement and suppression exhibited by these mutations suggest that the products of several touch genes interact. These results are consistent with a model, supported by the known sequences of these genes, that almost all of the touch function genes contribute to the mechanosensory apparatus.

  14. Temperature sensitivity of soil carbon dioxide and nitrous oxide emissions in mountain forest and meadow ecosystems in China

    NASA Astrophysics Data System (ADS)

    Zhang, Junjun; Peng, Changhui; Zhu, Qiuan; Xue, Wei; Shen, Yan; Yang, Yanzheng; Shi, Guohua; Shi, Shengwei; Wang, Meng

    2016-10-01

    An incubation experiment was conducted at three temperature levels (8, 18 and 28 °C) to quantify the response of soil CO2 and N2O emissions to temperature in three ecosystems (pine forest, oak forest, and meadow) located in the Qinling Mountains of China, which are considered to be susceptible to disturbance and climate changes, especially global warming. The soil CO2 emission rates increased with temperature and decreased with soil depth; they were the highest in the oak forest (broadleaf forest) and were lower in the pine forest (coniferous forest) and the meadow ecosystem. However, there was no significant difference in the soil N2O emission rates among the three ecosystems. The temperature sensitivity of CO2 and N2O was higher in the forest than in the meadow ecosystem. The Q10 values (temperature sensitivity coefficient) for CO2 and N2O were 1.07-2.25 and 0.82-1.22, respectively, for the three ecosystems. There was also evidence that the CO2 and N2O emission rates were positively correlated. The soil characteristics exhibited different effects on CO2 and N2O emissions among different ecosystems at the three temperature levels. Moreover, the soil dissolved organic carbon (DOC), specific ultraviolet absorbance (SUVA) and nitrate (NO3-) were important factors for CO2 emissions, whereas the soil ammonium (NH4+) and pH were the major controllers of N2O emissions. Unexpectedly, our results indicated that CO2 emissions are more sensitive to increasing temperature than N2O, noting the different feedback of CO2 and N2O emissions to global warming in this region. The different responses of greenhouse gas emissions in different forest types and a meadow ecosystem suggest that it is critical to conduct a comprehensive investigation of the complex mountain forest and meadow ecosystem in the transitional climate zone under global warming. Our research results provide new insight and advanced understanding of the variations in major greenhouse gas emissions (CO2 and N2O

  15. Sensitivity analysis on parameters and processes affecting vapor intrusion risk.

    PubMed

    Picone, Sara; Valstar, Johan; van Gaans, Pauline; Grotenhuis, Tim; Rijnaarts, Huub

    2012-05-01

    A one-dimensional numerical model was developed and used to identify the key processes controlling vapor intrusion risks by means of a sensitivity analysis. The model simulates the fate of a dissolved volatile organic compound present below the ventilated crawl space of a house. In contrast to the vast majority of previous studies, this model accounts for vertical variation of soil water saturation and includes aerobic biodegradation. The attenuation factor (ratio between concentration in the crawl space and source concentration) and the characteristic time to approach maximum concentrations were calculated and compared for a variety of scenarios. These concepts allow an understanding of controlling mechanisms and aid in the identification of critical parameters to be collected for field situations. The relative distance of the source to the nearest gas-filled pores of the unsaturated zone is the most critical parameter because diffusive contaminant transport is significantly slower in water-filled pores than in gas-filled pores. Therefore, attenuation factors decrease and characteristic times increase with increasing relative distance of the contaminant dissolved source to the nearest gas diffusion front. Aerobic biodegradation may decrease the attenuation factor by up to three orders of magnitude. Moreover, the occurrence of water table oscillations is of importance. Dynamic processes leading to a retreating water table increase the attenuation factor by two orders of magnitude because of the enhanced gas phase diffusion.

  16. Comparative sensitivity to the fungicide tebuconazole of biofilm and plankton microbial communities in freshwater ecosystems.

    PubMed

    Artigas, J; Pascault, N; Bouchez, A; Chastain, J; Debroas, D; Humbert, J F; Leloup, J; Tadonleke, R D; ter Halle, A; Pesce, S

    2014-01-15

    Stream and lake ecosystems in agricultural watersheds are exposed to fungicide inputs that can threaten the structure and functioning of aquatic microbial communities. This research analyzes the impact of the triazole fungicide tebuconazole (TBZ) on natural biofilm and plankton microbial communities from sites presenting different degrees of agricultural contamination. Biofilm and plankton communities from less-polluted (LP) and polluted (P) sites were exposed to nominal concentrations of 0 (control), 2 and 20 μg TBZ L(-1) in 3-week microcosm experiments. Descriptors of microbial community structure (bacterial density and chlorophyll-a concentration) and function (bacterial respiration and production and photosynthesis) were analyzed to chart the effects of TBZ and the kinetics of TBZ attenuation in water during the experiments. The results showed TBZ-induced effects on biofilm function (inhibition of substrate-induced respiration and photosynthetic activity), especially in LP-site communities, whereas plankton communities experienced a transitory stimulation of bacterial densities in communities from both LP and P sites. TBZ attenuation was stronger in biofilm (60-75%) than plankton (15-18%) experiments, probably due to greater adsorption on biofilms. The differences between biofilm and plankton responses to TBZ were likely explained by differences in community structure (presence of extracellular polymeric substances (EPS) matrix) and microbial composition. Biofilm communities also exhibited different sensitivity levels according to their in-field pre-exposure to fungicide, with P-site communities demonstrating adaptation capacities to TBZ. This study indicates that TBZ toxicity to non-targeted aquatic microbial communities essentially composed by microalgae and bacteria was moderate, and that its effects varied between stream and lake microbial communities.

  17. Assessing the sensitivity of Alaska's Coastal Ecosystem to Changes in Glacier Runoff

    NASA Astrophysics Data System (ADS)

    Oneel, S.; Hood, E. W.; Arendt, A. A.; Sass, L. C.; March, R. S.

    2012-12-01

    The timing and magnitude of freshwater discharge to the Gulf of Alaska impacts rates of sea level change and the health of near shore ecosystems and fisheries. Glaciers strongly modulate the freshwater flux into this region and contribute to approximately 50% of its annual freshwater budget. It is generally assumed that persistently negative annual mass balances, forced by recent climate changes, are driving increases in glacier stream discharge. However, increases in runoff also depend on increased mass turnover rates, wherein the amplitude of seasonal mass balance increases due to enhanced snowfall and summer melt intensity. To quantify and partition runoff into the Gulf of Alaska we examine 1966-2010 US Geological Survey glacier mass balance and streamflow records from the Gulkana/Wolverine glaciers located in continental/maritime Alaska climate regimes. We compare annual, summer and winter balances with associated discharge magnitudes at each glacier to determine the primary controls on runoff magnitude and timing. We find that both glaciers have experienced increases in runoff and mass turnover, but only the Gulkana Glacier shows increases in stream discharge due to long term changes in annual mass balance. Conversely, Wolverine Glacier runoff is more sensitive to the amplitude of winter accumulation. The data suggest that changes in summer climate forcing are occurring over broader spatial scales than are changes in winter forcing. The analyses demonstrate that care is warranted when formulating assumptions relating glacier volume change to surface water hydrologic processes. Predicting future changes in runoff and implications for sea level rise, water resources and biological resources in this highly productive region requires that we better understand the processes that produce and modulate glacier runoff.

  18. Increasing fish taxonomic and functional richness affects ecosystem properties of small headwater prairie streams

    DOE PAGES

    Martin, Erika C.; Gido, Keith B.; Bello, Nora; ...

    2016-04-06

    Stream fish can regulate their environment through direct and indirect pathways, and the relative influence of communities with different taxonomic and functional richness on ecosystem properties likely depends on habitat structure. Given this complexity, it is not surprising that observational studies of how stream fish communities influence ecosystems have shown mixed results. In this study, we evaluated the effect of an observed gradient of taxonomic (zero, one, two or three species) and functional (zero, one or two groups) richness of fishes on several key ecosystem properties in experimental stream mesocosms. Our study simulated small (less than two metres wide) headwatermore » prairie streams with a succession of three pool-riffle structures (upstream, middle and downstream) per mesocosm. Additionally, ecosystem responses included chlorophyll a from floating algal mats and benthic algae, benthic organic matter, macroinvertebrates (all as mass per unit area), algal filament length and stream metabolism (photosynthesis and respiration rate). Ecosystem responses were analysed individually using general linear mixed models. Significant treatment (taxonomic and functional richness) by habitat (pools and riffles) interactions were found for all but one ecosystem response variable. After accounting for location (upstream, middle and downstream) effects, the presence of one or two grazers resulted in shorter mean algal filament lengths in pools compared to no-fish controls. These observations suggest grazers can maintain short algal filaments in pools, which may inhibit long filaments from reaching the surface. Accordingly, floating algal mats decreased in mid- and downstream locations in grazer treatment relative to no-fish controls. At the scale of the entire reach, gross primary productivity and respiration were greater in treatments with two grazer species compared to mixed grazer/insectivore or control treatments. Lastly, the distribution of stream resources

  19. Increasing fish taxonomic and functional richness affects ecosystem properties of small headwater prairie streams

    SciTech Connect

    Martin, Erika C.; Gido, Keith B.; Bello, Nora; Dodds, Walter K.; Veach, Allison

    2016-04-06

    Stream fish can regulate their environment through direct and indirect pathways, and the relative influence of communities with different taxonomic and functional richness on ecosystem properties likely depends on habitat structure. Given this complexity, it is not surprising that observational studies of how stream fish communities influence ecosystems have shown mixed results. In this study, we evaluated the effect of an observed gradient of taxonomic (zero, one, two or three species) and functional (zero, one or two groups) richness of fishes on several key ecosystem properties in experimental stream mesocosms. Our study simulated small (less than two metres wide) headwater prairie streams with a succession of three pool-riffle structures (upstream, middle and downstream) per mesocosm. Additionally, ecosystem responses included chlorophyll a from floating algal mats and benthic algae, benthic organic matter, macroinvertebrates (all as mass per unit area), algal filament length and stream metabolism (photosynthesis and respiration rate). Ecosystem responses were analysed individually using general linear mixed models. Significant treatment (taxonomic and functional richness) by habitat (pools and riffles) interactions were found for all but one ecosystem response variable. After accounting for location (upstream, middle and downstream) effects, the presence of one or two grazers resulted in shorter mean algal filament lengths in pools compared to no-fish controls. These observations suggest grazers can maintain short algal filaments in pools, which may inhibit long filaments from reaching the surface. Accordingly, floating algal mats decreased in mid- and downstream locations in grazer treatment relative to no-fish controls. At the scale of the entire reach, gross primary productivity and respiration were greater in treatments with two grazer species compared to mixed grazer/insectivore or control treatments. Lastly, the distribution of stream resources across

  20. Using sensitive montane amphibian species as indicators of hydroclimatic change in meadow ecosystems of the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Peek, R.; Viers, J.; Yarnell, S. M.

    2012-12-01

    Climate change can affect sensitive species and ecosystems in many ways, yet sparse data and the inability to apply various climate models at functional spatial scales often prevents relevant research from being utilized in conservation management plans. Climate change has been linked to declines and disturbances in a multitude of species and habitats, and in California, one of the greatest climatic concerns is the predicted reduction in mountain snowpack and associated snowmelt. These decreases in natural storage of water as snow in mountain regions can affect the timing and variability of critical snowmelt runoff periods—important seasonal signals that species in montane ecosystems have evolved life history strategies around—leading to greater intra-annual variability and diminished summer and fall stream flows. Although many species distribution models exist, few provide ways to integrate continually updated and revised Global Climate Models (GCMs), hydrologic data unique to a watershed, and ecological responses that can be incorporated into conservation strategies. This study documents a novel and applicable method of combining boosted regression tree (BRT) modeling and species distributions with hydroclimatic data as a potential management tool for conservation. Boosted regression trees are suitable for ecological distribution modeling because they can reduce both bias and variance, as well as handle sharp discontinuities common in sparsely sampled species or large study areas. This approach was used to quantify the effects of hydroclimatic changes on the distribution of key riparian-associated amphibian species in montane meadow habitats in the Sierra Nevada at the sub-watershed level. Based on modeling using current species range maps in conjunction with three climate scenarios (near, mid, and far), extreme range contractions were observed for all sensitive species (southern long-toed salamander, mountain yellow-legged frog, Yosemite toad) by the year

  1. How a clogged canal affects ecological and human health in a tropical urban wetland ecosystem

    EPA Science Inventory

    The coastal city of San Juan, Puerto Rico is a tropical urban ecosystem woven among a series of interconnected bays, lagoons, drains, canals, and mangroves. As the city has expanded, infilling and urban development by the region’s poorest residents has choked an important c...

  2. Long term trends of carbon dioxide exchange in a tundra ecosystem affected by permafrost thaw

    NASA Astrophysics Data System (ADS)

    Schuur, E. A.; Bracho, R. G.; Belshe, F.; Crummer, K. G.; Hicks Pries, C.; Krapek, J.; Natali, S.; Pegoraro, E.; Salmon, V.; Trucco, C.; Vogel, J. G.; Webb, E.

    2013-12-01

    Arctic warming has led to permafrost degradation and ground subsidence as a result of ground ice melting. Frozen soil organic matter that thaws can increase carbon (C) emissions to the atmosphere via respiration, but this can be offset in part by increases in plant growth. The balance of plant and microbial processes, and how they change through time, will determine how permafrost ecosystems influence future climate change via the C cycle. This study addressed this question both on short (interannual) and longer (decadal) time periods by measuring C fluxes over a ten-year period at three sites that represent a gradient of time since permafrost thaw. All three sites are upland tundra ecosystems located in Interior Alaska but differed in the extent of permafrost thaw and ground subsidence. Results showed an increasing growing season (May - September) trend in gross primary productivity, net ecosystem exchange, aboveground net primary productivity, and annual net ecosystem exchange at all sites over the study period from 2004-2013. In contrast, there was no directional change in annual and growing season ecosystem respiration, or mass loss from decomposition of a common cellulose substrate. The increasing trends over time as well as inter site differences most closely followed variation in growing season thaw depth over the same time period. During the study period, sites with more permafrost degradation (deeper seasonal thaw) had significantly greater gross primary productivity compared to where degradation was least, but also greater growing season ecosystem respiration. Adding in winter respiration decreased, in part, the summer C sink and left the site with the most permafrost degradation near C neutral, with the other sites annual C sinks. However, annual C balance was strongly dependent on winter respiration, which, compared to the growing season, was relatively data-poor due to extreme environmental conditions. Measurements of growing season and annual C

  3. Differences in the Temperature Sensitivity of Soil Organic Carbon Decomposition in a Semi-Arid Ecosystem across an Elevational Gradient

    NASA Astrophysics Data System (ADS)

    Delvinne, H.; Flores, A. N.; Benner, S. G.; Feris, K. P.; De Graaff, M. A.

    2015-12-01

    Semi-arid ecosystems are a significant component of the global carbon (C) cycle as they store approximately 20% of global soil C. Yet, projected increases in mean annual temperatures might alter the amount of soil organic C (SOC) currently stored in these ecosystems. Uncertainties about the temperature sensitivity of SOC decomposition have hindered accurate predictions of C cycle feedbacks to climate change. This study aims to elucidate how the temperature sensitivity of SOC decomposition varies along an elevational (1000m) and climatic (i.e. mean annual temperature and precipitation) gradient. The study sites are located at Reynolds Creek Critical Zone Observatory in Owyhee Mountains of Idaho, USA. We conducted stratified random sampling of soil up to 0-5cm across sagebrush canopy and inter-canopy areas at four elevations. We hypothesized decomposition of SOC pools at lower elevations to have greater temperature sensitivity (more CO2 respired per unit C) compared to upper due to the quality of C that is inherently more temperature sensitive. To assess the temperature sensitivity of SOC decomposition, we used aerobic laboratory incubations (n=40) across a temperature gradient ((15, 20, 25, 30) oC) at constant soil moisture (60% water holding capacity) for 120 days and measured CO2 respired. Cumulative CO2 respired increased with increasing incubation temperature. Cumulative CO2 respired also increased with elevation as upper elevations support greater amounts of C. However, when normalized by SOC, we found that the temperature response of CO2 respiration was greater in soils derived from lower than higher elevations (p<0.05). These results indicate that the response of SOC decomposition to elevated temperatures differs strongly across the landscape in semi-arid ecosystems.

  4. Nitorgen Deposition Impacts on a Sensitive Grassland Ecosystem: Conservation, Management, and Restoration

    NASA Astrophysics Data System (ADS)

    Weiss, S. B.; Luth, D. C.

    2002-12-01

    Humans have greatly increased the flux of reactive nitrogen in the biosphere, altering many terrestrial and aquatic ecosystems. In the San Francisco Bay Area, CA, grasslands on nutrient-poor serpentinitic soils are being invaded by nutrient-demanding introduced annual grasses, driven by dry N-deposition on the order of 10 kg ha-1 yr-1. These grass invasions threaten the rich native biodiversity of the serpentinitic grasslands, including the federally-protected Bay checkerspot butterfly and several endemic plant species. A passive monitoring network for reactive nitrogen gases (NOx, NO2, NH3, HNO3, and O3) has been set up to investigate regional and local N-deposition gradients. The regional gradient extends from clean coastal areas to inland valleys downwind of the highly urbanized Santa Clara Valley, driven by prevailing NW winds. A local gradient extends upwind and downwind of an 8-lane freeway carrying 100,000 cars/day, located in a relatively clean near-coastal area. Plant surveys at the clean-air site bisected by the freeway show greater grass invasion closer to the freeway, but only on the downwind side (controlling for soil depth, the other main factor affecting grass density). Grassed-over areas build up thatch that suppresses native plants. Restoration experiments include mowing, goat grazing, and prescribed fire. Carefully-timed mowing appears to be an effective treatment for small areas. Removal of cuttings removes 5-8 kg-N/ha, the same order of magnitude as the estimated N-inputs from the freeway. Additional NOx and NH3 sources planned for the region include a 600 MW natural gas fired power plant, industrial parks that may eventually draw 20,000 to 50,000 additional cars per day, 25,000 housing units, and associated highway improvements. Mitigation proposals include purchase and long-term management of hundreds of hectares of habitat. Management of the larger areas necessitates continued moderate cattle grazing. Cattle selectively crop nitrogen

  5. Lead contamination of an old shooting range affecting the local ecosystem--A case study with a holistic approach.

    PubMed

    Rantalainen, Minna-Liisa; Torkkeli, Minna; Strömmer, Rauni; Setälä, Heikki

    2006-10-01

    The aim of this case study was to uncover the consequences of lead pellet-derived heavy lead contamination at a cast-off shooting range in southern Finland, covering aspects from soil chemistry and biology up to ecosystem level. The observed changes in the soil properties of the most contaminated areas suggest that the contamination may be disturbing processes of decomposition and nutrient mineralisation. Also two functionally important groups of soil organisms, microbes (as analysed using the PLFA analysis) and enchytraeid worms, were negatively affected by the contamination. Furthermore, there was an indication of reduced pine litter production at the contaminated areas. On the other hand, lead contamination appears not to have affected pine growth or soil-dwelling nematodes and microarthropods, and the general outlook of the whole ecosystem is that of a healthy forest. Thus, the boreal forest ecosystem studied as a whole appears to bear strong resistance to contamination, despite negative effects of lead on many of its components. This resistance may result from e.g. low bioavailability of lead, avoidance of the most contaminated soil horizons and microsites by the organisms, and functional redundancy and development of lead-tolerant populations amongst the organisms. The relative importance of these factors and the mechanisms behind them will be investigated in forthcoming studies.

  6. Marine mammals' influence on ecosystem processes affecting fisheries in the Barents Sea is trivial

    PubMed Central

    Corkeron, Peter J.

    2009-01-01

    Some interpretations of ecosystem-based fishery management include culling marine mammals as an integral component. The current Norwegian policy on marine mammal management is one example. Scientific support for this policy includes the Scenario Barents Sea (SBS) models. These modelled interactions between cod, Gadus morhua, herring, Clupea harengus, capelin, Mallotus villosus and northern minke whales, Balaenoptera acutorostrata. Adding harp seals Phoca groenlandica into this top-down modelling approach resulted in unrealistic model outputs. Another set of models of the Barents Sea fish–fisheries system focused on interactions within and between the three fish populations, fisheries and climate. These model key processes of the system successfully. Continuing calls to support the SBS models despite their failure suggest a belief that marine mammal predation must be a problem for fisheries. The best available scientific evidence provides no justification for marine mammal culls as a primary component of an ecosystem-based approach to managing the fisheries of the Barents Sea. PMID:19126534

  7. Marine mammals' influence on ecosystem processes affecting fisheries in the Barents Sea is trivial.

    PubMed

    Corkeron, Peter J

    2009-04-23

    Some interpretations of ecosystem-based fishery management include culling marine mammals as an integral component. The current Norwegian policy on marine mammal management is one example. Scientific support for this policy includes the Scenario Barents Sea (SBS) models. These modelled interactions between cod, Gadus morhua, herring, Clupea harengus, capelin, Mallotus villosus and northern minke whales, Balaenoptera acutorostrata. Adding harp seals Phoca groenlandica into this top-down modelling approach resulted in unrealistic model outputs. Another set of models of the Barents Sea fish-fisheries system focused on interactions within and between the three fish populations, fisheries and climate. These model key processes of the system successfully. Continuing calls to support the SBS models despite their failure suggest a belief that marine mammal predation must be a problem for fisheries. The best available scientific evidence provides no justification for marine mammal culls as a primary component of an ecosystem-based approach to managing the fisheries of the Barents Sea.

  8. Implications for Ecosystem Services of Watershed Processes that affect the Transport and Transformations of Mercury in an Adirondack Stream Basin

    NASA Astrophysics Data System (ADS)

    Burns, D. A.; Riva-Murray, K.; Bradley, P. M.

    2012-12-01

    Mercury (Hg) is a potent neurotoxin that can affect the health of humans and wildlife through the ingestion of methyl Hg. Mercury contamination of ecosystems originates from human activities such as mining, coal burning and other industrial emissions, and the use of Hg-containing products. Natural sources such as volcanic and geothermal emissions and the weathering of Hg-bearing minerals also contribute to Hg contamination, but are believed to be minor sources in most ecosystems. Various ecosystem disturbances including fires, forest harvesting, and the submergence of land by impoundment may also contribute to Hg ecosystem contamination by mobilizing stores that have previously originated from the sources described above. Mercury from a mix of regional and global emissions sources is transported in the atmosphere to remote landscapes that are distant from local emissions sources. The Adirondacks of New York State is a forested, mountainous region characterized by abundant lakes and streams, and is distant from local emissions sources. Recreational fishing, wildlife viewing, hiking, and hunting are valued ecosystem services in this region. Here, we report on the relevance to ecosystem services of findings based on five years of Hg data collection of stream water, groundwater, invertebrates, and fish in the upper Hudson River basin in the central part of the Adirondack region. The New York State Dept. of Health has issued fish consumption advisories for the entire Adirondacks based on elevated levels previously measured in lakes and rivers of this region. Our work seeks improved understanding and models of the landscape sources and watershed processes that control the transformation of Hg to its methyl form (MeHg), the transport of MeHg to streams, and bioaccumulation of MeHg in aquatic food webs. Mean annual atmospheric Hg deposition was 6.3 μg/m2/yr during 2007-09, compared to mean annual filtered total Hg stream yields of 1.66 μg/m2/yr and filtered MeHg stream

  9. Foundation species loss affects vegetation structure more than ecosystem function in a northeastern USA forest

    PubMed Central

    Orwig, David A.; Barker Plotkin, Audrey A.; Davidson, Eric A.; Lux, Heidi; Savage, Kathleen E.

    2013-01-01

    Loss of foundation tree species rapidly alters ecological processes in forested ecosystems. Tsuga canadensis, an hypothesized foundation species of eastern North American forests, is declining throughout much of its range due to infestation by the nonnative insect Adelges tsugae and by removal through pre-emptive salvage logging. In replicate 0.81-ha plots, T. canadensis was cut and removed, or killed in place by girdling to simulate adelgid damage. Control plots included undisturbed hemlock and mid-successional hardwood stands that represent expected forest composition in 50–100 years. Vegetation richness, understory vegetation cover, soil carbon flux, and nitrogen cycling were measured for two years prior to, and five years following, application of experimental treatments. Litterfall and coarse woody debris (CWD), including snags, stumps, and fallen logs and branches, have been measured since treatments were applied. Overstory basal area was reduced 60%–70% in girdled and logged plots. Mean cover and richness did not change in hardwood or hemlock control plots but increased rapidly in girdled and logged plots. Following logging, litterfall immediately decreased then slowly increased, whereas in girdled plots, there was a short pulse of hemlock litterfall as trees died. CWD volume remained relatively constant throughout but was 3–4× higher in logged plots. Logging and girdling resulted in small, short-term changes in ecosystem dynamics due to rapid regrowth of vegetation but in general, interannual variability exceeded differences among treatments. Soil carbon flux in girdled plots showed the strongest response: 35% lower than controls after three years and slowly increasing thereafter. Ammonium availability increased immediately after logging and two years after girdling, due to increased light and soil temperatures and nutrient pulses from leaf-fall and reduced uptake following tree death. The results from this study illuminate ecological processes

  10. Foundation species loss affects vegetation structure more than ecosystem function in a northeastern USA forest.

    PubMed

    Orwig, David A; Barker Plotkin, Audrey A; Davidson, Eric A; Lux, Heidi; Savage, Kathleen E; Ellison, Aaron M

    2013-01-01

    Loss of foundation tree species rapidly alters ecological processes in forested ecosystems. Tsuga canadensis, an hypothesized foundation species of eastern North American forests, is declining throughout much of its range due to infestation by the nonnative insect Adelges tsugae and by removal through pre-emptive salvage logging. In replicate 0.81-ha plots, T. canadensis was cut and removed, or killed in place by girdling to simulate adelgid damage. Control plots included undisturbed hemlock and mid-successional hardwood stands that represent expected forest composition in 50-100 years. Vegetation richness, understory vegetation cover, soil carbon flux, and nitrogen cycling were measured for two years prior to, and five years following, application of experimental treatments. Litterfall and coarse woody debris (CWD), including snags, stumps, and fallen logs and branches, have been measured since treatments were applied. Overstory basal area was reduced 60%-70% in girdled and logged plots. Mean cover and richness did not change in hardwood or hemlock control plots but increased rapidly in girdled and logged plots. Following logging, litterfall immediately decreased then slowly increased, whereas in girdled plots, there was a short pulse of hemlock litterfall as trees died. CWD volume remained relatively constant throughout but was 3-4× higher in logged plots. Logging and girdling resulted in small, short-term changes in ecosystem dynamics due to rapid regrowth of vegetation but in general, interannual variability exceeded differences among treatments. Soil carbon flux in girdled plots showed the strongest response: 35% lower than controls after three years and slowly increasing thereafter. Ammonium availability increased immediately after logging and two years after girdling, due to increased light and soil temperatures and nutrient pulses from leaf-fall and reduced uptake following tree death. The results from this study illuminate ecological processes underlying

  11. Affective modulation of the startle reflex and the Reinforcement Sensitivity Theory of personality: The role of sensitivity to reward.

    PubMed

    Aluja, Anton; Blanch, Angel; Blanco, Eduardo; Balada, Ferran

    2015-01-01

    This study evaluated differences in the amplitude of startle reflex and Sensitivity to Reward (SR) and Sensitivity to Punishment (SP) personality variables of the Reinforcement Sensitivity Theory (RST). We hypothesized that subjects with higher scores in SR would obtain a higher startle reflex when exposed to pleasant pictures than lower scores, while higher scores in SP would obtain a higher startle reflex when exposed to unpleasant pictures than subjects with lower scores in this dimension. The sample consisted of 112 healthy female undergraduate psychology students. Personality was assessed using the short version of the Sensitivity to Punishment and Sensitivity Reward Questionnaire (SPSRQ). Laboratory anxiety was controlled by the State Anxiety Inventory. The startle blink reflex was recorded electromyographically (EMG) from the right orbicularis oculi muscle as a response to the International Affective Picture System (IAPS) pleasant, neutral and unpleasant pictures. Subjects higher in SR obtained a significant higher startle reflex response in pleasant pictures than lower scorers (48.48 vs 46.28, p<0.012). Subjects with higher scores in SP showed a light tendency of higher startle responses in unpleasant pictures in a non-parametric local regression graphical analysis (LOESS). The findings shed light on the relationships among the impulsive-disinhibited personality, including sensitivity to reward and emotions evoked through pictures of emotional content.

  12. Is the Climate of Bering Sea Warming and Affecting the Ecosystem?

    NASA Astrophysics Data System (ADS)

    Overland, James E.; Stabeno, Phyllis J.

    2004-08-01

    Observations from the Bering Sea are good indicators of decadal shifts in climate, as the Bering is a transition region between the cold, dry Arctic air mass to the north, and the moist, relatively warm maritime air mass to the south. The Bering Sea is also a transition region between Arctic and sub-Arctic ecosystems; this boundary can be loosely identified with the extent of winter sea-ice cover. Like a similar transition zone in the eastern North Atlantic, the Bering Sea is experiencing a northward biogeographical shift in response to changing temperature and atmospheric forcing. If this shift continues over the next decade, it will have major impacts on commercial and subsistence harvests as Arctic species are displaced by sub-Arctic species. The stakes are enormous, as this rich and diverse ecosystem currently provides 47% of the U.S. fishery production by weight, and is home to 80% of the U.S. sea bird population, 95% of northern fur seals, and major populations of Steller sea lions, walrus, and whales.

  13. Ocean circulation off east Antarctica affects ecosystem structure and sea-ice extent.

    PubMed

    Nicol, S; Pauly, T; Bindoff, N L; Wright, S; Thiele, D; Hosie, G W; Strutton, P G; Woehler, E

    2000-08-03

    Sea ice and oceanic boundaries have a dominant effect in structuring Antarctic marine ecosystems. Satellite imagery and historical data have identified the southern boundary of the Antarctic Circumpolar Current as a site of enhanced biological productivity. Meso-scale surveys off the Antarctic peninsula have related the abundances of Antarctic krill (Euphausia superba) and salps (Salpa thompsoni) to inter-annual variations in sea-ice extent. Here we have examined the ecosystem structure and oceanography spanning 3,500 km of the east Antarctic coastline, linking the scales of local surveys and global observations. Between 80 degrees and 150 degrees E there is a threefold variation in the extent of annual sea-ice cover, enabling us to examine the regional effects of sea ice and ocean circulation on biological productivity. Phytoplankton, primary productivity, Antarctic krill, whales and seabirds were concentrated where winter sea-ice extent is maximal, whereas salps were located where the sea-ice extent is minimal. We found enhanced biological activity south of the southern boundary of the Antarctic Circumpolar Current rather than in association with it. We propose that along this coastline ocean circulation determines both the sea-ice conditions and the level of biological productivity at all trophic levels.

  14. Scorched earth: how will changes in ozone deposition caused by drought affect human health and ecosystems?

    NASA Astrophysics Data System (ADS)

    Emberson, L. D.; Kitwiroon, N.; Beevers, S.; Büker, P.; Cinderby, S.

    2012-10-01

    This unique study investigates the effect of ozone (O3) deposition on ground level O3 concentrations and subsequent human health and ecosystem risk under hot summer "heat wave" type meteorological events. Under such conditions, extended drought can effectively "turn off" the O3 vegetation sink leading to a substantial increase in ground level O3 concentrations. Two models that have been used for human health (the CMAQ chemical transport model) and ecosystem (the DO3SE O3 deposition model) risk assessment are combined to provide a powerful policy tool capable of novel integrated assessments of O3 risk using methods endorsed by the UNECE Convention on Long-Range Transboundary Air Pollution. This study investigates 2006, a particularly hot and dry year during which a heat wave occurred during the summer across much of the UK and Europe. To understand the influence of variable O3 dry deposition three different simulations were investigated during June and July: (i) actual conditions in 2006; (ii) conditions that assume a perfect vegetation sink for O3 deposition and (iii) conditions that assume an extended drought period that reduces the vegetation sink to a minimum. The risk of O3 to human health, assessed by estimating the number of days during which running 8-h mean O3 concentrations exceeded 100 μg m-3, show that on average across the UK, there is a difference of 16 days exceedance of the threshold between the perfect sink and drought conditions. These average results hide local variation with exceedances reaching as high as 20 days in the East Midlands and Eastern UK. Estimates of acute exposure effects show that O3 removed from the atmosphere through dry deposition during the June and July period would have been responsible for approximately 460 premature deaths. Conversely, reduced O3 dry deposition will decrease the amount of O3 taken up by vegetation and, according to flux-based assessments of vegetation damage, will lead to protection from O3 across the UK

  15. Relevance of risk predictions derived from a chronic species sensitivity distribution with cadmium to aquatic populations and ecosystems

    USGS Publications Warehouse

    Mebane, C.A.

    2010-01-01

    Criteria to protect aquatic life are intended to protect diverse ecosystems, but in practice are usually developed from compilations of single-species toxicity tests using standard test organisms that were tested in laboratory environments. Species sensitivity distributions (SSDs) developed from these compilations are extrapolated to set aquatic ecosystem criteria. The protectiveness of the approach was critically reviewed with a chronic SSD for cadmium comprising 27 species within 21 genera. Within the data set, one genus had lower cadmium effects concentrations than the SSD fifth percentile-based criterion, so in theory this genus, the amphipod Hyalella, could be lost or at least allowed some level of harm by this criteria approach. However, population matrix modeling projected only slightly increased extinction risks for a temperate Hyalella population under scenarios similar to the SSD fifth percentile criterion. The criterion value was further compared to cadmium effects concentrations in ecosystem experiments and field studies. Generally, few adverse effects were inferred from ecosystem experiments at concentrations less than the SSD fifth percentile criterion. Exceptions were behavioral impairments in simplified food web studies. No adverse effects were apparent in field studies under conditions that seldom exceeded the criterion. At concentrations greater than the SSD fifth percentile, the magnitudes of adverse effects in the field studies were roughly proportional to the laboratory-based fraction of species with adverse effects in the SSD. Overall, the modeling and field validation comparisons of the chronic criterion values generally supported the relevance and protectiveness of the SSD fifth percentile approach with cadmium. ?? 2009 Society for Risk Analysis.

  16. Climatic Versus Biotic Constraints on Carbon and Water Fluxes in Seasonally Drought-affected Ponderosa Pine Ecosystems. Chapter 2

    NASA Technical Reports Server (NTRS)

    Schwarz, P. A.; Law, B. E.; Williams, M.; Irvine, J.; Kurpius, M.; Moore, D.

    2005-01-01

    We investigated the relative importance of climatic versus biotic controls on gross primary production (GPP) and water vapor fluxes in seasonally drought-affected ponderosa pine forests. The study was conducted in young (YS), mature (MS), and old stands (OS) over 4 years at the AmeriFlux Metolius sites. Model simulations showed that interannual variation of GPP did not follow the same trends as precipitation, and effects of climatic variation were smallest at the OS (50%), and intermediate at the YS (<20%). In the young, developing stand, interannual variation in leaf area has larger effects on fluxes than climate, although leaf area is a function of climate in that climate can interact with age-related shifts in carbon allocation and affect whole-tree hydraulic conductance. Older forests, with well-established root systems, appear to be better buffered from effects of seasonal drought and interannual climatic variation. Interannual variation of net ecosystem exchange (NEE) was also lowest at the OS, where NEE is controlled more by interannual variation of ecosystem respiration, 70% of which is from soil, than by the variation of GPP, whereas variation in GPP is the primary reason for interannual changes in NEE at the YS and MS. Across spatially heterogeneous landscapes with high frequency of younger stands resulting from natural and anthropogenic disturbances, interannual climatic variation and change in leaf area are likely to result in large interannual variation in GPP and NEE.

  17. Climatic versus biotic constraints on carbon and water fluxes in seasonally drought-affected ponderosa pine ecosystems

    NASA Astrophysics Data System (ADS)

    Schwarz, P. A.; Law, B. E.; Williams, M.; Irvine, J.; Kurpius, M.; Moore, D.

    2004-12-01

    We investigated the relative importance of climatic versus biotic controls on gross primary production (GPP) and water vapor fluxes in seasonally drought-affected ponderosa pine forests. The study was conducted in young (YS), mature (MS), and old stands (OS) over 4 years at the AmeriFlux Metolius sites. Model simulations showed that interannual variation of GPP did not follow the same trends as precipitation, and effects of climatic variation were smallest at the OS (<10%), largest at the MS (>50%), and intermediate at the YS (<20%). In the young, developing stand, interannual variation in leaf area has larger effects on fluxes than climate, although leaf area is a function of climate in that climate can interact with age-related shifts in carbon allocation and affect whole-tree hydraulic conductance. Older forests, with well-established root systems, appear to be better buffered from effects of seasonal drought and interannual climatic variation. Interannual variation of net ecosystem exchange (NEE) was also lowest at the OS, where NEE is controlled more by interannual variation of ecosystem respiration, 70% of which is from soil, than by the variation of GPP, whereas variation in GPP is the primary reason for interannual changes in NEE at the YS and MS. Across spatially heterogeneous landscapes with high frequency of younger stands resulting from natural and anthropogenic disturbances, interannual climatic variation and change in leaf area are likely to result in large interannual variation in GPP and NEE.

  18. Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity

    SciTech Connect

    Li, Jianwei; Wang, Gangsheng; Allison, Steven D.; Mayes, Melanie; Luo, Yiqi

    2014-01-01

    Global ecosystem models may require microbial components to accurately predict feedbacks between climate warming and soil decomposition, but it is unclear what parameters and levels of complexity are ideal for scaling up to the globe. Here we conducted a model comparison using a conventional model with first-order decay and three microbial models of increasing complexity that simulate short- to long-term soil carbon dynamics. We focused on soil carbon responses to microbial carbon use efficiency (CUE) and temperature. Three scenarios were implemented in all models: constant CUE (held at 0.31), varied CUE ( 0.016 C 1), and 50 % acclimated CUE ( 0.008 C 1). Whereas the conventional model always showed soil carbon losses with increasing temperature, the microbial models each predicted a temperature threshold above which warming led to soil carbon gain. The location of this threshold depended on CUE scenario, with higher temperature thresholds under the acclimated and constant scenarios. This result suggests that the temperature sensitivity of CUE and the structure of the soil carbon model together regulate the long-term soil carbon response to warming. Equilibrium soil carbon stocks predicted by the microbial models were much less sensitive to changing inputs compared to the conventional model. Although many soil carbon dynamics were similar across microbial models, the most complex model showed less pronounced oscillations. Thus, adding model complexity (i.e. including enzyme pools) could improve the mechanistic representation of soil carbon dynamics during the transient phase in certain ecosystems. This study suggests that model structure and CUE parameterization should be carefully evaluated when scaling up microbial models to ecosystems and the globe.

  19. Development of edge effects around experimental ecosystem hotspots is affected by edge density and matrix type

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecological edge effects are sensitive to landscape context. In particular, edge effects can be altered by matrix type and by the presence of other nearby edges. We experimentally altered patch configurations in an African savanna to determine how edge density and matrix type influence edge effect de...

  20. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone.

    PubMed

    Osland, Michael J; Day, Richard H; Larriviere, Jack C; From, Andrew S

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  1. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone

    USGS Publications Warehouse

    Osland, Michael J.; Day, Richard H.; Larriviere, Jack C.; From, Andrew S.

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  2. Primary Production and C Flow in the Chukchi Sea Land-Fast Ice-Ocean Ecosystem and Sensitivity to Environmental Factors

    NASA Astrophysics Data System (ADS)

    Deal, C. J.; Jin, M.; Wang, J.; Whitledge, T. E.; Lee, S. H.

    2005-12-01

    The recent downward trend in Arctic sea ice extent and thickness is a compelling indicator of climate change. These changes in sea ice affect the arctic marine ecosystem, which may depend on sea ice algal primary production for over 50% of the fixed C in the permanently ice-covered Arctic (Gosselin et al., 1997) and up to 25% in the surrounding marginal seas (Kirst and Wiencke, 1995). Since land-fast ice is generally the most accessible of the four sea ice regimes (perennial pack ice, coastal zone - including fast ice, seasonal pack ice and marginal ice zone), and in its own right is important in terms of aereal extent, on-going environmental changes along the coast and a platform for significant biological activity, our research group has focused on time series observations in the land-fast ice near Barrow, Alaska over the last several years. We have utilized the resultant data and those available from other research groups to develop a 1-D marine ecosystem model from which we have constructed an organic C budget based on observations including ice algal biomass (chl a), phytoplankton biomass (chl a), POC, PON, indicators of zooplankton and ice meiofaunal grazing, nutrients, in situ carbon and nutrient uptake, temperature, salinity, ice thickness and snow cover. Through model sensitivity studies, we found that doubling of the initial nutrient concentrations has a significant impact on sea ice primary production, being roughly proportional. Also, a doubling of light (PAR) shifts the exponential accumulation of sea ice algal biomass ahead approximately one week. These model results provide evidence that changes in river discharge that alter nutrient concentrations, and changes in the light regime linked to ongoing environmental changes such as sediment loading, lessening sea ice thickness, and interannual variations in snow cover significantly impact the marine ecosystem. These influences may cascade through the marine ecosystem to affect the food web and hence

  3. Climatically sensitive transfer of iron to maritime Antarctic ecosystems by surface runoff

    PubMed Central

    Hodson, Andy; Nowak, Aga; Sabacka, Marie; Jungblut, Anne; Navarro, Francisco; Pearce, David; Ávila-Jiménez, María Luisa; Convey, Peter; Vieira, Gonçalo

    2017-01-01

    Iron supplied by glacial weathering results in pronounced hotspots of biological production in an otherwise iron-limited Southern Ocean Ecosystem. However, glacial iron inputs are thought to be dominated by icebergs. Here we show that surface runoff from three island groups of the maritime Antarctic exports more filterable (<0.45 μm) iron (6–81 kg km−2 a−1) than icebergs (0.0–1.2 kg km−2 a−1). Glacier-fed streams also export more acid-soluble iron (27.0–18,500 kg km−2 a−1) associated with suspended sediment than icebergs (0–241 kg km−2 a−1). Significant fluxes of filterable and sediment-derived iron (1–10 Gg a−1 and 100–1,000 Gg a−1, respectively) are therefore likely to be delivered by runoff from the Antarctic continent. Although estuarine removal processes will greatly reduce their availability to coastal ecosystems, our results clearly indicate that riverine iron fluxes need to be accounted for as the volume of Antarctic melt increases in response to 21st century climate change. PMID:28198359

  4. North Atlantic ecosystem sensitivity to Holocene shifts in Meridional Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Douarin, Mélanie; Elliot, Mary; Noble, Stephen R.; Moreton, Steven G.; Long, David; Sinclair, Daniel; Henry, Lea-Anne; Roberts, J. Murray

    2016-01-01

    Rapid changes in North Atlantic climate over the last millennia were driven by coupled sea surface/atmospheric processes and rates of deep water formation. Holocene climate changes, however, remain poorly documented due to a lack of high-resolution paleoclimate records, and their impacts on marine ecosystems remain unknown. We present a 4500 year absolute-dated sea surface radiocarbon record from northeast Atlantic cold-water corals. In contrast to the current view that surface ocean changes occurred on millennial-scale cycles, our record shows more abrupt changes in surface circulation. Changes were centered at 3.4, 2.7, 1.7, and 1.2 kyr B.P. and associated with atmospheric reorganization. Solar irradiance may have influenced these anomalies but changes in North Atlantic deep water convection are likely to have amplified these signals. Critically, we provide the first evidence that these perturbations in Atlantic Meridional Overturning Circulation led to the decline of cold-water coral ecosystems from 1.2 to ~ 0.1 kyr B.P.

  5. Climatically sensitive transfer of iron to maritime Antarctic ecosystems by surface runoff

    NASA Astrophysics Data System (ADS)

    Hodson, Andy; Nowak, Aga; Sabacka, Marie; Jungblut, Anne; Navarro, Francisco; Pearce, David; Ávila-Jiménez, María Luisa; Convey, Peter; Vieira, Gonçalo

    2017-02-01

    Iron supplied by glacial weathering results in pronounced hotspots of biological production in an otherwise iron-limited Southern Ocean Ecosystem. However, glacial iron inputs are thought to be dominated by icebergs. Here we show that surface runoff from three island groups of the maritime Antarctic exports more filterable (<0.45 μm) iron (6-81 kg km-2 a-1) than icebergs (0.0-1.2 kg km-2 a-1). Glacier-fed streams also export more acid-soluble iron (27.0-18,500 kg km-2 a-1) associated with suspended sediment than icebergs (0-241 kg km-2 a-1). Significant fluxes of filterable and sediment-derived iron (1-10 Gg a-1 and 100-1,000 Gg a-1, respectively) are therefore likely to be delivered by runoff from the Antarctic continent. Although estuarine removal processes will greatly reduce their availability to coastal ecosystems, our results clearly indicate that riverine iron fluxes need to be accounted for as the volume of Antarctic melt increases in response to 21st century climate change.

  6. Does ecosystem sensitivity to precipitation at the site-level conform to regional-scale predictions?.

    PubMed

    Wilcox, Kevin R; Blair, John M; Smith, Melinda D; Knapp, Alan K

    2016-03-01

    Central to understanding global C cycle dynamics is the functional relationship between precipitation and net primary production (NPP). At large spatial (regional) scales, the responsiveness of aboveground NPP (ANPP) to interannual variation in annual precipitation (AP; ANPPsens) is inversely related to site-level ANPP, coinciding with turnover of plant communities along precipitation gradients. Within ecosystems experiencing chronic alterations in water availability, plant community change will also occur with unknown consequences for ANPPsens. To examine the role plant community shifts may play in determining alterations in site-level ANPPPsens, we experimentally increased precipitation by approximately 35% for two decades in a native Central U.S. grassland. Consistent with regional models, ANPPsens decreased initially as water availability and ANPP increased. However, ANPPsens shifted back to ambient levels when mesic species increased in abundance in the plant community. Similarly, in grassland sites with distinct mesic and xeric plant communities and corresponding 50% differences in ANPP, ANPPsens did not differ over almost three decades. We conclude that responses in ANPPsens to chronic alterations in water availability within an ecosystem may not conform to regional AP-ANPP patterns, despite expected changes in ANPP and plant communities. The result is unanticipated functional resistance to climate change at the site scale.

  7. Food web pathway determines how selenium affects aquatic ecosystems: A San francisco Bay case study

    USGS Publications Warehouse

    Stewart, A.R.; Luoma, S.N.; Schlekat, C.E.; Doblin, M.A.; Hieb, K.A.

    2004-01-01

    Chemical contaminants disrupt ecosystems, but specific effects may be under-appreciated when poorly known processes such as uptake mechanisms, uptake via diet, food preferences, and food web dynamics are influential. Here we show that a combination of food web structure and the physiology of trace element accumulation explain why some species in San Francisco Bay are threatened by a relatively low level of selenium contamination and some are not. Bivalves and crustacean Zooplankton form the base of two dominant food webs in estuaries. The dominant bivalve Potamocorbula amurensis has a 10-fold slower rate constant of loss for selenium than do common crustaceans such as copepods and the mysid Neomysis mercedis (rate constant of loss, ke = 0.025, 0.155, and 0.25 d-1, respectively). The result is much higher selenium concentrations in the bivalve than in the crustaceans. Stable isotope analyses show that this difference is propagated up the respective food webs in San Francisco Bay. Several predators of bivalves have tissue concentrations of selenium that exceed thresholds thought to be associated with teratogenesis or reproductive failure (liver Se > 15 ??g g-1 dry weight). Deformities typical of selenium-induced teratogenesis were observed in one of these species. Concentrations of selenium in tissues of predators of Zooplankton are less than the thresholds. Basic physiological and ecological processes can drive wide differences in exposure and effects among species, but such processes are rarely considered in traditional evaluations of contaminant impacts.

  8. Shifts and oscillations in a forest-grassland ecosystem affected by fire

    NASA Astrophysics Data System (ADS)

    Spiliotis, Konstantinos G.; Russo, Lucia

    2016-12-01

    The existence of periodic regimes of a forest-grassland ecosystem is here investigated as the main parameters are changed. The model consists of a couple of nonlinear ordinary differential equations which describes the evolution of the forest densities and includes the feed-back mechanisms induced by fires, coupled with the human perceptions of the forest/grassland value. The system shows a rich dynamic behavior such as: transient oscillations; the presence of dynamic regimes which are characterized by periodic oscillations in time; and shifts between steady and dynamic regimes as the parameters are perturbed. Focusing on the periodic regimes, we performed the bifurcation analysis of the system to detect the critical points which are responsible of the appearance of the periodic regimes. In particular, considering as bifurcation parameter the one that regulates the feed-back mechanism induced by fires, we found that Hopf bifurcations are responsible for appearance of periodic regimes, whereas the sudden appearance/ disappearance is related to the presence of catastrophic bifurcations (limit points of the periodic regimes).

  9. Scale-dependent diversity patterns affect spider assemblages of two contrasting forest ecosystems

    NASA Astrophysics Data System (ADS)

    Schuldt, Andreas; Assmann, Thorsten; Schaefer, Matthias

    2013-05-01

    Spiders are important generalist predators in forests. However, differences in assemblage structure and diversity can have consequences for their functional impact. Such differences are particularly evident across latitudes, and their analysis can help to generate a better understanding of region-specific characteristics of predator assemblages. Here, we analyse the relationships between species richness, family richness and functional diversity (FD) as well as α- and β-components of epigeic spider diversity in semi-natural temperate and subtropical forest sites. As expected, within-plot and overall spider species and family richness were higher in the subtropical plots. In contrast, local FD within plots was similar between sites, and differences in FD only became evident at larger spatial scales due to higher species turnover in the subtropical forests. Our study indicates that the functional effects of predator assemblages can change across spatial scales. We discuss how differences in richness and functional diversity between contrasting forest ecosystems can depend on environmental heterogeneity and the effects of species filters acting at local scales. The high turnover observed in the species-rich subtropical forests also requires a more regional perspective for the conservation of the overall diversity and the ecological functions of predators than in less diverse forests, as strategies need to account for the large spatial heterogeneity among plots.

  10. Bioaccumulation of mercury in benthic communities of a river ecosystem affected by mercury mining.

    PubMed

    Zizek, Suzana; Horvat, Milena; Gibicar, Darija; Fajon, Vesna; Toman, Mihael J

    2007-05-15

    The presence of mercury in the river Idrijca (Slovenia) is mainly due to 500 years of mercury mining in this region. In order to understand the cycling of mercury in the Idrijca ecosystem it is crucial to investigate the role of biota. This study is part of an ongoing investigation of mercury biogeochemistry in the river Idrijca, focusing on the accumulation and speciation of mercury in the lower levels of the food chain, namely filamentous algae, periphyton and macroinvertebrates. Mercury analysis and speciation in the biota and in water were performed during the spring, summer and autumn seasons at four locations on the river, representing different degrees of mercury contamination. Total (THg) and methyl mercury (MeHg) were measured. The results showed that the highest THg concentrations in biota correlate well with THg levels in sediments and water. The level of MeHg is spatially and seasonally variable, showing higher values at the most contaminated sites during the summer and autumn periods. The percentage of Hg as MeHg increases with the trophic level from water (0.1-0.8%), algae (0.5-1.3%), periphyton (1.6-8.8%) to macroinvertebrates (0.1-100%), which indicates active transformation, accumulation and magnification of mercury in the benthic organism of this heavily contaminated torrential river.

  11. From specificity to sensitivity: affective states modulate visual working memory for emotional expressive faces

    PubMed Central

    Maran, Thomas; Sachse, Pierre; Furtner, Marco

    2015-01-01

    Previous findings suggest that visual working memory (VWM) preferentially remembers angry looking faces. However, the meaning of facial actions is construed in relation to context. To date, there are no studies investigating the role of perceiver-based context when processing emotional cues in VWM. To explore the influence of affective context on VWM for faces, we conducted two experiments using both a VWM task for emotionally expressive faces and a mood induction procedure. Affective context was manipulated by unpleasant (Experiment 1) and pleasant (Experiment 2) IAPS pictures in order to induce an affect high in motivational intensity (defensive or appetitive, respectively) compared to a low arousal control condition. Results indicated specifically increased sensitivity of VWM for angry looking faces in the neutral condition. Enhanced VWM for angry faces was prevented by inducing affects of high motivational intensity. In both experiments, affective states led to a switch from specific enhancement of angry expressions in VWM to an equally sensitive representation of all emotional expressions. Our findings demonstrate that emotional expressions are of different behavioral relevance for the receiver depending on the affective context, supporting a functional organization of VWM along with flexible resource allocation. In VWM, stimulus processing adjusts to situational requirements and transitions from a specifically prioritizing default mode in predictable environments to a sensitive, hypervigilant mode in exposure to emotional events. PMID:26379609

  12. Sensitivity analysis of a model of CO{sub 2} exchange in tundra ecosystems by the adjoint method

    SciTech Connect

    Waelbroeck, C.; Louis, J.F.

    1995-02-20

    A model of net primary production (NPP), decomposition, and nitrogen cycling in tundra ecosystems has been developed. The adjoint technique is used to study the sensitivity of the computed annual net CO{sub 2} flux to perturbations in initial conditions, climatic inputs, and model`s main parameters describing current seasonal CO{sub 2} exchange in wet sedge tundra at Barrow, Alaska. The results show that net CO{sub 2} flux is more sensitive to decomposition parameters than to NPP parameters. This underlines the fact that in nutrient-limited ecosystems, decomposition drives net CO{sub 2} exchange by controlling mineralization of main nutrients. The results also indicate that the short-term (1 year) response of wet sedge tundra to CO{sub 2}-induced warming is a significant increase in CO{sub 2} emission, creating a positive feedback to atmospheric CO{sub 2} accumulation. However, a cloudiness increase during the same year can severely alter this response and lead to either a slight decrease or a strong increase in emitted CO{sub 2}, depending on its exact timing. These results demonstrate that the adjoint method is well suited to study systems encountering regime changes, as a single run of the adjoint model provides sensitivities of the net CO{sub 2} flux to perturbations in all parameters and variables at any time of the year. Moreover, it is shown that large errors due to the presence of thresholds can be avoided by first delimiting the range of applicability of the adjoint results. 38 refs., 10 figs., 7 tabs.

  13. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota.

    PubMed

    Constable, Andrew J; Melbourne-Thomas, Jessica; Corney, Stuart P; Arrigo, Kevin R; Barbraud, Christophe; Barnes, David K A; Bindoff, Nathaniel L; Boyd, Philip W; Brandt, Angelika; Costa, Daniel P; Davidson, Andrew T; Ducklow, Hugh W; Emmerson, Louise; Fukuchi, Mitsuo; Gutt, Julian; Hindell, Mark A; Hofmann, Eileen E; Hosie, Graham W; Iida, Takahiro; Jacob, Sarah; Johnston, Nadine M; Kawaguchi, So; Kokubun, Nobuo; Koubbi, Philippe; Lea, Mary-Anne; Makhado, Azwianewi; Massom, Rob A; Meiners, Klaus; Meredith, Michael P; Murphy, Eugene J; Nicol, Stephen; Reid, Keith; Richerson, Kate; Riddle, Martin J; Rintoul, Stephen R; Smith, Walker O; Southwell, Colin; Stark, Jonathon S; Sumner, Michael; Swadling, Kerrie M; Takahashi, Kunio T; Trathan, Phil N; Welsford, Dirk C; Weimerskirch, Henri; Westwood, Karen J; Wienecke, Barbara C; Wolf-Gladrow, Dieter; Wright, Simon W; Xavier, Jose C; Ziegler, Philippe

    2014-10-01

    Antarctic and Southern Ocean (ASO) marine ecosystems have been changing for at least the last 30 years, including in response to increasing ocean temperatures and changes in the extent and seasonality of sea ice; the magnitude and direction of these changes differ between regions around Antarctica that could see populations of the same species changing differently in different regions. This article reviews current and expected changes in ASO physical habitats in response to climate change. It then reviews how these changes may impact the autecology of marine biota of this polar region: microbes, zooplankton, salps, Antarctic krill, fish, cephalopods, marine mammals, seabirds, and benthos. The general prognosis for ASO marine habitats is for an overall warming and freshening, strengthening of westerly winds, with a potential pole-ward movement of those winds and the frontal systems, and an increase in ocean eddy activity. Many habitat parameters will have regionally specific changes, particularly relating to sea ice characteristics and seasonal dynamics. Lower trophic levels are expected to move south as the ocean conditions in which they are currently found move pole-ward. For Antarctic krill and finfish, the latitudinal breadth of their range will depend on their tolerance of warming oceans and changes to productivity. Ocean acidification is a concern not only for calcifying organisms but also for crustaceans such as Antarctic krill; it is also likely to be the most important change in benthic habitats over the coming century. For marine mammals and birds, the expected changes primarily relate to their flexibility in moving to alternative locations for food and the energetic cost of longer or more complex foraging trips for those that are bound to breeding colonies. Few species are sufficiently well studied to make comprehensive species-specific vulnerability assessments possible. Priorities for future work are discussed.

  14. An Adjoint Sensitivity Analysis of the South Portion of the California Current and Ecosystem Using ROMS

    NASA Astrophysics Data System (ADS)

    Moore, A. M.; Dilorenzo, E.; Arango, H. G.; Lewis, C. V.; Powell, T. M.; Miller, A. J.; Cornuelle, B. D.

    2005-12-01

    The adjoint of the tangent linear version of the Regional Ocean Modeling System (ROMS) coupled to a four component nitrogen-based trophic model (NPZD) has been used to explore the sensitivity of various physical and biological aspects of the southern arm of the California Current system to linear variations in the physical and biological attributes of the system. The aspects of the system of interest are characterized by suitably defined indices of variability that include measures of coastal upwelling, eddy kinetic energy, and biological tracer concentrations. The adjoint approach is particularly well suited to this kind of analysis because all of the model linear sensitivities can be computed from a single integration of the adjoint model for each index. The adjoint model provides two- and three-dimensional, time-dependent fields of sensitivity from which clear signatures of processes such as advection and instability can be identified. By comparing the sensitivities that arise from perturbing different physical variables in an appropriate way, the relative importance of different physical and biological processes and their potential to control a chosen index can be determined. We will show examples of such adjoint sensitivity analyses for the coupled physical-biological model computed in this way, and discuss their implications.

  15. [Multi-scenario simulation and prediction of ecosystem services as affected by urban expansion: A case study in coastal area of Tianjin, North China].

    PubMed

    Huang, Huan-Chun; Yun, Ying-Xia; Miao, Zhan-Tang; Hao, Cui; Li, Hong-yuan

    2013-03-01

    Based on the modified Logistic-CA model, and taking the coastal area of Tianjin as a case, this paper simulated the spatial evolution patterns of ecosystem services as affected by the urban expansion in 2011-2020 under the scenarios of historical extrapolation, endogenous development, and exogenous development. Overall, the total ecosystem services of the study area under the three scenarios were generally the same, and the functional region with the lowest level ecosystem services had the identical spatial pattern. However, the spatial evolution patterns of the ecosystem services of the study area under the three scenarios had a great difference. The functional regions with lower-level ecosystem services grew in a cross-shaped pattern, with the Tanggu downtown as a center, and finally formed a full connectivity area along the Haihe River and coastal zone.

  16. Peer Rated Therapeutic Talent and Affective Sensitivity: A Multiple Regression Approach.

    ERIC Educational Resources Information Center

    Jackson, Eugene

    1985-01-01

    Used peer rated measures of Warmth, Understanding and Openness to predict scores on the Kagan Affective Sensitivity Scale-E80 among 66 undergraduates who had participated in interpersonal skills training groups. Results indicated that, as an additively composite index of Therapeutic Talent, they were positively correlated with affective…

  17. Encapsulating contact allergens in liposomes, ethosomes, and polycaprolactone may affect their sensitizing properties.

    PubMed

    Madsen, Jakob Torp; Vogel, Stefan; Johansen, Jeanne Duus; Andersen, Klaus Ejner

    2011-06-01

    Attempts to improve formulation of topical products are a continuing process and the development of micro- and nanovesicular systems as well as polymeric microparticles has led to marketing of topical drugs and cosmetics using these technologies. Encapsulation of some well-known contact allergens in ethanolic liposomes have been reported to enhance allergenicity compared with the allergens in similar vehicles without liposomes. The present report includes data on more sensitization studies using the mouse local lymph node assay with three contact allergens encapsulated in different dermal drug-delivery systems: liposomes, ethosomes, and polycaprolactone particles. The results show that the drug-delivery systems are not sensitizers in themselves. Encapsulating the hydrophilic contact allergen potassium dichromate in all three drug-delivery systems did not affect the sensitizing capacity of potassium dichromate compared with control solutions. However, encapsulating the lipophilic contact allergen dinitrochlorobenzene (DNCB) in polycaprolactone reduced the sensitizing capacity to 1211 ± 449 compared with liposomes (7602 ± 2658) and in acetone:olive oil (4:1) (5633 ± 666). The same trend was observed for encapsulating isoeugenol in polycaprolactone (1100 ± 406) compared with a formulation in acetone:olive oil (4491 ± 819) and in liposomes (3668 ± 950). Further, the size of DNCB-loaded liposomes did not affect the sensitizing properties. These results suggest that modern dermal drug-delivery systems may in some cases magnify or decrease the sensitizing capacity of the encapsulated contact allergen.

  18. Ivermectin sensitivity is an ancient trait affecting all ecdysozoa but shows phylogenetic clustering among sepsid flies

    PubMed Central

    Puniamoorthy, Nalini; Schäfer, Martin A; Römbke, Jörg; Meier, Rudolf; Blanckenhorn, Wolf U

    2014-01-01

    Avermectins are potent and popular veterinary pharmaceuticals used globally to fight parasites of livestock and humans. By disturbing ion channel transport through the membrane, avermectins are effective against endo- and ectoparasitic round and horsehair worms (Nematoida), insects, or ticks (Arthropoda), but not against Plathelminthes, including flatworms (Trematoda) and tapeworms (Cestoda), or segmented worms (Annelida). Unfortunately, excreted avermectins have strong nontarget effects on beneficial arthropods such as the insect community decomposing livestock dung, ultimately impeding this important ecosystem function to the extent that regulators mandate standardized eco-toxicological tests of dung organisms worldwide. We show that the ancient phylogenetic pattern and qualitative mechanism of avermectin sensitivity is conserved and compatible with most recent phylogenomic hypotheses grouping the Nematoida with the Arthropoda as Ecdysozoa (molting animals). At the species level, we demonstrate phylogenetic clustering in ivermectin sensitivities of 23 species of sepsid dung flies (Diptera: Sepsidae). This clustered 500-fold quantitative variation in sensitivity may indicate recent lineage-specific responses to selection, but more likely reflects pre-existing genetic variation with pleiotropic effects on eco-toxicological responses to pollutants. Regardless, our results question the common practice in eco-toxicology of choosing single test species to infer detrimental effects on entire species communities, which should ideally assess a representative taxonomic sample. PMID:24944568

  19. Ecosystem Screening Approach for Pathogen-Associated Microorganisms Affecting Host Disease▿†

    PubMed Central

    Galiana, Eric; Marais, Antoine; Mura, Catherine; Industri, Benoît; Arbiol, Gilles; Ponchet, Michel

    2011-01-01

    The microbial community in which a pathogen evolves is fundamental to disease outcome. Species interacting with a pathogen on the host surface shape the distribution, density, and genetic diversity of the inoculum, but the role of these species is rarely determined. The screening method developed here can be used to characterize pathogen-associated species affecting disease. This strategy involves three steps: (i) constitution of the microbial community, using the pathogen as a trap; (ii) community selection, using extracts from the pathogen as the sole nutrient source; and (iii) molecular identification and the screening of isolates focusing on their effects on the growth of the pathogen in vitro and host disease. This approach was applied to a soilborne plant pathogen, Phytophthora parasitica, structured in a biofilm, for screening the microbial community from the rhizosphere of Nicotiana tabacum (the host). Two of the characterized eukaryotes interfered with the oomycete cycle and may affect the host disease. A Vorticella species acted through a mutualistic interaction with P. parasitica, disseminating pathogenic material by leaving the biofilm. A Phoma species established an amensal interaction with P. parasitica, strongly suppressing disease by inhibiting P. parasitica germination. This screening method is appropriate for all nonobligate pathogens. It allows the definition of microbial species as promoters or suppressors of a disease for a given biotope. It should also help to identify important microbial relationships for ecology and evolution of pathogens. PMID:21742919

  20. Ecosystem screening approach for pathogen-associated microorganisms affecting host disease.

    PubMed

    Galiana, Eric; Marais, Antoine; Mura, Catherine; Industri, Benoît; Arbiol, Gilles; Ponchet, Michel

    2011-09-01

    The microbial community in which a pathogen evolves is fundamental to disease outcome. Species interacting with a pathogen on the host surface shape the distribution, density, and genetic diversity of the inoculum, but the role of these species is rarely determined. The screening method developed here can be used to characterize pathogen-associated species affecting disease. This strategy involves three steps: (i) constitution of the microbial community, using the pathogen as a trap; (ii) community selection, using extracts from the pathogen as the sole nutrient source; and (iii) molecular identification and the screening of isolates focusing on their effects on the growth of the pathogen in vitro and host disease. This approach was applied to a soilborne plant pathogen, Phytophthora parasitica, structured in a biofilm, for screening the microbial community from the rhizosphere of Nicotiana tabacum (the host). Two of the characterized eukaryotes interfered with the oomycete cycle and may affect the host disease. A Vorticella species acted through a mutualistic interaction with P. parasitica, disseminating pathogenic material by leaving the biofilm. A Phoma species established an amensal interaction with P. parasitica, strongly suppressing disease by inhibiting P. parasitica germination. This screening method is appropriate for all nonobligate pathogens. It allows the definition of microbial species as promoters or suppressors of a disease for a given biotope. It should also help to identify important microbial relationships for ecology and evolution of pathogens.

  1. Linking temperature sensitivity of soil CO2 release to substrate, environmental, and microbial properties across alpine ecosystems

    NASA Astrophysics Data System (ADS)

    Ding, Jinzhi; Chen, Leiyi; Zhang, Beibei; Liu, Li; Yang, Guibiao; Fang, Kai; Chen, Yongliang; Li, Fei; Kou, Dan; Ji, Chengjun; Luo, Yiqi; Yang, Yuanhe

    2016-09-01

    Our knowledge of fundamental drivers of the temperature sensitivity (Q10) of soil carbon dioxide (CO2) release is crucial for improving the predictability of soil carbon dynamics in Earth System Models. However, patterns and determinants of Q10 over a broad geographic scale are not fully understood, especially in alpine ecosystems. Here we addressed this issue by incubating surface soils (0-10 cm) obtained from 156 sites across Tibetan alpine grasslands. Q10 was estimated from the dynamics of the soil CO2 release rate under varying temperatures of 5-25°C. Structure equation modeling was performed to evaluate the relative importance of substrate, environmental, and microbial properties in regulating the soil CO2 release rate and Q10. Our results indicated that steppe soils had significantly lower CO2 release rates but higher Q10 than meadow soils. The combination of substrate properties and environmental variables could predict 52% of the variation in soil CO2 release rate across all grassland sites and explained 37% and 58% of the variation in Q10 across the steppe and meadow sites, respectively. Of these, precipitation was the best predictor of soil CO2 release rate. Basal microbial respiration rate (B) was the most important predictor of Q10 in steppe soils, whereas soil pH outweighed B as the major regulator in meadow soils. These results demonstrate that carbon quality and environmental variables coregulate Q10 across alpine ecosystems, implying that modelers can rely on the "carbon-quality temperature" hypothesis for estimating apparent temperature sensitivities, but relevant environmental factors, especially soil pH, should be considered in higher-productivity alpine regions.

  2. African dust carries microbes across the ocean: are they affecting human and ecosystem health?

    USGS Publications Warehouse

    Kellogg, Christina A.; Griffin, Dale W.

    2003-01-01

    Atmospheric transport of dust from northwest Africa to the western Atlantic Ocean region may be responsible for a number of environmental hazards, including the demise of Caribbean corals; red tides; amphibian diseases; increased occurrence of asthma in humans; and oxygen depletion (eutrophication) in estuaries. Studies of satellite images suggest that hundreds of millions of tons of dust are trans-ported annually at relatively low altitudes across the Atlantic Ocean to the Caribbean Sea and southeastern United States. The dust emanates from the expanding Sahara/Sahel desert region in Africa and carries a wide variety of bacteria and fungi. The U.S. Geological Survey, in collaboration with the NASA/Goddard Spaceflight Center, is conducting a study to identify microbes--bacteria, fungi, viruses--transported across the Atlantic in African soil dust. Each year, millions of tons of desert dust blow off the west African coast and ride the trade winds across the ocean, affecting the entire Caribbean basin, as well as the southeastern United States. Of the dust reaching the U.S., Florida receives about 50 percent, while the rest may range as far north as Maine or as far west as Colorado. The dust storms can be tracked by satellite and take about one week to cross the Atlantic.

  3. Identification of nonviable genes affecting touch sensitivity in Caenorhabditis elegans using neuronally enhanced feeding RNA interference.

    PubMed

    Chen, Xiaoyin; Cuadros, Margarete Diaz; Chalfie, Martin

    2015-01-09

    Caenorhabditis elegans senses gentle touch along the body via six touch receptor neurons. Although genetic screens and microarray analyses have identified several genes needed for touch sensitivity, these methods miss pleiotropic genes that are essential for the viability, movement, or fertility of the animals. We used neuronally enhanced feeding RNA interference to screen genes that cause lethality or paralysis when mutated, and we identified 61 such genes affecting touch sensitivity, including five positive controls. We confirmed 18 genes by using available alleles, and further studied one of them, tag-170, now renamed txdc-9. txdc-9 preferentially affects anterior touch response but is needed for tubulin acetylation and microtubule formation in both the anterior and posterior touch receptor neurons. Our results indicate that neuronally enhanced feeding RNA interference screens complement traditional mutageneses by identifying additional nonviable genes needed for specific neuronal functions.

  4. Applying the Cognitive-Affective Processing Systems Approach to Conceptualizing Rejection Sensitivity

    PubMed Central

    Ayduk, Özlem; Gyurak, Anett

    2009-01-01

    The Cognitive-Affective Processing Systems or CAPS theory (Mischel & Shoda, 1995) was proposed to account for the processes that explain why and how people’s behavior varies stably across situations. Research on Rejection Sensitivity is reviewed as a programmatic attempt to illustrate how personality dispositions can be studied within the CAPS framework. This research reveals an if … then … (e.g., if situation X, he does A, but if situation Y, he does B) pattern of rejection sensitivity such that high rejection sensitive people’s goal to prevent rejection can lead to accommodating behavior; yet, the failure to achieve this goal can lead to aggression, reactivity, and lack of self-concept clarity. These situation–behavior relations or personality signatures reflect a stable activation network of distinctive personality processing dynamics. These dynamics link fears and expectations of rejection, perceptions/attributions of rejection, and affective/behavioral overreactions to perceived rejection. Self-regulatory and attentional mechanisms may interact with these dynamics as buffers against high rejection sensitivity, illustrating how multiple processes within a CAPS network play out in behavior. PMID:19890458

  5. Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream.

    PubMed

    Mora-Gómez, Juanita; Elosegi, Arturo; Duarte, Sofia; Cássio, Fernanda; Pascoal, Cláudia; Romaní, Anna M

    2016-08-01

    Microorganisms are key drivers of leaf litter decomposition; however, the mechanisms underlying the dynamics of different microbial groups are poorly understood. We investigated the effects of seasonal variation and invertebrates on fungal and bacterial dynamics, and on leaf litter decomposition. We followed the decomposition of Populus nigra litter in a Mediterranean stream through an annual cycle, using fine and coarse mesh bags. Irrespective of the season, microbial decomposition followed two stages. Initially, bacterial contribution to total microbial biomass was higher compared to later stages, and it was related to disaccharide and lignin degradation; in a later stage, bacteria were less important and were associated with hemicellulose and cellulose degradation, while fungi were related to lignin decomposition. The relevance of microbial groups in decomposition differed among seasons: fungi were more important in spring, whereas in summer, water quality changes seemed to favour bacteria and slowed down lignin and hemicellulose degradation. Invertebrates influenced litter-associated microbial assemblages (especially bacteria), stimulated enzyme efficiencies and reduced fungal biomass. We conclude that bacterial and fungal assemblages play distinctive roles in microbial decomposition and differ in their sensitivity to environmental changes, ultimately affecting litter decomposition, which might be particularly relevant in highly seasonal ecosystems, such as intermittent streams.

  6. How Habitat Change and Rainfall Affect Dung Beetle Diversity in Caatinga, a Brazilian Semi-Arid Ecosystem

    PubMed Central

    Liberal, Carolina Nunes; de Farias, Ângela Maria Isidro; Meiado, Marcos Vinicius; Filgueiras, Bruno K. C.; Iannuzzi, Luciana

    2011-01-01

    The aim of the present study was to evaluate how dung beetle communities respond to both environment and rainfall in the Caatinga, a semi-arid ecosystem in northeastern Brazil. The communities were sampled monthly from May 2006 to April 2007 using pitfall traps baited with human feces in two environments denominated “land use area” and “undisturbed area.” Abundance and species richness were compared between the two environments and two seasons (dry and wet season) using a generalized linear model with a Poisson error distribution. Diversity was compared between the two environments (land use area and undisturbed area) and seasons (dry and wet) using the Two-Way ANOVA test. Non-metric multidimensional scaling was performed on the resemblance matrix of Bray-Curtis distances (with 1000 random restarts) to determine whether disturbance affected the abundance and species composition of the dung beetle communities. Spearman's correlation coefficient was used to determine whether rainfall was correlated with abundance and species richness. A total of 1097 specimens belonging to 13 species were collected. The most abundant and frequent species was Dichotomius geminatus Arrow (Coleoptera: Scarabaeidae). The environment exerted an influence over abundance. Abundance and diversity were affected by season, with an increase in abundance at the beginning of the wet season. The correlation coefficient values were high and significant for abundance and species richness, which were both correlated to rainfall. In conclusion, the restriction of species to some environments demonstrates the need to preserve these areas in order to avoid possible local extinction. Therefore, in extremely seasonable environments, such as the Caatinga, seasonal variation strongly affects dung beetle communities. PMID:22224924

  7. How habitat change and rainfall affect dung beetle diversity in Caatinga, a Brazilian semi-arid ecosystem.

    PubMed

    Liberal, Carolina Nunes; de Farias, Ângela Maria Isidro; Meiado, Marcos Vinicius; Filgueiras, Bruno K C; Iannuzzi, Luciana

    2011-01-01

    The aim of the present study was to evaluate how dung beetle communities respond to both environment and rainfall in the Caatinga, a semi-arid ecosystem in northeastern Brazil. The communities were sampled monthly from May 2006 to April 2007 using pitfall traps baited with human feces in two environments denominated "land use area" and "undisturbed area." Abundance and species richness were compared between the two environments and two seasons (dry and wet season) using a generalized linear model with a Poisson error distribution. Diversity was compared between the two environments (land use area and undisturbed area) and seasons (dry and wet) using the Two-Way ANOVA test. Non-metric multidimensional scaling was performed on the resemblance matrix of Bray-Curtis distances (with 1000 random restarts) to determine whether disturbance affected the abundance and species composition of the dung beetle communities. Spearman's correlation coefficient was used to determine whether rainfall was correlated with abundance and species richness. A total of 1097 specimens belonging to 13 species were collected. The most abundant and frequent species was Dichotomius geminatus Arrow (Coleoptera: Scarabaeidae). The environment exerted an influence over abundance. Abundance and diversity were affected by season, with an increase in abundance at the beginning of the wet season. The correlation coefficient values were high and significant for abundance and species richness, which were both correlated to rainfall. In conclusion, the restriction of species to some environments demonstrates the need to preserve these areas in order to avoid possible local extinction. Therefore, in extremely seasonable environments, such as the Caatinga, seasonal variation strongly affects dung beetle communities.

  8. A Screening-Level Approach for Comparing Risks Affecting Aquatic Ecosystem Services over Socio-Environmental Gradients

    NASA Astrophysics Data System (ADS)

    Harmon, T. C.; Conde, D.; Villamizar, S. R.; Reid, B.; Escobar, J.; Rusak, J.; Hoyos, N.; Scordo, F.; Perillo, G. M.; Piccolo, M. C.; Zilio, M.; Velez, M.

    2015-12-01

    Assessing risks to aquatic ecosystems services (ES) is challenging and time-consuming, and effective strategies for prioritizing more detailed assessment efforts are needed. We propose a screening-level risk analysis (SRA) approach that scales ES risk using socioeconomic and environmental indices to capture anthropic and climatic pressures, as well as the capacity for institutional responses to those pressures. The method considers ES within a watershed context, and uses expert input to prioritize key services and the associated pressures that threaten them. The SRA approach focuses on estimating ES risk affect factors, which are the sum of the intensity factors for all hazards or pressures affecting the ES. We estimate the pressure intensity factors in a novel manner, basing them on the nation's (i) human development (proxied by Inequality-adjusted Human Development Index, IHDI), (ii) environmental regulatory and monitoring state (Environmental Performance Index, EPI) and (iii) the current level of water stress in the watershed (baseline water stress, BWS). Anthropic intensity factors for future conditions are derived from the baseline values based on the nation's 10-year trend in IHDI and EPI; ES risks in nations with stronger records of change are rewarded more/penalized less in estimates for good/poor future management scenarios. Future climatic intensity factors are tied to water stress estimates based on two general circulation model (GCM) outcomes. We demonstrate the method for an international array of six sites representing a wide range of socio-environmental settings. The outcomes illustrate novel consequences of the scaling scheme. Risk affect factors may be greater in a highly developed region under intense climatic pressure, or in less well-developed regions due to human factors (e.g., poor environmental records). As a screening-level tool, the SRA approach offers considerable promise for ES risk comparisons among watersheds and regions so that

  9. The factors affecting improvement sensitivity, CDU, and resolution in EUV resist

    NASA Astrophysics Data System (ADS)

    Han, Joonhee; Lim, Hyun Soon; Kim, Jin Ho; Choi, Sumi; Shin, Jin Bong; Bae, Chang Wan; Yoo, In Young; Shin, Bong Ha; Lee, Eun Kyo; Joo, Hyun Sang; Seo, Dong Chul; Chun, Jun Sung

    2014-04-01

    The minimum target specificatons of EUV resist material are the resolution < 30nm half pitch C/H, CDU < 3.0nm, and sensitivity < 20mJ. The major pending issue of EUV resist is how to simultaneously achieve high sensitivity, high resolution and low CD Uniformity (CDU). Thus, we have studied that which factors such as acid diffusion, solvents, polymer platform and film density etc are affecting to improve CDU, sensitivity and resolution. Especially, CDU and sensitivity are the main issues among above these performances. With the results of these experiments, we could determine polymer blend PAG as polymer platform for EUV resist material. We have also researched polymer to improve the sensitivity and CDU with variation of molecular weight, poly dispersity and monomer feed ratio. Additionally, we have studied the effects of resist solvents and film density. And we have measured the outgas of our EUV resist. In this paper, we will discuss the results of these studies obtained by EUV tools of SEMATECH.

  10. Sensitivity Analysis of Corrosion Rate Prediction Models Utilized for Reinforced Concrete Affected by Chloride

    NASA Astrophysics Data System (ADS)

    Siamphukdee, Kanjana; Collins, Frank; Zou, Roger

    2013-06-01

    Chloride-induced reinforcement corrosion is one of the major causes of premature deterioration in reinforced concrete (RC) structures. Given the high maintenance and replacement costs, accurate modeling of RC deterioration is indispensable for ensuring the optimal allocation of limited economic resources. Since corrosion rate is one of the major factors influencing the rate of deterioration, many predictive models exist. However, because the existing models use very different sets of input parameters, the choice of model for RC deterioration is made difficult. Although the factors affecting corrosion rate are frequently reported in the literature, there is no published quantitative study on the sensitivity of predicted corrosion rate to the various input parameters. This paper presents the results of the sensitivity analysis of the input parameters for nine selected corrosion rate prediction models. Three different methods of analysis are used to determine and compare the sensitivity of corrosion rate to various input parameters: (i) univariate regression analysis, (ii) multivariate regression analysis, and (iii) sensitivity index. The results from the analysis have quantitatively verified that the corrosion rate of steel reinforcement bars in RC structures is highly sensitive to corrosion duration time, concrete resistivity, and concrete chloride content. These important findings establish that future empirical models for predicting corrosion rate of RC should carefully consider and incorporate these input parameters.

  11. Factors associated with dietary habits and mood states affecting taste sensitivity in Japanese college women.

    PubMed

    Karita, Kanae; Harada, Matsuko; Yoshida, Masao; Kokaze, Akatsuki

    2012-01-01

    We conducted a cross-sectional survey to evaluate the factors associated with dietary habits and mood states affecting taste sensitivity in 127 Japanese college women with a mean age of 19.2 y. Differential thresholds for the four basic tastes on the tongue were determined by the filter paper disc method, while dietary intake was assessed using a food frequency questionnaire. Psychological mood states were evaluated by the Profile of Mood State (POMS) questionnaire. Differential thresholds for saltiness and bitterness in alcohol drinkers were higher than those in alcohol non drinkers, whereas differential thresholds for the other tastes did not differ significantly between any of the stratified groups. Canonical correlation analysis revealed that among the five POMS mood states, POMS fatigue scores showed relatively stronger association with combined variables of taste thresholds. Logistic regression analysis revealed significant involvement of zinc and iron intake, and that POMS fatigue and anger scores affected the differential threshold for sourness. Specific mood and dietary factors were shown to be associated with sensitivity to sourness and bitterness. Among the five POMS mood states, high POMS fatigue scores and low POMS anger scores appeared to be associated with decreased taste sensitivity.

  12. Fractionating negative and positive affectivity in handedness: Insights from the Reinforcement Sensitivity Theory of personality.

    PubMed

    Beaton, Alan A; Mutinelli, Sofia; Corr, Philip J

    2016-07-28

    The Annett Hand Preference Questionnaire (AHPQ), as modified by Briggs and Nebes [(1975). Patterns of hand preference in a student population. Cortex, 11(3), 230-238. doi: 10.1016/s0010-9452(75)80005-0 ], was administered to a sample of 177 participants alongside the Reinforcement Sensitivity Theory of Personality Questionnaire [RST-PQ; Corr, P. J., & Cooper, A. (2016). The Reinforcement Sensitivity Theory of Personality Questionnaire (RST-PQ): Development and validation. Psychological Assessment. doi: 10.1037/pas000 ], which measures two factors of defensive negative emotion, motivation and affectivity-the Behavioural Inhibition System (BIS) and the Fight-Flight-Freeze System (FFFS)-and one positive-approach dimension related to reward sensitivity, persistence and reactivity-the Behavioural Approach System. We sought to clarify the nature of negative, and positive, affectivity in relation to handedness. ANOVAs and multiple regression analyses converged on the following conclusions: left-handers were higher on the BIS, not the FFFS, than right-handers; in right-handers only, strength of hand preference was positively correlated with the FFFS, not the BIS. The original assessment method proposed by Annett was also used to assess handedness, but associations with RST-PQ factors were not found. These findings help us to clarify existing issues in the literature and raise new ones for future research.

  13. Factors affecting sensitivity and specificity of a diagnostic test: the exercise thallium scintigram

    SciTech Connect

    Detrano, R.; Janosi, A.; Lyons, K.P.; Marcondes, G.; Abbassi, N.; Froelicher, V.F.

    1988-04-01

    Technical and methodological factors might affect the reported accuracies of diagnostic tests. To assess their influence on the accuracy of exercise thallium scintigraphy, the medical literature (1977 to 1986) was non-selectively searched and meta-analysis was applied to the 56 publications thus retrieved. These were analyzed for year of publication, sex and mean age of patients, percentage of patients with angina pectoris, percentage of patients with prior myocardial infarction, percentage of patients taking beta-blocking medications, and for angiographic referral (workup) bias, blinding of tests, and technical factors. The percentage of patients with myocardial infarction had the highest correlation with sensitivity (0.45, p = 0.0007). Only the inclusion of subjects with prior infarction and the percentage of men in the study group were independently and significantly (p less than 0.05) related to test sensitivity. Both the presence of workup bias and publication year adversely affected specificity (p less than 0.05). Of these two factors, publication year had the strongest association by stepwise linear regression. This analysis suggests that the reported sensitivity of thallium scintigraphy is higher and the specificity lower than that expected in clinical practice because of the presence of workup bias and the inappropriate inclusion of post-infarct patients.

  14. Factors Affecting Trophic Control of Community Structure and Ecosystem Functioning in Experimental Mesocosms of Seagrass (Zostera marina L.)

    NASA Astrophysics Data System (ADS)

    Lefcheck, J.; Duffy, J.

    2008-12-01

    Nutrient loading of coastal and estuarine waters threatens seagrass communities by promoting the growth of micro- and macroalgae, which then reduce the availability of light and nutrients. However, populations of invertebrate mesograzers are able to mitigate the negative impact of eutrophication through top-down control. We performed a factorial mesocosm experiment to examine the interactive relationships between light, nutrients, and mesograzer presence in structuring experimental ecosystems of eelgrass (Zostera marina). We found that mesograzer presence strongly reduced epiphytic algal biomass in every case, which remains consistent with previous mesocosm studies. We also observed a synergistic light-by-nutrient interaction that enhanced both epiphyte biomass and mesograzer abundance. The timing of this relationship is suggestive of weaker bottom-up control. Unlike previous studies, we found that light alone rarely affected either epiphyte biomass or mesograzer abundance. We believe that this result may be due to a combination of macroalgal shading and persistent grazing. Further processing of primary and secondary producer biomasses and elemental ratios, as well as the completion of feeding assays to gauge mesograzer feeding rates on different types of algae, will serve to reinforce these conclusions and to better define the relationship between these factors.

  15. Cellular glycosylation affects Herceptin binding and sensitivity of breast cancer cells to doxorubicin and growth factors

    PubMed Central

    Peiris, Diluka; Spector, Alexander F.; Lomax-Browne, Hannah; Azimi, Tayebeh; Ramesh, Bala; Loizidou, Marilena; Welch, Hazel; Dwek, Miriam V.

    2017-01-01

    Alterations in protein glycosylation are a key feature of oncogenesis and have been shown to affect cancer cell behaviour perturbing cell adhesion, favouring cell migration and metastasis. This study investigated the effect of N-linked glycosylation on the binding of Herceptin to HER2 protein in breast cancer and on the sensitivity of cancer cells to the chemotherapeutic agent doxorubicin (DXR) and growth factors (EGF and IGF-1). The interaction between Herceptin and recombinant HER2 protein and cancer cell surfaces (on-rate/off-rate) was assessed using a quartz crystal microbalance biosensor revealing an increase in the accessibility of HER2 to Herceptin following deglycosylation of cell membrane proteins (deglycosylated cells Bmax: 6.83 Hz; glycosylated cells Bmax: 7.35 Hz). The sensitivity of cells to DXR and to growth factors was evaluated using an MTT assay. Maintenance of SKBR-3 cells in tunicamycin (an inhibitor of N-linked glycosylation) resulted in an increase in sensitivity to DXR (0.1 μM DXR P < 0.001) and a decrease in sensitivity to IGF-1 alone and to IGF-1 supplemented with EGF (P < 0.001). This report illustrates the importance of N-linked glycosylation in modulating the response of cancer cells to chemotherapeutic and biological treatments and highlights the potential of glycosylation inhibitors as future combination treatments for breast cancer. PMID:28223691

  16. Sex differences in the perception of affective facial expressions: do men really lack emotional sensitivity?

    PubMed

    Montagne, Barbara; Kessels, Roy P C; Frigerio, Elisa; de Haan, Edward H F; Perrett, David I

    2005-06-01

    There is evidence that men and women display differences in both cognitive and affective functions. Recent studies have examined the processing of emotions in males and females. However, the findings are inconclusive, possibly the result of methodological differences. The aim of this study was to investigate the perception of emotional facial expressions in men and women. Video clips of neutral faces, gradually morphing into full-blown expressions were used. By doing this, we were able to examine both the accuracy and the sensitivity in labelling emotional facial expressions. Furthermore, all participants completed an anxiety and a depression rating scale. Research participants were 40 female students and 28 male students. Results revealed that men were less accurate, as well as less sensitive in labelling facial expressions. Thus, men show an overall worse performance compared to women on a task measuring the processing of emotional faces. This result is discussed in relation to recent findings.

  17. Behavioral and self-reported sensitivity to reward are linked to stress-related differences in positive affect.

    PubMed

    Corral-Frías, Nadia S; Nadel, Lynn; Fellous, Jean-Marc; Jacobs, W Jake

    2016-04-01

    Despite the high prevalence of stress exposure healthy adaptation or resilience is a common response. Theoretical work and recent empirical evidence suggest that a robust reward system, in part, supports healthy adaptation by preserving positive emotions even under exceptionally stressful circumstances. We tested this prediction by examining empirical relations among behavioral and self-reported measures of sensitivity to reward, trait resilience, and measures of affect in the context of experimentally induced stress. Using a quasi-experimental design we obtained measures of sensitivity to reward (self-report and behavioral), as well as affective and physiological responses to experimental psychosocial stress in a sample of 140 healthy college-age participants. We used regression-based moderation and mediational models to assess associations among sensitivity to reward, affect in the context of stress, and trait resilience and found that an interaction between exposure to experimental stress and self-reported sensitivity to reward predicted positive affect following experimental procedure. Participants with high sensitivity to reward reported higher positive affect following stress. Moreover, positive affect during or after stress mediated the relation between sensitivity to reward and trait resilience. Consistent with the prediction that a robust reward system serves as a protective factor against stress-related negative outcomes, our results found predictive associations among sensitivity to reward, positive affect, and resilience.

  18. TEMPERATURE SENSITIVITY OF SOIL RESPIRATION AND ITS EFFECTS ON ECOSYSTEM CARBON BUDGET: NONLINEARITY BEGETS SURPRISES. (R827676)

    EPA Science Inventory

    Nonlinearity is a salient feature in all complex systems, and it certainly characterizes biogeochemical cycles in ecosystems across a wide range of scales. Soil carbon emission is a major source of uncertainty in estimating the terrestrial carbon budget at the ecosystem level ...

  19. Impacts of biological parameterization, initial conditions, and environmental forcing on parameter sensitivity and uncertainty in a marine ecosystem model for the Bering Sea

    NASA Astrophysics Data System (ADS)

    Gibson, G. A.; Spitz, Y. H.

    2011-11-01

    We use a series of Monte Carlo experiments to explore simultaneously the sensitivity of the BEST marine ecosystem model to environmental forcing, initial conditions, and biological parameterizations. Twenty model output variables were examined for sensitivity. The true sensitivity of biological and environmental parameters becomes apparent only when each parameter is allowed to vary within its realistic range. Many biological parameters were important only to their corresponding variable, but several biological parameters, e.g., microzooplankton grazing and small phytoplankton doubling rate, were consistently very important to several output variables. Assuming realistic biological and environmental variability, the standard deviation about simulated mean mesozooplankton biomass ranged from 1 to 14 mg C m - 3 during the year. Annual primary productivity was not strongly correlated with temperature but was positively correlated with initial nitrate and light. Secondary productivity was positively correlated with primary productivity and negatively correlated with spring bloom timing. Mesozooplankton productivity was not correlated with water temperature, but a shift towards a system in which smaller zooplankton undertake a greater proportion of the secondary production as the water temperature increases appears likely. This approach to incorporating environmental variability within a sensitivity analysis could be extended to any ecosystem model to gain confidence in climate-driven ecosystem predictions.

  20. Emergent climate and CO2 sensitivities of net primary productivity in ecosystem models do not agree with empirical data in temperate forests of eastern North America.

    PubMed

    Rollinson, Christine R; Liu, Yao; Raiho, Ann; Moore, David J P; McLachlan, Jason; Bishop, Daniel A; Dye, Alex; Matthes, Jaclyn H; Hessl, Amy; Hickler, Thomas; Pederson, Neil; Poulter, Benjamin; Quaife, Tristan; Schaefer, Kevin; Steinkamp, Jörg; Dietze, Michael C

    2017-01-13

    Ecosystem models show divergent responses of the terrestrial carbon cycle to global change over the next century. Individual model evaluation and multimodel comparisons with data have largely focused on individual processes at subannual to decadal scales. Thus far, data-based evaluations of emergent ecosystem responses to climate and CO2 at multidecadal and centennial timescales have been rare. We compared the sensitivity of net primary productivity (NPP) to temperature, precipitation, and CO2 in ten ecosystem models with the sensitivities found in tree-ring reconstructions of NPP and raw ring-width series at six temperate forest sites. These model-data comparisons were evaluated at three temporal extents to determine whether the rapid, directional changes in temperature and CO2 in the recent past skew our observed responses to multiple drivers of change. All models tested here were more sensitive to low growing season precipitation than tree-ring NPP and ring widths in the past 30 years, although some model precipitation responses were more consistent with tree rings when evaluated over a full century. Similarly, all models had negative or no response to warm-growing season temperatures, while tree-ring data showed consistently positive effects of temperature. Although precipitation responses were least consistent among models, differences among models to CO2 drive divergence and ensemble uncertainty in relative change in NPP over the past century. Changes in forest composition within models had no effect on climate or CO2 sensitivity. Fire in model simulations reduced model sensitivity to climate and CO2 , but only over the course of multiple centuries. Formal evaluation of emergent model behavior at multidecadal and multicentennial timescales is essential to reconciling model projections with observed ecosystem responses to past climate change. Future evaluation should focus on improved representation of disturbance and biomass change as well as the feedbacks

  1. Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest

    NASA Astrophysics Data System (ADS)

    Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye

    2016-11-01

    Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest.

  2. Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest

    PubMed Central

    Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye

    2016-01-01

    Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest. PMID:27857198

  3. Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest.

    PubMed

    Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye

    2016-11-18

    Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest.

  4. Hydraulic redistribution of soil water by roots affects whole-stand evapotranspiration and net ecosystem carbon exchange.

    PubMed

    Domec, Jean-Christophe; King, John S; Noormets, Asko; Treasure, Emrys; Gavazzi, Michael J; Sun, Ge; McNulty, Steven G

    2010-07-01

    *Hydraulic redistribution (HR) of water via roots from moist to drier portions of the soil occurs in many ecosystems, potentially influencing both water use and carbon assimilation. *By measuring soil water content, sap flow and eddy covariance, we investigated the temporal variability of HR in a loblolly pine (Pinus taeda) plantation during months of normal and below-normal precipitation, and examined its effects on tree transpiration, ecosystem water use and carbon exchange. *The occurrence of HR was explained by courses of reverse flow through roots. As the drought progressed, HR maintained soil moisture above 0.15 cm(3) cm(-3) and increased transpiration by 30-50%. HR accounted for 15-25% of measured total site water depletion seasonally, peaking at 1.05 mm d(-1). The understory species depended on water redistributed by the deep-rooted overstory pine trees for their early summer water supply. Modeling carbon flux showed that in the absence of HR, gross ecosystem productivity and net ecosystem exchange could be reduced by 750 and 400 g C m(-2) yr(-1), respectively. *Hydraulic redistribution mitigated the effects of soil drying on understory and stand evapotranspiration and had important implications for net primary productivity by maintaining this whole ecosystem as a carbon sink.

  5. Photocontrol of Anthocyanin Synthesis: VII. Factors Affecting the Spectral Sensitivity of Anthocyanin Synthesis in Young Seedlings.

    PubMed

    Mancinelli, A L; Walsh, L

    1979-05-01

    Light-dependent anthocyanin synthesis is a typical high irradiance response (HIR) of plant photomorphogenesis. The spectral sensitivity of this response in young seedlings of cabbage and tomato is strongly affected by the length and mode of application of the light treatments. This observation suggests that the different experimental conditions, used in different action spectroscopy studies, might have been responsible, at least in part, for some of the reported differences in the characteristics of the HIR action spectra of different response-system combinations. In both cabbage and tomato, the values of the far red/blue, far red/red, and blue/red action ratios increase with increasing durations of the light treatments; this finding is in agreement with hypotheses of K. M. Hartmann (1966, 1967) and E. Schäfer (1975) for phytochrome action in the HIR. The similarity in the trend of change of the values of the action ratios suggests the possibility that the photomorphogenic pigment system, involved in the photoregulation of anthocyanin synthesis, may be the same in cabbage and tomato, even though there are some differences in the spectral sensitivity of the response between the two species.

  6. Strength Training Does Not Affect Vagal-cardiac Control or Cardiovagal Baroreflex Sensitivity in Young Healthy Subjects

    DTIC Science & Technology

    2005-03-01

    ORIGINAL ARTICLE William H. Cooke Æ Jason R. Carter Strength training does not affect vagal– cardiac control or cardiovagal baroreflex sensitivity in...to test the hypothesis that high-intensity strength training in- creases vagal– cardiac control and cardiovagal barore- flex sensitivity. Twenty-two...adaptations to resistance training, our results demonstrate that resistance train- ing does not affect vagal– cardiac control or cardiovagal baroreflex

  7. Suppression of DNA-dependent protein kinase sensitize cells to radiation without affecting DSB repair.

    PubMed

    Gustafsson, Ann-Sofie; Abramenkovs, Andris; Stenerlöw, Bo

    2014-11-01

    Efficient and correct repair of DNA double-strand break (DSB) is critical for cell survival. Defects in the DNA repair may lead to cell death, genomic instability and development of cancer. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an essential component of the non-homologous end joining (NHEJ) which is the major DSB repair pathway in mammalian cells. In the present study, by using siRNA against DNA-PKcs in four human cell lines, we examined how low levels of DNA-PKcs affected cellular response to ionizing radiation. Decrease of DNA-PKcs levels by 80-95%, induced by siRNA treatment, lead to extreme radiosensitivity, similar to that seen in cells completely lacking DNA-PKcs and low levels of DNA-PKcs promoted cell accumulation in G2/M phase after irradiation and blocked progression of mitosis. Surprisingly, low levels of DNA-PKcs did not affect the repair capacity and the removal of 53BP1 or γ-H2AX foci and rejoining of DSB appeared normal. This was in strong contrast to cells completely lacking DNA-PKcs and cells treated with the DNA-PKcs inhibitor NU7441, in which DSB repair were severely compromised. This suggests that there are different mechanisms by which loss of DNA-PKcs functions can sensitize cells to ionizing radiation. Further, foci of phosphorylated DNA-PKcs (T2609 and S2056) co-localized with DSB and this was independent of the amount of DNA-PKcs but foci of DNA-PKcs was only seen in siRNA-treated cells. Our study emphasizes on the critical role of DNA-PKcs for maintaining survival after radiation exposure which is uncoupled from its essential function in DSB repair. This could have implications for the development of therapeutic strategies aiming to radiosensitize tumors by affecting the DNA-PKcs function.

  8. Sensitivity of Simulated Ecosystem Fluxes to Meteorological Forcings : A case study for 6 eddy covariance sites in France

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Peylin, Philippe; Ciais, Philippe; Viovy, Nicolas; Granier, André; Calvet, Jean-Christophe; Sites, Pis Of; Maignan, Fabienne

    2010-05-01

    Process oriented terrestrial biosphere models (TBM) are useful tool to predict carbon stocks and fluxes of the land on regional to global scales. Global or regional gridded meteorological fields, e.g. calculated by Numerical Weather Prediction models, are commonly used to drive TBMs for spatially explicit applications. The uncertainties on carbon, water and energy fluxes caused by uncertain meterology drivers have rarely been investigated in a systematic way. To tackle this problem, we use in this study eddy-covariance continuous measurements of CO2, H2O and heat fluxes at six sites in France, chosen to represent the regional diversity of ecosystems, and a process based TBM called ORCHIDEE. Four relatively high time-space resolution modeled meterological forcing datasets, from SAFRAN (8 km) to ECMWF products (EC-OPERA and ERA-I; 80 km) and REMO (25 km), are used in this study. The modeled meterological variables, i.e. air temperature (Tair), air humidity (Qair), rainfall (Rain), shortwave and longwave downwelling radiations (SWD, LWD), are examed against measured meteorological data on time scales going from hourly to multi-year. SAFRAN appears to be the best model in terms of both variability and bias while REMO has the lowest performances. All models faithfully reproduce the seasonal cycle of Tair, Qair and SWD. The largest systematic bias is found for LWD. Considering interannual variability, Tair is the best reproduced variables while SWD is the worst. The mountain site is most difficult to simulate even for the high resolution model such as SAFRAN. The sensitivity of ORCHIDEE fluxes to meteorological drivers is investigated for each site and each time scale; it appears to be significant, with interannual time scale being the most problematic. We found that the best model fit to the measured NEE is obtained for SAFRAN at all time scales. The mountain site tends to have the largest discrepancy between modeled and measured NEE in terms of seasonal course. Overall

  9. Seven-Year Trends of Carbon Dioxide Exchange in a Tundra Ecosystem Affected by Long-Term Permafrost Thaw

    NASA Astrophysics Data System (ADS)

    Schuur, E. A.; Trucco, C.; Natali, S.; Belshe, E. F.; Bracho, R.; Vogel, J. G.; Hicks Pries, C. E.; Webb, E.

    2012-12-01

    Arctic warming has led to permafrost degradation and ground subsidence as a result of ground ice melting. Frozen soil organic matter that thaws can increase carbon (C) emissions to the atmosphere via respiration, but this can be offset in part by increases in plant growth. The balance of plant and microbial processes, and how they change through time, will determine how permafrost ecosystems influence future climate change via the C cycle. This study addressed this question both on short (interannual) and longer (decadal) time periods by measuring C fluxes over a seven-year period at three sites that represent a gradient of time since permafrost thaw. All three sites are upland tundra ecosystems located in Interior Alaska but differed in the extent of permafrost thaw and ground subsidence. Results showed an increasing growing season (May - September) trend in gross primary productivity, net ecosystem exchange, aboveground net primary productivity, and annual net ecosystem exchange at all sites over the seven-year study period from 2004-2010. In contrast, there was no directional change in annual and growing season ecosystem respiration, or mass loss from decomposition of a common cellulose substrate. The increasing trends over time as well as inter site differences most closely followed variation in growing season thaw depth over the same time period. During the seven-year period, sites with more permafrost degradation (deeper seasonal thaw) had significantly greater gross primary productivity compared to where degradation was least, but also greater growing season ecosystem respiration. Adding in winter respiration decreased, in part, the summer C sink and left the site with the most permafrost degradation near C neutral, with the other sites annual C sinks. However, annual C balance was strongly dependent on winter respiration, which, compared to the growing season, was relatively data-poor due to extreme environmental conditions. As a result, we cannot yet

  10. A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning

    USGS Publications Warehouse

    Wallenstein, Matthew D.; Hall, Edward K.

    2012-01-01

    As the earth system changes in response to human activities, a critical objective is to predict how biogeochemical process rates (e.g. nitrification, decomposition) and ecosystem function (e.g. net ecosystem productivity) will change under future conditions. A particular challenge is that the microbial communities that drive many of these processes are capable of adapting to environmental change in ways that alter ecosystem functioning. Despite evidence that microbes can adapt to temperature, precipitation regimes, and redox fluctuations, microbial communities are typically not optimally adapted to their local environment. For example, temperature optima for growth and enzyme activity are often greater than in situ temperatures in their environment. Here we discuss fundamental constraints on microbial adaptation and suggest specific environments where microbial adaptation to climate change (or lack thereof) is most likely to alter ecosystem functioning. Our framework is based on two principal assumptions. First, there are fundamental ecological trade-offs in microbial community traits that occur across environmental gradients (in time and space). These trade-offs result in shifting of microbial function (e.g. ability to take up resources at low temperature) in response to adaptation of another trait (e.g. limiting maintenance respiration at high temperature). Second, the mechanism and level of microbial community adaptation to changing environmental parameters is a function of the potential rate of change in community composition relative to the rate of environmental change. Together, this framework provides a basis for developing testable predictions about how the rate and degree of microbial adaptation to climate change will alter biogeochemical processes in aquatic and terrestrial ecosystems across the planet.

  11. The relative importance of light and nutrient limitation of phytoplankton growth: A simple index of coastal ecosystem sensitivity to nutrient enrichment

    USGS Publications Warehouse

    Cloern, J.E.

    1999-01-01

    Anthropogenic nutrient enrichment of the coastal zone is now a well-established fact. However, there is still uncertainty about the mechanisms through which nutrient enrichment can disrupt biological communities and ecosystem processes in the coastal zone. For example, while some estuaries exhibit classic symptoms of acute eutrophication, including enhanced production of algal biomass, other nutrient-rich estuaries maintain low algal biomass and primary production. This implies that large differences exist among coastal ecosystems in the rates and patterns of nutrient assimilation and cycling. Part of this variability comes from differences among ecosystems in the other resource that can limit algal growth and production - the light energy required for photosynthesis. Complete understanding of the eutrophication process requires consideration of the interacting effects of light and nutrients, including the role of light availability as a regulator of the expression of eutrophication. A simple index of the relative strength of light and nutrient limitation of algal growth can be derived from models that describe growth rate as a function of these resources. This index can then be used as one diagnostic to classify the sensitivity of coastal ecosystems to the harmful effects of eutrophication. Here I illustrate the application of this diagnostic with light and nutrient measurements made in three California estuaries and two Dutch estuaries.

  12. Factors affecting toxicity test endpoints in sensitive life stages of native Gulf of Mexico species.

    PubMed

    Echols, B S; Smith, A J; Rand, G M; Seda, B C

    2015-05-01

    Indigenous species are less commonly used in laboratory aquatic toxicity tests compared with standard test species due to (1) limited availability lack of requisite information necessary for their acclimation and maintenance under laboratory conditions and (2) lack of information on their sensitivity and the reproducibility of toxicity test results. As part of the Natural Resource Damage Assessment aquatic toxicity program in response to the Deepwater Horizon Oil incident (2010), sensitive life stages of native Gulf of Mexico species were evaluated in laboratory toxicity tests to determine the potential effects of the spill. Fish (n = 5) and invertebrates (n = 2) selected for this program include the following: the Florida pompano (Trachinotus carolinus), red drum (Sciaenops ocellatus), spotted sea trout (Cynoscion nebulosus), cobia (Rachycentron canadum), red porgy (Pagrus pagrus), blue crab (Callinectes sapidus), and the common moon jellyfish (Aurelia aurita). Initially in the program, to establish part of the background information, acute tests with reference toxicants (CdCl2, KCl, CuSO4) were performed with each species to establish data on intraspecies variability and test precision as well as identify other factors that may affect toxicity results. Median lethal concentration (LC50) values were calculated for each acute toxicity test with average LC50 values ranging from 248 to 862 mg/L for fish exposures to potassium chloride. Variability between test results was determined for each species by calculating the coefficient of variation (%CV) based on LC50 values. CVs ranged from 11.2 % for pompano (96-h LC50 value) to 74.8 % for red porgy 24-h tests. Cadmium chloride acute toxicity tests with the jellyfish A. aurita had the lowest overall CV of 3.6 %. By understanding acute toxicity to these native organisms from a compound with known toxicity ranges and the variability in test results, acute tests with nonstandard species can be better interpreted and used

  13. Genetic disruption of the On visual pathway affects cortical orientation selectivity and contrast sensitivity in mice

    PubMed Central

    Sarnaik, Rashmi; Chen, Hui; Liu, Xiaorong

    2014-01-01

    The retina signals stimulus contrast via parallel On and Off pathways and sends the information to higher visual centers. Here we study the role of the On pathway using mice that have null mutations in the On-specific GRM6 receptor in the retina (Pinto LH, Vitaterna MH, Shimomura K, Siepka SM, Balannik V, McDearmon EL, Omura C, Lumayag S, Invergo BM, Brandon M, Glawe B, Cantrell DR, Donald R, Inayat S, Olvera MA, Vessey KA, Kirstan A, McCall MA, Maddox D, Morgans CW, Young B, Pletcher MT, Mullins RF, Troy JB, Takahashi JS. Vis Neurosci 24: 111–123, 2007; Maddox DM, Vessey KA, Yarbrough GL, Invergo BM, Cantrell DR, Inayat S, Balannik V, Hicks WL, Hawes NL, Byers S, Smith RS, Hurd R, Howell D, Gregg RG, Chang B, Naggert JK, Troy JB, Pinto LH, Nishina PM, McCall MA. J Physiol 586: 4409–4424, 2008). In these “nob” mice, single unit recordings in the primary visual cortex (V1) reveal degraded selectivity for orientations due to an increased response at nonpreferred orientations. Contrast sensitivity in the nob mice is reduced with severe deficits at low contrast, consistent with the phenotype of night blindness in human patients with mutations in Grm6. These cortical deficits can be largely explained by reduced input drive and increased response variability seen in nob V1. Interestingly, increased variability is also observed in the superior colliculus of these mice but does not affect its tuning properties. Further, the increased response variability in the nob mice is traced to the retina, a result phenocopied by acute pharmacological blockade of the On pathway in wild-type retina. Together, our results suggest that the On and Off pathways normally interact to increase response reliability in the retina, which in turn propagates to various central visual targets and affects their functional properties. PMID:24598523

  14. Affectively Salient Meaning in Random Noise: A Task Sensitive to Psychosis Liability

    PubMed Central

    Galdos, Mariana; Simons, Claudia; Fernandez-Rivas, Aranzazu; Wichers, Marieke; Peralta, Concepción; Lataster, Tineke; Amer, Guillermo; Myin-Germeys, Inez; Allardyce, Judith; Gonzalez-Torres, Miguel Angel; van Os, Jim

    2011-01-01

    Stable differences in the tendency to attribute meaning and emotional value to experience may represent an indicator of liability to psychosis. A brief task was developed assessing variation in detecting affectively meaningful speech (speech illusion) in neutral random signals (white noise) and the degree to which this was associated with psychometric and familial vulnerability for psychosis. Thirty patients, 28 of their siblings, and 307 controls participated. The rate of speech illusion was compared between cases and controls. In controls, the association between speech illusion and interview-based positive schizotypy was assessed. The hypothesis of a dose-response increase in rate of speech illusion across increasing levels of familial vulnerability for psychosis (controls, siblings of patients, and patients) was examined. Patients were more likely to display speech illusions than controls (odds ratio [OR] = 4.0, 95% confidence interval [CI] = 1.4–11.7), also after controlling for neurocognitive variables (OR = 3.8, 95% CI = 1.04–14.1). The case-control difference was more accentuated for speech illusion perceived as affectively salient (positively or negatively appraised) than for neutrally appraised speech illusions. Speech illusion in the controls was strongly associated with positive schizotypy but not with negative schizotypy. In addition, the rate of speech illusion increased with increasing level of familial risk for psychotic disorder. The data suggest that the white noise task may be sensitive to psychometric and familial vulnerability for psychosis associated with alterations in top-down processing and/or salience attribution. PMID:20360211

  15. Seven-year trends of CO2 exchange in a tundra ecosystem affected by long-term permafrost thaw

    NASA Astrophysics Data System (ADS)

    Trucco, Christian; Schuur, Edward A. G.; Natali, Susan M.; Belshe, E. Fay; Bracho, Rosvel; Vogel, Jason

    2012-06-01

    Arctic warming has led to permafrost degradation and ground subsidence, created as a result of ground ice melting. Frozen soil organic matter that thaws can increase carbon (C) emissions to the atmosphere, but this can be offset in part by increases in plant growth. The balance of plant and microbial processes, and how this balance changes through time, determines how permafrost ecosystems influence future climate change via the C cycle. This study addressed this question both on short (interannual) and longer (decadal) time periods by measuring C fluxes over a seven-year period at three sites representing a gradient of time since permafrost thaw. All three sites were upland tundra ecosystems located in Interior Alaska but differed in the extent of permafrost thaw and ground subsidence. Results showed an increasing growing season (May - September) trend in gross primary productivity (GPP), net ecosystem exchange (NEE), aboveground net primary productivity (ANPP), and annual NEE at all sites over the seven year study period from 2004 to 2010, but no change in annual and growing season ecosystem respiration (Reco). These trends appeared to most closely follow increases in the depth to permafrost that occurred over the same time period. During the seven-year period, sites with more permafrost degradation had significantly greater GPP compared to where degradation was least, but also greater growing season Reco. Adding in winter Reco decreased, in part, the summer C sink and left only the site with the most permafrost degradation C neutral, with the other sites still C sinks. Annual C balance was strongly dependent on winter Reco, which, compared to the growing season, was relatively data-poor due to extreme environmental conditions. As a result, we cannot yet conclude whether the increased NEE in the growing season is truly sustained on an annual basis. If it turns out that winter measurements shown here are an underestimate, we may indeed find these systems are

  16. Sucrose Sensitivity of Honey Bees Is Differently Affected by Dietary Protein and a Neonicotinoid Pesticide

    PubMed Central

    Démares, Fabien J.; Crous, Kendall L.; Pirk, Christian W. W.; Nicolson, Susan W.; Human, Hannelie

    2016-01-01

    Over a decade, declines in honey bee colonies have raised worldwide concerns. Several potentially contributing factors have been investigated, e.g. parasites, diseases, and pesticides. Neonicotinoid pesticides have received much attention due to their intensive use in crop protection, and their adverse effects on many levels of honey bee physiology led the European Union to ban these compounds. Due to their neuronal target, a receptor expressed throughout the insect nervous system, studies have focused mainly on neuroscience and behaviour. Through the Geometric Framework of nutrition, we investigated effects of the neonicotinoid thiamethoxam on survival, food consumption and sucrose sensitivity of honey bees (Apis mellifera). Thiamethoxam did not affect protein and carbohydrate intake, but decreased responses to high concentrations of sucrose. Interestingly, when bees ate fixed unbalanced diets, dietary protein facilitated better sucrose detection. Both thiamethoxam and dietary protein influenced survival. These findings suggest that, in the presence of a pesticide and unbalanced food, honey bee health may be severely challenged. Consequences for foraging efficiency and colony activity, cornerstones of honey bee health, are also discussed. PMID:27272274

  17. Sucrose Sensitivity of Honey Bees Is Differently Affected by Dietary Protein and a Neonicotinoid Pesticide.

    PubMed

    Démares, Fabien J; Crous, Kendall L; Pirk, Christian W W; Nicolson, Susan W; Human, Hannelie

    2016-01-01

    Over a decade, declines in honey bee colonies have raised worldwide concerns. Several potentially contributing factors have been investigated, e.g. parasites, diseases, and pesticides. Neonicotinoid pesticides have received much attention due to their intensive use in crop protection, and their adverse effects on many levels of honey bee physiology led the European Union to ban these compounds. Due to their neuronal target, a receptor expressed throughout the insect nervous system, studies have focused mainly on neuroscience and behaviour. Through the Geometric Framework of nutrition, we investigated effects of the neonicotinoid thiamethoxam on survival, food consumption and sucrose sensitivity of honey bees (Apis mellifera). Thiamethoxam did not affect protein and carbohydrate intake, but decreased responses to high concentrations of sucrose. Interestingly, when bees ate fixed unbalanced diets, dietary protein facilitated better sucrose detection. Both thiamethoxam and dietary protein influenced survival. These findings suggest that, in the presence of a pesticide and unbalanced food, honey bee health may be severely challenged. Consequences for foraging efficiency and colony activity, cornerstones of honey bee health, are also discussed.

  18. Forest type effects on the retention of radiocesium in organic layers of forest ecosystems affected by the Fukushima nuclear accident

    PubMed Central

    Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sanada, Yukihisa

    2016-01-01

    The Fukushima Daiichi nuclear power plant disaster caused serious radiocesium (137Cs) contamination of forest ecosystems over a wide area. Forest-floor organic layers play a key role in controlling the overall bioavailability of 137Cs in forest ecosystems; however, there is still an insufficient understanding of how forest types influence the retention capability of 137Cs in organic layers in Japanese forest ecosystems. Here we conducted plot-scale investigations on the retention of 137Cs in organic layers at two contrasting forest sites in Fukushima. In a deciduous broad-leaved forest, approximately 80% of the deposited 137Cs migrated to mineral soil located below the organic layers within two years after the accident, with an ecological half-life of approximately one year. Conversely, in an evergreen coniferous forest, more than half of the deposited 137Cs remained in the organic layers, with an ecological half-life of 2.1 years. The observed retention behavior can be well explained by the tree phenology and accumulation of 137Cs associated with litter materials with different degrees of degradation in the organic layers. Spatial and temporal patterns of gamma-ray dose rates depended on the retention capability. Our results demonstrate that enhanced radiation risks last longer in evergreen coniferous forests than in deciduous broad-leaved forests. PMID:27974832

  19. Forest type effects on the retention of radiocesium in organic layers of forest ecosystems affected by the Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sanada, Yukihisa

    2016-12-01

    The Fukushima Daiichi nuclear power plant disaster caused serious radiocesium (137Cs) contamination of forest ecosystems over a wide area. Forest-floor organic layers play a key role in controlling the overall bioavailability of 137Cs in forest ecosystems; however, there is still an insufficient understanding of how forest types influence the retention capability of 137Cs in organic layers in Japanese forest ecosystems. Here we conducted plot-scale investigations on the retention of 137Cs in organic layers at two contrasting forest sites in Fukushima. In a deciduous broad-leaved forest, approximately 80% of the deposited 137Cs migrated to mineral soil located below the organic layers within two years after the accident, with an ecological half-life of approximately one year. Conversely, in an evergreen coniferous forest, more than half of the deposited 137Cs remained in the organic layers, with an ecological half-life of 2.1 years. The observed retention behavior can be well explained by the tree phenology and accumulation of 137Cs associated with litter materials with different degrees of degradation in the organic layers. Spatial and temporal patterns of gamma-ray dose rates depended on the retention capability. Our results demonstrate that enhanced radiation risks last longer in evergreen coniferous forests than in deciduous broad-leaved forests.

  20. Termites create spatial structure and govern ecosystem function by affecting N2 fixation in an East African savanna.

    PubMed

    Fox-Dobbs, Kena; Doak, Daniel F; Brody, Alison K; Palmer, Todd M

    2010-05-01

    The mechanisms by which even the clearest of keystone or dominant species exert community-wide effects are only partially understood in most ecosystems. This is especially true when a species or guild influences community-wide interactions via changes in the abiotic landscape. Using stable isotope analyses, we show that subterranean termites in an East African savanna strongly influence a key ecosystem process: atmospheric nitrogen fixation by a monodominant tree species and its bacterial symbionts. Specifically, we applied the 15N natural abundance method in combination with other biogeochemical analyses to assess levels of nitrogen fixation by Acacia drepanolobium and its effects on co-occurring grasses and forbs in areas near and far from mounds and where ungulates were or were not excluded. We find that termites exert far stronger effects than do herbivores on nitrogen fixation. The percentage of nitrogen derived from fixation in Acacia drepanolobium trees is higher (55-80%) away from mounds vs. near mounds (40-50%). Mound soils have higher levels of plant available nitrogen, and Acacia drepanolobium may preferentially utilize soil-based nitrogen sources in lieu of fixed nitrogen when these sources are readily available near termite mounds. At the scale of the landscape, our models predict that termite/soil derived nitrogen sources influence >50% of the Acacia drepanolobium trees in our system. Further, the spatial extent of these effects combine with the spacing of termite mounds to create highly regular patterning in nitrogen fixation rates, resulting in marked habitat heterogeneity in an otherwise uniform landscape. In summary, we show that termite-associated effects on nitrogen processes are not only stronger than those of more apparent large herbivores in the same system, but also occur in a highly regular spatial pattern, potentially adding to their importance as drivers of community and ecosystem structure.

  1. Identification of weather variables sensitive to dysentery in disease-affected county of China.

    PubMed

    Liu, Jianing; Wu, Xiaoxu; Li, Chenlu; Xu, Bing; Hu, Luojia; Chen, Jin; Dai, Shuang

    2017-01-01

    Climate change mainly refers to long-term change in weather variables, and it has significant impact on sustainability and spread of infectious diseases. Among three leading infectious diseases in China, dysentery is exclusively sensitive to climate change. Previous researches on weather variables and dysentery mainly focus on determining correlation between dysentery incidence and weather variables. However, the contribution of each variable to dysentery incidence has been rarely clarified. Therefore, we chose a typical county in epidemic of dysentery as the study area. Based on data of dysentery incidence, weather variables (monthly mean temperature, precipitation, wind speed, relative humidity, absolute humidity, maximum temperature, and minimum temperature) and lagged analysis, we used principal component analysis (PCA) and classification and regression trees (CART) to examine the relationships between the incidence of dysentery and weather variables. Principal component analysis showed that temperature, precipitation, and humidity played a key role in determining transmission of dysentery. We further selected weather variables including minimum temperature, precipitation, and relative humidity based on results of PCA, and used CART to clarify contributions of these three weather variables to dysentery incidence. We found when minimum temperature was at a high level, the high incidence of dysentery occurred if relative humidity or precipitation was at a high level. We compared our results with other studies on dysentery incidence and meteorological factors in areas both in China and abroad, and good agreement has been achieved. Yet, some differences remain for three reasons: not identifying all key weather variables, climate condition difference caused by local factors, and human factors that also affect dysentery incidence. This study hopes to shed light on potential early warnings for dysentery transmission as climate change occurs, and provide a theoretical

  2. Ecological traits affect the sensitivity of bees to land-use pressures in European agricultural landscapes.

    PubMed

    De Palma, Adriana; Kuhlmann, Michael; Roberts, Stuart P M; Potts, Simon G; Börger, Luca; Hudson, Lawrence N; Lysenko, Igor; Newbold, Tim; Purvis, Andy

    2015-12-01

    Bees are a functionally important and economically valuable group, but are threatened by land-use conversion and intensification. Such pressures are not expected to affect all species identically; rather, they are likely to be mediated by the species' ecological traits.Understanding which types of species are most vulnerable under which land uses is an important step towards effective conservation planning.We collated occurrence and abundance data for 257 bee species at 1584 European sites from surveys reported in 30 published papers (70 056 records) and combined them with species-level ecological trait data. We used mixed-effects models to assess the importance of land use (land-use class, agricultural use-intensity and a remotely-sensed measure of vegetation), traits and trait × land-use interactions, in explaining species occurrence and abundance.Species' sensitivity to land use was most strongly influenced by flight season duration and foraging range, but also by niche breadth, reproductive strategy and phenology, with effects that differed among cropland, pastoral and urban habitats. Synthesis and applications. Rather than targeting particular species or settings, conservation actions may be more effective if focused on mitigating situations where species' traits strongly and negatively interact with land-use pressures. We find evidence that low-intensity agriculture can maintain relatively diverse bee communities; in more intensive settings, added floral resources may be beneficial, but will require careful placement with respect to foraging ranges of smaller bee species. Protection of semi-natural habitats is essential, however; in particular, conversion to urban environments could have severe effects on bee diversity and pollination services. Our results highlight the importance of exploring how ecological traits mediate species responses to human impacts, but further research is needed to enhance the predictive ability of such analyses.

  3. Recombinant erythropoietin differently affects proliferation of mesothelioma cells but not sensitivity to cisplatin and pemetrexed.

    PubMed

    Palumbo, Camilla; Battisti, Sonia; Carbone, Daniela; Albonici, Loredana; Alimandi, Maurizio; Bei, Roberto; Modesti, Andrea

    2008-04-01

    The combination of cisplatin and pemetrexed represents the newly established standard of care for patients with unresectable malignant mesothelioma (MM). However, this chemotherapy regimen appears to be associated with an increased prevalence of higher grade anemia as compared to treatment with cisplatin alone. Human recombinant erythropoietin (rHuEpo) is currently used for the treatment of anemia in cancer patients. Still, following the finding that the erythropoietin receptor (EpoR) is expressed by several tumor cells types and after the trials reporting that the recombinant cytokine can adversely affect tumor progression and patient survival, the clinical safety of rHuEpo administration to neoplastic patients has recently been questioned. The observation that the expression of EpoR, variably associated with the expression of the cognate ligand, is a common feature of MM cells prompted us to investigate whether treatment with rHuEpo could elicit proliferative and cytoprotective signals in EpoR-positive MM cell lines. Biochemical responsiveness of MM cells to rHuEpo was demonstrated by the time-course activation of both ERK1/2 and AKT following treatment with the recombinant cytokine. A moderately increased mitogenic activity was observed in two out of five MM cell lines treated with pharmacologically relevant concentrations of rHuEpo. On the other hand, the recombinant cytokine, administered either before or after cisplatin and pemetrexed, failed to interfere with the cytotoxic effects exerted by the chemotherapeutic drugs on the five MM cell lines. According to the presented findings, rHuEpo appears to have an overall limited impact on cell growth and no effect on MM sensitivity to chemotherapy.

  4. Does the duration of lysis affect the sensitivity of the in vitro alkaline comet assay?

    PubMed

    Enciso, José Manuel; Sánchez, Oscar; López de Cerain, Adela; Azqueta, Amaya

    2015-01-01

    The alkaline comet assay is now the method of choice for measuring different kinds of DNA damage in cells. Several attempts have been made to identify and evaluate the critical points affecting the comet assay outcome, highlighting the requirement of arriving at a standardised protocol in order to be able to compare the results obtained in different laboratories. However, reports on the effect of modifying the time of lysis are lacking. Here we tested different times of lysis (from no lysis to 1 week) in control HeLa cells and HeLa cells treated with different concentrations of methyl methanesulfonate (MMS) or H2O2. We also tested different times of lysis in the comet assay combined with formamidopyrimidine DNA glycosylase (FPG) in untreated and Ro 19-8022 plus light-treated HeLa cells. The same DNA damage levels were detected in the absence of lysis or after 1h of lysis when the standard comet assay was used to detect the MMS- and H2O2-induced lesions; the response increased when longer lysis was used, up to at least 1 week. When FPG was used, a minimum lysis period of 5 min was necessary to allow the enzyme to reach the DNA; the same DNA damage levels were detected after 5 min or 1h of lysis and the response increased up to 24h. In conclusion, the time of lysis can be varied depending on the sensitivity needed in both versions of the assay, and a constant time of lysis should be used if results from different experiments or laboratories are to be compared.

  5. Sensitivity of ecosystem CO sub 2 flux in the boreal forests of interior Alaska to climatic parameters

    SciTech Connect

    Bonan, G.B.

    1992-03-01

    An ecophysiological model of carbon uptake and release was used to examine C02 fluxes in 17 mature forests near Fairbanks, Alaska. Under extant climatic conditions, ecosystem C02 flux ranged from a loss of 212 g C02 m-2 yr-1 in a black spruce stand to an uptake of 2882 g C02 m-2 yr-1 in a birch stand. Increased air temperature resulted in substantial soil warming. Without concomitant increases in nutrient availability, large climatic warming reduced ecosystem C02 uptake in all forests. Deciduous and white spruce stands were still a sink for C02, but black spruce stands became, on average, a net source Of CO2- With increased nutrient availability that might accompany soil warming, enhanced tree growth increased C02 uptake in conifer stands.

  6. Inhaled lead affects lung pathology and inflammation in sensitized and control guinea pigs.

    PubMed

    Boskabady, Mohammad Hossein; Tabatabai, Sayed Abas; Farkhondeh, Tahereh

    2016-04-01

    The association between lead exposure and respiratory diseases including asthma is controversial. Some studies indicate that exposure to environmental lead pollution may cause asthma; however, there is not sufficient data in this regard. The effect of lead on lung pathological findings and serum inflammatory mediators in sensitized and non-sensitized guinea pigs exposed to inhaled lead was examined. Eleven animal groups including control, sensitized, three groups of non sensitized animals, three groups during sensitization, and three groups after sensitization exposed to aerosol of three lead concentrations (n = 6 for each group) were studied. Serum inflammatory mediators levels and lung pathological changes were evaluated. All pathological changes and serum ET-1, EPO, NO levels were significantly higher in the sensitized and non sensitized animals exposed to lead than control group (p < 0.05 to p < 0.001). There was no significant difference between non sensitized groups exposed to high lead concentration and sensitized group. Serum inflammatory mediators levels and pathological findings in sensitized groups exposed to lead both during and after sensitization were significantly higher than sensitized non exposed group (p < 0.05 to p < 0.001). The data of exposed animals to high lead concentration were significantly higher than those of medium and low concentrations; those of medium concentration were also higher than low concentration (p < 0.05 to p < 0.001). In summary, the present study indicates that exposure to inhaled lead is able to induce respiratory changes similar to asthma. In addition, the results indicated that exposure to environmental lead is able to aggravate asthma severity both during development of asthma or after its manifestation.

  7. Interactive effect of negative affectivity and anxiety sensitivity in terms of mental health among Latinos in primary care.

    PubMed

    Zvolensky, Michael J; Paulus, Daniel J; Bakhshaie, Jafar; Garza, Monica; Ochoa-Perez, Melissa; Medvedeva, Angela; Bogiaizian, Daniel; Robles, Zuzuky; Manning, Kara; Schmidt, Norman B

    2016-09-30

    From a public health perspective, primary care medical settings represent a strategic location to address mental health disapirty among Latinos. Yet, there is little empirical work that addresses affective vulnerability processes for mental health problems in such settings. To help address this gap in knowledge, the present investigation examined an interactive model of negative affectivity (tendency to experience negative mood states) and anxiety sensitivity (fear of the negative consequences of aversive sensations) among a Latino sample in primary care in terms of a relatively wide range of anxiety/depression indices. Participants included 390 Latino adults (Mage=38.7, SD=11.3; 86.9% female; 95.6% reported Spanish as first language) from a primary care health clinic. Primary dependent measures included depressive, suicidal, social anxiety, and anxious arousal symptoms, number of mood and anxiety disorders, and disability. Consistent with prediction, the interaction between negative affectivity and anxiety sensitivity was significantly related to suicidal, social anxiety, and anxious arousal symptoms, as well as number of mood/anxiety diagnoses and disability among the primary care Latino sample. The form of the interactions indicated a synergistic effect, such that the greatest levels of each outcome were found among those with high negative affectivity and high anxiety sensitivity. There was a trending interaction for depressive symptoms. Overall, these data provide novel empirical evidence suggesting that there is a clinically-relevant interplay between anxiety sensitivity and negative affectivity in regard to the expression of anxiety and depressive symptoms among a Latino primary care sample.

  8. Community production modulates coral reef pH and the sensitivity of ecosystem calcification to ocean acidification

    NASA Astrophysics Data System (ADS)

    DeCarlo, Thomas M.; Cohen, Anne L.; Wong, George T. F.; Shiah, Fuh-Kwo; Lentz, Steven J.; Davis, Kristen A.; Shamberger, Kathryn E. F.; Lohmann, Pat

    2017-01-01

    Coral reefs are built of calcium carbonate (CaCO3) produced biogenically by a diversity of calcifying plants, animals, and microbes. As the ocean warms and acidifies, there is mounting concern that declining calcification rates could shift coral reef CaCO3 budgets from net accretion to net dissolution. We quantified net ecosystem calcification (NEC) and production (NEP) on Dongsha Atoll, northern South China Sea, over a 2 week period that included a transient bleaching event. Peak daytime pH on the wide, shallow reef flat during the nonbleaching period was ˜8.5, significantly elevated above that of the surrounding open ocean (˜8.0-8.1) as a consequence of daytime NEP (up to 112 mmol C m-2 h-1). Diurnal-averaged NEC was 390 ± 90 mmol CaCO3 m-2 d-1, higher than any other coral reef studied to date despite comparable calcifier cover (25%) and relatively high fleshy algal cover (19%). Coral bleaching linked to elevated temperatures significantly reduced daytime NEP by 29 mmol C m-2 h-1. pH on the reef flat declined by 0.2 units, causing a 40% reduction in NEC in the absence of pH changes in the surrounding open ocean. Our findings highlight the interactive relationship between carbonate chemistry of coral reef ecosystems and ecosystem production and calcification rates, which are in turn impacted by ocean warming. As open-ocean waters bathing coral reefs warm and acidify over the 21st century, the health and composition of reef benthic communities will play a major role in determining on-reef conditions that will in turn dictate the ecosystem response to climate change.

  9. Do differences in food web structure between organic and conventional farms affect the ecosystem service of pest control?

    PubMed

    Macfadyen, Sarina; Gibson, Rachel; Polaszek, Andrew; Morris, Rebecca J; Craze, Paul G; Planqué, Robert; Symondson, William O C; Memmott, Jane

    2009-03-01

    While many studies have demonstrated that organic farms support greater levels of biodiversity, it is not known whether this translates into better provision of ecosystem services. Here we use a food-web approach to analyse the community structure and function at the whole-farm scale. Quantitative food webs from 10 replicate pairs of organic and conventional farms showed that organic farms have significantly more species at three trophic levels (plant, herbivore and parasitoid) and significantly different network structure. Herbivores on organic farms were attacked by more parasitoid species on organic farms than on conventional farms. However, differences in network structure did not translate into differences in robustness to simulated species loss and we found no difference in percentage parasitism (natural pest control) across a variety of host species. Furthermore, a manipulative field experiment demonstrated that the higher species richness of parasitoids on the organic farms did not increase mortality of a novel herbivore used to bioassay ecosystem service. The explanation for these differences is likely to include inherent differences in management strategies and landscape structure between the two farming systems.

  10. How will ocean acidification affect Baltic sea ecosystems? an assessment of plausible impacts on key functional groups.

    PubMed

    Havenhand, Jonathan N

    2012-09-01

    Increasing partial pressure of atmospheric CO₂ is causing ocean pH to fall-a process known as 'ocean acidification'. Scenario modeling suggests that ocean acidification in the Baltic Sea may cause a ≤ 3 times increase in acidity (reduction of 0.2-0.4 pH units) by the year 2100. The responses of most Baltic Sea organisms to ocean acidification are poorly understood. Available data suggest that most species and ecologically important groups in the Baltic Sea food web (phytoplankton, zooplankton, macrozoobenthos, cod and sprat) will be robust to the expected changes in pH. These conclusions come from (mostly) single-species and single-factor studies. Determining the emergent effects of ocean acidification on the ecosystem from such studies is problematic, yet very few studies have used multiple stressors and/or multiple trophic levels. There is an urgent need for more data from Baltic Sea populations, particularly from environmentally diverse regions and from controlled mesocosm experiments. In the absence of such information it is difficult to envision the likely effects of future ocean acidification on Baltic Sea species and ecosystems.

  11. Solar ultraviolet-B radiation affects plant-insect interactions in a natural ecosystem of Tierra del Fuego (southern Argentina).

    PubMed

    Rousseaux, M Cecilia; Ballaré, Carlos L; Scopel, Ana L; Searles, Peter S; Caldwell, Martyn M

    1998-10-01

    We examined the effects of solar ultraviolet-B radiation (UVB) on plant-herbivore interactions in native ecosystems of the Tierra del Fuego National Park (southern Argentina), an area of the globe that is frequently under the Antarctic "ozone hole" in early spring. We found that filtering out solar UVB from the sunlight received by naturally-occurring plants of Gunnera magellanica, a creeping perennial herb, significantly increased the number of leaf lesions caused by chewing insects. Field surveys suggested that early-season herbivory was principally due to the activity of moth larvae (Lepidoptera: Noctuidae). Manipulative field experiments showed that exposure to solar UVB changes the attractiveness of G. magellanica leaf tissue to natural grazers. In a laboratory experiment, locally caught moth caterpillars tended to eat more tissue from leaves grown without UVB than from leaves exposed to natural UVB during development; however, the difference between treatments was not significant. Leaves grown under solar UVB had slightly higher N levels than leaves not exposed to UVB; no differences between UVB treatments in specific leaf mass, relative water content, and total methanol-soluble phenolics were detected. Our results show that insect herbivory in a natural ecosystem is influenced by solar UVB, and that this influence could not be predicted from crude measurements of leaf physical and chemical characteristics and a common laboratory bioassay.

  12. Relations between pure dietary and dietary-negative affect subtypes and impulsivity and reinforcement sensitivity in binge eating individuals.

    PubMed

    Carrard, Isabelle; Crépin, Christelle; Ceschi, Grazia; Golay, Alain; Van der Linden, Martial

    2012-01-01

    To investigate potential predictors of the severity of binge eating disorder (BED), two subtypes of patients with the disorder, a pure dietary subtype and a dietary-negative affect subtype, were identified. This study investigated the relationships between the two subtypes and impulsivity and reinforcement sensitivity. Ninety-two women meeting threshold and subthreshold criteria for BED diagnosis filled out questionnaires to determine eating disorder severity, impulsivity and reinforcement sensitivity before and after participating in an online guided self-help program for BED. Cluster analyses revealed a pure dietary subtype (N=66, 71.7%) and a dietary-negative affect subtype (N=26, 28.3%). Compared to the pure dietary subtype, the dietary-negative affect subtype reported a higher frequency of objective binge episodes, more severe eating disorders, higher urgency scores (defined as a tendency to act rashly in the context of negative affect), a greater sensitivity to punishment, and a higher dropout rate during treatment. These findings suggest that BED patients in the dietary-negative affect subtype exhibit heightened anxiety and are highly impulsive, especially in contexts of negative affect. For these individuals, psychological interventions for BED should focus on inhibiting automatic responses to negative emotions.

  13. Subterranean ventilation: a key but poorly known process affecting the carbon balance of semi-arid ecosystems

    NASA Astrophysics Data System (ADS)

    López Ballesteros, Ana; Sánchez Cañete, Enrique P.; Serrano Ortiz, Penélope; Kowalski, Andrew S.; Oyonarte, Cecilio; Domingo, Francisco

    2016-04-01

    Subterranean ventilation, conceived as the advective transport of CO2-rich air from the vadose zone to the atmosphere through a porous media (i.e. soil or snow; Sánchez-Cañete et al., 2013), has arisen as an important process contributing to the carbon (C) balance of Mediterranean ecosystems (Kowalski et al., 2008; Sánchez-Cañete et al., 2011; Serrano-Ortiz et al., 2014), apart from other well-known biotic processes (i.e. plant photosynthesis, autotrophic and heterotrophic respiration). Recent studies have linked this subterranean CO2 release to fluctuations in the friction velocity or wind speed under drought conditions when water-free soil pores enable air transport (Rey et al., 2012a, 2013), however, barometric pressure variations has been suggested as another important driver (Sánchez-Cañete et al., 2013). In this study, we investigate this process in newly studied semi-arid grassland located in SE Spain, as the ideal ecosystem to do so given the great length of the dry season and the slight biotic activity limited to the winter season. Preliminary results, based on unpublished analyzed eddy covariance data and subterranean CO2 molar fraction measurements, confirm the presence of ventilation events from May to October for seven years 2009-2015. During these events, increases in the friction velocity correlates with sizeable CO2 emissions of up to ca.10 μmol m-2 s-1, and CO2 molar fraction regularly drops 2000-3000 ppm just after the turbulence peak, at several depths below the soil surface (0.15 and 1.5 m). Additionally, during the driest period (July-August), the friction velocity explains from 37% to 57% of the net C emission variability. On the other hand, the model residuals do not show a significant relationship, neither with air pressure nor with soil water content. Overall, the results found in this newly monitored site demonstrate, as shown by past research, the relevance of subterranean ventilation as a key process in the C balance of

  14. A mechanistic model of H{sub 2}{sup 18}O and C{sup 18}OO fluxes between ecosystems and the atmosphere: Model description and sensitivity analyses

    SciTech Connect

    Riley, W.J.; Still, C.J.; Torn, M.S.; Berry, J.A.

    2002-01-01

    The concentration of 18O in atmospheric CO2 and H2O is a potentially powerful tracer of ecosystem carbon and water fluxes. In this paper we describe the development of an isotope model (ISOLSM) that simulates the 18O content of canopy water vapor, leaf water, and vertically resolved soil water; leaf photosynthetic 18OC16O (hereafter C18OO) fluxes; CO2 oxygen isotope exchanges with soil and leaf water; soil CO2 and C18OO diffusive fluxes (including abiotic soil exchange); and ecosystem exchange of H218O and C18OO with the atmosphere. The isotope model is integrated into the land surface model LSM, but coupling with other models should be straightforward. We describe ISOLSM and apply it to evaluate (a) simplified methods of predicting the C18OO soil-surface flux; (b) the impacts on the C18OO soil-surface flux of the soil-gas diffusion coefficient formulation, soil CO2 source distribution, and rooting distribution; (c) the impacts on the C18OO fluxes of carbonic anhydrase (CA) activity in soil and leaves; and (d) the sensitivity of model predictions to the d18O value of atmospheric water vapor and CO2. Previously published simplified models are unable to capture the seasonal and diurnal variations in the C18OO soil-surface fluxes simulated by ISOLSM. Differences in the assumed soil CO2 production and rooting depth profiles, carbonic anhydrase activity in soil and leaves, and the d18O value of atmospheric water vapor have substantial impacts on the ecosystem CO2 flux isotopic composition. We conclude that accurate prediction of C18OO ecosystem fluxes requires careful representation of H218O and C18OO exchanges and transport in soils and plants.

  15. Wetlands serve as natural sources for improvement of stream ecosystem health in regions affected by acid deposition

    USGS Publications Warehouse

    Pound, Katrina L; Lawrence, Gregory B.; Passy, Sophia I.

    2013-01-01

    For over 40 years, acid deposition has been recognized as a serious international environmental problem, but efforts to restore acidified streams and biota have had limited success. The need to better understand the effects of different sources of acidity on streams has become more pressing with the recent increases in surface water organic acids, or 'brownification' associated with climate change and decreased inorganic acid deposition. Here, we carried out a large scale multi-seasonal investigation in the Adirondacks, one of the most acid-impacted regions in the United States, to assess how acid stream producers respond to local and watershed influences and whether these influences can be used in acidification remediation. We explored the pathways of wetland control on aluminum chemistry and diatom taxonomic and functional composition. We demonstrate that streams with larger watershed wetlands have higher organic content, lower concentrations of acidic anions, and lower ratios of inorganic to organic monomeric aluminum, all beneficial for diatom biodiversity and guilds producing high biomass. Although brownification has been viewed as a form of pollution, our results indicate that it may be a stimulating force for biofilm producers with potentially positive consequences for higher trophic levels. Our research also reveals that the mechanism of watershed control of local stream diatom biodiversity through wetland export of organic matter is universal in running waters, operating not only in hard streams, as previously reported, but also in acid streams. Our findings that the negative impacts of acid deposition on Adirondack stream chemistry and biota can be mitigated by wetlands have important implications for biodiversity conservation and stream ecosystem management. Future acidification research should focus on the potential for wetlands to improve stream ecosystem health in acid-impacted regions and their direct use in stream restoration, for example, through

  16. Modeling compensatory responses of ecosystem-scale water fluxes in forests affected by pine and spruce beetle mortality

    NASA Astrophysics Data System (ADS)

    Millar, D.; Ewers, B. E.; Peckham, S. D.; Mackay, D. S.; Frank, J. M.; Massman, W. J.; Reed, D. E.

    2015-12-01

    Mountain pine beetle (Dendroctonus ponderosae) and spruce beetle (Dendroctonus rufipennis) epidemics have led to extensive mortality in lodgepole pine (Pinus contorta) and Engelmann spruce (Picea engelmannii) forests in the Rocky Mountains of the western US. In both of these tree species, mortality results from hydraulic failure within the xylem, due to blue stain fungal infection associated with beetle attack. However, the impacts of these disturbances on ecosystem-scale water fluxes can be complex, owing to their variable and transient nature. In this work, xylem scaling factors that reduced whole-tree conductance were initially incorporated into a forest ecohydrological model (TREES) to simulate the impact of beetle mortality on evapotranspiration (ET) in both pine and spruce forests. For both forests, simulated ET was compared to observed ET fluxes recorded using eddy covariance techniques. Using xylem scaling factors, the model overestimated the impact of beetle mortality, and observed ET fluxes were approximately two-fold higher than model predictions in both forests. The discrepancy between simulated and observed ET following the onset of beetle mortality may be the result of spatial and temporal heterogeneity of plant communities within the foot prints of the eddy covariance towers. Since simulated ET fluxes following beetle mortality in both forests only accounted for approximately 50% of those observed in the field, it is possible that newly established understory vegetation in recently killed tree stands may play a role in stabilizing ecosystem ET fluxes. Here, we further investigate the unaccounted for ET fluxes in the model by breaking it down into multiple cohorts that represent live trees, dying trees, and understory vegetation that establishes following tree mortality.

  17. Wetlands serve as natural sources for improvement of stream ecosystem health in regions affected by acid deposition.

    PubMed

    Pound, Katrina L; Lawrence, Gregory B; Passy, Sophia I

    2013-09-01

    For over 40 years, acid deposition has been recognized as a serious international environmental problem, but efforts to restore acidified streams and biota have had limited success. The need to better understand the effects of different sources of acidity on streams has become more pressing with the recent increases in surface water organic acids, or 'brownification,' associated with climate change and decreased inorganic acid deposition. Here, we carried out a large scale multi-seasonal investigation in the Adirondacks, one of the most acid-impacted regions in the United States, to assess how acid stream producers respond to local and watershed influences and whether these influences can be used in acidification remediation. We explored the pathways of wetland control on aluminum chemistry and diatom taxonomic and functional composition. We demonstrate that streams with larger watershed wetlands have higher organic content, lower concentrations of acidic anions, and lower ratios of inorganic to organic monomeric aluminum, all beneficial for diatom biodiversity and guilds producing high biomass. Although brownification has been viewed as a form of pollution, our results indicate that it may be a stimulating force for biofilm producers with potentially positive consequences for higher trophic levels. Our research also reveals that the mechanism of watershed control of local stream diatom biodiversity through wetland export of organic matter is universal in running waters, operating not only in hard streams, as previously reported, but also in acid streams. Our findings that the negative impacts of acid deposition on Adirondack stream chemistry and biota can be mitigated by wetlands have important implications for biodiversity conservation and stream ecosystem management. Future acidification research should focus on the potential for wetlands to improve stream ecosystem health in acid-impacted regions and their direct use in stream restoration, for example, through

  18. Addiction Vulnerability and Binge Eating in Women: Exploring Reward Sensitivity, Affect Regulation, Impulsivity & Weight/Shape Concerns.

    PubMed

    Eichen, Dawn M; Chen, Eunice Y; Schmitz, Mark F; Arlt, Jean; McCloskey, Michael S

    2016-10-01

    Almost 40% of individuals with eating disorders have a comorbid addiction. The current study examined weight/shape concerns as a potential moderator of the relation between the hypothesized latent factor "addiction vulnerability" (i.e., impairments in reward sensitivity, affect regulation and impulsivity) and binge eating. Undergraduate women (n=272) with either high or low weight/shape concerns completed self-report measures examining reward sensitivity, emotion regulation, impulsivity and disordered (binge) eating. Results showed that (1) reward sensitivity, affect regulation and impulsivity all loaded onto a latent "addiction vulnerability" factor for both women with high and with low weight/shape concerns, (2) women with higher weight/shape concerns reported more impairment in these areas, and (3) weight/shape concerns moderated the relation between addiction vulnerability and binge eating. These findings suggest that underlying processes identified in addiction are present in individuals who binge eat, though weight/shape concerns may be a unique characteristic of disordered eating.

  19. Assimilation of seasonal chlorophyll and nutrient data into an adjoint three-dimensional ocean carbon cycle model: Sensitivity analysis and ecosystem parameter optimization

    NASA Astrophysics Data System (ADS)

    Tjiputra, Jerry F.; Polzin, Dierk; Winguth, Arne M. E.

    2007-03-01

    An adjoint method is applied to a three-dimensional global ocean biogeochemical cycle model to optimize the ecosystem parameters on the basis of SeaWiFS surface chlorophyll observation. We showed with identical twin experiments that the model simulated chlorophyll concentration is sensitive to perturbation of phytoplankton and zooplankton exudation, herbivore egestion as fecal pellets, zooplankton grazing, and the assimilation efficiency parameters. The assimilation of SeaWiFS chlorophyll data significantly improved the prediction of chlorophyll concentration, especially in the high-latitude regions. Experiments that considered regional variations of parameters yielded a high seasonal variance of ecosystem parameters in the high latitudes, but a low variance in the tropical regions. These experiments indicate that the adjoint model is, despite the many uncertainties, generally capable to optimize sensitive parameters and carbon fluxes in the euphotic zone. The best fit regional parameters predict a global net primary production of 36 Pg C yr-1, which lies within the range suggested by Antoine et al. (1996). Additional constraints of nutrient data from the World Ocean Atlas showed further reduction in the model-data misfit and that assimilation with extensive data sets is necessary.

  20. Scorched Earth: how will changes in the strength of the vegetation sink to ozone deposition affect human health and ecosystems?

    NASA Astrophysics Data System (ADS)

    Emberson, L. D.; Kitwiroon, N.; Beevers, S.; Büker, P.; Cinderby, S.

    2013-07-01

    This study investigates the effect of ozone (O3) deposition on ground level O3 concentrations and subsequent human health and ecosystem risk under hot summer "heat wave" type meteorological events. Under such conditions, extended drought can effectively "turn off" the O3 vegetation sink leading to a substantial increase in ground level O3 concentrations. Two models that have been used for human health (the CMAQ chemical transport model) and ecosystem (the DO3SE O3 deposition model) risk assessment are combined to provide a powerful policy tool capable of novel integrated assessments of O3 risk using methods endorsed by the UNECE Convention on Long-Range Transboundary Air Pollution. This study investigates 2006, a particularly hot and dry year during which a heat wave occurred over the summer across much of the UK and Europe. To understand the influence of variable O3 dry deposition three different simulations were investigated during June and July: (i) actual conditions in 2006, (ii) conditions that assume a perfect vegetation sink for O3 deposition and (iii) conditions that assume an extended drought period that reduces the vegetation sink to a minimum. The risks of O3 to human health, assessed by estimating the number of days during which running 8 h mean O3 concentrations exceeded 100 μg m-3, show that on average across the UK, there is a difference of 16 days exceedance of the threshold between the perfect sink and drought conditions. These average results hide local variation with exceedances between these two scenarios reaching as high as 20 days in the East Midlands and eastern UK. Estimates of acute exposure effects show that O3 removed from the atmosphere through dry deposition during the June and July period would have been responsible for approximately 460 premature deaths. Conversely, reduced O3 dry deposition will decrease the amount of O3 taken up by vegetation and, according to flux-based assessments of vegetation damage, will lead to a reduction in

  1. How does the sensitivity of climate affect stratospheric solar radiation management?

    NASA Astrophysics Data System (ADS)

    Ricke, K.; Rowlands, D. J.; Ingram, W.; Keith, D.; Morgan, M. G.

    2011-12-01

    If implementation of proposals to engineer the climate through solar radiation management (SRM) ever occurs, it is likely to be contingent upon climate sensitivity. Despite this, no modeling studies have examined how the effectiveness of SRM forcings differs between the typical Atmosphere-Ocean General Circulation Models (AOGCMs) with climate sensitivities close to the Coupled Model Intercomparison Project (CMIP) mean and ones with high climate sensitivities. Here, we use a perturbed physics ensemble modeling experiment to examine variations in the response of climate to SRM under different climate sensitivities. When SRM is used as a substitute for mitigation its ability to maintain the current climate state gets worse with increased climate sensitivity and with increased concentrations of greenhouse gases. However, our results also demonstrate that the potential of SRM to slow climate change, even at the regional level, grows with climate sensitivity. On average, SRM reduces regional rates of temperature change by more than 90 percent and rates of precipitation change by more than 50 percent in these higher sensitivity model configurations. To investigate how SRM might behave in models with high climate sensitivity that are also consistent with recent observed climate change we perform a "perturbed physics" ensemble (PPE) modelling experiment with the climateprediction.net (cpdn) version of the HadCM3L AOGCM. Like other perturbed physics climate modelling experiments, we simulate past and future climate scenarios using a wide range of model parameter combinations that both reproduce past climate within a specified level of accuracy and simulate future climates with a wide range of climate sensitivities. We chose 43 members ("model versions") from a subset of the 1,550 from the British Broadcasting Corporation (BBC) climateprediction.net project that have data that allow restarts. We use our results to explore how much assessments of SRM that use best

  2. Intrinsic factors that can affect sensitivity to chromosome-aberration induction

    SciTech Connect

    Preston, R.J.

    1982-01-01

    The paper addresses the question, are there individuals who are hypersensitive, or are more likely to be hypersensitive, to the induction of chromosome aberrations by radiation and chemicals. Lymphocytes of persons heterozygous for xeroderma pigmentosum, ataxia telangiectasia, and Fauconi's anemia were subjected to chemical and/or ionizing radiations to determine their sensitivity to chromosome aberration induction. In the majority of cases the sensitivity was intermediate between that of normal individuals and homozygotes for these genes. (ACR)

  3. Root dynamics in an artificially constructed regenerating longleaf pine ecosystem are affected by atmospheric CO(2) enrichment.

    PubMed

    Pritchard, S G.; Davis, M A.; Mitchell, R J.; Prior, S A.; Boykin, D L.; Rogers, H H.; Runion, G B.

    2001-08-01

    Differential responses to elevated atmospheric CO(2) concentration exhibited by different plant functional types may alter competition for above- and belowground resources in a higher CO(2) world. Because C allocation to roots is often favored over C allocation to shoots in plants grown with CO(2) enrichment, belowground function of forest ecosystems may change significantly. We established an outdoor facility to examine the effects of elevated CO(2) on root dynamics in artificially constructed communities of five early successional forest species: (1) a C(3) evergreen conifer (longleaf pine, Pinus palustris Mill.); (2) a C(4) monocotyledonous bunch grass (wiregrass, Aristida stricta Michx.); (3) a C(3) broadleaf tree (sand post oak, Quercus margaretta); (4) a C(3) perennial herbaceous legume (rattlebox, Crotalaria rotundifolia Walt. ex Gemel); and (5) an herbaceous C(3) dicotyledonous perennial (butterfly weed, Asclepias tuberosa L.). These species are common associates in early successional longleaf pine savannahs throughout the southeastern USA and represent species that differ in life-form, growth habit, physiology, and symbiotic relationships. A combination of minirhizotrons and soil coring was used to examine temporal and spatial rooting dynamics from October 1998 to October 1999. CO(2)-enriched plots exhibited 35% higher standing root crop length, 37% greater root length production per day, and 47% greater root length mortality per day. These variables, however, were enhanced by CO(2) enrichment only at the 10-30 cm depth. Relative root turnover (flux/standing crop) was unchanged by elevated CO(2). Sixteen months after planting, root biomass of pine was 62% higher in elevated compared to ambient CO(2) plots. Conversely, the combined biomass of rattlebox, wiregrass, and butterfly weed was 28% greater in ambient compared to high CO(2) plots. There was no difference in root biomass of oaks after 16 months of exposure to elevated CO(2). Using root and shoot

  4. How far cardio metabolic and psychological factors affect salt sensitivity in normotensive adult population?

    PubMed Central

    Sadeghi, Masoumeh; Roohafza, Hamidreza; Pourmoghaddas, Masoud; Behnamfar, Omid; Pourmoghaddas, Zahra; Heidari, Ebrahim; Mahjoor, Zahra; Mousavi, Mehdi; Bahonar, Ahmad; Sarrafzadegan, Nizal

    2017-01-01

    AIM To evaluate the prevalence of salt sensitivity and the impact of cardiometabolic and psychological characteristics on salt sensitivity in normotensive population. METHODS Of all participants, anthropometric measurements and fasting venous blood samples were collected, and study questionnaires were completed. Salt Sensitivity was defined based on the difference in mean arterial pressure with infusion of 2 L of normal saline followed by a low sodium diet and administration of three doses of oral furosemide the day after. RESULTS Of 131 participants, 56 (42.7%) were diagnosed with salt sensitivity. Crude and age and sex adjusted regression analysis showed that low-density lipoprotein cholesterol and depression were positively associated with salt sensitivity (OR = 1.02, 95%CI: 1.01-1.04 and OR = 1.15, 95%CI: 1.00-1.34, respectively). CONCLUSION The high prevalence of salt sensitivity and its significant relation with prevalent risk factors necessitates considering its reduction actions at the population level and the need for further research. PMID:28163836

  5. Sensitivity analysis of potential events affecting the double-shell tank system and fallback actions

    SciTech Connect

    Knutson, B.J.

    1996-09-27

    Sensitivity analyses were performed for fall-back positions (i.e., management actions) to accommodate potential off-normal and programmatic change events overlaid on the waste volume projections and their uncertainties. These sensitivity analyses allowed determining and ranking tank system high-risk parameters and fall- back positions that will accommodate the respective impacts. This quantification of tank system impacts shows periods where tank capacity is sensitive to certain variables that must be carefully managed and/or evaluated. Identifying these sensitive variables and quantifying their impact will allow decision makers to prepare fall-back positions and focus available resources on the highest impact parameters where technical data are needed to reduce waste projection uncertainties. For noncomplexed waste, the period of capacity vulnerability occurs during the years of single-shell tank (SST) retrieval (after approximately 2009) due to the sensitivity to several variables. Ranked by importance these variables include the pretreatment rate and 200-East SST solids transfer volume. For complexed waste, the period of capacity vulnerability occurs during the period after approximately 2005 due to the sensitivity to several variables. Ranked by importance these variables include the pretreatment rate. 200-East SST solids transfer volume. complexed waste reduction factor using evaporation, and 200-west saltwell liquid porosity.

  6. Development and Validation of Children's Environmental Affect (Attitude, Sensitivity and Willingness to Take Action) Scale

    ERIC Educational Resources Information Center

    Erdogan, Mehmet; Marcinkowski, Thomas

    2015-01-01

    This study focuses on the design, development, validation, and psychometric properties of the Children's Environmental Affect Scale (CEAS). The following steps were taken in developing the CEAS. A substantial review of literature on environmental affect and EL helped the researchers identify several scales and questionnaires that, in turn, help…

  7. Alcohol Use in College Students as a Function of Reinforcement Sensitivity, Life Events, and Affect

    ERIC Educational Resources Information Center

    Lee, Hyoung Suk

    2010-01-01

    Mood has been commonly viewed as an important determinant of drinking, but studies of positive and negative affect and alcohol use have reported inconsistent results. It has been suggested that the relationship between negative affect and heavy drinking or drinking problems depends on individual vulnerability dimensions such as personality. Gray's…

  8. Do pharmaceuticals reach and affect the aquatic ecosystems in Brazil? A critical review of current studies in a developing country.

    PubMed

    Quadra, Gabrielle Rabelo; Oliveira de Souza, Helena; Costa, Rafaela Dos Santos; Fernandez, Marcos Antonio Dos Santos

    2017-01-01

    Pharmaceutical residues are not completely removed in wastewater treatment plants (WWTPs) becoming contaminants in aquatic ecosystems. Thereby, it is important to investigate their concentrations in the environment and the possible consequences of their occurrence, including for human health. Here, we briefly reviewed the paths of pharmaceuticals to reach the environment, their behavior and fate in the environment, and the possible consequences of their occurrence. Moreover, we synthetized all the studies about the detection of pharmaceuticals in Brazilian water bodies and the available ecotoxicological knowledge on their effects. In this study, when we compare the data found on these compounds worldwide, we observed that Brazilian surface waters present considerable concentrations of 17α-ethinylestradiol, 17β-estradiol, and caffeine. In general, concentrations found in aquatic systems worldwide seems to be low; however, ecotoxicological tests showed that even these low concentrations can cause sublethal effects in biota. The knowledge about the effects of continuous exposure and mixtures is sparse. In summary, new research is urgently required about the effects of these compounds in biota-including long-term exposition and mixture tests-and on specific technologies to remove these compounds in water bodies and WWTPs, besides the introduction of new policies for pharmaceutical use.

  9. Managing for featured, threatened, endangered, and sensitive species and unique habitats for ecosystem sustainability. Forest Service general technical report

    SciTech Connect

    Marcot, B.G.; Wisdon, M .J.; Li, H.W.; Castillo, G.C.

    1994-02-01

    The traditional approach to wildlife management has focused on single species--historically game species and more recently threatened and endangered species. Newer approaches to managing for multiple species and biological diversity include managing coarse filters, ecological indicator species, indicator guilds, and use of species-habitat matrices. Such modeling approaches each have strong as well as weak points, including conflicts among objectives for species with disparate needs. The authors present three case examples of integrating management for single species with management for multiple species and ecosystems: managing elk habitat in the Blue Mountains of eastern Oregon; managing for sustainable native fish faunas in eastern Oregon and Washington; and managing plant and animal species closely associated with old-growth forests in the Pacific Northwest.

  10. How the government's punishment and individual's sensitivity affect the rumor spreading in online social networks

    NASA Astrophysics Data System (ADS)

    Li, Dandan; Ma, Jing

    2017-03-01

    We explore the impact of punishment of governments and sensitivity of individuals on the rumor spreading in this paper. Considering the facts that some rumors that relate to the hot events could be disseminated repeatedly, however, some other rumors will never be disseminated after they have been popular for some time. Therefore, we investigate two types (SIS and SIR) of rumor spreading models in which the punishment of government and sensitivity of individuals are considered. Based on the mean-field method, we have calculated the spreading threshold of SIS and SIR model, respectively. Furthermore, we perform the rumor spreading process in the Facebook and POK social networks, and achieve that there is an excellent agreement between the theoretical and numerical results of spreading threshold. The results indicate that improving the punishment of government and increasing the sensitivity of individuals could control the spreading of rumor effectively.

  11. UV wavelengths experienced during development affect larval newt visual sensitivity and predation efficiency.

    PubMed

    Martin, Mélissa; Théry, Marc; Rodgers, Gwendolen; Goven, Delphine; Sourice, Stéphane; Mège, Pascal; Secondi, Jean

    2016-02-01

    We experimentally investigated the influence of developmental plasticity of ultraviolet (UV) visual sensitivity on predation efficiency of the larval smooth newt, Lissotriton vulgaris. We quantified expression of SWS1 opsin gene (UV-sensitive protein of photoreceptor cells) in the retinas of individuals who had developed in the presence (UV+) or absence (UV-) of UV light (developmental treatments), and tested their predation efficiency under UV+ and UV- light (testing treatments). We found that both SWS1 opsin expression and predation efficiency were significantly reduced in the UV- developmental group. Larvae in the UV- testing environment displayed consistently lower predation efficiency regardless of their developmental treatment. These results prove for the first time, we believe, functional UV vision and developmental plasticity of UV sensitivity in an amphibian at the larval stage. They also demonstrate that UV wavelengths enhance predation efficiency and suggest that the magnitude of the behavioural response depends on retinal properties induced by the developmental lighting environment.

  12. Do high levels of diffuse and chronic metal pollution in sediments of Rhine and Meuse floodplains affect structure and functioning of terrestrial ecosystems?

    PubMed

    Rozema, Jelte; Notten, Martje J M; Aerts, Rien; van Gestel, Cornelis A M; Hobbelen, Peter H F; Hamers, Timo H M

    2008-12-01

    This paper (re)considers the question if chronic and diffuse heavy metal pollution (cadmium, copper, lead and zinc) affects the structure and functioning of terrestrial ecosystems of Biesbosch National Park, the floodplain area of rivers Meuse and Rhine. To reach this aim, we integrated the results of three projects on: 1. the origin, transfer and effects of heavy metals in a soil-plant-snail food chain; 2. the impact of bioavailability on effects of heavy metals on the structure and functioning of detritivorous communities; 3. the risk assessment of heavy metals for an herbivorous and a carnivorous small mammal food chain. Metal pollution levels of the Biesbosch floodplain soils are high. The bioavailability of metals in the soils is low, causing low metal levels in plant leaves. Despite this, metal concentrations in soil dwelling detritivores and in land snails at polluted locations are elevated in comparison to animals from 'non-polluted' reference sites. However, no adverse effects on ecosystem structure (species richness, density, biomass) and functioning (litter decomposition, leaf consumption, reproduction) have been found. Sediment metal pollution may pose a risk to the carnivorous small mammal food chain, in which earthworms with elevated metal concentrations are eaten by the common shrew. Additional measurements near an active metal smelter, however, show reduced leaf consumption rates and reduced reproduction by terrestrial snails, reflecting elevated metal bioavailability at this site. Since future management may also comprise reintroduction of tidal action in the Biesbosch area, changes in metal bioavailability, and as a consequence future ecosystem effects, cannot be excluded.

  13. Genetics, Synergists, and Age Affect Insecticide Sensitivity of the Honey Bee, Apis mellifera

    PubMed Central

    Rinkevich, Frank D.; Margotta, Joseph W.; Pittman, Jean M.; Danka, Robert G.; Tarver, Matthew R.; Ottea, James A.; Healy, Kristen B.

    2015-01-01

    The number of honey bee colonies in the United States has declined to half of its peak level in the 1940s, and colonies lost over the winter have reached levels that are becoming economically unstable. While the causes of these losses are numerous and the interaction between them is very complex, the role of insecticides has garnered much attention. As a result, there is a need to better understand the risk of insecticides to bees, leading to more studies on both toxicity and exposure. While much research has been conducted on insecticides and bees, there have been very limited studies to elucidate the role that bee genotype and age has on the toxicity of these insecticides. The goal of this study was to determine if there are differences in insecticide sensitivity between honey bees of different genetic backgrounds (Carniolan, Italian, and Russian stocks) and assess if insecticide sensitivity varies with age. We found that Italian bees were the most sensitive of these stocks to insecticides, but variation was largely dependent on the class of insecticide tested. There were almost no differences in organophosphate bioassays between honey bee stocks (<1-fold), moderate differences in pyrethroid bioassays (1.5 to 3-fold), and dramatic differences in neonicotinoid bioassays (3.4 to 33.3-fold). Synergism bioassays with piperonyl butoxide, amitraz, and coumaphos showed increased phenothrin sensitivity in all stocks and also demonstrated further physiological differences between stocks. In addition, as bees aged, the sensitivity to phenothrin significantly decreased, but the sensitivity to naled significantly increased. These results demonstrate the variation arising from the genetic background and physiological transitions in honey bees as they age. This information can be used to determine risk assessment, as well as establishing baseline data for future comparisons to explain the variation in toxicity differences for honey bees reported in the literature. PMID

  14. Supertaster, super reactive: oral sensitivity for bitter taste modulates emotional approach and avoidance behavior in the affective startle paradigm.

    PubMed

    Herbert, Cornelia; Platte, Petra; Wiemer, Julian; Macht, Michael; Blumenthal, Terry D

    2014-08-01

    People differ in both their sensitivity for bitter taste and their tendency to respond to emotional stimuli with approach or avoidance. The present study investigated the relationship between these sensitivities in an affective picture paradigm with startle responding. Emotion-induced changes in arousal and attention (pupil modulation), priming of approach and avoidance behavior (startle reflex modulation), and subjective evaluations (ratings) were examined. Sensitivity for bitter taste was assessed with the 6-n-propylthiouracil (PROP)-sensitivity test, which discriminated individuals who were highly sensitive to PROP compared to NaCl (PROP-tasters) and those who were less sensitive or insensitive to the bitter taste of PROP. Neither pupil responses nor picture ratings differed between the two taster groups. The startle eye blink response, however, significantly differentiated PROP-tasters from PROP-insensitive subjects. Facilitated response priming to emotional stimuli emerged in PROP-tasters but not in PROP-insensitive subjects at shorter startle lead intervals (200-300ms between picture onset and startle stimulus onset). At longer lead intervals (3-4.5s between picture onset and startle stimulus onset) affective startle modulation did not differ between the two taster groups. This implies that in PROP-sensitive individuals action tendencies of approach or avoidance are primed immediately after emotional stimulus exposure. These results suggest a link between PROP taste perception and biologically relevant patterns of emotional responding. Direct perception-action links have been proposed to underlie motivational priming effects of the startle reflex, and the present results extend these to the sensory dimension of taste.

  15. Assessment of the sensitivity of radar backscatter to seasonal snow and vegetation thaw dynamics in a boreal ecosystem

    NASA Technical Reports Server (NTRS)

    McDonald, K. C.; Qualls, B.; Hardy, J.

    2002-01-01

    We examine the sensitivity of ERS-1 C-band synthetic aperture radar (SAR) backscatter to springtime snow and vegetation thaw dynamics for boreal forest stands within the BOREAS Southern Study Area (SSA) in Canada during the 1994 winter-spring thaw transition.

  16. Climate sensitivity runs and regional hydrologic modeling for predicting the response of the greater Florida Everglades ecosystem to climate change.

    PubMed

    Obeysekera, Jayantha; Barnes, Jenifer; Nungesser, Martha

    2015-04-01

    It is important to understand the vulnerability of the water management system in south Florida and to determine the resilience and robustness of greater Everglades restoration plans under future climate change. The current climate models, at both global and regional scales, are not ready to deliver specific climatic datasets for water resources investigations involving future plans and therefore a scenario based approach was adopted for this first study in restoration planning. We focused on the general implications of potential changes in future temperature and associated changes in evapotranspiration, precipitation, and sea levels at the regional boundary. From these, we developed a set of six climate and sea level scenarios, used them to simulate the hydrologic response of the greater Everglades region including agricultural, urban, and natural areas, and compared the results to those from a base run of current conditions. The scenarios included a 1.5 °C increase in temperature, ±10 % change in precipitation, and a 0.46 m (1.5 feet) increase in sea level for the 50-year planning horizon. The results suggested that, depending on the rainfall and temperature scenario, there would be significant changes in water budgets, ecosystem performance, and in water supply demands met. The increased sea level scenarios also show that the ground water levels would increase significantly with associated implications for flood protection in the urbanized areas of southeastern Florida.

  17. Charge and geometry of residues in the loop 2 β hairpin differentially affect agonist and ethanol sensitivity in glycine receptors.

    PubMed

    Perkins, Daya I; Trudell, James R; Asatryan, Liana; Davies, Daryl L; Alkana, Ronald L

    2012-05-01

    Recent studies highlighted the importance of loop 2 of α1 glycine receptors (GlyRs) in the propagation of ligand-binding energy to the channel gate. Mutations that changed polarity at position 52 in the β hairpin of loop 2 significantly affected sensitivity to ethanol. The present study extends the investigation to charged residues. We found that substituting alanine with the negative glutamate at position 52 (A52E) significantly left-shifted the glycine concentration response curve and increased sensitivity to ethanol, whereas the negative aspartate substitution (A52D) significantly right-shifted the glycine EC₅₀ but did not affect ethanol sensitivity. It is noteworthy that the uncharged glutamine at position 52 (A52Q) caused only a small right shift of the glycine EC₅₀ while increasing ethanol sensitivity as much as A52E. In contrast, the shorter uncharged asparagine (A52N) caused the greatest right shift of glycine EC₅₀ and reduced ethanol sensitivity to half of wild type. Collectively, these findings suggest that charge interactions determined by the specific geometry of the amino acid at position 52 (e.g., the 1-Å chain length difference between aspartate and glutamate) play differential roles in receptor sensitivity to agonist and ethanol. We interpret these results in terms of a new homology model of GlyR based on a prokaryotic ion channel and propose that these mutations form salt bridges to residues across the β hairpin (A52E-R59 and A52N-D57). We hypothesize that these electrostatic interactions distort loop 2, thereby changing agonist activation and ethanol modulation. This knowledge will help to define the key physical-chemical parameters that cause the actions of ethanol in GlyRs.

  18. Mexico City air pollution adversely affects olfactory function and intranasal trigeminal sensitivity.

    PubMed

    Guarneros, Marco; Hummel, Thomas; Martínez-Gómez, Margaríta; Hudson, Robyn

    2009-11-01

    Surprisingly little is known about the effects of big-city air pollution on olfactory function and even less about its effects on the intranasal trigeminal system, which elicits sensations like burning, stinging, pungent, or fresh and contributes to the overall chemosensory experience. Using the Sniffin' Sticks olfactory test battery and an established test for intranasal trigeminal perception, we compared the olfactory performance and trigeminal sensitivity of residents of Mexico City, a region with high air pollution, with the performance of a control population from the Mexican state of Tlaxcala, a geographically comparable but less polluted region. We compared the ability of 30 young adults from each location to detect a rose-like odor (2-phenyl ethanol), to discriminate between different odorants, and to identify several other common odorants. The control subjects from Tlaxcala detected 2-phenyl ethanol at significantly lower concentrations than the Mexico City subjects, they could discriminate between odorants significantly better, and they performed significantly better in the test of trigeminal sensitivity. We conclude that Mexico City air pollution impairs olfactory function and intranasal trigeminal sensitivity, even in otherwise healthy young adults.

  19. Factors Affecting Sensitivity to Frequency Change in School-Age Children and Adults

    ERIC Educational Resources Information Center

    Buss, Emily; Taylor, Crystal N.; Leibold, Lori J.

    2014-01-01

    Purpose: The factors affecting frequency discrimination in school-age children are poorly understood. The goal of the present study was to evaluate developmental effects related to memory for pitch and the utilization of temporal fine structure. Method: Listeners were 5.1- to 13.6-year-olds and adults, all with normal hearing. A subgroup of…

  20. Assessing the impact of historical coastal landfill sites on sensitive ecosystems: A case study from Dorset, Southern England

    NASA Astrophysics Data System (ADS)

    Njue, C. N.; Cundy, A. B.; Smith, M.; Green, I. D.; Tomlinson, N.

    2012-12-01

    Uncontrolled landfill disposal can cause the release of significant contamination. In Southern England and in other parts of the UK, historical landfills are located along many coastal and estuarine marshes and mudflats. At these sites waste, often significantly contaminated with heavy metals and other contaminants, was dumped with little engineering control and without regard to the surrounding environment. The aim of this study is to investigate the degree to which heavy metals from these historical sites may have contaminated adjacent marshes and mudflats, using the Lodmoor marsh, Dorset, UK as a test site. Surface and sediment core samples were collected from brackish marsh and mudflat areas around the former landfill at Lodmoor, which was operational between 1949 and 1990. Sediment samples were investigated for metallic pollutants, grain size, and mineralogy, and core samples dated via 137Cs and 210Pb. To examine the transfer of heavy metals through the food chain, Phragmites australis leaves were analysed for metallic pollutants. Geochemical data revealed that sediments from the Lodmoor marsh are probably contaminated with Pb. 137Cs dating indicates that concentration maxima for heavy metals correlate to the 1950s and 1960s when landfill activities commenced in Lodmoor. Shallow electromagnetic surveys indicate potential continued leaching from the historic landfill complex. This study indicates the potential for possible landfill-derived contaminants to persist in coastal systems for decades after landfill closure. Over the longer term, it is possible that salinisation and enhanced coastal erosion may cause significant metal release from the landfills and their surrounding sedimentary systems into adjacent ecosystems.

  1. Arm dominance affects feedforward strategy more than feedback sensitivity during a postural task.

    PubMed

    Walker, Elise H E; Perreault, Eric J

    2015-07-01

    Handedness is a feature of human motor control that is still not fully understood. Recent work has demonstrated that the dominant and nondominant arm each excel at different behaviors and has proposed that this behavioral asymmetry arises from lateralization in the cerebral cortex: the dominant side specializes in predictive trajectory control, while the nondominant side is specialized for impedance control. Long-latency stretch reflexes are an automatic mechanism for regulating posture and have been shown to contribute to limb impedance. To determine whether long-latency reflexes also contribute to asymmetric motor behavior in the upper limbs, we investigated the effect of arm dominance on stretch reflexes during a postural task that required varying degrees of impedance control. Our results demonstrated slightly but significantly larger reflex responses in the biarticular muscles of the nondominant arm, as would be consistent with increased impedance control. These differences were attributed solely to higher levels of voluntary background activity in the nondominant biarticular muscles, indicating that feedforward strategies for postural stability may differ between arms. Reflex sensitivity, which was defined as the magnitude of the reflex response for matched levels of background activity, was not significantly different between arms for a broad subject population ranging from 23 to 51 years of age. These results indicate that inter-arm differences in feedforward strategies are more influential during posture than differences in feedback sensitivity, in a broad subject population. Interestingly, restricting our analysis to subjects under 40 years of age revealed a small increase in long-latency reflex sensitivity in the nondominant arm relative to the dominant arm. Though our subject numbers were small for this secondary analysis, it suggests that further studies may be required to assess the influence of reflex lateralization throughout development.

  2. Arm Dominance Affects Feedforward Strategy more than Feedback Sensitivity during a Postural Task

    PubMed Central

    Walker, Elise H. E.; Perreault, Eric J.

    2015-01-01

    Handedness is a feature of human motor control that is still not fully understood. Recent work has demonstrated that the dominant and nondominant arm each excel at different behaviors, and has proposed that this behavioral asymmetry arises from lateralization in the cerebral cortex: the dominant side specializes in predictive trajectory control, while the nondominant side is specialized for impedance control. Long-latency stretch reflexes are an automatic mechanism for regulating posture, and have been shown to contribute to limb impedance. To determine whether long-latency reflexes also contribute to asymmetric motor behavior in the upper limbs, we investigated the effect of arm dominance on stretch reflexes during a postural task that required varying degrees of impedance control. Our results demonstrated slightly but significantly larger reflex responses in the biarticular muscles of the nondominant arm, as would be consistent with increased impedance control. These differences were attributed solely to higher levels of voluntary background activity in the nondominant biarticular muscles, indicating that feedforward strategies for postural stability may differ between arms. Reflex sensitivity, which was defined as the magnitude of the reflex response for matched levels of background activity, was not significantly different between arms for a broad subject population ranging from 23–51 years of age. These results indicate that inter-arm differences in feedforward strategies are more influential during posture than differences in feedback sensitivity, in a broad subject population. Interestingly, restricting our analysis to subjects under 40 years of age revealed a small increase in long-latency reflex sensitivity in the nondominant arm relative to the dominant arm. Though our subject numbers were small for this secondary analysis, it suggests that further studies may be required to assess the influence of reflex lateralization throughout development. PMID

  3. Sensitivity of terrestrial ecosystems to elevated atmospheric CO{sub 2}: Comparisons of model simulation studies to CO{sub 2} effect

    SciTech Connect

    Pan, Y.

    1995-06-01

    In the context of a project to compare terrestrial ecosystem models, the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP), we have analyzed how three biogeochemistry models link plant growth to doubled atmospheric CO{sub 2}. A common set of input data was used to drive three biogeochemistry models, BIOME-BGC, CENTURY and TEM. For the continental United States the simulation results show that with doubled CO{sub 2}, NPP increased by 8.7%, 5.0% and 10.8% for TEM, CENTURY and BIOME-BGC, respectively. At the biome level the range of NPP estimates varied considerably among models. TEM-simulated enhancement of NPP ranged from 2% to 28%; CENTURY, from 2% to 9%; and BIOME-BGC, from 4% to 27%. A transect analysis across several biomes along a latitude at 41.5 N shows that the TEM-simulated CO{sub 2} enhancement of NPP ranged from 0% to 22%; CENTURY, from 1% to 10% and BIOME-BGC, from 1% to 63%. In this study, we have investigated the underlying mechanisms of the three models to reveal how increased CO{sub 2} affects photosynthesis rate, water using efficiency and nutrient cycles. The relative importance of these mechanisms in each of the three biogeochemistry models will be discussed.

  4. Change in activity of serine palmitoyltransferase affects sensitivity to syringomycin E in yeast Saccharomyces cerevisiae.

    PubMed

    Toume, Moeko; Tani, Motohiro

    2014-09-01

    Syringomycin E is a cyclic lipodepsipeptide produced by strains of the plant bacterium Pseudomonas syringae pv. syringae. Genetic studies involving the yeast Saccharomyces cerevisiae have revealed that complex sphingolipids play important roles in the action of syringomycin E. Here, we found a novel mutation that confers resistance to syringomycin E on yeast; that is, a deletion mutant of ORM1 and ORM2, which encode negative regulators of serine palmitoyltransferase catalyzing the initial step of sphingolipid biosynthesis, exhibited resistance to syringomycin E. On the contrary, overexpression of Orm2 resulted in high sensitivity to the toxin. Moreover, overexpression of Lcb1 and Lcb2, catalytic subunits of serine palmitoyltransferase, causes resistance to the toxin, whereas partial repression of expression of Lcb1 had the opposite effect. Partial reduction of complex sphingolipids by repression of expression of Aur1, an inositol phosphorylceramide synthase, also resulted in high sensitivity to the toxin. These results suggested that an increase in sphingolipid biosynthesis caused by a change in the activity of serine palmitoyltransferase causes resistance to syringomycin E.

  5. Where Will Ecosystems Go?

    SciTech Connect

    Janetos, Anthony C.

    2008-09-29

    Climate-induced changes in ecosystems have been both modeled and documented extensively over the past 15-20 years. Those changes occur in the context of many other stresses and interacting factors, but it is clear that many, if not most, ecosystems are sensitive to changing climate.

  6. Long-term occupational exposure to organic solvents affects color vision, contrast sensitivity and visual fields.

    PubMed

    Costa, Thiago Leiros; Barboni, Mirella Telles Salgueiro; Moura, Ana Laura de Araújo; Bonci, Daniela Maria Oliveira; Gualtieri, Mirella; de Lima Silveira, Luiz Carlos; Ventura, Dora Fix

    2012-01-01

    The purpose of this study was to evaluate the visual outcome of chronic occupational exposure to a mixture of organic solvents by measuring color discrimination, achromatic contrast sensitivity and visual fields in a group of gas station workers. We tested 25 workers (20 males) and 25 controls with no history of chronic exposure to solvents (10 males). All participants had normal ophthalmologic exams. Subjects had worked in gas stations on an average of 9.6 ± 6.2 years. Color vision was evaluated with the Lanthony D15d and Cambridge Colour Test (CCT). Visual field assessment consisted of white-on-white 24-2 automatic perimetry (Humphrey II-750i). Contrast sensitivity was measured for sinusoidal gratings of 0.2, 0.5, 1.0, 2.0, 5.0, 10.0 and 20.0 cycles per degree (cpd). Results from both groups were compared using the Mann-Whitney U test. The number of errors in the D15d was higher for workers relative to controls (p<0.01). Their CCT color discrimination thresholds were elevated compared to the control group along the protan, deutan and tritan confusion axes (p<0.01), and their ellipse area and ellipticity were higher (p<0.01). Genetic analysis of subjects with very elevated color discrimination thresholds excluded congenital causes for the visual losses. Automated perimetry thresholds showed elevation in the 9°, 15° and 21° of eccentricity (p<0.01) and in MD and PSD indexes (p<0.01). Contrast sensitivity losses were found for all spatial frequencies measured (p<0.01) except for 0.5 cpd. Significant correlation was found between previous working years and deutan axis thresholds (rho = 0.59; p<0.05), indexes of the Lanthony D15d (rho=0.52; p<0.05), perimetry results in the fovea (rho= -0.51; p<0.05) and at 3, 9 and 15 degrees of eccentricity (rho= -0.46; p<0.05). Extensive and diffuse visual changes were found, suggesting that specific occupational limits should be created.

  7. Long-Term Occupational Exposure to Organic Solvents Affects Color Vision, Contrast Sensitivity and Visual Fields

    PubMed Central

    Costa, Thiago Leiros; Barboni, Mirella Telles Salgueiro; Moura, Ana Laura de Araújo; Bonci, Daniela Maria Oliveira; Gualtieri, Mirella; de Lima Silveira, Luiz Carlos; Ventura, Dora Fix

    2012-01-01

    The purpose of this study was to evaluate the visual outcome of chronic occupational exposure to a mixture of organic solvents by measuring color discrimination, achromatic contrast sensitivity and visual fields in a group of gas station workers. We tested 25 workers (20 males) and 25 controls with no history of chronic exposure to solvents (10 males). All participants had normal ophthalmologic exams. Subjects had worked in gas stations on an average of 9.6±6.2 years. Color vision was evaluated with the Lanthony D15d and Cambridge Colour Test (CCT). Visual field assessment consisted of white-on-white 24–2 automatic perimetry (Humphrey II-750i). Contrast sensitivity was measured for sinusoidal gratings of 0.2, 0.5, 1.0, 2.0, 5.0, 10.0 and 20.0 cycles per degree (cpd). Results from both groups were compared using the Mann–Whitney U test. The number of errors in the D15d was higher for workers relative to controls (p<0.01). Their CCT color discrimination thresholds were elevated compared to the control group along the protan, deutan and tritan confusion axes (p<0.01), and their ellipse area and ellipticity were higher (p<0.01). Genetic analysis of subjects with very elevated color discrimination thresholds excluded congenital causes for the visual losses. Automated perimetry thresholds showed elevation in the 9°, 15° and 21° of eccentricity (p<0.01) and in MD and PSD indexes (p<0.01). Contrast sensitivity losses were found for all spatial frequencies measured (p<0.01) except for 0.5 cpd. Significant correlation was found between previous working years and deutan axis thresholds (rho = 0.59; p<0.05), indexes of the Lanthony D15d (rho = 0.52; p<0.05), perimetry results in the fovea (rho = −0.51; p<0.05) and at 3, 9 and 15 degrees of eccentricity (rho = −0.46; p<0.05). Extensive and diffuse visual changes were found, suggesting that specific occupational limits should be created. PMID:22916187

  8. Pharmacokinetic and Pharmacodynamic Factors That Can Affect Sensitivity to Neurotoxic Sequelae in Elderly Individuals

    PubMed Central

    Ginsberg, Gary; Hattis, Dale; Russ, Abel; Sonawane, Babasaheb

    2005-01-01

    Early-life exposure to agents that modulate neurologic function can have long-lasting effects well into the geriatric period. Many other factors can affect neurologic function and susceptibility to neurotoxicants in elderly individuals. In this review we highlight pharmacokinetic and pharmacodynamic factors that may increase geriatric susceptibility to these agents. There is a decreasing trend in hepatic metabolizing capacity with advancing years that can affect the ability to clear therapeutic drugs and environmental chemicals. This factor combined with decreased renal clearance causes prolonged retention of numerous drugs in elderly individuals. A geriatric pharmacokinetic database was developed to analyze changes in drug clearance with advancing age. This analysis shows that the half-life of drugs processed by hepatic cytochrome P450 enzymes or via renal elimination is typically 50–75% longer in those older than 65 than in young adults. Liver and kidney diseases are more common in elderly individuals and can further decrease the clearance function of these organs. Polypharmacy, the administration of numerous drugs to a single patient, is very common in elderly individuals and increases the risks for drug interaction and side effects. With advancing age the nervous system undergoes a variety of changes, including neuronal loss, altered neurotransmitter and receptor levels, and decreased adaptability to changes induced by xenobiotics. These changes in the central nervous system can make elderly individuals more susceptible to neurologic dysfunction when confronted with single pharmacologic agents, polypharmacy, or environmental toxicants. The many factors that affect elderly responses to neuroactive agents make environmental risk assessment for this age group a special concern and present a unique challenge. PMID:16140636

  9. Processes affecting oxygen isotope ratios of atmospheric and ecosystem sulfate in two contrasting forest catchments in Central Europe

    SciTech Connect

    Martin Novak; Myron J. Mitchell; Iva Jackova; Frantisek Buzek; Jana Schweigstillova; Lucie Erbanova; Richard Prikryl; Daniela Fottova

    2007-02-15

    Sulfate aerosols are harmful as respirable particles. They also play a role as cloud condensation nuclei and have radiative effects on global climate. A combination of {delta}{sup 18}O-SO{sub 4} data with catchment sulfur mass balances was used to constrain processes affecting S cycling in the atmosphere and spruce forests of the Czech Republic. Extremely high S fluxes via spruce throughfall and runoff were measured at Jezeri (49 and 80 kg S ha{sup -1} yr{sup -1}, respectively). The second catchment, Na Lizu, was 10 times less polluted. In both catchments, {delta}{sup 18}O-SO{sub 4} decreased in the following order: open-area precipitation {gt} throughfall {gt} runoff. The 180-SO{sub 4} values of throughfall exhibited a seasonal pattern at both sites, with maxima in summer and minima in winter. This seasonal pattern paralleled {delta}{sup 18}O-H{sub 2}O values, which were offset by -18{per_thousand}. Sulfate in throughfall was predominantly formed by heterogeneous (aqueous) oxidation of SO{sub 2}. Wet-deposited sulfate in an open area did not show systematic {delta}{sup 18}O-SO{sub 4} trends, suggesting formation by homogeneous (gaseous) oxidation and/or transport from large distances. The percentage of incoming S that is organically cycled in soil was similar under the high and the low pollution. High-temperature {sup 18}O-rich sulfate was not detected, which contrasts with North American industrial sites. 29 refs., 4 figs., 3 tabs.

  10. Exploring the sensitivity of soil carbon dynamics to climate change, fire disturbance and permafrost thaw in a black spruce ecosystem

    USGS Publications Warehouse

    O'Donnell, J. A.; Harden, J.W.; McGuire, A.D.; Romanovsky, V.E.

    2011-01-01

    In the boreal region, soil organic carbon (OC) dynamics are strongly governed by the interaction between wildfire and permafrost. Using a combination of field measurements, numerical modeling of soil thermal dynamics, and mass-balance modeling of OC dynamics, we tested the sensitivity of soil OC storage to a suite of individual climate factors (air temperature, soil moisture, and snow depth) and fire severity. We also conducted sensitivity analyses to explore the combined effects of fire-soil moisture interactions and snow seasonality on OC storage. OC losses were calculated as the difference in OC stocks after three fire cycles (???500 yr) following a prescribed step-change in climate and/or fire. Across single-factor scenarios, our findings indicate that warmer air temperatures resulted in the largest relative soil OC losses (???5.3 kg C mg-2), whereas dry soil conditions alone (in the absence of wildfire) resulted in the smallest carbon losses (???0.1 kg C mg-2). Increased fire severity resulted in carbon loss of ???3.3 kg C mg-2, whereas changes in snow depth resulted in smaller OC losses (2.1-2.2 kg C mg-2). Across multiple climate factors, we observed larger OC losses than for single-factor scenarios. For instance, high fire severity regime associated with warmer and drier conditions resulted in OC losses of ???6.1 kg C mg-2, whereas a low fire severity regime associated with warmer and wetter conditions resulted in OC losses of ???5.6 kg C mg-2. A longer snow-free season associated with future warming resulted in OC losses of ???5.4 kg C mg-2. Soil climate was the dominant control on soil OC loss, governing the sensitivity of microbial decomposers to fluctuations in temperature and soil moisture; this control, in turn, is governed by interannual changes in active layer depth. Transitional responses of the active layer depth to fire regimes also contributed to OC losses, primarily by determining the proportion of OC into frozen and unfrozen soil layers

  11. The interaction of early life experiences with COMT val158met affects anxiety sensitivity.

    PubMed

    Baumann, C; Klauke, B; Weber, H; Domschke, K; Zwanzger, P; Pauli, P; Deckert, J; Reif, A

    2013-11-01

    The pathogenesis of anxiety disorders is considered to be multifactorial with a complex interaction of genetic factors and individual environmental factors. Therefore, the aim of this study was to examine gene-by-environment interactions of the genes coding for catechol-O-methyltransferase (COMT) and monoamine oxidase A (MAOA) with life events on measures related to anxiety. A sample of healthy subjects (N = 782; thereof 531 women; mean age M = 24.79, SD = 6.02) was genotyped for COMT rs4680 and MAOA-uVNTR (upstream variable number of tandem repeats), and was assessed for childhood adversities [Childhood Trauma Questionnaire (CTQ)], anxiety sensitivity [Anxiety Sensitivity Index (ASI)] and anxious apprehension [Penn State Worry Questionnaire (PSWQ)]. Main and interaction effects of genotype, environment and gender on measures related to anxiety were assessed by means of regression analyses. Association analysis showed no main gene effect on either questionnaire score. A significant interactive effect of childhood adversities and COMT genotype was observed: Homozygosity for the low-active met allele and high CTQ scores was associated with a significant increment of explained ASI variance [R(2) = 0.040, false discovery rate (FDR) corrected P = 0.04]. A borderline interactive effect with respect to MAOA-uVNTR was restricted to the male subgroup. Carriers of the low-active MAOA allele who reported more aversive experiences in childhood exhibited a trend for enhanced anxious apprehension (R(2) = 0.077, FDR corrected P = 0.10). Early aversive life experiences therefore might increase the vulnerability to anxiety disorders in the presence of homozygosity for the COMT 158met allele or low-active MAOA-uVNTR alleles.

  12. Ethanol Sensitization during Adolescence or Adulthood Induces Different Patterns of Ethanol Consumption without Affecting Ethanol Metabolism

    PubMed Central

    Carrara-Nascimento, Priscila F.; Hoffmann, Lucas B.; Contó, Marcos B.; Marcourakis, Tania; Camarini, Rosana

    2017-01-01

    In previous study, we demonstrated that ethanol preexposure may increase ethanol consumption in both adolescent and adult mice, in a two-bottle choice model. We now questioned if ethanol exposure during adolescence results in changes of consumption pattern using a three-bottle choice procedure, considering drinking-in-the-dark and alcohol deprivation effect as strategies for ethanol consumption escalation. We also analyzed aldehyde dehydrogenase (ALDH) activity as a measurement of ethanol metabolism. Adolescent and adult Swiss mice were treated with saline (SAL) or 2.0 g/kg ethanol (EtOH) during 15 days (groups: Adolescent-SAL, Adolescent-EtOH, Adult-SAL and Adult-EtOH). Five days after the last injection, mice were exposed to the three-bottle choice protocol using sucrose fading procedure (4% + sucrose vs. 8%–15% ethanol + sucrose vs. water + sucrose) for 2 h during the dark phase. Sucrose was faded out from 8% to 0%. The protocol was composed of a 6-week acquisition period, followed by four withdrawals and reexposures. Both adolescent and adult mice exhibited ethanol behavioral sensitization, although the magnitude of sensitization in adolescents was lower than in adults. Adolescent-EtOH displayed an escalation of 4% ethanol consumption during acquisition that was not observed in Adult-EtOH. Moreover, Adult-EtOH consumed less 4% ethanol throughout all the experiment and less 15% ethanol in the last reexposure period than Adolescent-EtOH. ALDH activity varied with age, in which older mice showed higher ALDH than younger ones. Ethanol pretreatment or the pattern of consumption did not have influence on ALDH activity. Our data suggest that ethanol pretreatment during adolescence but not adulthood may influence the pattern of ethanol consumption toward an escalation in ethanol consumption at low dose, without exerting an impact on ALDH activity. PMID:28386220

  13. Climatic water deficit and wildfire: predicting spatial patterns in forest ecosystem sensitivity to warming and earlier spring snowmelt. (Invited)

    NASA Astrophysics Data System (ADS)

    Westerling, A. L.; Keyser, A.; Milostan, J.

    2013-12-01

    Western U.S. forest wildfire area burned increased significantly in recent decades, with much of the increase in the US Rocky Mountains (Westerling et al 2006). While Westerling et al (2006) noted that interannual variability in aggregate regional forest wildfire has been highly correlated with regional indices of warming and spring snowmelt, our analysis of the hydroclimatic conditions coincident with the occurrence of large forest wildfires in recent decades reveals that sensitivity of wildfire in specific forest areas has been characterized by a narrow range of climatic conditions: long-term average snow-free season of ~2-4 months and relatively high cumulative water-year actual evapotranspiration (AET). These forests have shown large increases in cumulative water year moisture deficit concomitant with large increases in wildfire in recent years with warmer than average temperatures and earlier spring snowmelt. Forests with high AET and snow-free seasons between 4 and 5 months have exhibited significant but more moderate increases in wildfire activity. Mean snow-free season length and cumulative AET may also be predictive of forest wildfire sensitivity to projected warming. Recent climate change impact studies indicate that the same forests where wildfire activity has exhibited the most sensitivity to observed warming in recent decades may continue to exhibit large increases in the next few decades, until reductions in fuel availability and continuity become dominant constraints on the growth of large wildfires (e.g., Westerling et al 2011a, Litschert et al 2012, Westerling et al unpublished data). We also find that similar forests that may have been buffered from recent climate change by elevation or latitude may also show very large increases in wildfire under projected warming. Conversely, warmer, drier forests where recent changes in moisture deficit and fire activity have been more moderate (particularly those with snow-free seasons ~4-5 months), are

  14. I Feel You: The Design and Evaluation of a Domotic Affect-Sensitive Spoken Conversational Agent

    PubMed Central

    Lutfi, Syaheerah Lebai; Fernández-Martínez, Fernando; Lorenzo-Trueba, Jaime; Barra-Chicote, Roberto; Montero, Juan Manuel

    2013-01-01

    We describe the work on infusion of emotion into a limited-task autonomous spoken conversational agent situated in the domestic environment, using a need-inspired task-independent emotion model (NEMO). In order to demonstrate the generation of affect through the use of the model, we describe the work of integrating it with a natural-language mixed-initiative HiFi-control spoken conversational agent (SCA). NEMO and the host system communicate externally, removing the need for the Dialog Manager to be modified, as is done in most existing dialog systems, in order to be adaptive. The first part of the paper concerns the integration between NEMO and the host agent. The second part summarizes the work on automatic affect prediction, namely, frustration and contentment, from dialog features, a non-conventional source, in the attempt of moving towards a more user-centric approach. The final part reports the evaluation results obtained from a user study, in which both versions of the agent (non-adaptive and emotionally-adaptive) were compared. The results provide substantial evidences with respect to the benefits of adding emotion in a spoken conversational agent, especially in mitigating users' frustrations and, ultimately, improving their satisfaction. PMID:23945740

  15. I feel you: the design and evaluation of a domotic affect-sensitive spoken conversational agent.

    PubMed

    Lutfi, Syaheerah Lebai; Fernández-Martínez, Fernando; Lorenzo-Trueba, Jaime; Barra-Chicote, Roberto; Montero, Juan Manuel

    2013-08-13

    We describe the work on infusion of emotion into a limited-task autonomous spoken conversational agent situated in the domestic environment, using a need-inspired task-independent emotion model (NEMO). In order to demonstrate the generation of affect through the use of the model, we describe the work of integrating it with a natural-language mixed-initiative HiFi-control spoken conversational agent (SCA). NEMO and the host system communicate externally, removing the need for the Dialog Manager to be modified, as is done in most existing dialog systems, in order to be adaptive. The first part of the paper concerns the integration between NEMO and the host agent. The second part summarizes the work on automatic affect prediction, namely, frustration and contentment, from dialog features, a non-conventional source, in the attempt of moving towards a more user-centric approach. The final part reports the evaluation results obtained from a user study, in which both versions of the agent (non-adaptive and emotionally-adaptive) were compared. The results provide substantial evidences with respect to the benefits of adding emotion in a spoken conversational agent, especially in mitigating users' frustrations and, ultimately, improving their satisfaction.

  16. Arctic Ocean Atmosphere Sea Ice Snowpack (OASIS) Interactions Affecting Atmospheric Biogeochemistry, Climate and Ecosystems in the Arctic

    NASA Astrophysics Data System (ADS)

    Beine, H.

    2006-12-01

    The Arctic Ocean is central to the understanding of climate and global environmental change. As a critical component of the Earth system, the Arctic region both influences and responds rapidly to natural variations and to human-induced perturbations, such as warming, contaminant accumulation, and associated impacts. While it is clear that there are dramatic changes occurring in the Arctic, the interactions between the air and surfaces are still not understood. The international, multidisciplinary Ocean-Atmosphere-Sea Ice-Snowpack (OASIS) program addresses the knowledge gaps and coordinates studies of Arctic atmosphere-surface interactions and associated feedbacks to the climate system. OASIS is planned as a long term science program for the next decade. OASIS is linked to a number of international organizations and activities, including AMAP, the IGBP programs IGAC under the AICI (Air Ice Chemical Interactions) activity, and SOLAS (Surface Ocean Lower Atmosphere Study), and the WCRP project CliC (Climate and Cryosphere). The abundant snowpack in the Arctic is not just a white cover: an array of intriguing reactions has been observed within and on snowpacks and sea-ice during springtime Arctic sunrise that dramatically influences the composition of the atmosphere. Building on these discoveries, the OASIS research approach is aimed at a better understanding of air-surface chemical exchange in the context of a changing climate. Fundamental physical, chemical, and biologically-mediated chemical exchange processes will be studied to answer questions such as: Will climate change increase or decrease the amount of mercury deposited in the Arctic? How will warming affect regional and global climate? How are sea ice and snow chemistry and physics changing? What is the role of biological processes in producing reactive atmospheric gases? What is the role of sea-salt in ozone depletion? What are ecological and human health impacts of toxic materials such as mercury and

  17. Mutants with Altered Sensitivity to a Calmodulin Antagonist Affect the Circadian Clock in Neurospora Crassa

    PubMed Central

    Suzuki, S.; Katagiri, S.; Nakashima, H.

    1996-01-01

    Two newly isolated mutant strains of Neurospora crassa, cpz-1 and cpz-2, were hypersensitive to chlorpromazine with respect to mycelial growth but responded differently to the drug with respect to the circadian conidiation rhythm. In the wild type, chlorpromazine caused shortening of the period length of the conidiation rhythm. Pulse treatment with the drug shifted the phase and inhibited light-induced phase shifting in Neurospora. By contrast to the wild type, the cpz-2 strain was resistant to these inhibitory effects of chlorpromazine. Inhibition of cpz-2 function by chlorpromazine affected three different parameters of circadian conidiation rhythm, namely, period length, phase and light-induced phase shifting. These results indicate that the cpz-2 gene must be involved in or related closely to the clock mechanism of Neurospora. By contrast, the cpz-1 strain was hypersensitive to chlorpromazine with respect to the circadian conidiation rhythm. PMID:8807291

  18. Does body size affect a bird's sensitivity to patch size and landscape structure?

    USGS Publications Warehouse

    Winter, M.; Johnson, D.H.; Shaffer, J.A.

    2006-01-01

    Larger birds are generally more strongly affected by habitat loss and fragmentation than are smaller ones because they require more resources and thus larger habitat patches. Consequently, conservation actions often favor the creation or protection of larger over smaller patches. However, in grassland systems the boundaries between a patch and the surrounding landscape, and thus the perceived size of a patch, can be indistinct. We investigated whether eight grassland bird species with different body sizes perceived variation in patch size and landscape structure in a consistent manner. Data were collected from surveys conducted in 44 patches of northern tallgrass prairie during 1998-2001. The response to patch size was very similar among species regardless of body size (density was little affected by patch size), except in the Greater Prairie-Chicken (Tympanuchus cupido), which showed a threshold effect and was not found in patches smaller than 140 ha. In landscapes containing 0%-30% woody vegetation, smaller species responded more negatively to increases in the percentage of woody vegetation than larger species, but above an apparent threshold of 30%, larger species were not detected. Further analyses revealed that the observed variation in responses to patch size and landscape structure among species was not solely due to body size per se, but to other differences among species. These results indicate that a stringent application of concepts requiring larger habitat patches for larger species appears to limit the number of grassland habitats that can be protected and may not always be the most effective conservation strategy. ?? The Cooper Ornithological Society 2006.

  19. Timing and presence of an attachment person affect sensitivity of aggression tests in shelter dogs.

    PubMed

    Kis, A; Klausz, B; Persa, E; Miklósi, Á; Gácsi, M

    2014-02-22

    Different test series have been developed and used to measure behaviour in shelter dogs in order to reveal individuals not suitable for re-homing due to their aggressive tendencies. However, behavioural tests previously validated on pet dogs seem to have relatively low predictability in the case of shelter dogs. Here, we investigate the potential effects of (1) timing of the behaviour testing and (2) presence of a human companion on dogs' aggressive behaviour. In Study I, shelter dogs (n=25) showed more aggression when tested in a short test series two weeks after they had been placed in the shelter compared to their responses in the same test performed 1-2 days after arrival. In Study II, the occurrence of aggressive behaviour was more probable in pet dogs (n=50) in the presence than in the absence of their passive owner. We conclude that the sensitivity of aggression tests for shelter dogs can be increased by running the test in the presence of a caretaker, and after some period of acclimatisation to the new environment. This methodology could also provide better chances for successful adoption.

  20. Sensitivity to delay is affected by magnitude of reinforcement in rats.

    PubMed

    Orduña, Vladimir; Valencia-Torres, Lourdes; Cruz, Guadalupe; Bouzas, Arturo

    2013-09-01

    Previous research has provided discrepant results about how reinforcement delay and magnitude are combined to determine the value of the alternatives in concurrent-chains schedules. In the present experiment, we analyzed a possible interaction between these characteristics of reinforcement, employing a two component concurrent-chains schedule, with rats as experimental subjects. Non-independent VI schedules were presented in the initial links of each component. In the terminal links, the following pairs of delays to reinforcement were presented in 4 conditions: 2-28, 6-24, 24-6, 28-2s (fixed time schedules for a group, fixed interval schedules for the other). Magnitude of reinforcement was maintained constant within components: one pellet for one component, and four pellets for the other. The results indicated that in both groups, the sensitivity to delay - calculated according to the generalized matching law - was higher in the component with the larger reinforcer. This result is in contrast with those reported in the literature of temporal discounting with human participants.

  1. Ecosystem Services

    EPA Pesticide Factsheets

    Ecosystem goods and services are the many life-sustaining benefits we receive from nature and contribute to environmental and human health and well-being. Ecosystem-focused research will develop methods to measure ecosystem goods and services.

  2. Nicotine at clinically relevant concentrations affects atrial inward rectifier potassium current sensitive to acetylcholine.

    PubMed

    Bébarová, Markéta; Matejovič, Peter; Švecová, Olga; Kula, Roman; Šimurdová, Milena; Šimurda, Jiří

    2017-02-03

    Nicotine abuse is associated with variety of diseases including arrhythmias, most often atrial fibrillation (AF). Altered inward rectifier potassium currents including acetylcholine-sensitive current I K(Ach) are known to be related to AF pathogenesis. Since relevant data are missing, we aimed to investigate I K(Ach) changes at clinically relevant concentrations of nicotine. Experiments were performed by the whole cell patch clamp technique at 23 ± 1 °C on isolated rat atrial myocytes. Nicotine was applied at following concentrations: 4, 40 and 400 nM; ethanol at 20 mM (∼0.09%). Nicotine at 40 and 400 nM significantly activated constitutively active component of I K(Ach) with the maximum effect at 40 nM (an increase by ∼100%); similar effect was observed at -110 and -50 mV. Changes at 4 nM nicotine were negligible on average. Coapplication of 40 nM nicotine and 20 mM ethanol (which is also known to activate this current) did not show cumulative effect. In the case of acetylcholine-induced component of I K(Ach), a dual effect of nicotine and its correlation with the current magnitude in control were apparent: the current was increased by nicotine in the cells showing small current in control and vice versa. The effect of 40 and 400 nM nicotine on acetylcholine-induced component of I K(Ach) was significantly different at -110 and -50 mV. We conclude that nicotine at clinically relevant concentrations significantly increased constitutively active component of I K(Ach) and showed a dual effect on its acetylcholine-induced component, similarly as ethanol. Synchronous application of nicotine and ethanol did not cause additive effect.

  3. An olfactory-limbic model of multiple chemical sensitivity syndrome: Possible relationships to kindling and affective spectrum disorders

    SciTech Connect

    Bell, I.R.; Miller, C.S.; Schwartz, G.E. )

    1992-08-01

    This paper reviews the clinical and experimental literature on patients with multiple adverse responses to chemicals (Multiple Chemical Sensitivity Syndrome-MCS) and develops a model for MCS based on olfactory-limbic system dysfunction that overlaps in part with Post's kindling model for affective disorders. MCS encompasses a broad range of chronic polysymptomatic conditions and complaints whose triggers are reported to include low levels of common indoor and outdoor environmental chemicals, such as pesticides and solvents. Other investigators have found evidence of increased prevalence of depression, anxiety, and somatization disorders in MCS patients and have concluded that their psychiatric conditions account for the clinical picture. However, none of these studies has presented any data on the effects of chemicals on symptoms or on objective measures of nervous system function. Synthesis of the MCS literature with large bodies of research in neurotoxicology, occupational medicine, and biological psychiatry, suggests that the phenomenology of MCS patients overlaps that of affective spectrum disorders and that both involve dysfunction of the limbic pathways. Animal studies demonstrate that intermittent repeated low level environmental chemical exposures, including pesticides, cause limbic kindling. Kindling (full or partial) is one central nervous system mechanism that could amplify reactivity to low levels of inhaled and ingested chemicals and initiate persistent affective, cognitive, and somatic symptomatology in both occupational and nonoccupational settings. As in animal studies, inescapable and novel stressors could cross-sensitize with chemical exposures in some individuals to generate adverse responses on a neurochemical basis. The olfactory-limbic model raises testable neurobiological hypotheses that could increase understanding of the multifactorial etiology of MCS and of certain overlapping affective spectrum disorders. 170 refs.

  4. The anhepatic phase extended by temporary portocaval shunt does not affect anesthetic sensitivity and postoperative cognitive function

    PubMed Central

    Son, Young Gon; Byun, Sung Hye; Kim, Jong Hae

    2016-01-01

    Abstract Temporary portocaval shunt (TPCS) prolongs the duration of the anhepatic phase, during which anesthetic sensitivity is highest among the 3 phases of living donor liver transplantation (LDLT). Cognitive dysfunction has been associated with increased anesthetic sensitivity and poor hepatic function. Therefore, we assessed anesthetic sensitivity to desflurane and perioperative cognitive function in patients undergoing LDLT, in whom the duration of the anhepatic phase was extended by TPCS to test the hypothesis that the prolonged anhepatic phase increases anesthetic sensitivity and causes postoperative cognitive decline. This case–control study was conducted in 67 consecutive patients undergoing LDLT from February 2014 to January 2016. Anesthesia was maintained at a 0.6 end-tidal age-adjusted minimum alveolar concentration of desflurane. The bispectral index (BIS) was maintained at less than 60 and averaged at 1-minute intervals. The mini-mental state examination (MMSE-KC) was performed 1 day before and 7 days after the LDLT. All parameters were compared between the patients undergoing TPCS (TPCS group) and the remaining patients (non-TPCS group). TPCS was performed in 16 patients (24%). TPCS prolonged the duration of the anhepatic phase (125.9 ± 29.4 vs 54.9 ± 20.5 minutes [mean ± standard deviation], P < 0.0001). The averaged BIS values during the 3 phases were comparable between the 2 groups. No significant interval changes in the averaged BIS values were observed during the 3 consecutive phases. Similarly, there were no significant differences in MMSE-KC score assessed 1 day before and 7 days after LDLT between the 2 groups. The preoperative MMSE-KC scores were unchanged postoperatively in the 2 groups. The extension of the anhepatic phase did not affect anesthetic sensitivity and postoperative cognitive function. PMID:27930598

  5. Behavioural Responses to Thermal Conditions Affect Seasonal Mass Change in a Heat-Sensitive Northern Ungulate

    PubMed Central

    van Beest, Floris M.; Milner, Jos M.

    2013-01-01

    Background Empirical tests that link temperature-mediated changes in behaviour (activity and resource selection) to individual fitness or condition are currently lacking for endotherms yet may be critical to understanding the effect of climate change on population dynamics. Moose (Alces alces) are thought to suffer from heat stress in all seasons so provide a good biological model to test whether exposure to non-optimal ambient temperatures influence seasonal changes in body mass. Seasonal mass change is an important fitness correlate of large herbivores and affects reproductive success of female moose. Methodology/Principal Findings Using GPS-collared adult female moose from two populations in southern Norway we quantified individual differences in seasonal activity budget and resource selection patterns as a function of seasonal temperatures thought to induce heat stress in moose. Individual body mass was recorded in early and late winter, and autumn to calculate seasonal mass changes (n = 52 over winter, n = 47 over summer). We found large individual differences in temperature-dependent resource selection patterns as well as within and between season variability in thermoregulatory strategies. As expected, individuals using an optimal strategy, selecting young successional forest (foraging habitat) at low ambient temperatures and mature coniferous forest (thermal shelter) during thermally stressful conditions, lost less mass in winter and gained more mass in summer. Conclusions/Significance This study provides evidence that behavioural responses to temperature have important consequences for seasonal mass change in moose living in the south of their distribution in Norway, and may be a contributing factor to recently observed declines in moose demographic performance. Although the mechanisms that underlie the observed temperature mediated habitat-fitness relationship remain to be tested, physiological state and individual variation in thermal tolerance

  6. Unexpected sensitivity of the annual net ecosystem exchange to the high frequency loss corrections in a grazed grassland site in Belgium

    NASA Astrophysics Data System (ADS)

    Mamadou, Ossenatou; Gourlez de la Motte, Louis; De Ligne, Anne; Bernard, Heineisch; Aubinet, Marc

    2016-04-01

    Although widely used to measure CO2 and other gas fluxes, the eddy covariance technique still needs methodological improvements. This research focuses on the high frequency loss corrections, which are especially important when using a closed-path infrared gas analyzer. We compared three approaches to implement these corrections for CO2 fluxes and evaluated their impact on the carbon balance at the Dorinne Terrestrial Observatory (DTO), an intensively grazed grassland site in Belgium. The carbon balance at DTO is also the object of a separate analysis (Gourlez de la Motte et al., Geophysical Research Abstract, Vol. 18, EGU2016-6813-1, 2016). In the first approach, the computation of correction factors was based on the measured sensible heat cospectra ('local' cospectra), whereas the other two were based on theoretical models (Kaimal et al., 1972). The correction approaches were validated by comparing the nighttime eddy covariance CO2 fluxes corrected with each approach and in situ soil respiration measurements. We found that the local cospectra differed from the Kaimal theoretical shape, although the site could not be considered 'difficult' (i.e., fairly flat, homogeneous, low vegetation, sufficient measurement height), appearing less peaked in the inertial subrange. This difference greatly affected the correction factor, especially for night fluxes. Night fluxes measured by eddy covariance were found to be in good agreement with in situ soil respiration measurements when corrected with local cospectra and to be overestimated when corrected with Kaimal cospectra. As the difference between correction factors was larger in stable than unstable conditions, this acts as a selective systematic error and has an important impact on annual fluxes. On the basis of a 4-year average, at DTO, the errors reach 71-150 g C m-2 y-1 for net ecosystem exchange (NEE), 280-562 g C m-2 y-1 for total ecosystem respiration (TER) and 209-412 g C m-2 y-1 for gross primary productivity (GPP

  7. An eukaryotic translation initiation factor, AteIF5A-2, affects cadmium accumulation and sensitivity in Arabidopsis.

    PubMed

    Xu, Xiao-Yan; Ding, Zhong-Jie; Chen, Lei; Yan, Jin-Ying; Li, Gui-Xin; Zheng, Shao-Jian

    2015-10-01

    Cadmium (Cd) is one of the most toxic elements and can be accumulated in plants easily; meanwhile, eIF5A is a highly conserved protein in all eukaryotic organisms. The present work tried to investigate whether eIF5A is involved in Cd accumulation and sensitivity in Arabidopsis (Arabidopsis thaliana L.) by comparing the wild-type Columbia-0 (Col-0) with a knockdown mutant of AteIF5A-2, fbr12-3 under Cd stress conditions. The results showed that the mutant fbr12-3 accumulated more Cd in roots and shoots and had significantly lower chlorophyll content, shorter root length, and smaller biomass, suggesting that downregulation of AteIF5A-2 makes the mutant more Cd sensitive. Real-time polymerase chain reaction revealed that the expressions of metal transporters involved in Cd uptake and translocation including IRT1, ZIP1, AtNramp3, and AtHMA4 were significantly increased but the expressions of PCS1 and PCS2 related to Cd detoxification were decreased notably in fbr12-3 compared with Col-0. As a result, an increase in MDA and H2 O2 content but decrease in root trolox, glutathione and proline content under Cd stress was observed, indicating that a severer oxidative stress occurs in the mutant. All these results demonstrated for the first time that AteIF5A influences Cd sensitivity by affecting Cd uptake, accumulation, and detoxification in Arabidopsis.

  8. Toward a culturally sensitive conceptualization of resilience: Participatory research with war-affected communities in northern Uganda.

    PubMed

    Vindevogel, Sofie; Ager, Alastair; Schiltz, Julie; Broekaert, Eric; Derluyn, Ilse

    2015-06-01

    Resilience research with war-affected populations has long conceptualized resilience as the absence of psychopathology and operationalized it by use of standardized measures. However, literature on resilience increasingly highlights the importance of also including indicators of positively valued functioning as well as contextually sensitive indicators of resilience. This study used a participatory approach to examine the contextual conceptualization of youth resilience in the aftermath of war in northern Uganda, as defined by groups of stakeholders (youths, parents, elders, leaders, teachers) in four communities. The results identify 40 indicators covering a multiplicity of domains of functioning. The rationales behind these indicators were clustered into the broad themes: progress, self-reliance, social connectedness, morality, health, and comfort. The findings suggest that positively and negatively valued aspects of functioning are both key to conceptualizing resilience, and indicate the importance of including contextually distinguished indicators. The findings further point to the role of individual and collective processes in the construction of resilience, and to the need to take into account the contexts wherein resilience is conceptualized and observed. This study generated contextually sensitive indicators of young people's resilience, which can be used, complementary to existing measures of functioning, to provide a more comprehensive and culturally sensitive view of youths' resilience in the wake of war adversity.

  9. Lactose in milk replacer can partly be replaced by glucose, fructose, or glycerol without affecting insulin sensitivity in veal calves.

    PubMed

    Pantophlet, A J; Gilbert, M S; van den Borne, J J G C; Gerrits, W J J; Roelofsen, H; Priebe, M G; Vonk, R J

    2016-04-01

    Calf milk replacer (MR) contains 40 to 50% lactose. Lactose strongly fluctuates in price and alternatives are desired. Also, problems with glucose homeostasis and insulin sensitivity (i.e., high incidence of hyperglycemia and hyperinsulinemia) have been described for heavy veal calves (body weight >100 kg). Replacement of lactose by other dietary substrates can be economically attractive, and may also positively (or negatively) affect the risk of developing problems with glucose metabolism. An experiment was designed to study the effects of replacing one third of the dietary lactose by glucose, fructose, or glycerol on glucose homeostasis and insulin sensitivity in veal calves. Forty male Holstein-Friesian (body weight=114 ± 2.4 kg; age=97 ± 1.4 d) calves were fed an MR containing 462 g of lactose/kg (CON), or an MR in which 150 g of lactose/kg of MR was replaced by glucose (GLU), fructose (FRU), or glycerol (GLY). During the first 10d of the trial, all calves received CON. The CON group remained on this diet and the other groups received their experimental diets for a period of 8 wk. Measurements were conducted during the first (baseline) and last week of the trial. A frequently sampled intravenous glucose tolerance test was performed to assess insulin sensitivity and 24 h of urine was collected to measure glucose excretion. During the last week of the trial, a bolus of 1.5 g of [U-(13)C] substrates was added to their respective meals and plasma glucose, insulin, and (13)C-glucose responses were measured. Insulin sensitivity was low at the start of the trial and remained low [1.2 ± 0.1 and 1.0 ± 0.1 (mU/L)(-1) × min(-1)], and no treatment effect was noted. Glucose excretion was low at the start of the trial (3.4 ± 1.0 g/d), but increased in CON and GLU calves (26.9 ± 3.9 and 43.0 ± 10.6g/d) but not in FRU and GLY calves. Postprandial glucose was higher in GLU, lower in FRU, and similar in GLY compared with CON calves. Postprandial insulin was lower in FRU

  10. Simulated microgravity affects semicarbazide-sensitive amine oxidase expression in recombinant Escherichia coli by HPLC-ESI-QQQ analysis.

    PubMed

    Zhang, Yongqian; Lai, Chengjun; Duan, Jinyan; Guan, Ningxin; Ullah, Kaleem; Deng, Yulin

    2012-05-01

    Simulated microgravity has been reported to affect the gene, protein expression, and its function in the cells. Semicarbazide-sensitive amine oxidase (SSAO; E.C.1.4.3.6.) is widely distributed in vascular cells, smooth muscle cells, and adipocytes. It is noteworthy whether the expression of SSAO is affected under simulated microgravity or not. In this study, an SSAO-transformed Escherichia coli BL21 was constructed firstly. Then, a sensitive, selective, and accurate method based on high-performance liquid chromatography electrospray ionization triple quadrupole (HPLC-ESI-QQQ) was developed to determine the amount of SSAO in the E. coli BL21. The limit of detection and limit of quantification were 5.0 and 10 fmol, respectively. Finally, SSAO expression in the recombinant E. coli BL21 was evaluated with various gravity and temperature conditions by HPLC-ESI-QQQ analysis. It is interesting that the tendency in the alteration of SSAO under simulated microgravity showed temperature difference. At 18 °C, the amount of SSAO in the inclusion bodies and soluble fractions under the simulated microgravity increased by 83% and 116%, respectively, compared with normal gravity. However, the decrease by 38% and 49% in the inclusion bodies and soluble fractions under the simulated microgravity was observed at 37 °C. Results obtained here indicate that the SSAO expression under simulated microgravity is dramatically sensitive to the temperature. On the other hand, a novel bioreactor from this study may also be useful for the recombinant protein expression in the field of gene engineering.

  11. Low soil moisture during hot periods drives apparent negative temperature sensitivity of soil respiration in a dryland ecosystem: A multi-model comparison

    USGS Publications Warehouse

    Tucker, Colin; Reed, Sasha C.

    2016-01-01

    Arid and semiarid ecosystems (drylands) may dominate the trajectory of biosphere-to-atmosphere carbon (C) flux over the coming century. Accordingly, understanding dryland CO2 efflux controls is important for understanding C cycling at the global-scale: key unknowns regarding how temperature and moisture interact to regulate dryland C cycling remain. Further, the patchiness of dryland vegetation can create ‘islands of fertility’, with spatially heterogeneous rates of soil respiration (Rs). At our study site in southeastern Utah, USA we added or removed litter (0 to 650% of control) in paired plots that were either associated with a shrub or with interspaces between vascular plants. We measured Rs, soil temperature, and water content (θ) on eight sampling dates between October 2013 and November 2014. Rs was highest following monsoon rains in late summer when soil temperature was ~30°C. During mid-summer, Rs was low, associated with high soil temperatures (>40°C), resulting in an apparent negative temperature sensitivity of Rs at high temperatures, and positive temperature sensitivity at low-moderate temperatures. We used Bayesian statistical methods to compare multiple competing models capturing a wide range of hypothesized relationships between temperature, moisture, and Rs. The best fit model indicates apparent negative temperature sensitivity of soil respiration at high temperatures reflects the control of soil moisture – not high temperatures – in limiting Rs. The modeled Q10 ranged from 2.7 at 5°C to 1.4 at 45°C. Litter addition had no effect on temperature sensitivity or reference respiration (Rref = Rs at 20°C and optimum moisture) beneath shrubs, and little effect on Rref in interspaces, yet Rref was 1.5 times higher beneath shrubs than in interspaces. Together, these results suggest reduced Rs often observed at high temperatures in drylands is dominated by the control of moisture, and that variable litter inputs – at least over the short

  12. Valuing the non-market benefits of estuarine ecosystem services in a river basin context: Testing sensitivity to scope and scale

    NASA Astrophysics Data System (ADS)

    Pinto, R.; Brouwer, R.; Patrício, J.; Abreu, P.; Marta-Pedroso, C.; Baeta, A.; Franco, J. N.; Domingos, T.; Marques, J. C.

    2016-02-01

    A large scale contingent valuation survey is conducted among residents in one of the largest river basins in Portugal to estimate the non-market benefits of the ecosystem services associated with implementation of the European Water Framework Directive (WFD). Statistical tests of public willingness to pay's sensitivity to scope and scale are carried out. Decreasing marginal willingness to pay (WTP) is found when asking respondents to value two water quality improvement scenarios (within sample comparison), from current moderate water quality conditions to good and subsequently excellent ecological status. However, insensitivity to scale is found when asking half of the respondents to value water quality improvements in the estuary only and the other half in the whole basin (between sample comparison). Although respondents living outside the river basin value water quality improvements significantly less than respondents inside the basin, no spatial heterogeneity can be detected within the basin between upstream and downstream residents. This finding has important implications for spatial aggregation procedures across the population of beneficiaries living in the river basin to estimate its total economic value based on public WTP for the implementation of the WFD.

  13. Background visual motion affects responses of an insect motion-sensitive neuron to objects deviating from a collision course.

    PubMed

    Yakubowski, Jasmine M; McMillan, Glyn A; Gray, John R

    2016-05-01

    Stimulus complexity affects the response of looming sensitive neurons in a variety of animal taxa. The Lobula Giant Movement Detector/Descending Contralateral Movement Detector (LGMD/DCMD) pathway is well-characterized in the locust visual system. It responds to simple objects approaching on a direct collision course (i.e., looming) as well as complex motion defined by changes in stimulus velocity, trajectory, and transitions, all of which are affected by the presence or absence of background visual motion. In this study, we focused on DCMD responses to objects transitioning away from a collision course, which emulates a successful locust avoidance behavior. We presented each of 20 locusts with a sequence of complex three-dimensional visual stimuli in simple, scattered, and progressive flow field backgrounds while simultaneously recording DCMD activity extracellularly. DCMD responses to looming stimuli were generally characteristic irrespective of stimulus background. However, changing background complexity affected, peak firing rates, peak time, and caused changes in peak rise and fall phases. The DCMD response to complex object motion also varied with the azimuthal approach angle and the dynamics of object edge expansion. These data fit with an existing correlational model that relates expansion properties to firing rate modulation during trajectory changes.

  14. Biogeochemical processes underpin ecosystem services

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elemental cycling is critical to the function of ecosystems and delivery of key ecosystem services because many of these elements are essential nutrients or detrimental toxicants that directly affect the health of organisms and ecosystems. A team of authors from North Carolina State University and ...

  15. Caffeic acid phenethyl ester preferentially sensitizes CT26 colorectal adenocarcinoma to ionizing radiation without affecting bone marrow radioresponse

    SciTech Connect

    Chen, Y.-J.; Liao, H.-F.; Tsai, T.-H.; Wang, S.-Y.; Shiao, M.-S. . E-mail: msshiao@vghtpe.gov.tw

    2005-11-15

    Purpose: Caffeic acid phenethyl ester (CAPE), a component of propolis, was reported capable of depleting glutathione (GSH). We subsequently examined the radiosensitizing effect of CAPE and its toxicity. Methods and Materials: The effects of CAPE on GSH level, GSH metabolism enzyme activities, NF-{kappa}B activity, and radiosensitivity in mouse CT26 colorectal adenocarcinoma cells were determined. BALB/c mouse with CT26 cells implantation was used as a syngeneic in vivo model for evaluation of treatment and toxicity end points. Results: CAPE entered CT26 cells rapidly and depleted intracellular GSH in CT26 cells, but not in bone marrow cells. Pretreatment with nontoxic doses of CAPE significantly enhanced cell killing by ionizing radiation (IR) with sensitizer enhancement ratios up to 2.2. Pretreatment of CT26 cells with N-acetyl-L-cysteine reversed the GSH depletion activity and partially blocked the radiosensitizing effect of CAPE. CAPE treatment in CT26 cells increased glutathione peroxidase, decreased glutathione reductase, and did not affect glutathione S-transferase or {gamma}-glutamyl transpeptidase activity. Radiation activated NF-{kappa}B was reversed by CAPE pretreatment. In vivo study revealed that pretreatment with CAPE before IR resulted in greater inhibition of tumor growth and prolongation of survival in comparison with IR alone. Pretreatment with CAPE neither affected body weights nor produced hepatic, renal, or hematopoietic toxicity. Conclusions: CAPE sensitizes CT26 colorectal adenocarcinoma to IR, which may be via depleting GSH and inhibiting NF-{kappa}B activity, without toxicity to bone marrow, liver, and kidney.

  16. How does conversion of natural tropical rainforest ecosystems affect soil bacterial and fungal communities in the Nile river watershed of Uganda?

    PubMed

    Alele, Peter O; Sheil, Douglas; Surget-Groba, Yann; Lingling, Shi; Cannon, Charles H

    2014-01-01

    Uganda's forests are globally important for their conservation values but are under pressure from increasing human population and consumption. In this study, we examine how conversion of natural forest affects soil bacterial and fungal communities. Comparisons in paired natural forest and human-converted sites among four locations indicated that natural forest soils consistently had higher pH, organic carbon, nitrogen, and calcium, although variation among sites was large. Despite these differences, no effect on the diversity of dominant taxa for either bacterial or fungal communities was detected, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Composition of fungal communities did generally appear different in converted sites, but surprisingly, we did not observe a consistent pattern among sites. The spatial distribution of some taxa and community composition was associated with soil pH, organic carbon, phosphorus and sodium, suggesting that changes in soil communities were nuanced and require more robust metagenomic methods to understand the various components of the community. Given the close geographic proximity of the paired sampling sites, the similarity between natural and converted sites might be due to continued dispersal between treatments. Fungal communities showed greater environmental differentiation than bacterial communities, particularly according to soil pH. We detected biotic homogenization in converted ecosystems and substantial contribution of β-diversity to total diversity, indicating considerable geographic structure in soil biota in these forest communities. Overall, our results suggest that soil microbial communities are relatively resilient to forest conversion and despite a substantial and consistent change in the soil environment, the effects of conversion differed widely among sites. The substantial difference in soil chemistry, with generally lower nutrient quantity in converted sites, does bring

  17. Arabinoxylan‐oligosaccharides (AXOS) affect the protein/carbohydrate fermentation balance and microbial population dynamics of the Simulator of Human Intestinal Microbial Ecosystem

    PubMed Central

    Sanchez, J. I.; Marzorati, M.; Grootaert, C.; Baran, M.; Van Craeyveld, V.; Courtin, C. M.; Broekaert, W. F.; Delcour, J. A.; Verstraete, W.; Van de Wiele, T.

    2009-01-01

    Summary Arabinoxylan‐oligosaccharides (AXOS) are a recently newly discovered class of candidate prebiotics as – depending on their structure – they are fermented in different regions of gastrointestinal tract. This can have an impact on the protein/carbohydrate fermentation balance in the large intestine and, thus, affect the generation of potentially toxic metabolites in the colon originating from proteolytic activity. In this study, we screened different AXOS preparations for their impact on the in vitro intestinal fermentation activity and microbial community structure. Short‐term fermentation experiments with AXOS with an average degree of polymerization (avDP) of 29 allowed part of the oligosaccharides to reach the distal colon, and decreased the concentration of proteolytic markers, whereas AXOS with lower avDP were primarily fermented in the proximal colon. Additionally, prolonged supplementation of AXOS with avDP 29 to the Simulator of Human Intestinal Microbial Ecosystem (SHIME) reactor decreased levels of the toxic proteolytic markers phenol and p‐cresol in the two distal colon compartments and increased concentrations of beneficial short‐chain fatty acids (SCFA) in all colon vessels (25–48%). Denaturant gradient gel electrophoresis (DGGE) analysis indicated that AXOS supplementation only slightly modified the total microbial community, implying that the observed effects on fermentation markers are mainly caused by changes in fermentation activity. Finally, specific quantitative PCR (qPCR) analysis showed that AXOS supplementation significantly increased the amount of health‐promoting lactobacilli as well as of Bacteroides–Prevotella and Clostridium coccoides–Eubacterium rectale groups. These data allow concluding that AXOS are promising candidates to modulate the microbial metabolism in the distal colon. PMID:21261885

  18. How Does Conversion of Natural Tropical Rainforest Ecosystems Affect Soil Bacterial and Fungal Communities in the Nile River Watershed of Uganda?

    PubMed Central

    Alele, Peter O.; Sheil, Douglas; Surget-Groba, Yann; Lingling, Shi; Cannon, Charles H.

    2014-01-01

    Uganda's forests are globally important for their conservation values but are under pressure from increasing human population and consumption. In this study, we examine how conversion of natural forest affects soil bacterial and fungal communities. Comparisons in paired natural forest and human-converted sites among four locations indicated that natural forest soils consistently had higher pH, organic carbon, nitrogen, and calcium, although variation among sites was large. Despite these differences, no effect on the diversity of dominant taxa for either bacterial or fungal communities was detected, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Composition of fungal communities did generally appear different in converted sites, but surprisingly, we did not observe a consistent pattern among sites. The spatial distribution of some taxa and community composition was associated with soil pH, organic carbon, phosphorus and sodium, suggesting that changes in soil communities were nuanced and require more robust metagenomic methods to understand the various components of the community. Given the close geographic proximity of the paired sampling sites, the similarity between natural and converted sites might be due to continued dispersal between treatments. Fungal communities showed greater environmental differentiation than bacterial communities, particularly according to soil pH. We detected biotic homogenization in converted ecosystems and substantial contribution of β-diversity to total diversity, indicating considerable geographic structure in soil biota in these forest communities. Overall, our results suggest that soil microbial communities are relatively resilient to forest conversion and despite a substantial and consistent change in the soil environment, the effects of conversion differed widely among sites. The substantial difference in soil chemistry, with generally lower nutrient quantity in converted sites, does bring

  19. Modelling carbon responses of tundra ecosystems to historical and projected climate: Sensitivity of pan-Arctic carbon storage to temporal and spatial variation in climate

    USGS Publications Warehouse

    McGuire, A.D.; Clein, J.S.; Melillo, J.M.; Kicklighter, D.W.; Meier, R.A.; Vorosmarty, C.J.; Serreze, M.C.

    2000-01-01

    Historical and projected climate trends for high latitudes show substantial temporal and spatial variability. To identify uncertainties in simulating carbon (C) dynamics for pan-Arctic tundra, we compare the historical and projected responses of tundra C storage from 1921 to 2100 between simulations by the Terrestrial Ecosystem Model (TEM) for the pan-Arctic and the Kuparuk River Basin, which was the focus of an integrated study of C dynamics from 1994 to 1996. In the historical period from 1921 to 1994, the responses of net primary production (NPP) and heterotrophic respiration (RH) simulated for the Kuparuk River Basin and the pan-Arctic are correlated with the same factors; NPP is positively correlated with net nitrogen mineralization (NMIN) and RH is negatively correlated with mean annual soil moisture. In comparison to the historical period, the spatially aggregated responses of NPP and RH for the Kuparuk River Basin and the pan-Arctic in our simulations for the projected period have different sensitivities to temperature, soil moisture and NMIN. In addition to being sensitive to soil moisture during the projected period, RH is also sensitive to temperature and there is a significant correlation between RH and NMIN. We interpret the increases in NPP during the projected period as being driven primarily by increases in NMIN, and that the correlation between NPP and temperature in the projected period is a result primarily of the causal linkage between temperature, RH, and NMIN. Although similar factors appear to be controlling simulated regional-and biome-scale C dynamics, simulated C dynamics at the two scales differ in magnitude with higher increases in C storage simulated for the Kuparuk River Basin than for the pan-Arctic at the end of the historical period and throughout the projected period. Also, the results of the simulations indicate that responses of C storage show different climate sensitivities at regional and pan-Arctic spatial scales and that

  20. Ecosystem Journalism

    ERIC Educational Resources Information Center

    Robertson, Amy; Mahlin, Kathryn

    2005-01-01

    If the organisms in a prairie ecosystem created a newspaper, what would it look like? What important news topics of the ecosystem would the organisms want to discuss? Imaginative and enthusiastic third-grade students were busy pondering these questions as they tried their hands at "ecosystem journalism." The class had recently completed…

  1. Natural ecosystems

    USGS Publications Warehouse

    Fleishman, Erica; Belnap, Jayne; Cobb, Neil; Enquist, Carolyn A.F.; Ford, Karl; MacDonald, Glen; Pellant, Mike; Schoennagel, Tania; Schmit, Lara M.; Schwartz, Mark; van Drunick, Suzanne; Westerling, Anthony LeRoy; Keyser, Alisa; Lucas, Ryan

    2013-01-01

    Natural Ecosystems analyzes the association of observed changes in climate with changes in the geographic distributions and phenology (the timing of blossoms or migrations of birds) for Southwestern ecosystems and their species, portraying ecosystem disturbances—such as wildfires and outbreaks of forest pathogens—and carbon storage and release, in relation to climate change.

  2. Ecosystem Jenga!

    ERIC Educational Resources Information Center

    Umphlett, Natalie; Brosius, Tierney; Laungani, Ramesh; Rousseau, Joe; Leslie-Pelecky, Diandra L.

    2009-01-01

    To give students a tangible model of an ecosystem and have them experience what could happen if a component of that ecosystem were removed; the authors developed a hands-on, inquiry-based activity that visually demonstrates the concept of a delicately balanced ecosystem through a modification of the popular game Jenga. This activity can be…

  3. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification.

    PubMed

    Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D; Rivest, Emily B; Sesboüé, Marine; Caldeira, Ken

    2016-03-18

    Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ω arag), with potentially substantial impacts on marine ecosystems over the 21(st) Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ω arag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ω arag. If the short-term sensitivity of community calcification to Ω arag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences.

  4. Time of day affects chemoreflex sensitivity and the carbon dioxide reserve during NREM sleep in participants with sleep apnea.

    PubMed

    El-Chami, Mohamad; Shaheen, David; Ivers, Blake; Syed, Ziauddin; Badr, M Safwan; Lin, Ho-Sheng; Mateika, Jason H

    2014-11-15

    Our investigation was designed to determine whether the time of day affects the carbon dioxide reserve and chemoreflex sensitivity during non-rapid eye movement (NREM) sleep. Ten healthy men with obstructive sleep apnea completed a constant routine protocol that consisted of sleep sessions in the evening (10 PM to 1 AM), morning (6 AM to 9 AM), and afternoon (2 PM to 5 PM). Between sleep sessions, the participants were awake. During each sleep session, core body temperature, baseline levels of carbon dioxide (PET(CO2)) and minute ventilation, as well as the PET(CO2) that demarcated the apneic threshold and hypocapnic ventilatory response, were measured. The nadir of core body temperature during sleep occurred in the morning and was accompanied by reductions in minute ventilation and PetCO2 compared with the evening and afternoon (minute ventilation: 5.3 ± 0.3 vs. 6.2 ± 0.2 vs. 6.1 ± 0.2 l/min, P < 0.02; PET(CO2): 39.7 ± 0.4 vs. 41.4 ± 0.6 vs. 40.4 ± 0.6 Torr, P < 0.02). The carbon dioxide reserve was reduced, and the hypocapnic ventilatory response increased in the morning compared with the evening and afternoon (carbon dioxide reserve: 2.1 ± 0.3 vs. 3.6 ± 0.5 vs. 3.5 ± 0.3 Torr, P < 0.002; hypocapnic ventilatory response: 2.3 ± 0.3 vs. 1.6 ± 0.2 vs. 1.8 ± 0.2 l·min(-1)·mmHg(-1), P < 0.001). We conclude that time of day affects chemoreflex properties during sleep, which may contribute to increases in breathing instability in the morning compared with other periods throughout the day/night cycle in individuals with sleep apnea.

  5. Is increasing industrialization affecting remote ecosystem health in the South Americas? Insights from ocean surface water measurements of As, Sb and Pb from a GEOTRACES transect

    NASA Astrophysics Data System (ADS)

    Weiss, Dominik; Salaun, Pascal; Van den Berg, Stan; Bi, Zaoshun

    2014-05-01

    Continued industrial development of the South Americas with increasing atmospheric emission of toxic trace metals has lead to a growing concern about possible effects on pristine ecosystem health. Concentration measurements of trace metals in ocean surface waters in the North Atlantic have successfully revealed the global extent of atmospheric pollution in the Northern Hemisphere during economical growth in the USA and Europe, suggesting a similar approach can be applied to the Southern Hemisphere. To this end, we determined concentrations of lead (Pb), antimony (Sb) and arsenic (As) using voltammetry in surface water samples of the South Atlantic Ocean collected during the third leg of the GEOTRACES West Atlantic Cruise. These elements are volatile and therefore most likely suitable tracer elements of industrial emissions from South America. The samples were not filtered and the solutions were acidified and UV digested. Total concentrations of Pb were detected. Detected As levels correspond to the sum of inorganic species (AsIII + AsV) plus the mono methyl arsenic acid (MMA) while the dimethyl arsenic acid (DMA) is not detected in such conditions. For Sb, detected levels correspond at least to the sum of inorganic fractions (SbIII + SbV). The measured concentrations for Pb varied from 6 to 23 pM. Concentrations were highest at -35° latitude and lowest at -40° and -50° latitude. We found a decreasing trend from about -35° latitude southwards. The average concentrations of As was 20 nM and of Sb 1.2 nM. Arsenic showed a more significant north to south trend than Sb. Arsenic concentration was highest at -23 ° latitude (21 nM) and the lowest at -43 ° latitude (17.7 nM). Antimony concentration was highest at -31 ° latitude (1.5 nM) and lowest at -35 ° latitude (1.0 nM). Our preliminary data suggests that the major industrial centres in Brazil (i.e., Sao Paolo, Rio de Janeiro) and Argentina (i.e., Buenos Aires) affect atmospheric metal fluxes to remote

  6. Forest ecosystems: Vegetation, disturbance, and economics: Chapter 5

    USGS Publications Warehouse

    Littell, Jeremy S.; Hicke, Jeffrey A.; Shafer, Sarah L.; Capalbo, Susan M.; Houston, Laurie L.; Glick, Patty

    2013-01-01

    Forests cover about 47% of the Northwest (NW–Washington, Oregon, and Idaho) (Smith et al. 2009, fig. 5.1, table 5.1). The impacts of current and future climate change on NW forest ecosystems are a product of the sensitivities of ecosystem processes to climate and the degree to which humans depend on and interact with those systems. Forest ecosystem structure and function, particularly in relatively unmanaged forests where timber harvest and other land use have smaller effects, is sensitive to climate change because climate has a strong influence on ecosystem processes. Climate can affect forest structure directly through its control of plan physiology and life history (establishment, individual growth, productivity, and morality) or indirectly through its control of disturbance (fire, insects, disease). As climate changes, many forest processes will be affected, altering ecosystem services such as timber production and recreation. These changes have socioeconomic implications (e.g. for timber economies) and will require changes to current management of forests. Climate and management will interact to determine the forests of the future, and the scientific basis for adaptation to climate change in forests thus depends significantly on how forests will be affected.

  7. Negative affectivity as a moderator of the association between smoking status and anxiety sensitivity, anxiety symptoms, and perceived health among young adults.

    PubMed

    McLeish, Alison C; Zvolensky, Michael J; Marshall, Erin C; Leyro, Teresa M

    2009-02-01

    The present investigation evaluated the moderational role of negative affectivity in the relation between smoking status and panic-relevant symptoms in a young adult sample (n = 222; 123 females; mean age = 22.45 years, SD = 8.08). Consistent with the prediction, negative affectivity moderated the association of smoking status with anxious arousal symptoms, anxiety sensitivity, and perceived health. Specifically, greater negative affectivity was associated with higher levels of anxious arousal and anxiety sensitivity and lower levels of perceived health among smokers compared to nonsmokers. The effects were evident after controlling for the variance accounted for by alcohol use problems and gender. Findings are discussed with regard to the role of negative affectivity in the relation between smoking and panic-related processes.

  8. Air-Pollution-Mediated Changes in Alpine Ecosystems and Ecotones.

    PubMed

    Rusek, Josef

    1993-08-01

    Soil biological parameters (e.g., Collembola), soil types, soil chemical parameters (pH, humus substances), and plant communities were studied in different ecosystems and ecotones in alpine, subalpine, and spruce forest zones in the Tatra National Park, Slovak Republic. The preliminary, selected data, based on a long-term research program, showed a high sensitivity of some alpine ecotones and ecosystems to long-distance transported acid deposits. The changes in different ecosystem parameters since 1977 were more extensive in alpine grasslands on limestone than on granite. The greatest soil pH decrease was in the plant communities Festucetum versicoloris (-1.5 pH), Geranio-Alchemilletum crinitae (-1.32 pH), and Saxifragetum perdurantis (-1.25 pH), which are restricted to places with snow accumulation and water runoff gullies. In these ecosystems the greatest changes occurred in the leaching of humus substances. Some formerly less abundant and rare soil animals restricted to acid bedrock became dominant in some ecosystems on limestone as well as on granite; other formerly dominant species disappeared from the entire study area (e.g., Folsomia alpina). The aerial extent of some ecosystems changed substantially since 1977, and their surrounding ecotones moved into the space formerly occupied by one of the adjacent ecosystems. These changes are detectable by remote-sensing methods. In Central European mountains, strongly affected by global and regional industrial air pollution (e.g., Krusne Hory, Krkonose, Beskydy), spruce forests started to die back from higher to lower mountain elevations. The effects of air pollution on alpine and subalpine vegetation were not studied there. Strong alterations in alpine ecosystems and ecotones were detected by the author during long-term studies in the High Tatra Mountains, and I suggest that subalpine and mountain forest belts will be affected here in the near future as they were in the more polluted Central European mountains. The

  9. Fishing impact in Mediterranean ecosystems: an EcoTroph modeling approach

    NASA Astrophysics Data System (ADS)

    Halouani, Ghassen; Gascuel, Didier; Hattab, Tarek; Lasram, Frida Ben Rais; Coll, Marta; Tsagarakis, Konstantinos; Piroddi, Chiara; Romdhane, Mohamed Salah; Le Loc'h, François

    2015-10-01

    The EcoTroph modeling approach was applied to five Mediterranean marine ecosystems to characterize their food webs and investigate their responses to several simulated fishing scenarios. First, EcoTroph was used to synthesize the outputs of five pre-existing heterogeneous Ecopath models in a common framework, and thus to compare different ecosystems through their trophic spectra of biomass, catch, and fishing mortalities. This approach contributes to our understanding of ecosystem functioning, from both ecological and fisheries perspectives. Then, we assessed the sensitivity of each ecosystem to fishery, using EcoTroph simulations. For the five ecosystems considered, we simulated the effects of increasing or decreasing fishing mortalities on both the biomass and the catch per trophic class. Our results emphasize that the Mediterranean Sea is strongly affected by the depletion of high trophic level organisms. Results also show that fisheries impacts, at the trophic level scale, differ between ecosystems according to their trophic structure and exploitation patterns. A top-down compensation effect is observed in some simulations where a fishing-induced decrease in the biomass of predators impacts their prey, leading to an increase in the biomass at lower trophic levels. The results of this comparative analysis highlight that ecosystems where top-down controls are observed are less sensitive to variations in fishing mortality in terms of total ecosystem biomass. This suggests that the magnitude of top-down control present in a system can affect its stability.

  10. AQUATIC ECOSYSTEMS,

    EPA Science Inventory

    Aquatic ecosystems are a vital part of the urban water cycle (and of urban areas more broadly), and, if healthy, provide a range of goods and services valued by humans (Meyer 1997). For example, aquatic ecosystems (e.g., rivers, lakes, wetlands) provide potable water, food resou...

  11. The Effect of Instructor Nonverbal Immediacy Behaviors and Feedback Sensitivity on Hispanic Students' Affective Learning Outcomes in Ninth-Grade Writing Conferences

    ERIC Educational Resources Information Center

    Martin, Laura; Mottet, Timothy P.

    2011-01-01

    The purpose of this study was to show how instructor use of nonverbal immediacy behaviors influence Hispanic students' affective learning in ninth-grade writing conferences, regardless of the level of feedback sensitivity provided. According to Kluger and DeNisi's (1996) feedback intervention theory, when feedback is direct and targeted on the…

  12. The Effects of T-Group Training and Group Video Recall Procedures on Affective Sensitivity, Openmindedness and Self-Perception Change in Counselors.

    ERIC Educational Resources Information Center

    Cerra, Patrick Frank

    This study investigated the relative effect of T group training and Group Video Recall (GVR) procedures in the growth of affective sensitivity, openmindedness, and self-perception in 17 Indiana University students majoring or minoring in Counseling and Guidance. Relationships among the three behaviors were also sought. The Rokeach Dogmatism Scale…

  13. Relation of Chlorophyll Fluorescence Sensitive Reflectance Ratios to Carbon Flux Measurements of Montanne Grassland and Norway Spruce Forest Ecosystems in the Temperate Zone

    PubMed Central

    Ač, Alexander; Malenovský, Zbyněk; Urban, Otmar; Hanuš, Jan; Zitová, Martina; Navrátil, Martin; Vráblová, Martina; Olejníčková, Julie; Špunda, Vladimír; Marek, Michal

    2012-01-01

    We explored ability of reflectance vegetation indexes (VIs) related to chlorophyll fluorescence emission (R686/R630, R740/R800) and de-epoxidation state of xanthophyll cycle pigments (PRI, calculated as (R531 − R570)/(R531 − R570)) to track changes in the CO2 assimilation rate and Light Use Efficiency (LUE) in montane grassland and Norway spruce forest ecosystems, both at leaf and also canopy level. VIs were measured at two research plots using a ground-based high spatial/spectral resolution imaging spectroscopy technique. No significant relationship between VIs and leaf light-saturated CO2 assimilation (AMAX) was detected in instantaneous measurements of grassland under steady-state irradiance conditions. Once the temporal dimension and daily irradiance variation were included into the experimental setup, statistically significant changes in VIs related to tested physiological parameters were revealed. ΔPRI and Δ(R686/R630) of grassland plant leaves under dark-to-full sunlight transition in the scale of minutes were significantly related to AMAX (R2 = 0.51). In the daily course, the variation of VIs measured in one-hour intervals correlated well with the variation of Gross Primary Production (GPP), Net Ecosystem Exchange (NEE), and LUE estimated via the eddy-covariance flux tower. Statistical results were weaker in the case of the grassland ecosystem, with the strongest statistical relation of the index R686/R630 with NEE and GPP. PMID:22701368

  14. Richness, biomass, and nutrient content of a wetland macrophyte community affect soil nitrogen cycling in a diversity-ecosystem functioning experiment

    USGS Publications Warehouse

    Korol, Alicia R.; Ahn, Changwoo; Noe, Gregory

    2016-01-01

    The development of soil nitrogen (N) cycling in created wetlands promotes the maturation of multiple biogeochemical cycles necessary for ecosystem functioning. This development proceeds from gradual changes in soil physicochemical properties and influential characteristics of the plant community, such as competitive behavior, phenology, productivity, and nutrient composition. In the context of a 2-year diversity experiment in freshwater mesocosms (0, 1, 2, 3, or 4 richness levels), we assessed the direct and indirect impacts of three plant community characteristics – species richness, total biomass, and tissue N concentration – on three processes in the soil N cycle – soil net ammonification, net nitrification, and denitrification potentials. Species richness had a positive effect on net ammonification potential (NAP) through higher redox potentials and likely faster microbial respiration. All NAP rates were negative, however, due to immobilization and high rates of ammonium removal. Net nitrification was inhibited at higher species richness without mediation from the measured soil properties. Higher species richness also inhibited denitrification potential through increased redox potential and decreased nitrification. Both lower biomass and/or higher tissue ratios of carbon to nitrogen, characteristics indicative of the two annual plants, were shown to have stimulatory effects on all three soil N processes. The two mediating physicochemical links between the young macrophyte community and microbial N processes were soil redox potential and temperature. Our results suggest that early-successional annual plant communities play an important role in the development of ecosystem N multifunctionality in newly created wetland soils.

  15. Human - Ecosystem Interactions: The Case of Mercury

    EPA Science Inventory

    Human and ecosystem exposure studies evaluate exposure of sensitive and vulnerable populations. We will discuss how ecosystem exposure modeling studies completed for input into the US Clean Air Mercury Rule (CAMR) to evaluate the response of aquatic ecosystems to changes in mercu...

  16. Cellular Lipid Composition Affects Sensitivity of Plant Pathogens to Fengycin, an Antifungal Compound Produced by Bacillus subtilis Strain CU12.

    PubMed

    Wise, Cody; Falardeau, Justin; Hagberg, Ingrid; Avis, Tyler J

    2014-10-01

    Fengycin is an antimicrobial cyclic lipopeptide produced by various Bacillus subtilis strains, including strain CU12. Direct effects of fengycin include membrane pore formation and efflux of cellular contents leading to cell death in sensitive microorganisms. In this study, four plant pathogens were studied in order to elucidate the role of membrane lipids in their relative sensitivity to fengycin. Inhibition of mycelial growth in these pathogens varied considerably. Analysis of membrane lipids in these microorganisms indicated that sensitivity correlated with low ergosterol content and shorter phospholipid fatty acyl chains. Sensitivity to fengycin also correlated with a lower anionic/zwitterionic phospholipid ratio. Our data suggest that decreased fluidity buffering capacity, as a result of low ergosterol content, and higher intrinsic fluidity afforded by short fatty acyl chain length may increase the sensitivity of microbial membranes to fengycin. Our results also suggest that lower content in anionic phospholipids may increase fengycin insertion into the membrane through reduced electrostatic repulsion with the negatively charged fengycin. The intrinsic membrane lipid composition may contribute, in part, to the observed level of antimicrobial activity of fengycin in various plant pathogens.

  17. Assessment of toxicity thresholds in aquatic environments: does benthic growth of diatoms affect their exposure and sensitivity to herbicides?

    PubMed

    Larras, Floriane; Montuelle, Bernard; Bouchez, Agnès

    2013-10-01

    Benthic diatoms evolved in a biofilm structure, at the interface between water and substrata. Biofilms can adsorb toxicants, such as herbicides, but little is known about the exposure of biofilm organisms, such as benthic diatoms, to these adsorbed herbicides. We assessed the sensitivity of 11 benthic diatoms species to 6 herbicides under both planktonic and benthic conditions using single-species bioassays. The concentration that reduced the growth rate of the population by 10% (EC10) and 50% (EC50), respectively, varied depending on the species, the herbicides, and the growth forms involved. As a general trend, the more hydrophobic the herbicide, the more species were found to be sensitive under benthic growth conditions. Statistical differences (alpha<5%) were observed between the sensitivities under planktonic and benthic growth conditions for many hydrophobic herbicides. A protective effect of the biofilm against herbicides was observed, and this tended to decrease (at both the EC10 and EC50 levels) with increasing hydrophobicity. The biofilm matrix appeared to control exposure to herbicides, and consequently their toxicity towards benthic diatoms. For metolachlor, terbutryn and irgarol, benthic thresholds derived from species sensitivity distributions were more protective than planktonic thresholds. For hydrophobic herbicides, deriving sensitivity thresholds from data obtained under benthic growth seems to offer a promising alternative.

  18. Neural correlates of automatic perceptual sensitivity to facial affect in posttraumatic stress disorder subjects who survived L'Aquila eartquake of April 6, 2009.

    PubMed

    Mazza, Monica; Catalucci, Alessia; Mariano, Melania; Pino, Maria Chiara; Tripaldi, Simona; Roncone, Rita; Gallucci, Massimo

    2012-09-01

    The "Emotional Numbing" (EN) constitutes one of the core symptoms in PTSD although its exact nature remains elusive. This disorder shows an abnormal response of cortical and limbic regions which are normally involved in understanding emotions since the very earliest stages of the development of processing ability. The aim of our study, which included ten physically healthy subjects with PTSD, diagnosed according to DSM-IV-TR, who survived L'Aquila earthquake of April 6, 2009, and 10 healthy controls matching for age, sex and education, was to examine automatic perceptual sensitivity to facial affect in PTSD, through an affective priming task that was administered during functional magnetic resonance (fMRI). Behavioural data revealed in the PTSD group a higher sensitivity to negative facial affect on an automatic processing level. FMRI data analysis revealed that PTSD subjects showed a significantly higher activation in right insula and left amygdala that we did not observe in healthy subjects; on the contrary, healthy controls showed a greater activation of left lingual gyrus. Our data support the hypothesis that PTSD appears to be sensitive to negative affect on an automatic processing level and correlates with the activation of specific areas involved in processing emotions. An elevated activation of these areas may underlie the emotion dysregulation in PTSD and could explain the Emotional Numbing symptom associated with this disorder. The present study suffers of a number of limitations, for instance, the relatively small sample size did not allow the application of alternative statistical models.

  19. Description, calibration and sensitivity analysis of the local ecosystem submodel of a global model of carbon and nitrogen cycling and the water balance in the terrestrial biosphere

    SciTech Connect

    Kercher, J.R.; Chambers, J.Q. |

    1995-10-01

    We have developed a geographically-distributed ecosystem model for the carbon, nitrogen, and water dynamics of the terrestrial biosphere TERRA. The local ecosystem model of TERRA consists of coupled, modified versions of TEM and DAYTRANS. The ecosystem model in each grid cell calculates water fluxes of evaporation, transpiration, and runoff; carbon fluxes of gross primary productivity, litterfall, and plant and soil respiration; and nitrogen fluxes of vegetation uptake, litterfall, mineralization, immobilization, and system loss. The state variables are soil water content; carbon in live vegetation; carbon in soil; nitrogen in live vegetation; organic nitrogen in soil and fitter; available inorganic nitrogen aggregating nitrites, nitrates, and ammonia; and a variable for allocation. Carbon and nitrogen dynamics are calibrated to specific sites in 17 vegetation types. Eight parameters are determined during calibration for each of the 17 vegetation types. At calibration, the annual average values of carbon in vegetation C, show site differences that derive from the vegetation-type specific parameters and intersite variation in climate and soils. From calibration, we recover the average C{sub v} of forests, woodlands, savannas, grasslands, shrublands, and tundra that were used to develop the model initially. The timing of the phases of the annual variation is driven by temperature and light in the high latitude and moist temperate zones. The dry temperate zones are driven by temperature, precipitation, and light. In the tropics, precipitation is the key variable in annual variation. The seasonal responses are even more clearly demonstrated in net primary production and show the same controlling factors.

  20. Assessment of Relationship-Specific Incentive and Threat Sensitivities: Predicting Satisfaction and Affect in Adult Intimate Relationships

    ERIC Educational Resources Information Center

    Laurenceau, Jean-Philippe; Kleinman, Brighid M.; Kaczynski, Karen J.; Carver, Charles S.

    2010-01-01

    Self-report scales assessing relationship-specific incentive and threat sensitivity were created. Initial tests of factor structure and associations with relationship quality were conducted in a sample of persons in intimate relationships (Study 1). Associations with conceptually related measures were examined to determine convergent and…

  1. X-ray survival characteristics and genetic analysis for nineSaccharomyces deletion mutants that affect radiation sensitivity

    SciTech Connect

    Game, John C.; Williamson, Marsha S.; Baccari, Clelia

    2006-07-21

    We examine ionizing radiation (IR) sensitivity and epistasisrelationships of several Saccharomyces mutants affectingpost-translational modifications of histones H2B and H3. Mutantsbre1delta, lge1delta, and rtf1delta, defective in histone H2B lysine 123ubiquitination, show IR sensitivity equivalent to that of the dot1deltamutant that we reported on earlier, consistent with published findingsthat Dot1p requires H2B K123 ubiquitination to fully methylate histone H3K79. This implicates progressive K79 methylation rather thanmono-methylation in IR resistance. The set2delta mutant, defective in H3K36 methylation, shows mild IR sensitivity whereas mutants that abolishH3 K4 methylation resemble wild type. The dot1delta, bre1delta, andlge1delta mutants show epistasis for IR sensitivity. The paf1deltamutant, also reportedly defective in H2B K123 ubiquitination, confers nosensitivity. The rad6delta, rad51null, rad50delta, and rad9deltamutations are epistatic to bre1? and dot1delta, but rad18delta andrad5delta show additivity with bre1delta, dot1delta, and each other. Thebre1delta rad18delta double mutant resembles rad6delta in sensitivity;thus the role of Rad6p in ubiquitinating H2B accounts for its extrasensitivity compared to rad18delta. We conclude that IR resistanceconferred by BRE1 and DOT1 is mediated through homologous recombinationalrepair, not postreplication repair, and confirm findings of a G1checkpoint role for the RAD6/BRE1/DOT1 pathway.

  2. Effects of affective pictures on pain sensitivity and cortical responses induced by laser stimuli in healthy subjects and migraine patients.

    PubMed

    de Tommaso, Marina; Calabrese, Rita; Vecchio, Eleonora; De Vito Francesco, Vito; Lancioni, Giulio; Livrea, Paolo

    2009-11-01

    Visually induced analgesia has been correlated with the affective content of pleasant, neutral or unpleasant pictures. The aim of the present study was to assess the effect of affective images vision on laser evoked potentials and pain perception, in a cohort of healthy subjects and migraine patients. Twenty-two healthy subjects and 24 migraine without aura patients (recorded during the inter-critical phase) participated in the study. Eighty-four colour slides, arranged in two blocks, each consisting of 14 pleasant, 14 unpleasant and 14 neutral images, in random presentation, were chosen from the International Affective Picture System. The CO(2) laser stimuli were delivered on the dorsum of the right hand and supra-orbital zone at 7.5-watt intensity and 25-ms duration, in basal condition and during the viewing of affective pictures. Migraine patients expressed higher scores of valence and arousal for pleasant and unpleasant pictures, compared to controls. In both groups, a late positive potential in the 400-700 ms time range was clear for pleasant and unpleasant pictures, but its amplitude was significantly reduced in migraine patients. The pain rating and the N2 component were reduced in both groups during the visual task compared to basal condition. In migraineurs and controls the P2 wave was reduced during the vision of pleasant pictures, compared to basal condition. This indicates that stimulation by images with different affective content reduces subjective pain for a cognitive mechanism of attentive engagement, while a special inhibition of later LEPs is produced by a positive emotional impact. In migraine, affective images are able to modulate pain perception and LEPs, differently from other modalities of distraction, suggesting a possible emotive elaboration of painful stimuli.

  3. An evaluation of anxiety sensitivity, emotional dysregulation, and negative affectivity among daily cigarette smokers: relation to smoking motives and barriers to quitting.

    PubMed

    Gonzalez, Adam; Zvolensky, Michael J; Vujanovic, Anka A; Leyro, Teresa M; Marshall, Erin C

    2008-12-01

    The present investigation evaluated the relations between anxiety sensitivity and motivational bases of cigarette smoking, as well as barriers to quitting smoking, above and beyond concurrent substance use, negative affectivity, and emotional dysregulation among a community sample of 189 daily cigarette smokers (46% women; M(age)=24.97 years, SD=9.78). Results indicated that anxiety sensitivity was significantly related to coping, addictive, and habitual smoking motives, as well as greater perceived barriers to quitting. These effects were evident above and beyond the variance accounted for by concurrent tobacco, alcohol, and marijuana use and discernable from shared variance with negative affectivity and emotional dysregulation. Emotional dysregulation was significantly related to stimulation, habitual, and sensorimotor smoking motives and greater perceived barriers to quitting, whereas negative affectivity was only significantly related to smoking for relaxation. These findings uniquely add to a growing literature suggesting anxiety sensitivity is an important and unique cognitive factor for better understanding clinically-relevant psychological processes related to cigarette smoking.

  4. Ethylenediurea (EDU) affects the growth of ozone-sensitive and tolerant ash (Fraxinus excelsior) trees under ambient O3 conditions.

    PubMed

    Paoletti, Elena; Contran, Nicla; Manning, William J; Tagliaferro, Francesco

    2007-03-21

    Adult ash trees (Fraxinus excelsior L.), known to be sensitive or tolerant to ozone, determined by presence or absence of foliar symptoms in previous years, were treated with ethylenediurea (EDU) at 450 ppm by gravitational trunk infusion over the 2005 growing season (32.5 ppm h AOT40). Tree and shoot growth were recorded in May and September. Leaf area, ectomycorrhizal infection, and leaf and fine root biomass were determined in September. EDU enhanced shoot length and diameter, and the number and area of leaves, in both O3-sensitive and tolerant trees. However, no EDU effects were recorded at the fine root and tree level. Therefore, a potential for EDU protection against O3-caused growth losses of forest trees should be evaluated during longer-term experiments.

  5. Ecosystem services as a common language for coastal ecosystem-based management.

    PubMed

    Granek, Elise F; Polasky, Stephen; Kappel, Carrie V; Reed, Denise J; Stoms, David M; Koch, Evamaria W; Kennedy, Chris J; Cramer, Lori A; Hacker, Sally D; Barbier, Edward B; Aswani, Shankar; Ruckelshaus, Mary; Perillo, Gerardo M E; Silliman, Brian R; Muthiga, Nyawira; Bael, David; Wolanski, Eric

    2010-02-01

    Ecosystem-based management is logistically and politically challenging because ecosystems are inherently complex and management decisions affect a multitude of groups. Coastal ecosystems, which lie at the interface between marine and terrestrial ecosystems and provide an array of ecosystem services to different groups, aptly illustrate these challenges. Successful ecosystem-based management of coastal ecosystems requires incorporating scientific information and the knowledge and views of interested parties into the decision-making process. Estimating the provision of ecosystem services under alternative management schemes offers a systematic way to incorporate biogeophysical and socioeconomic information and the views of individuals and groups in the policy and management process. Employing ecosystem services as a common language to improve the process of ecosystem-based management presents both benefits and difficulties. Benefits include a transparent method for assessing trade-offs associated with management alternatives, a common set of facts and common currency on which to base negotiations, and improved communication among groups with competing interests or differing worldviews. Yet challenges to this approach remain, including predicting how human interventions will affect ecosystems, how such changes will affect the provision of ecosystem services, and how changes in service provision will affect the welfare of different groups in society. In a case study from Puget Sound, Washington, we illustrate the potential of applying ecosystem services as a common language for ecosystem-based management.

  6. Ecosystem growth and development.

    PubMed

    Fath, Brian D; Jørgensen, Sven E; Patten, Bernard C; Straskraba, Milan

    2004-11-01

    One of the most important features of biosystems is how they are able to maintain local order (low entropy) within their system boundaries. At the ecosystem scale, this organization can be observed in the thermodynamic parameters that describe it, such that these parameters can be used to track ecosystem growth and development during succession. Thermodynamically, ecosystem growth is the increase of energy throughflow and stored biomass, and ecosystem development is the internal reorganization of these energy mass stores, which affect transfers, transformations, and time lags within the system. Several proposed hypotheses describe thermodynamically the orientation or natural tendency that ecosystems follow during succession, and here, we consider five: minimize specific entropy production, maximize dissipation, maximize exergy storage (includes biomass and information), maximize energy throughflow, and maximize retention time. These thermodynamic orientors were previously all shown to occur to some degree during succession, and here we present a refinement by observing them during different stages of succession. We view ecosystem succession as a series of four growth and development stages: boundary, structural, network, and informational. We demonstrate how each of these ecological thermodynamic orientors behaves during the different growth and development stages, and show that while all apply during some stages only maximizing energy throughflow and maximizing exergy storage are applicable during all four stages. Therefore, we conclude that the movement away from thermodynamic equilibrium, and the subsequent increase in organization during ecosystem growth and development, is a result of system components and configurations that maximize the flux of useful energy and the amount of stored exergy. Empirical data and theoretical models support these conclusions.

  7. Genetic and environmental causes of individual differences in daily life positive affect and reward experience and its overlap with stress-sensitivity.

    PubMed

    Menne-Lothmann, Claudia; Jacobs, Nele; Derom, Catherine; Thiery, Evert; van Os, Jim; Wichers, Marieke

    2012-09-01

    Momentary positive affect (PA) and reward experience may underlie subjective wellbeing, and index mental health resilience. This study examines their underlying sources of variation and the covariation with stress-sensitivity. The experience sampling method was used to collect multiple appraisals of mood and daily life events in 520 female twins. Structural equation model fitting was employed to determine sources of variation of PA, reward experience, and the association between reward experience and stress-sensitivity. PA was best explained by shared and non-shared environmental factors, and reward experience by non-shared environmental factors only, although the evidence was also suggestive of a small genetic contribution. Reward experience and stress-sensitivity showed no association. PA was not heritable. Most-if not all-variance of reward experience was explained by environmental influences. Stress-sensitivity, indexing depression vulnerability, and reward experience were non-overlapping, suggesting that resilience traits are independent from stress-sensitivity levels in a general population sample.

  8. Trophic cascades across ecosystems.

    PubMed

    Knight, Tiffany M; McCoy, Michael W; Chase, Jonathan M; McCoy, Krista A; Holt, Robert D

    2005-10-06

    Predation can be intense, creating strong direct and indirect effects throughout food webs. In addition, ecologists increasingly recognize that fluxes of organisms across ecosystem boundaries can have major consequences for community dynamics. Species with complex life histories often shift habitats during their life cycles and provide potent conduits coupling ecosystems. Thus, local interactions that affect predator abundance in one ecosystem (for example a larval habitat) may have reverberating effects in another (for example an adult habitat). Here we show that fish indirectly facilitate terrestrial plant reproduction through cascading trophic interactions across ecosystem boundaries. Fish reduce larval dragonfly abundances in ponds, leading to fewer adult dragonflies nearby. Adult dragonflies consume insect pollinators and alter their foraging behaviour. As a result, plants near ponds with fish receive more pollinator visits and are less pollen limited than plants near fish-free ponds. Our results confirm that strong species interactions can reverberate across ecosystems, and emphasize the importance of landscape-level processes in driving local species interactions.

  9. Enteric YaiW Is a Surface-Exposed Outer Membrane Lipoprotein That Affects Sensitivity to an Antimicrobial Peptide

    PubMed Central

    Arnold, Markus F. F.; Caro-Hernandez, Paola; Tan, Karen; Runti, Giulia; Wehmeier, Silvia; Scocchi, Marco; Doerrler, William T.; Ferguson, Gail P.

    2014-01-01

    yaiW is a previously uncharacterized gene found in enteric bacteria that is of particular interest because it is located adjacent to the sbmA gene, whose bacA ortholog is required for Sinorhizobium meliloti symbiosis and Brucella abortus pathogenesis. We show that yaiW is cotranscribed with sbmA in Escherichia coli and Salmonella enterica serovar Typhi and Typhimurium strains. We present evidence that the YaiW is a palmitate-modified surface exposed outer membrane lipoprotein. Since BacA function affects the very-long-chain fatty acid (VLCFA) modification of S. meliloti and B. abortus lipid A, we tested whether SbmA function might affect either the fatty acid modification of the YaiW lipoprotein or the fatty acid modification of enteric lipid A but found that it did not. Interestingly, we did observe that E. coli SbmA suppresses deficiencies in the VLCFA modification of the lipopolysaccharide of an S. meliloti bacA mutant despite the absence of VLCFA in E. coli. Finally, we found that both YaiW and SbmA positively affect the uptake of proline-rich Bac7 peptides, suggesting a possible connection between their cellular functions. PMID:24214946

  10. Salt stress differentially affects growth-mediating β-expansins in resistant and sensitive maize (Zea mays L.).

    PubMed

    Geilfus, Christoph-Martin; Zörb, Christian; Mühling, Karl H

    2010-12-01

    Salinity mainly reduces shoot growth by the inhibition of cell division and elongation. Expansins loosen plant cell walls. Moreover, the expression of some isoforms is clearly correlated with growth. Effects of salinity on β-expansin transcripts protein abundance were recently reported for different crop species. This study provides a broad analysis of the impact of an 8-day 100mM NaCl stress treatment on the mRNA expression of different maize (Zea mays L.) β-Expansin isoforms using real-time quantitative RT-PCR. The composite β-expansin protein expression was analyzed by western blotting using an anti-peptide antibody raised against a conserved 15-amino-acid region shared by vegetatively expressed β-expansin isoforms. For the first time, changes in β-expansin transcript and protein abundance have been analyzed together with the salinity-induced inhibition of shoot growth. A salt-resistant and a salt-sensitive cultivar were compared in order to elucidate physiological changes. Genotypic differences in the relative concentration of six β-expansin transcripts together with differences in the abundance β-expansin protein are shown in response NaCl stress. In salt-sensitive Lector, reduced β-expansin protein expression was found to correlate positively with reduced shoot growth under stress. A down-regulation of ZmExpB2, ZmExpB6, and ZmExpB8 transcripts possibly contribute to this decrease in protein abundance. In contrast, the maintenance of shoot growth in salt-resistant SR03 might be related to an unaffected abundance of growth-mediating β-expansin proteins in the shoot. Our data suggest that the up-regulation of ZmExpB2, ZmExpB6, and ZmExpB8 may sustain the stable expression of β-expansin protein under conditions of salt stress.

  11. Temperature Sensitivity Caused by Mutant Release Factor 1 Is Suppressed by Mutations That Affect 16S rRNA Maturation

    PubMed Central

    Kaczanowska, Magdalena; Rydén-Aulin, Monica

    2004-01-01

    To study the effect of slow termination on the protein synthesizing machinery, we isolated suppressors to a temperature-sensitive release factor 1 (RF1). Of 26 independent clones, five complementation groups have been identified, two of which are presented here. The first mutation disrupts a base pair in the transcription terminator stem for the rplM-rpsI operon, which encodes ribosomal proteins L13 and S9. We have found that this leads to readthrough of the terminator and that lower levels of transcript (compared to the results seen with the wild type) are found in the cell. This probably leads to decreased expression of the two proteins. The second mutation is a small deletion of the yrdC open reading frame start site, and it is not likely that the protein is expressed. Both mutant strains show an increased accumulation of 17S rRNA (immature 16S rRNA). Maturation of 16S rRNA is dependent on proper assembly of the ribosomal proteins, a process that is disturbed when proteins are missing. The function of the YrdC protein is not known, but it is able to bind to double-stranded RNA; therefore, we suggest that it is an assembly factor important for 30S subunit biogenesis. On the basis of our findings, we propose that lesser amounts of S9 or a lack of YrdC causes the maturation defect. We have shown that as a consequence of the maturation defect, fewer 70S ribosomes and polysomes are formed. This and other results suggest that it is the lowered concentration of functional ribosomes that suppresses the temperature sensitivity caused by the mutant RF1. PMID:15126466

  12. High-anxiety rats are less sensitive to the rewarding affects of amphetamine on 50kHz USV.

    PubMed

    Lehner, Małgorzata H; Taracha, Ewa; Kaniuga, Ewelina; Wisłowska-Stanek, Aleksandra; Wróbel, Jacek; Sobolewska, Alicja; Turzyńska, Danuta; Skórzewska, Anna; Płaźnik, Adam

    2014-12-15

    This study assessed behaviour, as measured by 50kHz calls related to positive affect, in rats with different fear conditioned response strengths: low-anxiety rats (LR) and high-anxiety rats (HR), after amphetamine injection in a two-injection protocol (TIPS). The results showed that the first dose of amphetamine evoked similar behavioural effects in frequency-modulated (FM) 50kHz calls in the LR and HR groups. The second injection of amphetamine resulted in stronger FM 50kHz calls in LR compared with HR rats. The biochemical data ('ex vivo' analysis) showed that the LR rats had increased basal levels of dopamine in the amygdala, and increased homovanilic acid (HVA), dopamine's main metabolite, in the amygdala and prefrontal cortex compared with HR rats. The 'in vivo' analysis (microdialysis study) showed that the LR rats had increased HVA concentrations in the basolateral amygdala in response to an aversively conditioned context. Research has suggested that differences in dopaminergic system activity in the amygdala and prefrontal cortex may be one of the biological factors that underlie individual differences in response to fear stimuli, which may also affect the rewarding effects of amphetamine.

  13. Characteristics of initial deposition and behavior of radiocesium in forest ecosystems of different locations and species affected by the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Komatsu, Masabumi; Kaneko, Shinji; Ohashi, Shinta; Kuroda, Katsushi; Sano, Tetsuya; Ikeda, Shigeto; Saito, Satoshi; Kiyono, Yoshiyuki; Tonosaki, Mario; Miura, Satoru; Akama, Akio; Kajimoto, Takuya; Takahashi, Masamichi

    2016-09-01

    rainfall after the accident, and the leaf biomass by the tree species may influence differences in the spatial pattern of radiocesium by study plots. The results of the present study and further studies of the spatial pattern of radiocesium are important for modeling future radiocesium distribution in contaminated forest ecosystems.

  14. Soil macrofauna webmasters of ecosystem

    NASA Astrophysics Data System (ADS)

    Frouz, Jan

    2015-04-01

    The role of plant roots and microflora in shaping many ecosystem processes is generally appreciated in the contrary rho role of soil mcrofauna in this context is assumed to be negligible and rather anecdotic. But more than half of the litter fall is consumed by soil fauna and soil fauna can also consume and or translocation substantial amount of soil. Here we demonstrate on example of post mining chronosequences how site colonization by soil fauna affect composition of whole soil biota community, plant succession and soil formation. Filed and laboratory experiments show that decomposition of fauna feces may be sped up compare to litter at the very beginning but in long term fauna feces decompose slower than litter. This is also supported by micro morphological observation which shows that fauna feces form substantial part of soil. Fauna feces also induce lover or even negative priming effect when introduced in soil in comparison with litter that triggers positive priming effect. Laboratory experiment show that fauna effect is context sensitive and is more pronounced in systems already affected by soil fauna. Soil mixing by soil fauna consequently affect environmental conditions in soils such as water holding capacity or nutrient availability, it also affect composition of decomposer food web including microbial community (fungal bacterial ratio) which feed back in alternation of plant community composition during succession This fauna activity is not constant everywhere the higher effect of fauna activity on litter layer was observed in temperate soils of deciduous forests and with litter having CN between 20-30. In conclusion soil fauna use directly only small proportion of energy in the litter but can substantially affect soil carbon turnover, soil formation, decomposer food web and plant community.

  15. Linoleic acid isomerase gene FgLAI12 affects sensitivity to salicylic acid, mycelial growth and virulence of Fusarium graminearum

    PubMed Central

    Zhang, Ya-Zhou; Wei, Zhen-Zhen; Liu, Cai-Hong; Chen, Qing; Xu, Bin-Jie; Guo, Zhen-Ru; Cao, Yong-Li; Wang, Yan; Han, Ya-Nan; Chen, Chen; Feng, Xiang; Qiao, Yuan-Yuan; Zong, Lu-Juan; Zheng, Ting; Deng, Mei; Jiang, Qian-Tao; Li, Wei; Zheng, You-Liang; Wei, Yu-Ming; Qi, Peng-Fei

    2017-01-01

    Fusarium graminearum is the major causal agent of fusarium head blight in wheat, a serious disease worldwide. Linoleic acid isomerase (LAI) catalyses the transformation of linoleic acid (LA) to conjugated linoleic acid (CLA), which is beneficial for human health. We characterised a cis-12 LAI gene of F. graminearum (FGSG_02668; FgLAI12), which was downregulated by salicylic acid (SA), a plant defence hormone. Disruption of FgLAI12 in F. graminearum resulted in decreased accumulation of cis-9,trans-11 CLA, enhanced sensitivity to SA, and increased accumulation of LA and SA in wheat spikes during infection. In addition, mycelial growth, accumulation of deoxynivalenol, and pathogenicity in wheat spikes were reduced. Re-introduction of a functional FgLAI12 gene into ΔFgLAI12 recovered the wild-type phenotype. Fluorescent microscopic analysis showed that FgLAI12 protein was usually expressed in the septa zone of conidia and the vacuole of hyphae, but was expressed in the cell membrane of hyphae in response to exogenous LA, which may be an element of LA metabolism during infection by F. graminearum. The cis-12 LAI enzyme encoded by FgLAI12 is critical for fungal response to SA, mycelial growth and virulence in wheat. The gene FgLAI12 is potentially valuable for biotechnological synthesis of cis-9,trans-11 CLA. PMID:28387243

  16. JP-45/JSRP1 variants affect skeletal muscle excitation contraction coupling by decreasing the sensitivity of the dihydropyridine receptor

    PubMed Central

    Yasuda, Toshimichi; Delbono, Osvaldo; Wang, Zhong-Min; Messi, Maria L.; Girard, Thierry; Urwyler, Albert; Treves, Susan; Zorzato, Francesco

    2012-01-01

    JP-45 (also JP45; encoded by JSRP1) is an integral protein constituent of the skeletal muscle sarcoplasmic reticulum junctional face membrane interacting with Cav1.1 (the α.1 subunit of the voltage sensing dihydropyridine receptor, DHPR) and the luminal calcium-binding protein calsequestrin. Two JSRP1 variants have been found in the human population: c.323C>T (p.P108L) in exon 5 and c.449G>C (p.G150A) in exon 6, but nothing is known concerning the incidence of these polymorphisms in the general population or in patients with neuromuscular diseases nor the impact of the polymorphisms on excitation-contraction coupling. In the present report we investigated the frequencies of these two JSRP1 polymorphisms in the Swiss Malignant Hyperthermia population and studied the functional impact of the variants on excitation -contraction coupling. Our results show that the polymorphisms are equally distributed among Malignant Hyperthermia Negative, Malignant Hyperthermia Equivocal and Malignant Hyperthermia Susceptible individuals. Interestingly however, the presence of either one of these JP-45 variants decreased the sensitivity of the dihydropyridine receptor to activation. The presence of a JSRP1 variant may explain the variable phenotype seen in patients with malignant hyperthermia carrying the same mutation and more importantly, may counteract the hypersensitivity of excitation-contraction coupling caused by mutations in the RYR1 gene. PMID:22927026

  17. JP-45/JSRP1 variants affect skeletal muscle excitation-contraction coupling by decreasing the sensitivity of the dihydropyridine receptor.

    PubMed

    Yasuda, Toshimichi; Delbono, Osvaldo; Wang, Zhong-Min; Messi, Maria L; Girard, Thierry; Urwyler, Albert; Treves, Susan; Zorzato, Francesco

    2013-01-01

    JP-45 (also JP45; encoded by JSRP1) is an integral protein constituent of the skeletal muscle sarcoplasmic reticulum junctional face membrane interacting with Ca(v) 1.1 (the α.1 subunit of the voltage-sensing dihydropyridine receptor, DHPR) and the luminal calcium-binding protein calsequestrin. Two JSRP1 variants have been found in the human population: c.323C>T (p.P108L) in exon 5 and c.449G>C (p.G150A) in exon 6, but nothing is known concerning the incidence of these polymorphisms in the general population or in patients with neuromuscular diseases nor the impact of the polymorphisms on excitation-contraction (EC) coupling. In the present report, we investigated the frequencies of these two JSRP1 polymorphisms in the Swiss malignant hyperthermia population and studied the functional impact of the variants on EC coupling. Our results show that the polymorphisms are equally distributed among malignant hyperthermia negative, malignant hyperthermia equivocal, and malignant hyperthermia susceptible individuals. Interestingly, however, the presence of either one of these JP-45 variants decreased the sensitivity of the DHPR to activation. The presence of a JSRP1 variant may explain the variable phenotype seen in patients with malignant hyperthermia carrying the same mutation and, more importantly, may counteract the hypersensitivity of EC coupling caused by mutations in the RYR1 gene.

  18. Sevoflurane postconditioning affects post-ischaemic myocardial mitochondrial ATP-sensitive potassium channel function and apoptosis in ageing rats.

    PubMed

    Jiang, Jing-Jing; Li, Chao; Li, Heng; Zhang, Lei; Lin, Zong-Hang; Fu, Bao-Jun; Zeng, Yin-Ming

    2016-05-01

    This study investigated the effect of sevoflurane postconditioning on post-ischaemic cardiac function, infarct size, myocardial mitochondrial ATP-sensitive potassium channel (mitoKATP) function and apoptosis in ageing rats to determine the possible mechanism underlying the cardioprotective property of sevoflurane. Ageing rat hearts were isolated and attached to a Langendorff apparatus. The hearts were then exposed or not to sevoflurane postconditioning in the presence or absence of 100 μmol/L 5-hydroxydecanoate (5-HD), a selective mitoKATP inhibitor. The infarct size was measured by triphenyltetrazolium chloride (TTC) staining. Mitochondrial morphology was observed by electron microscopy and scored using FlaMeng semiquantitative analysis. In addition, the expression levels of Bax, Bcl-2, and cytochrome-C (Cyt-C) were determined by Western blot analysis at the end of reperfusion. Sevoflurane postconditioning increased coronary flow, improved functional recovery, reduced Bax/Bcl-2 and Cyt-C phosphorylation levels, and decreased mitochondrial lesion severity and the extent of apoptosis. The protective effects of sevoflurane postconditioning were prevented by the mitoKATP inhibitor 5-HD. Sevoflurane postconditioning significantly protected the function of ageing hearts that were subjected to ischaemia and reperfusion, and these protective effects were mediated by mitoKATP opening.

  19. Differential sensitivity to regional-scale drought in six central US grasslands.

    PubMed

    Knapp, Alan K; Carroll, Charles J W; Denton, Elsie M; La Pierre, Kimberly J; Collins, Scott L; Smith, Melinda D

    2015-04-01

    Terrestrial ecosystems often vary dramatically in their responses to drought, but the reasons for this are unclear. With climate change forecasts for more frequent and extensive drought in the future, a more complete understanding of the mechanisms that determine differential ecosystem sensitivity to drought is needed. In 2012, the Central US experienced the fourth largest drought in a century, with a regional-scale 40% reduction in growing season precipitation affecting ecosystems ranging from desert grassland to mesic tallgrass prairie. This provided an opportunity to assess ecosystem sensitivity to a drought of common magnitude in six native grasslands. We tested the prediction that drought sensitivity is inversely related to mean annual precipitation (MAP) by quantifying reductions in aboveground net primary production (ANPP). Long-term ANPP data available for each site (mean length = 16 years) were used as a baseline for calculating reductions in ANPP, and drought sensitivity was estimated as the reduction in ANPP per millimeter reduction in precipitation. Arid grasslands were the most sensitive to drought, but drought responses and sensitivity varied by more than twofold among the six grasslands, despite all sites experiencing 40% reductions in growing season precipitation. Although drought sensitivity generally decreased with increasing MAP as predicted, there was evidence that the identity and traits of the dominant species, as well as plant functional diversity, influenced sensitivity. A more comprehensive understanding of the mechanisms leading to differences in drought sensitivity will require multi-site manipulative experiments designed to assess both biotic and abiotic determinants of ecosystem sensitivity.

  20. Series Length Used during Trend Analysis Affects Sensitivity to Changes in Progression Rate in the Ocular Hypertension Treatment Study

    PubMed Central

    Gardiner, Stuart K.; Demirel, Shaban; De Moraes, Carlos Gustavo; Liebmann, Jeffrey M.; Cioffi, George A.; Ritch, Robert; Gordon, Mae O.; Kass, Michael A.

    2013-01-01

    Purpose. Trend analysis techniques to detect glaucomatous progression typically assume a constant rate of change. This study uses data from the Ocular Hypertension Treatment Study to assess whether this assumption decreases sensitivity to changes in progression rate, by including earlier periods of stability. Methods. Series of visual fields (mean 24 per eye) completed at 6-month intervals from participants randomized initially to observation were split into subseries before and after the initiation of treatment (the “split-point”). The mean deviation rate of change (MDR) was derived using these entire subseries, and using only the window length (W) tests nearest the split-point, for different window lengths of W tests. A generalized estimating equation model was used to detect changes in MDR occurring at the split-point. Results. Using shortened subseries with W = 7 tests, the MDR slowed by 0.142 dB/y upon initiation of treatment (P < 0.001), and the proportion of eyes showing “rapid deterioration” (MDR <–0.5 dB/y with P < 5%) decreased from 11.8% to 6.5% (P < 0.001). Using the entire sequence, no significant change in MDR was detected (P = 0.796), and there was no change in the proportion of eyes progressing (P = 0.084). Window lengths 6 ≤ W ≤ 9 produced similar benefits. Conclusions. Event analysis revealed a beneficial treatment effect in this dataset. This effect was not detected by linear trend analysis applied to entire series, but was detected when using shorter subseries of length between six and nine fields. Using linear trend analysis on the entire field sequence may not be optimal for detecting and monitoring progression. Nonlinear analyses may be needed for long series of fields. (ClinicalTrials.gov number, NCT00000125.) PMID:23349433

  1. Genetic and Environmental Sources of Implicit and Explicit Self-Esteem and Affect: Results from a Genetically Sensitive Multi-group Design.

    PubMed

    Stieger, Stefan; Kandler, Christian; Tran, Ulrich S; Pietschnig, Jakob; Voracek, Martin

    2017-03-01

    In today's world, researchers frequently utilize indirect measures of implicit (i.e., automatic, spontaneous) evaluations. The results of several studies have supported the usefulness of these measures in predicting behavior, as compared to utilizing direct measures of explicit (i.e., purposeful, deliberate) evaluations. A current, under-debate issue concerns the origin of these implicit evaluations. The present genetically sensitive multi-group study analyzed data from 223 twin pairs and 222 biological core families to estimate possible genetic and environmental sources of individual differences in implicit and explicit self-esteem and affect. The results show that implicit self-esteem and affect maintain a substantial genetic basis, but demonstrate little influence from the shared environment by siblings (e.g., shared familial socialization in childhood). A bivariate analysis found that implicit and explicit evaluations of the same construct share a common genetic core which aligns with the motivation and opportunity as determinants (MODE) model.

  2. Are age-related differences between young and older adults in an affective working memory test sensitive to the music effects?

    PubMed

    Borella, Erika; Carretti, Barbara; Grassi, Massimo; Nucci, Massimo; Sciore, Roberta

    2014-01-01

    There are evidences showing that music can affect cognitive performance by improving our emotional state. The aim of the current study was to analyze whether age-related differences between young and older adults in a Working Memory (WM) Span test in which the stimuli to be recalled have a different valence (i.e., neutral, positive, or negative words), are sensitive to exposure to music. Because some previous studies showed that emotional words can sustain older adults' performance in WM, we examined whether listening to music could enhance the benefit of emotional material, with respect to neutral words, on WM performance decreasing the age-related difference between younger and older adults. In particular, the effect of two types of music (Mozart vs. Albinoni), which differ in tempo, arousal and mood induction, on age-related differences in an affective version of the Operation WM Span task was analyzed. Results showed no effect of music on the WM test regardless of the emotional content of the music (Mozart vs. Albinoni). However, a valence effect for the words in the WM task was found with a higher number of negative words recalled with respect to positive and neutral ones in both younger and older adults. When individual differences in terms of accuracy in the processing phase of the Operation Span task were considered, only younger low-performing participants were affected by the type music, with the Albinoni condition that lowered their performance with respect to the Mozart condition. Such a result suggests that individual differences in WM performance, at least when young adults are considered, could be affected by the type of music. Altogether, these findings suggest that complex span tasks, such as WM tasks, along with age-related differences are not sensitive to music effects.

  3. Are age-related differences between young and older adults in an affective working memory test sensitive to the music effects?

    PubMed Central

    Borella, Erika; Carretti, Barbara; Grassi, Massimo; Nucci, Massimo; Sciore, Roberta

    2014-01-01

    There are evidences showing that music can affect cognitive performance by improving our emotional state. The aim of the current study was to analyze whether age-related differences between young and older adults in a Working Memory (WM) Span test in which the stimuli to be recalled have a different valence (i.e., neutral, positive, or negative words), are sensitive to exposure to music. Because some previous studies showed that emotional words can sustain older adults’ performance in WM, we examined whether listening to music could enhance the benefit of emotional material, with respect to neutral words, on WM performance decreasing the age-related difference between younger and older adults. In particular, the effect of two types of music (Mozart vs. Albinoni), which differ in tempo, arousal and mood induction, on age-related differences in an affective version of the Operation WM Span task was analyzed. Results showed no effect of music on the WM test regardless of the emotional content of the music (Mozart vs. Albinoni). However, a valence effect for the words in the WM task was found with a higher number of negative words recalled with respect to positive and neutral ones in both younger and older adults. When individual differences in terms of accuracy in the processing phase of the Operation Span task were considered, only younger low-performing participants were affected by the type music, with the Albinoni condition that lowered their performance with respect to the Mozart condition. Such a result suggests that individual differences in WM performance, at least when young adults are considered, could be affected by the type of music. Altogether, these findings suggest that complex span tasks, such as WM tasks, along with age-related differences are not sensitive to music effects. PMID:25426064

  4. Young Children’s Affective Responses to Acceptance and Rejection From Peers: A Computer-based Task Sensitive to Variation in Temperamental Shyness and Gender

    PubMed Central

    Howarth, Grace Z.; Guyer, Amanda E.; Pérez-Edgar, Koraly

    2013-01-01

    This study presents a novel task examining young children’s affective responses to evaluative feedback—specifically, social acceptance and rejection—from peers. We aimed to determine (1) whether young children report their affective responses to hypothetical peer evaluation predictably and consistently, and (2) whether young children’s responses to peer evaluation vary as a function of temperamental shyness and gender. Four- to seven-year-old children (N = 48) sorted pictures of unknown, similar-aged children into those with whom they wished or did not wish to play. Computerized peer evaluation later noted whether the pictured children were interested in a future playdate with participants. Participants then rated their affective responses to each acceptance or rejection event. Children were happy when accepted by children with whom they wanted to play, and disappointed when these children rejected them. Highly shy boys showed a wider range of responses to acceptance and rejection based on initial social interest, and may be particularly sensitive to both positive and negative evaluation. Overall, the playdate task captures individual differences in affective responses to evaluative peer feedback and is potentially amenable to future applications in research with young children, including pairings with psychophysiological measures. PMID:23997429

  5. Ecosystem consequences of fish parasites

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2008-01-01

    In most aquatic ecosystems, fishes are hosts to parasites and, sometimes, these parasites can affect fish biology. Some of the most dramatic cases occur when fishes are intermediate hosts for larval parasites. For example, fishes in southern California estuaries are host to many parasites. The most common of these parasites, Euhaplorchis californiensis, infects the brain of the killifish Fundulus parvipinnis and alters its behaviour, making the fish 10–30 times more susceptible to predation by the birds that serve as its definitive host. Parasites like E. californiensis are embedded in food webs because they require trophic transmission. In the Carpinteria Salt Marsh estuarine food web, parasites dominate the links and comprise substantial amount of biomass. Adding parasites to food webs alters important network statistics such as connectance and nestedness. Furthermore, some free-living stages of parasites are food items for free-living species. For instance, fishes feed on trematode cercariae. Being embedded in food webs makes parasites sensitive to changes in the environment. In particular, fishing and environmental disturbance, by reducing fish populations, may reduce parasite populations. Indirect evidence suggests a decrease in parasites in commercially fished species over the past three decades. In addition, environmental degradation can affect fish parasites. For these reasons, parasites in fishes may serve as indicators of environmental impacts.

  6. How alkyl halide structure affects E2 and SN2 reaction barriers: E2 reactions are as sensitive as SN2 reactions.

    PubMed

    Rablen, Paul R; McLarney, Brett D; Karlow, Brandon J; Schneider, Jean E

    2014-02-07

    High-level electronic structure calculations, including a continuum treatment of solvent, are employed to elucidate and quantify the effects of alkyl halide structure on the barriers of SN2 and E2 reactions. In cases where such comparisons are available, the results of these calculations show close agreement with solution experimental data. Structural factors investigated include α- and β-methylation, adjacency to unsaturated functionality (allyl, benzyl, propargyl, α to carbonyl), ring size, and α-halogenation and cyanation. While the influence of these factors on SN2 reactivity is mostly well-known, the present study attempts to provide a broad comparison of both SN2 and E2 reactivity across many cases using a single methodology, so as to quantify relative reactivity trends. Despite the fact that most organic chemistry textbooks say far more about how structure affects SN2 reactions than about how it affects E2 reactions, the latter are just as sensitive to structural variation as are the former. This sensitivity of E2 reactions to structure is often underappreciated.

  7. Carbon and nitrogen cycles in European ecosystems respond differently to global warming.

    PubMed

    Beier, C; Emmett, B A; Peñuelas, J; Schmidt, I K; Tietema, A; Estiarte, M; Gundersen, P; Llorens, L; Riis-Nielsen, T; Sowerby, A; Gorissen, A

    2008-12-15

    The global climate is predicted to become significantly warmer over the next century. This will affect ecosystem processes and the functioning of semi natural and natural ecosystems in many parts of the world. However, as various ecosystem processes may be affected to a different extent, balances between different ecosystem processes as well as between different ecosystems may shift and lead to major unpredicted changes. In this study four European shrubland ecosystems along a north-south temperature gradient were experimentally warmed by a novel nighttime warming technique. Biogeochemical cycling of both carbon and nitrogen was affected at the colder sites with increased carbon uptake for plant growth as well as increased carbon loss through soil respiration. Carbon uptake by plant growth was more sensitive to warming than expected from the temperature response across the sites while carbon loss through soil respiration reacted to warming in agreement with the overall Q10 and response functions to temperature across the sites. Opposite to carbon, the nitrogen mineralization was relatively insensitive to the temperature increase and was mainly affected by changes in soil moisture. The results suggest that C and N cycles respond asymmetrically to warming, which may lead to progressive nitrogen limitation and thereby acclimation in plant production. This further suggests that in many temperate zones nitrogen deposition has to be accounted for, not only with respect to the impact on water quality through increased nitrogen leaching where N deposition is high, but also in predictions of carbon sequestration in terrestrial ecosystems under future climatic conditions. Finally the results indicate that on the short term the above-ground processes are more sensitive to temperature changes than the below ground processes.

  8. Modeling forest development after fire disturbance: Climate, soil organic layer, and nitrogen jointly affect forest canopy species and long-term ecosystem carbon accumulation in the North American boreal forest

    NASA Astrophysics Data System (ADS)

    Trugman, A. T.; Fenton, N.; Bergeron, Y.; Xu, X.; Welp, L.; Medvigy, D.

    2015-12-01

    Soil organic layer dynamics strongly affect boreal forest development after fire. Field studies show that soil organic layer thickness exerts a species-specific control on propagule establishment in the North American boreal forest. On organic soils thicker than a few centimeters, all propagules are less able to recruit, but broadleaf trees recruit less effectively than needleleaf trees. In turn, forest growth controls organic layer accumulation through modulating litter input and litter quality. These dynamics have not been fully incorporated into models, but may be essential for accurate projections of ecosystem carbon storage. Here, we develop a data-constrained model for understanding boreal forest development after fire. We update the ED2 model to include new aspen and black spruce species-types, species-specific propagule survivorship dependent on soil organic layer depth, species-specific litter decay rates, dynamically accumulating moss and soil organic layers, and nitrogen fixation by cyanobacteria associated with moss. The model is validated against diverse observations ranging from monthly to centennial timescales and spanning a climate gradient in Alaska, central Canada, and Quebec. We then quantify differences in forest development that result from changes in organic layer accumulation, temperature, and nitrogen. We find that (1) the model accurately reproduces a range of observations throughout the North American boreal forest; (2) the presence of a thick organic layer results in decreased decomposition and decreased aboveground productivity, effects that can increase or decrease ecosystem carbon uptake depending on location-specific attributes; (3) with a mean warming of 4°C, some forests switch from undergoing succession to needleleaf forests to recruiting multiple cohorts of broadleaf trees, decreasing ecosystem accumulation by ~30% after 300 years; (4) the availability of nitrogen regulates successional dynamics such than broadleaf species are

  9. Glycosylation of Residue 141 of Subtype H7 Influenza A Hemagglutinin (HA) Affects HA-Pseudovirus Infectivity and Sensitivity to Site A Neutralizing Antibodies

    PubMed Central

    Alvarado-Facundo, Esmeralda; Vassell, Russell; Schmeisser, Falko; Weir, Jerry P.; Weiss, Carol D.; Wang, Wei

    2016-01-01

    Human infections with H7 subtype influenza virus have been reported, including an H7N7 outbreak in Netherlands in 2003 and H7N9 infections in China in 2013. Previously, we reported murine monoclonal antibodies (mAbs) that recognize the antigenic site A of H7 hemagglutinin (HA). To better understand protective immunity of H7 vaccines and vaccine candidate selection, we used these mAbs to assess the antigenic relatedness among two H7 HA isolated from past human infections and determine residues that affect susceptibility to neutralization. We found that these mAbs neutralize pseudoviruses bearing HA of A/Shanghai/02/2013(H7N9), but not A/Netherlands/219/2003(H7N7). Glycosylation of the asparagine residue at position 141 (N141) (N133, H3 HA numbering) in the HA of A/Netherlands/219/2003 HA is responsible for this resistance, and it affects the infectivity of HA-pseudoviruses. The presence of threonine at position 143 (T135, H3 HA numbering) in the HA of A/Netherlands/219/2003, rather than an alanine found in the HA of A/Shanghai/02/2013(H7N9), accounts for these differences. These results demonstrate a key role for glycosylation of residue N141 in affecting H7 influenza HA-mediated entry and sensitivity to neutralizing antibodies, which have implications for candidate vaccine design. PMID:26862918

  10. The effects of food web structure on ecosystem function exceeds those of precipitation.

    PubMed

    Trzcinski, M Kurtis; Srivastava, Diane S; Corbara, Bruno; Dézerald, Olivier; Leroy, Céline; Carrias, Jean-François; Dejean, Alain; Céréghino, Régis

    2016-09-01

    Ecosystems are being stressed by climate change, but few studies have tested food web responses to changes in precipitation patterns and the consequences to ecosystem function. Fewer still have considered whether results from one geographic region can be applied to other regions, given the degree of community change over large biogeographic gradients. We assembled, in one field site, three types of macroinvertebrate communities within water-filled bromeliads. Two represented food webs containing both a fast filter feeder-microbial and slow detritivore energy channels found in Costa Rica and Puerto Rico, and one represented the structurally simpler food webs in French Guiana, which only contained the fast filter feeder-microbial channel. We manipulated the amount and distribution of rain entering bromeliads and examined how food web structure mediated ecosystem responses to changes in the quantity and temporal distribution of precipitation. Food web structure affected the survival of functional groups in general and ecosystem functions such as decomposition and the production of fine particulate organic matter. Ecosystem processes were more affected by decreased precipitation than were the abundance of micro-organisms and metazoans. In our experiments, the sensitivity of the ecosystem to precipitation change was primarily revealed in the food web dominated by the single filter feeder-microbial channel because other top-down and bottom-up processes were weak or absent. Our results show stronger effects of food web structure than precipitation change per se on the functioning of bromeliad ecosystems. Consequently, we predict that ecosystem function in bromeliads throughout the Americas will be more sensitive to changes in the distribution of species, rather than to the direct effects caused by changes in precipitation.

  11. Sensitivity of the Autonomic Nervous System to Visual and Auditory Affect Across Social and Non-Social Domains in Williams Syndrome

    PubMed Central

    Järvinen, Anna; Dering, Benjamin; Neumann, Dirk; Ng, Rowena; Crivelli, Davide; Grichanik, Mark; Korenberg, Julie R.; Bellugi, Ursula

    2012-01-01

    Although individuals with Williams syndrome (WS) typically demonstrate an increased appetitive social drive, their social profile is characterized by dissociations, including socially fearless behavior coupled with anxiousness, and distinct patterns of “peaks and valleys” of ability. The aim of this study was to compare the processing of social and non-social visually and aurally presented affective stimuli, at the levels of behavior and autonomic nervous system (ANS) responsivity, in individuals with WS contrasted with a typically developing (TD) group, with the view of elucidating the highly sociable and emotionally sensitive predisposition noted in WS. Behavioral findings supported previous studies of enhanced competence in processing social over non-social stimuli by individuals with WS; however, the patterns of ANS functioning underlying the behavioral performance revealed a surprising profile previously undocumented in WS. Specifically, increased heart rate (HR) reactivity, and a failure for electrodermal activity to habituate were found in individuals with WS contrasted with the TD group, predominantly in response to visual social affective stimuli. Within the auditory domain, greater arousal linked to variation in heart beat period was observed in relation to music stimuli in individuals with WS. Taken together, the findings suggest that the pattern of ANS response in WS is more complex than previously noted, with increased arousal to face and music stimuli potentially underpinning the heightened behavioral emotionality to such stimuli. The lack of habituation may underlie the increased affiliation and attraction to faces characterizing individuals with WS. Future research directions are suggested. PMID:23049519

  12. Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability

    PubMed Central

    Medvigy, David; Wofsy, Steven C.; Munger, J. William; Moorcroft, Paul R.

    2010-01-01

    We assess the significance of high-frequency variability of environmental parameters (sunlight, precipitation, temperature) for the structure and function of terrestrial ecosystems under current and future climate. We examine the influence of hourly, daily, and monthly variance using the Ecosystem Demography model version 2 in conjunction with the long-term record of carbon fluxes measured at Harvard Forest. We find that fluctuations of sunlight and precipitation are strongly and nonlinearly coupled to ecosystem function, with effects that accumulate through annual and decadal timescales. Increasing variability in sunlight and precipitation leads to lower rates of carbon sequestration and favors broad-leaved deciduous trees over conifers. Temperature variability has only minor impacts by comparison. We also find that projected changes in sunlight and precipitation variability have important implications for carbon storage and ecosystem structure and composition. Based on Intergovernmental Panel on Climate Change model estimates for changes in high-frequency meteorological variability over the next 100 years, we expect that terrestrial ecosystems will be affected by changes in variability almost as much as by changes in mean climate. We conclude that terrestrial ecosystems are highly sensitive to high-frequency meteorological variability, and that accurate knowledge of the statistics of this variability is essential for realistic predictions of ecosystem structure and functioning. PMID:20404190

  13. Regional zooplankton biodiversity provides limited buffering of pond ecosystems against climate change.

    PubMed

    Thompson, Patrick L; Shurin, Jonathan B

    2012-01-01

    1. Climate change and other human-driven environmental perturbations are causing reductions in biodiversity and impacting the functioning of ecosystems on a global scale. Metacommunity theory suggests that ecosystem connectivity may reduce the magnitude of these impacts if the regional species pool contains functionally redundant species that differ in their environmental tolerances. Dispersal may increase the resistance of local ecosystems to environmental stress by providing regional species with traits adapted to novel conditions. 2. We tested this theory by subjecting freshwater zooplankton communities in mesocosms that were either connected to or isolated from the larger regional species pool to a factorial manipulation of experimental warming and increased salinity. 3. Compensation by regional taxa depended on the source of stress. Warming tolerant regional taxa partially compensated for reductions in heat sensitive local taxa but similar compensation did not occur under increased salinity. 4. Dispersal-mediated species invasions dampened the effects of warming on summer net ecosystem productivity. However, this buffering effect did not occur in the fall or for periphyton growth, the only other ecosystem function affected by the stress treatments. 5. The results indicate that regional biodiversity can provide insurance in a dynamic environment but that the buffering capacity is limited to some ecosystem processes and sources of stress. Maintaining regional biodiversity and habitat connectivity may therefore provide some limited insurance for local ecosystems in changing environments, but is unable to impart resistance against all sources of environmental stress.

  14. Contrasting ecosystem drivers of mass and energy fluxes at upper and lower elevation sagebrush steppe sites

    NASA Astrophysics Data System (ADS)

    Reed, D. E.; Ewers, B. E.; Pendall, E.; Kwon, H.

    2012-12-01

    The sagebrush steppe ecosystem covers nearly 15% of Western North America, and its productivity is sensitive to warming and increasingly variable precipitation. Previous work has shown that soil moisture below 45cm is an important control over net ecosystem exchange NEE for sagebrush ecosystems while shallower soil moisture controls ET. We seek to expand on that work by using multiple site years from eddy covariance sites near the upper and lower elevation range of sagebrush to answer the question "How do changing water availability affect the ecosystem controls of carbon, water, and energy fluxes from rocky mountain sagebrush ecosystems". We are answering this question by quantifying ecosystem scale carbon, water, and energy cycling using eddy covariance measurements and a standard suite of atmospheric, soil and vegetation monitoring instruments. The two sites were active from 2006 to 2010 and were located at elevations of 2069m and 2469m at Saratoga, WY and Walden, CO, with mean annual temperatures of 5.9C and 4.5, respectively. The relationship of drivers to ecosystem fluxes is hypothesized to have stronger controls at the high elevation sagebrush site relative to the low elevation site. Our work shows a strong relationship between deep soil moisture and ecosystem fluxes, but that one driver alone does not explain all of the seasonal and interannual variation in the fluxes. Other drives of the water and carbon cycles include vapor pressure deficit, net radiation and soil temperature. Fluxes from the high elevation site have a 40% reduction of carbon and a 70% reduction of water flux relative to the low elevation site over the same time period, due to a higher frequency of short duration, larger flux events at the lower elevation site. Ecosystem models that attempt to capture the dynamics of carbon, water and energy fluxes from sagebrush steppe ecosystems must account for the variation in controls of those fluxes and their variations in time and elevation.

  15. Quantitative Models Describing Past and Current Nutrient Fluxes and Associated Ecosystem Level Responses in the Narragansett Bay Ecosystem

    EPA Science Inventory

    Multiple drivers, including nutrient loading and climate change, affect the Narragansett Bay ecosystem in Rhode Island/Massachusetts, USA. Managers are interested in understanding the timing and magnitude of these effects, and ecosystem responses to restoration actions. To provid...

  16. Changing ecosystem service values following technological change.

    PubMed

    Honey-Rosés, Jordi; Schneider, Daniel W; Brozović, Nicholas

    2014-06-01

    Research on ecosystem services has focused mostly on natural areas or remote places, with less attention given to urban ecosystem services and their relationship with technological change. However, recent work by urban ecologists and urban designers has more closely examined and appreciated the opportunities associated with integrating natural and built infrastructures. Nevertheless, a perception remains in the literature on ecosystem services that technology may easily and irreversibly substitute for services previously obtained from ecosystems, especially when the superiority of the engineered system motivated replacement in the first place. We emphasize that the expected tradeoff between natural and manufactured capital is false. Rather, as argued in other contexts, the adoption of new technologies is complementary to ecosystem management. The complementarity of ecosystem services and technology is illustrated with a case study in Barcelona, Spain where the installation of sophisticated water treatment technology increased the value of the ecosystem services found there. Interestingly, the complementarity between natural and built infrastructures may remain even for the very ecosystems that are affected by the technological change. This finding suggests that we can expect the value of ecosystem services to co-evolve with new technologies. Technological innovation can generate new opportunities to harness value from ecosystems, and the engineered structures found in cities may generate more reliance on ecosystem processes, not less.

  17. Changing Ecosystem Service Values Following Technological Change

    NASA Astrophysics Data System (ADS)

    Honey-Rosés, Jordi; Schneider, Daniel W.; Brozović, Nicholas

    2014-06-01

    Research on ecosystem services has focused mostly on natural areas or remote places, with less attention given to urban ecosystem services and their relationship with technological change. However, recent work by urban ecologists and urban designers has more closely examined and appreciated the opportunities associated with integrating natural and built infrastructures. Nevertheless, a perception remains in the literature on ecosystem services that technology may easily and irreversibly substitute for services previously obtained from ecosystems, especially when the superiority of the engineered system motivated replacement in the first place. We emphasize that the expected tradeoff between natural and manufactured capital is false. Rather, as argued in other contexts, the adoption of new technologies is complementary to ecosystem management. The complementarity of ecosystem services and technology is illustrated with a case study in Barcelona, Spain where the installation of sophisticated water treatment technology increased the value of the ecosystem services found there. Interestingly, the complementarity between natural and built infrastructures may remain even for the very ecosystems that are affected by the technological change. This finding suggests that we can expect the value of ecosystem services to co-evolve with new technologies. Technological innovation can generate new opportunities to harness value from ecosystems, and the engineered structures found in cities may generate more reliance on ecosystem processes, not less.

  18. Ecosystem Services in Environmental Science Literacy

    ERIC Educational Resources Information Center

    Ruppert, John Robert

    2015-01-01

    Human beings depend on a set of benefits that emerge from functioning ecosystems, termed Ecosystem Services (ES), and make decisions in everyday life that affect these ES. Recent advancements in science have led to an increasingly sophisticated understanding of ES and how they can be used to inform environmental decision-making. Following suit, US…

  19. 5-HTT deficiency affects neuroplasticity and increases stress sensitivity resulting in altered spatial learning performance in the Morris water maze but not in the Barnes maze.

    PubMed

    Karabeg, Margherita M; Grauthoff, Sandra; Kollert, Sina Y; Weidner, Magdalena; Heiming, Rebecca S; Jansen, Friederike; Popp, Sandy; Kaiser, Sylvia; Lesch, Klaus-Peter; Sachser, Norbert; Schmitt, Angelika G; Lewejohann, Lars

    2013-01-01

    The purpose of this study was to evaluate whether spatial hippocampus-dependent learning is affected by the serotonergic system and stress. Therefore, 5-HTT knockout (-/-), heterozygous (+/-) and wildtype (+/+) mice were subjected to the Barnes maze (BM) and the Morris water maze (WM), the latter being discussed as more aversive. Additionally, immediate early gene (IEG) expression, hippocampal adult neurogenesis (aN), and blood plasma corticosterone were analyzed. While the performance of 5-HTT-/- mice in the BM was undistinguishable from both other genotypes, they performed worse in the WM. However, in the course of the repeated WM trials 5-HTT-/- mice advanced to wildtype level. The experience of a single trial of either the WM or the BM resulted in increased plasma corticosterone levels in all genotypes. After several trials 5-HTT-/- mice exhibited higher corticosterone concentrations compared with both other genotypes in both tests. Corticosterone levels were highest in 5-HTT-/- mice tested in the WM indicating greater aversiveness of the WM and a greater stress sensitivity of 5-HTT deficient mice. Quantitative immunohistochemistry in the hippocampus revealed increased cell counts positive for the IEG products cFos and Arc as well as for proliferation marker Ki67 and immature neuron marker NeuroD in 5-HTT-/- mice compared to 5-HTT+/+ mice, irrespective of the test. Most differences were found in the suprapyramidal blade of the dentate gyrus of the septal hippocampus. Ki67-immunohistochemistry revealed a genotype x environment interaction with 5-HTT genotype differences in naïve controls and WM experience exclusively yielding more Ki67-positive cells in 5-HTT+/+ mice. Moreover, in 5-HTT-/- mice we demonstrate that learning performance correlates with the extent of aN. Overall, higher baseline IEG expression and increased an in the hippocampus of 5-HTT-/- mice together with increased stress sensitivity may constitute the neurobiological correlate of raised

  20. Measuring Variation in Ecosystem Sensitivity to Stress

    DTIC Science & Technology

    1993-11-29

    indicated by the higher EC20 values in recovery samples (Table 5) compared with 26 I response samples (Table 3). Densities of two species, Achnanthes ...dominant in a particular stream. Stream Population Bradshaw Goose John’s Kimberling RockI Achnanthes NA 0.272 NA NA >1.00 lanceolata (0.001) (0.001... Achnanthes NA 0.498 NA NA NA lewisiana (0.001) I Achnanthes 0.164 ns NA 0.674 0.730 linearis (0.001) (0.006) (0.001) U Achnanthes NA NA >1.00 NA NA

  1. HUMAN-ECOSYSTEM INTERACTIONS: THE CASE OF MERCURY

    EPA Science Inventory

    Human and ecosystem exposure studies evaluate exposure of sensitive and vulnerable populations. We will discuss how ecosystem exposure modeling studies completed for input into the US Clean Air Mercury Rule (CAMR) to evaluate the response of aquatic ecosystems to changes in mercu...

  2. Columbia River Estuary Ecosystem Classification Ecosystem Complex

    USGS Publications Warehouse

    Cannon, Charles M.; Ramirez, Mary F.; Heatwole, Danelle W.; Burke, Jennifer L.; Simenstad, Charles A.; O'Connor, Jim E.; Marcoe, Keith Marcoe

    2012-01-01

    Estuarine ecosystems are controlled by a variety of processes that operate at multiple spatial and temporal scales. Understanding the hierarchical nature of these processes will aid in prioritization of restoration efforts. This hierarchical Columbia River Estuary Ecosystem Classification (henceforth "Classification") of the Columbia River estuary is a spatial database of the tidally-influenced reaches of the lower Columbia River, the tidally affected parts of its tributaries, and the landforms that make up their floodplains for the 230 kilometers between the Pacific Ocean and Bonneville Dam. This work is a collaborative effort between University of Washington School of Aquatic and Fishery Sciences (henceforth "UW"), U.S. Geological Survey (henceforth "USGS"), and the Lower Columbia Estuary Partnership (henceforth "EP"). Consideration of geomorphologic processes will improve the understanding of controlling physical factors that drive ecosystem evolution along the tidal Columbia River. The Classification is organized around six hierarchical levels, progressing from the coarsest, regional scale to the finest, localized scale: (1) Ecosystem Province; (2) Ecoregion; (3) Hydrogeomorphic Reach; (4) Ecosystem Complex; (5) Geomorphic Catena; and (6) Primary Cover Class. For Levels 4 and 5, we mapped landforms within the Holocene floodplain primarily by visual interpretation of Light Detection and Ranging (LiDAR) topography supplemented with aerial photographs, Natural Resources Conservation Service (NRCS) soils data, and historical maps. Mapped landforms are classified as to their current geomorphic function, the inferred process regime that formed them, and anthropogenic modification. Channels were classified primarily by a set of depth-based rules and geometric relationships. Classification Level 5 floodplain landforms ("geomorphic catenae") were further classified based on multivariate analysis of land-cover within the mapped landform area and attributed as "sub

  3. Modulation of interactions of neuroblastoma cell lines with extracellular matrix proteins affects their sensitivity to treatment with the anti-GD2 ganglioside antibody 14G2a.

    PubMed

    Horwacik, Irena; Rokita, Hanna

    2017-05-01

    Children diagnosed with high risk neuroblastoma have poor prognosis which stimulates efforts to broaden therapies of the neoplasm. GD2-ganglioside (GD2) marks neuroblastoma cells and is a target for monoclonal antibodies. We have recently shown that some neuroblastoma cell lines are sensitive to direct cytotoxicity of the anti-GD2 mouse monoclonal antibody 14G2a (mAb). For IMR-32 and LA-N-1 cell lines, treatment with the 14G2a mAb induced evident changes in appearance such as cell rounding, aggregation, loose contact with culture plastic, or detachment. Such findings prompted us to investigate whether modulation of attachment of neuroblastoma cells to extracellular matrix (ECM) proteins can affect their sensitivity to the 14G2a mAb treatment. First, using ultra-low attachment plates, we show that survival of the IMR-32, LA-N-1, LA-N-5, CHP-134 and Kelly cells depends on attachment. Next, we compared cellular ATP levels of the cell lines treated with the 14G2a mAb using uncoated, fibronectin-, collagen IV-coated surfaces to show that the ECM proteins slightly modulate sensitivity of the cell lines to the mAb. Then, we characterized presence of selected integrin subunits or their complexes on the cell surface. Finally, we applied small molecule inhibitors of selected integrin complexes: obtustatin (inhibiting α1β1 heterodimer), BIO 1211 (inhibiting active α4β1 heterodimer), cilengitide and SB273005 (inhibitors of αVβ3, αVβ5 heterodimers) to verify their effects on attachment of cell lines, cellular ATP levels, and in some experiments activities of apoptosis-executing caspase-3 and -7, for the compounds used alone or in combination with the 14G2a mAb. We characterized levels of total FAK (focal adhesion kinase), p-FAK (Tyr397) in IMR-32 cells treated with BIO 1211, and in LA-N-5, Kelly and SK-N-SH cells treated with SB273005. Our results extend knowledge on factors influencing cytotoxicity of 14G2a.

  4. Maternal and neonatal FTO rs9939609 polymorphism affect insulin sensitivity markers and lipoprotein profile at birth in appropriate-for-gestational-age term neonates.

    PubMed

    Gesteiro, Eva; Sánchez-Muniz, Francisco J; Ortega-Azorín, Carolina; Guillén, Marisa; Corella, Dolores; Bastida, Sara

    2016-06-01

    The influence of maternal fat mass and obesity (FTO) gene polymorphism on neonatal insulin sensitivity/resistance biomarkers and lipoprotein profile has not been tested. The study aimed to assess the association between the FTO rs9939609 polymorphism in mother-neonate couples and neonatal anthropometrical measurements, insulin sensitivity/resistance, and lipid and lipoprotein concentrations at birth. Fifty-three term, appropriate-for-gestational-age, Caucasian newborns together with their respective mothers participated in a cross-sectional study. Sixty-six percent of mothers and neonates carried the A allele (being AA or AT). TT mothers gained less weight during pregnancy, but non-significant maternal gene influence was found for neonatal bodyweight, body mass index, or ponderal index. Neonates from AA + AT mothers showed lower glucose, insulin, and homeostatic model assessment insulin resistance (HOMA-IR) but higher homeostatic model assessment insulin sensitivity (HOMA-IS) and homocysteine than neonates whose mothers were TT. AA + AT neonates had higher insulin and HOMA-IR than TT. The genotype neonatal × maternal association was tested in the following four groups of neonates: TT neonates × TT mothers (nTT × mTT), TT neonates × AA + AT mothers (nTT × mAA + AT), AA + AT neonates × TT mothers (nAA + AT × mTT), and AA + AT neonates × AA + AT mothers (nAA + AT × mAA + AT). Non-significant interactions between neonatal and maternal alleles were found for any parameter tested. However, maternal alleles affected significantly glucose, insulin, HOMA-IR, and homocysteine while neonatal alleles the arylesterase activity. Most significant differences were found between nATT + AA × mTT and nATT + AA × mAA + AT. Glycemia, insulinemia, and HOMA-IR were lower, while the Mediterranean diet adherence (MDA) was higher in the mAA + AT vs. mTT whose children were AA + AT. This dietary fact seems to counterbalance the potential negative effect on glucose homeostasis of

  5. How does the representation of altitudinal variation of temperature in gridded forcing data affect modeled assessment of snow sensitivity to climate warming?

    NASA Astrophysics Data System (ADS)

    Cooper, M. G.; Nolin, A. W.; Safeeq, M.

    2014-12-01

    Modeling studies that simulate snowpack sensitivity to climate warming often represent the rate of temperature change with elevation as a parameter in the model. If not represented as a parameter, this rate is implicit in the gridded forcing data. Theory and observational evidence conclude that the relationship between temperature and elevation varies in space and time, yet models often represent this rate as a constant value. In this study, we test how seasonal variability in temperature lapse rates affects modeled sensitivity of the mountain snowpack to climate warming in the 870 km2 upper Deschutes River Basin, Oregon Cascades (USA). We calculate mean monthly temperature lapse rates using linear regression with all available measurements in the study region during the period 1989 - 2011. We then calculate lapse rates from the 1/16o gridded forcing dataset provided by Livneh et al. (2014) for the domain during the study period. These lapse rates show muted seasonal variability and are steeper than the observed lapse rates (r2 = 0.01). Using a simple bias correction algorithm, we scale the temperature and precipitation in the gridded data to the monthly average temperature and monthly total precipitation from PRISM. Lapse rates calculated from the bias corrected data match the seasonal variability and mean values of the observed lapse rates (r2 = 0.93). We then run a spatially distributed, snowpack energy balance model (SnowModel) with both datasets, prescribing the calculated lapse rates. We use a multi-response algorithm to identify optimal model parameters independently for each dataset and simulate snow accumulation and melt for the period 1989 - 2011. We then run simulations using perturbed forcing data (+2°C, +4°C and ±10% precipitation) to evaluate the potential impacts of a warmer, wetter/drier winter climate on snowpack accumulation and melt with both datasets. We quantify changes in the partitioning of solid and liquid precipitation, total snow

  6. Differential Sensitivity to Drought in Central U.S. Grasslands Arrayed Along an Aridity Gradient

    NASA Astrophysics Data System (ADS)

    Knapp, Alan; Collins, Scott; Luo, Yiqi; Smith, Melinda

    2015-04-01

    Responses to drought often vary dramatically among terrestrial ecosystems, but the reasons why are unclear. With climate change forecasts for more frequent, severe and extensive drought in the future, a more complete understanding of the mechanisms that determine differential ecosystem sensitivity to drought is needed. In 2012, the Central U.S. experienced the 4th largest drought in a century, with a regional-scale 40% reduction in growing season precipitation affecting ecosystems ranging from desert grassland to mesic tallgrass prairie. This provided an opportunity to assess ecosystem sensitivity to a natural drought of common magnitude in six native grasslands. We tested the prediction that drought sensitivity would be inversely related to mean annual precipitation (MAP) by quantifying reductions in aboveground net primary production (ANPP). Long-term ANPP data available for each site (mean length = 16 yrs) were used as a baseline for calculating reductions in ANPP, and drought sensitivity was estimated as the reduction in ANPP per mm reduction in precipitation. Arid grasslands were the most sensitive to drought, but drought responses and sensitivity varied by more than 2-fold among the six grasslands, despite all sites experiencing similar relative reductions in growing season precipitation. Although drought sensitivity generally decreased with increasing MAP as predicted, there was evidence that the identity and traits of the dominant species, as well as plant functional diversity, influenced sensitivity. Results from this natural drought will be compared with responses to an experimentally imposed drought to determine if patterns of sensitivity are consistent between experimental and observational approaches.

  7. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification

    PubMed Central

    Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J.; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D.; Rivest, Emily B.; Sesboüé, Marine; Caldeira, Ken

    2016-01-01

    Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ωarag), with potentially substantial impacts on marine ecosystems over the 21st Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ωarag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ωarag. If the short-term sensitivity of community calcification to Ωarag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences. PMID:26987406

  8. pH-sensitive residues in the p19 RNA silencing suppressor protein from carnation Italian ringspot virus affect siRNA binding stability

    PubMed Central

    Law, Sean M; Zhang, Bin W; Brooks, Charles L

    2013-01-01

    Tombusviruses, such as Carnation Italian ringspot virus (CIRV), encode a protein homodimer called p19 that is capable of suppressing RNA silencing in their infected hosts by binding to and sequestering short-interfering RNA (siRNA) away from the RNA silencing pathway. P19 binding stability has been shown to be sensitive to changes in pH but the specific amino acid residues involved have remained unclear. Using constant pH molecular dynamics simulations, we have identified key pH-dependent residues that affect CIRV p19–siRNA binding stability at various pH ranges based on calculated changes in the free energy contribution from each titratable residue. At high pH, the deprotonation of Lys60, Lys67, Lys71, and Cys134 has the largest effect on the binding stability. Similarly, deprotonation of several acidic residues (Asp9, Glu12, Asp20, Glu35, and/or Glu41) at low pH results in a decrease in binding stability. At neutral pH, residues Glu17 and His132 provide a small increase in the binding stability and we find that the optimal pH range for siRNA binding is between 7.0 and 10.0. Overall, our findings further inform recent experiments and are in excellent agreement with data on the pH-dependent binding profile. PMID:23450521

  9. pH-sensitive residues in the p19 RNA silencing suppressor protein from carnation Italian ringspot virus affect siRNA binding stability.

    PubMed

    Law, Sean M; Zhang, Bin W; Brooks, Charles L

    2013-05-01

    Tombusviruses, such as Carnation Italian ringspot virus (CIRV), encode a protein homodimer called p19 that is capable of suppressing RNA silencing in their infected hosts by binding to and sequestering short-interfering RNA (siRNA) away from the RNA silencing pathway. P19 binding stability has been shown to be sensitive to changes in pH but the specific amino acid residues involved have remained unclear. Using constant pH molecular dynamics simulations, we have identified key pH-dependent residues that affect CIRV p19-siRNA binding stability at various pH ranges based on calculated changes in the free energy contribution from each titratable residue. At high pH, the deprotonation of Lys60, Lys67, Lys71, and Cys134 has the largest effect on the binding stability. Similarly, deprotonation of several acidic residues (Asp9, Glu12, Asp20, Glu35, and/or Glu41) at low pH results in a decrease in binding stability. At neutral pH, residues Glu17 and His132 provide a small increase in the binding stability and we find that the optimal pH range for siRNA binding is between 7.0 and 10.0. Overall, our findings further inform recent experiments and are in excellent agreement with data on the pH-dependent binding profile.

  10. Depletion of Histone Demethylase Jarid1A Resulting in Histone Hyperacetylation and Radiation Sensitivity Does Not Affect DNA Double-Strand Break Repair.

    PubMed

    Penterling, Corina; Drexler, Guido A; Böhland, Claudia; Stamp, Ramona; Wilke, Christina; Braselmann, Herbert; Caldwell, Randolph B; Reindl, Judith; Girst, Stefanie; Greubel, Christoph; Siebenwirth, Christian; Mansour, Wael Y; Borgmann, Kerstin; Dollinger, Günther; Unger, Kristian; Friedl, Anna A

    2016-01-01

    Histone demethylases have recently gained interest as potential targets in cancer treatment and several histone demethylases have been implicated in the DNA damage response. We investigated the effects of siRNA-mediated depletion of histone demethylase Jarid1A (KDM5A, RBP2), which demethylates transcription activating tri- and dimethylated lysine 4 at histone H3 (H3K4me3/me2), on growth characteristics and cellular response to radiation in several cancer cell lines. In unirradiated cells Jarid1A depletion lead to histone hyperacetylation while not affecting cell growth. In irradiated cells, depletion of Jarid1A significantly increased cellular radiosensitivity. Unexpectedly, the hyperacetylation phenotype did not lead to disturbed accumulation of DNA damage response and repair factors 53BP1, BRCA1, or Rad51 at damage sites, nor did it influence resolution of radiation-induced foci or rejoining of reporter constructs. We conclude that the radiation sensitivity observed following depletion of Jarid1A is not caused by a deficiency in repair of DNA double-strand breaks.

  11. Evaluation of limiting factors affecting photovoltaic performance of low-temperature-processed TiO₂ films in dye-sensitized solar cells.

    PubMed

    Lee, Taek-Yong; Kim, Hui-Seon; Park, Nam-Gyu

    2014-04-14

    Limiting factors affecting photovoltaic performance of dye-sensitized solar cell employing low-temperature-processed TiO2 films were investigated. TiO2 films were prepared at a low temperature of 200 °C using the normal alcohol-containing binder-free TiO2 paste (LT200). Their photovoltaic performance was compared to a high-temperature (550 °C) annealed TiO2 film prepared using a polymer binder containing TiO2 paste (HT550). Compared to the proportional increase in conversion efficiency with TiO2 film thickness upto 14 μm for HT550, the increase in efficiency was terminated at relatively smaller thickness of about 8 μm for LT200 mainly due to unaugmented photocurrent. From the transient photocurrent-voltage studies, the electron transport rate was found to be almost identical, while charge recombination was one order of magnitude faster for LT200. Consequently, the electron diffusion length was more than 2-3 times shorter for LT200 than for HT550. Electron diffusion length and electron life time obtained from electrochemical impedance analysis were well consistent with those observed from transient measurement. Density of states (DOS) was evaluated to be shallow and narrow in LT200, which was responsible for limiting photovoltaic performance in the low-temperature processed TiO2 film.

  12. The translational blocking of α5 and α6 integrin subunits affects migration and invasion, and increases sensitivity to carboplatin of SKOV-3 ovarian cancer cell line.

    PubMed

    Villegas-Pineda, Julio César; Toledo-Leyva, Alfredo; Osorio-Trujillo, Juan Carlos; Hernández-Ramírez, Verónica Ivonne; Talamás-Rohana, Patricia

    2017-02-15

    Epithelial ovarian cancer is the most lethal gynecologic malignancy. Integrins, overexpressed in cancer, are involved in various processes that favor the development of the disease. This study focused on determining the degree of involvement of α5, α6 and β3 integrin subunits in the establishment/development of epithelial ovarian cancer (EOC), such as proliferation, migration, invasion, and response to carboplatin. The translation of the α5, α6 and β3 integrins was blocked using morpholines, generating morphant cells for these proteins, which were corroborated by immunofluorescence assays. WST-1 proliferation assay showed that silencing of α5, α6, and β3 integrins does not affect the survival of morphants. Wound healing and transwell chamber assays showed that blocking α5 and α6 integrins decrease, in lesser and greater level respectively, the migratory and the invasive capacity of SKOV-3 cells. Finally, blocking α5 and α6 integrins partially sensitized the cells response to carboplatin, while blocking integrin β3 generated resistance to this drug. Statistical analyses were performed with the GraphPad Prism 5.0 software employing one way and two-way ANOVA tests; data are shown as average±SD. Results suggest that α5 and α6 integrins could become good candidates for chemotherapy targets in EOC.

  13. Depletion of Histone Demethylase Jarid1A Resulting in Histone Hyperacetylation and Radiation Sensitivity Does Not Affect DNA Double-Strand Break Repair

    PubMed Central

    Penterling, Corina; Drexler, Guido A.; Böhland, Claudia; Stamp, Ramona; Wilke, Christina; Braselmann, Herbert; Caldwell, Randolph B.; Reindl, Judith; Girst, Stefanie; Greubel, Christoph; Siebenwirth, Christian; Mansour, Wael Y.; Borgmann, Kerstin; Dollinger, Günther; Unger, Kristian; Friedl, Anna A.

    2016-01-01

    Histone demethylases have recently gained interest as potential targets in cancer treatment and several histone demethylases have been implicated in the DNA damage response. We investigated the effects of siRNA-mediated depletion of histone demethylase Jarid1A (KDM5A, RBP2), which demethylates transcription activating tri- and dimethylated lysine 4 at histone H3 (H3K4me3/me2), on growth characteristics and cellular response to radiation in several cancer cell lines. In unirradiated cells Jarid1A depletion lead to histone hyperacetylation while not affecting cell growth. In irradiated cells, depletion of Jarid1A significantly increased cellular radiosensitivity. Unexpectedly, the hyperacetylation phenotype did not lead to disturbed accumulation of DNA damage response and repair factors 53BP1, BRCA1, or Rad51 at damage sites, nor did it influence resolution of radiation-induced foci or rejoining of reporter constructs. We conclude that the radiation sensitivity observed following depletion of Jarid1A is not caused by a deficiency in repair of DNA double-strand breaks. PMID:27253695

  14. Research infrastructure support to address ecosystem dynamics

    NASA Astrophysics Data System (ADS)

    Los, Wouter

    2014-05-01

    Predicting the evolution of ecosystems to climate change or human pressures is a challenge. Even understanding past or current processes is complicated as a result of the many interactions and feedbacks that occur within and between components of the system. This talk will present an example of current research on changes in landscape evolution, hydrology, soil biogeochemical processes, zoological food webs, and plant community succession, and how these affect feedbacks to components of the systems, including the climate system. Multiple observations, experiments, and simulations provide a wealth of data, but not necessarily understanding. Model development on the coupled processes on different spatial and temporal scales is sensitive for variations in data and of parameter change. Fast high performance computing may help to visualize the effect of these changes and the potential stability (and reliability) of the models. This may than allow for iteration between data production and models towards stable models reducing uncertainty and improving the prediction of change. The role of research infrastructures becomes crucial is overcoming barriers for such research. Environmental infrastructures are covering physical site facilities, dedicated instrumentation and e-infrastructure. The LifeWatch infrastructure for biodiversity and ecosystem research will provide services for data integration, analysis and modeling. But it has to cooperate intensively with the other kinds of infrastructures in order to support the iteration between data production and model computation. The cooperation in the ENVRI project (Common operations of environmental research infrastructures) is one of the initiatives to foster such multidisciplinary research.

  15. Risk and markets for ecosystem services.

    PubMed

    Bendor, Todd K; Riggsbee, J Adam; Doyle, Martin

    2011-12-15

    Market-based environmental regulations (e.g., cap and trade, "payments for ecosystem services") are increasingly common. However, few detailed studies of operating ecosystem markets have lent understanding to how such policies affect incentive structures for improving environmental quality. The largest U.S. market stems from the Clean Water Act provisions requiring ecosystem restoration to offset aquatic ecosystems damaged during development. We describe and test how variations in the rules governing this ecosystem market shift risk between regulators and entrepreneurs to promote ecological restoration. We analyze extensive national scale data to assess how two critical aspects of market structure - (a) the geographic scale of markets and (b) policies dictating the release of credits - affect the willingness of entrepreneurs to enter specific markets and produce credits. We find no discernible relationship between policies attempting to ease market entry and either the number of individual producers or total credits produced. Rather, market entry is primarily related to regional geography (the prevalence of aquatic ecosystems) and regional economic growth. Any improvements to policies governing ecosystem markets require explicit evaluation of the interplay between policy and risk elements affecting both regulators and entrepreneurial credit providers. Our findings extend to emerging, regulated ecosystem markets, including proposed carbon offset mechanisms, biodiversity banking, and water quality trading programs.

  16. Belowground dynamics in mangrove ecosystems

    USGS Publications Warehouse

    McKee, Karen L.

    2004-01-01

    Mangrove ecosystems are tropical/subtropical communities of primarily tree species that grow in the intertidal zone. These tidal communities are important coastal ecosystems that are valued for a variety of ecological and societal goods and services (fig. 1). Mangrove wetlands are important filters of materials moving between the land and sea, trapping sediment, nutrients, and pollutants in runoff from uplands and preventing their direct introduction into sensitive marine ecosystems such as seagrass beds and coral reefs. Mangroves serve as nursery grounds and refuge for a variety of organisms and are consequently vital to the biological productivity of coastal waters. Furthermore, because mangroves are highly resilient to disturbances such as hurricanes, they represent a self-sustaining, protective barrier for human populations living in the coastal zone. Mangrove ecosystems also contribute to shoreline stabilization through consolidation of unstable mineral sediments and peat formation. In order to help conserve mangrove ecoystems, scientists with the United States Geological Survey (USGS) at the National Wetlands Research Center are working to more fully understand the dynamics that impact these vital ecosystems.

  17. A toxicological perspective on ecosystem characteristics to track sustainable development. VII. Ecosystem health

    SciTech Connect

    Schaeffer, D.J. )

    1991-10-01

    'Ecosystem health,' an emerging science paralleling human and veterinary medicine, has as its goals the systematic diagnosis and treatment of stressed ecosystems. Ecosystems are stressed by physical factors such as boat traffic, biological factors such as introduction of an exotic species, and chemical factors such as pH change. Even if these classes of stressors affect the same trophic levels, the resulting ecosystem disease states have different etiologies because the stress is introduced and propagated by different mechanisms. This paper presents a toxicological perspective on ecosystem sustainability. The author discusses how classical toxicological concepts have to be modified when the experimental unit is an ecosystem. When exposures are high, effects are acute and are often measurable (e.g., fish kill). However, when exposures are low and chronic, effects are often hard to separate from the background. Evidence of high risk for lack of sustainable development is the exceeding of ecosystem 'threshold criteria.'

  18. Sensitivity analysis of an ocean carbon cycle model in the North Atlantic: an investigation of parameters affecting the air-sea CO2 flux, primary production and export of detritus

    NASA Astrophysics Data System (ADS)

    Scott, V.; Kettle, H.; Merchant, C. J.

    2011-06-01

    The sensitivity of the biological parameters in a nutrient-phytoplankton-zooplankton-detritus (NPZD) model in the calculation of the air-sea CO2 flux, primary production and detrital export is analysed. We explore the effect on these outputs of variation in the values of the twenty parameters that control ocean ecosystem growth in a 1-D formulation of the UK Met Office HadOCC NPZD model used in GCMs. We use and compare the results from one-at-a-time and all-at-a-time perturbations performed at three sites in the EuroSITES European Ocean Observatory Network: the Central Irminger Sea (60° N 40° W), the Porcupine Abyssal Plain (49° N 16° W) and the European Station for Time series in the Ocean Canary Islands (29° N 15° W). Reasonable changes to the values of key parameters are shown to have a large effect on the calculation of the air-sea CO2 flux, primary production, and export of biological detritus to the deep ocean. Changes in the values of key parameters have a greater effect in more productive regions than in less productive areas. The most sensitive parameters are generally found to be those controlling well-established ocean ecosystem parameterisations widely used in many NPZD-type models. The air-sea CO2 flux is most influenced by variation in the parameters that control phytoplankton growth, detrital sinking and carbonate production by phytoplankton (the rain ratio). Primary production is most sensitive to the parameters that define the shape of the photosynthesis-irradiance curve. Export production is most sensitive to the parameters that control the rate of detrital sinking and the remineralisation of detritus.

  19. Avian ecosystem functions are influenced by small mammal ecosystem engineering

    PubMed Central

    2013-01-01

    Background Birds are important mobile link species that contribute to landscape-scale patterns by means of pollination, seed dispersal, and predation. Birds are often associated with habitats modified by small mammal ecosystem engineers. We investigated whether birds prefer to forage on degu (Octodon degus) runways by comparing their foraging effort across sites with a range of runway densities, including sites without runways. We measured granivory by granivorous and omnivorous birds at Rinconada de Maipú, central Chile. As a measure of potential bird foraging on insects, we sampled invertebrate prey richness and abundance across the same sites. We then quantified an index of plot-scale functional diversity due to avian foraging at the patch scale. Results We recorded that birds found food sources sooner and ate more at sites with higher densities of degu runways, cururo mounds, trees, and fewer shrubs. These sites also had higher invertebrate prey richness but lower invertebrate prey abundance. This implies that omnivorous birds, and possibly insectivorous birds, forage for invertebrates in the same plots with high degu runway densities where granivory takes place. In an exploratory analysis we also found that plot-scale functional diversity for four avian ecosystem functions were moderately to weakly correllated to expected ecosystem function outcomes at the plot scale. Conclusions Degu ecosystem engineering affects the behavior of avian mobile link species and is thus correlated with ecosystem functioning at relatively small spatial scales. PMID:24359802

  20. The Effect of Contrasting Wet and Dry Extreme Precipitation on Ecosystem Carbon Fluxes and Water Use Efficiency in the Southern Great Plains, United States

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Felzer, B. S.

    2015-12-01

    Climate extremes, such as heat waves and heavy precipitation, are more likely to occur with increased warming and simultaneously have profound influences on ecosystem fluxes. Existing studies have already investigated how a single extreme event affects ecosystem dynamics. However, how ecosystems respond to consecutive climate extremes is rarely examined. More heat waves are expected to cause more droughts, while more heavy precipitation could cause more floods. Both may have a negative effect on vegetation growth, although wetter conditions may alternatively stimulate growth. In the southern Great Plains the hydrological year of 2006 was the second-driest year on record, with only 61% of long-term annual precipitation. In contrast, the summer of 2007 was the second-wettest summer, with 121% of the normal annual precipitation. This "pair" provides a unique example to study alternatively contrasting climate extremes and their impacts on ecosystem dynamics. In this study, we aim to assess whether or not this consecutive drought and flood has altered the sensitivity of ecosystem carbon fluxes and water use efficiency. To investigate this question, we parameterized a newly developed process-based terrestrial ecosystem model (TEM-Hydro daily version) and applied the Maurer's 1/8 degree daily climate datasets. The modeled results are compared against the MODIS datasets and Ameriflux Eddy Covariance observations to determine the mechanism responsible for understanding how extremes in precipitation affect ecosystem functions. The significance of the consecutive climate extremes on ecosystem structures and processes in the southern Great Plains will be discussed.

  1. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Yang, Yuting; Guan, Huade; Batelaan, Okke; McVicar, Tim R.; Long, Di; Piao, Shilong; Liang, Wei; Liu, Bing; Jin, Zhao; Simmons, Craig T.

    2016-03-01

    Drought is an intermittent disturbance of the water cycle that profoundly affects the terrestrial carbon cycle. However, the response of the coupled water and carbon cycles to drought and the underlying mechanisms remain unclear. Here we provide the first global synthesis of the drought effect on ecosystem water use efficiency (WUE = gross primary production (GPP)/evapotranspiration (ET)). Using two observational WUE datasets (i.e., eddy-covariance measurements at 95 sites (526 site-years) and global gridded diagnostic modelling based on existing observation and a data-adaptive machine learning approach), we find a contrasting response of WUE to drought between arid (WUE increases with drought) and semi-arid/sub-humid ecosystems (WUE decreases with drought), which is attributed to different sensitivities of ecosystem processes to changes in hydro-climatic conditions. WUE variability in arid ecosystems is primarily controlled by physical processes (i.e., evaporation), whereas WUE variability in semi-arid/sub-humid regions is mostly regulated by biological processes (i.e., assimilation). We also find that shifts in hydro-climatic conditions over years would intensify the drought effect on WUE. Our findings suggest that future drought events, when coupled with an increase in climate variability, will bring further threats to semi-arid/sub-humid ecosystems and potentially result in biome reorganization, starting with low-productivity and high water-sensitivity grassland.

  2. Surface heat fluxes and ecosystem function in the Cretan Sea (eastern Mediterranean): a modelling study

    NASA Astrophysics Data System (ADS)

    Siddorn, J. R.; Allen, J. I.

    2003-01-01

    As a component of the Mediterranean Forecast System Pilot Project, a data buoy was deployed in the Cretan Sea. A 1-D ecosystem model of the site has been used to investigate the role of surface heat fluxes in determining modelled ecosystem behaviour. The method of calculation of these fluxes, the quality of the data used, and the temporal resolution of the data all had an impact upon the modelled ecosystem function. The effects of the changes in heat flux formulation were substantial, with both annually averaged properties of the system and the seasonal evolution of the biology being affected. It was also found that the ecosystem model was extremely sensitive to the accuracy of the meteorological forcing data used, with substantial changes in biology found when offsets in the forcing data were imposed. The frequency of forcing data was relatively unimportant in determining the biological function, although lower frequency forcing damped high frequency variability in the biology. During periods of mixing the biology showed an amplified response to changes in physical dynamics, but during periods of stratification the variations in the physics were found to be less important. Zooplankton showed more sensitivity to physical variability than either phytoplankton or bacteria. The consequences for ecosystem modelling are discussed.

  3. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems

    PubMed Central

    Yang, Yuting; Guan, Huade; Batelaan, Okke; McVicar, Tim R.; Long, Di; Piao, Shilong; Liang, Wei; Liu, Bing; Jin, Zhao; Simmons, Craig T.

    2016-01-01

    Drought is an intermittent disturbance of the water cycle that profoundly affects the terrestrial carbon cycle. However, the response of the coupled water and carbon cycles to drought and the underlying mechanisms remain unclear. Here we provide the first global synthesis of the drought effect on ecosystem water use efficiency (WUE = gross primary production (GPP)/evapotranspiration (ET)). Using two observational WUE datasets (i.e., eddy-covariance measurements at 95 sites (526 site-years) and global gridded diagnostic modelling based on existing observation and a data-adaptive machine learning approach), we find a contrasting response of WUE to drought between arid (WUE increases with drought) and semi-arid/sub-humid ecosystems (WUE decreases with drought), which is attributed to different sensitivities of ecosystem processes to changes in hydro-climatic conditions. WUE variability in arid ecosystems is primarily controlled by physical processes (i.e., evaporation), whereas WUE variability in semi-arid/sub-humid regions is mostly regulated by biological processes (i.e., assimilation). We also find that shifts in hydro-climatic conditions over years would intensify the drought effect on WUE. Our findings suggest that future drought events, when coupled with an increase in climate variability, will bring further threats to semi-arid/sub-humid ecosystems and potentially result in biome reorganization, starting with low-productivity and high water-sensitivity grassland. PMID:26983909

  4. The Economic Value of Coastal Ecosystems in California

    EPA Science Inventory

    The status of marine ecosystems affects the well being of human societies. These ecosystems include but are not limited to estuaries, lagoons, reefs, and systems further offshore such as deep ocean vents. The coastal regions that connect terrestrial and marine ecosystems are of p...

  5. Sensitivity analysis of some critical factors affecting simulated intrusion volumes during a low pressure transient event in a full-scale water distribution system.

    PubMed

    Ebacher, G; Besner, M C; Clément, B; Prévost, M

    2012-09-01

    Intrusion events caused by transient low pressures may result in the contamination of a water distribution system (DS). This work aims at estimating the range of potential intrusion volumes that could result from a real downsurge event caused by a momentary pump shutdown. A model calibrated with transient low pressure recordings was used to simulate total intrusion volumes through leakage orifices and submerged air vacuum valves (AVVs). Four critical factors influencing intrusion volumes were varied: the external head of (untreated) water on leakage orifices, the external head of (untreated) water on submerged air vacuum valves, the leakage rate, and the diameter of AVVs' outlet orifice (represented by a multiplicative factor). Leakage orifices' head and AVVs' orifice head levels were assessed through fieldwork. Two sets of runs were generated as part of two statistically designed experiments. A first set of 81 runs was based on a complete factorial design in which each factor was varied over 3 levels. A second set of 40 runs was based on a latin hypercube design, better suited for experimental runs on a computer model. The simulations were conducted using commercially available transient analysis software. Responses, measured by total intrusion volumes, ranged from 10 to 366 L. A second degree polynomial was used to analyze the total intrusion volumes. Sensitivity analyses of both designs revealed that the relationship between the total intrusion volume and the four contributing factors is not monotonic, with the AVVs' orifice head being the most influential factor. When intrusion through both pathways occurs concurrently, interactions between the intrusion flows through leakage orifices and submerged AVVs influence intrusion volumes. When only intrusion through leakage orifices is considered, the total intrusion volume is more largely influenced by the leakage rate than by the leakage orifices' head. The latter mainly impacts the extent of the area affected by

  6. Pooling of Immunomagnetic Separation Beads Does Not Affect Detection Sensitivity of Six Major Serogroups of Shiga Toxin-Producing Escherichia coli in Cattle Feces.

    PubMed

    Noll, Lance W; Baumgartner, William C; Shridhar, Pragathi B; Cull, Charley A; Dewsbury, Diana M; Shi, Xiaorong; Cernicchiaro, Natalia; Renter, David G; Nagaraja, T G

    2016-01-01

    Shiga toxin-producing Escherichia coli (STEC) of the serogroups O26, O45, O103, O111, O121, and O145, often called non-O157 STEC, are foodborne pathogens. Cattle are asymptomatic reservoirs for STEC; the organisms reside in the hindgut and are shed in the feces, which serve as the source of food product contaminations. Culture-based detection of non-O157 STEC involves an immunomagnetic separation (IMS) step to capture the specific serogroups in complex matrices, such as feces. The IMS procedure is time consuming and labor intensive because of the need to subject each fecal sample to six individual beads. Therefore, our objective was to evaluate whether pooling of IMS beads affects sensitivity of non-O157 STEC detection compared with using individual IMS beads. The evaluation was done by comparing detection of serogroups in feces spiked with pure cultures (experiments 1 and 2) and from feces (n = 384) of naturally shedding cattle (experiment 3). In spiked fecal samples, detection with pools of three, four, six, or seven beads was similar to, or at times higher than, detection with individual IMS beads. In experiment 3, the proportions of fecal samples that tested positive for the six serogroups as detected by individual or pooled beads were similar. Based on noninferiority tests, detection with pooled beads was not substantially inferior to detection with individual beads (P > 0.05). In conclusion, the pooling of IMS beads is a better option for detection of STEC serogroups in fecal samples compared with individual beads because the procedure saves time and labor and has the prospect of a higher throughput.

  7. Docosahexaenoic Acid Sensitizes Leukemia Lymphocytes to Barasertib and Everolimus by ROS-dependent Mechanism Without Affecting the Level of ROS and Viability of Normal Lymphocytes.

    PubMed

    Zhelev, Zhivko; Ivanova, Donika; Lazarova, Desislava; Aoki, Ichio; Bakalova, Rumiana; Saga, Tsuneo

    2016-04-01

    The aim of the present study was: (i) to investigate the possibility of sensitizing leukemia lymphocytes to anticancer drugs using docosahexaenoic acid (DHA); (ii) to find combinations with synergistic cytotoxic effect on leukemia lymphocytes, without or with only very low cytotoxicity towards normal lymphocytes; (iii) and to clarify the role of reactive oxygen species (ROS) in the induction of apoptosis and cytotoxicity by such combinations. The study covered 15 anticancer drugs, conventional and new-generation. Well-expressed synergistic cytotoxic effects were observed after treatment of leukemia lymphocytes (Jurkat) with DHA in combination with: barasertib, lonafarnib, everolimus, and palbociclib. We selected two synergistic combinations, DHA with everolimus or barasertib, and investigated their effects on viability of normal lymphocytes, as well as on the production of ROS and induction of apoptosis in both cell lines (leukemia and normal). At the selected concentrations, DHA, everolimus and barasertib (applied separately) were cytotoxic towards leukemia lymphocytes, but not normal lymphocytes. In leukemia cells, the cytotoxicity of combinations was accompanied by strong induction of apoptosis and production of ROS. In normal lymphocytes, drugs alone and in combination with DHA did not affect the level of ROS and did not induce apoptosis. To our knowledge, the present study is the first to report synergistic ROS-dependent cytotoxicity between DHA and new-generation anticancer drugs, such as everolimus and barasertib, that is cancer cell-specific (particularly for acute lymphoblastic leukemia cells Jurkat). These combinations are harmless to normal lymphocytes and do not induce abnormal production of ROS in these cells. The data suggest that DHA could be used as a supplementary component in anticancer chemotherapy, allowing therapeutic doses of everolimus and barasertib to be reduced, minimizing their side-effects.

  8. ERG deregulation induces IGF-1R expression in prostate cancer cells and affects sensitivity to anti-IGF-1R agents.

    PubMed

    Mancarella, Caterina; Casanova-Salas, Irene; Calatrava, Ana; Ventura, Selena; Garofalo, Cecilia; Rubio-Briones, José; Magistroni, Vera; Manara, Maria Cristina; López-Guerrero, José Antonio; Scotlandi, Katia

    2015-06-30

    Identifying patients who may benefit from targeted therapy is an urgent clinical issue in prostate cancer (PCa). We investigated the molecular relationship between TMPRSS2-ERG (T2E) fusion gene and insulin-like growth factor receptor (IGF-1R) to optimize the use of IGF-1R inhibitors.IGF-1R was analyzed in cell lines and in radical prostatectomy specimens in relation to T2E status. ERG binding to IGF-1R promoter was evaluated by chromatin immunoprecipitation (ChIP). Sensitivity to anti-IGF-1R agents was evaluated alone or in combination with anti-androgen abiraterone acetate in vitro at basal levels or upon ERG modulation.IGF-1R analysis performed in PCa cells or clinical samples showed that T2E expression correlated with higher IGF-1R expression at mRNA and protein levels. Genetic modulation of ERG directly affected IGF-1R protein levels in vitro. ChIP analysis showed that ERG binds IGF-1R promoter and that promoter occupancy is higher in T2E-positive cells. IGF-1R inhibition was more effective in cell lines expressing the fusion gene and combination of IGF-1R inhibitors with abiraterone acetate produced synergistic effects in T2E-expressing cells.Here, we provide the rationale for use of T2E fusion gene to select PCa patients for anti-IGF-1R treatments. The combination of anti-IGF-1R-HAbs with an anti-androgen therapy is strongly advocated for patients expressing T2E.

  9. ERG deregulation induces IGF-1R expression in prostate cancer cells and affects sensitivity to anti-IGF-1R agents

    PubMed Central

    Mancarella, Caterina; Casanova-Salas, Irene; Calatrava, Ana; Ventura, Selena; Garofalo, Cecilia; Rubio-Briones, José; Magistroni, Vera; Manara, Maria Cristina; López-Guerrero, José Antonio; Scotlandi, Katia

    2015-01-01

    Identifying patients who may benefit from targeted therapy is an urgent clinical issue in prostate cancer (PCa). We investigated the molecular relationship between TMPRSS2-ERG (T2E) fusion gene and insulin-like growth factor receptor (IGF-1R) to optimize the use of IGF-1R inhibitors. IGF-1R was analyzed in cell lines and in radical prostatectomy specimens in relation to T2E status. ERG binding to IGF-1R promoter was evaluated by chromatin immunoprecipitation (ChIP). Sensitivity to anti-IGF-1R agents was evaluated alone or in combination with anti-androgen abiraterone acetate in vitro at basal levels or upon ERG modulation. IGF-1R analysis performed in PCa cells or clinical samples showed that T2E expression correlated with higher IGF-1R expression at mRNA and protein levels. Genetic modulation of ERG directly affected IGF-1R protein levels in vitro. ChIP analysis showed that ERG binds IGF-1R promoter and that promoter occupancy is higher in T2E-positive cells. IGF-1R inhibition was more effective in cell lines expressing the fusion gene and combination of IGF-1R inhibitors with abiraterone acetate produced synergistic effects in T2E-expressing cells. Here, we provide the rationale for use of T2E fusion gene to select PCa patients for anti-IGF-1R treatments. The combination of anti-IGF-1R-HAbs with an anti-androgen therapy is strongly advocated for patients expressing T2E. PMID:25906745

  10. The Global Ecosystem Dynamics Investigation

    NASA Astrophysics Data System (ADS)

    Dubayah, R.; Goetz, S. J.; Blair, J. B.; Fatoyinbo, T. E.; Hansen, M.; Healey, S. P.; Hofton, M. A.; Hurtt, G. C.; Kellner, J.; Luthcke, S. B.; Swatantran, A.

    2014-12-01

    Spaceborne lidar has been identified as a key technology by the international ecosystem science community because it enables accurate estimates of canopy structure and biomass and forms the basis for fusion approaches that extend the capabilities of existing and planned radar missions, such as the NASA-ISRO SAR and the ESA BIOMASS mission. The Global Ecosystems Dynamics Investigation Lidar (GEDI Lidar) was recently selected by NASA's Earth Ventures Instrument (EVI) program. From its vantage point on the International Space Station, GEDI Lidar provides high-resolution observations of forest vertical structure and addresses three, core science questions: What is the aboveground carbon balance of the land surface? What role will the land surface play in mitigating atmospheric CO2 in the coming decades? How does ecosystem structure affect habitat quality and biodiversity? GEDI informs these science questions by making billions of lidar waveform observations of canopy structure over its nominal one year mission length. The instrument uses three laser transmitters to produce 14 parallel tracks of 25 m footprints. These canopy measurements are then used to measure biomass and in fusion with radar and other remote sensing data to quantify changes in biomass resulting from disturbance and recovery. GEDI further marries ecosystem structure from lidar with ecosystem modeling to predict the sequestration potential of existing forests and to evaluate the impact of policy-driven afforestation and reforestation actions on sequestering additional carbon. Lastly, GEDI's observations of ecosystem structure provide a mapping of critical habitat metrics at the fine scales required for understanding the patterns, processes, and controls on biodiversity and habitat quality. The selection of GEDI Lidar, when combined with the rapid advancement of new radar missions and the availability of long-term land cover archives from passive optical sensors, ushers in an exciting new era of land

  11. Multiple Resource Use Efficiency (mRUE): A New Concept for Ecosystem Production

    NASA Astrophysics Data System (ADS)

    Han, Juanjuan; Chen, Jiquan; Miao, Yuan; Wan, Shiqiang

    2016-11-01

    The resource-driven concept, which is an important school for investigating ecosystem production, has been applied for decades. However, the regulatory mechanisms of production by multiple resources remain unclear. We formulated a new algorithm model that integrates multiple resource uses to study ecosystem production and tested its applications on a water-availability gradient in semi-arid grassland. The result of our experiment showed that changes in water availability significantly affected the resources of light and nitrogen, and altered the relationships among multiple resource absorption rate (ε), multiple resource use efficiency (mRUE), and available resource (Ravail). The increased water availability suppressed ecosystem mRUE (i.e., “declining marginal returns”) The changes in mRUE had a negative effect on ε (i.e., “inverse feedback”). These two processes jointly regulated that the stimulated single resource availability would promote ecosystem production rather than suppress it, even when mRUE was reduced. This study illustrated the use of the mRUE model in exploring the coherent relationships among the key parameters on regulating the ecosystem production for future modeling, and evaluated the sensitivity of this conceptual model under different dataset properties. However, this model needs extensive validation by the ecological community before it can extrapolate this method to other ecosystems in the future.

  12. Multiple Resource Use Efficiency (mRUE): A New Concept for Ecosystem Production

    PubMed Central

    Han, Juanjuan; Chen, Jiquan; Miao, Yuan; Wan, Shiqiang

    2016-01-01

    The resource-driven concept, which is an important school for investigating ecosystem production, has been applied for decades. However, the regulatory mechanisms of production by multiple resources remain unclear. We formulated a new algorithm model that integrates multiple resource uses to study ecosystem production and tested its applications on a water-availability gradient in semi-arid grassland. The result of our experiment showed that changes in water availability significantly affected the resources of light and nitrogen, and altered the relationships among multiple resource absorption rate (ε), multiple resource use efficiency (mRUE), and available resource (Ravail). The increased water availability suppressed ecosystem mRUE (i.e., “declining marginal returns”); The changes in mRUE had a negative effect on ε (i.e., “inverse feedback”). These two processes jointly regulated that the stimulated single resource availability would promote ecosystem production rather than suppress it, even when mRUE was reduced. This study illustrated the use of the mRUE model in exploring the coherent relationships among the key parameters on regulating the ecosystem production for future modeling, and evaluated the sensitivity of this conceptual model under different dataset properties. However, this model needs extensive validation by the ecological community before it can extrapolate this method to other ecosystems in the future. PMID:27869149

  13. Nitrogen Critical Loads for an Alpine Meadow Ecosystem on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zong, Ning; Shi, Peili; Song, Minghua; Zhang, Xianzhou; Jiang, Jing; Chai, Xi

    2016-03-01

    Increasing atmospheric nitrogen (N) deposition has the potential to alter plant diversity and thus the function and stability of terrestrial ecosystems. N-limited alpine ecosystems are expected to be particularly susceptible to increasing N deposition. However, little is known about the critical loads and saturation thresholds of ecosystem responses to increasing N deposition on the Tibetan Plateau, despite its importance to ecosystem management. To evaluate the N critical loads and N saturation thresholds in an alpine ecosystem, in 2010, we treated an alpine meadow with five levels of N addition (0, 10, 20, 40, and 80 kg N ha-1 year-1) and characterized plant and soil responses. The results showed that plant species richness and diversity index did not statistically vary with N addition treatments, but they both changed with years. N addition affected plant cover and aboveground productivity, especially for grasses, and soil chemical features. The N critical loads and saturation thresholds, in terms of plant cover and biomass change at the community level, were 8.8-12.7 and 50 kg N ha-1 year-1 (including the ambient N deposition rate), respectively. However, pronounced changes in soil inorganic N and net N mineralization occurred under the 20 and 40 kg N ha-1 year-1 treatments. Our results indicate that plant community cover and biomass are more sensitive than soil to increasing N inputs. The plant community composition in alpine ecosystems on the Qinghai-Tibetan Plateau may change under increasing N deposition in the future.

  14. Ecotoxicology of tropical marine ecosystems

    SciTech Connect

    Peters, E.C.; Gassman, N.J.; Firman, J.C.; Richmond, R.H.; Power, E.A.

    1997-01-01

    The negative effects of chemical contaminants on tropical marine ecosystems are of increasing concern as human populations expand adjacent to these communities. Watershed streams and ground water carry a variety of chemicals from agricultural, industrial, and domestic activities, while winds and currents transport pollutants from atmospheric and oceanic sources to these coastal ecosystems. The implications of the limited information available on impacts of chemical stressors on mangrove forests, seagrass meadows, and coral reefs are discussed in the context of ecosystem management and ecological risk assessment. Three classes of pollutants have received attention: heavy metals, petroleum, and synthetic organics. Heavy metals have been detected in all three ecosystems, causing physiological stress, reduced reproductive success, and outright mortality in associated invertebrates and fishes. Oil spills have been responsible for the destruction of entire coastal shallow-water communities, with recovery requiring years. Herbicides are particularly detrimental to mangroves and seagrasses and adversely affect the animal-algal symbioses in corals. Pesticides interfere with chemical cues responsible for key biological processes, including reproduction and recruitment of a variety of organisms. Information is lacking with regard to long-term recovery, indicator species, and biomarkers for tropical communities. Critical areas that are beginning to be addressed include the development of appropriate benchmarks for risk assessment, baseline monitoring criteria, and effective management strategies to protect tropical marine ecosystems in the face of mounting anthropogenic disturbance.

  15. Linking water quality and well-being for improved assessment and valuation of ecosystem services.

    PubMed

    Keeler, Bonnie L; Polasky, Stephen; Brauman, Kate A; Johnson, Kris A; Finlay, Jacques C; O'Neill, Ann; Kovacs, Kent; Dalzell, Brent

    2012-11-06

    Despite broad recognition of the value of the goods and services provided by nature, existing tools for assessing and valuing ecosystem services often fall short of the needs and expectations of decision makers. Here we address one of the most important missing components in the current ecosystem services toolbox: a comprehensive and generalizable framework for describing and valuing water quality-related services. Water quality is often misrepresented as a final ecosystem service. We argue that it is actually an important contributor to many different services, from recreation to human health. We present a valuation approach for water quality-related services that is sensitive to different actions that affect water quality, identifies aquatic endpoints where the consequences of changing water quality on human well-being are realized, and recognizes the unique groups of beneficiaries affected by those changes. We describe the multiple biophysical and economic pathways that link actions to changes in water quality-related ecosystem goods and services and provide guidance to researchers interested in valuing these changes. Finally, we present a valuation template that integrates biophysical and economic models, links actions to changes in service provision and value estimates, and considers multiple sources of water quality-related ecosystem service values without double counting.

  16. Measures of the Effects of Agricultural Practices on Ecosystem Services

    SciTech Connect

    Dale, Virginia H; Polasky, Stephen

    2007-01-01

    Agriculture produces more than just crops. Agricultural practices have environmental impacts that affect a wide range of ecosystem services, including water quality, pollination, nutrient cycling, soil retention, carbon sequestration, and biodiversity conservation. In turn, ecosystem services affect agricultural productivity. Understanding the contribution of various agricultural practices to the range of ecosystem services would help inform choices about the most beneficial agricultural practices. To accomplish this, however, we must overcome a big challenge in measuring the impact of alternative agricultural practices on ecosystem services and of ecosystem services on agricultural production.

  17. Invertebrates, ecosystem services and climate change.

    PubMed

    Prather, Chelse M; Pelini, Shannon L; Laws, Angela; Rivest, Emily; Woltz, Megan; Bloch, Christopher P; Del Toro, Israel; Ho, Chuan-Kai; Kominoski, John; Newbold, T A Scott; Parsons, Sheena; Joern, A

    2013-05-01

    The sustainability of ecosystem services depends on a firm understanding of both how organisms provide these services to humans and how these organisms will be altered with a changing climate. Unquestionably a dominant feature of most ecosystems, invertebrates affect many ecosystem services and are also highly responsive to climate change. However, there is still a basic lack of understanding of the direct and indirect paths by which invertebrates influence ecosystem services, as well as how climate change will affect those ecosystem services by altering invertebrate populations. This indicates a lack of communication and collaboration among scientists researching ecosystem services and climate change effects on invertebrates, and land managers and researchers from other disciplines, which becomes obvious when systematically reviewing the literature relevant to invertebrates, ecosystem services, and climate change. To address this issue, we review how invertebrates respond to climate change. We then review how invertebrates both positively and negatively influence ecosystem services. Lastly, we provide some critical future directions for research needs, and suggest ways in which managers, scientists and other researchers may collaborate to tackle the complex issue of sustaining invertebrate-mediated services under a changing climate.

  18. Glacier Ecosystems of Himalaya

    NASA Astrophysics Data System (ADS)

    Kohshima, S.; Yoshimura, Y.; Takeuchi, N.; Segawa, T.; Uetake, J.

    2012-12-01

    Biological activity on glaciers has been believed to be extremely limited. However, we found various biotic communities specialized to the glacier environment in various part of the world, such as Himalaya, Patagonia and Alaska. Some of these glacier hosted biotic communities including various cold-tolerant insects, annelids and copepods that were living in the glacier by feeding on algae and bacteria growing in the snow and ice. Thus, the glaciers are simple and relatively closed ecosystems sustained by the primary production in the snow and ice. In this presentation, we will briefly introduce glacier ecosystems in Himalaya; ecology and behavior of glacier animals, altitudinal zonation of snow algal communities, and the structure of their habitats in the glacier. Since the microorganisms growing on the glacier surface are stored in the glacial strata every year, ice-core samples contain many layers with these microorganisms. We showed that the snow algae in the ice-core are useful for ice core dating and could be new environmental signals for the studies on past environment using ice cores. These microorganisms in the ice core will be important especially in the studies of ice core from the glaciers of warmer regions, in which chemical and isotopic contents are often heavily disturbed by melt water percolation. Blooms of algae and bacteria on the glacier can reduce the surface albedo and significantly affect the glacier melting. For example, the surface albedo of some Himalayan glaciers was significantly reduced by a large amount of dark-colored biogenic material (cryoconite) derived from snow algae and bacteria. It increased the melting rates of the surfaces by as much as three-fold. Thus, it was suggested that the microbial activity on the glacier could affect the mass balance and fluctuation of the glaciers.

  19. Fire as an ecosystem process: Chapter 3

    USGS Publications Warehouse

    Keeley, Jon E.; Safford, Hugh D.; Mooney, Harold A.; Zavaleta, Erika S.

    2016-01-01

    This long-anticipated reference and sourcebook for California’s remarkable ecological abundance provides an integrated assessment of each major ecosystem type—its distribution, structure, function, and management. A comprehensive synthesis of our knowledge about this biologically diverse state, Ecosystems of California covers the state from oceans to mountaintops using multiple lenses: past and present, flora and fauna, aquatic and terrestrial, natural and managed. Each chapter evaluates natural processes for a specific ecosystem, describes drivers of change, and discusses how that ecosystem may be altered in the future. This book also explores the drivers of California’s ecological patterns and the history of the state’s various ecosystems, outlining how the challenges of climate change and invasive species and opportunities for regulation and stewardship could potentially affect the state’s ecosystems. The text explicitly incorporates both human impacts and conservation and restoration efforts and shows how ecosystems support human well-being. Edited by two esteemed ecosystem ecologists and with overviews by leading experts on each ecosystem, this definitive work will be indispensable for natural resource management and conservation professionals as well as for undergraduate or graduate students of California’s environment and curious naturalists.

  20. Sensitivity analysis of an Ocean Carbon Cycle Model in the North Atlantic: an investigation of parameters affecting the air-sea CO2 flux, primary production and export of detritus

    NASA Astrophysics Data System (ADS)

    Scott, V.; Kettle, H.; Merchant, C. J.

    2010-12-01

    The sensitivity of the biological parameters in a nutrient-phytoplankton-zooplankton-detritus (NPZD) model in the calculation of the air-sea CO2 flux, primary production and detrital export is analysed. The NPZD model is the Hadley Centre Ocean Carbon Cycle model (HadOCC) from the UK Met Office, used in the Hadley Centre Coupled Model 3 (HadCM3) and FAst Met Office and Universities Simulator (FAMOUS) GCMs. Here, HadOCC is coupled to the 1-D General Ocean Turbulence Model (GOTM) and forced with European Centre for Medium-Range Weather Forecasting meteorology to undertake a sensitivity analysis of its twenty biological parameters. Analyses are performed at three sites in the EuroSITES European Ocean Observatory Network: the Central Irminger Sea (60° N 40° W), the Porcupine Abyssal Plain (49° N 16° W) and the European Station for Time series in the Ocean Canary Islands (29° N 15° W) to assess variability in parameter sensitivities at different locations in the North Atlantic Ocean. Reasonable changes to the values of key parameters are shown to have a large effect on the calculation of the air-sea CO2 flux, primary production, and export of biological detritus to the deep ocean. Changes in the values of key parameters have a greater effect in more productive regions than in less productive areas. We perform the analysis using one-at-a-time perturbations and using a statistical emulator, and compare results. The most sensitive parameters are generic to many NPZD ocean ecosystem models. The air-sea CO2 flux is most influenced by variation in the parameters that control phytoplankton growth, detrital sinking and carbonate production by phytoplankton (the rain ratio). Primary production is most sensitive to the parameters that define the shape of the photosythesis-irradiance curve. Export production is most sensitive to the parameters that control the rate of detrital sinking and the remineralisation of detritus.

  1. A Temperature-Sensitive Lesion in the N-Terminal Domain of the Rotavirus Polymerase Affects Its Intracellular Localization and Enzymatic Activity.

    PubMed

    McKell, Allison O; LaConte, Leslie E W; McDonald, Sarah M

    2017-04-01

    Temperature-sensitive (ts) mutants of simian rotavirus (RV) strain SA11 have been previously created to investigate the functions of viral proteins during replication. One mutant, SA11-tsC, has a mutation that maps to the gene encoding the VP1 polymerase and shows diminished growth and RNA synthesis at 39°C compared to that at 31°C. In the present study, we sequenced all 11 genes of SA11-tsC, confirming the presence of an L138P mutation in the VP1 N-terminal domain and identifying 52 additional mutations in four other viral proteins (VP4, VP7, NSP1, and NSP2). To investigate whether the L138P mutation induces a ts phenotype in VP1 outside the SA11-tsC genetic context, we employed ectopic expression systems. Specifically, we tested whether the L138P mutation affects the ability of VP1 to localize to viroplasms, which are the sites of RV RNA synthesis, by expressing the mutant form as a green fluorescent protein (GFP) fusion protein (VP1L138P-GFP) (i) in wild-type SA11-infected cells or (ii) in uninfected cells along with viroplasm-forming proteins NSP2 and NSP5. We found that VP1L138P-GFP localized to viroplasms and interacted with NSP2 and/or NSP5 at 31°C but not at 39°C. Next, we tested the enzymatic activity of a recombinant mutant polymerase (rVP1L138P) in vitro and found that it synthesized less RNA at 39°C than at 31°C, as well as less RNA than the control at all temperatures. Together, these results provide a mechanistic basis for the ts phenotype of SA11-tsC and raise important questions about the role of leucine 138 in supporting key protein interactions and the catalytic function of the VP1 polymerase.IMPORTANCE RVs cause diarrhea in the young of many animal species, including humans. Despite their medical and economic importance, gaps in knowledge exist about how these viruses replicate inside host cells. Previously, a mutant simian RV (SA11-tsC) that replicates worse at higher temperatures was identified. This virus has an amino acid mutation in VP

  2. Spring Hydrology Determines Summer Net Carbon Uptake in Northern Ecosystems

    NASA Technical Reports Server (NTRS)

    Yi, Yonghong; Kimball, John; Reichle, Rolf H.

    2014-01-01

    Increased photosynthetic activity and enhanced seasonal CO2 exchange of northern ecosystems have been observed from a variety of sources including satellite vegetation indices (such as the Normalized Difference Vegetation Index; NDVI) and atmospheric CO2 measurements. Most of these changes have been attributed to strong warming trends in the northern high latitudes (greater than or equal to 50N). Here we analyze the interannual variation of summer net carbon uptake derived from atmospheric CO2 measurements and satellite NDVI in relation to surface meteorology from regional observational records. We find that increases in spring precipitation and snow pack promote summer net carbon uptake of northern ecosystems independent of air temperature effects. However, satellite NDVI measurements still show an overall benefit of summer photosynthetic activity from regional warming and limited impact of spring precipitation. This discrepancy is attributed to a similar response of photosynthesis and respiration to warming and thus reduced sensitivity of net ecosystem carbon uptake to temperature. Further analysis of boreal tower eddy covariance CO2 flux measurements indicates that summer net carbon uptake is positively correlated with early growing-season surface soil moisture, which is also strongly affected by spring precipitation and snow pack based on analysis of satellite soil moisture retrievals. This is attributed to strong regulation of spring hydrology on soil respiration in relatively wet boreal and arctic ecosystems. These results document the important role of spring hydrology in determining summer net carbon uptake and contrast with prevailing assumptions of dominant cold temperature limitations to high-latitude ecosystems. Our results indicate potentially stronger coupling of boreal/arctic water and carbon cycles with continued regional warming trends.

  3. The Importance of Uncertainty and Sensitivity Analysis in Process-based Models of Carbon and Nitrogen Cycling in Terrestrial Ecosystems with Particular Emphasis on Forest Ecosystems — Selected Papers from a Workshop Organized by the International Society for Ecological Modelling (ISEM) at the Third Biennal Meeting of the International Environmental Modelling and Software Society (IEMSS) in Burlington, Vermont, USA, August 9-13, 2006

    USGS Publications Warehouse

    Larocque, Guy R.; Bhatti, Jagtar S.; Liu, Jinxun; Ascough, James C.; Gordon, Andrew M.

    2008-01-01

    Many process-based models of carbon (C) and nitrogen (N) cycles have been developed for terrestrial ecosystems, including forest ecosystems. They address many basic issues of ecosystems structure and functioning, such as the role of internal feedback in ecosystem dynamics. The critical factor in these phenomena is scale, as these processes operate at scales from the minute (e.g. particulate pollution impacts on trees and other organisms) to the global (e.g. climate change). Research efforts remain important to improve the capability of such models to better represent the dynamics of terrestrial ecosystems, including the C, nutrient, (e.g. N) and water cycles. Existing models are sufficiently well advanced to help decision makers develop sustainable management policies and planning of terrestrial ecosystems, as they make realistic predictions when used appropriately. However, decision makers must be aware of their limitations by having the opportunity to evaluate the uncertainty associated with process-based models (Smith and Heath, 2001 and Allen et al., 2004). The variation in scale of issues currently being addressed by modelling efforts makes the evaluation of uncertainty a daunting task.

  4. ECOSYSTEM GROWTH AND DEVELOPMENT

    EPA Science Inventory

    Thermodynamically, ecosystem growth and development is the process by which energy throughflow and stored biomass increase. Several proposed hypotheses describe the natural tendencies that occur as an ecosystem matures, and here, we consider five: minimum entropy production, maxi...

  5. Climate Action Benefits: Ecosystems

    EPA Pesticide Factsheets

    This page provides background on the relationship between ecosystems and climate change and describes what the CIRA Ecosystems analyses cover. It provides links to the subsectors Coral Reefs, Shellfish, Freshwater Fish, Wildfire, and Carbon Storage.

  6. Modeling sensitive elasmobranch habitats

    NASA Astrophysics Data System (ADS)

    Pennino, M. Grazia; Muñoz, Facundo; Conesa, David; López-Quílez, Antonio; Bellido, José Marí; a

    2013-10-01

    Basic information on the distribution and habitat preferences of ecologically important species is essential for their management and protection. In the Mediterranean Sea there is increasing concern over elasmobranch species because their biological (ecological) characteristics make them highly vulnerable to fishing pressure. Their removal could affect the structure and function of marine ecosystems, inducing changes in trophic interactions at the community level due to the selective elimination of predators or prey species, competitors and species replacement. In this study Bayesian hierarchical spatial models are used to map the sensitive habitats of the three most caught elasmobranch species (Galeus melastomus, Scyliorhinus canicula, Etmopterus spinax) in the western Mediterranean Sea, based on fishery-dependent bottom trawl data. Results show that habitats associated with hard substrata and sandy beds, mainly in deep waters and with a high seabed gradient, have a greater probability registering the presence of the studied species than those associated with muddy shallow waters. Temperature and chlorophyll-α concentration show a negative relationship with S. canicula occurrence. Our results identify some of the sensitive habitats for elasmobranchs in the western Mediterranean Sea (GSA06 South), providing essential and easy-to-use interpretation tools, such as predictive distribution maps, with the final aim of improving management and conservation of these vulnerable species.

  7. Ecosystem carbon storage does not vary with mean annual temperature in Hawaiian tropical montane wet forests.

    PubMed

    Selmants, Paul C; Litton, Creighton M; Giardina, Christian P; Asner, Gregory P

    2014-09-01

    Theory and experiment agree that climate warming will increase carbon fluxes between terrestrial ecosystems and the atmosphere. The effect of this increased exchange on terrestrial carbon storage is less predictable, with important implications for potential feedbacks to the climate system. We quantified how increased mean annual temperature (MAT) affects ecosystem carbon storage in above- and belowground live biomass and detritus across a well-constrained 5.2 °C MAT gradient in tropical montane wet forests on the Island of Hawaii. This gradient does not systematically vary in biotic or abiotic factors other than MAT (i.e. dominant vegetation, substrate type and age, soil water balance, and disturbance history), allowing us to isolate the impact of MAT on ecosystem carbon storage. Live biomass carbon did not vary predictably as a function of MAT, while detrital carbon declined by ~14 Mg of carbon ha(-1) for each 1 °C rise in temperature - a trend driven entirely by coarse woody debris and litter. The largest detrital pool, soil organic carbon, was the most stable with MAT and averaged 48% of total ecosystem carbon across the MAT gradient. Total ecosystem carbon did not vary significantly with MAT, and the distribution of ecosystem carbon between live biomass and detritus remained relatively constant across the MAT gradient at ~44% and ~56%, respectively. These findings suggest that in the absence of alterations to precipitation or disturbance regimes, the size and distribution of carbon pools in tropical montane wet forests will be less sensitive to rising MAT than predicted by ecosystem models. This article also provides needed detail on how individual carbon pools and ecosystem-level carbon storage will respond to future warming.

  8. Consideration of Ecosystem for ICME

    SciTech Connect

    Ren, Weiju

    2013-01-01

    As the Integrated Computational Materials Engineering (ICME) emerges as a hot topic, computation, experimentation, and digital database are identified as its three major components. Efforts are being actively made from various aspects to bring ICME to reality. However, many factors that would affect ICEM development still remain vague. This paper is an attempt to discuss the needs for establishing a database centered ecosystem to facilitate ICEM development.

  9. Climate Change Experiments in Arctic Ecosystems: Scientific Strategy and Design Criteria

    NASA Astrophysics Data System (ADS)

    Wullschleger, S. D.; Hinzman, L. D.; McGuire, A. D.; Oberbauer, S. F.; Oechel, W. C.; Norby, R. J.; Thornton, P. E.; Schuur, E. A.; Shugart, H. H.; Walsh, J. E.; Wilson, C. J.

    2010-12-01

    Arctic and subarctic ecosystems are sensitive to changes in climate. These are among the largest and coldest of all ecosystems and are perceived by many as especially vulnerable to environmental change. Warming, in particular, is expected to be greatest in northern latitudes with potentially significant consequences for tundra, taiga, and peat lands. Observational evidence suggests that warming is already affecting physical and ecological processes in high-latitude ecosystems. Models predict that permafrost degradation and the northward expansion of shrubs into tundra represent important feedbacks on climate. Manipulative experiments can help understand the vulnerability of ecosystems to climate warming. Previous attempts to manipulate the environment of ecosystems in arctic and subarctic regions have focused on warming plant and soils, but treatments have been limited to small scales and modest increases in temperature. Manipulating the environment at larger scales and exposing ecosystems to higher temperatures for longer periods of time will be required to fully describe the physical, chemical, and biological mechanisms that govern land-atmosphere interactions. A variety of logistical and engineering challenges must be overcome and new approaches developed before we can address the questions being asked of the scientific community especially as we continue to move toward large-scale and long-term experiments. In light of the many uncertainties that surround the response of high-latitude ecosystems to global climate change, it is important that the scientific community consider how manipulative experiments can address and resolve ecosystem impacts and feedbacks to climate. A workshop sponsored by the Department of Energy, Office of Science was recently held at the University of Alaska, Fairbanks. The goal of the workshop was to highlight conclusions from observational and modeling studies about the response of arctic and subarctic ecosystems to a changing climate

  10. Estuarine Total Ecosystem Metabolism

    EPA Science Inventory

    Total ecosystem metabolism (TEM), both as discrete measurements and as a theoretical concept, has an important history in ecosystem ecology, particularly in estuaries. Some of the earliest ecological studies were developed to determine how energy flowed through an ecosystem and w...

  11. Ecosystem Health: Energy Indicators.

    EPA Science Inventory

    Just as for human beings health is a concept that applies to the condition of the whole organism, the health of an ecosystem refers to the condition of the ecosystem as a whole. For this reason, the study and characterization of ecosystems is fundamental to establishing accurate ...

  12. Soil Bacterial Communities Respond to Mowing and Nutrient Addition in a Steppe Ecosystem

    PubMed Central

    Zhang, Ximei; Chen, Quansheng; Han, Xingguo

    2013-01-01

    In many grassland ecosystems, nitrogen (N) and phosphorus (P) are added to improve plant productivity, and the aboveground plant biomass is mowed and stored as hay for the bullamacow. Nutrient addition and mowing affect the biodiversity and ecosystem functioning, and most of the previous studies have primarily focused on their effects on macro-organisms, neglecting the responses of soil microbial communities. In this study, we examined the changes in three community attributes (abundance, richness, and composition) of the entire bacterial kingdom and 16 dominant bacterial phyla/classes in response to mowing, N addition, P addition, and their combinations, by conducting a 5-year experiment in a steppe ecosystem in Inner Mongolia, China. Overall, N addition had a greater effect than mowing and P addition on most of these bacterial groups, as indicated by changes in the abundance, richness and composition in response to these treatments. N addition affected these soil bacterial groups primarily through reducing soil pH and increasing available N content. Meanwhile, the 16 bacterial phyla/classes responded differentially to these experimental treatments, with Acidobacteria, Acidimicrobidae, Deltaproteobacteria, and Gammaproteobacteria being the most sensitive. The changes in the abundance, richness, and composition of various bacterial groups could imply some potential shift in their ecosystem functions. Furthermore, the important role of decreased soil pH caused by N addition in affecting soil bacterial communities suggests the importance of restoring acidified soil to maintain soil bacterial diversity. PMID:24391915

  13. Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change.

    PubMed

    Ballaré, C L; Caldwell, M M; Flint, S D; Robinson, S A; Bornman, J F

    2011-02-01

    Ultraviolet radiation (UV) is a minor fraction of the solar spectrum reaching the ground surface. In this assessment we summarize the results of previous work on the effects of the UV-B component (280-315 nm) on terrestrial ecosystems, and draw attention to important knowledge gaps in our understanding of the interactive effects of UV radiation and climate change. We highlight the following points: (i) The effects of UV-B on the growth of terrestrial plants are relatively small and, because the Montreal Protocol has been successful in limiting ozone depletion, the reduction in plant growth caused by increased UV-B radiation in areas affected by ozone decline since 1980 is unlikely to have exceeded 6%. (ii) Solar UV-B radiation has large direct and indirect (plant-mediated) effects on canopy arthropods and microorganisms. Therefore, trophic interactions (herbivory, decomposition) in terrestrial ecosystems appear to be sensitive to variations in UV-B irradiance. (iii) Future variations in UV radiation resulting from changes in climate and land-use may have more important consequences on terrestrial ecosystems than the changes in UV caused by ozone depletion. This is because the resulting changes in UV radiation may affect a greater range of ecosystems, and will not be restricted solely to the UV-B component. (iv) Several ecosystem processes that are not particularly sensitive to UV-B radiation can be strongly affected by UV-A (315-400 nm) radiation. One example is the physical degradation of plant litter. Increased photodegradation (in response to reduced cloudiness or canopy cover) will lead to increased carbon release to the atmosphere via direct and indirect mechanisms.

  14. Metabolic theory predicts whole-ecosystem properties.

    PubMed

    Schramski, John R; Dell, Anthony I; Grady, John M; Sibly, Richard M; Brown, James H

    2015-02-24

    Understanding the effects of individual organisms on material cycles and energy fluxes within ecosystems is central to predicting the impacts of human-caused changes on climate, land use, and biodiversity. Here we present a theory that integrates metabolic (organism-based bottom-up) and systems (ecosystem-based top-down) approaches to characterize how the metabolism of individuals affects the flows and stores of materials and energy in ecosystems. The theory predicts how the average residence time of carbon molecules, total system throughflow (TST), and amount of recycling vary with the body size and temperature of the organisms and with trophic organization. We evaluate the theory by comparing theoretical predictions with outputs of numerical models designed to simulate diverse ecosystem types and with empirical data for real ecosystems. Although residence times within different ecosystems vary by orders of magnitude-from weeks in warm pelagic oceans with minute phytoplankton producers to centuries in cold forests with large tree producers-as predicted, all ecosystems fall along a single line: residence time increases linearly with slope = 1.0 with the ratio of whole-ecosystem biomass to primary productivity (B/P). TST was affected predominantly by primary productivity and recycling by the transfer of energy from microbial decomposers to animal consumers. The theory provides a robust basis for estimating the flux and storage of energy, carbon, and other materials in terrestrial, marine, and freshwater ecosystems and for quantifying the roles of different kinds of organisms and environments at scales from local ecosystems to the biosphere.

  15. Young Children's Affective Responses to Acceptance and Rejection from Peers: A Computer-Based Task Sensitive to Variation in Temperamental Shyness and Gender

    ERIC Educational Resources Information Center

    Howarth, Grace Z.; Guyer, Amanda E.; Perez-Edgar, Koraly

    2013-01-01

    This study presents a novel task examining young children's affective responses to evaluative feedback--specifically, social acceptance and rejection--from peers. We aimed to determine (1) whether young children report their affective responses to hypothetical peer evaluation predictably and consistently, and (2) whether young children's responses…

  16. Fishing for ecosystem services

    USGS Publications Warehouse

    Pope, Kevin L.; Pegg, Mark A.; Cole, Nicholas W.; Siddons, Stephen F.; Fedele, Alexis D.; Harmon, Brian S.; Ruskamp, Ryan L.; Turner, Dylan R.; Uerling, Caleb C.

    2016-01-01

    Ecosystems are commonly exploited and manipulated to maximize certain human benefits. Such changes can degrade systems, leading to cascading negative effects that may be initially undetected, yet ultimately result in a reduction, or complete loss, of certain valuable ecosystem services. Ecosystem-based management is intended to maintain ecosystem quality and minimize the risk of irreversible change to natural assemblages of species and to ecosystem processes while obtaining and maintaining long-term socioeconomic benefits. We discuss policy decisions in fishery management related to commonly manipulated environments with a focus on influences to ecosystem services. By focusing on broader scales, managing for ecosystem services, and taking a more proactive approach, we expect sustainable, quality fisheries that are resilient to future disturbances. To that end, we contend that: (1) management always involves tradeoffs; (2) explicit management of fisheries for ecosystem services could facilitate a transition from reactive to proactive management; and (3) adaptive co-management is a process that could enhance management for ecosystem services. We propose adaptive co-management with an ecosystem service framework where actions are implemented within ecosystem boundaries, rather than political boundaries, through strong interjurisdictional relationships.

  17. Bioaccumulation processes in ecosystems.

    PubMed

    Streit, B

    1992-10-15

    The fate of environmental pollutants--the various isotopes of elements, and inorganic or organic compounds--is a fundamental aspect of ecology and ecotoxicology, and bioaccumulation is a phenomenon often discussed in this context. Human activities have drastically altered natural concentrations of many substances in the environment and added numerous new chemicals. An understanding of the processes of bioaccumulation is important for several reasons. 1) Bioaccumulation in organisms may enhance the persistence of industrial chemicals in the ecosystem as a whole, since they can be fixed in the tissues of organisms. 2) Stored chemicals are not exposed to direct physical, chemical, or biochemical degradation. 3) Stored chemicals can directly affect an individual's health. 4) Predators of those organisms that have bioaccumulated harmful substances may be endangered by food chain effects. While former theories on the processes of bioaccumulation focused on single aspects that affect the extent of accumulation (such as the trophic level within the food chain or the lipophilicity of the chemical), modern theories are based on compartmental kinetics and the integration of various environmental interactions. Concepts include results from quantitative structure-activity relationships (QSAR), pharmacokinetics, ecophysiology and general biology, molecular genetic aspects and selection, and finally the structure of communities and man-made alterations in them.

  18. Toward an integration of evolutionary biology and ecosystem science.

    PubMed

    Matthews, Blake; Narwani, Anita; Hausch, Stephen; Nonaka, Etsuko; Peter, Hannes; Yamamichi, Masato; Sullam, Karen E; Bird, Kali C; Thomas, Mridul K; Hanley, Torrance C; Turner, Caroline B

    2011-07-01

    At present, the disciplines of evolutionary biology and ecosystem science are weakly integrated. As a result, we have a poor understanding of how the ecological and evolutionary processes that create, maintain, and change biological diversity affect the flux of energy and materials in global biogeochemical cycles. The goal of this article was to review several research fields at the interfaces between ecosystem science, community ecology and evolutionary biology, and suggest new ways to integrate evolutionary biology and ecosystem science. In particular, we focus on how phenotypic evolution by natural selection can influence ecosystem functions by affecting processes at the environmental, population and community scale of ecosystem organization. We develop an eco-evolutionary model to illustrate linkages between evolutionary change (e.g. phenotypic evolution of producer), ecological interactions (e.g. consumer grazing) and ecosystem processes (e.g. nutrient cycling). We conclude by proposing experiments to test the ecosystem consequences of evolutionary changes.

  19. [Dynamics of Radioecological State of the Fresh-Water Ecosystems Affected by a Long-Term Impact from Nuclear Power Plant in the Frontiers of the Zone under Observation].

    PubMed

    Trapeznikov, A V; Trapeznikova, V N; Korjavin, A V

    2015-01-01

    The results of radioecological studies of six small rivers situated in the surveillance zone of the Beloyarskaya NPP (BNPP) and around the cooling pond of the power plant are presented. 21 radionuclides and the total α- and β-activity were studied in the main components of the aquatic ecosystems. It is shown that after the 1st and 2nd BN PP blocks decommissioning the content of 60Co and 137Cs in the Beloyarskoye storage pond water, sediments, fish fauna and macrophytes dropped tens and hundreds of times. The fundamental importance of this fact is that in a large range of time the aquatic ecosystem mechanism of self-purification from radionuclides is working due to radioactive substances decay as well as redistribution of radionuclides from water to other components, primarily to the sediments. Of 6 small rivers the maximum levels of radioactive substances is found in the river Olkhovka, which for several years has been subjected to the low-level radioactive water discharges from Beloyarskaya NPP. The radionuclide content in the main components of the aquatic ecosystems of the other five rivers studied after BNPP 47-year operation period corresponds to the regional background.

  20. DNA barcodes for assessment of the biological integrity of aquatic ecosystems

    EPA Science Inventory

    Water quality regulations and aquatic ecosystem monitoring increasingly rely on direct assessments of biological integrity. Because these aquatic “bioassessments” evaluate the incidence and abundance of sensitive aquatic species, they are able to measure cumulative ecosystem eff...

  1. Some molecular/crystalline factors that affect the sensitivities of energetic materials: molecular surface electrostatic potentials, lattice free space and maximum heat of detonation per unit volume.

    PubMed

    Politzer, Peter; Murray, Jane S

    2015-02-01

    We discuss three molecular/crystalline properties that we believe to be among the factors that influence the impact/shock sensitivities of energetic materials (i.e., their vulnerabilities to unintended detonation due to impact or shock). These properties are (a) the anomalously strong positive electrostatic potentials in the central regions of their molecular surfaces, (b) the free space per molecule in their crystal lattices, and (c) their maximum heats of detonation per unit volume. Overall, sensitivity tends to become greater as these properties increase; however these are general trends, not correlations. Nitramines are exceptions in that their sensitivities show little or no variation with free space in the lattice and heat of detonation per unit volume. We outline some of the events involved in detonation initiation and show how the three properties are related to different ones of these events.

  2. Effects of ice storm on forest ecosystem of southern China in 2008 Shaoqiang Wang1, Lei Zhou1, Weimin Ju2, Kun Huang1 1Key Lab of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Beijing, 10010

    NASA Astrophysics Data System (ADS)

    Wang, Shaoqiang

    2014-05-01

    Evidence is mounting that an increase in extreme climate events has begun to occur worldwide during the recent decades, which affect biosphere function and biodiversity. Ecosystems returned to its original structures and functions to maintain its sustainability, which was closely dependent on ecosystem resilience. Understanding the resilience and recovery capacity of ecosystem to extreme climate events is essential to predicting future ecosystem responses to climate change. Given the overwhelming importance of this region in the overall carbon cycle of forest ecosystems in China, south China suffered a destructive ice storm in 2008. In this study, we used the number of freezing day and a process-based model (Boreal Ecosystem Productivity Simulator, BEPS) to characterize the spatial distribution of ice storm region in southeastern China and explore the impacts on carbon cycle of forest ecosystem over the past decade. The ecosystem variables, i.e. Net primary productivity (NPP), Evapotranspiration (ET), and Water use efficiency (WUE, the ratio of NPP to ET) from the outputs of BEPS models were used to detect the resistance and resilience of forest ecosystem in southern China. The pattern of ice storm-induced forest productivity widespread decline was closely related to the number of freezing day during the ice storm period. The NPP of forest area suffered heavy ice storm returned to normal status after five months with high temperature and ample moisture, indicated a high resilience of subtropical forest in China. The long-term changes of forest WUE remain stable, behaving an inherent sensitivity of ecosystem to extreme climate events. In addition, ground visits suggested that the recovery of forest productivity was attributed to rapid growth of understory. Understanding the variability and recovery threshold of ecosystem following extreme climate events help us to better simulate and predict the variability of ecosystem structure and function under current and

  3. Eight questions about invasions and ecosystem functioning.

    PubMed

    Strayer, David L

    2012-10-01

    I pose eight questions central to understanding how biological invasions affect ecosystems, assess progress towards answering those questions and suggest ways in which progress might be made. The questions concern the frequency with which invasions affect ecosystems; the circumstances under which ecosystem change is most likely; the functions that are most often affected by invaders; the relationships between changes to ecosystems, communities, and populations; the long-term responses of ecosystems to invasions; interactions between biological invasions and other anthropogenic activities and the difficulty of managing undesirable impacts of non-native species. Some questions have been answered satisfactorily, others require more data and thought, and others might benefit from being reformulated or abandoned. Actions that might speed progress include careful development of trait-based approaches; strategic collection and publication of new data, including more frequent publication of negative results; replacement of expert opinion with hard data where needed; careful consideration of whether questions really need to be answered, especially in cases where answers are being provided for managers and policy-makers; explicit attention to and testing of the domains of theories; integrating invasions better into an ecosystem context; and remembering that our predictive ability is limited and will remain so for the foreseeable future.

  4. How does a land use change from annual food crop to perennial energy crop affect the CO2 balance? A study on net ecosystem exchange of carbon dioxide from Danish fen peatland grown with spring barley and reed canary grass

    NASA Astrophysics Data System (ADS)

    Kandel, T. P.; Elsgaard, L.; Lærke, P. E.

    2012-04-01

    It is important to evaluate how land use change from annual arable food crop to perennial energy crop cultivation changes the carbon balance in cultivated peatland. We measured CO2 balance in a riparian fen peatland used for growing reed canary grass (RCG) and spring barley (SB) on adjacent field plots for a complete year with a dynamic closed chamber. Carbon dioxide fluxes measured with chamber were divided into a light dependent part as gross photosynthesis (GP) and a light independent part as ecosystem respiration (RE). GP and RE in both cropping system showed a strong seasonal pattern with weather condition and vegetation. A high ecosystem respiration in RCG (1532 ± 32 g CO2-C m-2) and SB (1080 ± 32 g CO2-C m-2) during growing season was offset by higher gross photosynthesis in RCG (-1782 ± 53 g CO2-C m-2) and SB (-1225 ± 59 g CO2-C m-2)making both cropping system net sink of CO2 during the growing season. The estimated gross photosynthesis in cold-season from October to March was 17% and 6% of annual GP in SB and RCG plots, respectively. This higher uptake of CO2 during cold-season in SB plots was caused by growth of volunteer grass during winter which was completely suppressed in RCG plots due to its invasive nature. Both GP and REwere significantly higher in RCG plots than SB plots in an annual scale but net ecosystem exchange was not significantly different. Total estimated annual ecosystem respirations were 1887 ± 10 g CO2-C m-2 in RCG plots and 1288 ± 12 g CO2-C m-2 in SB plots. Similarly, total estimated annual GP were 1885 ± 100 g CO2-C m-2in RCG plots and 1408 ± 24 g CO2-C m-2 in SB plots making a net ecosystem exchange of 2 ± 88 g CO2-C m-2 in RCG plots and -120 ± 25 g CO2-C m-2 in SB plots.

  5. Mapping and valuing ecosystem services as an approach for conservation and natural-resource management.

    PubMed

    Tallis, Heather; Polasky, Stephen

    2009-04-01

    Current approaches to conservation and natural-resource management often focus on single objectives, resulting in many unintended consequences. These outcomes often affect society through unaccounted-for ecosystem services. A major challenge in moving to a more ecosystem-based approach to management that would avoid such societal damages is the creation of practical tools that bring a scientifically sound, production function-based approach to natural-resource decision making. A new set of computer-based models is presented, the Integrated Valuation of Ecosystem Services and Tradeoffs tool (InVEST) that has been designed to inform such decisions. Several of the key features of these models are discussed, including the ability to visualize relationships among multiple ecosystem services and biodiversity, the ability to focus on ecosystem services rather than biophysical processes, the ability to project service levels and values in space, sensitivity to manager-designed scenarios, and flexibility to deal with data and knowledge limitations. Sample outputs of InVEST are shown for two case applications; the Willamette Basin in Oregon and the Amazon Basin. Future challenges relating to the incorporation of social data, the projection of social distributional effects, and the design of effective policy mechanisms are discussed.

  6. Responses of the ocean planktonic ecosystem to finite-amplitude perturbations

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Mu, Mu

    2014-12-01

    The responses of the ocean planktonic ecosystem to finite-amplitude perturbations are investigated using an ocean planktonic ecosystem model. Through changing the higher predation rate on zooplankton, multiple equilibria of the model, namely "high-nutrient" and "low-nutrient" states, are obtained under certain parameter values. Based on these states, the perturbations with maximum nonlinear growth are determined using the conditional nonlinear optimal perturbation (CNOP) method. The linear and nonlinear evolutions of the CNOP perturbation are compared. The results show that the nonlinear evolution of the perturbation leads to predator-prey oscillations with larger amplitude than the linear evolution. Besides, after the perturbation amplitude exceeds a critical value, the nonlinear evolution of the perturbation will induce the linearly stable ecosystem state to lose the stability and become nonlinearly unstable. This implies that nonlinear processes have important impacts on the stability of the ecosystem. Specifically, we identify the nonlinear processes related to zooplankton grazing to impact the stability most for the high-nutrient state, while for the low-nutrient state the main nonlinear process affecting the stability is the uptake process. These results help to improve our understanding of the sensitivity of the oceanic ecosystem model to finite-amplitude perturbations and the underlying nonlinear stability properties.

  7. An Integrated Coral Reef Ecosystem Model to Support Resource Management under a Changing Climate.

    PubMed

    Weijerman, Mariska; Fulton, Elizabeth A; Kaplan, Isaac C; Gorton, Rebecca; Leemans, Rik; Mooij, Wolf M; Brainard, Russell E

    2015-01-01

    Millions of people rely on the ecosystem services provided by coral reefs, but sustaining these benefits requires an understanding of how reefs and their biotic communities are affected by local human-induced disturbances and global climate change. Ecosystem-based management that explicitly considers the indirect and cumulative effects of multiple disturbances has been recommended and adopted in policies in many places around the globe. Ecosystem models give insight into complex reef dynamics and their responses to multiple disturbances and are useful tools to support planning and implementation of ecosystem-based management. We adapted the Atlantis Ecosystem Model to incorporate key dynamics for a coral reef ecosystem around Guam in the tropical western Pacific. We used this model to quantify the effects of predicted climate and ocean changes and current levels of current land-based sources of pollution (LBSP) and fishing. We used the following six ecosystem metrics as indicators of ecosystem state, resilience and harvest potential: 1) ratio of calcifying to non-calcifying benthic groups, 2) trophic level of the community, 3) biomass of apex predators, 4) biomass of herbivorous fishes, 5) total biomass of living groups and 6) the end-to-start ratio of exploited fish groups. Simulation tests of the effects of each of the three drivers separately suggest that by mid-century climate change will have the largest overall effect on this suite of ecosystem metrics due to substantial negative effects on coral cover. The effects of fishing were also important, negatively influencing five out of the six metrics. Moreover, LBSP exacerbates this effect for all metrics but not quite as badly as would be expected under additive assumptions, although the magnitude of the effects of LBSP are sensitive to uncertainty associated with primary productivity. Over longer time spans (i.e., 65 year simulations), climate change impacts have a slight positive interaction with other drivers

  8. An Integrated Coral Reef Ecosystem Model to Support Resource Management under a Changing Climate

    PubMed Central

    Weijerman, Mariska; Fulton, Elizabeth A.; Kaplan, Isaac C.; Gorton, Rebecca; Leemans, Rik; Mooij, Wolf M.; Brainard, Russell E.

    2015-01-01

    Millions of people rely on the ecosystem services provided by coral reefs, but sustaining these benefits requires an understanding of how reefs and their biotic communities are affected by local human-induced disturbances and global climate change. Ecosystem-based management that explicitly considers the indirect and cumulative effects of multiple disturbances has been recommended and adopted in policies in many places around the globe. Ecosystem models give insight into complex reef dynamics and their responses to multiple disturbances and are useful tools to support planning and implementation of ecosystem-based management. We adapted the Atlantis Ecosystem Model to incorporate key dynamics for a coral reef ecosystem around Guam in the tropical western Pacific. We used this model to quantify the effects of predicted climate and ocean changes and current levels of current land-based sources of pollution (LBSP) and fishing. We used the following six ecosystem metrics as indicators of ecosystem state, resilience and harvest potential: 1) ratio of calcifying to non-calcifying benthic groups, 2) trophic level of the community, 3) biomass of apex predators, 4) biomass of herbivorous fishes, 5) total biomass of living groups and 6) the end-to-start ratio of exploited fish groups. Simulation tests of the effects of each of the three drivers separately suggest that by mid-century climate change will have the largest overall effect on this suite of ecosystem metrics due to substantial negative effects on coral cover. The effects of fishing were also important, negatively influencing five out of the six metrics. Moreover, LBSP exacerbates this effect for all metrics but not quite as badly as would be expected under additive assumptions, although the magnitude of the effects of LBSP are sensitive to uncertainty associated with primary productivity. Over longer time spans (i.e., 65 year simulations), climate change impacts have a slight positive interaction with other drivers

  9. Transcription factor CecR (YbiH) regulates a set of genes affecting the sensitivity of Escherichia coli against cefoperazone and chloramphenicol.

    PubMed

    Yamanaka, Yuki; Shimada, Tomohiro; Yamamoto, Kaneyoshi; Ishihama, Akira

    2016-07-01

    Genomic SELEX (systematic evolution of ligands by exponential enrichment) screening was performed for identification of the binding site of YbiH, an as yet uncharacterized TetR-family transcription factor, on the Escherichia coli genome. YbiH was found to be a unique single-target regulator that binds in vitro within the intergenic spacer located between the divergently transcribed ybiH-ybhGFSR and rhlE operons. YbhG is an inner membrane protein and YbhFSR forms a membrane-associated ATP-binding cassette (ABC) transporter while RhlE is a ribosome-associated RNA helicase. Gel shift assay and DNase footprinting analyses indicated one clear binding site of YbiH, including a complete palindromic sequence of AATTAGTT-AACTAATT. An in vivo reporter assay indicated repression of the ybiH operon and activation of the rhlE operon by YbiH. After phenotype microarray screening, YbiH was indicated to confer resistance to chloramphenicol and cefazoline (a first-generation cephalosporin). A systematic survey of the participation of each of the predicted YbiH-regulated genes in the antibiotic sensitivity indicated involvement of the YbhFSR ABC-type transporter in the sensitivity to cefoperazone (a third-generation cephalosporin) and of the membrane protein YbhG in the control of sensitivity to chloramphenicol. Taken together with the growth test in the presence of these two antibiotics and in vitro transcription assay, it was concluded that the hitherto uncharacterized YbiH regulates transcription of both the bidirectional transcription units, the ybiH-ybhGFSR operon and the rhlE gene, which altogether are involved in the control of sensitivity to cefoperazone and chloramphenicol. We thus propose to rename YbiH as CecR (regulator of cefoperazone and chloramphenicol sensitivity).

  10. Impacts of climate change on nutrient cycling in semi-arid and arid ecosystems

    SciTech Connect

    Belnap, J.

    1995-09-01

    Effective precipitation is a major factor in determining nutrient pathways in different ecosystems. Soil flora and fauna play a critical role in nutrient cycles of all ecosystems. Temperature, timing, and amounts of precipitation affect population composition, activity levels, biomass, and recovery rates from disturbance. Changes in these variables can result in very different inputs and outputs for different nutrients. As a result, areas with less effective precipitation have very different nutrient cycles than more mesic zones. Climate change, therefore, can profoundly affect the nutrient cycles of ecosystems. Nitrogen cycles may be especially sensitive to changes in temperature and to timing and amounts of precipitation. Rainfall contains varying amounts of nitrogen compounds. Changes in amounts of rainfall will change amounts of nitrogen available to these systems. Because rainfall is limited in semi-arid and regions, these systems tend to be more dependent on microbial populations for nitrogen input. Consequently, understanding the effects of climate change on these organisms is critical in understanding the overall effect on ecosystems.

  11. Future directions of ecosystem science

    USGS Publications Warehouse

    Baron, Jill; Galvin, Kathleen A.

    1990-01-01

    Scientific knowledge about ecosystem structure and function has expanded greatly during the past few decades. Terrestrial and aquatic nutrient cycling, ecosystem energetics, population dynamics, belowground processes, and food webs have been studied at the plot, stand, watershed, and landscape levels at many locations around the globe. Ideas about terrestrial-atmospheric interactions and human interference in these processes have changed dramatically. There is new appreciation of the need to incorporate into ecosystem studies the interactions between human populations and the ecosystem, not only because humans affect ecosystem processes, but because these systems support human populations (Glantz 1988, Holden 1988, Parry et al. 1988, WCED 1987). Recent advances in ecosystem science are due, in part, to technological improvements in computing power, new laboratory and field physical and chemical analytical techniques, and satellite imagery for remote sensing of Earth's structure and dynamics. Modeling and geographic information systems have provided the capability for integrating multiple data sets with process simulations to generate hypotheses about regional ecosystem function. Concurrent with these scientific developments has been a growing concern about the links between the health of the environment and world-wide industrial, land, and resource-management practices. Environmental damage at the local level was widely recognized in the 1960s, prompting the environmental movement of that decade. Regional environmental problems with multiple effects and politically difficult solutions have been perceived more recently; the issue of acidic deposition provides an example of such a second-generation concern (Clark and Holling 1985). Today there is a growing awareness of global-scale environmental degradation brought about by the combined actions of all peoples on Earth (Clark 1989, Woodmansee et al. 1988). The three levels of environmental concern--local, regional

  12. Enhancing the strain sensitivity of CoFe₂O₄ at low magnetic fields without affecting the magnetostriction coefficient by substitution of small amounts of Mg for Fe.

    PubMed

    Anantharamaiah, P N; Joy, P A

    2016-04-21

    Attaining high magnetostrictive strain sensitivity (dλ/dH) with high magnetostriction strain (λ) is desirable for sintered polycrystalline cobalt ferrite for various applications. It is shown that substitution of a small amount of Fe(3+) by Mg(2+) in CoMgxFe2-xO4 (x < 0.1) gives a comparable maximum magnetostriction coefficient to that of the unsubstituted counterpart, with large improvement in the strain sensitivity at relatively low magnetic fields. A large increase in the magnetostriction coefficient is obtained at low magnetic fields for the substituted compositions. The magnetostriction parameters are further enhanced by magnetic field annealing of the sintered products. The results are analyzed based on powder XRD, Raman spectroscopy, XPS and magnetic measurements and based on the results from these studies, the changes in the magnetostriction parameters are correlated with the changes in the cation distribution, magnetic anisotropy and microstructure.

  13. Factors affecting the effects of EDU on growth and yield of field-grown bush beans (Phaseolus vulgaris L.), with varying degrees of sensitivity to ozone.

    PubMed

    Elagöz, Vahram; Manning, William J

    2005-08-01

    The effects of foliar applications of ethylenediurea (EDU) on responses to ozone by field-grown bush bean (Phaseolus vulgaris L.) lines 'S156' (O(3)-sensitive) and 'R123' (O(3)-tolerant), and cultivars 'BBL 290' (O(3)-sensitive) and 'BBL 274' (O(3)-tolerant) were investigated during the 2001 and 2002 growing seasons. EDU was applied weekly to designated plants between primary leaf expansion and pod senescence. Results were compared with control plants at harvests made at pod maturation and pod senescence. In 2001, average hourly ambient O(3) concentrations ranged between 41 and 59 ppb for a total of 303 h; in 2002, for 355 h. EDU applications prior to pod maturation significantly increased the number of marketable pods in 'R123', but not for the other cultivars. Harvests at pod senescence showed significant improvements in crop yield production in EDU-treated 'S156' plants, whereas for EDU-treated 'R123' plants significant reductions were determined in above-ground biomass and seed production. In contrast, results from 'BBL 290' and 'BBL 274' at both harvest points were inconclusive. Growth and reproductive responses of O(3)-sensitive and O(3)-tolerant bush bean plants to EDU applications varied, depending on developmental stages, duration of EDU applications, and fluctuations in ambient O(3).

  14. Ecohydrology frameworks for green infrastructure design and ecosystem service provision

    NASA Astrophysics Data System (ADS)

    Pavao-Zuckerman, M.; Knerl, A.; Barron-Gafford, G.

    2014-12-01

    Urbanization is a dominant form of landscape change that affects the structure and function of ecosystems and alters control points in biogeochemical and hydrologic cycles. Green infrastructure (GI) has been proposed as a solution to many urban environmental challenges and may be a way to manage biogeochemical control points. Despite this promise, there has been relatively limited empirical focus to evaluate the efficacy of GI, relationships between design and function, and the ability of GI to provide ecosystem services in cities. This work has been driven by goals of adapting GI approaches to dryland cities and to harvest rain and storm water for providing ecosystem services related to storm water management and urban heat island mitigation, as well as other co-benefits. We will present a modification of ecohydrologic theory for guiding the design and function of green infrastructure for dryland systems that highlights how GI functions in context of Trigger - Transfer - Reserve - Pulse (TTRP) dynamic framework. Here we also apply this TTRP framework to observations of established street-scape green infrastructure in Tucson, AZ, and an experimental installation of green infrastructure basins on the campus of Biosphere 2 (Oracle, AZ) where we have been measuring plant performance and soil biogeochemical functions. We found variable sensitivity of microbial activity, soil respiration, N-mineralization, photosynthesis and respiration that was mediated both by elements of basin design (soil texture and composition, choice of surface mulches) and antecedent precipitation inputs and soil moisture conditions. The adapted TTRP framework and field studies suggest that there are strong connections between design and function that have implications for stormwater management and ecosystem service provision in dryland cities.

  15. Sensitivities of extant animal taxa to ocean acidification

    NASA Astrophysics Data System (ADS)

    Wittmann, Astrid C.; Pörtner, Hans-O.

    2013-11-01

    Anthropogenic CO2 emitted to the atmosphere is absorbed by the oceans, causing a progressive increase in ocean inorganic carbon concentrations and resulting in decreased water pH and calcium carbonate saturation. This phenomenon, called ocean acidification, is in addition to the warming effects of CO2 emissions. Ocean acidification has been reported to affect ocean biota, but the severity of this threat to ocean ecosystems (and humans depending on these ecosystems) is poorly understood. Here we evaluate the scale of this threat in the context of widely used representative concentration pathways (RCPs) by analysing the sensitivities of five animal taxa (corals, echinoderms, molluscs, crustaceans and fishes) to a wide range of CO2 concentrations. Corals, echinoderms and molluscs are more sensitive to RCP8.5 (936 ppm in 2100) than are crustaceans. Larval fishes may be even more sensitive than the lower invertebrates, but taxon sensitivity on evolutionary timescales remains obscure. The variety of responses within and between taxa, together with observations in mesocosms and palaeo-analogues, suggest that ocean acidification is a driver for substantial change in ocean ecosystems this century, potentially leading to long-term shifts in species composition.

  16. Warming alters the metabolic balance of ecosystems.

    PubMed

    Yvon-Durocher, Gabriel; Jones, J Iwan; Trimmer, Mark; Woodward, Guy; Montoya, Jose M

    2010-07-12

    The carbon cycle modulates climate change, via the regulation of atmospheric CO(2), and it represents one of the most important services provided by ecosystems. However, considerable uncertainties remain concerning potential feedback between the biota and the climate. In particular, it is unclear how global warming will affect the metabolic balance between the photosynthetic fixation and respiratory release of CO(2) at the ecosystem scale. Here, we present a combination of experimental field data from freshwater mesocosms, and theoretical predictions derived from the metabolic theory of ecology to investigate whether warming will alter the capacity of ecosystems to absorb CO(2). Our manipulative experiment simulated the temperature increases predicted for the end of the century and revealed that ecosystem respiration increased at a faster rate than primary production, reducing carbon sequestration by 13 per cent. These results confirmed our theoretical predictions based on the differential activation energies of these two processes. Using only the activation energies for whole ecosystem photosynthesis and respiration we provide a theoretical prediction that accurately quantified the precise magnitude of the reduction in carbon sequestration observed experimentally. We suggest the combination of whole-ecosystem manipulative experiments and ecological theory is one of the most promising and fruitful research areas to predict the impacts of climate change on key ecosystem services.

  17. The ecosystem and evolutionary contexts of allelopathy.

    PubMed

    Inderjit; Wardle, David A; Karban, Richard; Callaway, Ragan M

    2011-12-01

    Plants can release chemicals into the environment that suppress the growth and establishment of other plants in their vicinity: a process known as 'allelopathy'. However, chemicals with allelopathic functions have other ecological roles, such as plant defense, nutrient chelation, and regulation of soil biota in ways that affect decomposition and soil fertility. These ecosystem-scale roles of allelopathic chemicals can augment, attenuate or modify their community-scale functions. In this review we explore allelopathy in the context of ecosystem properties, and through its role in exotic invasions consider how evolution might affect the intensity and importance of allelopathic interactions.

  18. Evaluating the Spatial Distribution of Toxic Air Contaminants in Multiple Ecosystem Indicators in the Sierra Nevada-Southern Cascades

    NASA Astrophysics Data System (ADS)

    Nanus, L.; Simonich, S. L.; Rocchio, J.; Flanagan, C.

    2013-12-01

    Toxic air contaminants originating from agricultural areas of the Central Valley in California threaten vulnerable sensitive receptors including surface water, vegetation, snow, sediments, fish, and amphibians in the Sierra Nevada-Southern Cascades region. The spatial distribution of toxic air contaminants in different ecosystem indicators depends on variation in atmospheric concentrations and deposition, and variation in air toxics accumulation in ecosystems. The spatial distribution of organic air toxics and mercury at over 330 unique sampling locations and sample types over two decades (1990-2009) in the Sierra Nevada-Southern Cascades region were compiled and maps were developed to further understand spatial patterns and linkages between air toxics deposition and ecological effects. Potential ecosystem impacts in the Sierra Nevada-Southern Cascades region include bioaccumulation of air toxics in both aquatic and terrestrial ecosystems, reproductive disruption, and immune suppression. The most sensitive ecological end points in the region that are affected by bioaccumulation of toxic air contaminants are fish. Mercury was detected in all fish and approximately 6% exceeded human consumption thresholds. Organic air toxics were also detected in fish yielding variable spatial patterns. For amphibians, which are sensitive to pesticide exposure and potential immune suppression, increasing trends in current and historic use pesticides are observed from north to south across the region. In other indicators, such as vegetation, pesticide concentrations in lichen increase with increasing elevation. Current and historic use pesticides and mercury were also observed in snowpack at high elevations in the study area. This study shows spatial patterns in toxic air contaminants, evaluates associated risks to sensitive receptors, and identifies data gaps. Future research on atmospheric modeling and information on sources is needed in order to predict which ecosystems are the

  19. SAFRR Tsunami Scenario. Preparedness and Resilience for California's ecosystems, natural resources, and the communities that depend on them

    NASA Astrophysics Data System (ADS)

    Brosnan, D. M.

    2013-12-01

    The SAFRR Tsunami Scenario models a plausible 9.1MP earthquake occuring off the Alaskan coast, that generates a tsunami forecast to strike California between 4-6 hour after the event. California's diverse ecosystems, natural resources, and sensitive species will be significantly affected. Although often overlooked in disaster risk reduction, damage to ecosystems and natural resources during hazards including tsunamis, has often resulted in serious impacts to natural systems and on humans who depend on them. SAFRR tsunami scenario forecasts of wave amplitude, water velocity and inundation and overlain on GIS maps were analyzed to identify plausible impacts on California's ecosystems including beaches, marshes, nearshore subtidal habitats, as well as parks and reserves. The effect on natural resources including fisheries was evaluated. Recovery times and consequences were analyzed. The results illustrate the value and vulnerability of these resources and guidelines for preparation and mitigation are discussed.

  20. Insulin secretion and sensitivity in healthy adults with low vitamin D are not affected by high-dose ergocalciferol administration: a randomized controlled trial12

    PubMed Central

    Mitchell, Deborah M; Leder, Benjamin Z; Cagliero, Enrico; Mendoza, Natalia; Henao, Maria P; Hayden, Douglas L; Finkelstein, Joel S; Burnett-Bowie, Sherri-Ann M

    2015-01-01

    Background: Epidemiologic data suggest that low serum 25-hydroxyvitamin D [25(OH)D] increases insulin resistance and the risk of type 2 diabetes. Few interventional trials have assessed the effect of vitamin D on insulin metabolism, and published results are discordant. Objective: The goal of this study was to perform a detailed assessment of the effect of ergocalciferol administration on glucose and insulin metabolism in healthy people with low total 25(OH)Dtotal. Design: This was a 12-wk, double-blinded, randomized controlled trial. We enrolled 90 healthy volunteers aged 18–45 y with serum 25(OH)D ≤20 ng/mL (by immunoassay) and administered 50,000 IU ergocalciferol/wk or placebo for 12 wk. Primary endpoints were change in first-phase insulin response and insulin sensitivity as measured by intravenous glucose tolerance test. Secondary endpoints included change in homeostasis model assessment of insulin resistance; fasting glucose, insulin, and lipids; body mass index (BMI); and blood pressure. Results: On-study 25(OH)Dtotal was assessed by liquid chromatography–tandem mass spectrometry. In the treated group, 25(OH)Dtotal rose from 18 ± 7 to 43 ± 12 ng/mL (P < 0.001) with no change in the placebo group. Despite this increase, at 12 wk, there were no between-group differences in either insulin response or insulin sensitivity; nor were there differences in any measured secondary endpoints. There was no evidence of effect modification by sex, race, glucose tolerance status, baseline 25(OH)Dtotal, or BMI. Conclusion: In healthy persons with low 25(OH)Dtotal, ergocalciferol administration for 12 wk normalizes 25(OH)Dtotal but does not improve insulin secretion, insulin sensitivity, or other markers of metabolic health. This trial was registered at clinicaltrials.gov as NCT00491322. PMID:26156733

  1. Sensitivity of mesquite shrubland CO2 exchange to precipitation in contrasting landscape settings.

    PubMed

    Potts, Daniel L; Scott, Russell L; Cable, Jessica M; Huxman, Travis E; Williams, David G

    2008-10-01

    In semiarid ecosystems, physiography (landscape setting) may interact with woody-plant and soil microbe communities to constrain seasonal exchanges of material and energy at the ecosystem scale. In an upland and riparian shrubland, we examined the seasonally dynamic linkage between ecosystem CO2 exchange, woody-plant water status and photosynthesis, and soil respiration responses to summer rainfall. At each site, we compared tower-based measurements of net ecosystem CO2 exchange (NEE) with ecophysiological measurements among velvet mesquite (Prosopis velutina Woot.) in three size classes and soil respiration in sub-canopy and inter-canopy micro-sites. Monsoonal rainfall influenced a greater shift in the magnitude of ecosystem CO2 assimilation in the upland shrubland than in the riparian shrubland. Mesquite water status and photosynthetic gas exchange were closely linked to the onset of the North American monsoon in the upland shrubland. In contrast, the presence of shallow alluvial groundwater in the riparian shrubland caused larger size classes of mesquite to be physiologically insensitive to monsoonal rains. In both shrublands, soil respiration was greatest beneath mesquite canopies and was coupled to shallow soil moisture abundance. Physiography, through its constraint on the physiological sensitivity of deeply rooted woody plants, may interact with plant-mediated rates of soil respiration to affect the sensitivity of semiarid-ecosystem carbon exchange in response to episodic rainfall.

  2. Ecosystems, Teacher's Guide.

    ERIC Educational Resources Information Center

    California Univ., Berkeley. Science Curriculum Improvement Study.

    The Science Curriculum Improvement Study has developed this teacher's guide to "Ecosystems," the sixth part of a six unit life science curriculum sequence. The six basic units, emphasizing organism-environment interactions, are organisms, life cycles, populations, environments, communities, and ecosystems. They make use of scientific and…

  3. [Complexity of land ecosystem].

    PubMed

    Wu, Cifang; Chen, Meiqiu

    2002-06-01

    In recent years, complexity studies has become a new research region and been widely applied in engineering, biology, economy, management, military, police and sociology. In this paper, from the view of complex science, the main complexity characteristics of land ecosystem were described, furthermore, the application of fractal, chaos, and artificial neural network on the complexity of land ecosystem were also discussed.

  4. The Library as Ecosystem

    ERIC Educational Resources Information Center

    Walter, Scott

    2008-01-01

    Ecology is the study of interactions between organisms and their environment, and the academic library could be considered to be an ecosystem, i.e., a "biological organization" in which multiple species must interact, both with one another and with their environment. The metaphor of the library as ecosystem is flexible enough to be applied not…

  5. Optimal advanced credit releases in ecosystem service markets.

    PubMed

    BenDor, Todd K; Guo, Tianshu; Yates, Andrew J

    2014-03-01

    Ecosystem service markets are popular policy tools for ecosystem protection. Advanced credit releases are an important factor affecting the supply side of ecosystem markets. Under an advanced credit release policy, regulators give ecosystem suppliers a fraction of the total ecosystem credits generated by a restoration project before it is verified that the project actually achieves the required ecological thresholds. In spite of their prominent role in ecosystem markets, there is virtually no regulatory or research literature on the proper design of advanced credit release policies. Using U.S. aquatic ecosystem markets as an example, we develop a principal-agent model of the behavior of regulators and wetland/stream mitigation bankers to determine and explore the optimal degree of advance credit release. The model highlights the tension between regulators' desire to induce market participation, while at the same time ensuring that bankers successfully complete ecological restoration. Our findings suggest several simple guidelines for strengthening advanced credit release policy.

  6. Optimal Advanced Credit Releases in Ecosystem Service Markets

    NASA Astrophysics Data System (ADS)

    BenDor, Todd K.; Guo, Tianshu; Yates, Andrew J.

    2014-03-01

    Ecosystem service markets are popular policy tools for ecosystem protection. Advanced credit releases are an important factor affecting the supply side of ecosystem markets. Under an advanced credit release policy, regulators give ecosystem suppliers a fraction of the total ecosystem credits generated by a restoration project before it is verified that the project actually achieves the required ecological thresholds. In spite of their prominent role in ecosystem markets, there is virtually no regulatory or research literature on the proper design of advanced credit release policies. Using U.S. aquatic ecosystem markets as an example, we develop a principal-agent model of the behavior of regulators and wetland/stream mitigation bankers to determine and explore the optimal degree of advance credit release. The model highlights the tension between regulators' desire to induce market participation, while at the same time ensuring that bankers successfully complete ecological restoration. Our findings suggest several simple guidelines for strengthening advanced credit release policy.

  7. ELF magnetic fields tuned to ion parametric resonance conditions do not affect TEA-sensitive voltage-dependent outward K(+) currents in a human neural cell line.

    PubMed

    Gavoçi, Entelë; Zironi, Isabella; Remondini, Daniel; Virelli, Angela; Castellani, Gastone; Del Re, Brunella; Giorgi, Gianfranco; Aicardi, Giorgio; Bersani, Ferdinando

    2013-12-01

    Despite the experimental evidence of significant biological effects of extremely low frequency (ELF) magnetic fields (MFs), the underlying mechanisms are still unclear. Among the few mechanisms proposed, of particular interest is the so called "ion parametric resonance (IPR)" hypothesis, frequently referred to as theoretical support for medical applications. We studied the effect of different combinations of static (DC) and alternating (AC) ELF MFs tuned on resonance conditions for potassium (K(+)) on TEA-sensitive voltage-dependent outward K(+) currents in the human neuroblastoma BE(2)C cell line. Currents through the cell membrane were measured by whole-cell patch clamp before, during, and after exposure to MF. No significant changes in K(+) current density were found. This study does not confirm the IPR hypothesis at the level of TEA-sensitive voltage-dependent outward K(+) currents in our experimental conditions. However, this is not a direct disprove of the hypothesis, which should be investigated on other ion channels and at single channel levels also.

  8. Factors Affecting the Performance of Champion Silyl-Anchor Carbazole Dye Revealed in the Femtosecond to Second Studies of Complete ADEKA-1 Sensitized Solar Cells.

    PubMed

    Sobuś, Jan; Gierczyk, Błażej; Burdziński, Gotard; Jancelewicz, Mariusz; Polanski, Enrico; Hagfeldt, Anders; Ziółek, Marcin

    2016-10-24

    Record laboratory efficiencies of dye-sensitized solar cells have been recently reported using an alkoxysilyl-anchor dye, ADEKA-1 (over 14 %). In this work we use time-resolved techniques to study the impact of key preparation factors (dye synthesis route, addition of co-adsorbent, use of cobalt-based electrolytes of different redox potential, creation of insulating Al2 O3 layers and molecule capping passivation of the electrode) on the partial charge separation efficiencies in ADEKA-1 solar cells. We have observed that unwanted fast recombination of electrons from titania to the dye, probably associated with the orientation of the dyes on the titania surface, plays a crucial role in the performance of the cells. This recombination, taking place on the sub-ns and ns time scales, is suppressed in the optimized dye synthesis methods and upon addition of the co-adsorbent. Capping treatment significantly reduces the charge recombination between titania and electrolyte, improving the electron lifetime from tens of ms to hundreds of ms, or even to single seconds. Similar increase in electron lifetime is observed for homogenous Al2 O3 over-layers on titania nanoparticles, however, in this case the total solar cells photocurrent is decreased due to smaller electron injection yield from the dye. Our studies should be important for a broader use of very promising silyl-anchor dyes and the further optimization and development of dye-sensitized solar cells.

  9. Insulin-like Growth Factor 1 Differentially Affects Lithium Sensitivity of Lymphoblastoid Cell Lines from Lithium Responder and Non-responder Bipolar Disorder Patients.

    PubMed

    Milanesi, Elena; Hadar, Adva; Maffioletti, Elisabetta; Werner, Haim; Shomron, Noam; Gennarelli, Massimo; Schulze, Thomas G; Costa, Marta; Del Zompo, Maria; Squassina, Alessio; Gurwitz, David

    2015-07-01

    Bipolar disorder (BD) is a chronic psychiatric illness with an unknown etiology. Lithium is considered the cornerstone in the management of BD, though about 50-60 % of patients do not respond sufficiently to chronic treatment. Insulin-like growth factor 1 (IGF1) has been identified as a candidate gene for BD susceptibility, and its low expression has been suggested as a putative biomarker for lithium unresponsiveness. In this study, we examined the in vitro effects of insulin-like growth factor 1 (IGF-1) on lithium sensitivity in lymphoblastoid cell lines (LCLs) from lithium responder (R) and non-responder (NR) bipolar patients. Moreover, we evaluated levels of microRNA let-7c, a small RNA predicted to target IGF1. We found that exogenous IGF-1 added to serum-free media increased lithium sensitivity selectively in LCLs from NR BD patients. However, no significant differences were observed when comparing let-7c expression in LCLs from R vs. NR BD patients. Our data support a key role for IGF-1 in lithium resistance/response in the treatment of bipolar disorder.

  10. Cloning and insertional inactivation of the dye (sfrA) gene, mutation of which affects sex factor F expression and dye sensitivity of Escherichia coli K-12.

    PubMed Central

    Buxton, R S; Drury, L S

    1983-01-01

    Deletions of the Escherichia coli K-12 chromosome between trpR and thr render the bacterium sensitive to the dye toluidine blue (Dye-), and if male (Hfr or F'), the strain is sterile (Fex-), failing to donate F' or chromosomal markers and resistant to male-specific phages as a consequence of its inability to elaborate F pili. A 6-kilobase SalI fragment of E. coli chromosomal DNA cloned into the plasmid pBR322 has been shown to complement both the Dye- and Fex- phenotypes. Insertion of the transposon gamma delta (Tn1000) into a specific part of this plasmid invariably results in both the Dye- and Fex- phenotypes, indicating that these phenotypes derive from mutation in a single gene. Complementation tests between such insertions and sfrA4, a previously isolated mutation resulting in a Fex- phenotype and reported to code for a transcriptional control factor for F (L. Beutin, P. A. Manning, M. Achtman, and N. Willetts, J. Bacteriol. 145:840-844, 1981), indicated that dye and sfrA4 were mutations in a single cistron. It is proposed that the dye (sfrA) gene product is necessary not only for efficient transcription of the F factor genes, but also for some component(s) of the bacterial envelope, loss of which results in sensitivity to toluidine blue. PMID:6304010

  11. Orexin-A affects gastric distention sensitive neurons in the hippocampus and gastric motility and regulation by the perifornical area in rats.

    PubMed

    Sun, Shu; Xu, Luo; Sun, Xiangrong; Guo, Feifei; Gong, Yanling; Gao, Shengli

    2016-09-01

    Orexin-A is mainly produced in the lateral hypothalamus (LHA) and the perifornical area (PeF). Here, we aim to elucidate the effects of orexin-A in the hippocampus (Hi) on gastric distention (GD)-sensitive neurons and gastric motility, and potential regulation mechanisms by the PeF. Retrograde tracing and fluorescent-immunohistochemical staining were used to determine orexin-A neuronal projections. Single unit discharges in the Hi were recorded extracellularly and gastric motility in conscious rats was monitored during administration of orexin-A to the Hi or electrical stimulation of the PeF. Orexin-A administration to the Hi excited most of the GD-excitatory (GD-E) neurons and GD-inhibitory (GD-I) neurons, and increased gastric motility in a dose-dependent manner. All of effects induced by orexin-A could be partly blocked by pretreatment with orexin-A antagonist, SB-334867. Electrical stimulation of the PeF excited the majority of the orexin-A-responsive GD neurons in the Hi and promoted gastric motility. Additionally, pretreatment with SB-334867 in the Hi increased the firing rate of GDI and GDE neurons following electrical stimulation of the PeF. These findings suggest that orexin-A could regulate activities of GD-sensitive neurons and gastric motility. Furthermore, the PeF may be involved in this regulatory pathway.

  12. Risks of large-scale use of systemic insecticides to ecosystem functioning and services.

    PubMed

    Chagnon, Madeleine; Kreutzweiser, David; Mitchell, Edward A D; Morrissey, Christy A; Noome, Dominique A; Van der Sluijs, Jeroen P

    2015-01-01

    Large-scale use of the persistent and potent neonicotinoid and fipronil insecticides has raised concerns about risks to ecosystem functions provided by a wide range of species and environments affected by these insecticides. The concept of ecosystem services is widely used in decision making in the context of valuing the service potentials, benefits, and use values that well-functioning ecosystems provide to humans and the biosphere and, as an endpoint (value to be protected), in ecological risk assessment of chemicals. Neonicotinoid insecticides are frequently detected in soil and water and are also found in air, as dust particles during sowing of crops and aerosols during spraying. These environmental media provide essential resources to support biodiversity, but are known to be threatened by long-term or repeated contamination by neonicotinoids and fipronil. We review the state of knowledge regarding the potential impacts of these insecticides on ecosystem functioning and services provided by terrestrial and aquatic ecosystems including soil and freshwater functions, fisheries, biological pest control, and pollination services. Empirical studies examining the specific impacts of neonicotinoids and fipronil to ecosystem services have focused largely on the negative impacts to beneficial insect species (honeybees) and the impact on pollination service of food crops. However, here we document broader evidence of the effects on ecosystem functions regulating soil and water quality, pest control, pollination, ecosystem resilience, and community diversity. In particular, microbes, invertebrates, and fish play critical roles as decomposers, pollinators, consumers, and predators, which collectively maintain healthy communities and ecosystem integrity. Several examples in this review demonstrate evidence of the negative impacts of systemic insecticides on decomposition, nutrient cycling, soil respiration, and invertebrate populations valued by humans. Invertebrates

  13. Effects on the function of Arctic ecosystems in the short- and long-term perspectives.

    PubMed

    Callaghan, Terry V; Björn, Lars Olof; Chernov, Yuri; Chapin, Terry; Christensen, Torben R; Huntley, Brian; Ims, Rolf A; Johansson, Margareta; Jolly, Dyanna; Jonasson, Sven; Matveyeva, Nadya; Panikov, Nicolai; Oechel, Walter; Shaver, Gus

    2004-11-01

    Historically, the function of Arctic ecosystems in terms of cycles of nutrients and carbon has led to low levels of primary production and exchanges of energy, water and greenhouse gases have led to low local and regional cooling. Sequestration of carbon from atmospheric CO2, in extensive, cold organic soils and the high albedo from low, snow-covered vegetation have had impacts on regional climate. However, many aspects of the functioning of Arctic ecosystems are sensitive to changes in climate and its impacts on biodiversity. The current Arctic climate results in slow rates of organic matter decomposition. Arctic ecosystems therefore tend to accumulate organic matter and elements despite low inputs. As a result, soil-available elements like nitrogen and phosphorus are key limitations to increases in carbon fixation and further biomass and organic matter accumulation. Climate warming is expected to increase carbon and element turnover, particularly in soils, which may lead to initial losses of elements but eventual, slow recovery. Individual species and species diversity have clear impacts on element inputs and retention in Arctic ecosystems. Effects of increased CO2 and UV-B on whole ecosystems, on the other hand, are likely to be small although effects on plant tissue chemisty, decomposition and nitrogen fixation may become important in the long-term. Cycling of carbon in trace gas form is mainly as CO2 and CH4. Most carbon loss is in the form of CO2, produced by both plants and soil biota. Carbon emissions as methane from wet and moist tundra ecosystems are about 5% of emissions as CO2 and are responsive to warming in the absence of any other changes. Winter processes and vegetation type also affect CH4 emissions as well as exchanges of energy between biosphere and atmosphere. Arctic ecosystems exhibit the largest seasonal changes in energy exchange of any terrestrial ecosystem because of the large changes in albedo from late winter, when snow reflects most

  14. Quantitative Models for Ecosystem Assessment in Narragansett Bay: Response to Nutrient Loading and Other Stressors

    EPA Science Inventory

    Multiple drivers, including nutrient loading and climate change, affect the Narragansett Bay ecosystem. Managers are interested in understanding the timing and magnitude of these effects, as well as ecosystem responses to restoration actions, such as the capacity and potential fo...

  15. Anthropogenic pollutants: a threat to ecosystem sustainability?

    PubMed Central

    Rhind, S. M.

    2009-01-01

    Pollutants, including synthetic organic materials and heavy metals, are known to adversely affect physiological systems in all animal species studied to date. While many individual chemicals can perturb normal functions, the combined actions of multiple pollutants are of particular concern because they can exert effects even when each individual chemical is present at concentrations too low to be individually effective. The biological effects of pollutants differ greatly between species reflecting differences in the pattern of exposure, routes of uptake, metabolism following uptake, rates of accumulation and sensitivity of the target organs. Thus, understanding of the effects of pollutants on wildlife and ecosystems will require detailed study of many different species, representing a wide range of taxa. However, such studies can be informed by knowledge obtained in more controlled conditions which may indicate likely mechanisms of action and suitable endpoint measurements. Responses may be exacerbated by interactions between the effects of pollutants and environmental stressors, such as under-nutrition or osmotic stresses and so changes in such variables associated with climatic changes may exacerbate physiological responses to pollutant burdens. PMID:19833650

  16. Environmental Impacts of the Use of Ecosystem Services: Case Study of Birdwatching

    NASA Astrophysics Data System (ADS)

    Kronenberg, Jakub

    2014-09-01

    The main reason for promoting the concept of ecosystem services lies in its potential to contribute to environmental conservation. Highlighting the benefits derived from ecosystems fosters an understanding of humans' dependence on nature, as users of ecosystem services. However, the act of using ecosystem services may not be environmentally neutral. As with the use of products and services generated within an economy, the use of ecosystem services may lead to unintended environmental consequences throughout the `ecosystem services supply chain.' This article puts forward a framework for analyzing environmental impacts related to the use of ecosystem services, indicating five categories of impact: (1) direct impacts (directly limiting the service's future availability); and four categories of indirect impacts, i.e., on broader ecosystem structures and processes, which can ultimately also affect the initial service: (2) impacts related to managing ecosystems to maximize the delivery of selected services (affecting ecosystems' capacity to provide other services); (3) impacts associated with accessing ecosystems to use their services (affecting other ecosystem components); (4) additional consumption of products, infrastructure or services required to use a selected ecosystem service, and their life-cycle environmental impacts; and (5) broader impacts on the society as a whole (environmental awareness of ecosystem service users and other stakeholders). To test the usefulness of this framework, the article uses the case study of birdwatching, which demonstrates all of the above categories of impacts. The article justifies the need for a broader consideration of environmental impacts related to the use of ecosystem services.

  17. Disruption of the copper efflux pump (CopA) of Serratia marcescens ATCC 274 pleiotropically affects copper sensitivity and production of the tripyrrole secondary metabolite, prodigiosin.

    PubMed

    Williamson, N R; Simonsen, H T; Harris, A K P; Leeper, F J; Salmond, George P C

    2006-02-01

    The prodigiosin biosynthetic gene cluster (pig cluster) of Serratia marcescens ATCC 274 (Sma 274) is flanked by cueR/copA homologues. Inactivation of the copA homologue resulted in an increased sensitivity to copper, confirming that CopA is involved in copper homeostasis in Sma 274. The effect of copper on the biosynthesis of prodigiosin in Sma 274 and the copA mutant strain was investigated. Increased levels of copper were found to reduce prodigiosin production in the wild type Sma 274, but increase production in the copA mutant strain. The physiological implications for CopA mediated prodigiosin production are discussed. We also demonstrate that the gene products of pigB-pigE of Sma 274 are sufficient for the biosynthesis of 2-methyl-3-n-amyl-pyrrole and condensation with 4-methoxy-2,2'-bipyrrole-5-carboxyaldehyde to form prodigiosin, as we have shown for Serratia sp. ATCC 39006.

  18. Use of dimedone-based chemical probes for sulfenic acid detection evaluation of conditions affecting probe incorporation into redox-sensitive proteins.

    PubMed

    Klomsiri, Chananat; Nelson, Kimberly J; Bechtold, Erika; Soito, Laura; Johnson, Lynnette C; Lowther, W Todd; Ryu, Seong-Eon; King, S Bruce; Furdui, Cristina M; Poole, Leslie B

    2010-01-01

    Sulfenic acids, formed as transient intermediates during the reaction of cysteine residues with peroxides, play significant roles in enzyme catalysis and regulation, and are also involved in the redox regulation of transcription factors and other signaling proteins. Therefore, interest in the identification of protein sulfenic acids has grown substantially in the past few years. Dimedone, which specifically traps sulfenic acids, has provided the basis for the synthesis of a novel group of compounds that derivatize 1,3-cyclohexadione, a dimedone analogue, with reporter tags such as biotin for affinity capture and fluorescent labels for visual detection. These reagents allow identification of the cysteine sites and proteins that are sensitive to oxidation and permit identification of the cellular conditions under which such oxidations occur. We have shown that these compounds are reactive and specific toward sulfenic acids and that the labeled proteins can be detected at high sensitivity using gel analysis or mass spectrometry. Here, we further characterize these reagents, showing that the DCP-Bio1 incorporation rates into three sulfenic acid containing proteins, papaya papain, Escherichia coli fRMsr, and the Salmonella typhimurium peroxiredoxin AhpC, are significantly different and, in the case of fRMsr, are unaffected by changes in buffer pH from 5.5 and 8.0. We also provide protocols to label protein sulfenic acids in cellular proteins, either by in situ labeling of intact cells or by labeling at the time of lysis. We show that the addition of alkylating reagents and catalase to the lysis buffer is critical in preventing the formation of sulfenic acid subsequent to cell lysis. Data presented herein also indicate that the need to standardize, as much as possible, the protein and reagent concentrations during labeling. Finally, we introduce several new test or control proteins that can be used to evaluate labeling procedures and efficiencies.

  19. Availability of N-Methyl-d-Aspartate Receptor Coagonists Affects Cocaine-Induced Conditioned Place Preference and Locomotor Sensitization: Implications for Comorbid Schizophrenia and Substance Abuse.

    PubMed

    Puhl, Matthew D; Berg, Alexandra R; Bechtholt, Anita J; Coyle, Joseph T

    2015-06-01

    Schizophrenia is associated with high prevalence of substance abuse. Recent research suggests that dysregulation of N-methyl-d-aspartate receptor (NMDAR) function may play a role in the pathophysiology of both schizophrenia and drug addiction, and thus, may account for this high comorbidity. Our laboratory has developed two transgenic mouse lines that exhibit contrasting NMDAR activity based on the availability of the glycine modulatory site (GMS) agonists d-serine and glycine. Glycine transporter 1 knockdowns (GlyT1(+/-)) exhibit NMDAR hyperfunction, whereas serine racemase knockouts (SR(-/-)) exhibit NMDAR hypofunction. We characterized the behavior of these lines in a cocaine-induced (20 mg/kg) conditioned place preference (CPP) and locomotor sensitization paradigm. Compared with wild-type mice, GlyT1(+/-) mice displayed hastened extinction of CPP and robust cocaine-induced reinstatement. SR(-/-) mice appeared to immediately "forget" the learned preference, because they did not exhibit cocaine-induced reinstatement and also displayed attenuated locomotor sensitization. Treatment of GlyT1(+/-) mice with gavestinel (10 mg/kg on day 1; 5 mg/kg on days 2-17), a GMS antagonist, attenuated cocaine-induced CPP and caused them to immediately "forget" the learned preference. Treatment of SR(-/-) mice with d-serine (300 mg/kg on day 1; 150 mg/kg on days 2-17) to normalize brain levels caused them to avoid the cocaine-paired side of the chamber during extinction. These results highlight NMDAR dysfunction as a possible neural mechanism underlying comorbid schizophrenia and substance abuse. Also, these findings suggest drugs that directly or indirectly activate the NMDAR GMS could be an effective treatment of cocaine abuse.

  20. A single night of partial sleep loss impairs fasting insulin sensitivity but does not affect cephalic phase insulin release in young men.

    PubMed

    Cedernaes, Jonathan; Lampola, Lauri; Axelsson, Emil K; Liethof, Lisanne; Hassanzadeh, Sara; Yeganeh, Adine; Broman, Jan-Erik; Schiöth, Helgi B; Benedict, Christian

    2016-02-01

    The present study sought to investigate whether a single night of partial sleep deprivation (PSD) would alter fasting insulin sensitivity and cephalic phase insulin release (CPIR) in humans. A rise in circulating insulin in response to food-related sensory stimulation may prepare tissues to break down ingested glucose, e.g. by stimulating rate-limiting glycolytic enzymes. In addition, given insulin's anorexigenic properties once it reaches the brain, the CPIR may serve as an early peripheral satiety signal. Against this background, in the present study 16 men participated in two separate sessions: one night of PSD (4.25 h sleep) versus one night of full sleep (8.5 h sleep). In the morning following each sleep condition, subjects' oral cavities were rinsed with a 1-molar sucrose solution for 45 s, preceded and followed by blood sampling for repeated determination of plasma glucose and serum insulin concentrations (-3, +3, +5, +7, +10 and +20 min). Our main result was that PSD, compared with full sleep, was associated with significantly higher peripheral insulin resistance, as indicated by a higher fasting homeostasis model assessment of insulin resistance index (+16%, P = 0.025). In contrast, no CPIR was observed in any of the two sleep conditions. Our findings indicate that a single night of PSD is already sufficient to impair fasting insulin sensitivity in healthy men. In contrast, brief oral cavity rinsing with sucrose solution did not change serum insulin concentrations, suggesting that a blunted CPIR is an unlikely mechanism through which acute sleep loss causes metabolic perturbations during morning hours in humans.

  1. SEVEN PILLARS OF ECOSYSTEM MANAGEMENT

    EPA Science Inventory

    Ecosystem management is widely proposed in the popular and professional literature as the modern and preferred way of managing natural resources and ecosystems. Advocates glowingly describe ecosystem management as an approach that will protect the environment, maintain healthy ec...

  2. An integrated view of gamma radiation effects on marine fauna: from molecules to ecosystems.

    PubMed

    Won, Eun-Ji; Dahms, Hans-U; Kumar, K Suresh; Shin, Kyung-Hoon; Lee, Jae-Seong

    2015-11-01

    Accidental release of nuclides into the ocean is causing health risks to marine organisms and humans. All life forms are susceptible to gamma radiation with a high variation, depending on various physical factors such as dose, mode, and time of exposure and various biological factors such as species, vitality, age, and gender. Differences in sensitivity of gamma radiation are also associated with different efficiencies of mechanisms related to protection and repair systems. Gamma radiation may also affect various other integration levels: from gene, protein, cells and organs, population, and communities, disturbing the energy flow of food webs that will ultimately affect the structure and functioning of ecosystems. Depending on exposure levels, gamma radiation induces damages on growth and reproduction in various organisms such as zooplankton, benthos, and fish in aquatic ecosystems. In this paper, harmful effects of gamma-irradiated aquatic organisms are described and the potential of marine copepods in assessing the risk of gamma radiation is discussed with respect to physiological adverse effects that even affect the ecosystem level.

  3. Quantum and Ecosystem Entropies

    NASA Astrophysics Data System (ADS)

    Kirwan, A. D.

    2008-06-01

    Ecosystems and quantum gases share a number of superficial similarities including enormous numbers of interacting elements and the fundamental role of energy in such interactions. A theory for the synthesis of data and prediction of new phenomena is well established in quantum statistical mechanics. The premise of this paper is that the reason a comparable unifying theory has not emerged in ecology is that a proper role for entropy has yet to be assigned. To this end, a phase space entropy model of ecosystems is developed. Specification of an ecosystem phase space cell size based on microbial mass, length, and time scales gives an ecosystem uncertainty parameter only about three orders of magnitude larger than Planck’s constant. Ecosystem equilibria is specified by conservation of biomass and total metabolic energy, along with the principle of maximum entropy at equilibria. Both Bose - Einstein and Fermi - Dirac equilibrium conditions arise in ecosystems applications. The paper concludes with a discussion of some broader aspects of an ecosystem phase space.

  4. Therapeutic mechanisms of a mindfulness-based treatment for IBS: Effects on visceral sensitivity, catastrophizing, and affective processing of pain sensations

    PubMed Central

    Garland, Eric L.; Gaylord, Susan A.; Palsson, Olafur; Faurot, Keturah; Mann, J. Douglas; Whitehead, William E.

    2013-01-01

    Irritable bowel syndrome (IBS) is a prevalent functional disorder characterized by abdominal pain and hypervigilance to gastrointestinal sensations. We hypothesized that mindfulness training (MT), which promotes nonreactive awareness of emotional and sensory experience, may target underlying mechanisms of IBS including affective pain processing and catastrophic appraisals of gastrointestinal sensations. Seventy five female IBS patients were randomly assigned to participate in either 8 weeks of MT or a social support group. A theoretically grounded, multivariate path model tested therapeutic mediators of the effect of MT on IBS severity and quality of life. Results suggest that MT exerts significant therapeutic effects on IBS symptoms by promoting nonreactivity to gut-focused anxiety and catastrophic appraisals of the significance of abdominal sensations coupled with a refocusing of attention onto interoceptive data with less emotional interference. Hence, MT appears to target and ameliorate the underlying pathogenic mechanisms of IBS. PMID:22161025

  5. Mesopelagic fish biomass in the southern California current ecosystem

    NASA Astrophysics Data System (ADS)

    Davison, Peter; Lara-Lopez, Ana; Anthony Koslow, J.

    2015-02-01

    Mesopelagic fishes are the most common vertebrates on Earth, forming an important link between lower trophic levels and higher predators, and also between surface production and the deep sea. The biomass of these fishes is a key parameter for ecological modeling of oceanic ecosystems, but it is poorly known. The two most common methods to estimate the biomass of these fishes, acoustic and trawl surveys, are both sensitive to the ability of fishes to avoid nets. We show that size-dependent changes in trawl capture efficiency can affect acoustic estimates of biomass estimates 5-fold. We used both acoustic and trawl-based methods (informed by morphological data and acoustic modeling of individual backscattering) to estimate the biomass of mesopelagic fishes of southern California to be 25-37 g m-2 of ocean surface, a comparable density to that of inshore epipelagic zooplanktivorous fishes. Our results indicate that mesopelagic fishes are likely to play a major role in regional food webs.

  6. Accumulation of Zeaxanthin in Abscisic Acid-Deficient Mutants of Arabidopsis Does Not Affect Chlorophyll Fluorescence Quenching or Sensitivity to Photoinhibition in Vivo.

    PubMed Central

    Hurry, V.; Anderson, J. M.; Chow, W. S.; Osmond, C. B.

    1997-01-01

    Abscisic acid (ABA)-deficient mutants of Arabidopsis do not synthesize the epoxy-xanthophylls antheraxanthin, violaxanthin, or neoxanthin. However, thylakoid membranes from these mutants contain 3-fold more zeaxanthin than wild-type plants. This increase in zeaxanthin occurs as a stoichiometric replacement of the missing violaxanthin and neoxanthin within the pigment-protein complexes of both photosystem I and photosystem II (PSII). The retention of zeaxanthin in the dark by ABA-deficient mutants sensitizes the leaves to the development of nonphotochemical quenching (NPQ) during the first 2 to 4 min following a dark-light transition. However, the increase in pool size does not result in any increase in steady-state NPQ. When we exposed wild-type and ABA-deficient mutants leaves to twice growth irradiance, the mutants developed lower maximal NPQ but suffered similar photoinhibition to wildtype, measured both as a decline in the ratio of variable to maximal fluorescence and as a loss of functional PSII centers from oxygen flash yield measurements. These results suggest that only a few of the zeaxanthin molecules present within the light-harvesting antenna of PSII may be involved in NPQ and neither the accumulation of a large pool of zeaxanthin within the antenna of PSII nor an increase in conversion of violaxanthin to zeaxanthin will necessarily enhance photoprotective energy dissipation. PMID:12223632

  7. Large-Scale Glycomics of Livestock: Discovery of Highly Sensitive Serum Biomarkers Indicating an Environmental Stress Affecting Immune Responses and Productivity of Holstein Dairy Cows.

    PubMed

    Rehan, Ibrahim F; Ueda, Koichiro; Mitani, Tomohiro; Amano, Maho; Hinou, Hiroshi; Ohashi, Tetsu; Kondo, Seiji; Nishimura, Shin-Ichiro

    2015-12-09

    Because various stresses strongly influence the food productivity of livestock, biomarkers to indicate unmeasurable environmental stress in domestic animals are of increasing importance. Thermal comfort is one of the basic principles of dairy cow welfare that enhances productivity. To discover sensitive biomarkers that monitor such environmental stresses in dairy cows, we herein performed, for the first time, large-scale glycomics on 336 lactating Holstein cow serum samples over 9 months between February and October. Glycoblotting combined with MALDI-TOF/MS and DMB/HPLC allowed for comprehensive glycomics of whole serum glycoproteins. The results obtained revealed seasonal alterations in serum N-glycan levels and their structural characteristics, such as an increase in high-mannose type N-glycans in spring, the occurrence of di/triantennary complex type N-glycans terminating with two or three Neu5Gc residues in summer and autumn, and N-glycans in winter dominantly displaying Neu5Ac. A multivariate analysis revealed a correlation between the serum expression levels of these season-specific glycoforms and productivity.

  8. MC1R gene polymorphism affects skin color and phenotypic features related to sun sensitivity in a population of French adult women.

    PubMed

    Latreille, Julie; Ezzedine, Khaled; Elfakir, Anissa; Ambroisine, Laurence; Gardinier, Sophie; Galan, Pilar; Hercberg, Serge; Gruber, Florian; Rees, Jonathan; Tschachler, Erwin; Guinot, Christiane

    2009-01-01

    The melanocortin-1 receptor (MC1R) gene is known to play a major role in skin and hair pigmentation and to be highly polymorphic in Caucasians. This study was performed to investigate the relationships between MC1R gene polymorphisms and skin color in a large sample of French middle-aged Caucasian women. The codons 60 to 265 and the codon 294 of the MC1R gene were sequenced in 488 women. The skin color was measured on the inner side of the forearm using a spectrophotometric instrument. Fifteen variants were identified: Arg151Cys, Arg160Trp, Arg142His, Asp294His, Ile155Thr, Asp84Glu, Val60Leu, Val92Met, Arg163Gln, Ser83Pro, Thr95Met, Pro256Ser, Val265Ile, Ala166Ala and Gln233Gln. Women carrying Arg151Cys, Asp294His, Arg160Trp and Asp84Glu variants had a significantly higher reflectance in the red region, which indicates a lower level of functional melanin. This association was the most pronounced for women carrying Asp84Glu. In contrast, no significant difference was observed for other variants. Moreover, associations between MC1R polymorphisms and the risks of experiencing sunburn and of having freckles were found independently of skin color. Our findings support the hypothesis that MC1R polymorphisms do not necessarily alter the skin color but should sensitize the skin to UV-induced DNA damage.

  9. Deletion of PdMit1, a homolog of yeast Csg1, affects growth and Ca(2+) sensitivity of the fungus Penicillium digitatum, but does not alter virulence.

    PubMed

    Zhu, Congyi; Wang, Weili; Wang, Mingshuang; Ruan, Ruoxin; Sun, Xuepeng; He, Meixian; Mao, Cungui; Li, Hongye

    2015-04-01

    GDP-mannose:inositol-phosphorylceramide (MIPC) and its derivatives are important for Ca(2+) sensitization of Saccharomyces cerevisiae and for the virulence of Candida albicans, but its role in the virulence of plant fungal pathogens remains unclear. In this study, we report the identification and functional characterization of PdMit1, the gene encoding MIPC synthase in Penicillium digitatum, one of the most important pathogens of postharvest citrus fruits. To understand the function of PdMit1, a PdMit1 deletion mutant was generated. Compared to its wild-type control, the PdMit1 deletion mutant exhibited slow radial growth, decreased conidia production and delayed conidial germination, suggesting that PdMit1 is important for the growth of mycelium, sporulation and conidial germination. The PdMit1 deletion mutant also showed hypersensitivity to Ca(2+). Treatment with 250 mmol/l Ca(2+) induced vacuole fusion in the wild-type strain, but not in the PdMit1 deletion mutant. Treatment with 250mmol/lCaCl2 upregulated three Ca(2+)-ATPase genes in the wild-type strain, and this was significantly inhibited in the PdMit1 deletion mutant. These results suggest that PdMit1 may have a role in regulating vacuole fusion and expression of Ca(2+)-ATPase genes by controlling biosynthesis of MIPC, and thereby imparts P. digitatum Ca(2+) tolerance. However, we found that PdMit1 is dispensable for virulence of P. digitatum.

  10. Incorporating plant functional diversity effects in ecosystem service assessments.

    PubMed

    Díaz, Sandra; Lavorel, Sandra; de Bello, Francesco; Quétier, Fabien; Grigulis, Karl; Robson, T Matthew

    2007-12-26

    Global environmental change affects the sustained provision of a wide set of ecosystem services. Although the delivery of ecosystem services is strongly affected by abiotic drivers and direct land use effects, it is also modulated by the functional diversity of biological communities (the value, range, and relative abundance of functional traits in a given ecosystem). The focus of this article is on integrating the different possible mechanisms by which functional diversity affects ecosystem properties that are directly relevant to ecosystem services. We propose a systematic way for progressing in understanding how land cover change affects these ecosystem properties through functional diversity modifications. Models on links between ecosystem properties and the local mean, range, and distribution of plant trait values are numerous, but they have been scattered in the literature, with varying degrees of empirical support and varying functional diversity components analyzed. Here we articulate these different components in a single conceptual and methodological framework that allows testing them in combination. We illustrate our approach with examples from the literature and apply the proposed framework to a grassland system in the central French Alps in which functional diversity, by responding to land use change, alters the provision of ecosystem services important to local stakeholders. We claim that our framework contributes to opening a new area of research at the interface of land change science and fundamental ecology.

  11. Soil community structure and ecosystem C cycling in arid ecosystems experiencing multiple environmental changes

    NASA Astrophysics Data System (ADS)

    Pavao-Zuckerman, M. A.; Cable, J. M.; Huxman, T. E.; Scott, R. L.; Williams, D. G.

    2005-12-01

    Despite the importance of soil carbon cycling to the response of water-limited ecosystems to global change, our understanding of this ecosystem component is still in its infancy. Adding to the complexity in knowledge building, ecosystems are exposed to simultaneous multiple shifts within global change scenarios. For example, semiarid grasslands in southern Arizona are currently undergoing encroachment by woody plants at the same time that climate change models predict increases in frequency and magnitude of precipitation inputs over the next 50 years. We are investigating how heterogeneity of plant cover mediates the response of soil community structure and ecosystem C cycling to seasonal monsoon rain inputs. Field plots were established in a mesquite shrubland in the San Pedro River Basin, AZ that are dominated by either: Sporobulus wrightii, medium sized Prosopis velutina, or large Prosopis velutina, additional plots were located in intercanopy areas. Both increased quantity and quality of litter inputs to the soil component, and physical influences of the shrubs on ecosystem water and energy budgets affects plots influenced by the development of Prosopis. Plant species influenced the response of soil microbial biomass to precipitation pulses. Plant cover also influenced the dynamics of soil nematodes. Magnitude of precipitation inputs and plant cover interact to affect the abundance of trophic group abundances and food web structure. These results will be discussed vis-à-vis the importance of soil organisms for driving ecosystem dynamics, and the appropriateness of dominant paradigms in arid land ecology (notably the pulse-reserve paradigm) for understanding soil components of arid ecosystems. Shifts in soil flora and fauna have important implications for ecosystem C-cycling via alterations of trophic dynamics, and the contribution of heterotrophic respiration to C efflux from ecosystems.

  12. Human-modified ecosystems and future evolution

    PubMed Central

    Western, David

    2001-01-01

    Our global impact i