Science.gov

Sample records for affect sex determination

  1. How rapidly can maternal behavior affecting primary sex ratio evolve in a reptile with environmental sex determination?

    PubMed

    Morjan, Carrie L

    2003-08-01

    Theoretical models identify maternal behavior as critical for the maintenance and evolution of sex ratios in organisms with environmental sex determination (ESD). Maternal choice of nest site is generally thought to respond more rapidly to sex ratio selection than environmental sensitivity of offspring sex (threshold temperatures) in reptiles with temperature-dependent sex determination (TSD, a form of ESD). However, knowledge of the evolutionary potential for either of these traits in a field setting is limited. I developed a simulation model using local climate data and observed levels of phenotypic variation for nest-site choice and threshold temperatures in painted turtles (Chrysemys picta) with TSD. Both nest-site choice and threshold temperatures, and hence sex ratios, evolved slowly to simulated climate change scenarios. In contrast to expectations from previous models, nest-site choice evolved more slowly than threshold temperatures because of large climatic effects on nest temperatures and indirect selection on maternally expressed traits. A variant of the model, assuming inheritance of nest-site choice through natal imprinting, demonstrated that natal imprinting inhibited adaptive responses in female nest-site choice to climate change. These results predict that females have relatively low potential to adaptively adjust sex ratios through nest-site choice.

  2. Sex and the Single Cell. I. on the Action of Major Loci Affecting Sex Determination in DROSOPHILA MELANOGASTER

    PubMed Central

    Baker, Bruce S.; Ridge, Kimberly A.

    1980-01-01

    Sex determination in Drosophila melanogaster is under the control of the X chromosome:autosome ratio and at least four major regulatory genes: transformer (tra), transformer-2 (tra-2), doublesex (dsx) and intersex (ix). Attention is focused here on the roles of these four loci in sex determination. By examining the sexual phenotype of clones of homozygous mutant cells produced by mitotic recombination in flies heterozygous for a given recessive sex-determination mutant, we have shown that the tra, tra-2 and dsx loci determine sex in a cell-autonomous manner. The effect of removing the wild-type allele of each locus (by mitotic recombination) at a number of times during development has been used to determine when the wild-type alleles of the tra, tra-2 and dsx loci have been transcribed sufficiently to support normal sexual development. The wild-type alleles of all three loci are needed into the early pupal period for normal sex determination in the cells that produce the sexually dimorphic (in pigmentation) cuticle of the fifth and sixth dorsal abdominal segments. tra+ and tra-2+ cease being needed shortly before the termination of cell division in the abdomen, whereas dsx+ is required at least until the end of division. By contrast, in the foreleg, the wild-type alleles of tra+ and tra-2+ have functioned sufficiently for normal sexual differentiation to occur by about 24 to 48 hours before pupariation, but dsx+ is required in the foreleg at least until pupariation.——A comparison of the phenotypes produced in mutant/deficiency and homozygous mutant-bearing flies shows that dsx, tra-2 and tra mutants result in a loss of wild-type function and probably represent null alleles at these genes.—All possible homozygous doublemutant combinations of ix, tra-2 and dsx have been constructed and reveal a clear pattern of epistasis: dsx > tra, tra-2 > ix. We conclude that these genes function in a single pathway that determines sex. The data suggest that these mutants are

  3. Genomics of sex determination.

    PubMed

    Zhang, Jisen; Boualem, Adnane; Bendahmane, Abdelhafid; Ming, Ray

    2014-04-01

    Sex determination is a major switch in the evolutionary history of angiosperm, resulting 11% monoecious and dioecious species. The genomic sequences of papaya sex chromosomes unveiled the molecular basis of recombination suppression in the sex determination region, and candidate genes for sex determination. Identification and analyses of sex determination genes in cucurbits and maize demonstrated conservation of sex determination mechanism in one lineage and divergence between the two systems. Epigenetic control and hormonal influence of sex determination were elucidated in both plants and animals. Intensive investigation of potential sex determination genes in model species will improve our understanding of sex determination gene network. Such network will in turn accelerate the identification of sex determination genes in dioecious species with sex chromosomes, which are burdensome due to no recombination in sex determining regions. The sex determination genes in dioecious species are crucial for understanding the origin of dioecy and sex chromosomes, particularly in their early stage of evolution.

  4. tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sex determination in maize is controlled by a developmental cascade leading to the formation of unisexual florets derived from an initially bisexual floral meristem. Abortion of pistil primordia in staminate florets is controlled by a tasselseed-mediated cell death process. Here, we describe the pos...

  5. Incubation temperature and gonadal sex affect growth and physiology in the leopard gecko (Eublepharis macularius), a lizard with temperature-dependent sex determination.

    PubMed

    Tousignant, A; Crews, D

    1995-05-01

    Temperature-dependent sex determination (TSD), in which the temperature at which an egg incubates determines the sex of the individual, occurs in egg-laying reptiles of three separate orders. Previous studies have shown that the embryonic environment can have effects lasting beyond the period of sex determination. We investigated the relative roles of incubation temperature, exogenous estradiol, and gonadal sex (testis vs. ovary) in the differentiation of adult morphological and physiological traits of the leopard gecko, Eublepharis macularius. The results indicate that incubation temperature, steroid hormones, and gonads interact in the development of morphological and physiological characters with incubation temperature resulting in the greatest differences in adult phenotype. Incubation temperature did not affect reproductive success directly, but may influence offspring survival in natural situations through effects on adult female body size. Postnatal hormones seem to be more influential in the formation of adult phenotypes than prenatal hormones. These results demonstrate that TSD species can be used to investigate the effects of the physical environment on development in individuals without a predetermined genetic sex and thus provide further insight into the roles of gonadal sex and the embryonic environment in sexual differentiation.

  6. Predicting the fate of a living fossil: how will global warming affect sex determination and hatching phenology in tuatara?

    PubMed Central

    Mitchell, Nicola J; Kearney, Michael R; Nelson, Nicola J; Porter, Warren P

    2008-01-01

    How will climate change affect species' reproduction and subsequent survival? In many egg-laying reptiles, the sex of offspring is determined by the temperature experienced during a critical period of embryonic development (temperature-dependent sex determination, TSD). Increasing air temperatures are likely to skew offspring sex ratios in the absence of evolutionary or plastic adaptation, hence we urgently require means for predicting the future distributions of species with TSD. Here we develop a mechanistic model that demonstrates how climate, soil and topography interact with physiology and nesting behaviour to determine sex ratios of tuatara, cold-climate reptiles from New Zealand with an unusual developmental biology. Under extreme regional climate change, all-male clutches would hatch at 100% of current nest sites of the rarest species, Sphenodon guntheri, by the mid-2080s. We show that tuatara could behaviourally compensate for the male-biasing effects of warmer air temperatures by nesting later in the season or selecting shaded nest sites. Later nesting is, however, an unlikely response to global warming, as many oviparous species are nesting earlier as the climate warms. Our approach allows the assessment of the thermal suitability of current reserves and future translocation sites for tuatara, and can be readily modified to predict climatic impacts on any species with TSD. PMID:18595840

  7. Plant Sex Determination.

    PubMed

    Pannell, John R

    2017-03-06

    Sex determination is as important for the fitness of plants as it is for animals, but its mechanisms appear to vary much more among plants than among animals, and the expression of gender in plants differs in important respects from that in most animals. In this Minireview, I provide an overview of the broad variety of ways in which plants determine sex. I suggest that several important peculiarities of plant sex determination can be understood by recognising that: plants show an alternation of generations between sporophytic and gametophytic phases (either of which may take control of sex determination); plants are modular in structure and lack a germ line (allowing for a quantitative expression of gender that is not common in animals); and separate sexes in plants have ultimately evolved from hermaphroditic ancestors. Most theorising about sex determination in plants has focused on dioecious species, but we have much to learn from monecious or hermaphroditic species, where sex is determined at the level of modules, tissues or cells. Because of the fundamental modularity of plant development and potentially important evolutionary links between monoecy and dioecy, it may be useful to relax the distinction often made between 'developmental sex determination' (which underpins the development of male versus female flowers in monoecious species) and 'genetic sex determination' (which underpins the separation of males and females in dioecious species, often mediated by a genetic polymorphism and sex chromosomes). I also argue for relaxing the distinction between sex determination involving a genetic polymorphism and that involving responses to environmental or hormonal cues, because non-genetic cues might easily be converted into genetic switches.

  8. Sex determination in Chlamydomonas.

    PubMed

    Goodenough, Ursula; Lin, Huawen; Lee, Jae-Hyeok

    2007-06-01

    The sex-determination system of the unicellular green alga, Chlamydomonas reinhardtii, is governed by genes in the mating-type (MT) locus and entails additional genes located in autosomes. Gene expression is initiated by nitrogen starvation, and cells differentiate into plus or minus gametes within 6h. Reviewed is our current understanding of gametic differentiation and fertilization, initiation of zygote development, and the uniparental inheritance of organelle genomes.

  9. How Will Cancer Affect My Sex Life?

    MedlinePlus

    ... Families How will cancer affect my sex life? Sexual feelings and attitudes vary greatly among people, even ... people have little or no change in their sexual desire and energy level during cancer treatment. Others ...

  10. Sex determination using maxillary sinus

    PubMed Central

    Kanthem, Ranjith Kumar; Guttikonda, Venkateswara Rao; Yeluri, Sivaranjani; Kumari, Geetha

    2015-01-01

    Background: Individual identification is a subtle concept and often one of the most important priorities in mass disasters, road accidents, air crashes, fires, and even in the investigation of criminal cases. Matching specific features detected on the cadaver with data recorded during the life of an individual is an important aspect in forensics, and can be performed by fingerprint analysis, deoxyribonucleic acid matching, anthropological methods, radiological methods and other techniques which can facilitate age and sex identification. Sinus radiography is one such method that has been used for determination of the sex of an individual. Hence, an attempt is being made to use the different dimensions of the maxillary sinus in the determination of sex using coronal and axial sections of plain computed tomography (CT) scan. Materials and Methods: A total of 30 patients including 17 male and 13 female, visiting the Outpatient Department of the Mamata General Hospital were included as the study subjects. The dimensions of right and left maxillary sinuses of 30 subjects from plain CT were measured using SYNGO software and statistical analysis was done. Results: Sex determination using height, length, width, and volume of the maxillary sinus on both sides showed statistically significant results with a higher percentage of sexual dimorphism in the case of volume. Conclusion: Volume of the right maxillary sinus can be used as accurate diagnostic parameter for sex determination. PMID:26005308

  11. Sex determination in flowering plants.

    PubMed Central

    Dellaporta, S L; Calderon-Urrea, A

    1993-01-01

    In many ways, plants offer unique systems through which to study sex determination. Because the production of unisexual flowers has evolved independently in many plant species, different and novel mechanisms may be operational. Hence, there is probably not one unifying mechanism that explains sex determination in plants. Advances in our understanding of sex determination will come from the analysis of the genetics, molecular biology, and biochemistry of genes controlling sexual determination in plants. Several excellent model systems for bisexual floral development (Arabidopsis and Antirrhinum), monoecy (maize), and dioecy (Silene, asparagus, and mercury) are available for such analyses. The important questions that remain concern the mechanism of action of sex determination genes and their interrelationship, if any, with homeotic genes that determine the sexual identity of floral organ primordia. At the physiological level, the connection between hormone signaling and sexuality is not well understood, although significant correlations have been discovered. Finally, once the genes that regulate these processes are identified, cloned, and studied, new strategies for the manipulation of sexuality in plants should be forthcoming. PMID:8281039

  12. Sex chromosomes and sex-determining genes: insights from marsupials and monotremes.

    PubMed

    Pask, A; Graves, J A

    1999-06-01

    Comparative studies of the genes involved in sex determination in the three extant classes of mammals, and other vertebrates, has allowed us to identify genes that are highly conserved in vertebrate sex determination and those that have recently evolved roles in one lineage. Analysis of the conservation and function of candidate genes in different vertebrate groups has been crucial to our understanding of their function and positioning in a conserved vertebrate sex-determining pathway. Here we review comparisons between genes in the sex-determining pathway in different vertebrates, and ask how these comparisons affect our views on the role of each gene in vertebrate sex determination.

  13. Tackling the diversity of sex determination.

    PubMed

    Wedekind, Claus; Stelkens, Rike B

    2010-02-23

    A workshop on 'The evolution of sex determination systems' was held at a remote place in the Swiss Alps from 17 to 20 June 2009. It brought together theoreticians and empiricists, the latter ranging from molecular geneticists to evolutionary ecologists, all trying to understand key aspects of sex determination. The topics discussed included the evolutionary origins of sex determination, the diversity of sex determination mechanisms in different taxa, and the transition from genotypic to environmental sex determination and vice versa.

  14. Random sex determination: When developmental noise tips the sex balance.

    PubMed

    Perrin, Nicolas

    2016-12-01

    Sex-determining factors are usually assumed to be either genetic or environmental. The present paper aims at drawing attention to the potential contribution of developmental noise, an important but often-neglected component of phenotypic variance. Mutual inhibitions between male and female pathways make sex a bistable equilibrium, such that random fluctuations in the expression of genes at the top of the cascade are sufficient to drive individual development toward one or the other stable state. Evolutionary modeling shows that stochastic sex determinants should resist elimination by genetic or environmental sex determinants under ecologically meaningful settings. On the empirical side, many sex-determination systems traditionally considered as environmental or polygenic actually provide evidence for large components of stochasticity. In reviewing the field, I argue that sex-determination systems should be considered within a three-ends continuum, rather than the classical two-ends continuum.

  15. Sex Determination, Sex Chromosomes, and Karyotype Evolution in Insects.

    PubMed

    Blackmon, Heath; Ross, Laura; Bachtrog, Doris

    2017-01-01

    Insects harbor a tremendous diversity of sex determining mechanisms both within and between groups. For example, in some orders such as Hymenoptera, all members are haplodiploid, whereas Diptera contain species with homomorphic as well as male and female heterogametic sex chromosome systems or paternal genome elimination. We have established a large database on karyotypes and sex chromosomes in insects, containing information on over 13000 species covering 29 orders of insects. This database constitutes a unique starting point to report phylogenetic patterns on the distribution of sex determination mechanisms, sex chromosomes, and karyotypes among insects and allows us to test general theories on the evolutionary dynamics of karyotypes, sex chromosomes, and sex determination systems in a comparative framework. Phylogenetic analysis reveals that male heterogamety is the ancestral mode of sex determination in insects, and transitions to female heterogamety are extremely rare. Many insect orders harbor species with complex sex chromosomes, and gains and losses of the sex-limited chromosome are frequent in some groups. Haplodiploidy originated several times within insects, and parthenogenesis is rare but evolves frequently. Providing a single source to electronically access data previously distributed among more than 500 articles and books will not only accelerate analyses of the assembled data, but also provide a unique resource to guide research on which taxa are likely to be informative to address specific questions, for example, for genome sequencing projects or large-scale comparative studies.

  16. Tackling the diversity of sex determination

    PubMed Central

    Wedekind, Claus; Stelkens, Rike B.

    2010-01-01

    A workshop on ‘The evolution of sex determination systems’ was held at a remote place in the Swiss Alps from 17 to 20 June 2009. It brought together theoreticians and empiricists, the latter ranging from molecular geneticists to evolutionary ecologists, all trying to understand key aspects of sex determination. The topics discussed included the evolutionary origins of sex determination, the diversity of sex determination mechanisms in different taxa, and the transition from genotypic to environmental sex determination and vice versa. PMID:19692397

  17. Sex chromosomes and sex-determining genes: insights from marsupials and monotremes.

    PubMed

    Pask, A; Graves, J A

    2001-01-01

    Comparative studies of the genes involved in sex determination in the three extant classes of mammals, and other vertebrates, has allowed us to identify genes that are highly conserved in vertebrate sex determination and those that have recently evolved roles in one lineage. Analysis of the conservation and function of candidate sex determining genes in marsupials and monotremes has been crucial to our understanding of their function and positioning in a conserved mammalian sex-determining pathway, as well as their evolution. Here we review comparisons between genes in the sex-determining pathway in different vertebrates, and ask how these comparisons affect our views on the role of each gene in vertebrate sex determination.

  18. Polygenic Sex Determination System in Zebrafish

    PubMed Central

    Liew, Woei Chang; Bartfai, Richard; Lim, Zijie; Sreenivasan, Rajini; Siegfried, Kellee R.; Orban, Laszlo

    2012-01-01

    Background Despite the popularity of zebrafish as a research model, its sex determination (SD) mechanism is still unknown. Most cytogenetic studies failed to find dimorphic sex chromosomes and no primary sex determining switch has been identified even though the assembly of zebrafish genome sequence is near to completion and a high resolution genetic map is available. Recent publications suggest that environmental factors within the natural range have minimal impact on sex ratios of zebrafish populations. The primary aim of this study is to find out more about how sex is determined in zebrafish. Methodology/Principal Findings Using classical breeding experiments, we found that sex ratios across families were wide ranging (4.8% to 97.3% males). On the other hand, repeated single pair crossings produced broods of very similar sex ratios, indicating that parental genotypes have a role in the sex ratio of the offspring. Variation among family sex ratios was reduced after selection for breeding pairs with predominantly male or female offspring, another indication that zebrafish sex is regulated genetically. Further examinations by a PCR-based “blind assay" and array comparative genomic hybridization both failed to find universal sex-linked differences between the male and female genomes. Together with the ability to increase the sex bias of lines by selective breeding, these data suggest that zebrafish is unlikely to utilize a chromosomal sex determination (CSD) system. Conclusions/Significance Taken together, our study suggests that zebrafish sex is genetically determined with limited, secondary influences from the environment. As we have not found any sign for CSD in the species, we propose that the zebrafish has a polygenic sex determination system. PMID:22506019

  19. Sex determination in forensic odontology: A review

    PubMed Central

    Ramakrishnan, K.; Sharma, Subramanya; Sreeja, C.; Pratima, D. Bhavani; Aesha, I.; Vijayabanu, B.

    2015-01-01

    Forensic odontology is the application of dental principles to legal issues. Sex determination is a subdivision of forensic odontology and it is very important especially when information relating to the deceased is unavailable. Sex determination becomes the first priority in the process of identification of a person by a forensic investigator in the case of mishaps, chemical and nuclear bomb explosions, natural disasters crime investigations, and ethnic studies. This article reviews upon the various methods used in sex determination. PMID:26538886

  20. Sex determination in forensic odontology: A review.

    PubMed

    Ramakrishnan, K; Sharma, Subramanya; Sreeja, C; Pratima, D Bhavani; Aesha, I; Vijayabanu, B

    2015-08-01

    Forensic odontology is the application of dental principles to legal issues. Sex determination is a subdivision of forensic odontology and it is very important especially when information relating to the deceased is unavailable. Sex determination becomes the first priority in the process of identification of a person by a forensic investigator in the case of mishaps, chemical and nuclear bomb explosions, natural disasters crime investigations, and ethnic studies. This article reviews upon the various methods used in sex determination.

  1. Sex-specific survival to maturity and the evolution of environmental sex determination.

    PubMed

    Schwanz, Lisa E; Cordero, Gerardo A; Charnov, Eric L; Janzen, Fredric J

    2016-02-01

    Four decades ago, it was proposed that environmental sex determination (ESD) evolves when individual fitness depends on the environment in a sex-specific fashion--a form of condition-dependent sex allocation. Many biological processes have been hypothesized to drive this sex asymmetry, yet a general explanation for the evolution of sex-determining mechanisms remains elusive. Here, we develop a mathematical model for a novel hypothesis of the evolution of ESD, and provide a first empirical test using data across turtles. ESD is favored when the sex-determining environment affects annual survival rates equivalently in males and females, and males and females mature at different ages. We compare this hypothesis to alternative hypotheses, and demonstrate how it captures a crucially different process. This maturation process arises naturally from common life histories and applies more broadly to condition-dependent sex allocation. Therefore, it has widespread implications for animal taxa. Across turtle species, ESD is associated with greater sex differences in the age at maturity compared to species without ESD, as predicted by our hypothesis. However, the effect is not statistically significant and will require expanded empirical investigation. Given variation among taxa in sex-specific age at maturity, our survival-to-maturity hypothesis may capture common selective forces on sex-determining mechanisms.

  2. ZWY Sex Determination in Xenopus tropicalis

    EPA Science Inventory

    Most vertebrate species with described genetic sex determination are either male (XY) or female (ZW) heterogametic. To date, studies with Xenopus species indicate that members of this genus operate under a ZW sex determination system. We used two different approaches and demonst...

  3. The tilapias' chromosomes influencing sex determination.

    PubMed

    Cnaani, A

    2013-01-01

    The sex chromosomes of tilapias (family Cichlidae; genera Oreochromis, Sarotherodon and Tilapia) have been studied for over 50 years, which has gained interest from both agricultural and basic scientific perspectives. Several closely related tilapia species which can interbreed have been studied, and it has been repeatedly demonstrated that there is variation within and between species in the chromosomal sex-determination mechanism. Both male and female heterogametic sex-determination systems have been characterized, as well as epistatic and environmental influences on sex determination. Three different linkage groups (LG1, LG3 and LG23) have been identified as sex-associated chromosomes and have been subjected to further cytogenetic research and analyses of the genes located around the sex-determining region. Variation in the genetic and physical characteristics of the sex chromosomes makes tilapias an excellent model system for studying the evolution of vertebrate sex chromosomes. This review summarizes the progress made along 5 decades of research and the current knowledge of the tilapias' sex chromosomes.

  4. Factors Affecting Attitudes toward Juvenile Sex Offenders

    ERIC Educational Resources Information Center

    Sahlstrom, Kimberly J.; Jeglic, Elizabeth L.

    2008-01-01

    This study investigated attitudes toward juvenile sex offenders and factors influencing those attitudes. Additionally, the influences of perpetrator characteristics such as age, gender, and ethnicity on societal attitudes towards intervention requirements were also investigated. Overall, attitudes toward juvenile sex offenders and their treatment…

  5. Sex determination in mythology and history.

    PubMed

    Mittwoch, Ursula

    2005-02-01

    The history of ideas on how the sexes became divided spans at least three thousand years. The biblical account of the origin of Eve, and the opinions of the philosophers of classical Greece, have unexpected bearings on present-day ideas. The scientific study of sex determination can be said to have begun in the 17th century with the discovery of spermatozoa, but the origin and function of the "spermatic animalcules" eluded investigators until 1841. The mammalian egg was discovered in 1827, and in the last quarter of the century fertilization was observed. The view current at that time, that sex determination was under environmental control, gave way to the idea of chromosomal determination in the first quarter of the 20th century. The study of human and other mammalian chromosomes during the third quarter of the century, and the discovery of sex-chromosome abnormalities, emphasized the importance of the Y chromosome for male sex determination. The last quarter of the century witnessed a hunt for the "testis-determining" gene, thought to be responsible for the differentiation of Sertoli cells, and culminating in the isolation of SRY (Sry in the mouse). However, an increasing number of additional genes and growth factors were found to be required for the establishment of male sex. During the same period evidence emerged that male development was accompanied by enhanced growth, both of gonads and whole embryos. An unexpected finding was the demonstration of temperature-dependent sex determination in reptiles. With the advent of the 21st century, it was shown that Sry induces cell proliferation in fetal mouse gonads, and it has been suggested that male sex differentiation in mammals requires a higher metabolic rate. These insights could lead to a better understanding and improved treatment of abnormalities of sexual development.

  6. Biological Sex Determines Whether Faces Look Real

    PubMed Central

    Balas, Benjamin

    2013-01-01

    Judging whether a face is real or artificial can be done relatively rapidly and accurately, even when visual information is substantially impoverished. The perception of animacy in the face also has several interesting properties that may reflect both the underlying “tuning” of face space to preferentially represent real face appearance and the diagnosticity of individual features for categorizing faces as animate or inanimate. In the current study, we examined how sex categories interact with animacy perception by separately characterizing animacy judgments as a function of stimulus sex. We find that stimulus sex affects subjective ratings of animacy and sex categorization of real and artificial faces. Specifically, female faces look more artificial and artificial faces look more female. We discuss our results in terms of the ecology of real and artificial faces and the possible role of visual experience with artificial female faces, and the objectification of female faces. PMID:24244103

  7. Evolution of an expanded sex-determining locus in Volvox.

    PubMed

    Ferris, Patrick; Olson, Bradley J S C; De Hoff, Peter L; Douglass, Stephen; Casero, David; Prochnik, Simon; Geng, Sa; Rai, Rhitu; Grimwood, Jane; Schmutz, Jeremy; Nishii, Ichiro; Hamaji, Takashi; Nozaki, Hisayoshi; Pellegrini, Matteo; Umen, James G

    2010-04-16

    Although dimorphic sexes have evolved repeatedly in multicellular eukaryotes, their origins are unknown. The mating locus (MT) of the sexually dimorphic multicellular green alga Volvox carteri specifies the production of eggs and sperm and has undergone a remarkable expansion and divergence relative to MT from Chlamydomonas reinhardtii, which is a closely related unicellular species that has equal-sized gametes. Transcriptome analysis revealed a rewired gametic expression program for Volvox MT genes relative to Chlamydomonas and identified multiple gender-specific and sex-regulated transcripts. The retinoblastoma tumor suppressor homolog MAT3 is a Volvox MT gene that displays sexually regulated alternative splicing and evidence of gender-specific selection, both of which are indicative of cooption into the sexual cycle. Thus, sex-determining loci affect the evolution of both sex-related and non-sex-related genes.

  8. Sex determination strategies in 2012: towards a common regulatory model?

    PubMed

    Angelopoulou, Roxani; Lavranos, Giagkos; Manolakou, Panagiota

    2012-02-22

    Sex determination is a complicated process involving large-scale modifications in gene expression affecting virtually every tissue in the body. Although the evolutionary origin of sex remains controversial, there is little doubt that it has developed as a process of optimizing metabolic control, as well as developmental and reproductive functions within a given setting of limited resources and environmental pressure. Evidence from various model organisms supports the view that sex determination may occur as a result of direct environmental induction or genetic regulation. The first process has been well documented in reptiles and fish, while the second is the classic case for avian species and mammals. Both of the latter have developed a variety of sex-specific/sex-related genes, which ultimately form a complete chromosome pair (sex chromosomes/gonosomes). Interestingly, combinations of environmental and genetic mechanisms have been described among different classes of animals, thus rendering the possibility of a unidirectional continuous evolutionary process from the one type of mechanism to the other unlikely. On the other hand, common elements appear throughout the animal kingdom, with regard to a) conserved key genes and b) a central role of sex steroid control as a prerequisite for ultimately normal sex differentiation. Studies in invertebrates also indicate a role of epigenetic chromatin modification, particularly with regard to alternative splicing options. This review summarizes current evidence from research in this hot field and signifies the need for further study of both normal hormonal regulators of sexual phenotype and patterns of environmental disruption.

  9. Molecular Mechanisms of Sex Determination in Reptiles

    PubMed Central

    Rhen, T.; Schroeder, A.

    2010-01-01

    Charles Darwin first provided a lucid explanation of how gender differences evolve nearly 140 years ago. Yet, a disconnect remains between his theory of sexual selection and the mechanisms that underlie the development of males and females. In particular, comparisons between representatives of different phyla (i.e., flies and mice) reveal distinct genetic mechanisms for sexual differentiation. Such differences are hard to comprehend unless we study organisms that bridge the phylogenetic gap. Analysis of variation within monophyletic groups (i.e., amniotes) is just as important if we hope to elucidate the evolution of mechanisms underlying sexual differentiation. Here we review the molecular, cellular, morphological, and physiological changes associated with sex determination in reptiles. Most research on the molecular biology of sex determination in reptiles describes expression patterns for orthologs of mammalian sex-determining genes. Many of these genes have evolutionarily conserved expression profiles (i.e., DMRT1 and SOX9 are expressed at a higher level in developing testes vs. developing ovaries in all species), which suggests functional conservation. However, expression profiling alone does not test gene function and will not identify novel sex-determining genes or gene interactions. For that reason, we provide a prospectus on various techniques that promise to reveal new sex-determining genes and regulatory interactions among these genes. We offer specific examples of novel candidate genes and a new signaling pathway in support of these techniques. PMID:20145384

  10. Molecular mechanisms of sex determination in reptiles.

    PubMed

    Rhen, T; Schroeder, A

    2010-01-01

    Charles Darwin first provided a lucid explanation of how gender differences evolve nearly 140 years ago. Yet, a disconnect remains between his theory of sexual selection and the mechanisms that underlie the development of males and females. In particular, comparisons between representatives of different phyla (i.e., flies and mice) reveal distinct genetic mechanisms for sexual differentiation. Such differences are hard to comprehend unless we study organisms that bridge the phylogenetic gap. Analysis of variation within monophyletic groups (i.e., amniotes) is just as important if we hope to elucidate the evolution of mechanisms underlying sexual differentiation. Here we review the molecular, cellular, morphological, and physiological changes associated with sex determination in reptiles. Most research on the molecular biology of sex determination in reptiles describes expression patterns for orthologs of mammalian sex-determining genes. Many of these genes have evolutionarily conserved expression profiles (i.e., DMRT1 and SOX9 are expressed at a higher level in developing testes vs. developing ovaries in all species), which suggests functional conservation. However, expression profiling alone does not test gene function and will not identify novel sex-determining genes or gene interactions. For that reason, we provide a prospectus on various techniques that promise to reveal new sex-determining genes and regulatory interactions among these genes. We offer specific examples of novel candidate genes and a new signaling pathway in support of these techniques.

  11. Sex-specific determinants of fitness in a social mammal.

    PubMed

    Lardy, Sophie; Allainé, Dominique; Bonenfant, Christophe; Cohas, Aurélie

    2015-11-01

    Sociality should evolve when the fitness benefits of group living outweigh the costs. Theoretical models predict an optimal group size maximizing individual fitness. However, beyond the number of individuals present in a group, the characteristics of these individuals, like their sex, are likely to affect the fitness payoffs of group living. Using 20 years of individually based data on a social mammal, the Alpine marmot (Marmota marmota), we tested for the occurrence of an optimal group size and composition, and for sex-specific effects of group characteristics on fitness. Based on lifetime data of 52 males and 39 females, our findings support the existence of an optimal group size maximizing male fitness and an optimal group composition maximizing fitness of males and females. Additionally, although group characteristics (i.e., size, composition and instability) affecting male and female fitness differed, fitness depended strongly on the number of same-sex subordinates within the social group in the two sexes. By comparing multiple measures of social group characteristics and of fitness in both sexes, we highlighted the sex-specific determinants of fitness in the two sexes and revealed the crucial role of intrasexual competition in shaping social group composition.

  12. Biological sex affects the neurobiology of autism.

    PubMed

    Lai, Meng-Chuan; Lombardo, Michael V; Suckling, John; Ruigrok, Amber N V; Chakrabarti, Bhismadev; Ecker, Christine; Deoni, Sean C L; Craig, Michael C; Murphy, Declan G M; Bullmore, Edward T; Baron-Cohen, Simon

    2013-09-01

    In autism, heterogeneity is the rule rather than the exception. One obvious source of heterogeneity is biological sex. Since autism was first recognized, males with autism have disproportionately skewed research. Females with autism have thus been relatively overlooked, and have generally been assumed to have the same underlying neurobiology as males with autism. Growing evidence, however, suggests that this is an oversimplification that risks obscuring the biological base of autism. This study seeks to answer two questions about how autism is modulated by biological sex at the level of the brain: (i) is the neuroanatomy of autism different in males and females? and (ii) does the neuroanatomy of autism fit predictions from the 'extreme male brain' theory of autism, in males and/or in females? Neuroanatomical features derived from voxel-based morphometry were compared in a sample of equal-sized high-functioning male and female adults with and without autism (n = 120, n = 30/group). The first question was investigated using a 2 × 2 factorial design, and by spatial overlap analyses of the neuroanatomy of autism in males and females. The second question was tested through spatial overlap analyses of specific patterns predicted by the extreme male brain theory. We found that the neuroanatomy of autism differed between adult males and females, evidenced by minimal spatial overlap (not different from that occurred under random condition) in both grey and white matter, and substantially large white matter regions showing significant sex × diagnosis interactions in the 2 × 2 factorial design. These suggest that autism manifests differently by biological sex. Furthermore, atypical brain areas in females with autism substantially and non-randomly (P < 0.001) overlapped with areas that were sexually dimorphic in neurotypical controls, in both grey and white matter, suggesting neural 'masculinization'. This was not seen in males with autism. How differences in neuroanatomy

  13. Age of sex-determining mechanisms in vertebrates.

    PubMed

    WITSCHI, E

    1959-08-14

    Certain characteristic patterns of physiologic sex determination are not causally linked with types of genic and chromosomal constitution (XX-XY or ZW-ZZ). The observed widespread but not universal parallelism in the distribution of genetic and physiologic patterns among vertebrate groups expresses genealogic relationship. On the basis of this interpretation one may estimate the approximate evolutionary age of the mechanism of genetic sex determination. It is concluded that in all tetrapod vertebrates these mechanisms originated during the Jurassic period. Environmental conditions seem to affect the progress of this evolution.

  14. Brassinosteroid control of sex determination in maize.

    PubMed

    Hartwig, Thomas; Chuck, George S; Fujioka, Shozo; Klempien, Antje; Weizbauer, Renate; Potluri, Devi Prasad V; Choe, Sunghwa; Johal, Gurmukh S; Schulz, Burkhard

    2011-12-06

    Brassinosteroids (BRs) are plant hormones that regulate growth and development. They share structural similarities with animal steroids, which are decisive factors of sex determination. BRs are known to regulate morphogenesis and environmental stress responses, but their involvement in sex determination in plants has been only speculative. We show that BRs control sex determination in maize revealed through characterization of the classical dwarf mutant nana plant1 (na1), which also feminizes male flowers. na1 plants carry a loss-of-function mutation in a DET2 homolog--a gene in the BR biosynthetic pathway. The mutant accumulates the DET2-specific substrate (24R)-24-methylcholest-4-en-3-one with a concomitant decrease of downstream BR metabolites. Treatment of wild-type maize plants with BR biosynthesis inhibitors completely mimicked both dwarf and tasselseed phenotypes of na1 mutants. Tissue-specific na1 expression in anthers throughout their development supports the hypothesis that BRs promote masculinity of the male inflorescence. These findings suggest that, in the monoecious plant maize, BRs have been coopted to perform a sex determination function not found in plants with bisexual flowers.

  15. Molecular method for determining sex of walruses

    USGS Publications Warehouse

    Fischbach, A.S.; Jay, C.V.; Jackson, J.V.; Andersen, L.W.; Sage, G.K.; Talbot, S.L.

    2008-01-01

    We evaluated the ability of a set of published trans-species molecular sexing primers and a set of walrus-specific primers, which we developed, to accurately identify sex of 235 Pacific walruses (Odobenus rosmarus divergens). The trans-species primers were developed for mammals and targeted the X- and Y-gametologs of the zinc finger protein genes (ZFX, ZFY). We extended this method by using these primers to obtain sequence from Pacific and Atlantic walrus (0. r. rosmarus) ZFX and ZFY genes to develop new walrus-specific primers, which yield polymerase chain reaction products of distinct lengths (327 and 288 base pairs from the X- and Y-chromosome, respectively), allowing them to be used for sex determination. Both methods yielded a determination of sex in all but 1-2% of samples with an accuracy of 99.6-100%. Our walrus-specific primers offer the advantage of small fragment size and facile application to automated electrophoresis and visualization.

  16. Woodcock age and sex determination from wings

    USGS Publications Warehouse

    Martin, F.W.

    1964-01-01

    Age of woodcock (Philohela minor) can be accurately determined throughout the year by differences in pattern, color, and wear of secondary feathers. Immature woodcock retain most secondaries during the postjuvenal molt that begins in July or August and ends in October. In contrast, subadults (first-year adults) and older woodcock molt all secondaries during the postnuptial molt beginning in June or July and ending in October. Retention of juvenal secondaries by immatures and molt of these feathers by adults form the basis for age determination. Sex of woodcock can be accurately determined by width of the outer three primaries, which are conspicuously narrower on males.

  17. Determining age and sex of American coots

    USGS Publications Warehouse

    Eddleman, William R.; Knopf, Fritz L.

    1985-01-01

    Reliable techniques for age and sex determination of migrating and wintering American Coots (Fulica americana) have not been available. Breeding coots can be ages through age 3 by tarsal color (birds 4 years and older were placed in a 4+ age class) (Crawford 1978), and males and females have sex-specific behaviors and calls while on breeding territories (Gullion 1950, 1952). Externally, juvenile coots differ from adults in having gray (as opposed to white) bills and brown (as opposed to red) eyes to an age of 75 days (Gullion 1954-394). Bill color changes to white by about 120 days. No quantitative data have been available, however, on the proportion of juveniles retaining these traits throughout fall and early winter. Nonbreeding coots can be ages as juvenile or adult by internal examination of the thickness of the wall of the bursa of Fabricius, although bursal depth does not predictably decline with age (Fredrickson 1968). Attempts to sex coots by single external measurements of combinations of measurements have met with mixed success. Eight-five percent of 101 fall migrants in Wisconsin could be sexed by the length of the metatarsus-midtoe including claw by using 139.5 mm as a cutoff point (Burton 1959), whereas 88% of 67 coots in California were correctly sexed by the length of the metatarsus-midtoe without claw using 127.5 mm as the cutoff point (Gullion 1952). Two-hundred-thirty-two of 291 coots collected in Iowa, however, were in the zone of overlap between the sexes for this measurement (Fredrickson 1968). Previous studies attempting to develop aging and sexing techniques for American Coots have been limited to a few study sites or to 1 season or year, often failing to take geographical, annual, and seasonal morphological variation into account (e.g., Visser 1976, Fjeldsa 1977). We designed the present study to refine and quantify external and internal age and sex criteria for postbreeding coots, with the objective of defining techniques applicable for all

  18. [Genomic structure and sex determination in squamate reptiles].

    PubMed

    Kichigin, I G; Trifonov, V A

    2013-01-01

    Squamata is the largest reptilian order including snakes and lizards which occupies a key position in phylogeny of amniotes. A variety of sex determination modes in lizards is one of the most interesting parts of the biology of this order. These mechanisms are genomic sex determination (both XY and ZW systems) and temperature-dependent sex determination. Studies of squamata sex chromosomes are pivotal for understanding evolution of other vertebrate sex chromosomes. Unfortunately, this clade has long been neglected by molecular geneticists. In this paper, we describe recent data on molecular cytogenetics and genomics of squamates, evolution of their sex chromosomes and sex determination mechanisms.

  19. Viviparity and temperature-dependent sex determination.

    PubMed

    Robert, K A; Thompson, M B

    2010-01-01

    Although temperature-dependent sex determination (TSD) has been a 'hot topic' for well over 30 years, the discovery of TSD in viviparous taxa is recent. Viviparity and TSD was regarded unlikely on theoretical grounds as viviparity allows for high stable developmental temperatures through maternal basking. However, pregnant squamates of many species choose different body temperatures from non-pregnant females and males, and we now know that differential temperature selection by viviparous species with TSD allows for the production of sons or daughters. Three species of squamate reptiles (all are skinks) are now know to exhibit TSD. The physiological mechanism by which viviparous reptiles control the sex of their offspring is not understood, but exposure to different operational sex ratios in the adult population is a factor in some species. The functional role of sex steroid hormones in egg yolk and how the hormones are manipulated in utero is still an area requiring detailed investigation. Fast maturing squamate reptiles provide an excellent, but as yet underutilized, model system for studying the adaptive significance of TSD, and the occurrence of TSD in viviparous species requires substantially more work on a phylogenetically diverse range of species.

  20. Molecular mechanisms involved in mammalian primary sex determination.

    PubMed

    She, Zhen-Yu; Yang, Wan-Xi

    2014-08-01

    Sex determination refers to the developmental decision that directs the bipotential genital ridge to develop as a testis or an ovary. Genetic studies on mice and humans have led to crucial advances in understanding the molecular fundamentals of sex determination and the mutually antagonistic signaling pathway. In this review, we summarize the current molecular mechanisms of sex determination by focusing on the known critical sex determining genes and their related signaling pathways in mammalian vertebrates from mice to humans. We also discuss the underlying delicate balance between testis and ovary sex determination pathways, concentrating on the antagonisms between major sex determining genes.

  1. Methyltestosterone alters sex determination in the American alligator (Alligator mississippiensis).

    PubMed

    Murray, Christopher M; Easter, Michael; Merchant, Mark; Rheubert, Justin L; Wilson, Kelly A; Cooper, Amos; Mendonça, Mary; Wibbels, Thane; Marin, Mahmood Sasa; Guyer, Craig

    2016-09-15

    Effects of xenobiotics can be organizational, permanently affecting anatomy during embryonic development, and/or activational, influencing transitory actions during adulthood. The organizational influence of endocrine-disrupting contaminants (EDC's) produces a wide variety of reproductive abnormalities among vertebrates that exhibit temperature-dependent sex determination (TSD). Typically, such influences result in subsequent activational malfunction, some of which are beneficial in aquaculture. For example, 17-αmethyltestosterone (MT), a synthetic androgen, is utilized in tilapia farming to bias sex ratio towards males because they are more profitable. A heavily male-biased hatchling sex ratio is reported from a crocodile population near one such tilapia operation in Guanacaste, Costa Rica. In this study we test the effects of MT on sexual differentiation in American alligators, which we used as a surrogate for all crocodilians. Experimentally, alligators were exposed to MT in ovo at standard ecotoxicological concentrations. Sexual differentiation was determined by examination of primary and secondary sex organs post hatching. We find that MT is capable of producing male embryos at temperatures known to produce females and demonstrate a dose-dependent gradient of masculinization. Embryonic exposure to MT results in hermaphroditic primary sex organs, delayed renal development and masculinization of the clitero-penis (CTP).

  2. Conflict over condition-dependent sex allocation can lead to mixed sex-determination systems.

    PubMed

    Kuijper, Bram; Pen, Ido

    2014-11-01

    Theory suggests that genetic conflicts drive turnovers between sex-determining mechanisms, yet these studies only apply to cases where sex allocation is independent of environment or condition. Here, we model parent-offspring conflict in the presence of condition-dependent sex allocation, where the environment has sex-specific fitness consequences. Additionally, one sex is assumed to be more costly to produce than the other, which leads offspring to favor a sex ratio less biased toward the cheaper sex in comparison to the sex ratio favored by mothers. The scope for parent-offspring conflict depends on the relative frequency of both environments: when one environment is less common than the other, parent-offspring conflict can be reduced or even entirely absent, despite a biased population sex ratio. The model shows that conflict-driven invasions of condition-independent sex factors (e.g., sex chromosomes) result either in the loss of condition-dependent sex allocation, or, interestingly, lead to stable mixtures of condition-dependent and condition-independent sex factors. The latter outcome corresponds to empirical observations in which sex chromosomes are present in organisms with environment-dependent sex determination. Finally, conflict can also favor errors in environmental perception, potentially resulting in the loss of condition-dependent sex allocation without genetic changes to sex-determining loci.

  3. Does Sex Education Affect Adolescent Sexual Behaviors and Health?

    ERIC Educational Resources Information Center

    Sabia, Joseph J.

    2006-01-01

    This study examines whether offering sex education to young teenagers affects several measures of adolescent sexual behavior and health: virginity status, contraceptive use, frequency of intercourse, likelihood of pregnancy, and probability of contracting a sexually transmitted disease. Using data from the National Longitudinal Study of Adolescent…

  4. Sex Determination: Separate Sexes Are a Double Turnoff in Melons.

    PubMed

    Ma, Wen-Juan; Pannell, John R

    2016-02-22

    Flowers with only one sexual function typically result from the developmental suppression of the other. A recent study that shows how this is achieved has important implications for models of the evolution of separate sexes in plants.

  5. Determination of sex from various hand dimensions of Koreans.

    PubMed

    Jee, Soo-Chan; Bahn, Sangwoo; Yun, Myung Hwan

    2015-12-01

    In the case of disasters or crime scenes, forensic anthropometric methods have been utilized as a reliable way to quickly confirm the identification of victims using only a few parts of the body. A total of 321 measurement data (from 167 males and 154 females) were analyzed to investigate the suitability of detailed hand dimensions as discriminators of sex. A total of 29 variables including length, breadth, thickness, and circumference of fingers, palm, and wrist were measured. The obtained data were analyzed using descriptive statistics and t-test. The accuracy of sex indication from the hand dimensions data was found using discriminant analysis. The age effect and interaction effect according to age and sex on hand dimensions were analyzed by ANOVA. The prediction accuracy on a wide age range was also compared. According to the results, the maximum hand circumference showed the highest accuracy of 88.6% for predicting sex for males and 89.6% for females. Although the breadth, circumference, and thickness of hand parts generally showed higher accuracy than the lengths of hand parts in predicting the sex of the participant, the breadth and circumference of some finger joints showed a significant difference according to age and gender. Thus, the dimensions of hand parts which are not affected by age or gender, such as hand length, palm length, hand breadth, and maximum hand thickness, are recommended to be used first in sex determination for a wide age range group. The results suggest that the detailed hand dimensions can also be used to identify sex for better accuracy; however, the aging effects need to be considered in estimating aged suspects.

  6. Finding clues to the riddle of sex determination in zebrafish.

    PubMed

    Nagabhushana, A; Mishra, Rakesh K

    2016-03-01

    How sex is determined has been one of the most intriguing puzzles in biology since antiquity. Although a fundamental process in most metazoans, there seems to be myriad of ways in which sex can be determined - from genetic to environmental sex determination. This variation is limited mainly to upstream triggers with the core of sex determination pathway being conserved. Zebrafish has gained prominence as a vertebrate model system to study development and disease. However, very little is known about its primary sex determination mechanism. Here we review our current understanding of the sex determination in zebrafish. Zebrafish lack identifiable heteromorphic sex chromosomes and sex is determined by multiple genes, with some influence from the environment. Recently, chromosome 4 has been identified as sex chromosome along with few sex-linked loci on chromosomes 5 and 16. The identities of candidate sex-linked genes, however, have remained elusive. Sex in zebrafish is also influenced by the number of meiotic oocytes in the juvenile ovary, which appear to instruct retention of the ovarian fate. The mechanism and identity of this instructive signal remain unknown. We hypothesize that sex in zebrafish is a culmination of combinatorial effects of the genome, germ cells and the environment with inputs from epigenetic factors translating the biological meaning of this interaction.

  7. Do scientific theories affect men's evaluations of sex crimes?

    PubMed

    Dar-Nimrod, Ilan; Heine, Steven J; Cheung, Benjamin Y; Schaller, Mark

    2011-01-01

    Evolutionary psychology accounts of gender differences in sexual behaviors in general and men's sexual aggression, in particular, has been criticized for legitimizing males' sexual misconduct. To empirically assess such critiques, two studies examined how men's judgments of male sex crimes (solicitation of sex from a prostitute; rape) are influenced by exposure to (a) evolutionary psychological theories and (b) social-constructivist theories. Across two studies, a consistent pattern emerged compared with a control condition (a) exposure to evolutionary psychology theories had no observable impact on male judgments of men's criminal sexual behavior, whereas (b) exposure to social-constructivist theories did affect judgments, leading men to evaluate sex crimes more harshly. Additional results (from Study 2) indicate that this effect is mediated by perceptions of male control over sexual urges. These results have implications for journalists, educators, and scientists. Aggr. Behav. 37:440-449, 2011. © 2011 Wiley-Liss, Inc.

  8. A Review of Sex Determining Mechanisms in Geckos (Gekkota: Squamata)

    PubMed Central

    Gamble, T.

    2010-01-01

    Geckos are a species-rich clade of reptiles possessing diverse sex determining mechanisms. Some species possess genetic sex determination, with both male and female heterogamety, while other species have temperature-dependent sex determination. I compiled information from the literature on the taxonomic distribution of these sex determining mechanisms in geckos. Using phylogenetic data from the literature, I reconstructed the minimum number of transitions among these sex determining mechanisms with parsimony-based ancestral state reconstruction. While only a small number of gecko species have been characterized, numerous changes among sex determining mechanisms were inferred. This diversity, coupled with the high frequency of transitions, makes geckos excellent candidates as a model clade for the study of vertebrate sex determination and evolution. PMID:20234154

  9. Feedback Control of Sex Determination by Dosage Compensation Revealed through Caenorhabditis Elegans Sdc-3 Mutations

    PubMed Central

    DeLong, L.; Plenefisch, J. D.; Klein, R. D.; Meyer, B. J.

    1993-01-01

    In Caenorhabditis elegans, sex determination and dosage compensation are coordinately controlled through a group of genes that respond to the primary sex determination signal. Here we describe a new gene, sdc-3, that also controls these processes. In contrast to previously described genes, the sex determination and dosage compensation activities of sdc-3 are separately mutable, indicating that they function independently. Paradoxically, the sdc-3 null phenotype fails to reveal the role of sdc-3 in sex determination: sdc-3 null mutations that lack both activities disrupt dosage compensation but cause no overt sexual transformation. We demonstrate that the dosage compensation defect of sdc-3 null alleles suppresses their sex determination defect. This self-suppression phenomenon provides a striking example of how a disruption in dosage compensation can affect sexual fate. We propose that the suppression occurs via a feedback mechanism that acts at an early regulatory step in the sex determination pathway to promote proper sexual identity. PMID:8462848

  10. Sex without sex chromosomes: genetic architecture of multiple loci independently segregating to determine sex ratios in the copepod Tigriopus californicus.

    PubMed

    Alexander, H J; Richardson, J M L; Edmands, S; Anholt, B R

    2015-12-01

    Sex-determining systems are remarkably diverse and may evolve rapidly. Polygenic sex-determination systems are predicted to be transient and evolutionarily unstable, yet examples have been reported across a range of taxa. Here, we provide the first direct evidence of polygenic sex determination in Tigriopus californicus, a harpacticoid copepod with no heteromorphic sex chromosomes. Using genetically distinct inbred lines selected for male- and female-biased clutches, we generated a genetic map with 39 SNPs across 12 chromosomes. Quantitative trait locus mapping of sex ratio phenotype (the proportion of male offspring produced by an F2 female) in four F2 families revealed six independently segregating quantitative trait loci on five separate chromosomes, explaining 19% of the variation in sex ratios. The sex ratio phenotype varied among loci across chromosomes in both direction and magnitude, with the strongest phenotypic effects on chromosome 10 moderated to some degree by loci on four other chromosomes. For a given locus, sex ratio phenotype varied in magnitude for individuals derived from different dam lines. These data, together with the environmental factors known to contribute to sex determination, characterize the underlying complexity and potential lability of sex determination, and confirm the polygenic architecture of sex determination in T. californicus.

  11. [Elucidation of key genes in sex determination in genetics teaching].

    PubMed

    Li, Meng; He, Zhumei

    2014-06-01

    Sex is an important and complex feature of organisms, which is controlled by the genetic and environmental factors. The genetic factors, i.e., genes, are vital in sex determination. However, not all the related genes play the same roles, and some key genes play a vital role in the sex determination and differentiation. With the development of the modern genetics, a great progress on the key genes has been made in sex determination. In this review, we summarize the mechanism of sex determination and the strategy of how to study the key genes in sex determination. It will help us to understand the mechanism of sex determination better in the teaching of genetics.

  12. Age, sex and reproductive status affect boldness in dogs.

    PubMed

    Starling, Melissa J; Branson, Nicholas; Thomson, Peter C; McGreevy, Paul D

    2013-09-01

    Boldness in dogs is believed to be one end of the shy-bold axis, representing a super-trait. Several personality traits fall under the influence of this super-trait. Previous studies have found that boldness is affected by breed and breed groups, influences performance in sporting dogs, and is affected in some cases by the sex of the dogs. This study investigated the effects of dog age, sex and reproductive status on boldness in dogs by way of a dog personality survey circulated amongst Australian dog owners. Age had a significant effect on boldness (F=4.476; DF=16,758; P<0.001), with boldness decreasing with age in years. Males were bolder than females (F=19.219; DF=1,758; P<0.001) and entire dogs were bolder than neutered dogs (F=4.330; DF=1,758; P<0.038). The study indicates how behaviour may change in adult dogs as they age and adds to the literature on how sex and reproductive status may affect personality in dogs.

  13. Effective heritability of targets of sex-ratio selection under environmental sex determination.

    PubMed

    McGaugh, S E; Janzen, F J

    2011-04-01

    Selection is expected to maintain primary sex ratios at an evolutionary equilibrium. In organisms with temperature-dependent sex determination (TSD), targets of sex-ratio selection include the thermal sensitivity of the sex-determining pathway (hereafter, sex determination threshold) and nest-site choice. However, offspring sex may be canalized for nests located in thermally extreme environments; thus, genetic variance for the sex determination threshold is not expressed and is invisible to direct selection. The concept of 'effective heritability' accounts for this dependence and provides a more realistic prediction of the expected evolutionary response to selection in the wild. Past estimates of effective heritability of the sex determination threshold, which were derived from laboratory data, suggested that the potential for the sex determination threshold to evolve in the wild was extremely low. We re-evaluated original estimates of this parameter by analysing field-collected measures of nest temperatures, vegetation cover and clutch sex ratios from nests in a population of painted turtles (Chrysemys picta). We coupled these data with measurements of broad-sense heritability of the sex determination threshold in C. picta, using an experiment that splits clutches of eggs between a constant temperature (i.e. typical laboratory incubation) and a daily fluctuating temperature (i.e. similar to natural nests) with the same mean. We found that (i) the effective heritability of the sex determination threshold appears to have been historically underestimated and the effective heritability of nest-site choice has been overestimated and (ii) significant family-by-incubation treatment interaction exists for sex for C. picta between constant- and fluctuating-temperature regimes. Our results suggest that the thermal sensitivity of the sex-determining pathway may play a larger, more complex role in the microevolution of TSD than traditionally thought.

  14. A Century of Sex Determination in Flowering Plants.

    PubMed

    Harkess, Alex; Leebens-Mack, Jim

    2017-01-01

    Plants have evolved a diverse array of strategies for sexual reproduction, particularly through the modification of male and female organs at distinct points in development. The immense variation in sexual systems across the land plants provides a unique opportunity to study the genetic, epigenetic, phylogenetic, and ecological underpinnings of sex determination. Here, we reflect on more than a century of research into flowering plant sex determination, placing a particular focus on the foundational genetic and cytogenetic observations, experiments, and hypotheses. Building on the seminal work on the genetics of plant sex, modern comparative genomic analyses now allow us to address longstanding questions about sex determination and the origins of sex chromosomes.

  15. Population density affects sex ratio variation in red deer.

    PubMed

    Kruuk, L E; Clutton-Brock, T H; Albon, S D; Pemberton, J M; Guinness, F E

    1999-06-03

    Many mammal populations show significant deviations from an equal sex ratio at birth, but these effects are notoriously inconsistent. This may be because more than one mechanism affects the sex ratio and the action of these mechanisms depends on environmental conditions. Here we show that the adaptive relationship between maternal dominance and offspring sex ratio previously demonstrated in red deer (Cervus elaphus), where dominant females produced more males, disappeared at high population density. The proportion of males born each year declined with increasing population density and with winter rainfall, both of which are environmental variables associated with nutritional stress during pregnancy. These changes in the sex ratio corresponded to reductions in fecundity, suggesting that they were caused by differential fetal loss. In contrast, the earlier association with maternal dominance is presumed to have been generated pre-implantation. The effects of one source of variation superseded the other within about two generations. Comparison with other ungulate studies indicates that positive associations between maternal quality and the proportion of male offspring born have only been documented in populations below carrying capacity.

  16. Sex Determination: Why So Many Ways of Doing It?

    PubMed Central

    Bachtrog, Doris; Mank, Judith E.; Peichel, Catherine L.; Kirkpatrick, Mark; Otto, Sarah P.; Ashman, Tia-Lynn; Hahn, Matthew W.; Kitano, Jun; Mayrose, Itay; Ming, Ray; Perrin, Nicolas; Ross, Laura; Valenzuela, Nicole; Vamosi, Jana C.

    2014-01-01

    Sexual reproduction is an ancient feature of life on earth, and the familiar X and Y chromosomes in humans and other model species have led to the impression that sex determination mechanisms are old and conserved. In fact, males and females are determined by diverse mechanisms that evolve rapidly in many taxa. Yet this diversity in primary sex-determining signals is coupled with conserved molecular pathways that trigger male or female development. Conflicting selection on different parts of the genome and on the two sexes may drive many of these transitions, but few systems with rapid turnover of sex determination mechanisms have been rigorously studied. Here we survey our current understanding of how and why sex determination evolves in animals and plants and identify important gaps in our knowledge that present exciting research opportunities to characterize the evolutionary forces and molecular pathways underlying the evolution of sex determination. PMID:24983465

  17. Sex Differences in Determinants of Antisocial Behavior.

    ERIC Educational Resources Information Center

    Caplan, Paula J.

    Sex differences in antisocial behavior in 20 elementary school children were explored by using two constructs: need for achievement and need for social approval. It was hypothesized that sex differences would appear only under certain conditions. For boys, more antisocial behavior would occur when the need for achievement was frustrated, while for…

  18. Transitions between sex-determining systems in reptiles and amphibians.

    PubMed

    Sarre, Stephen D; Ezaz, Tariq; Georges, Arthur

    2011-01-01

    Important technological advances in genomics are driving a new understanding of the evolution of sex determination in vertebrates. In particular, comparative chromosome mapping in reptiles has shown an intriguing distribution of homology in sex chromosomes across reptile groups. When this new understanding is combined with the widespread distribution of genetic and temperature-dependent sex-determination mechanisms among reptiles, it is apparent that transitions between modes have occurred many times, as they have for amphibians (particularly between male and female heterogamety). It is also likely that thermosensitivity in sex determination is a key factor in those transitions in reptiles, and possibly in amphibians too. New models of sex determination involving temperature thresholds are providing the framework for the investigation of transitions and making possible key predictions about the homologies and sex-determination patterns expected among taxa in these groups. Molecular cytogenetics and other genomic approaches are essential to providing the fundamental material necessary to make advances in this field.

  19. Seminal plasma affects sperm sex sorting in boars.

    PubMed

    Alkmin, Diego V; Parrilla, Inmaculada; Tarantini, Tatiana; Del Olmo, David; Vazquez, Juan M; Martinez, Emilio A; Roca, Jordi

    2016-04-01

    Two experiments were conducted in boar semen samples to evaluate how both holding time (24h) and the presence of seminal plasma (SP) before sorting affect sperm sortability and the ability of sex-sorted spermatozoa to tolerate liquid storage. Whole ejaculate samples were divided into three aliquots immediately after collection: one was diluted (1:1, v/v) in Beltsville thawing solution (BTS; 50% SP); the SP of the other two aliquots was removed and the sperm pellets were diluted with BTS + 10% of their own SP (10% SP) or BTS alone (0% SP). The three aliquots of each ejaculate were divided into two portions, one that was processed immediately for sorting and a second that was sorted after 24h storage at 15-17°C. In the first experiment, the ability to exhibit well-defined X- and Y-chromosome-bearing sperm peaks (split) in the cytometry histogram and the subsequent sorting efficiency were assessed (20 ejaculates). In contrast with holding time, the SP proportion influenced the parameters examined, as evidenced by the higher number of ejaculates exhibiting split and better sorting efficiency (P<0.05) in semen samples with 0-10% SP compared with those with 50% SP. In a second experiment, the quality (viability, total and progressive motility) and functionality (plasma membrane fluidity and intracellular generation of reactive oxygen species) of sex-sorted spermatozoa were evaluated after 0, 72 and 120h storage at 15-17°C (10 ejaculates). Holding time and SP proportion did not influence the quality or functionality of stored sex-sorted spermatozoa. In conclusion, a holding time as long as 24h before sorting did not negatively affect sex sorting efficiency or the ability of sorted boar spermatozoa to tolerate long-term liquid storage. A high proportion of SP (50%) in the semen samples before sorting reduced the number of ejaculates to be sorted and negatively influenced the sorting efficiency, but did not affect the ability of sex-sorted spermatozoa to tolerate liquid

  20. Sex reversal in Betta splendens Regan with emphasis on the problem of sex determination.

    PubMed

    Lowe, T P; Larkin, J R

    1975-01-01

    To gain insight into the sex-determining mechanism of the Siamese fighting fish, Betta splendens, sex-reversed individuals were bred and the ratios of the spawnings were examined. Sex-reversal of 245 females was undertaken by ovariectomizing them; of these, 104 became sex-reversed. Twenty-three of these latter fish were mated to normal females and eleven spawnings were raised to maturity. These spawnings resulted in all female broods or mixed broods. Were the male fish heterogametic, a view currently held by some authors, no males would be produced in these spawnings. Thus, male heterogamety was not substaintiated in this study. Contrary to other studies, the experimental sex reversal of females is not a rare event since nearly two-thirds of the fish that survived the surgery became sex-reversed. Gross dissection and histological observation of sex-reversed fish revealed a regenerated, unpaired duct which remained after the ovaries had been removed. The tissue of the regenerate was testicular and contained active spermatogenesis. Some alterative methods of sex determination which may apply to the Betta are examined. These include the possibility of two different sex-determining races, the effects of exogenous factors, and a polygenic system of sex determination.

  1. Hormonal and behavioral determinants of the secondary sex ratio.

    PubMed

    Martin, J F

    1995-01-01

    The timing of insemination relative to ovulation and the frequency of insemination appear prominently in analyses of variations in human secondary sex ratios. Explanations invoking these variables are shown to be inadequate. A new synthetic model of sex determination is proposed in which the sex of offspring is powerfully determined by the state of the cervical mucus. The cervical state is then shown to be a function of hormonal factors endogenous to the female in interaction with the effects of previous inseminations.

  2. Novel PCR assay for determining the genetic sex of mice.

    PubMed

    McFarlane, L; Truong, V; Palmer, J S; Wilhelm, D

    2013-01-01

    A number of studies require the determination of the genetic sex of mouse embryos before sexual differentiation and/or of mutant mice that display partial or complete sex reversal. The majority of current methods for sexing by PCR involve multiplexing of 2 primer pairs. We have developed a novel sexing PCR using a single primer pair that amplifies fragments from the X and the Y chromosome with a clear size difference between the respective amplicons. This assay provides a rapid and reliable method to identify the genetic sex of mice across different mouse strains.

  3. Sex determining genes and sexual differentiation in a marsupial.

    PubMed

    Pask, A; Renfree, M B

    2001-11-01

    The role of genes in the differentiation of the testis and ovary has been extensively studied in the human and the mouse. Despite over a decade of investigations, the precise roles of genes and their interactions in the pathway of sex determination are still unclear. We have chosen to take a comparative look at sex determination and differentiation to gain insights into the evolution and the conserved functions of these genes. To achieve this, we have examined a wide variety of eutherian sex determining genes in a marsupial, the tammar wallaby, to determine which genes have a conserved and fundamental mammalian sex determining role. These investigations have provided many unique insights. Here, we review the recent molecular and endocrine investigations into sexual development in marsupials, and highlight how these studies have shed light on the roles of genes and hormones in mammalian sex determination and differentiation.

  4. Sex determination in flowering plants: papaya as a model system.

    PubMed

    Aryal, Rishi; Ming, Ray

    2014-03-01

    Unisexuality in flowering plants evolved from a hermaphrodite ancestor. Transition from hermaphrodite to unisexual flowers has occurred multiple times across the different lineages of the angiosperms. Sexuality in plants is regulated by genetic, epigenetic and physiological mechanisms. The most specialized mechanism of sex determination is sex chromosomes. The sex chromosomes ensure the stable segregation of sexual phenotypes by preventing the recombination of sex determining genes. Despite continuous efforts, sex determining genes of dioecious plants have not yet been cloned. Concerted efforts with various model systems are necessary to understand the complex mechanism of sex determination in plants. Papaya (Carica papaya L.) is a tropical fruit tree with three sex forms, male, hermaphrodite, and female. Sexuality in papaya is determined by an XY chromosome system that is in an early evolutionary stage. The male and hermaphrodite of papaya are controlled by two different types of Y chromosomes: Y and Y(h). Large amounts of information in the area of genetics, genomics, and epigenetics of papaya have been accumulated over the last few decades. Relatively short lifecycle, small genome size, and readily available genetic and genomic resources render papaya an excellent model system to study sex determination and sex chromosomes in flowering plants.

  5. Temperature, Genes, and Sex: a Comparative View of Sex Determination in Trachemys scripta and Mus musculus

    PubMed Central

    Yao, Humphrey H-C; Capel, Blanche

    2014-01-01

    Sex determination, the step at which differentiation of males and females is initiated in the embryo, is of central importance to the propagation of species. There is a remarkable diversity of mechanisms by which sex determination is accomplished. In general these mechanisms fall into two categories: Genetic Sex Determination (GSD), which depends on genetic differences between the sexes, and Environmental Sex Determination (ESD), which depends on extrinsic cues. In this review we will consider these two means of determining sex with particular emphasis on two species: a species that depends on GSD, Mus musculus, and a species that depends on ESD, Trachemys scripta. Because the structural organization of the adult testis and ovary is very similar across vertebrates, most biologists had expected that the pathways downstream of the sex-determining switch would be conserved. However, emerging data indicate that not only are the initial sex determining mechanisms different, but the downstream pathways and morphogenetic events leading to the development of a testis or ovary also are different. PMID:16046442

  6. Sex-determination and sex-preselection tests in India: modern techniques for femicide.

    PubMed

    Patel, V

    1989-01-01

    "In India during recent years techniques that were developed to detect genetic deformities in fetuses have been increasingly used mainly for determining the sex of fetuses so that female fetuses can be exterminated. This paper explores the factors underlying this practice and the related practice of preselecting the sex of offspring, examining both the widespread availability and use of sex-determination and sex-preselection techniques and the root causes of female devaluation in India. Also presented and analyzed are the responses of women's groups and the government to these uses of modern technology to carry out the ultimate abuse of women--not allowing them to be born."

  7. A comparative view on sex determination in medaka.

    PubMed

    Schartl, Manfred

    2004-07-01

    In fish, an amazing variety of sex determination mechanisms are known, ranging from hermaphroditism to gonochorism and from environmental to genetic sex determination. This makes fish especially suited for studying sex determination from the evolutionary point of view. In several fish groups, different sex determination mechanisms are found in closely related species, and evolution of this process is still ongoing in recent organisms. The medaka (Oryzias latipes) has an XY-XX genetic sex determination system. The Y-chromosome in this species is at an early stage of evolution. The molecular differences between X and Y are only very subtle and the Y-specific segment is very small. The sex-determining region has accumulated duplicated sequences from elsewhere in the genome, leading to recombinational isolation. The region contains a candidate for the male sex-determining gene named dmrt1bY. This gene arose through duplication of an autosomal chromosome fragment of linkage group 9. While all other genes degenerated, dmrt1bY is the only functional gene in the Y-specific region. The duplication leading to dmrt1bY occurred recently during evolution of the genus Oryzias. This suggests that different genes might be the master sex-determining gene in other fish.

  8. Genomic imprinting and maternal effect genes in haplodiploid sex determination.

    PubMed

    van de Zande, L; Verhulst, E C

    2014-01-01

    The research into the Drosophila melanogaster sex-determining system has been at the basis of all further research on insect sex determination. This further research has made it clear that, for most insect species, the presence of sufficient functional Transformer (TRA) protein in the early embryonic stage is essential for female sexual development. In Hymenoptera, functional analysis of sex determination by knockdown studies of sex-determining genes has only been performed for 2 species. The first is the social insect species Apis mellifera, the honeybee, which has single-locus complementary sex determination (CSD). The other species is the parasitoid Nasonia vitripennis, the jewel wasp. Nasonia has a non-CSD sex-determining system, described as the maternal effect genomic imprinting sex determination system (MEGISD). Here, we describe the arguments that eventually led to the formulation of MEGISD and the experimental data that supported and refined this model. We evaluate the possibility that DNA methylation lies at the basis of MEGISD and briefly address the role of genomic imprinting in non-CSD sex determination in other Hymenoptera.

  9. Genotypic sex determination enabled adaptive radiations of extinct marine reptiles.

    PubMed

    Organ, Chris L; Janes, Daniel E; Meade, Andrew; Pagel, Mark

    2009-09-17

    Adaptive radiations often follow the evolution of key traits, such as the origin of the amniotic egg and the subsequent radiation of terrestrial vertebrates. The mechanism by which a species determines the sex of its offspring has been linked to critical ecological and life-history traits but not to major adaptive radiations, in part because sex-determining mechanisms do not fossilize. Here we establish a previously unknown coevolutionary relationship in 94 amniote species between sex-determining mechanism and whether a species bears live young or lays eggs. We use that relationship to predict the sex-determining mechanism in three independent lineages of extinct Mesozoic marine reptiles (mosasaurs, sauropterygians and ichthyosaurs), each of which is known from fossils to have evolved live birth. Our results indicate that each lineage evolved genotypic sex determination before acquiring live birth. This enabled their pelagic radiations, where the relatively stable temperatures of the open ocean constrain temperature-dependent sex determination in amniote species. Freed from the need to move and nest on land, extreme physical adaptations to a pelagic lifestyle evolved in each group, such as the fluked tails, dorsal fins and wing-shaped limbs of ichthyosaurs. With the inclusion of ichthyosaurs, mosasaurs and sauropterygians, genotypic sex determination is present in all known fully pelagic amniote groups (sea snakes, sirenians and cetaceans), suggesting that this mode of sex determination and the subsequent evolution of live birth are key traits required for marine adaptive radiations in amniote lineages.

  10. Sex determination in horses - current status and future perspectives.

    PubMed

    Aurich, Christine; Schneider, Jana

    2014-04-01

    In the equine species, sex determination of the conceptus is of growing interest for the breeding industry. In horses, the sex ratio of the offspring depends on changes in body condition of the mother at conception and under natural conditions may thus markedly deviate from an expected 1:1 ratio. Insemination with sex-sorted spermatozoa allows a pronounced shift of the sex ratio but at present pregnancy rates are low and vary considerably under field conditions. In equine embryo transfer programmes, sex determination in embryos before transfer via genetic methods is a promising approach with high reliability. In ongoing pregnancies, fetal sex can be determined in utero by transrectal or transabdominal ultrasound between days 57 and 220 after ovulation, but experience is required to achieve satisfying accuracy. Recently, genetic sexing via identification of circulating cell-free fetal DNA in the maternal circulation has been successfully performed in the last three months of pregnancy. Development of this technique may also allow fetal sex determination at earlier stages of pregnancy. Further research is required to allow for techniques that enable sex determination in equine embryos as well as in ongoing pregnancies under field conditions.

  11. Insect sex determination: it all evolves around transformer.

    PubMed

    Verhulst, Eveline C; van de Zande, Louis; Beukeboom, Leo W

    2010-08-01

    Insects exhibit a variety of sex determining mechanisms including male or female heterogamety and haplodiploidy. The primary signal that starts sex determination is processed by a cascade of genes ending with the conserved switch doublesex that controls sexual differentiation. Transformer is the doublesex splicing regulator and has been found in all examined insects, indicating its ancestral function as a sex-determining gene. Despite this conserved function, the variation in transformer nucleotide sequence, amino acid composition and protein structure can accommodate a multitude of upstream sex determining signals. Transformer regulation of doublesex and its taxonomic distribution indicate that the doublesex-transformer axis is conserved among all insects and that transformer is the key gene around which variation in sex determining mechanisms has evolved.

  12. No evidence of temperature-dependent sex determination or sex-biased embryo mortality in the chicken.

    PubMed

    Collins, K E; Jordan, B J; McLendon, B L; Navara, K J; Beckstead, R B; Wilson, J L

    2013-12-01

    Skewing the sex ratio at hatch in commercial poultry would be economically beneficial to the poultry industry. The existence of temperature-dependent sex determination is uncertain in birds. This experiment investigated if incubation temperatures skew sex ratios of commercial broilers. Three incubators were each set at a hot (38.3°C), standard (37.5°C), or cool (36.7°C) single-stage incubation temperature one time over 3 trials to eliminate incubator effect as a Latin square design. Sex ratios of hatched chicks and dead embryos were monitored. In one trial, embryo weights were evaluated. The percentages of male hatched chicks did not differ based on incubation temperature (P = 0.4486; 49.5% in the hot treatment, 51.4% at standard temperature, and 49.8% in the cool treatment). The percent hatch of eggs set was lower in the hot treatment (83.6%) than the standard (93.5%) and cool (91.6%) treatments (P < 0.0001) with greater late embryonic mortality in the hot treatment (P < 0.0001); however, the sex ratio of dead embryos did not differ among treatments (P = 0.9863). Pooled data of embryo mortality found no sex-biased embryo mortality with a female/male sex ratio of 1.22:1 (χ(2) = 1.27; P = 0.2596). Embryos from the hot treatment were heavier than those from the standard treatment by d 14 of incubation and were heavier than the embryos from the cool treatment by d 9 of incubation (P < 0.0001). These data indicate that incubation temperature affects embryonic mortality and embryonic growth rate, but it does not affect the sex ratio of broiler chickens. Additionally, no evidence was found for sex-biased embryo mortality in commercial broilers even at the incubation temperatures of this study.

  13. Complementary sex determination in the parasitic wasp Diachasmimorpha longicaudata.

    PubMed

    Carabajal Paladino, Leonela; Muntaabski, Irina; Lanzavecchia, Silvia; Le Bagousse-Pinguet, Yoann; Viscarret, Mariana; Juri, Marianela; Fueyo-Sánchez, Luciana; Papeschi, Alba; Cladera, Jorge; Bressa, María José

    2015-01-01

    We studied the sex determination in Diachasmimorpha longicaudata, a parasitoid braconid wasp widely used as biological control agent of fruit pest tephritid flies. We tested the complementary sex determination hypothesis (CSD) known in at least 60 species of Hymenoptera. According to CSD, male or female development depends on the allelic composition of one sex locus (single-locus CSD) or multiple sex loci (multiple-locus CSD). Hemizygote individuals are normal haploid males, and heterozygotes for at least one sex locus are normal diploid females, but homozygotes for all the sex loci are diploid males. In order to force the occurrence of diploid males in D. longicaudata, we established highly inbred lines and examined their offspring using chromosome counting, flow cytometry, and sex ratio analysis. We found that when mother-son crosses were studied, this wasp produced about 20% of diploid males out of the total male progeny. Our results suggest that this parasitoid may represent the second genus with multiple-locus CSD in Hymenoptera. Knowledge about the sex determination system in D. longicaudata is relevant for the improvement of mass rearing protocols of this species. This information also provides the necessary background for further investigations on the underlying molecular mechanisms of sex determination in this species, and a better insight into the evolution of this pathway in Hymenoptera in particular and insects in general.

  14. Complementary Sex Determination in the Parasitic Wasp Diachasmimorpha longicaudata

    PubMed Central

    Carabajal Paladino, Leonela; Muntaabski, Irina; Lanzavecchia, Silvia; Le Bagousse-Pinguet, Yoann; Viscarret, Mariana; Juri, Marianela; Fueyo-Sánchez, Luciana; Papeschi, Alba; Cladera, Jorge; Bressa, María José

    2015-01-01

    We studied the sex determination in Diachasmimorpha longicaudata, a parasitoid braconid wasp widely used as biological control agent of fruit pest tephritid flies. We tested the complementary sex determination hypothesis (CSD) known in at least 60 species of Hymenoptera. According to CSD, male or female development depends on the allelic composition of one sex locus (single-locus CSD) or multiple sex loci (multiple-locus CSD). Hemizygote individuals are normal haploid males, and heterozygotes for at least one sex locus are normal diploid females, but homozygotes for all the sex loci are diploid males. In order to force the occurrence of diploid males in D. longicaudata, we established highly inbred lines and examined their offspring using chromosome counting, flow cytometry, and sex ratio analysis. We found that when mother-son crosses were studied, this wasp produced about 20% of diploid males out of the total male progeny. Our results suggest that this parasitoid may represent the second genus with multiple-locus CSD in Hymenoptera. Knowledge about the sex determination system in D. longicaudata is relevant for the improvement of mass rearing protocols of this species. This information also provides the necessary background for further investigations on the underlying molecular mechanisms of sex determination in this species, and a better insight into the evolution of this pathway in Hymenoptera in particular and insects in general. PMID:25789748

  15. Frontal sinus parameters in computed tomography and sex determination.

    PubMed

    Akhlaghi, Mitra; Bakhtavar, Khadijeh; Moarefdoost, Jhale; Kamali, Artin; Rafeifar, Shahram

    2016-03-01

    The frontal sinus is a sturdy part of the skull that is likely to be retrieved for forensic investigations. We evaluated frontal sinus parameters in paranasal sinus computed tomography (CT) images for sex determination. The study was conducted on 200 normal paranasal sinus CT images of 100 men and 100 women of Persian origin. We categorized the studied population into three age groups of 20-34, 35-49 and ⩾ 50 years. The number of partial septa in the right frontal sinus and the maximum height and width were significantly different between the two sexes. The highest precision for sex determination was for the maximum height of the left frontal sinus (61.3%). In the 20-34 years age-group, height and width of the frontal sinus were significantly different between the two sexes and the height of the left sinus had the highest precision (60.8%). In the 35-49 years age-group, right anterior-posterior diameter had a sex determination precision of 52.3%. No frontal sinus parameter reached a statistically significant level for sex determination in the ⩾ 50 years age-group. The number of septa and scallopings were not useful in sex determination. Frontal sinus parameters did not have a high precision in sex determination among Persian adults.

  16. Sex determination: ciliates' self-censorship.

    PubMed

    Bloomfield, Gareth

    2014-07-07

    Differentiation involves the expression of certain latent cellular characteristics and the repression of others. A new study has revealed how Paramecium uses short RNAs to delete information from the somatic genome of one of its two sexes.

  17. Vertebrate sex-determining genes play musical chairs.

    PubMed

    Pan, Qiaowei; Anderson, Jennifer; Bertho, Sylvain; Herpin, Amaury; Wilson, Catherine; Postlethwait, John H; Schartl, Manfred; Guiguen, Yann

    2016-01-01

    Sexual reproduction is one of the most highly conserved processes in evolution. However, the genetic and cellular mechanisms making the decision of whether the undifferentiated gonad of animal embryos develops either towards male or female are manifold and quite diverse. In vertebrates, sex-determining mechanisms range from environmental to simple or complex genetic mechanisms and different mechanisms have evolved repeatedly and independently. In species with simple genetic sex-determination, master sex-determining genes lying on sex chromosomes drive the gonadal differentiation process by switching on a developmental program, which ultimately leads to testicular or ovarian differentiation. So far, very few sex-determining genes have been identified in vertebrates and apart from mammals and birds, these genes are apparently not conserved over a larger number of related orders, families, genera, or even species. To fill this knowledge gap and to better explore genetic sex-determination, we propose a strategy (RAD-Sex) that makes use of next-generation sequencing technology to identify genetic markers that define sex-specific segments of the male or female genome.

  18. Altering the sex determination pathway in Drosophila fat body modifies sex-specific stress responses

    PubMed Central

    Neckameyer, Wendi S.

    2014-01-01

    The stress response in Drosophila melanogaster reveals sex differences in behavior, similar to what has been observed in mammals. However, unlike mammals, the sex determination pathway in Drosophila is well established, making this an ideal system to identify factors involved in the modulation of sex-specific responses to stress. In this study, we show that the Drosophila fat body, which has been shown to be important for energy homeostasis and sex determination, is a dynamic tissue that is altered in response to stress in a sex and time-dependent manner. We manipulated the sex determination pathway in the fat body via targeted expression of transformer and transformer-2 and analyzed these animals for changes in their response to stress. In the majority of cases, manipulation of transformer or transformer-2 was able to change the physiological output in response to starvation and oxidative stress to that of the opposite sex. Our data also uncover the possibility of additional downstream targets for transformer and transformer-2 that are separate from the sex determination pathway and can influence behavioral and physiological responses. PMID:24789992

  19. Cretaceous park of sex determination: sex chromosomes are conserved across iguanas

    PubMed Central

    Rovatsos, Michail; Pokorná, Martina; Altmanová, Marie; Kratochvíl, Lukáš

    2014-01-01

    Many poikilothermic vertebrate lineages, especially among amphibians and fishes, possess a rapid turnover of sex chromosomes, while in endotherms there is a notable stability of sex chromosomes. Reptiles in general exhibit variability in sex-determining systems; as typical poikilotherms, they might be expected to have a rapid turnover of sex chromosomes. However, molecular data which would enable the testing of the stability of sex chromosomes are lacking in most lineages. Here, we provide molecular evidence that sex chromosomes are highly conserved across iguanas, one of the most species-rich clade of reptiles. We demonstrate that members of the New World families Iguanidae, Tropiduridae, Leiocephalidae, Phrynosomatidae, Dactyloidae and Crotaphytidae, as well as of the family Opluridae which is restricted to Madagascar, all share homologous sex chromosomes. As our sampling represents the majority of the phylogenetic diversity of iguanas, the origin of iguana sex chromosomes can be traced back in history to the basal splitting of this group which occurred during the Cretaceous period. Iguanas thus show a stability of sex chromosomes comparable to mammals and birds and represent the group with the oldest sex chromosomes currently known among amniotic poikilothermic vertebrates. PMID:24598109

  20. Cretaceous park of sex determination: sex chromosomes are conserved across iguanas.

    PubMed

    Rovatsos, Michail; Pokorná, Martina; Altmanová, Marie; Kratochvíl, Lukáš

    2014-03-01

    Many poikilothermic vertebrate lineages, especially among amphibians and fishes, possess a rapid turnover of sex chromosomes, while in endotherms there is a notable stability of sex chromosomes. Reptiles in general exhibit variability in sex-determining systems; as typical poikilotherms, they might be expected to have a rapid turnover of sex chromosomes. However, molecular data which would enable the testing of the stability of sex chromosomes are lacking in most lineages. Here, we provide molecular evidence that sex chromosomes are highly conserved across iguanas, one of the most species-rich clade of reptiles. We demonstrate that members of the New World families Iguanidae, Tropiduridae, Leiocephalidae, Phrynosomatidae, Dactyloidae and Crotaphytidae, as well as of the family Opluridae which is restricted to Madagascar, all share homologous sex chromosomes. As our sampling represents the majority of the phylogenetic diversity of iguanas, the origin of iguana sex chromosomes can be traced back in history to the basal splitting of this group which occurred during the Cretaceous period. Iguanas thus show a stability of sex chromosomes comparable to mammals and birds and represent the group with the oldest sex chromosomes currently known among amniotic poikilothermic vertebrates.

  1. Sex ratio of equine offspring is affected by the ages of the mare and stallion.

    PubMed

    Santos, Marianna Machado; Maia, Leonardo Lara; Nobre, Daniel Magalhães; Oliveira Neto, José Ferraz; Garcia, Tiago Rezende; Lage, Maria Coeli Gomes Reis; de Melo, Maria Isabel Vaz; Viana, Walmir Santos; Palhares, Maristela Silveira; da Silva Filho, José Monteiro; Santos, Renato Lima; Valle, Guilherme Ribeiro

    2015-10-15

    The aim of this study was to determine the influence of parental age on the sex ratio of offspring in horses. Two trials were performed. In the first trial, the data from a randomly obtained population with a 1:1 sex ratio of 59,950 Mangalarga Marchador horses born in Brazil from 1990 to 2011 were analyzed. The sex ratios of the offspring were compared among groups according to the mare and the stallion ages (from 3 to 25 years). In the first step of the analysis, the mares and stallions were grouped according to age in 5-year intervals. In the second step, the groups were based on the parental age gap at conception. In the third step, the group of the mares and stallions with similar ages from the second step was subdivided, and the different parental age subgroups that were divided into 5-year intervals were compared. In the fourth step, the sex ratio of the offspring was determined according to the ages of the mares and the stallions at conception. The second trial was based on the data from 253 horses of several breeds that were born after natural gestation into a herd from 1989 to 2010, and the offspring of groups that were younger or older than 15 years were compared. The data from both trials were analyzed using a chi-square test (P ≤ 0.01 for the first trial; and P ≤ 0.05 for the second trial) for the comparisons of the sex ratios. In the first trial, the Spearman test (P ≤ 0.01) was used to verify the correlations between the parental age and the offspring sex ratio. In the first trial, the offspring sex ratio decreased as the mare or stallion age increased, and the decrease was more marked for the mares than for the stallions. In the second trial, the mares older than 15 years had more fillies than the younger mares, but the stallion age had no effect on the sex of the offspring. The first trial, with a large number of horses, revealed the pattern of the distribution of the sex ratios of offspring according to the parental age in horses, whereas the

  2. Sex, age, and sex hormones affect recall of words in a directed forgetting paradigm.

    PubMed

    Kerschbaum, Hubert H; Hofbauer, Ildiko; Gföllner, Anna; Ebner, Birgit; Bresgen, Nikolaus; Bäuml, Karl-Heinz T

    2017-01-02

    During the course of serious discussion, an unexpected interruption may induce forgetting of the original topic of a conversation. Sex, age, and sex hormone levels may affect frequency and extension of forgetting. In a list-method directed forgetting paradigm, subjects have to learn two word lists. After learning list 1, subjects receive either a forget or a remember list 1 cue. When the participants had learned list 2 and completed a distraction task, they were asked to write down as many recalled items as possible, starting either with list 1 or list 2 items. In the present study, 96 naturally cycling women, 60 oral contraceptive users, 56 postmenopausal women, and 41 young men were assigned to one of these different experimental conditions. Forget-cued young subjects recall fewer list 1 items (list 1 forgetting) but more list 2 items (list 2 enhancement) compared with remember-cued subjects. However, forget-cued postmenopausal women showed reduced list 1 forgetting but enhanced list 2 retention. Remember-cued naturally cycling women recalled more list 1 items than oral contraceptive users, young men, and postmenopausal women. In forget-cued follicular women, salivary progesterone correlated positively with recalled list 2 items. Salivary 17β-estradiol did not correlate with recalled list 1 or list 2 items in either remember- or forget-cued young women. However, salivary 17β-estradiol correlated with item recall in remember-cued postmenopausal women. Our findings suggest that sex hormones do not globally modulate verbal memory or forgetting, but selectively affect cue-specific processing. © 2016 Wiley Periodicals, Inc.

  3. Osteometric sex determination of burned human skeletal remains.

    PubMed

    Gonçalves, D; Thompson, T J U; Cunha, E

    2013-10-01

    Sex determination of human burned skeletal remains is extremely hard to achieve because of heat-related fragmentation, warping and dimensional changes. In particular, the latter is impeditive of osteometric analyses that are based on references developed on unburned bones. New osteometric references were thus obtained which allow for more reliable sex determinations. The calcined remains of cremated Portuguese individuals were examined and specific standard measurements of the humerus, femur, talus and calcaneus were recorded. This allowed for the compilation of new sex discriminating osteometric references which were then tested on independent samples with good results. Both the use of simple section points and of logistic regression equations provided successful sex classification scores. These references may now be used for the sex determination of burned skeletons. Its reliability is highest for contemporary Portuguese remains but nonetheless these results have important repercussion for forensic research. More conservative use of these references may also prove valuable for other populations as well as for archaeological research.

  4. Sex determination by discriminant function analysis of lumbar vertebrae.

    PubMed

    Ostrofsky, Kelly R; Churchill, Steven E

    2015-01-01

    Sex determination is critical for developing the biological profile of unidentified skeletal remains. When more commonly used elements (os coxa, cranium) for sexing are not available, methods utilizing other skeletal elements are needed. This study aims to assess the degree of sexual dimorphism of the lumbar vertebrae and develop discriminant functions for sex determination from them, using a sample of South African blacks from the Raymond A. Dart Collection (47 males, 51 females). Eleven variables at each lumbar level were subjected to univariate and multivariate discriminant function analyses. Univariate equations produced classification rates ranging from 57.7% to 83.5%, with the highest accuracies associated with dimensions of the vertebral body. Multivariate stepwise analysis generated classification rates ranging from 75.9% to 88.7%. These results are comparable to other methods for sexing the skeleton and indicate that measures of the lumbar vertebrae can be used as an effective tool for sex determination.

  5. Mallard age and sex determination from wings

    USGS Publications Warehouse

    Carney, S.M.; Geis, A.D.

    1960-01-01

    This paper describes characters on the wing plumage of the mallard that indicate age and sex. A key outlines a logical order in which to check age and sex characters on wings. This method was tested and found to be more than 95 percent reliable, although it was found that considerable practice and training with known-age specimens was required to achieve this level of accuracy....The implications of this technique and the sampling procedure it permits are discussed. Wing collections could provide information on production, and, if coupled with a banding program could permit seasonal population estimates to be calculated. In addition, representative samples of wings would provide data to check the reliability of several other waterfowl surveys.

  6. Determinants of Safer Sex Behaviors among College Students

    ERIC Educational Resources Information Center

    Kanekar, Amar; Sharma, Manoj

    2010-01-01

    Safer sex behaviors (monogamy, sexual abstinence, correct and consistent condom usage) are important for prevention of sexually transmitted diseases and HIV/AIDS among college students. The purpose of this article was to review studies addressing determinants of safer sex behaviors among college students. In order to collect materials for this…

  7. Contextual determinants of condom use among female sex exchangers in East Harlem, NYC: an event analysis.

    PubMed

    McMahon, James M; Tortu, Stephanie; Pouget, Enrique R; Hamid, Rahul; Neaigus, Alan

    2006-11-01

    Recent studies have revealed a variety of contexts involving HIV risk behaviors among women who exchange sex for money or drugs. Event analysis was used to identify the individual, relationship, and contextual factors that contribute to these high-risk sex exchange practices. Analyses were conducted on data obtained from 155 drug-using women who reported details of their most recent sex exchange event with male clients. The majority of sex exchange encounters (78%) involved consistent condom use. In multivariable analysis, protective behavior was associated primarily with situational and relationship variables, such as exchange location, substance use, sexual practices, and respondent/client discussion and control. In order to inform HIV prevention programs targeted to women sex exchangers, further research is needed on the contextual determinants of risk, especially with regard to condom-use negotiation and factors involving substance use that adversely affect women's ability to manage protective behavior in the context of sex exchange.

  8. A Neo-Sex Chromosome That Drives Postzygotic Sex Determination in the Hessian Fly (Mayetiola destructor)

    PubMed Central

    Benatti, Thiago R.; Valicente, Fernando H.; Aggarwal, Rajat; Zhao, Chaoyang; Walling, Jason G.; Chen, Ming-Shun; Cambron, Sue E.; Schemerhorn, Brandon J.; Stuart, Jeffrey J.

    2010-01-01

    Two nonoverlapping autosomal inversions defined unusual neo-sex chromosomes in the Hessian fly (Mayetiola destructor). Like other neo-sex chromosomes, these were normally heterozygous, present only in one sex, and suppressed recombination around a sex-determining master switch. Their unusual properties originated from the anomalous Hessian fly sex determination system in which postzygotic chromosome elimination is used to establish the sex-determining karyotypes. This system permitted the evolution of a master switch (Chromosome maintenance, Cm) that acts maternally. All of the offspring of females that carry Cm-associated neo-sex chromosomes attain a female-determining somatic karyotype and develop as females. Thus, the chromosomes act as maternal effect neo-W's, or W-prime (W′) chromosomes, where ZW′ females mate with ZZ males to engender female-producing (ZW′) and male-producing (ZZ) females in equal numbers. Genetic mapping and physical mapping identified the inversions. Their distribution was determined in nine populations. Experimental matings established the association of the inversions with Cm and measured their recombination suppression. The inversions are the functional equivalent of the sciarid X-prime chromosomes. We speculate that W′ chromosomes exist in a variety of species that produce unisexual broods. PMID:20026681

  9. Fish with thermolabile sex determination (TSD) as models to study brain sex differentiation.

    PubMed

    Blázquez, Mercedes; Somoza, Gustavo M

    2010-05-01

    As fish are ectothermic animals, water temperature can affect their basic biological processes such as larval development, growth and reproduction. Similar to reptiles, the incubation temperature during early phases of development is capable to modify sex ratios in a large number of fish species. This phenomenon, known as thermolabile sex determination (TSD) was first reported in Menidia menidia, a species belonging to the family Atherinopsidae. Since then, an increasing number of fish have also been found to exhibit TSD. Traditionally, likewise in reptiles, several TSD patterns have been described in fish, however it has been recently postulated that only one, females at low temperatures and males at high temperatures, may represent the "real" or "true" TSD. Many studies regarding the influence of temperature on the final sex ratios have been focused on the expression and activity of gonadal aromatase, the enzyme involved in the conversion of androgens into estrogens and encoded by the cyp19a1a gene. In this regard, teleost fish, may be due to a whole genome duplication event, produce another aromatase enzyme, commonly named brain aromatase, encoded by the cyp19a1b gene. Contrary to what has been described in other vertebrates, fish exhibit very high levels of aromatase activity in the brain and therefore they synthesize high amounts of neuroestrogens. However, its biological significance is still not understood. In addition, the mechanism whereby temperature can induce the development of a testis or an ovary still remains elusive. In this context the present review is aimed to discuss several theories about the possible role of brain aromatase using fish as models. The relevance of brain aromatase and therefore of neuroestrogens as the possible cue for gonadal differentiation is raised. In addition, the possible role of brain aromatase as the way to keep the high levels of neurogenesis in fish is also considered. Several key examples of how teleosts and aromatase

  10. Sex determination in miocene catarrhine primates.

    PubMed

    Kelley, J

    1995-04-01

    Canines of fossil hominoids and primitive catarrhines from several early, middle, and late Miocene sites were analyzed according to the shape indices described in Kelley (1995) and compared to those of males and females of extant great apes. In bivariate plots of the fossil canines utilizing the indices, 90% of the upper canines and 85% of the lower canines fell within or just outside the exclusively male or exclusively female territories delimited by the extant great apes. The remainder fell in the male-female overlap zones. Sex assignments based on these distributions were nearly 100% concordant with classifications according to canine height, suggesting a high degree of accuracy. There were various taxon-specific shifts in bivariate space among fossil genera, reflecting subtle differences in canine shape between taxa within the overall pattern of similarity to extant great apes as a whole. In many cases these shifts are matched by particular extant-ape species and subspecies, while other fossil taxa have no exact analogue for canine shape among the extant great apes. However, the pattern of spatial segregation of canines identified as either male or female at each of the sites largely mirrors that of males and females within the extant-ape sample, indicating that Miocene catarrhines shared with extant great apes a common pattern of shape differences between male and female canines, regardless of taxon-specific morphologies. These observations demonstrate that the canines of fossil catarrhines can be sexed with a high degree of confidence based solely on intrinsic features of shape. This will permit more reliable characterizations of morphological sexual dimorphism among fossil species. It is also argued that canine shape is a more reliable indicator of sex in fossil taxa than are canine/molar size ratios.

  11. Exogenously treated mammalian sex hormones affect inorganic constituents of plants.

    PubMed

    Erdal, Serkan; Dumlupinar, Rahmi

    2011-10-01

    The present study was undertaken to reveal the changes in inorganic constituents of plants exposed to mammalian sex hormones (MSH). Chickpea leaves were sprayed with 10(-4), 10(-6), 10(-9), 10(-12), and 10(-15) M concentrations of progesterone, β-estradiol, and androsterone at 7th day after sowing. The plants were harvested at the end of 18 days after treatment of MSH solutions and the inorganic components determined using a wavelength-dispersive X-ray fluorescence spectroscopy technique. At all of the concentrations tested, MSH significantly increased the contents of K, S, Na, Ca, Mg, Zn, Fe, P, Cu, and Ni. Interestingly, only Mn and Cl contents decreased. The maximum changes in the inorganic composition were recorded at 10(-6) M for plants treated with progesterone and 10(-9) M for plants treated with β-estradiol and androsterone.

  12. Developmental synergism of steroidal estrogens in sex determination.

    PubMed

    Bergeron, J M; Willingham, E; Osborn, C T; Rhen, T; Crews, D

    1999-02-01

    Gonadal sex in the red-eared slider turtle, Trachemys scripta, is determined by incubation temperature during embryonic development. Evidence suggests that temperature determines sex by influencing steroid hormone metabolism and/or sensitivity: steroidogenic enzyme inhibitors or exogenous sex steroid hormones and their man-made analogs override (or enhance) temperature effects on sex determination. Specifically, nonaromatizable androgens and aromatase inhibitors induce testis differentiation at female-producing temperatures, whereas aromatizable androgens and estrogens induce ovary differentiation at male-producing temperatures. Moreover, natural estrogens and temperature synergize to produce more females than would be expected if estrogens and temperature had purely additive effects on sex determination. In this study, we use sex reversal of turtle embryos incubated at a male-producing temperature to examine synergism among steroidal estrogens: estrone, 17ss-estradiol, and estriol. A low dose of 17ss-estradiol (200 ng) showed significant synergism when administered with a single low dose of estriol (10 ng). Likewise, a single low dose of estrone (250 ng) had a synergistic effect when combined with the same low dose of estriol (10 ng). We conclude that the weak natural estrogens estrone and 17ss-estradiol synergize with a low dose of the more potent estriol to reverse gonadal sex during the critical period of sexual differentiation. These results suggest that weak environmental estrogens may also synergize with stronger natural estrogens.

  13. Sex determination using the Probabilistic Sex Diagnosis (DSP: Diagnose Sexuelle Probabiliste) tool in a virtual environment.

    PubMed

    Chapman, Tara; Lefevre, Philippe; Semal, Patrick; Moiseev, Fedor; Sholukha, Victor; Louryan, Stéphane; Rooze, Marcel; Van Sint Jan, Serge

    2014-01-01

    The hip bone is one of the most reliable indicators of sex in the human body due to the fact it is the most dimorphic bone. Probabilistic Sex Diagnosis (DSP: Diagnose Sexuelle Probabiliste) developed by Murail et al., in 2005, is a sex determination method based on a worldwide hip bone metrical database. Sex is determined by comparing specific measurements taken from each specimen using sliding callipers and computing the probability of specimens being female or male. In forensic science it is sometimes not possible to sex a body due to corpse decay or injury. Skeletalization and dissection of a body is a laborious process and desecrates the body. There were two aims to this study. The first aim was to examine the accuracy of the DSP method in comparison with a current visual sexing method on sex determination. A further aim was to see if it was possible to virtually utilise the DSP method on both the hip bone and the pelvic girdle in order to utilise this method for forensic sciences. For the first part of the study, forty-nine dry hip bones of unknown sex were obtained from the Body Donation Programme of the Université Libre de Bruxelles (ULB). A comparison was made between DSP analysis and visual sexing on dry bone by two researchers. CT scans of bones were then analysed to obtain three-dimensional (3D) virtual models and the method of DSP was analysed virtually by importing the models into a customised software programme called lhpFusionBox which was developed at ULB. The software enables DSP distances to be measured via virtually-palpated bony landmarks. There was found to be 100% agreement of sex between the manual and virtual DSP method. The second part of the study aimed to further validate the method by analysing thirty-nine supplementary pelvic girdles of known sex blind. There was found to be a 100% accuracy rate further demonstrating that the virtual DSP method is robust. Statistically significant differences were found in the identification of sex

  14. Identification of Sex-Specific Markers Reveals Male Heterogametic Sex Determination in Pseudobagrus ussuriensis.

    PubMed

    Pan, Zheng-Jun; Li, Xi-Yin; Zhou, Feng-Jian; Qiang, Xiao-Gang; Gui, Jian-Fang

    2015-08-01

    Comprehending sex determination mechanism is a first step for developing sex control breeding biotechnologies in fish. Pseudobagrus ussuriensis, one of bagrid catfishes in Bagridae, had been observed to have about threefold size dimorphism between males and females, but its sex determination mechanism had been unknown. In this study, we firstly used the amplified fragment length polymorphism (AFLP)-based screening approach to isolate a male-specific DNA fragment and thereby identified a 10,569 bp of male-specific sequence and a 10,365 bp of female-related sequence by genome walking in the bagrid catfish, in which a substantial genetic differentiation with 96.35 % nucleotide identity was revealed between them. Subsequently, a high differentiating region of 650 bp with only 70.26 % nucleotide identity was found from the corresponding two sequences, and three primer pairs of male-specific marker, male and female-shared marker with different length products in male and female genomes, and female-related marker were designed. Significantly, when these markers were used to identify genetic sex of the bagrid catfish, only male individuals was detected to amplify the male-specific marker fragment, and female-related marker was discovered to produce dosage association in females and in males. Our current data provide significant genetic evidence that P. ussuriensis has heterogametic XY sex chromosomes in males and homogametic XX sex chromosomes in females. Therefore, sex determination mechanism of P. ussuriensis is male heterogametic XX/XY system.

  15. Evolution of an Expanded Sex Determining Locus in Volvox

    PubMed Central

    Ferris, Patrick; Olson, Bradley J.S.C.; De Hoff, Peter L.; Douglass, Stephen; Diaz-Cano, David Casero; Prochnik, Simon; Geng, Sa; Rai, Rhitu; Grimwood, Jane; Schmutz, Jeremy; Nishii, Ichiro; Hamaji, Takashi; Nozaki, Hisayoshi; Pellegrini, Matteo; Umen, James G.

    2010-01-01

    Although dimorphic sexes have evolved repeatedly in multicellular eukaryotes, their origins are unknown. The mating locus (MT) of the sexually dimorphic multicellular green alga, Volvox carteri, specifies the production of eggs and sperm and has undergone a remarkable expansion and divergence relative to MT from Chlamydomonas reinhardtii, a closely related unicellular species that has equal-sized gametes. Transcriptome analysis revealed a rewired gametic expression program for Volvox MT genes relative to Chlamydomonas, and identified multiple gender-specific and sex-regulated transcripts. The retinoblastoma tumor suppressor homolog MAT3 is a Volvox MT gene that displays sexually regulated alternative splicing and evidence of gender-specific selection, both indicative of cooption into the sexual cycle. Thus, sex-determining loci impact the evolution of both sex-related and non-sex-related genes. PMID:20395508

  16. Sex determination of bovine preimplantation embryos by oligonucleotide microarray.

    PubMed

    Yang, Hua; Zhong, Fagang; Yang, Yonglin; Wang, Xinhua; Liu, Shouren; Zhu, Bin

    2013-06-01

    The aim has been to set up a rapid and accurate microarray assay using sandwich mode for sex determination of bovine preimplantation embryos. Twelve sequence-specific oligonucleotide capture probes used to discriminate 12 samples were spotted onto the aldehyde-modified glass slides by Arrayer. The 2 recognition probes used to identify coding regions of the sex-determining region of the Y chromosome gene (SRY) and β-casein (CSN2) reference gene were coupled with biotin. The assay was optimized by using genomic DNA extracted from blood samples of known sex individuals. Polymerase chain reaction (PCR) was used to amplify the fragments in the HMG box region of SRY gene and CSN2 gene with sequence-specific primers. The sex of samples was identified by detecting both the SRY and CSN2 genes simultaneously in 2 reaction cells of microarrays, with the male having SRY and CSN2 signals and the female only CSN2. The sex of 20 bovine preimplantation embryos was determined by oligonucleotide microarray. The protocol was run with a blind test that showed a 100% (82/82) specificity and accuracy in sexing of leukocytes. The bovine embryos were transferred into 20 bovine recipients, with a pregnant rate of 40% (8/20). Three calves were born at term, and 5 fetuses were miscarried. Their sexes were fully in accordance with the embryonic sex predetermination predicted by oligonucleotide microarray. This suggests that the oligonucleotide microarray method of SRY gene analysis can be used in early sex prediction of bovine embryos in breeding programs.

  17. Sex determination in 6 bovid species by duplex PCR.

    PubMed

    Prashant; Gour, Digpal S; Dubey, Prem P; Jain, Anubhav; Gupta, Subhash C; Joshi, Balwinder K; Kumar, Dinesh

    2008-01-01

    Sex determination in domestic animals is of potential value to livestock breeding programs. The aim of this study was to develop a simple and accurate PCR-based sex determination protocol, which can be applicable to 6 major domesticated species of the family Bovidae, viz. Bos frontalis, B. grunniens, B. indicus, Bubalus bubalis, Capra hircus, and Ovis aries. In silico analysis was done to identify conserved DNA sequence in the HMG box region of the sex-determining region of the Y-chromosome (SRY gene) across the bovids. Duplex PCR assay, including the SRY gene and the GAPDH housekeeping gene, was optimized by using genomic DNA extracted from blood samples of known sex. It was possible to identify the sex of animals by amplifying both gender-specific (SRY) and autosomal (GAPDH) genes simultaneously in the duplex reaction, with the male yielding two bands and the female one band. The protocol was subjected to a blind test that showed a 100 percent specificity and accuracy, thus it can be used in sex determination in livestock breeding programs.

  18. Roles of resource and partner availability in sex determination in a parasitic copepod

    PubMed Central

    Becheikh, S.; Michaud, M.; Thomas, F.; Raibaut, A.; Renaud, F.

    1998-01-01

    Because sexuality plays an essential role in gene transmission and consequently in the evolution of species, investment into male or female function constitutes a key factor in the reproductive success of individuals. Environmental sex determination permits adaptive sex choice under unpredictable environmental conditions, where the environment affects sex-specific fitness, and where offspring can predict their likely adult status by monitoring an appropriate environmental cue. The parasitic copepod Pachypygus gibber displays three sexual phenotypes (i.e. one female and two kinds of male) which are environmentally determined (i.e. after conception and in response to environmental cues). Here, we report an experimental analysis on the combined action, during larval development, of availability of food resources and sexual partners in the sex determination of this species.

  19. spenito is required for sex determination in Drosophila melanogaster

    PubMed Central

    Yan, Dong; Perrimon, Norbert

    2015-01-01

    Sex-lethal (Sxl) encodes the master regulator of the sex determination pathway in Drosophila and acts by controlling sex identity in both soma and germ line. In females Sxl maintains its own expression by controlling the alternative splicing of its own mRNA. Here, we identify a novel sex determination gene, spenito (nito) that encodes a SPEN family protein. Loss of nito activity results in stem cell tumors in the female germ line as well as female-to-male somatic transformations. We show that Nito is a ubiquitous nuclear protein that controls the alternative splicing of the Sxl mRNA by interacting with Sxl protein and pre-mRNA, suggesting that it is directly involved in Sxl auto-regulation. Given that SPEN family proteins are frequently mutated in cancers, our results suggest that these factors might be implicated in tumorigenesis through splicing regulation. PMID:26324914

  20. Sexual reproduction and sex determination in green algae.

    PubMed

    Sekimoto, Hiroyuki

    2017-02-10

    The sexual reproductive processes of some representative freshwater green algae are reviewed. Chlamydomonas reinhardtii is a unicellular volvocine alga having two mating types: mating type plus (mt(+)) and mating type minus (mt(-)), which are controlled by a single, complex mating-type locus. Sexual adhesion between the gametes is mediated by sex-specific agglutinin molecules on their flagellar membranes. Cell fusion is initiated by an adhesive interaction between the mt(+) and mt(-) mating structures, followed by localized membrane fusion. The loci of sex-limited genes and the conformation of sex-determining regions have been rearranged during the evolution of volvocine algae; however, the essential function of the sex-determining genes of the isogamous unicellular Chlamydomonas reinhardtii is conserved in the multicellular oogamous Volvox carteri. The sexual reproduction of the unicellular charophycean alga, Closterium peracerosum-strigosum-littorale complex, is also focused on here. The sexual reproductive processes of heterothallic strains are controlled by two multifunctional sex pheromones, PR-IP and PR-IP Inducer, which independently promote multiple steps in conjugation at the appropriate times through different induction mechanisms. The molecules involved in sexual reproduction and sex determination have also been characterized.

  1. Climate change and temperature-dependent sex determination in reptiles.

    PubMed

    Janzen, F J

    1994-08-02

    Despite increasing concern over the possible impact of global temperature change, there is little empirical evidence of direct temperature effects on biotic interactions in natural systems. Clear assessment of the ecological and evolutionary impact of changing climatic temperature requires a natural system in which populations exhibit a direct unambiguous fitness response to thermal fluctuation. I monitored nests of a population of painted turtles (Chrysemys picta) with temperature-dependent sex determination to investigate the causal relationship between local climatic variation in temperature and offspring sex ratio. Consistent with theoretical predictions, annual offspring sex ratio was highly correlated with mean July air temperature, validating concerns about the effect of climate change on population demography. This correlation implies that even modest increases in mean temperature (< 2 degrees C) may drastically skew the sex ratio. Statistical evaluation of the variance in climate change indicates that an increase in mean temperature of 4 degrees C would effectively eliminate production of male offspring. Quantitative genetic analyses and behavioral data suggest that populations with temperature-dependent sex determination may be unable to evolve rapidly enough to counteract the negative fitness consequences of rapid global temperature change. Populations of species with temperature-dependent sex determination may serve as ideal indicators of the biological impact of global temperature change.

  2. Sex determination from hand dimensions of North and South Indians.

    PubMed

    Kanchan, Tanuj; Rastogi, Prateek

    2009-05-01

    When dismembered human remains are encountered, the decedent's sex may not be obvious. For these scenarios, techniques for sex determination may play a vital part of the medicolegal investigation. Five hundred hands (230 males, 270 females) from North and South Indian region were studied to investigate sexual dimorphism in hand dimensions (hand length, hand breadth, and palm length). The hand index (hand breadth/hand length x 100) and the palm index (hand breadth/palm length x 100) were derived. The hand dimensions show a higher accuracy in sex determination when compared to indices. Of all hand dimensions, hand breadth has the highest accuracy of sex determination in the study group. The sex differences were found to be statistically significant only for the hand index on the left side. The morphometric parameters of the hand show considerable sexual dimorphism in the Indian population while the hand and palm index remain poor sex indicators. The study thus has medicolegal implications when a dismembered hand is brought for examination.

  3. Sex determination in annual fishes: Searching for the master sex-determining gene in Austrolebias charrua (Cyprinodontiformes, Rivulidae)

    PubMed Central

    Arezo, María José; Papa, Nicolás; Guttierrez, Verónica; García, Graciela; Berois, Nibia

    2014-01-01

    Evolution of sex determination and differentiation in fishes involves a broad range of sex strategies (hermaphroditism, gonochorism, unisexuality, environmental and genetic sex determination). Annual fishes inhabit temporary ponds that dry out during the dry season when adults die. The embryos exhibit an atypical developmental pattern and remain buried in the bottom mud until the next rainy season. To elucidate genomic factors involved in the sex determination in annual fish, we explored the presence of a candidate sex-specific gene related to the cascade network in Austrolebias charrua. All phylogenetic analyses showed a high posterior probability of occurrence for a clade integrated by nuclear sequences (aprox. 900 bp) from both adults (male and female), with partial cDNA fragments of A. charrua from juveniles (male) and the dsx D. melanogaster gene. The expressed fragment was detected from blastula to adulthood stages showing a sexually dimorphic expression pattern. The isolated cDNA sequence is clearly related to dsx D. melanogaster gene and might be located near the top of the sex determination cascade in this species. PMID:25071401

  4. Human sex-determination and disorders of sex-development (DSD).

    PubMed

    Bashamboo, Anu; McElreavey, Ken

    2015-09-01

    Several new genes and pathways have been identified in recent years associated with human errors of sex-determination or DSD. SOX family gene mutations, as well as mutations involving GATA4, FOG2 and genes involved in MAP kinase signaling have been associated with virilization in 46,XX individuals or with 46,XY gonadal dysgenesis. Furthermore, mutations involving another key gene in sex-determination, NR5A1, are now known to be an important cause spermatogenic failure in the male and ovarian insufficiency in the female. These new findings offer insights into human sex-determination and highlight important differences between the human and mouse model. This review will critically examine the evidence linking gene mutations, especially MAP3K1, to non-syndromic forms of human 46,XY gonadal dysgenesis or XX testicular/ovotesticular.

  5. Sex hormones alter sex ratios in the Indian skipper frog, Euphlyctis cyanophlyctis: Determining sensitive stages for gonadal sex reversal.

    PubMed

    Phuge, S K; Gramapurohit, N P

    2015-09-01

    In amphibians, although genetic factors are involved in sex determination, gonadal sex differentiation can be modified by exogenous steroid hormones suggesting a possible role of sex steroids in regulating the process. We studied the effect of testosterone propionate (TP) and estradiol-17β (E2) on gonadal differentiation and sex ratio at metamorphosis in the Indian skipper frog, Euphlyctis cyanophlyctis with undifferentiated type of gonadal differentiation. A series of experiments were carried out to determine the optimum dose and sensitive stages for gonadal sex reversal. Our results clearly indicate the importance of sex hormones in controlling gonadal differentiation of E. cyanophlyctis. Treatment of tadpoles with 10, 20, 40, and 80μg/L TP throughout larval period resulted in the development of 100% males at metamorphosis at all concentrations. Similarly, treatment of tadpoles with 40μg/L TP during ovarian and testicular differentiation resulted in the development of 90% males, 10% intersexes and 100% males respectively. Treatment of tadpoles with 10, 20, 40, and 80μg/L E2 throughout larval period likewise produced 100% females at all concentrations. Furthermore, exposure to 40μg/L E2 during ovarian and testicular differentiation produced 95% females, 5% intersexes and 91% females, 9% intersexes respectively. Both TP and E2 were also effective in advancing the stages of gonadal development. Present study shows the effectiveness of both T and E2 in inducing complete sex reversal in E. cyanophlyctis. Generally, exposure to E2 increased the larval period resulting in significantly larger females than control group while the larval period of control and TP treated groups was comparable.

  6. Sex determination directs uniparental mitochondrial inheritance in Phycomyces.

    PubMed

    Shakya, Viplendra P S; Idnurm, Alexander

    2014-02-01

    Uniparental inheritance (UPI) of mitochondria is common among eukaryotes. The underlying molecular basis by which the sexes of the parents control this non-Mendelian pattern of inheritance is yet to be fully understood. Two major factors have complicated the understanding of the role of sex-specific genes in the UPI phenomenon: in many cases (i) fusion occurs between cells of unequal size or (ii) mating requires a large region of the genome or chromosome that includes genes unrelated to sex determination. The fungus Phycomyces blakesleeanus is a member of the Mucoromycotina and has a simple mating type locus encoding only one high-mobility group (HMG) domain protein, and mating occurs by fusion of isogamous cells, thus providing a model system without the limitations mentioned above. Analysis of more than 250 progeny from a series of genetic crosses between wild-type strains of Phycomyces revealed a correlation between the individual genes in the mating type locus and UPI of mitochondria. Inheritance is from the plus (+) sex type and is associated with degradation of the mtDNA from the minus (-) parent. These findings suggest that UPI can be directly controlled by genes that determine sex identity, independent of cell size or the complexity of the genetic composition of a sex chromosome.

  7. Discriminant canine index – a novel approach in sex determination

    PubMed Central

    Kiran, Chennoju Sai; Ramaswamy, Pachigolla; Swathi, Erva; Smitha, Balla; Sudhakar, Shankaran

    2015-01-01

    Summary Context Assessment of sex has significant contribution in construction of a physical profile of the decedent along with other parameters like race, stature and age. Sex determination with aid of skeletal remains is difficult procedure when, only a part of the body is obtainable. To solve this difficulty, tooth size standards based on odontometric data can be used in age and sex determination. The present study was undertaken with the objective to evaluate the reliability of sex determination using discriminant canine index (DCI). Methods A total of 120 subjects, with healthy periodontium and between the age groups of 15 to 40 years were selected randomly. Subjects with hard tissue abnormalities were excluded from the study. The maximum mesiodistal widths of left mandibular canines were measured intraorally with the help of divider and digital vernier caliper. Data was collected and analyzed statistically. Results A significant increase in the mesiodistal width of canines in males (7.21 ± 0.45 mm) when compared to females (6.77 ± 0.29 mm) was observed. The discriminant canine index (DCI) has identified 68.3% of males and 76.7% of females correctly with an overall accuracy rate of 72.5%. Conclusion The present study indicated that the DCI can produce reliable results and can be used as an alternative for mandibular canine index (MCI), for sex determination. PMID:26330903

  8. Heterosexuals' Attitudes toward Lesbianism and Male Homosexuality: Their Affective Orientation toward Sexuality and Sex Guilt.

    ERIC Educational Resources Information Center

    Yarber, William L.; Yee, Bernadette

    1983-01-01

    A study sought to determine if a relationship existed between heterosexual college students' attitudes toward lesbianism and male homosexuality and their feelings about their own sexuality, including sex guilt. High sex guilt proved to be related to negative attitudes toward homosexuals of both sexes. (Authors/PP)

  9. Factors affecting the anthelmintic efficacy of papaya latex in vivo: host sex and intensity of infection.

    PubMed

    Luoga, Wenceslaus; Mansur, Fadlul; Lowe, Ann; Duce, Ian R; Buttle, David J; Behnke, Jerzy M

    2015-07-01

    The development of plant-derived cysteine proteinases, such as those in papaya latex, as novel anthelmintics requires that the variables affecting efficacy be fully evaluated. Here, we conducted two experiments, the first to test for any effect of host sex and the second to determine whether the intensity of the worm burden carried by mice would influence efficacy. In both experiments, we used the standard C3H mouse reference strain in which papaya latex supernatant (PLS) consistently shows >80 % reduction in Heligmosomoides bakeri worm burdens, but to broaden the perspective, we also included for comparison mice of other strains that are known to respond more poorly to treatment with papaya latex. Our results confirmed that there is a strong genetic influence affecting efficacy of PLS in removing adult worm burdens. However, there was no effect of host sex on efficacy (C3H and NIH) and no effect of infection intensity (C3H and BALB/c). These results offer optimism that plant-derived cysteine proteinases (CPs), such as these from papaya latex, can function as effective anthelmintics, with neither host sex nor infection intensity presenting further hurdles to impede their development for future medicinal and veterinary usage.

  10. Transcriptome profile analysis of floral sex determination in cucumber.

    PubMed

    Wu, Tao; Qin, Zhiwei; Zhou, Xiuyan; Feng, Zhuo; Du, Yalin

    2010-07-15

    Cucumber has been widely studied as a model for floral sex determination. In this investigation, we performed genome-wide transcriptional profiling of apical tissue of a gynoecious mutant (Csg-G) and the monoecious wild-type (Csg-M) of cucumber in an attempt to isolate genes involved in sex determination, using the Solexa technology. The profiling analysis revealed numerous changes in gene expression attributable to the mutation, which resulted in the down-regulation of 600 genes and the up-regulation of 143 genes. The Solexa data were confirmed by reverse transcription polymerase chain reaction (RT-PCR) and real-time quantitative RT-PCR (qRT-PCR). Gene ontology (GO) analysis revealed that the differentially expressed genes were mainly involved in biogenesis, transport and organization of cellular component, macromolecular and cellular biosynthesis, localization, establishment of localization, translation and other processes. Furthermore, the expression of some of these genes depended upon the tissue and the developmental stage of the flowers of gynoecious mutant. The results of this study suggest two important concepts, which govern sex determination in cucumber. First, the differential expression of genes involved in plant hormone signaling pathways, such as ACS, Asr1, CsIAA2, CS-AUX1 and TLP, indicate that phytohormones and their crosstalk might play a critical role in the sex determination. Second, the regulation of some transcription factors, including EREBP-9, may also be involved in this developmental process.

  11. Sex and PRNP genotype determination in preimplantation caprine embryos.

    PubMed

    Guignot, F; Perreau, C; Cavarroc, C; Touzé, J-L; Pougnard, J-L; Dupont, F; Beckers, J-F; Rémy, B; Babilliot, J-M; Bed'Hom, B; Lamorinière, J M; Mermillod, P; Baril, G

    2011-08-01

    The objective of this study was to test the accuracy of genotype diagnosis after whole amplification of DNA extracted from biopsies obtained by trimming goat embryos and to evaluate the viability of biopsied embryos after vitrification/warming and transfer. Whole genome amplification (WGA) was performed using Multiple Displacement Amplification (MDA). Sex and prion protein (PRNP) genotypes were determined. Sex diagnosis was carried out by PCR amplification of ZFX/ZFY and Y chromosome-specific sequences. Prion protein genotype determination was performed on codons 142, 154, 211, 222 and 240. Embryos were collected at day 7 after oestrus and biopsied either immediately after collection (blastocysts and expanded blastocysts) or after 24 h of in vitro culture (compacted morulae). Biopsied embryos were frozen by vitrification. Vitrified whole embryos were kept as control. DNA of biopsies was extracted and amplified using MDA. Sex diagnosis was efficient for 97.4% of biopsies and PRNP genotyping was determined in 78.7% of biopsies. After embryo transfer, no significant difference was observed in kidding rate between biopsied and vitrified control embryos, whereas embryo survival rate was different between biopsied and whole vitrified embryos (p = 0.032). At birth, 100% of diagnosed sex and 98.2% of predetermined codons were correct. Offspring PRNP profiles were in agreement with parental genotype. Whole genome amplification with MDA kit coupled with sex diagnosis and PRNP genotype predetermination are very accurate techniques to genotype goat embryos before transfer. These novel results allow us to plan selection of scrapie-resistant genotypes and kid sex before transfer of cryopreserved embryo.

  12. Microwave-accelerated derivatization prior to GC-MS determination of sex hormones.

    PubMed

    Xu, Xu; Zhao, Xin; Zhang, Yupu; Li, Dan; Su, Rui; Yang, Qiuling; Li, Xueyuan; Zhang, Huihui; Zhang, Hanqi; Wang, Ziming

    2011-06-01

    A new microwave-accelerated derivatization method was developed for rapid determination of 13 natural sex hormones in feeds. Sex hormones were isolated from the sample matrix by ultrasonic extraction, followed by solid-phase extraction, derivatized under microwave irradiation, and then analyzed directly by gas chromatography-mass spectrometry (GC-MS) in selective ion monitoring (SIM) mode. The key parameters affecting derivatization efficiency, including microwave irradiation time, microwave power, and reaction solvent were studied. Under microwave power of 360 W and microwave irradiation for 3 min, 13 natural sex hormones were simultaneously derivatized using heptafluorobutyric acid anhydride (HFBA) as derivatization reagent. This method was applied to the determination of 13 natural sex hormones in different feed samples, and the obtained results were compared with those obtained by the traditional thermal derivatization. The recoveries from 58.1 to 111% were obtained at sex hormone concentrations of 10-300 μg/kg with RSDs ≤12.0%. The results showed that the proposed method was fast, simple, efficient and can be applied to the determination of 13 natural sex hormones in different feed samples.

  13. Functional conservation of the sex-lethal sex determining promoter, Sxl-Pe, in Drosophila virilis.

    PubMed

    Jinks, Timothy Morgan; Calhoun, Gretchen; Schedl, Paul

    2003-05-01

    The primary sex determination signal in Drosophila melanogaster, the ratio of X chromosomes to autosomes, sets the activity state of the switch gene, Sex-lethal ( Sxl), by regulating the establishment promoter, m-Sxl-Pe. We have identified and characterized the establishment promoter, v-Sxl-Pe, of the distantly related species Drosophila virilis. Like melanogaster, the virilis Sxl-Pe is organized into four sub-domains: the Sxl-Pe mRNA leader and exon E1 of Sxl protein, the core promoter, the sex-specific element and the augmentation element. The core promoter and sex-specific element of v-Sxl-Pe show considerable sequence similarity to m-Sxl-Pe and contain target sites for components of the X/A signaling system. While the augmentation element of v-Sxl-Pe also has sequence motifs that could function as target sites for the X/A signaling system, it shows little similarity to the melanogaster augmentation element. Functional studies reveal that v-Sxl-Pe drives sex-specific expression in D. melanogaster embryos and that the activity of the virilis promoter is controlled by known components of the melanogaster X/A counting system. Although v-Sxl-Pe responds appropriately to the melanogaster sex determination signal, it is less active than Sxl-Pe from melanogaster. Unexpectedly, the reduced activity is due to differences in the activity of the conserved core promoter, while the non-conserved augmentation element functions effectively. These findings suggest that low-affinity target sites for the X/A counting system are critical for the functioning of Sxl-Pe.

  14. Impact of sex: determination of alcohol neuroadaptation and reinforcement.

    PubMed

    Wiren, Kristine M; Hashimoto, Joel G; Alele, Paul E; Devaud, Leslie L; Price, Kimber L; Middaugh, Lawrence D; Grant, Kathleen A; Finn, Deborah A

    2006-02-01

    This article represents the proceedings of a symposium at the Research Society on Alcoholism meeting in Santa Barbara, California. The organizers/chairs were Kristine M. Wiren and Deborah A. Finn. Following a brief introduction by Deborah Finn, the presentations were (1) The Importance of Gender in Determining Expression Differences in Mouse Lines Selected for Chronic Ethanol Withdrawal Severity, by Kristine M. Wiren and Joel G. Hashimoto; (2) Sex Differences in Ethanol Withdrawal Involve GABAergic and Stress Systems, by Paul E. Alele and Leslie L. Devaud; (3) The Influence of Sex on Ethanol Consumption and Reward in C57BL/6 Mice, by Kimber L. Price and Lawrence D. Middaugh; and (4) Sex Differences in Alcohol Self-administration in Cynomolgus Monkeys, by Kathleen A. Grant.

  15. [The use of DYS14 marker for sex determination].

    PubMed

    Blagodatskikh, E G; Nikitin, A G; Seregin, Iu A; Blagodatskikh, K A; Nosikov, V V

    2010-01-01

    The possibilities of real-time PCR amplification of DYS14 marker located on Y chromosome for sex determination were studied. Samples of plasma of 30 men and 30 women were investigated for this aim. Real-time PCR amplification of DYS14 marker (located inside gene coding TSPY1 protein) was used for sex determination. According to the obtained results, 30 samples belonged to men and 30--to women. In all our experiments the results were confirmed by use of marker SRY, widely used in forensic examination. Detection limit of DNA region containing DYS14 in reaction mixture was established after experiment with dilution of male DNA and is equal to 6.7 pg of DNA (two copies of genome), which corresponds to 6.7 ng of DNA (2000 copies of genome) in 1 ml of blood. Sex determination with small amounts of genetic material in investigated sample becomes possible with such characteristics. Method can be used for noninvasive prenatal diagnostics for the timely detection of congenital diseases associated with sex and in forensic medical examination.

  16. Sex determination and gender expression: Reproductive investment in snails.

    PubMed

    Koene, Joris M

    2017-02-01

    Sex determination is generally seen as an issue of importance for separate-sexed organisms; however, when considering other sexual systems, such as hermaphroditism, sex allocation is a less-binary form of sex determination. As illustrated here, with examples from molluscs, this different vantage point can offer important evolutionary insights. After all, males and females produce only one type of gamete, whereas hermaphrodites produce both. In addition, sperm and accessory gland products are donated bidirectionally. For reciprocal mating, this is obvious since sperm are exchanged within one mating interaction; but even unilaterally mating species end up mating in both sexual roles, albeit not simultaneously. With this in mind, I highlight two factors that play an important role in how reproductive investment is divided in snails: First, the individual's motivation to preferentially donate rather than receive sperm (or vice versa) leads to flexible behavioral performance, and thereby investment, of either sex. Second, due to the presence of both sexual roles within the same individual, partners are potentially able to influence investment in both sexual functions of their partner to their own benefit. The latter has already led to novel insights into how accessory gland products may evolve. Moreover, the current evidence points towards different ways in which allocation to reproduction can be changed in simultaneous hermaphrodites. These often differ from the separate-sexed situation, highlighting that comparison across different sexual systems may help identify commonalities and differences in physiological, and molecular mechanisms as well as evolutionary patterns. Mol. Reprod. Dev. 84: 132-143, 2017. © 2016 Wiley Periodicals, Inc.

  17. QTL Mapping of Sex Determination Loci Supports an Ancient Pathway in Ants and Honey Bees.

    PubMed

    Miyakawa, Misato O; Mikheyev, Alexander S

    2015-11-01

    Sex determination mechanisms play a central role in life-history characteristics, affecting mating systems, sex ratios, inbreeding tolerance, etc. Downstream components of sex determination pathways are highly conserved, but upstream components evolve rapidly. Evolutionary dynamics of sex determination remain poorly understood, particularly because mechanisms appear so diverse. Here we investigate the origins and evolution of complementary sex determination (CSD) in ants and bees. The honey bee has a well-characterized CSD locus, containing tandemly arranged homologs of the transformer gene [complementary sex determiner (csd) and feminizer (fem)]. Such tandem paralogs appear frequently in aculeate hymenopteran genomes. However, only comparative genomic, but not functional, data support a broader role for csd/fem in sex determination, and whether species other than the honey bee use this pathway remains controversial. Here we used a backcross to test whether csd/fem acts as a CSD locus in an ant (Vollenhovia emeryi). After sequencing and assembling the genome, we computed a linkage map, and conducted a quantitative trait locus (QTL) analysis of diploid male production using 68 diploid males and 171 workers. We found two QTLs on separate linkage groups (CsdQTL1 and CsdQTL2) that jointly explained 98.0% of the phenotypic variance. CsdQTL1 included two tandem transformer homologs. These data support the prediction that the same CSD mechanism has indeed been conserved for over 100 million years. CsdQTL2 had no similarity to CsdQTL1 and included a 236-kb region with no obvious CSD gene candidates, making it impossible to conclusively characterize it using our data. The sequence of this locus was conserved in at least one other ant genome that diverged >75 million years ago. By applying QTL analysis to ants for the first time, we support the hypothesis that elements of hymenopteran CSD are ancient, but also show that more remains to be learned about the diversity of CSD

  18. Genetic architecture of sex determination in fish: applications to sex ratio control in aquaculture

    PubMed Central

    Martínez, Paulino; Viñas, Ana M.; Sánchez, Laura; Díaz, Noelia; Ribas, Laia; Piferrer, Francesc

    2014-01-01

    Controlling the sex ratio is essential in finfish farming. A balanced sex ratio is usually good for broodstock management, since it enables to develop appropriate breeding schemes. However, in some species the production of monosex populations is desirable because the existence of sexual dimorphism, primarily in growth or first time of sexual maturation, but also in color or shape, can render one sex more valuable. The knowledge of the genetic architecture of sex determination (SD) is convenient for controlling sex ratio and for the implementation of breeding programs. Unlike mammals and birds, which show highly conserved master genes that control a conserved genetic network responsible for gonad differentiation (GD), a huge diversity of SD mechanisms has been reported in fish. Despite theory predictions, more than one gene is in many cases involved in fish SD and genetic differences have been observed in the GD network. Environmental factors also play a relevant role and epigenetic mechanisms are becoming increasingly recognized for the establishment and maintenance of the GD pathways. Although major genetic factors are frequently involved in fish SD, these observations strongly suggest that SD in this group resembles a complex trait. Accordingly, the application of quantitative genetics combined with genomic tools is desirable to address its study and in fact, when applied, it has frequently demonstrated a multigene trait interacting with environmental factors in model and cultured fish species. This scenario has notable implications for aquaculture and, depending upon the species, from chromosome manipulation or environmental control techniques up to classical selection or marker assisted selection programs, are being applied. In this review, we selected four relevant species or fish groups to illustrate this diversity and hence the technologies that can be used by the industry for the control of sex ratio: turbot and European sea bass, two reference species of

  19. Genetic architecture of sex determination in fish: applications to sex ratio control in aquaculture.

    PubMed

    Martínez, Paulino; Viñas, Ana M; Sánchez, Laura; Díaz, Noelia; Ribas, Laia; Piferrer, Francesc

    2014-01-01

    Controlling the sex ratio is essential in finfish farming. A balanced sex ratio is usually good for broodstock management, since it enables to develop appropriate breeding schemes. However, in some species the production of monosex populations is desirable because the existence of sexual dimorphism, primarily in growth or first time of sexual maturation, but also in color or shape, can render one sex more valuable. The knowledge of the genetic architecture of sex determination (SD) is convenient for controlling sex ratio and for the implementation of breeding programs. Unlike mammals and birds, which show highly conserved master genes that control a conserved genetic network responsible for gonad differentiation (GD), a huge diversity of SD mechanisms has been reported in fish. Despite theory predictions, more than one gene is in many cases involved in fish SD and genetic differences have been observed in the GD network. Environmental factors also play a relevant role and epigenetic mechanisms are becoming increasingly recognized for the establishment and maintenance of the GD pathways. Although major genetic factors are frequently involved in fish SD, these observations strongly suggest that SD in this group resembles a complex trait. Accordingly, the application of quantitative genetics combined with genomic tools is desirable to address its study and in fact, when applied, it has frequently demonstrated a multigene trait interacting with environmental factors in model and cultured fish species. This scenario has notable implications for aquaculture and, depending upon the species, from chromosome manipulation or environmental control techniques up to classical selection or marker assisted selection programs, are being applied. In this review, we selected four relevant species or fish groups to illustrate this diversity and hence the technologies that can be used by the industry for the control of sex ratio: turbot and European sea bass, two reference species of

  20. Pulp tissue in sex determination: A fluorescent microscopic study

    PubMed Central

    Nayar, Amit; Singh, Harkanwal Preet; Leekha, Swati

    2014-01-01

    Aims: To determine and compare the reliability of pulp tissue in determination of sex and to analyze whether caries have any effect on fluorescent body test. Materials and Methods: This study was carried on 50 maxillary and mandibular teeth (25 male teeth and 25 female teeth), which were indicated for extraction. The teeth are categorized into 5 groups, 10 each (5 from males and 5 from females) on the basis of caries progression. The pulp cells are stained with quinacrine hydrochloride and observed with fluorescent microscope for fluorescent body. Gender is determined by identification of Y chromosome fluorescence in dental pulp. Results: Fluorescent bodies were found to be more in sound teeth in males as the caries increase the mean percentage of fluorescent bodies observed decreases in males. We also observed the fluorescent spots in females, and the value of the spot increases in female as the caries progresses, thereby giving false positive results in females. Conclusion: Sex determination by fluorescent staining of the Y chromosome is a reliable technique in teeth with healthy pulps or caries with enamel or up to half way of dentin. Teeth with caries involving pulp cannot be used for sex determination. PMID:25125912

  1. Insect Sex Determination Manipulated by Their Endosymbionts: Incidences, Mechanisms and Implications

    PubMed Central

    Kageyama, Daisuke; Narita, Satoko; Watanabe, Masaya

    2012-01-01

    The sex-determining systems of arthropods are surprisingly diverse. Some species have male or female heterogametic sex chromosomes while other species do not have sex chromosomes. Most species are diploids but some species, including wasps, ants, thrips and mites, are haplodiploids (n in males; 2n in females). Many of the sexual aberrations, such as sexual mosaics, sex-specific lethality and conversion of sexuality, can be explained by developmental defects including double fertilization of a binucleate egg, loss of a sex chromosome or perturbation of sex-determining gene expression, which occur accidentally or are induced by certain environmental conditions. However, recent studies have revealed that such sexual aberrations can be caused by various groups of vertically-transmitted endosymbiotic microbes such as bacteria of the genera Wolbachia, Rickettsia, Arsenophonus, Spiroplasma and Cardinium, as well as microsporidian protists. In this review, we first summarize the accumulated data on endosymbiont-induced sexual aberrations, and then discuss how such endosymbionts affect the developmental system of their hosts and what kinds of ecological and evolutionary effects these endosymbionts have on their host populations. PMID:26467955

  2. Sex and secrecy: How HIV-status disclosure affects safe sex among HIV-positive adolescents

    PubMed Central

    Toska, Elona; Cluver, Lucie D.; Hodes, Rebecca; Kidia, Khameer K.

    2015-01-01

    HIV-positive adolescents who engage in unsafe sex are at heightened risk for transmitting or re-acquiring HIV. Disclosure of HIV-status to sexual partners may impact on condom use, but no study has explored the effects of (i) adolescent knowledge of one's HIV-status, (ii) knowledge of partner status and (iii) disclosure to partners, on safer sex behaviour. This study aimed to identify whether knowledge of HIV-status by HIV-positive adolescents and partners was associated with safer sex. Eight fifty eight HIV-positive adolescents (10–19 years old, 52% female, 68.1% vertically infected) who had ever initiated antiretroviral treatment in 41 health facilities in the Eastern Cape, South Africa, were interviewed using standardised questionnaires. Quantitative analyses used multivariate logistic regressions, controlling for confounders. Qualitative research included interviews, focus group discussions and observations with 43 HIV-positive teenagers and their healthcare workers. N = 128 (14.9%) of the total sample had ever had sex, while N = 109 (85.1%) of sexually active adolescents had boy/girlfriend. In total, 68.1% of the sample knew their status, 41.5% of those who were sexually active and in relationships knew their partner's status, and 35.5% had disclosed to their partners. For adolescents, knowing one's status was associated with safer sex (OR = 4.355, CI 1.085–17.474, p = .038). Neither knowing their partner's status, nor disclosing one's HIV-status to a partner, were associated with safer sex. HIV-positive adolescents feared rejection, stigma and public exposure if disclosing to sexual and romantic partners. Counselling by healthcare workers for HIV-positive adolescents focused on benefits of disclosure, but did not address the fears and risks associated with disclosure. These findings challenge assumptions that disclosure is automatically protective in sexual and romantic relationships for HIV-positive adolescents, who may be ill-equipped to

  3. Sex and the Circuitry: Progress Toward a Systems-Level Understanding of Vertebrate Sex Determination

    PubMed Central

    Munger, Steven C; Capel, Blanche

    2017-01-01

    In vertebrates, the gonad arises as a bipotential primordium that can differentiate as a testis or ovary. Cells are initially primed to adopt either fate by balanced antagonistic signaling pathways and transcription networks. Sexual fate is determined by activating the testis or ovarian pathway and repressing the alternative pathway. A complex, dynamic transcription network underlies this process, as approximately half the genome is being transcribed during this period, and many genes are expressed in a sexually dimorphic manner. This network is highly plastic, however multiple lines of evidence suggest that many elements of the pathway converge on the stabilization or disruption of Sox9 expression. The single gene mutational approach has led to the identification of ~30 additional genes involved in vertebrate sex determination. However,>50% of human disorders of sexual development (DSDs) are not explained by any of these genes, suggesting many critical elements of the system await discovery. Emerging technologies and genetic resources enable the investigation of the sex determination network on a global scale in the context of a variable genetic background or environmental influences. Using these new tools we can investigate how cells establish a bipotential state that is poised to adopt either sexual fate, and how they integrate multiple signaling and transcriptional inputs to drive a cell fate decision. Elucidating the genetic architecture underlying sex determination in model systems can lead to the identification of conserved modules correlated with phenotypic outcomes, and critical pressure points in the network that predict genes involved in DSDs in humans. PMID:22605638

  4. Determination of Sex from Footprint Dimensions in a Ghanaian Population

    PubMed Central

    Abledu, Jubilant Kwame; Abledu, Godfred Kwame; Offei, Eric Bekoe; Antwi, Emmanuel Mensah

    2015-01-01

    The present study sought to verify the utility and reliability of footprint dimensions in sex determination in a Ghanaian population. Bilateral footprints were obtained from 126 Ghanaian students (66 males and 60 females) aged 18–30 years at Koforidua Polytechnic using an ink pad and white papers. Seven dimensions–length of each toe (designated T1-T5) from the most anterior point of the toe to the mid-rear heel point, breadth at ball (BAB) and breadth at heel (BAH)–and the heel-ball (HB) index were obtained from each footprint. Some footprint dimensions (i.e. T2, T3, T4 and T5) showed statistically significant bilateral asymmetry in males only. All the footprint dimensions, except HB index, were significantly greater in males than females (p<0.001). Applied singly in discriminant function analysis, the footprint dimensions allowed 69.8%-80.3% of cases to be correctly classified into their sex groups; the accuracy of sex classification was higher using left footprints than right footprints. With all dimensions subjected to stepwise discriminant function analysis 80.3% and 77% of cases could be correctly classified, combining both T5 and BAH for left footprints and T1, BAB and BAH for left footprints respectively. The present study has demonstrated, for the first time among Ghanaian subjects, the utility and reliability of sex determination standards developed from footprint dimensions. The results thus provide the baseline for elaborated studies in the future. PMID:26445236

  5. When sex work becomes your everything: The complex linkages between economy and affection among male sex workers in Peru

    PubMed Central

    Bayer, Angela M.; Garvich, Mijail; Díaz, David A.; Sánchez, Hugo; García, Patricia J.; Coates, Thomas J.

    2014-01-01

    In Peru, there are few studies on male sex workers (MSWs) and existing studies explore limited sub-groups or offer limited information about MSWs’ perspectives. This study provides in-depth perspectives from 40 MSWs who work in downtown Lima (Cercado) and in surrounding urban neighborhoods (non-Cercado) through interviews on their identities, lives and HIV/STI risks and vulnerabilities. Findings are that entry into sex work links economy and affection, particularly among Cercado MSWs. Continued sex work cements this link, making it difficult to exit sex work and establish goals. Ties between economics and affections influence MSWs’ perceived HIV/STI risks, vulnerabilities and prevention practices. Although Cercado MSWs report higher HIV/STI risks and vulnerabilities than non-Cercado peers, they report fewer prevention practices given inability to buy condoms and acceptance of client offers of higher payment, especially clients they feel affection for. MSWs need support to strengthen their self-perceptions and define and pursue their goals in order to improve their HIV/STI prevention practices, health and well-being. PMID:24368712

  6. Blueberry Consumption Affects Serum Uric Acid Concentrations in Older Adults in a Sex-Specific Manner

    PubMed Central

    Cheatham, Carol L.; Vazquez-Vidal, Itzel; Medlin, Amanda; Voruganti, V. Saroja

    2016-01-01

    Blueberries are rich in antioxidants and may protect against disease. Uric acid accounts for about 50% of the antioxidant properties in humans. Elevated levels of serum uric acid (SUA) or hyperuricemia is a risk factor for cardiovascular disease (CVD). The aim was to determine the effect of blueberries on SUA in older adults. Participants (n = 133, 65–80 years) experiencing mild cognitive impairment (MCI) were randomized in a double-blind 6-month clinical trial to either blueberry or placebo. A reference group with no MCI received no treatment. The mean (SD) SUA at baseline were 5.45 (0.9), 6.4 (1.3) and 5.8 (1.4) mg/dL in reference, placebo, and treatment groups, respectively. Baseline SUA was different in men and women (6.25 (1.1) vs. 5.35 (1.1), p = 0.001). During the first three months, SUA decreased in the blueberry group and was significantly different from the placebo group in both men and women (p < 0.0003). Sex-specific differences became apparent after 3 months, when only men showed an increase in SUA in the blueberry group and not in the placebo (p = 0.0006) between 3 and 6 months. At 6 months SUA had rebounded in both men and women and returned to baseline levels. Baseline SUA was correlated with CVD risk factors, waist circumference and triglycerides (p < 0.05), but differed by sex. Overall, 6 m SUA changes were negatively associated with triglycerides in men, but not in women. Group-wise association between 6 m SUA changes and CVD risk factors showed associations with diastolic blood pressure, triglycerides and high-density lipoprotein (HDL) cholesterol in women of the Blueberry group but not in men or any sex in the placebo group. In summary, blueberries may affect SUA and its relationship with CVD risk in a sex-specific manner. PMID:27916816

  7. The genetic contribution to sex determination and number of sex chromosomes vary among populations of common frogs (Rana temporaria).

    PubMed

    Rodrigues, N; Vuille, Y; Brelsford, A; Merilä, J; Perrin, N

    2016-07-01

    The patterns of sex determination and sex differentiation have been shown to differ among geographic populations of common frogs. Notably, the association between phenotypic sex and linkage group 2 (LG2) has been found to be perfect in a northern Swedish population, but weak and variable among families in a southern one. By analyzing these populations with markers from other linkage groups, we bring two new insights: (1) the variance in phenotypic sex not accounted for by LG2 in the southern population could not be assigned to genetic factors on other linkage groups, suggesting an epigenetic component to sex determination; (2) a second linkage group (LG7) was found to co-segregate with sex and LG2 in the northern population. Given the very short timeframe since post-glacial colonization (in the order of 1000 generations) and its seemingly localized distribution, this neo-sex chromosome system might be the youngest one described so far. It does not result from a fusion, but more likely from a reciprocal translocation between the original Y chromosome (LG2) and an autosome (LG7), causing their co-segregation during male meiosis. By generating a strict linkage between several important genes from the sex-determination cascade (Dmrt1, Amh and Amhr2), this neo-sex chromosome possibly contributes to the 'differentiated sex race' syndrome (strictly genetic sex determination and early gonadal development) that characterizes this northern population.

  8. Gonadal differentiation in reptiles exhibiting environmental sex determination.

    PubMed

    Kohno, Satomi; Parrott, Benjamin B; Yatsu, Ryohei; Miyagawa, Shinichi; Moore, Brandon C; Iguchi, Taisen; Guillette, Louis

    2014-01-01

    As temperature-dependent sex determination (TSD) and homozygote or heterozygote genetic sex determination (GSD) exist in multiple reptilian taxa, they represent sex determination systems that have emerged de novo. Current investigations have revealed that the genetic mechanisms used by various reptilian species are similar to those used by other vertebrates. However, the recent completion or near completion of various reptilian genome projects suggests that new studies examining related species with and without TSD could begin to provide additional insight into the evolution of TSD and GSD in vertebrate ancestors. Major questions still remain concerning germ cell migration and specification, the differentiation of gonadal accessory cells, such as the Sertoli cells and granulosa cells of the developing testis and ovary, respectively, and the mechanisms by which gene expression is regulated during TSD events. Further, reptilian sentinels and their mechanisms of gonadogenesis will likely remain important indicator species for environmental health. Thus, ongoing and new investigations need to tie molecular information to gonadal morphogenesis and function in reptiles. Such data will not only provide important information for an understanding of the evolution of these phenomena in vertebrates, but could also provide an important understanding of the health of the environment around us.

  9. Putative sex-specific human pheromones do not affect gender perception, attractiveness ratings or unfaithfulness judgements of opposite sex faces

    PubMed Central

    Hare, Robin M.; Schlatter, Sophie; Rhodes, Gillian

    2017-01-01

    Debate continues over the existence of human sex pheromones. Two substances, androstadienone (AND) and estratetraenol (EST), were recently reported to signal male and female gender, respectively, potentially qualifying them as human sex pheromones. If AND and EST truly signal gender, then they should affect reproductively relevant behaviours such as mate perception. To test this hypothesis, heterosexual, Caucasian human participants completed two computer-based tasks twice, on two consecutive days, exposed to a control scent on one day and a putative pheromone (AND or EST) on the other. In the first task, 46 participants (24 male, 22 female) indicated the gender (male or female) of five gender-neutral facial morphs. Exposure to AND or EST had no effect on gender perception. In the second task, 94 participants (43 male, 51 female) rated photographs of opposite-sex faces for attractiveness and probable sexual unfaithfulness. Exposure to the putative pheromones had no effect on either attractiveness or unfaithfulness ratings. These results are consistent with those of other experimental studies and reviews that suggest AND and EST are unlikely to be human pheromones. The double-blind nature of the current study lends increased support to this conclusion. If human sex pheromones affect our judgements of gender, attractiveness or unfaithfulness from faces, they are unlikely to be AND or EST.

  10. Olfactory experience affects the response of meadow voles to the opposite-sex scent donor of mixed-sex over-marks

    PubMed Central

    Ferkin, Michael H.; Ferkin, Daniel A.; Ferkin, Benjamin D.; Vlautin, Christian T.

    2010-01-01

    Scent marking and over-marking are important forms of communication between the sexes for many terrestrial mammals. Over the course of three experiments, we determined whether the amount of time individuals investigate the scent marks of opposite-sex conspecifics is affected by four days of olfactory experience with those conspecifics. In experiment 1, female meadow voles, Microtus pennsylvanicus, spent more time investigating the scent mark of the novel male conspecific than that of the familiar male donor, whereas male voles spent similar amounts of time investigating the scent mark of the familiar female and a novel female conspecific. In experiment 2, voles were exposed to a mixed-sex over-mark in which subjects did not have four days of olfactory experience with either the top-scent donor or the bottom-scent donor. During the test phase, male and female voles spent more time investigating the scent mark of the opposite-sex conspecific that provided the top-scent mark than that of a novel, opposite-sex conspecific. Male and female voles spent similar amounts of time investigating the scent mark of the bottom-scent donor and that of a novel opposite-sex conspecific. In experiment 3, voles were exposed to a mixed-sex over-mark that contained the scent mark of an opposite-sex conspecific with which they had four days of olfactory experience. During the test phase, male voles spent more time investigating the mark of the familiar, top-scent female than the scent mark of a novel female donor but spent similar amounts of time investigating the mark of the familiar, bottom-scent female and that of a novel female donor. In contrast, female voles spent more time investigating the mark of a novel male donor than that of either the familiar, top-scent male or that of the familiar, bottom-scent male. The sex differences in the responses of voles to scent marks and mixed-sex over-marks are discussed in relation to the natural history and non-monogamous mating system of

  11. Tribolium castaneum Transformer-2 regulates sex determination and development in both males and females.

    PubMed

    Shukla, Jayendra Nath; Palli, Subba Reddy

    2013-12-01

    Tribolium castaneum Transformer (TcTra) is essential for female sex determination and maintenance through the regulation of sex-specific splicing of doublesex (dsx) pre-mRNA. In females, TcTra also regulates the sex-specific splicing of its own pre-mRNA to ensure continuous production of functional Tra protein. Transformer protein is absent in males and hence dsx pre-mRNA is spliced in a default mode. The mechanisms by which males inhibit the production of functional Tra protein are not known. Here, we report on functional characterization of transformer-2 (tra-2) gene (an ortholog of Drosophila transformer-2) in T. castaneum. RNA interference-mediated knockdown in the expression of gene coding for tra-2 in female pupae or adults resulted in the production of male-specific isoform of dsx and both female and male isoforms of tra suggesting that Tra-2 is essential for the female-specific splicing of tra and dsx pre-mRNAs. Interestingly, knockdown of tra-2 in males did not affect the splicing of dsx but resulted in the production of both female and male isoforms of tra suggesting that Tra-2 suppresses female-specific splicing of tra pre-mRNA in males. This dual regulation of sex-specific splicing of tra pre-mRNA ensures a tight regulation of sex determination and maintenance. These data suggest a critical role for Tra-2 in suppression of female sex determination cascade in males. In addition, RNAi studies showed that Tra-2 is also required for successful embryonic and larval development in both sexes.

  12. Robustness against extinction by stochastic sex determination in small populations

    NASA Astrophysics Data System (ADS)

    Schneider, David M.; do Carmo, Eduardo; Bar-Yam, Yaneer; de Aguiar, Marcus A. M.

    2012-10-01

    Sexually reproducing populations with a small number of individuals may go extinct by stochastic fluctuations in sex determination, causing all their members to become male or female in a generation. In this work we calculate the time to extinction of isolated populations with fixed number N of individuals that are updated according to the Moran birth and death process. At each time step, one individual is randomly selected and replaced by its offspring resulting from mating with another individual of the opposite sex; the offspring can be male or female with equal probability. A set of N time steps is called a generation, the average time it takes for the entire population to be replaced. The number k of females fluctuates in time, similarly to a random walk, and extinction, which is the only asymptotic possibility, occurs when k=0 or k=N. We show that it takes only one generation for an arbitrary initial distribution of males and females to approach the binomial distribution. This distribution, however, is unstable and the population eventually goes extinct in 2N/N generations. We also discuss the robustness of these results against bias in the determination of the sex of the offspring, a characteristic promoted by infection by the bacteria Wolbachia in some arthropod species or by temperature in reptiles.

  13. Chromosome elimination and sex determination in springtails (Insecta, Collembola).

    PubMed

    Dallai, R; Fanciulli, P P; Frati, F

    1999-10-15

    A post-zygotic mechanism of sex determination is described in the two symphypleonans Dicyrtomina ornata (Nicolet) and Ptenothrix italica Dallai. The process consists of the loss of two sex chromosomes from the male embryo. At the end of the first meiotic division of spermatogenesis, a second chromosome elimination occurs, allowing half the secondary spermatocytes, later transformed into spermatids, to receive a complete haploid set of chromosomes. The secondary spermatocytes, which receive an incomplete set of chromosomes, degenerate. Males of the two collembolan species, therefore, produce a reduced number (50%) of spermatozoa. Females of D. ornata have 2n = 12 and males 2n = 10 chromosomes; females of P. italica have 2n = 14 and males 2n = 12 chromosomes. In both species, oogenesis proceeds normally and chromosomes pair and form chiasmata in meiotic prophase. The adaptive significance of this post-zygotic mechanism of sex determination is discussed. The mechanism seems to be a characteristic feature of the suborder Symphypleona. The neanurid Arthropleona Anurida maritima (Guérin), which was studied for comparative analysis, has 2n = 8 chromosomes and normal spermatogenesis producing haploid nuclei with four chromosomes. J. Exp. Zool. (Mol. Dev. Evol.) 285:215-225, 1999.

  14. Ecological context and metapopulation dynamics affect sex-ratio variation among dioecious plant populations

    PubMed Central

    Field, David L.; Pickup, Melinda; Barrett, Spencer C. H.

    2013-01-01

    Background and Aims Populations of dioecious flowering plants commonly exhibit heterogeneity in sex ratios and deviations from the equilibrium expectation of equal numbers of females and males. Yet the role of ecological and demographic factors in contributing towards biased sex ratios is currently not well understood. Methods Species-level studies from the literature were analysed to investigate ecological correlates of among-population sex-ratio variation and metapopulation models and empirical data were used to explore the influence of demography and non-equilibrium conditions on flowering sex ratios. Key Results The survey revealed significant among-population heterogeneity in sex ratios and this was related to the degree of sampling effort. For some species, sex-ratio bias was associated with the proportion of non-reproductive individuals, with greater male bias in populations with a lower proportion of individuals that were flowering. Male-biased ratios were also found at higher altitudes and latitudes, and in more xeric sites. Simulations and empirical data indicated that clonal species exhibited greater heterogeneity in sex ratios than non-clonal species as a result of their slower approach to equilibrium. The simulations also indicated the importance of interactions between reproductive mode and founder effects, with greater departures from equilibrium in clonal populations with fewer founding individuals. Conclusions The results indicate that sex-based differences in costs of reproduction and non-equilibrium conditions can each play important roles in affecting flowering sex ratios in populations of dioecious plants. PMID:23444124

  15. Variability in sex-determining mechanisms influences genome complexity in reptilia.

    PubMed

    Janes, D E; Organ, C L; Edwards, S V

    2009-01-01

    In this review, we describe the history of amniote sex determination as a classic example of Darwinian evolution. We suggest that evolutionary changes in sex determination provide a foundation for understanding important aspects of chromosome and genome organization that otherwise appear haphazard in their origins and contents. Species with genotypic sex determination often possess heteromorphic sex chromosomes, whereas species with environmental sex determination lack them. Through a series of mutations followed by selection at key genes, sex-determining mechanisms have turned over many times throughout the amniote lineage. As a consequence, amniote genomes have undergone gains or losses of sex chromosomes. We review the genomic and ecological contexts in which either temperature-dependent or genotypic sex determination has evolved. Once genotypic sex determination emerges in a lineage, viviparity and heteromorphic sex chromosomes become more likely to evolve. For example, in extinct marine reptiles, genotypic sex determination apparently led to viviparity, which in turn facilitated their pelagic radiation. Sex chromosomes comprise genome regions that differ from autosomes in recombination rate, mutation rate, levels of polymorphism, and the presence of sex-determining and sexually antagonistic genes. In short, many aspects of amniote genome complexity, life history, and adaptive radiation appear contingent on evolutionary changes in sex-determining mechanisms.

  16. Variability in Sex-Determining Mechanisms Influences Genome Complexity in Reptilia

    PubMed Central

    Janes, D.E.; Organ, C.L.; Edwards, S.V.

    2010-01-01

    In this review, we describe the history of amniote sex determination as a classic example of Darwinian evolution. We suggest that evolutionary changes in sex determination provide a foundation for understanding important aspects of chromosome and genome organization that otherwise appear haphazard in their origins and contents. Species with genotypic sex determination often possess heteromorphic sex chromosomes, whereas species with environmental sex determination lack them. Through a series of mutations followed by selection at key genes, sex-determining mechanisms have turned over many times throughout the amniote lineage. As a consequence, amniote genomes have undergone gains or losses of sex chromosomes. We review the genomic and ecological contexts in which either temperature-dependent or genotypic sex determination has evolved. Once genotypic sex determination emerges in a lineage, viviparity and heteromorphic sex chromosomes become more likely to evolve. For example, in extinct marine reptiles, genotypic sex determination apparently led to viviparity, which in turn facilitated their pelagic radiation. Sex chromosomes comprise genome regions that differ from autosomes in recombination rate, mutation rate, levels of polymorphism, and the presence of sex-determining and sexually antagonistic genes. In short, many aspects of amniote genome complexity, life history, and adaptive radiation appear contingent on evolutionary changes in sex-determining mechanisms. PMID:20203474

  17. A novel hypothesis for the adaptive maintenance of environmental sex determination in a turtle

    PubMed Central

    Spencer, R.-J.; Janzen, F. J.

    2014-01-01

    Temperature-dependent sex determination (TSD) is widespread in reptiles, yet its adaptive significance and mechanisms for its maintenance remain obscure and controversial. Comparative analyses identify an ancient origin of TSD in turtles, crocodiles and tuatara, suggesting that this trait should be advantageous in order to persist. Based on this assumption, researchers primarily, and with minimal success, have employed a model to examine sex-specific variation in hatchling phenotypes and fitness generated by different incubation conditions. The unwavering focus on different incubation conditions may be misplaced at least in the many turtle species in which hatchlings overwinter in the natal nest. If overwintering temperatures differentially affect fitness of male and female hatchlings, TSD might be maintained adaptively by enabling embryos to develop as the sex best suited to those overwintering conditions. We test this novel hypothesis using the painted turtle (Chrysemys picta), a species with TSD in which eggs hatch in late summer and hatchlings remain within nests until the following spring. We used a split-clutch design to expose field-incubated hatchlings to warm and cool overwintering (autumn–winter–spring) regimes in the laboratory and measured metabolic rates, energy use, body size and mortality of male and female hatchlings. While overall mortality rates were low, males exposed to warmer overwintering regimes had significantly higher metabolic rates and used more residual yolk than females, whereas the reverse occurred in the cool temperature regime. Hatchlings from mixed-sex nests exhibited similar sex-specific trends and, crucially, they were less energy efficient and grew less than same-sex hatchlings that originated from single-sex clutches. Such sex- and incubation-specific physiological adaptation to winter temperatures may enhance fitness and even extend the northern range of many species that overwinter terrestrially. PMID:25009063

  18. What was the ancestral sex-determining mechanism in amniote vertebrates?

    PubMed

    Johnson Pokorná, Martina; Kratochvíl, Lukáš

    2016-02-01

    Amniote vertebrates, the group consisting of mammals and reptiles including birds, possess various mechanisms of sex determination. Under environmental sex determination (ESD), the sex of individuals depends on the environmental conditions occurring during their development and therefore there are no sexual differences present in their genotypes. Alternatively, through the mode of genotypic sex determination (GSD), sex is determined by a sex-specific genotype, i.e. by the combination of sex chromosomes at various stages of differentiation at conception. As well as influencing sex determination, sex-specific parts of genomes may, and often do, develop specific reproductive or ecological roles in their bearers. Accordingly, an individual with a mismatch between phenotypic (gonadal) and genotypic sex, for example an individual sex-reversed by environmental effects, should have a lower fitness due to the lack of specialized, sex-specific parts of their genome. In this case, evolutionary transitions from GSD to ESD should be less likely than transitions in the opposite direction. This prediction contrasts with the view that GSD was the ancestral sex-determining mechanism for amniote vertebrates. Ancestral GSD would require several transitions from GSD to ESD associated with an independent dedifferentiation of sex chromosomes, at least in the ancestors of crocodiles, turtles, and lepidosaurs (tuataras and squamate reptiles). In this review, we argue that the alternative theory postulating ESD as ancestral in amniotes is more parsimonious and is largely concordant with the theoretical expectations and current knowledge of the phylogenetic distribution and homology of sex-determining mechanisms.

  19. Molecular evolution of Dmrt1 accompanies change of sex-determining mechanisms in reptilia

    PubMed Central

    Janes, Daniel E.; Organ, Christopher L.; Stiglec, Rami; O'Meally, Denis; Sarre, Stephen D.; Georges, Arthur; Graves, Jennifer A. M.; Valenzuela, Nicole; Literman, Robert A.; Rutherford, Kim; Gemmell, Neil; Iverson, John B.; Tamplin, Jeffrey W.; Edwards, Scott V.; Ezaz, Tariq

    2014-01-01

    In reptiles, sex-determining mechanisms have evolved repeatedly and reversibly between genotypic and temperature-dependent sex determination. The gene Dmrt1 directs male determination in chicken (and presumably other birds), and regulates sex differentiation in animals as distantly related as fruit flies, nematodes and humans. Here, we show a consistent molecular difference in Dmrt1 between reptiles with genotypic and temperature-dependent sex determination. Among 34 non-avian reptiles, a convergently evolved pair of amino acids encoded by sequence within exon 2 near the DM-binding domain of Dmrt1 distinguishes species with either type of sex determination. We suggest that this amino acid shift accompanied the evolution of genotypic sex determination from an ancestral condition of temperature-dependent sex determination at least three times among reptiles, as evident in turtles, birds and squamates. This novel hypothesis describes the evolution of sex-determining mechanisms as turnover events accompanied by one or two small mutations. PMID:25540158

  20. Molecular evolution of Dmrt1 accompanies change of sex-determining mechanisms in reptilia.

    PubMed

    Janes, Daniel E; Organ, Christopher L; Stiglec, Rami; O'Meally, Denis; Sarre, Stephen D; Georges, Arthur; Graves, Jennifer A M; Valenzuela, Nicole; Literman, Robert A; Rutherford, Kim; Gemmell, Neil; Iverson, John B; Tamplin, Jeffrey W; Edwards, Scott V; Ezaz, Tariq

    2014-12-01

    In reptiles, sex-determining mechanisms have evolved repeatedly and reversibly between genotypic and temperature-dependent sex determination. The gene Dmrt1 directs male determination in chicken (and presumably other birds), and regulates sex differentiation in animals as distantly related as fruit flies, nematodes and humans. Here, we show a consistent molecular difference in Dmrt1 between reptiles with genotypic and temperature-dependent sex determination. Among 34 non-avian reptiles, a convergently evolved pair of amino acids encoded by sequence within exon 2 near the DM-binding domain of Dmrt1 distinguishes species with either type of sex determination. We suggest that this amino acid shift accompanied the evolution of genotypic sex determination from an ancestral condition of temperature-dependent sex determination at least three times among reptiles, as evident in turtles, birds and squamates. This novel hypothesis describes the evolution of sex-determining mechanisms as turnover events accompanied by one or two small mutations.

  1. Maintenance of polygenic sex determination in a fluctuating environment: An individual-based model.

    PubMed

    Bateman, Andrew W; Anholt, Bradley R

    2017-02-10

    R. A. Fisher predicted that individuals should invest equally in offspring of both sexes, and that the proportion of males and females produced (the primary sex ratio) should evolve towards 1:1 when unconstrained. For many species, sex determination is dependent on sex chromosomes, creating a strong tendency for balanced sex ratios, but in other cases multiple autosomal genes interact to determine sex. In such cases, the maintenance of multiple sex-determining alleles at multiple loci and the consequent between-family variability in sex ratios presents a puzzle, as theory predicts that such systems should be unstable. Theory also predicts that environmental influences on sex can complicate outcomes of genetic sex determination, and that population structure may play a role. Tigriopus californicus, a copepod that lives in splash-pool metapopulations and exhibits polygenic and environment-dependent sex determination, presents a test case for relevant theory. We use this species as a model for parameterizing an individual-based simulation to investigate conditions that could maintain polygenic sex determination. We find that metapopulation structure can delay the degradation of polygenic sex determination and that periods of alternating frequency-dependent selection, imposed by seasonal fluctuations in environmental conditions, can maintain polygenic sex determination indefinitely. This article is protected by copyright. All rights reserved.

  2. Factors affecting the determination of cerebrovascular reactivity

    PubMed Central

    Regan, Rosemary E; Fisher, Joseph A; Duffin, James

    2014-01-01

    Background and Purpose Cerebrovascular reactivity (CVR), measures the ability of the cerebrovasculature to respond to vasoactive stimuli such as CO2. CVR is often expressed as the ratio of cerebral blood flow change to CO2 change. We examine several factors affecting this measurement: blood pressure, stimulus pattern, response analysis and subject position. Methods Step and ramp increases in CO2 were implemented in nine subjects, seated and supine. Middle cerebral artery blood flow velocity (MCAv), and mean arterial pressure (MAP) were determined breath-by-breath. Cerebrovascular conductance (MCAc) was estimated as MCAv/MAP. CVR was calculated from both the relative and absolute measures of MCAc and MCAv responses. Results MAP increased with CO2 in some subjects so that relative CVR calculated from conductance responses were less than those calculated from CVR calculated from velocity responses. CVR measured from step responses were affected by the response dynamics, and were less than those calculated from CVR measured from ramp responses. Subject position did not affect CVR. Conclusions (1) MAP increases with CO2 and acts as a confounding factor for CVR measurement; (2) CVR depends on the stimulus pattern used; (3) CVR did not differ from the sitting versus supine in these experiments; (4) CVR calculated from absolute changes of MCAv was less than that calculated from relative changes. PMID:25328852

  3. Sex differences in perceived pain are affected by an anxious brain.

    PubMed

    Goffaux, Philippe; Michaud, Karine; Gaudreau, Janou; Chalaye, Philippe; Rainville, Pierre; Marchand, Serge

    2011-09-01

    Decades of research confirm that women have greater pain sensitivity than men. Women also show greater overall anxiety sensitivity than men. Given these differences, we hypothesized that sex differences in anxiety would explain sex differences in experienced pain and physiological responses to pain (at both spinal and cortical levels). By measuring subjective pain, state/trait anxiety, nociceptive flexion reflexes, and somatosensory evoked potentials (SEPs), it was possible to test the effects of anxiety on the processing of painful drives at different levels of the neuraxis while also documenting the role played by anxiety on sex differences in experienced pain. Results confirm that women are indeed more sensitive to pain than men. Importantly, this difference was accompanied by a significant sex difference in cortical activity (SEP amplitude) but not spinal nociceptive activity, suggesting that much of the sex difference in experienced pain is attributable to variations in thalamocortical processing and to ensuing changes in the appraisal of and/or emotional response to noxious insult. In support of this claim, we found that sex differences in cortical activity and subjective pain disappeared when trait anxiety was controlled for. This means that stable predispositions to respond with heightened apprehension contribute to baseline pain sensitivity differences between the sexes. These results indicate that the modulatory effect of affect on pain-related brain processes may explain why men and women experience painful shocks so differently. In our study, the mediating role of anxiety on sex differences in pain was tested and confirmed using path analysis.

  4. Amelogenin sex determination by pyrosequencing of short PCR products.

    PubMed

    Tschentscher, Frank; Frey, Ulrich H; Bajanowski, Thomas

    2008-07-01

    We developed an assay, which allows the sex determination of human DNA samples by pyrosequencing of short PCR products. A 48/45-bp stretch including primers of the amelogenin gene with a 3-bp insertion on the Y chromosome was chosen for analysis. In an initial study, we correctly typed 50 male and 50 female DNA samples from unrelated donors. First experiments with forensic samples, which failed in conventional analyses, indicate that this approach might be an advantage when dealing with degraded DNA.

  5. Sex determination by mandibular ramus: A digital orthopantomographic study

    PubMed Central

    Samatha, K; Byahatti, Sujata Mohan; Ammanagi, Renuka Anand; Tantradi, Praveena; Sarang, Chandan Kaur; Shivpuje, Prachi

    2016-01-01

    Aims and Objectives: (1) To determine the usefulness of mandibular ramus as an aid in sex determination. (2) To evaluate Anteroposterior | superioinferior angle of mandibular condyle. Materials and Methods: A retrospective study was conducted using orthopantomographs of 60 males and 60 females, which were taken using Kodak 8000C Digital Panoramic and Cephalometric System (73 kVp, 12 mA, 13.9 s). The age group ranged between 18 – 45 years. Mandibular ramus measurements were carried out using Master View 3.0 software. The measurements of the mandibular ramus will be subjected to Discriminant function analysis. Results: Maximum ramus breadth, Minimum ramus breadth, Condylar height, Projective height of ramus Coronoid height were calculated for both the sexes differently with the formula & analyzed with Discriminant function analysis using Fischer exact test. The P value was statistically significant with the P value < 0.05 for the following parameters Max. ramus breadth, Condylar height and Projective height of ramus. Conclusion: Mandibular ramus measurements can be a useful tool for gender determination. PMID:27555726

  6. The Staurotypus Turtles and Aves Share the Same Origin of Sex Chromosomes but Evolved Different Types of Heterogametic Sex Determination

    PubMed Central

    Kawagoshi, Taiki; Uno, Yoshinobu; Nishida, Chizuko; Matsuda, Yoichi

    2014-01-01

    Reptiles have a wide diversity of sex-determining mechanisms and types of sex chromosomes. Turtles exhibit temperature-dependent sex determination and genotypic sex determination, with male heterogametic (XX/XY) and female heterogametic (ZZ/ZW) sex chromosomes. Identification of sex chromosomes in many turtle species and their comparative genomic analysis are of great significance to understand the evolutionary processes of sex determination and sex chromosome differentiation in Testudines. The Mexican giant musk turtle (Staurotypus triporcatus, Kinosternidae, Testudines) and the giant musk turtle (Staurotypus salvinii) have heteromorphic XY sex chromosomes with a low degree of morphological differentiation; however, their origin and linkage group are still unknown. Cross-species chromosome painting with chromosome-specific DNA from Chinese soft-shelled turtle (Pelodiscus sinensis) revealed that the X and Y chromosomes of S. triporcatus have homology with P. sinensis chromosome 6, which corresponds to the chicken Z chromosome. We cloned cDNA fragments of S. triporcatus homologs of 16 chicken Z-linked genes and mapped them to S. triporcatus and S. salvinii chromosomes using fluorescence in situ hybridization. Sixteen genes were localized to the X and Y long arms in the same order in both species. The orders were also almost the same as those of the ostrich (Struthio camelus) Z chromosome, which retains the primitive state of the avian ancestral Z chromosome. These results strongly suggest that the X and Y chromosomes of Staurotypus turtles are at a very early stage of sex chromosome differentiation, and that these chromosomes and the avian ZW chromosomes share the same origin. Nonetheless, the turtles and birds acquired different systems of heterogametic sex determination during their evolution. PMID:25121779

  7. The Staurotypus turtles and aves share the same origin of sex chromosomes but evolved different types of heterogametic sex determination.

    PubMed

    Kawagoshi, Taiki; Uno, Yoshinobu; Nishida, Chizuko; Matsuda, Yoichi

    2014-01-01

    Reptiles have a wide diversity of sex-determining mechanisms and types of sex chromosomes. Turtles exhibit temperature-dependent sex determination and genotypic sex determination, with male heterogametic (XX/XY) and female heterogametic (ZZ/ZW) sex chromosomes. Identification of sex chromosomes in many turtle species and their comparative genomic analysis are of great significance to understand the evolutionary processes of sex determination and sex chromosome differentiation in Testudines. The Mexican giant musk turtle (Staurotypus triporcatus, Kinosternidae, Testudines) and the giant musk turtle (Staurotypus salvinii) have heteromorphic XY sex chromosomes with a low degree of morphological differentiation; however, their origin and linkage group are still unknown. Cross-species chromosome painting with chromosome-specific DNA from Chinese soft-shelled turtle (Pelodiscus sinensis) revealed that the X and Y chromosomes of S. triporcatus have homology with P. sinensis chromosome 6, which corresponds to the chicken Z chromosome. We cloned cDNA fragments of S. triporcatus homologs of 16 chicken Z-linked genes and mapped them to S. triporcatus and S. salvinii chromosomes using fluorescence in situ hybridization. Sixteen genes were localized to the X and Y long arms in the same order in both species. The orders were also almost the same as those of the ostrich (Struthio camelus) Z chromosome, which retains the primitive state of the avian ancestral Z chromosome. These results strongly suggest that the X and Y chromosomes of Staurotypus turtles are at a very early stage of sex chromosome differentiation, and that these chromosomes and the avian ZW chromosomes share the same origin. Nonetheless, the turtles and birds acquired different systems of heterogametic sex determination during their evolution.

  8. Developmental Analysis of Two Sex-Determining Genes, M and F, in the Housefly, Musca Domestica

    PubMed Central

    Hilfiker-Kleiner, D.; Dubendorfer, A.; Hilfiker, A.; Nothiger, R.

    1993-01-01

    In the housefly, Musca domestica, a single dominant factor, M, determines maleness. Animals hemior heterozygous for M are males, whereas those without M develop as females. In certain strains, however, both sexes are homozygous for M, and an epistatic dominant factor, F(D), dictates female development. The requirement for these factors was analyzed by producing, with mitotic recombination, mosaic animals consisting of genetically male and female cells. Removal of F(D) from an M/M;F(D)/+ cell at any time of larval development, even in the last larval instar, resulted in sex-reversal, i.e., in the development of a male clone in an otherwise female fly. In contrast, when M was removed from M/+ cells, the resulting clones remained male despite their female genotype, even when the removal of M happened at embryonic stages. The occurrence of spontaneous gynandromorphs, however, shows that the loss of M in individual nuclei prior to blastoderm formation causes the affected cells to adopt the female pathway. These results are consistent with the hypothesis that M is the primary sex-determining signal which sets the state of activity of the key gene F at around the blastoderm stage. Parallels and differences to the sex-determining system of Drosophila are discussed. PMID:8375655

  9. An Evolving Genetic Architecture Interacts with Hill-Robertson Interference to Determine the Benefit of Sex.

    PubMed

    Whitlock, Alexander O B; Peck, Kayla M; Azevedo, Ricardo B R; Burch, Christina L

    2016-06-01

    Sex is ubiquitous in the natural world, but the nature of its benefits remains controversial. Previous studies have suggested that a major advantage of sex is its ability to eliminate interference between selection on linked mutations, a phenomenon known as Hill-Robertson interference. However, those studies may have missed both important advantages and important disadvantages of sexual reproduction because they did not allow the distributions of mutational effects and interactions (i.e., the genetic architecture) to evolve. Here we investigate how Hill-Robertson interference interacts with an evolving genetic architecture to affect the evolutionary origin and maintenance of sex by simulating evolution in populations of artificial gene networks. We observed a long-term advantage of sex-equilibrium mean fitness of sexual populations exceeded that of asexual populations-that did not depend on population size. We also observed a short-term advantage of sex-sexual modifier mutations readily invaded asexual populations-that increased with population size, as was observed in previous studies. We show that the long- and short-term advantages of sex were both determined by differences between sexual and asexual populations in the evolutionary dynamics of two properties of the genetic architecture: the deleterious mutation rate ([Formula: see text]) and recombination load ([Formula: see text]). These differences resulted from a combination of selection to minimize [Formula: see text] which is experienced only by sexuals, and Hill-Robertson interference experienced primarily by asexuals. In contrast to the previous studies, in which Hill-Robertson interference had only a direct impact on the fitness advantages of sex, the impact of Hill-Robertson interference in our simulations was mediated additionally by an indirect impact on the efficiency with which selection acted to reduce [Formula: see text].

  10. More Sex-Determination Mutants of CAENORHABDITIS ELEGANS

    PubMed Central

    Hodgkin, Jonathan

    1980-01-01

    Sex determination in Caenorhabditis elegans is controlled by the X chromosome: autosome ratio, i.e. 2A;XX animals are hermaphrodite, and 2A;XO animals are male. A procedure for isolating 2A;XO animals that are transformed into hermaphrodites has been developed. Nine mutations causing this transformation have been obtained: eight are recessive, and all of these fall into a new autosomal complementation group, her-1 V. The remaining mutation (her-2) is dominant and has a genetic map location similar to that of tra-1 III. Recessive mutations of tra-1 cause the reverse transformation, transforming 2A;XX animals into males. Therefore, the her-2 mutation may result in constitutive expression of tra-1. Mutations in her-1 are without effect on XX animals, but the her-2 mutation prevents sperm production in both XX and XO animals, in addition to its effect on the sexual phenotype of XO animals. The epistatic relationships between tra and her genes are used to deduce a model for the action of these genes in controlling sex determination. PMID:7262542

  11. The impact of chimerism in DNA-based forensic sex determination analysis.

    PubMed

    George, Renjith; Donald, Preethy Mary; Nagraj, Sumanth Kumbargere; Idiculla, Jose Joy; Hj Ismail, Rashid

    2013-01-01

    Sex determination is the most important step in personal identification in forensic investigations. DNA-based sex determination analysis is comparatively more reliable than the other conventional methods of sex determination analysis. Advanced technology like real-time polymerase chain reaction (PCR) offers accurate and reproducible results and is at the level of legal acceptance. But still there are situations like chimerism where an individual possess both male and female specific factors together in their body. Sex determination analysis in such cases can give erroneous results. This paper discusses the phenomenon of chimerism and its impact on sex determination analysis in forensic investigations.

  12. An ancient protein-DNA interaction underlying metazoan sex determination.

    PubMed

    Murphy, Mark W; Lee, John K; Rojo, Sandra; Gearhart, Micah D; Kurahashi, Kayo; Banerjee, Surajit; Loeuille, Guy-André; Bashamboo, Anu; McElreavey, Kenneth; Zarkower, David; Aihara, Hideki; Bardwell, Vivian J

    2015-06-01

    DMRT transcription factors are deeply conserved regulators of metazoan sexual development. They share the DM DNA-binding domain, a unique intertwined double zinc-binding module followed by a C-terminal recognition helix, which binds a pseudopalindromic target DNA. Here we show that DMRT proteins use a unique binding interaction, inserting two adjacent antiparallel recognition helices into a widened DNA major groove to make base-specific contacts. Versatility in how specific base contacts are made allows human DMRT1 to use multiple DNA binding modes (tetramer, trimer and dimer). Chromatin immunoprecipitation with exonuclease treatment (ChIP-exo) indicates that multiple DNA binding modes also are used in vivo. We show that mutations affecting residues crucial for DNA recognition are associated with an intersex phenotype in flies and with male-to-female sex reversal in humans. Our results illuminate an ancient molecular interaction underlying much of metazoan sexual development.

  13. Cytogenetic Insights into the Evolution of Chromosomes and Sex Determination Reveal Striking Homology of Turtle Sex Chromosomes to Amphibian Autosomes.

    PubMed

    Montiel, Eugenia E; Badenhorst, Daleen; Lee, Ling S; Literman, Robert; Trifonov, Vladimir; Valenzuela, Nicole

    2016-01-01

    Turtle karyotypes are highly conserved compared to other vertebrates; yet, variation in diploid number (2n = 26-68) reflects profound genomic reorganization, which correlates with evolutionary turnovers in sex determination. We evaluate the published literature and newly collected comparative cytogenetic data (G- and C-banding, 18S-NOR, and telomere-FISH mapping) from 13 species spanning 2n = 28-68 to revisit turtle genome evolution and sex determination. Interstitial telomeric sites were detected in multiple lineages that underwent diploid number and sex determination turnovers, suggesting chromosomal rearrangements. C-banding revealed potential interspecific variation in centromere composition and interstitial heterochromatin at secondary constrictions. 18S-NORs were detected in secondary constrictions in a single chromosomal pair per species, refuting previous reports of multiple NORs in turtles. 18S-NORs are linked to ZW chromosomes in Apalone and Pelodiscus and to X (not Y) in Staurotypus. Notably, comparative genomics across amniotes revealed that the sex chromosomes of several turtles, as well as mammals and some lizards, are homologous to components of Xenopus tropicalis XTR1 (carrying Dmrt1). Other turtle sex chromosomes are homologous to XTR4 (carrying Wt1). Interestingly, all known turtle sex chromosomes, except in Trionychidae, evolved via inversions around Dmrt1 or Wt1. Thus, XTR1 appears to represent an amniote proto-sex chromosome (perhaps linked ancestrally to XTR4) that gave rise to turtle and other amniote sex chromosomes.

  14. Field study suggests that sex determination in sea lamprey is directly influenced by larval growth rate

    USGS Publications Warehouse

    Johnson, Nicholas; Swink, William D.; Brenden, Travis O.

    2017-01-01

    Sex determination mechanisms in fishes lie along a genetic-environmental continuum and thereby offer opportunities to understand how physiology and environment interact to determine sex. Mechanisms and ecological consequences of sex determination in fishes are primarily garnered from teleosts, with little investigation into basal fishes. We tagged and released larval sea lamprey (Petromyzon marinus) into unproductive lake and productive stream environments. Sex ratios produced from these environments were quantified by recapturing tagged individuals as adults. Sex ratios from unproductive and productive environments were initially similar. However, sex ratios soon diverged, with unproductive environments becoming increasingly male-skewed and productive environments becoming less male-skewed with time. We hypothesize that slower growth in unproductive environments contributed to the sex ratio differences by directly influencing sex determination. To the best of our knowledge, this is the first study suggesting that growth rate in a fish species directly influences sex determination; other studies have suggested that the environmental variables to which sex determination is sensitive (e.g. density, temperature) act as cues for favourable or unfavourable growth conditions. Understanding mechanisms of sex determination in lampreys may provide unique insight into the underlying principles of sex determination in other vertebrates and provide innovative approaches for their management where valued and invasive.

  15. Effects of tamoxifen on the sex determination gene and the activation of sex reversal in the developing gonad of mice.

    PubMed

    Yu, Mingxi; Wang, Jingyun; Liu, Wei; Qin, Junwen; Zhou, Quan; Wang, Yongan; Huang, Huihui; Chen, Wenli; Ma, Chao

    2014-07-03

    Tamoxifen, as well as most endocrine-disrupting chemicals, affects the reproductive system and sexual development, but little is known about its disruption of the molecular pathways regulating mammalian sex determination. In fetal mice, the expression levels and pattern of key genes involved in controlling sexually dimorphic balance were analyzed both in vivo and in vitro by using whole-mount in situ hybridization and quantitative-PCR. Developmental tamoxifen exposure induced abnormal up-regulation of the testis differentiation marker Pdfgra in Leydig cells and of Sox9 and Fgf9 in Sertoli cells in XX gonad. Immunohistochemistry analysis confirmed the over-expression of SOX9 protein. Accordingly, the ovary development marker Foxl2 was depressed at both the mRNA and protein levels. The increase in testosterone and the reduction in 17β-estradiol and progesterone were observed by using the in vitro assay with organotypic cultures. Taken together, results indicated that tamoxifen induced the ectopic expression of well-established sex-specific genes during the critical developmental period, thus resulting in abnormal testicular development in the XX gonad of mammals. This study facilitates a better understanding of the molecular mechanisms of antiestrogens and possibly of compounds that interrupt estrogen signaling by other modes of action, and the association with the pathogenesis of human sexual developmental disorders.

  16. Contagious parthenogenesis, automixis, and a sex determination meltdown.

    PubMed

    Engelstädter, Jan; Sandrock, Christoph; Vorburger, Christoph

    2011-02-01

    Because of the twofold cost of sex, genes conferring asexual reproduction are expected to spread rapidly in sexual populations. However, in reality this simple prediction is often confounded by several complications observed in natural systems. Motivated by recent findings in the Cape honey bee and in the parasitoid wasp Lysiphlebus fabarum, we explore through mathematical models the spread of a recessive, parthenogenesis inducing allele in a haplodiploid population. The focus of these models is on the intricate interactions between the mode of parthenogenesis induction through automixis and complementary sex determination (CSD) systems. These interactions may result in asexual production of diploid male offspring and the spread of the parthenogenesis-inducing allele through these males. We demonstrate that if parthenogenetic females produce a substantial proportion of male offspring, this may prevent the parthenogenesis-inducing allele from spreading. However, this effect is weakened if these diploid males are at least partially fertile. We also predict a degradation of multilocus CSD systems during the spread of parthenogenesis, following which only a single polymorphic CSD locus is maintained. Finally, based on empirical parameter estimates from L. fabarum we predict that male production in parthenogens is unlikely to prevent the eventual loss of sexual reproduction in this system.

  17. Determinants of Sex-Role Flexibility in Children.

    ERIC Educational Resources Information Center

    Katz, Phyllis A.

    This study was designed to assess the relative importance of various factors influencing children's sex role orientations. A measure of sex role flexibility developed for this study and a self concept questionnaire were administered to 376 children in kindergarten and third grade. The children's parents were interviewed about sex role attitudes…

  18. Thermosensitive period of sex determination in the coral-reef damselfish Acanthochromis polyacanthus and the implications of projected ocean warming

    NASA Astrophysics Data System (ADS)

    Rodgers, G. G.; Donelson, J. M.; Munday, P. L.

    2017-03-01

    Higher temperatures associated with climate change have the potential to significantly alter the population sex ratio of species with temperature-dependent sex determination. Whether or not elevated temperature affects sex determination depends on both the absolute temperature experienced and the stage of development at which the thermal conditions occur. We explored the importance of exposure timing during early development in the coral reef fish, Acanthochromis polyacanthus, by increasing water temperature 1.5 or 3 °C above the summer average (28.5 °C) at different stages of development. We also measured the effect of treatment temperature on fish size and condition, in order to gauge how the thermal threshold for sex-ratio bias may compare with other commonly considered physiological metrics. Increasing grow-out temperature from 28.5 to 30 °C had no effect on the sex ratio of offspring, whereas an increase to 31.5 °C (+3 °C) produced a strong male bias (average 90%). The thermosensitive period for this species lasted between 25 and 60 d post hatching, with the bias in sex ratio greater the earlier that fish experienced warm conditions. Temperatures high enough to bias the sex ratio are likely to be seen first during late summer (January and February) and would affect clutches produced late in the breeding season. There was no change to fish condition in response to temperature; however, the two higher temperature treatments produced significantly smaller fish at sampling. Clutches produced early in the season could buffer the population from a skewed sex ratio, as their development will remain below the thermal threshold; however, continued ocean warming could mean that clutches produced earlier in the breeding season would also be affected in the longer term. A skewed sex ratio could be detrimental to population viability by reducing the number of females in the breeding population.

  19. TRPV4 associates environmental temperature and sex determination in the American alligator

    PubMed Central

    Yatsu, Ryohei; Miyagawa, Shinichi; Kohno, Satomi; Saito, Shigeru; Lowers, Russell H.; Ogino, Yukiko; Fukuta, Naomi; Katsu, Yoshinao; Ohta, Yasuhiko; Tominaga, Makoto; Guillette Jr, Louis J.; Iguchi, Taisen

    2015-01-01

    Temperature-dependent sex determination (TSD), commonly found among reptiles, is a sex determination mode in which the incubation temperature during a critical temperature sensitive period (TSP) determines sexual fate of the individual rather than the individual’s genotypic background. In the American alligator (Alligator mississippiensis), eggs incubated during the TSP at 33 °C (male producing temperature: MPT) yields male offspring, whereas incubation temperatures below 30 °C (female producing temperature: FPT) lead to female offspring. However, many of the details of the underlying molecular mechanism remains elusive, and the molecular link between environmental temperature and sex determination pathway is yet to be elucidated. Here we show the alligator TRPV4 ortholog (AmTRPV4) to be activated at temperatures proximate to the TSD-related temperature in alligators, and using pharmacological exposure, we show that AmTRPV4 channel activity affects gene expression patterns associated with male differentiation. This is the first experimental demonstration of a link between a well-described thermo-sensory mechanism, TRPV4 channel, and its potential role in regulation of TSD in vertebrates, shedding unique new light on the elusive TSD molecular mechanism. PMID:26677944

  20. TRPV4 associates environmental temperature and sex determination in the American alligator.

    PubMed

    Yatsu, Ryohei; Miyagawa, Shinichi; Kohno, Satomi; Saito, Shigeru; Lowers, Russell H; Ogino, Yukiko; Fukuta, Naomi; Katsu, Yoshinao; Ohta, Yasuhiko; Tominaga, Makoto; Guillette, Louis J; Iguchi, Taisen

    2015-12-18

    Temperature-dependent sex determination (TSD), commonly found among reptiles, is a sex determination mode in which the incubation temperature during a critical temperature sensitive period (TSP) determines sexual fate of the individual rather than the individual's genotypic background. In the American alligator (Alligator mississippiensis), eggs incubated during the TSP at 33 °C (male producing temperature: MPT) yields male offspring, whereas incubation temperatures below 30 °C (female producing temperature: FPT) lead to female offspring. However, many of the details of the underlying molecular mechanism remains elusive, and the molecular link between environmental temperature and sex determination pathway is yet to be elucidated. Here we show the alligator TRPV4 ortholog (AmTRPV4) to be activated at temperatures proximate to the TSD-related temperature in alligators, and using pharmacological exposure, we show that AmTRPV4 channel activity affects gene expression patterns associated with male differentiation. This is the first experimental demonstration of a link between a well-described thermo-sensory mechanism, TRPV4 channel, and its potential role in regulation of TSD in vertebrates, shedding unique new light on the elusive TSD molecular mechanism.

  1. Sex determination in Madagascar geckos of the genus Paroedura (Squamata: Gekkonidae): are differentiated sex chromosomes indeed so evolutionary stable?

    PubMed

    Koubová, Martina; Johnson Pokorná, Martina; Rovatsos, Michail; Farkačová, Klára; Altmanová, Marie; Kratochvíl, Lukáš

    2014-12-01

    Among amniote vertebrates, geckos represent a clade with exceptional variability in sex determination; however, only a minority of species of this highly diverse group has been studied in this respect. Here, we describe for the first time a female heterogamety in the genus Paroedura, the group radiated in Madagascar and adjacent islands. We identified homomorphic ZZ/ZW sex chromosomes with a highly heterochromatic W chromosome in Paroedura masobe, Paroedura oviceps, Paroedura karstophila, Paroedura stumpffi, and Paroedura lohatsara. Comparative genomic hybridization (CGH) revealed that female-specific sequences are greatly amplified in the W chromosome of P. lohatsara and that P. gracilis seems to possess a derived system of multiple sex chromosomes. Contrastingly, neither CGH nor heterochromatin visualization revealed differentiated sex chromosomes in the members of the Paroedura picta-Paroedura bastardi-Paroedura ibityensis clade, which is phylogenetically nested within lineages with a heterochromatic W chromosome. As a sex ratio consistent with genotypic sex determination has been reported in P. picta, it appears that the members of the P. picta-P. bastardi-P. ibityensis clade possess homomorphic, poorly differentiated sex chromosomes and may represent a rare example of evolutionary loss of highly differentiated sex chromosomes. Fluorescent in situ hybridization (FISH) with a telomeric probe revealed a telomere-typical pattern in all species and an accumulation of telomeric sequences in the centromeric region of autosomes in P. stumpffi and P. bastardi. Our study adds important information for the greater understanding of the variability and evolution of sex determination in geckos and demonstrates how the geckos of the genus Paroedura provide an interesting model for studying the evolution of the sex chromosomes.

  2. Dopamine D4 receptor polymorphism and sex interact to predict children’s affective knowledge

    PubMed Central

    Ben-Israel, Sharon; Uzefovsky, Florina; Ebstein, Richard P.; Knafo-Noam, Ariel

    2015-01-01

    Affective knowledge, the ability to understand others’ emotional states, is considered to be a fundamental part in efficient social interaction. Affective knowledge can be seen as related to cognitive empathy, and in the framework of theory of mind (ToM) as affective ToM. Previous studies found that cognitive empathy and ToM are heritable, yet little is known regarding the specific genes involved in individual variability in affective knowledge. Investigating the genetic basis of affective knowledge is important for understanding brain mechanisms underlying socio-cognitive abilities. The 7-repeat (7R) allele within the third exon of the dopamine D4 receptor gene (DRD4-III) has been a focus of interest, due to accumulated knowledge regarding its relevance to individual differences in social behavior. A recent study suggests that an interaction between the DRD4-III polymorphism and sex is associated with cognitive empathy among adults. We aimed to examine the same association in two childhood age groups. Children (N = 280, age 3.5 years, N = 283, age 5 years) participated as part of the Longitudinal Israel Study of Twins. Affective knowledge was assessed through children’s responses to an illustrated story describing different emotional situations, told in a laboratory setting. The findings suggest a significant interaction between sex and the DRD4-III polymorphism, replicated in both age groups. Boy carriers of the 7R allele had higher affective knowledge scores than girls, whereas in the absence of the 7R there was no significant sex effect on affective knowledge. The results support the importance of DRD4-III polymorphism and sex differences to social development. Possible explanations for differences from adult findings are discussed, as are pathways for future studies. PMID:26157401

  3. Distance and Sex Determine Host Plant Choice by Herbivorous Beetles

    PubMed Central

    Ballhorn, Daniel J.; Kautz, Stefanie; Heil, Martin

    2013-01-01

    Background Plants respond to herbivore damage with the release of volatile organic compounds (VOCs). This indirect defense can cause ecological costs when herbivores themselves use VOCs as cues to localize suitable host plants. Can VOCs reliably indicate food plant quality to herbivores? Methodology We determined the choice behavior of herbivorous beetles (Chrysomelidae: Gynandrobrotica guerreroensis and Cerotoma ruficornis) when facing lima bean plants (Fabaceae: Phaseolus lunatus) with different cyanogenic potential, which is an important constitutive direct defense. Expression of inducible indirect defenses was experimentally manipulated by jasmonic acid treatment at different concentrations. The long-distance responses of male and female beetles to the resulting induced plant volatiles were investigated in olfactometer and free-flight experiments and compared to the short-distance decisions of the same beetles in feeding trials. Conclusion Female beetles of both species were repelled by VOCs released from all induced plants independent of the level of induction. In contrast, male beetles were repelled by strongly induced plants, showed no significant differences in choice behavior towards moderately induced plants, but responded positively to VOCs released from little induced plants. Thus, beetle sex and plant VOCs had a significant effect on host searching behavior. By contrast, feeding behavior of both sexes was strongly determined by the cyanogenic potential of leaves, although females again responded more sensitively than males. Apparently, VOCs mainly provide information to these beetles that are not directly related to food quality. Being induced by herbivory and involved in indirect plant defense, such VOCs might indicate the presence of competitors and predators to herbivores. We conclude that plant quality as a food source and finding a potentially enemy-free space is more important for female than for male insect herbivores, whereas the presence of a

  4. Catechol-O-methyltransferase val(158)met Polymorphism Interacts with Sex to Affect Face Recognition Ability.

    PubMed

    Lamb, Yvette N; McKay, Nicole S; Singh, Shrimal S; Waldie, Karen E; Kirk, Ian J

    2016-01-01

    The catechol-O-methyltransferase (COMT) val158met polymorphism affects the breakdown of synaptic dopamine. Consequently, this polymorphism has been associated with a variety of neurophysiological and behavioral outcomes. Some of the effects have been found to be sex-specific and it appears estrogen may act to down-regulate the activity of the COMT enzyme. The dopaminergic system has been implicated in face recognition, a form of cognition for which a female advantage has typically been reported. This study aimed to investigate potential joint effects of sex and COMT genotype on face recognition. A sample of 142 university students was genotyped and assessed using the Faces I subtest of the Wechsler Memory Scale - Third Edition (WMS-III). A significant two-way interaction between sex and COMT genotype on face recognition performance was found. Of the male participants, COMT val homozygotes and heterozygotes had significantly lower scores than met homozygotes. Scores did not differ between genotypes for female participants. While male val homozygotes had significantly lower scores than female val homozygotes, no sex differences were observed in the heterozygotes and met homozygotes. This study contributes to the accumulating literature documenting sex-specific effects of the COMT polymorphism by demonstrating a COMT-sex interaction for face recognition, and is consistent with a role for dopamine in face recognition.

  5. Catechol-O-methyltransferase val158met Polymorphism Interacts with Sex to Affect Face Recognition Ability

    PubMed Central

    Lamb, Yvette N.; McKay, Nicole S.; Singh, Shrimal S.; Waldie, Karen E.; Kirk, Ian J.

    2016-01-01

    The catechol-O-methyltransferase (COMT) val158met polymorphism affects the breakdown of synaptic dopamine. Consequently, this polymorphism has been associated with a variety of neurophysiological and behavioral outcomes. Some of the effects have been found to be sex-specific and it appears estrogen may act to down-regulate the activity of the COMT enzyme. The dopaminergic system has been implicated in face recognition, a form of cognition for which a female advantage has typically been reported. This study aimed to investigate potential joint effects of sex and COMT genotype on face recognition. A sample of 142 university students was genotyped and assessed using the Faces I subtest of the Wechsler Memory Scale – Third Edition (WMS-III). A significant two-way interaction between sex and COMT genotype on face recognition performance was found. Of the male participants, COMT val homozygotes and heterozygotes had significantly lower scores than met homozygotes. Scores did not differ between genotypes for female participants. While male val homozygotes had significantly lower scores than female val homozygotes, no sex differences were observed in the heterozygotes and met homozygotes. This study contributes to the accumulating literature documenting sex-specific effects of the COMT polymorphism by demonstrating a COMT-sex interaction for face recognition, and is consistent with a role for dopamine in face recognition. PMID:27445927

  6. Embryonic origin of mate choice in a lizard with temperature-dependent sex determination.

    PubMed

    Putz, Oliver; Crews, David

    2006-01-01

    Individual differences in the adult sexual behavior of vertebrates are rooted in the fetal environment. In the leopard gecko (Eublepharis macularius), a species with temperature-dependent sex determination (TSD), hatchling sex ratios differ between incubation temperatures, as does sexuality in same-sex animals. This variation can primarily be ascribed to the temperature having direct organizing actions on the brain. Here we demonstrate that embryonic temperature can affect adult mate choice in the leopard gecko. Given the simultaneous choice between two females from different incubation temperatures (30.0 and 34.0 degrees C), males from one incubation temperature (30.0 degrees C) preferred the female from 34.0 degrees C, while males from another incubation temperature (32.5 degrees C) preferred the female from 30.0 degrees C. We suggest that this difference in mate choice is due to an environmental influence on brain development leading to differential perception of opposite-sex individuals. This previously unrecognized modulator of adult mate choice lends further support to the view that mate choice is best understood in the context of an individual's entire life-history. Thus, sexual selection results from a combination of the female's as well as the male's life history. Female attractiveness and male choice therefore are complementary.

  7. Sex-dependent mechanisms for expansions and contractions of the CAG repeat on affected Huntington disease chromosomes

    SciTech Connect

    Kremer, B.; Theilmann, J.; Spence, N.

    1995-08-01

    A total of 254 affected parent-child pairs with Huntington disease (HD) and 440 parent-child pairs with CAG size in the normal range were assessed to determine the nature and frequency of intergenerational CAG changes in the HD gene. Intergenerational CAG changes are extremely rare (3/440 [0.68%]) on normal chromosomes. In contrast, on HD chromosomes, changes in CAG size occur in {approximately}70% of meioses on HD chromosomes, with expansions accounting for 73% of these changes. These intergenerational CAG changes make a significant but minor contribution to changes in age at onset (r{sup 2}=.19). The size of the CAG repeat influenced larger intergenerational expansions (>7 CAG repeats), but the likelihood of smaller expansions or contractions was not influenced by CAG size. Large expansions (>7 CAG repeats) occur almost exclusively through paternal transmission (0.96%; P<10{sub -7}), while offspring of affected mothers are more likely to show no change (P=.01) or contractions in CAG size (P=.002). This study demonstrates that sex of the transmitting parent is the major determinant for CAG intergenerational changes in the HD gene. Similar paternal sex effects are seen in the evolution of new mutations for HD from intermediate alleles and for large expansions on affected chromosomes. Affected mothers almost never transmit a significantly expanded CAG repeat, despite the fact that many have similar large-sized alleles, compared with affected fathers. The sex-dependent effects of major expansion and contractions of the CAG repeat in the HD gene implicate different effects of gametogenesis, in males versus females, on intergenerational CAG repeat stability. 22 refs., 4 figs., 3 tabs.

  8. The comparative study of five sex-determining proteins across insects unveils high rates of evolution at basal components of the sex determination cascade.

    PubMed

    Eirín-López, José M; Sánchez, Lucas

    2015-01-01

    In insects, the sex determination cascade is composed of genes that interact with each other in a strict hierarchical manner, constituting a coadapted gene complex built in reverse order from bottom to top. Accordingly, ancient elements at the bottom are expected to remain conserved ensuring the correct functionality of the cascade. In the present work, we have studied the levels of variation displayed by five key components of the sex determination cascade across 59 insect species, including Sex-lethal, transformer, transformer-2, fruitless, doublesex, and sister-of-Sex-lethal (a paralog of Sxl encompassing sex-independent functions). Surprisingly, our results reveal that basal components of the cascade (doublesex, fruitless) seem to evolve more rapidly than previously suspected. Indeed, in the case of Drosophila, these proteins evolve more rapidly than the master regulator Sex-lethal. These results agree with the notion suggesting that genes involved in early aspects of development will be more constrained due to the large deleterious pleiotropic effects of mutations, resulting in increased levels of purifying selection at top positions of the cascade. The analyses of the selective episodes involved in the recruitment of Sxl into sex-determining functions further support this idea, suggesting the presence of bursts of adaptive selection in the common ancestor of drosophilids, followed by the onset of purifying selection preserving the master regulatory role of this protein on top of the Drosophila sex determination cascade. Altogether, these results underscore the importance of the position of sex determining genes in the cascade, constituting a major constraint shaping the molecular evolution of the insect sex determination pathway.

  9. Do scientific theories affect men’s evaluations of sex crimes?

    PubMed Central

    DAR-NIMROD, ILAN; HEINE, STEVEN J.; CHEUNG, BENJAMIN Y.; SCHALLER, MARK

    2012-01-01

    Evolutionary Psychology accounts of gender differences in sexual behaviors in general and men’s sexual aggression in particular, have been criticized for legitimizing males’ sexual misconduct. To empirically assess such critiques, two studies examined how men’s judgments of male sex crimes (solicitation of sex from a prostitute; rape) are influenced by exposure to (a) evolutionary psychological theories, and (b) social-constructivist theories. Across two studies a consistent pattern emerged: compared to a control condition, (a) exposure to evolutionary psychology theories had no observable impact on male judgments of men’s criminal sexual behavior, whereas (b) exposure to social-constructivist theories did affect judgments, leading men to evaluate sex crimes more harshly. Additional results (from Study 2) indicate that this effect is mediated by perceptions of male control over sexual urges. These results have implications, for journalists, educators, and scientists. PMID:21678431

  10. Is a sex-determining gene(s) necessary for sex-determination in amphibians? Steroid hormones may be the key factor.

    PubMed

    Nakamura, M

    2013-01-01

    Amphibians have 2 genetic sex-determining systems, one with male (XX/XY) and one with female (ZZ/ZW) heterogamety. While the ancestral state of sex-determination is thought to be female heterogamety, male and female heterogametic types were probably once interchangeable. The Japanese frog Rana rugosa has both XX/XY and ZZ/ZW systems within a single species in certain local populations. However, steroid hormones can alter the phenotypic sex epigenetically. In R. rugosa, steroidogenic enzyme expression starts before sex-determination in the indifferent gonad, and these enzymes become active in both male and female tadpoles. Androgens are produced in the indifferent gonad of male tadpoles at high levels, whereas estrogens are synthesized in females. In this regard, the observed enhanced expression of the hormone-metabolizing genes, CYP19 in the female gonad and CYP17 in males, may be crucial for sex-determination. Moreover, with FSH known to increase estrogen synthesis in the vertebrate ovary, observed upregulation of FSH receptor (FSHR) expression in the indifferent gonad of female tadpoles is intriguing. These data suggest that steroid hormones could be crucial for sex-determination in R. rugosa, with the consequence that upregulation of CYP19 and FSHR expression is necessary for female and CYP17 for male sex-determination.

  11. Independent effects of incubation temperature and gonadal sex on the volume and metabolic capacity of brain nuclei in the leopard gecko (Eublepharis macularius), a lizard with temperature-dependent sex determination.

    PubMed

    Coomber, P; Crews, D; Gonzalez-Lima, F

    1997-04-14

    The extent to which variation within and between the sexes can be assigned to genes vs. environment is problematic, because, in most vertebrates, males and females differ genetically. However, factors other than sex chromosomes and the consequent sex-typical gonadal hormone secretions may play important roles in the differentiation of the neural mechanisms underlying individual and sex differences in aggressive and sexual behavior. The leopard gecko, like many oviparous reptiles, lacks sex chromosomes. Instead, gonadal sex is determined by temperature during embryogenesis, with low and high incubation temperatures producing females and intermediate temperatures producing mixed sex ratios. In essence, this allows for the study of individual and sex differences without the confounding variable of genetically determined gender. Experiments have shown that the temperature experienced during incubation plays a critical role in establishing the adult morphological, endocrinological, and behavioral phenotype. In this experiment, the independent effects of incubation temperature and gonadal sex on the morphology and metabolic capacity of specific brain nuclei were determined. Both individual and sex differences in the volume of the preoptic area and ventromedial nucleus of the hypothalamus are determined primarily by incubation temperature, not by gonadal sex. However, incubation temperature and gonadal sex are both important in determining the metabolic capacity in the anterior hypothalamus, external amygdala, dorsal lateral nucleus of the hypothalamus, dorsal lateral nucleus of the thalamus, dorsal ventricular ridge, habenula, lateral hypothalamus, nucleus rotundus, nucleus sphericus, periventricular nucleus of the hypothalamus, preoptic area, periventricular nucleus of the preoptic area, septum, striatum, torus semicircularis, and ventromedial nucleus of the hypothalamus. This is the first demonstration in a vertebrate that factors other than gonadal sex hormones, which

  12. Manipulation of arthropod sex determination by endosymbionts: diversity and molecular mechanisms.

    PubMed

    Ma, W-J; Vavre, F; Beukeboom, L W

    2014-01-01

    Arthropods exhibit a large variety of sex determination systems both at the chromosomal and molecular level. Male heterogamety, female heterogamety, and haplodiploidy occur frequently, but partially different genes are involved. Endosymbionts, such as Wolbachia, Cardinium,Rickettsia, and Spiroplasma, can manipulate host reproduction and sex determination. Four major reproductive manipulation types are distinguished: cytoplasmic incompatibility, thelytokous parthenogenesis, male killing, and feminization. In this review, the effects of these manipulation types and how they interfere with arthropod sex determination in terms of host developmental timing, alteration of sex determination, and modification of sexual differentiation pathways are summarized. Transitions between different manipulation types occur frequently which suggests that they are based on similar molecular processes. It is also discussed how mechanisms of reproductive manipulation and host sex determination can be informative on each other, with a special focus on haplodiploidy. Future directions on how the study of endosymbiotic manipulation of host reproduction can be key to further studies of arthropod sex determination are shown.

  13. Policing the epidemic: High burden of workplace violence among female sex workers in conflict-affected northern Uganda.

    PubMed

    Muldoon, Katherine A; Akello, Monica; Muzaaya, Godfrey; Simo, Annick; Shoveller, Jean; Shannon, Kate

    2017-01-01

    Sex workers in sub-Saharan Africa experience a high burden of HIV with a paucity of data on violence and links to HIV risk among sex workers, and even less within conflict-affected environments. Data are from a cross-sectional survey of female sex workers in Gulu, northern Uganda (n = 400). Logistic regression was used to determine the specific association between policing and recent physical/sexual violence from clients. A total of 196 (49.0%) sex workers experienced physical/sexual violence by a client. From those who experienced client violence the most common forms included physical assault (58.7%), rape (38.3%), and gang rape (15.8%) Police harassment was very common, a total of 149 (37.3%) reported rushing negotiations with clients because of police presence, a practice that was significantly associated with increased odds of client violence (adjusted odds ratio: 1.61, 95% confidence intervals: 1.03-2.52). Inconsistent condom use with clients, servicing clients in a bar, and working for a manager/pimp were also independently associated with recent client violence. Structural and community-led responses, including decriminalisation, and engagement with police and policy stakeholders, remain critical to addressing violence, both a human rights and public health imperative.

  14. Evidence for multiple sex-determining loci in Tasmanian Atlantic salmon (Salmo salar)

    PubMed Central

    Eisbrenner, W D; Botwright, N; Cook, M; Davidson, E A; Dominik, S; Elliott, N G; Henshall, J; Jones, S L; Kube, P D; Lubieniecki, K P; Peng, S; Davidson, W S

    2014-01-01

    Phenotypic sex in salmonids is determined primarily by a genetic male heterogametic system; yet, sex reversal can be accomplished via hormonal treatment. In Tasmanian Atlantic salmon aquaculture, to overcome problems associated with early sexual maturation in males, sex-reversed females are crossed with normal females to produce all female stock. However, phenotypic distinction of sex-reversed females (neo-males) from true males is problematic. We set out to identify genetic markers that could make this distinction. Microsatellite markers from chromosome 2 (Ssa02), to which the sex-determining locus (SEX) has been mapped in two Scottish Atlantic salmon families, did not predict sex in a pilot study of seven families. A TaqMan 64 SNP genome-wide scan suggested SEX was on Ssa06 in these families, and this was confirmed by microsatellite markers. A survey of 58 families in total representing 38 male lineages in the SALTAS breeding program found that 34 of the families had SEX on Ssa02, in 22 of the families SEX was on Ssa06, and two of the families had a third SEX locus, on Ssa03. A PCR test using primers designed from the recently published sdY gene is consistent with Tasmanian Atlantic salmon having a single sex-determining gene that may be located on at least three linkage groups. PMID:23759729

  15. Sex allocation and secondary sex ratio in Cuban boa (Chilabothrus angulifer): mother's body size affects the ratio between sons and daughters.

    PubMed

    Frynta, Daniel; Vejvodová, Tereza; Šimková, Olga

    2016-06-01

    Secondary sex ratios of animals with genetically determined sex may considerably deviate from equality. These deviations may be attributed to several proximate and ultimate factors. Sex ratio theory explains some of them as strategic decisions of mothers improving their fitness by selective investment in sons or daughters, e.g. local resource competition hypothesis (LRC) suggests that philopatric females tend to produce litters with male-biased sex ratios to avoid future competition with their daughters. Until now, only little attention has been paid to examine predictions of sex ratio theory in snakes possessing genetic sex determination and exhibiting large variance in allocation of maternal investment. Cuban boa is an endemic viviparous snake producing large-bodied newborns (∼200 g). Extremely high maternal investment in each offspring increases importance of sex allocation. In a captive colony, we collected breeding records of 42 mothers, 62 litters and 306 newborns and examined secondary sex ratios (SR) and sexual size dimorphism (SSD) of newborns. None of the examined morphometric traits of neonates appeared sexually dimorphic. The sex ratio was slightly male biased (174 males versus 132 females) and litter sex ratio significantly decreased with female snout-vent length. We interpret this relationship as an additional support for LRC as competition between mothers and daughters increases with similarity of body sizes between competing snakes.

  16. Sex allocation and secondary sex ratio in Cuban boa ( Chilabothrus angulifer): mother's body size affects the ratio between sons and daughters

    NASA Astrophysics Data System (ADS)

    Frynta, Daniel; Vejvodová, Tereza; Šimková, Olga

    2016-06-01

    Secondary sex ratios of animals with genetically determined sex may considerably deviate from equality. These deviations may be attributed to several proximate and ultimate factors. Sex ratio theory explains some of them as strategic decisions of mothers improving their fitness by selective investment in sons or daughters, e.g. local resource competition hypothesis (LRC) suggests that philopatric females tend to produce litters with male-biased sex ratios to avoid future competition with their daughters. Until now, only little attention has been paid to examine predictions of sex ratio theory in snakes possessing genetic sex determination and exhibiting large variance in allocation of maternal investment. Cuban boa is an endemic viviparous snake producing large-bodied newborns (˜200 g). Extremely high maternal investment in each offspring increases importance of sex allocation. In a captive colony, we collected breeding records of 42 mothers, 62 litters and 306 newborns and examined secondary sex ratios (SR) and sexual size dimorphism (SSD) of newborns. None of the examined morphometric traits of neonates appeared sexually dimorphic. The sex ratio was slightly male biased (174 males versus 132 females) and litter sex ratio significantly decreased with female snout-vent length. We interpret this relationship as an additional support for LRC as competition between mothers and daughters increases with similarity of body sizes between competing snakes.

  17. An Interactive network of long non-coding RNAs facilitates the Drosophila sex determination decision

    PubMed Central

    Mulvey, Brett B.; Olcese, Ursula; Cabrera, Janel R.; Horabin, Jamila I.

    2014-01-01

    Genome analysis in several eukaryotes shows a surprising number of transcripts which do not encode conventional messenger RNAs. Once considered noise, these non-coding RNAs (ncRNAs) appear capable of controlling gene expression by various means. We find Drosophila sex determination, specifically the master-switch gene Sex-lethal (Sxl), is regulated by long ncRNAs (>200 nt). The lncRNAs influence the dose sensitive establishment promoter of Sxl, SxlPe, which must be activated to specify female sex. They are primarily from two regions, R1 and R2, upstream of SxlPeand show a dynamic developmental profile. Of the four lncRNA strands only one, R2 antisense, has its peak coincident with SxlPe transcription, suggesting it may promote activation. Indeed, its expression is regulated by the X chromosome counting genes, whose dose determines whether SxlPe is transcribed. Transgenic lines which ectopically express each of the lncRNAs show they can act in trans, impacting the process of sex determination but also altering the levels of the other lncRNAs. Generally, expression of R1 is negative whereas R2 is positive to females. This ectopic expression also results in a change in the local chromatin marks, affecting the timing and strength of SxlPe transcription. The chromatin marks are those deposited by the Polycomb and Trithorax groups of chromatin modifying proteins, which we find bind to the lncRNAs. We suggest the increasing numbers of non-coding transcripts being identified are a harbinger of interacting networks similar to the one we describe. PMID:24954180

  18. Female Fertilization: Effects of Sex-Specific Density and Sex Ratio Determined Experimentally for Colorado Potato Beetles and Drosophila Fruit Flies

    PubMed Central

    Vahl, Wouter K.; Boiteau, Gilles; de Heij, Maaike E.; MacKinley, Pamela D.; Kokko, Hanna

    2013-01-01

    If males and females affect reproduction differentially, understanding and predicting sexual reproduction requires specification of response surfaces, that is, two-dimensional functions that relate reproduction to the (numeric) densities of both sexes. Aiming at rigorous measurement of female per capita fertilization response surfaces, we conducted a multifactorial experiment and reanalyzed an extensive data set. In our experiment, we varied the density of male and female Leptinotarsa decemlineata (Colorado potato beetles) by placing different numbers of the two sexes on enclosed Solanum tuberosum (potato plants) to determine the proportion of females fertilized after 3 or 22 hours. In the reanalysis, we investigated how the short-term fertilization probability of three Drosophila strains (melanogaster ebony, m. sepia, and simulans) depended on adult sex ratio (proportion of males) and total density. The fertilization probability of female Leptinotarsa decemlineata increased logistically with male density, but not with female density. These effects were robust to trial duration. The fertilization probability of female Drosophila increased logistically with both sex ratio and total density. Treatment effects interacted in m. sepia, and simulans. These findings highlight the importance of well-designed, multifactorial experiments and strengthen previous experimental evidence for the relevance of sex-specific densities to understanding and prediction of female fertilization probability. PMID:23593206

  19. Female fertilization: effects of sex-specific density and sex ratio determined experimentally for Colorado potato beetles and Drosophila fruit flies.

    PubMed

    Vahl, Wouter K; Boiteau, Gilles; de Heij, Maaike E; MacKinley, Pamela D; Kokko, Hanna

    2013-01-01

    If males and females affect reproduction differentially, understanding and predicting sexual reproduction requires specification of response surfaces, that is, two-dimensional functions that relate reproduction to the (numeric) densities of both sexes. Aiming at rigorous measurement of female per capita fertilization response surfaces, we conducted a multifactorial experiment and reanalyzed an extensive data set. In our experiment, we varied the density of male and female Leptinotarsa decemlineata (Colorado potato beetles) by placing different numbers of the two sexes on enclosed Solanum tuberosum (potato plants) to determine the proportion of females fertilized after 3 or 22 hours. In the reanalysis, we investigated how the short-term fertilization probability of three Drosophila strains (melanogaster ebony, m. sepia, and simulans) depended on adult sex ratio (proportion of males) and total density. The fertilization probability of female Leptinotarsa decemlineata increased logistically with male density, but not with female density. These effects were robust to trial duration. The fertilization probability of female Drosophila increased logistically with both sex ratio and total density. Treatment effects interacted in m. sepia, and simulans. These findings highlight the importance of well-designed, multifactorial experiments and strengthen previous experimental evidence for the relevance of sex-specific densities to understanding and prediction of female fertilization probability.

  20. Nuclear genes with sex bias in Ruditapes philippinarum (Bivalvia, veneridae): Mitochondrial inheritance and sex determination in DUI species.

    PubMed

    Milani, Liliana; Ghiselli, Fabrizio; Nuzhdin, Sergey V; Passamonti, Marco

    2013-11-01

    Mitochondria are inherited maternally in most metazoans, but in bivalves with Doubly Uniparental Inheritance (DUI) a mitochondrial lineage is transmitted through eggs (F-type), and another through sperm (M-type). In DUI species, a sex-ratio distortion of the progeny was observed: some females produce a female-biased offspring (female-biased family), others a male-biased progeny (male-biased family), and others a 50:50 sex-ratio. A peculiar segregation pattern of M-type mitochondria in DUI organisms appears to be correlated with the sex bias of these families. According to a proposed model for the inheritance of M-type mitochondria in DUI, the transmission of sperm mitochondria is controlled by three nuclear genes, named W, X, and Z. An additional S gene with different dosage effect would be involved in sex determination. In this study, we analyzed structure and localization of three transcripts (psa, birc, and anubl1) with specific sex and family biases in the Manila clam Ruditapes philippinarum. In situ hybridization confirmed the localization of these transcripts in gametogenic cells. In other animals, homologs of these genes are involved in reproduction and ubiquitination. We hypothesized that these genes may have a role in sex determination and could also be responsible for the maintenance/degradation of spermatozoon mitochondria during embryo development of the DUI species R. philippinarum, so that we propose them as candidate factors of the W/X/Z/S system.

  1. Age and sex determination of the Maui Parrotbill

    USGS Publications Warehouse

    Berlin, Kim E.; Simon, John C.; Pratt, Thane K.; Baker, Paul E.; Kowalsky, James R.

    2001-01-01

    We determined the best plumage and morphometric variables for ageing and sexing the Maui Parrotbill (Pseudonestor xanthophrys), an endangered Hawaiian honeycreeper found only on east Maui, Hawaii, by examining and measuring 30 museum specimens and 71 live birds captured in mist nets. Juvenal plumage was identified by the presence of pale-tipped wing bars on the middle and greater coverts, grayish olive dorsal plumage, and dingy white underparts and superciliaries. Birds undergoing first prebasic molt retained the juvenal remiges, rectrices, and wing coverts. Birds in first basic plumage possessed juvenal wing bars and a dull juvenal-like plumage. Subsequent molts were complete, and adults lacked wing bars. Adult males had bright yellow plumage on the cheeks, throat, and superciliaries, as did 27% of adult females. All other adult females had less yellow in the underparts. The dorsal plumage of adult females was more variable than adult males and was either yellow-olive like the males or grayish olive. Adult males had longer wing, bill, tail, and tarsometatarsus and greater mass than adult females. Virtually all males and females could be distinguished by wing length. Morphometrics of immature birds were significantly smaller than for adult males. Only immature male wing chord was significantly larger than that of adult females. Although it was difficult to distinguish between immatures and some adult females based on plumage coloration or measurements, a cut-off point of 70.4 mm for wing chord separated 91% of females from 93% of males, regardless of age.

  2. Developmental and sex-related differences in preschoolers' affective decision making.

    PubMed

    Heilman, Renata M; Miu, Andrei C; Benga, Oana

    2009-01-01

    This study investigated developmental and sex-related differences in affective decision making, using a two-deck version of Children's Gambling Task administered to 3- and 4-year-old children. The main findings were that 4-year-old children displayed better decision-making performance than 3-year-olds. This effect was independent of developmental changes in inductive reasoning, language, and working memory. There were also sex differences in decision-making performance, which were apparent only in 3-year-old children and favored girls. Moreover, age predicted awareness of task and the correlation between the latter and decision-making performance was significant, but only in 4-year-old children. This study thus indicates that there is a remarkable developmental leap in affective decision making, whose effects are apparent around the age of 4, which according to our results, also marks the age when the correlation of declarative knowledge and decision-making performance becomes significant.

  3. The Evolution of the Search for Novel Genes in Mammalian Sex Determination: From Mice to Men

    PubMed Central

    Arboleda, Valerie A.; Vilain, Eric

    2011-01-01

    Disorders of sex determination are a genetically heterogeneous group of rare disorders, presenting with sex-specific phenotypes and variable expressivity. Prior to the advent of the Human Genome Project, the identification of novel mammalian sex determination genes was hindered by the rarity of disorders of sex determination and small family sizes that made traditional linkage approaches difficult, if not impossible. This article reviews the revolutionary role of the Human Genome Project in the history of sex determination research and highlights the important role of inbred mouse models in elucidating the role of identified sex determination genes in mammalian sex determination. Next generation sequencing technologies has made it possible to sequence complete human genomes or exomes for the purpose of providing a genetic diagnosis to more patients with unexplained disorders of sex determination and identifying novel sex determination genes. However, beyond novel gene discovery, these tools have the power to inform us on more intricate and complex regulation-taking place within the heterogeneous cells that make up the testis and ovary. PMID:21795084

  4. Sequential Turnovers of Sex Chromosomes in African Clawed Frogs (Xenopus) Suggest Some Genomic Regions Are Good at Sex Determination

    PubMed Central

    Furman, Benjamin L. S.; Evans, Ben J.

    2016-01-01

    Sexual differentiation is fundamentally important for reproduction, yet the genetic triggers of this developmental process can vary, even between closely related species. Recent studies have uncovered, for example, variation in the genetic triggers for sexual differentiation within and between species of African clawed frogs (genus Xenopus). Here, we extend these discoveries by demonstrating that yet another sex determination system exists in Xenopus, specifically in the species Xenopus borealis. This system evolved recently in an ancestor of X. borealis that had the same sex determination system as X. laevis, a system which itself is newly evolved. Strikingly, the genomic region carrying the sex determination factor in X. borealis is homologous to that of therian mammals, including humans. Our results offer insights into how the genetic underpinnings of conserved phenotypes evolve, and suggest an important role for cooption of genetic building blocks with conserved developmental roles. PMID:27605520

  5. Sequential Turnovers of Sex Chromosomes in African Clawed Frogs (Xenopus) Suggest Some Genomic Regions are Good at Sex Determination.

    PubMed

    Furman, Benjamin L S; Evans, Ben J

    2016-09-07

    Sexual differentiation is fundamentally important for reproduction, yet the genetic triggers of this developmental process can vary, even between closely related species. Recent studies have uncovered, for example, variation in the genetic triggers for sexual differentiation within and between species of African clawed frogs (genus Xenopus). Here, we extend these discoveries by demonstrating that yet another sex determination system exists in Xenopus, specifically in the species X. borealis This system evolved recently in an ancestor of X. borealis that had the same sex determination system as X. laevis, a system which itself is newly evolved. Strikingly, the genomic region carrying the sex determination factor in X. borealis is homologous to that of therian mammals, including humans. Our results offer insights into how the genetic underpinnings of conserved phenotypes evolve, and suggest an important role for recycling and shuffling of genetic building blocks with conserved developmental roles.

  6. Sex determination of the Acadian Flycatcher using discriminant analysis

    USGS Publications Warehouse

    Wilson, R.R.

    1999-01-01

    I used five morphometric variables from 114 individuals captured in Arkansas to develop a discriminant model to predict the sex of Acadian Flycatchers (Empidonax virescens). Stepwise discriminant function analyses selected wing chord and tail length as the most parsimonious subset of variables for discriminating sex. This two-variable model correctly classified 80% of females and 97% of males used to develop the model. Validation of the model using 19 individuals from Louisiana and Virginia resulted in 100% correct classification of males and females. This model provides criteria for sexing monomorphic Acadian Flycatchers during the breeding season and possibly during the winter.

  7. Sex Determination of Adult Human Maxillary Sinuses on Panoramic Radiographs.

    PubMed

    Leao de Queiroz, Cristhiane; Terada, Andrea Sayuri Silveira Dias; Dezem, Thais Uenoyama; Gomes de Araújo, Lais; Galo, Rodrigo; Oliveira-Santos, Christiano; Alves da Silva, Ricardo Henrique

    2016-09-01

    The purpose of this study was to evaluate dimensions of adult human maxillary sinuses on panoramic radiographs and their possible application on the sex determination for forensic purposes. The sample comprised 64 database panoramic radiographs from individuals aged 20 years or older (32 male and 32 female subjects), with complete permanent dentition (or absence of third molars). One examiner measured the width and height of the right and left maxillary sinuses using the software Image J 1.47v (National Institutes of Health, Bethesda, USA). Measurements were repeated to calculate intra-observer agreement. Chi-Square test, Kappa, ANOVA and T-Student were used for results analysis for p≤ 0.05. Intra-observer agreement with correlation Kappa ranged between 0.38 and 0.96. For female subjects, the mean height and width of the left maxillary sinus were 28.7856mm and 44.6178mm, respectively. And right maxillary sinus was 27.7163mm for height and 45.1850mm for width. Male subjects were found to have the mean height and width of the left maxillary sinus 30.9981mm and 48.7753mm, respectively. And right maxillary sinus was 30.7403mm for height and 48.5753mm for width. There was a statistically significant difference in the height and width of maxillary sinuses between males and females. It can be concluded that maxillary sinuses height and width on panoramic radiographs can be used to determine the gender of adult human subjects.

  8. Determinants of food label use differ by sex.

    PubMed

    Stran, Kimberly A; Knol, Linda L

    2013-05-01

    Although the Nutrition Facts label has been a requirement on food packages for more than 20 years, few studies have conducted comprehensive assessments of food label use. The purpose of this study was to assess the demographic and psychosocial correlates of food label use using a comprehensive approach. A sample of 1,382 males and females (n=573 and n=809, respectively) aged 19 to 70 years was drawn from the 2005-2006 National Health and Nutrition Examination Survey. The food label Check and Use subscales are the sums of multiple questions on frequency of checking and using each separate component on a Nutrition Facts label. Multiple linear regression was used to assess differences in predictors of Check and Use. Determinants of food label use differed by sex. Women check and use food label components more often and thoroughly than men. Older adults and adults with good diet-quality perception were significant predictors of food label use for both men and women. Race was a significant predictor for men only. Mexican-American and other Hispanic groups check (P=0.03) and use (P=0.01) the food label more frequently than non-Hispanic white men. Men who do not receive Supplemental Nutrition Assistance Program benefits also check (P<0.01) and use (P=0.01) food labels more frequently than those who receive assistance. The findings of this study could be used to improve nutrition education efforts. It may be beneficial to target men and women separately, as food label use determinants are different.

  9. Sex Determination of Adult Human Maxillary Sinuses on Panoramic Radiographs

    PubMed Central

    Leao de Queiroz, Cristhiane; Terada, Andrea Sayuri Silveira Dias; Dezem, Thais Uenoyama; Gomes de Araújo, Lais; Galo, Rodrigo; Oliveira-Santos, Christiano

    2016-01-01

    Absract The purpose of this study was to evaluate dimensions of adult human maxillary sinuses on panoramic radiographs and their possible application on the sex determination for forensic purposes. The sample comprised 64 database panoramic radiographs from individuals aged 20 years or older (32 male and 32 female subjects), with complete permanent dentition (or absence of third molars). One examiner measured the width and height of the right and left maxillary sinuses using the software Image J 1.47v (National Institutes of Health, Bethesda, USA). Measurements were repeated to calculate intra-observer agreement. Chi-Square test, Kappa, ANOVA and T-Student were used for results analysis for p≤ 0.05. Intra-observer agreement with correlation Kappa ranged between 0.38 and 0.96. For female subjects, the mean height and width of the left maxillary sinus were 28.7856mm and 44.6178mm, respectively. And right maxillary sinus was 27.7163mm for height and 45.1850mm for width. Male subjects were found to have the mean height and width of the left maxillary sinus 30.9981mm and 48.7753mm, respectively. And right maxillary sinus was 30.7403mm for height and 48.5753mm for width. There was a statistically significant difference in the height and width of maxillary sinuses between males and females. It can be concluded that maxillary sinuses height and width on panoramic radiographs can be used to determine the gender of adult human subjects. PMID:27847394

  10. Environmental versus genetic sex determination: a possible factor in dinosaur extinction?

    PubMed

    Miller, David; Summers, Jonathan; Silber, Sherman

    2004-04-01

    This study examined the possibility that genetically based sex-determination mechanisms have evolved to ensure a balanced male/female ratio and that this temperature-independent checkpoint might have been unavailable to long-extinct reptiles, notably the dinosaurs. A review of the literature on molecular and phylogenetic relationships between modes of reproduction and sex determination in extant animals was conducted. Mammals, birds, all snakes and most lizards, amphibians, and some gonochoristic fish use specific sex-determining chromosomes or genes (genetic sex determination, GSD). Some reptiles, however, including all crocodilians studied to date, many turtle and tortoise species, and some lizards, use environmental or temperature-dependent sex determination (TSD). We show that various modes of GSD have evolved many times, independently in different orders. Animals using TSD would be at risk of rapid reproductive failure due to a skewed sex ratio favoring males in response to sustained environmental temperature change and favoring the selection of sex-determining genes. The disadvantage to the evolving male sex-determining chromosome, however, is its decay due to nonrecombination and the subsequent loss of spermatogenesis genes. Global temperature change can skew the sex ratio of TSD animals and might have played a significant role in the demise of long-extinct species, notably the dinosaurs, particularly if the temperature change resulted in a preponderance of males. Current global warming also represents a risk for extant TSD species.

  11. Sry and SoxE genes: How they participate in mammalian sex determination and gonadal development?

    PubMed

    She, Zhen-Yu; Yang, Wan-Xi

    2017-03-01

    In mammals, sex determination defines the differentiation of the bipotential genital ridge into either testes or ovaries. Sry, the mammalian Y-chromosomal testis-determining gene, is a master regulator of male sex determination. It acts to switch the undifferentiated genital ridge towards testis development, triggering the adoption of a male fate. Sry initiates a cascade of gene networks through the direct regulation of Sox9 expression and promotes supporting cell differentiation, Leydig cell specification, vasculature formation and testis cord development. In the absence of Sry, alternative genetic cascades, including female sex-determining genes RSPO1, Wnt4/β-catenin and Foxl2, are involved in the formation of female genitalia and the maintenance of female ovarian development. The mutual antagonisms between male and female sex-determining pathways are crucial in not just the initiation but also the maintenance of the somatic sex of the gonad throughout the organism's lifetime. Any imbalances in above sex-determining genes can cause disorders of sex development in humans and mice. In this review, we provide a detailed summary of the expression profiles, biochemical properties and developmental functions of Sry and SoxE genes in embryonic testis development and adult gonadal development. We also briefly summarize the dedicate balances between male and female sex-determining genes in mammalian sex development, with particular highlights on the molecular actions of Sry and Sox9 transcription factors.

  12. Sex determination by discriminant function analysis of the tibia for contemporary Croats.

    PubMed

    Slaus, Mario; Bedić, Zeljka; Strinović, Davor; Petrovečki, Vedrana

    2013-03-10

    Previous studies have demonstrated that populations differ from each other in size and proportion, and that these differences can affect metric assessment of sex. This paper establishes standards for determining sex from fragmentary and complete tibiae in the modern Croatian population. Measurements were taken on 180 tibiae (109 male and 71 female) from positively identified victims of the 1991-1995 War in Croatia. Six standard dimensions: length of the tibia (CML), maximum epiphyseal breadth of the proximal tibia (MPEB), maximum epiphyseal breadth of the distal tibia (MDEB), maximum diameter of the tibia at the nutrient foramen (MDNF), transverse diameter of the tibia at the nutrient foramen (TDNF), and circumference of the tibia at the nutrient foramen (CNF), were taken and subjected to different discriminant function analyses. The highest level of accuracy (91.1%) in the analyzed data set was achieved employing the variables: maximum epiphyseal breadth of the proximal tibia, maximum epiphyseal breadth of the distal tibia, maximum diameter of the tibia at the nutrient foramen, transverse diameter of the tibia at the nutrient foramen, and circumference of the tibia at the nutrient foramen. The second highest level of accuracy (90.6%) was achieved using a combination of only three variables: maximum epiphyseal breadth of the proximal tibia, maximum diameter of the tibia at the nutrient foramen, and circumference of the tibia at the nutrient foramen. The lowest accuracy (84.4%) was obtained when only one variable (maximum diameter of the tibia at the nutrient foramen) was employed. The results of this study show that the modern Croatian tibia is a good skeletal component for determining sex. Standardized coefficients of the discriminant functions generated in this study support the results of previous studies that found that breadth dimensions provide better separation of the sexes than length.

  13. Masculinizing effect of background color and cortisol in a flatfish with environmental sex-determination.

    PubMed

    Mankiewicz, Jamie L; Godwin, John; Holler, Brittany L; Turner, Poem M; Murashige, Ryan; Shamey, Renzo; Daniels, Harry V; Borski, Russell J

    2013-10-01

    Environmental sex-determination (ESD) is the phenomenon by which environmental factors regulate sex-determination, typically occurring during a critical period of early development. Southern flounder (Paralichthys lethostigma) exhibit temperature-dependent sex-determination that appears to be restricted to the presumed XX female genotype with the extremes of temperature, both high and low, skewing sex ratios toward males. In order to evaluate other environmental factors that may influence sex-determination, we investigated the influence of background color and cortisol on sex-determination in southern flounder. Experiments involving three sets of tanks, each painted a different color, were conducted at different temperatures using southern flounder of mixed XX-XY genotype. The studies involved rearing juvenile southern flounder in either black, gray, or blue tanks and sex-determination was assessed by gonadal histology. In both studies, blue tanks showed significant male-biased sex ratios (95 and 75% male) compared with black and gray tanks. The stress corticosteroid cortisol may mediate sex-determining processes associated with environmental variables. Cortisol from the whole body was measured throughout the second experiment and fishes in blue tanks had higher levels of cortisol during the period of sex-determination. These data suggest that background color can be a cue for ESD, with blue acting as a stressor during the period of sex-determination, and ultimately producing male-skewed populations. In a separate study using XX populations of southern flounder, cortisol was applied at 0, 100, or 300 mg/kg of gelatin-coated feed. Fish were fed intermittently prior to, and just through, the period of sex-determination. Levels of gonadal P450 aromatase (cyp19a1) and forkhead transcription factor L2 (FoxL2) messenger RNA (mRNA) were measured by qRT-PCR as markers for differentiation into females. Müllerian-inhibiting substance mRNA was used as a marker of males

  14. Sex determination of duck embryos: observations on syrinx development

    USGS Publications Warehouse

    Wilson, Robert E.; Sonsthagen, Sarah A.; Franson, J. Christian

    2013-01-01

    Ducks exhibit sexual dimorphism in vocal anatomy. Asymmetrical ossification of the syrinx (bulla syringealis) is discernable at about 10 days of age in male Pekin duck (Anas platyrhynchos domestica) embryos, but information is lacking on the early development of the bulla in wild ducks. To evaluate the reliability of this characteristic for sexing developing embryos, we examined the syrinx of dead embryos and compared results with molecular sexing techniques in high arctic nesting Common Eiders (Somateria mollissima). Embryos 8 days or older were accurately (100%) sexed based on the presence/absence of a bulla, 2 days earlier than Pekin duck. The use of the tracheal bulla can be a valuable technique when sex identification of embryos or young ducklings is required.

  15. Bombyx mori P-element Somatic Inhibitor (BmPSI) Is a Key Auxiliary Factor for Silkworm Male Sex Determination

    PubMed Central

    Chen, Shuqing; Zeng, Baosheng; James, Anthony A.; Tan, Anjiang; Huang, Yongping

    2017-01-01

    Manipulation of sex determination pathways in insects provides the basis for a wide spectrum of strategies to benefit agriculture and public health. Furthermore, insects display a remarkable diversity in the genetic pathways that lead to sex differentiation. The silkworm, Bombyx mori, has been cultivated by humans as a beneficial insect for over two millennia, and more recently as a model system for studying lepidopteran genetics and development. Previous studies have identified the B. mori Fem piRNA as the primary female determining factor and BmMasc as its downstream target, while the genetic scenario for male sex determination was still unclear. In the current study, we exploite the transgenic CRISPR/Cas9 system to generate a comprehensive set of knockout mutations in genes BmSxl, Bmtra2, BmImp, BmImpM, BmPSI and BmMasc, to investigate their roles in silkworm sex determination. Absence of Bmtra2 results in the complete depletion of Bmdsx transcripts, which is the conserved downstream factor in the sex determination pathway, and induces embryonic lethality. Loss of BmImp or BmImpM function does not affect the sexual differentiation. Mutations in BmPSI and BmMasc genes affect the splicing of Bmdsx and the female reproductive apparatus appeared in the male external genital. Intriguingly, we identify that BmPSI regulates expression of BmMasc, BmImpM and Bmdsx, supporting the conclusion that it acts as a key auxiliary factor in silkworm male sex determination. PMID:28103247

  16. Effect of dichlorodiphenyltrichloroethane on sex determination of the common snapping turtle (Chelydra serpentina serpentina).

    PubMed

    Portelli, M J; de Solla, S R; Brooks, R J; Bishop, C A

    1999-07-01

    Recent evidence indicates that 1,1,1-trichloro-2, 2-bis(p-chlorophenyl)ethane (DDT) and some of its metabolites alter reproductive and endocrine function in wildlife. Exposure to such endocrine-disrupting compounds during embryonic development can affect sexual differentiation. The authors tested the hypothesis that dichlorodiphenyltrichloroethane (p,p'-DDE) causes feminization of the common snapping turtle (Chelydra s. serpentina), a species with temperature-dependent sex determination, during embryonic development. Eggs from eight clutches (total eggs tested=237) were incubated at a male-producing temperature (26 degrees C). At stage 14 of embryonic development, p,p'-DDE was applied topically at four concentrations and estrogen (estradiol-17 beta) was applied as a positive control. Although application of estrogen did induce female development at this temperature, application of p,p'-DDE did not affect sex determination at the exposure levels used. Residue analysis indicated that the amount of p,p'-DDE detected in the eggs 72 h after application was considerably less than the concentrations applied. However, the amounts that penetrated the shells were comparable to levels which have been found in moderately contaminated sites in the Great Lakes. These results indicate that p, p'-DDE, at levels that exist in the environment in the Great Lakes, does not cause the feminization of snapping turtles during embryonic development.

  17. Determination of sex from the patella in a contemporary Spanish population.

    PubMed

    Peckmann, Tanya R; Meek, Susan; Dilkie, Natasha; Rozendaal, Andrew

    2016-11-01

    The skull and pelvis have been used for the determination of sex for unknown human remains. However, in forensic cases where skeletal remains often exhibit postmortem damage and taphonomic changes the patella may be used for the determination of sex as it is a preservationally favoured bone. The goal of the present research was to derive discriminant function equations from the patella for estimation of sex from a contemporary Spanish population. Six parameters were measured on 106 individuals (55 males and 51 females), ranging in age from 22 to 85 years old, from the Granada Osteological Collection. The statistical analyses showed that all variables were sexually dimorphic. Discriminant function score equations were generated for use in sex determination. The overall accuracy of sex classification ranged from 75.2% to 84.8% for the direct method and 75.5%-83.8% for the stepwise method. When the South African White discriminant functions were applied to the Spanish sample they showed high accuracy rates for sexing female patellae (90%-95.9%) and low accuracy rates for sexing male patellae (52.7%-58.2%). When the South African Black discriminant functions were applied to the Spanish sample they showed high accuracy rates for sexing male patellae (90.9%) and low accuracy rates for sexing female patellae (70%-75.5%). The patella was shown to be useful for sex determination in the contemporary Spanish population.

  18. The valence of sex:Automatic affective associations in erotophilia and erotophobia

    PubMed Central

    Macapagal, Kathryn R.; Janssen, Erick

    2011-01-01

    Sexual stimuli may elicit positive and negative emotions that can impact sexual thoughts, responses, and behavior. To date, most research on affect and sexuality has focused on conscious processes and affective states. Less is known about how automatic and trait-level affective processes influence our reactions to sexual stimuli. This study used a priming task with backward masking and a trait measure of erotophobia-erotophilia – the tendency to respond to sex on a negative-to-positive continuum – to improve our understanding of the role of automatic and affective processes in response to sexual stimuli. Erotophilic individuals demonstrated automatic associations between sexual primes and positively-valenced targets, whereas erotophobic individuals classified negatively-valenced targets faster regardless of whether primes were sexual or neutral. The findings suggest that the valence of sexual stimuli can be processed automatically and is associated with trait-level affective responses to sex. Implications for research on risky sexual behavior and sexual dysfunction are discussed. PMID:21869852

  19. Did the 1991-1995 wars in the former Yugoslavia affect sex ratio at birth?

    PubMed

    Polasek, Ozren

    2006-01-01

    Proportion of males at birth (commonly referred to as the sex ratio) has been investigated for countries of former Yugoslavia that were affected by the 1991-1995 wars. Number of live births for Slovenia, Croatia, Bosnia and Herzegovina with Serbian Republic, and Serbia and Montenegro were obtained from the official vital statistics data and analysed with the Chi-square test. Results yielded no difference in the sex ratio associated with the war for the entire data set. However, country level data analysis revealed a significant increase in Bosnia and Herzegovina with the Serbian Republic, where proportion of male births during the wartime reached as high as 0.523 (compared to 0.516 in the pre-war and 0.515 in the post-war period). Countries that were involved in either mild or intermediate level of warfare did not exhibit a significant increase in the sex ratio (e.g. Slovenia and Croatia). Although war in Croatia lasted a year longer than in Bosnia and Herzegovina, analysis of the most intensive wartime periods in Croatia did not yield significant change. It seems that a hypothetical threshold of the warfare intensity combined with duration has to be reached (e.g. as in case of Bosnia and Herzegovina), in order for war to influence the sex ratio.

  20. Bovine Sex Determining Region Y: Cloning, Optimized Expression, and Purification.

    PubMed

    Soleymani, Bijan; Hafezian, Sayed Hassan; Mianji, Ghodratollah Rahimi; Mansouri, Kamran; Chaharaein, Broomand; Tajehmiri, Ahmad; Sharifi Tabar, Mehdi; Mostafaie, Ali

    2017-01-02

    Sex determining region Y gene (SRY) is located on Y chromosome and encodes a protein with 229 amino acids. In this study, ORF region of SRY with a length of 690 bp was synthesized using PCR and ligated to pET28a (+), then transformed in E.coli DH5α. E.coli BL21 (DE3) strain was chosen to express recombinant bovine SRY protein. A set of optimization steps was taken including different concentrations of IPTG, glucose, and temperatures at differed incubation times after the induction. Results showed that temperature points and different concentrations of IPTG and glucose had a significant effect (p < 0.01) on total protein and recombinant bovine SRY. After purification, various temperatures and concentrations of IPTG showed meaningful effects (p < 0.01) on the solubility of expressed recombinant SRY. Highest soluble rSRY protein amount was achieved where 0.5 mM IPTG and 0.5% glucose was used at 20°C during induction. In the absence of glucose, the highest amount of soluble recombinant SRY levels were achieved at the concentrations of 0.8 mM of IPTG at 28°C, 20°C, and 1.5 mM IPTG at 37°C during induction for 16, 24, and 8 hours, respectively. Regarding the results obtained in this study, it could be stated that by decreasing temperature and inducer concentration, soluble bovine SRY protein expression increases.

  1. Identification of the key stages for sex determination in the silkworm, Bombyx mori.

    PubMed

    Sakai, Hiroki; Aoki, Fugaku; Suzuki, Masataka G

    2014-03-01

    In general, the master switch gene for sex determination is expressed for a limited period during the early embryonic stage. To increase our understanding of the sex determination mechanism in Bombyx mori, it is important to understand when sex determination takes place. To examine the key stages for sex determination in this insect, we focused on the expression patterns of Bmdsx (a double-switch gene in the sex determination cascade of B. mori) and BmIMP (a gene expressed specifically in males involved in male-specific splicing of Bmdsx). Reverse transcription PCR (RT-PCR) analysis revealed that male-type Bmdsx expression was observed in females at 27 and 29 h after oviposition (hao), and finally disappeared at 32 hao. Moreover, BmIMP mRNA was also expressed in these females, and its expression level was comparable to that of the male-type Bmdsx mRNA. These results demonstrated that female embryos before 32 hao can show male-type expression of Bmdsx and BmIMP, suggesting that sex determination occurs between 29 and 32 hao, which correspond to the developmental stages from the head lobe differentiation to spoon-shaped embryo stages. This also suggests that the master switch gene for sex determination of B. mori is expressed in females during this period and represses the male-specific mode of expression in sex-determining genes.

  2. MicroRNA, sex determination and floral meristem determinacy in maize

    PubMed Central

    Banks, Jo Ann

    2008-01-01

    Sex determination in the flowers of maize involves the abortion of stamen or pistil development. Recent work investigating genes that control this process reveals that a microRNA is involved in both the sex determination of the male inflorescence and its growth pattern. PMID:18254926

  3. Chemosterilization of male sea lampreys (Petromyzon marinus) does not affect sex pheromone release

    USGS Publications Warehouse

    Siefkes, Michael J.; Bergstedt, Roger A.; Twohey, Michael B.; Li, Weiming

    2003-01-01

    Release of males sterilized by injection with bisazir is an important experimental technique in management of sea lamprey (Petromyzon marinus), an invasive, nuisance species in the Laurentian Great Lakes. Sea lampreys are semelparous and sterilization can theoretically eliminate a male's reproductive capacity and, if the ability to obtain mates is not affected, waste the sex products of females spawning with him. It has been demonstrated that spermiating males release a sex pheromone that attracts ovulating females. We demonstrated that sterilized, spermiating males also released the pheromone and attracted ovulating females. In a two-choice maze, ovulating females increased searching behavior and spent more time in the side of the maze containing chemical stimuli from sterilized, spermiating males. This attraction response was also observed in spawning stream experiments. Also, electro-olfactograms showed that female olfactory organs were equally sensitive to chemical stimuli from sterilized and nonsterilized, spermiating males. Finally, fast atom bombardment mass spectrometry showed that extracts from water conditioned with sterilized and nonsterilized, spermiating males contained the same pheromonal molecule at similar levels. We concluded that injection of bisazir did not affect the efficacy of sex pheromone in sterilized males.

  4. Digital transcriptome analysis of putative sex-determination genes in papaya (Carica papaya).

    PubMed

    Urasaki, Naoya; Tarora, Kazuhiko; Shudo, Ayano; Ueno, Hiroki; Tamaki, Moritoshi; Miyagi, Norimichi; Adaniya, Shinichi; Matsumura, Hideo

    2012-01-01

    Papaya (Carica papaya) is a trioecious plant species that has male, female and hermaphrodite flowers on different plants. The primitive sex chromosomes genetically determine the sex of the papaya. Although draft sequences of the papaya genome are already available, the genes for sex determination have not been identified, likely due to the complicated structure of its sex-chromosome sequences. To identify the candidate genes for sex determination, we conducted a transcriptome analysis of flower samples from male, female and hermaphrodite plants using high-throughput SuperSAGE for digital gene expression analysis. Among the short sequence tags obtained from the transcripts, 312 unique tags were specifically mapped to the primitive sex chromosome (X or Y(h)) sequences. An annotation analysis revealed that retroelements are the most abundant sequences observed in the genes corresponding to these tags. The majority of tags on the sex chromosomes were located on the X chromosome, and only 30 tags were commonly mapped to both the X and Y(h) chromosome, implying a loss of many genes on the Y(h) chromosome. Nevertheless, candidate Y(h) chromosome-specific female determination genes, including a MADS-box gene, were identified. Information on these sex chromosome-specific expressed genes will help elucidating sex determination in the papaya.

  5. Sex chromosome complement determines sex differences in aromatase expression and regulation in the stria terminalis and anterior amygdala of the developing mouse brain.

    PubMed

    Cisternas, Carla D; Tome, Karina; Caeiro, Ximena E; Dadam, Florencia M; Garcia-Segura, Luis M; Cambiasso, María J

    2015-10-15

    Aromatase, which converts testosterone in estradiol, is involved in the generation of brain sex dimorphisms. Here we used the "four core genotypes" mouse model, in which the effect of gonadal sex and sex chromosome complement is dissociated, to determine if sex chromosomes influence the expression of brain aromatase. The brain of 16 days old XY mouse embryos showed higher aromatase expression in the stria terminalis and the anterior amygdaloid area than the brain of XX embryos, independent of gonadal sex. Furthermore, estradiol or dihydrotestosterone increased aromatase expression in cultures of anterior amygdala neurons derived from XX embryos, but not in those derived from XY embryos. This effect was also independent of gonadal sex. The expression of other steroidogenic molecules, estrogen receptor-α and androgen receptor was not influenced by sex chromosomes. In conclusion, sex chromosomes determine sex dimorphisms in aromatase expression and regulation in the developing mouse brain.

  6. Morphometric sex determination of Milky and Painted Storks in captivity.

    PubMed

    Ong, H K A; Chinna, K; Khoo, S K; Ng, W L; Wong, B Y; Chow, K L; Chong, L K; Pillai, K; Vellayan, S

    2012-01-01

    Logistic regression was applied to develop a morphometric sexing method of two closely related stork species that were previously sexed through amplification of the CHD gene. Tarsus length (TL) and bill length (BL) measurements were recorded from captive populations of adult Milky Stork (Mycteria cinerea) (n = 60) and Painted Stork (Mycteria leucocephala) (n = 58) at Zoo Negara Malaysia. Despite having monomorphic plumages, both stork species exhibited normal sexual size dimorphism in which males were significantly larger than females in the tested variables. Based on logistic regression analysis, BL correctly classified the sex of sampled individuals from Painted and Milky stork with an overall predicted accuracy of 94.8 and 90.0%, respectively. However, TL measurements generated a lower predicted accuracy level of 86.2% and a same accuracy level of 90% on the sex classification of individuals from Painted and Milky stork, respectively. By comparing the measurements of both species, only the average BL measurements of the Milky storks were significantly lower than that of Painted storks (t-test, P80.001). The logistic regression equation in this study may serve as a simple and more practical option for sexing Milky and Painted storks for their breeding and conservation programmes.

  7. The impact of endosymbionts on the evolution of host sex-determination mechanisms.

    PubMed

    Cordaux, Richard; Bouchon, Didier; Grève, Pierre

    2011-08-01

    The past years have revealed that inherited bacterial endosymbionts are important sources of evolutionary novelty for their eukaryotic hosts. In this review we discuss a fundamental biological process of eukaryotes influenced by bacterial endosymbionts: the mechanisms of sex determination. Because they are maternally inherited, several endosymbionts of arthropods, known as reproductive parasites, have developed strategies to convert non-transmitting male hosts into transmitting females through feminization of genetic males and parthenogenesis induction. Recent investigations have also highlighted that endosymbionts can impact upon host sex determination more subtly through genetic conflicts, resulting in selection of host nuclear genes resisting endosymbiont effects. Paradoxically, it is because of their selfish nature that reproductive parasites are such powerful agents of evolutionary change in their host sex-determination mechanisms. They might therefore represent excellent models for studying transitions between sex-determining systems and, more generally, the evolution of sex-determination mechanisms in eukaryotes.

  8. Sex determination in dioecious Mercurialis annua and its close diploid and polyploid relatives

    PubMed Central

    Russell, J R W; Pannell, J R

    2015-01-01

    Separate sexes have evolved on numerous independent occasions from hermaphroditic ancestors in flowering plants. The mechanisms of sex determination is known for only a handful of such species, but, in those that have been investigated, it usually involves alleles segregating at a single locus, sometimes on heteromorphic sex chromosomes. In the genus Mercurialis, transitions between combined (hermaphroditism) and separate sexes (dioecy or androdioecy, where males co-occur with hermaphrodites rather than females) have occurred more than once in association with hybridisation and shifts in ploidy. Previous work has pointed to an unusual 3-locus system of sex determination in dioecious populations. Here, we use crosses and genotyping for a sex-linked marker to reject this model: sex in diploid dioecious M. annua is determined at a single locus with a dominant male-determining allele (an XY system). We also crossed individuals among lineages of Mercurialis that differ in their ploidy and sexual system to ascertain the extent to which the same sex-determination system has been conserved following genome duplication, hybridisation and transitions between dioecy and hermaphroditism. Our results indicate that the male-determining element is fully capable of determining gender in the progeny of hybrids between different lineages. Specifically, males crossed with females or hermaphrodites always generate 1:1 male:female or male:hermaphrodite sex ratios, respectively, regardless of the ploidy levels involved (diploid, tetraploid or hexaploid). Our results throw further light on the genetics of the remarkable variation in sexual systems in the genus Mercurialis. They also illustrate the almost identical expression of sex-determining alleles in terms of sexual phenotypes across multiple divergent backgrounds, including those that have lost separate sexes altogether. PMID:25335556

  9. Population sex-ratio affecting behavior and physiology of overwintering bank voles (Myodes glareolus).

    PubMed

    Sipari, Saana; Haapakoski, Marko; Klemme, Ines; Palme, Rupert; Sundell, Janne; Ylönen, Hannu

    2016-05-15

    Many boreal rodents are territorial during the breeding season but during winter become social and aggregate for more energy efficient thermoregulation. Communal winter nesting and social interactions are considered to play an important role for the winter survival of these species, yet the topic is relatively little explored. Females are suggested to be the initiators of winter aggregations and sometimes reported to survive better than males. This could be due to the higher social tolerance observed in overwintering females than males. Hormonal status could also affect winter behavior and survival. For instance, chronic stress can have a negative effect on survival, whereas high gonadal hormone levels, such as testosterone, often induce aggressive behavior. To test if the winter survival of females in a boreal rodent is better than that of males, and to assess the role of females in the winter aggregations, we generated bank vole (Myodes glareolus) populations of three different sex ratios (male-biased, female-biased and even density) under semi-natural conditions. We monitored survival, spatial behavior and hormonal status (stress and testosterone) during two winter months. We observed no significant differences in survival between the sexes or among populations with differing sex-ratios. The degree of movement area overlap was used as an indicator of social tolerance and potential communal nesting. Individuals in male biased populations showed a tendency to be solitary, whereas in female biased populations there was an indication of winter aggregation. Females living in male-biased populations had higher stress levels than the females from the other populations. The female-biased sex-ratio induced winter breeding and elevated testosterone levels in males. Thus, our results suggest that the sex-ratio of the overwintering population can lead to divergent overwintering strategies in bank voles.

  10. Beyond species recognition: somatic state affects long-distance sex pheromone communication.

    PubMed

    Chemnitz, Johanna; Jentschke, Petra C; Ayasse, Manfred; Steiger, Sandra

    2015-08-07

    Long-range sex pheromones have been subjected to substantial research with a particular focus on their biosynthesis, peripheral perception, central processing and the resulting orientation behaviour of perceivers. Fundamental to the research on sex attractants was the assumption that they primarily coordinate species recognition. However, especially when they are produced by the less limiting sex (usually males), the evolution of heightened condition dependence might be expected and long-range sex pheromones might, therefore, also inform about a signaller's quality. Here we provide, to our knowledge, the first comprehensive study of the role of a male's long-range pheromone in mate choice that combines chemical analyses, video observations and field experiments with a multifactorial manipulation of males' condition. We show that the emission of the long-distance sex pheromone of the burying beetle, Nicrophorus vespilloides is highly condition-dependent and reliably reflects nutritional state, age, body size and parasite load--key components of an individual's somatic state. Both, the quantity and ratio of the pheromone components were affected but the time invested in pheromone emission was largely unaffected by a male's condition. Moreover, the variation in pheromone emission caused by the variation in condition had a strong effect on the attractiveness of males in the field, with males in better nutritional condition, of older age, larger body size and bearing less parasites being more attractive. That a single pheromone is influenced by so many aspects of the somatic state and causes such variation in a male's attractiveness under field conditions was hitherto unknown and highlights the need to integrate indicator models of sexual selection into pheromone research.

  11. Age affects over-marking of opposite-sex scent marks in meadow voles, Microtus pennsylvanicus

    PubMed Central

    Ferkin, Michael H.

    2010-01-01

    Models of age-related effects on behavior predict that among short-lived species younger adults are more attractive and attracted to opposite-sex conspecifics than are older adults, whereas the converse is predicted for long-lived species. Although most studies of age-related effects on behavior support these predictions, they are not supported by many studies of scent marking, a behavior used in mate attraction. Over-marking, a form of scent marking, is a tactic used by many terrestrial mammals to convey information about themselves to opposite-sex conspecifics. The present study tested the hypothesis that the age of meadow voles, Microtus pennsylvanicus; a microtine rodent, affects their over- and scent marking behaviors when they encounter the marks of opposite-sex conspecifics. Sex differences existed in the over-marking behavior of adult voles among the three different age groups that were tested. Male voles that were 5-7 mo-old and 10-12 mo-old over-marked a higher proportion of the marks of females than did 2-3 mo-old male voles. Female voles that were 2-3 mo-old, 5-7 mo-old, and 10-12 mo-old over-marked a similar number of marks deposited by male voles. Overall, the data were not consistent with models predicting the behavior of short-lived animals such as rodents when they encounter the opposite sex. The differences in over-marking displayed by older and younger adult male voles may be associated with life history tradeoffs, the likelihood that they will encounter sexually receptive females, and being selected as mates. PMID:20607141

  12. Beyond species recognition: somatic state affects long-distance sex pheromone communication

    PubMed Central

    Chemnitz, Johanna; Jentschke, Petra C.; Ayasse, Manfred; Steiger, Sandra

    2015-01-01

    Long-range sex pheromones have been subjected to substantial research with a particular focus on their biosynthesis, peripheral perception, central processing and the resulting orientation behaviour of perceivers. Fundamental to the research on sex attractants was the assumption that they primarily coordinate species recognition. However, especially when they are produced by the less limiting sex (usually males), the evolution of heightened condition dependence might be expected and long-range sex pheromones might, therefore, also inform about a signaller's quality. Here we provide, to our knowledge, the first comprehensive study of the role of a male's long-range pheromone in mate choice that combines chemical analyses, video observations and field experiments with a multifactorial manipulation of males' condition. We show that the emission of the long-distance sex pheromone of the burying beetle, Nicrophorus vespilloides is highly condition-dependent and reliably reflects nutritional state, age, body size and parasite load—key components of an individual's somatic state. Both, the quantity and ratio of the pheromone components were affected but the time invested in pheromone emission was largely unaffected by a male's condition. Moreover, the variation in pheromone emission caused by the variation in condition had a strong effect on the attractiveness of males in the field, with males in better nutritional condition, of older age, larger body size and bearing less parasites being more attractive. That a single pheromone is influenced by so many aspects of the somatic state and causes such variation in a male's attractiveness under field conditions was hitherto unknown and highlights the need to integrate indicator models of sexual selection into pheromone research. PMID:26180067

  13. Regulation of male sex determination: genital ridge formation and Sry activation in mice.

    PubMed

    Tanaka, Satomi S; Nishinakamura, Ryuichi

    2014-12-01

    Sex determination is essential for the sexual reproduction to generate the next generation by the formation of functional male or female gametes. In mammals, primary sex determination is commenced by the presence or absence of the Y chromosome, which controls the fate of the gonadal primordium. The somatic precursor of gonads, the genital ridge is formed at the mid-gestation stage and gives rise to one of two organs, a testis or an ovary. The fate of the genital ridge, which is governed by the differentiation of somatic cells into Sertoli cells in the testes or granulosa cells in the ovaries, further determines the sex of an individual and their germ cells. Mutation studies in human patients with disorders of sex development and mouse models have revealed factors that are involved in mammalian sex determination. In most of mammals, a single genetic trigger, the Y-linked gene Sry (sex determination region on Y chromosome), regulates testicular differentiation. Despite identification of Sry in 1990, precise mechanisms underlying the sex determination of bipotential genital ridges are still largely unknown. Here, we review the recent progress that has provided new insights into the mechanisms underlying genital ridge formation as well as the regulation of Sry expression and its functions in male sex determination of mice.

  14. Sex Differences in the Determination of Adolescent Aspirations: A Review of Research.

    ERIC Educational Resources Information Center

    Marini, Margaret Mooney

    1978-01-01

    Factors influencing levels of adolescent aspiration are reviewed, including socioeconomic background, academic ability, number of siblings, parental encouragement, mother's employment, academic performance, peer aspirations, dating, and participation in school activities. Although sex differences affect the formation of both educational and…

  15. Roles of testosterone and amygdaloid LTP induction in determining sex differences in fear memory magnitude.

    PubMed

    Chen, Li-Shen; Tzeng, Wen-Yu; Chuang, Jia-Ying; Cherng, Chianfang G; Gean, Po-Wu; Yu, Lung

    2014-08-01

    Women are thought to form fear memory more robust than men do and testosterone is suspected to play a role in determining such a sex difference. Mouse cued fear freezing was used to study the sex-related susceptibility and the role of testosterone in fear memory in humans. A 75-dB tone was found to provoke weak freezing, while 0.15-mA and 0.20-mA footshock caused strong freezing responses. No sex differences were noticed in the tone- or footshock-induced (naïve fear) freezing. Following the conditionings, female mice exhibited greater tone (cued fear)-induced freezing than did male mice. Nonetheless, female mice demonstrated indistinctive cued fear freezing across the estrous phases and ovariectomy did not affect such freezing in female mice. Orchidectomy enhanced the cued fear freezing in male mice. Systemic testosterone administrations and an intra-lateral nucleus of amygdala (LA) testosterone infusion diminished the cued fear freezing in orchidectomized male mice, while pretreatment with flutamide (Flu) eradicated these effects. Long-term potentiation (LTP) magnitude in LA has been known to correlate with the strength of the cued fear conditioning. We found that LA LTP magnitude was indeed greater in female than male mice. Orchidectomy enhanced LTP magnitude in males' LA, while ovariectomy decreased LTP magnitude in females' LA. Testosterone decreased LTP magnitude in orchidectomized males' LA and estradiol enhanced LTP magnitude in ovariectomized females' LA. Finally, male mice had lower LA GluR1 expression than female mice and orchidectomy enhanced the GluR1 expression in male mice. These findings, taken together, suggest that testosterone plays a critical role in rendering the sex differences in the cued fear freezing and LA LTP. Testosterone is negatively associated with LA LTP and the cued fear memory in male mice. However, ovarian hormones and LA LTP are loosely associated with the cued fear memory in female mice.

  16. Determinants of Heterosexual Adolescents Having Sex with Female Sex Workers in Singapore

    PubMed Central

    Ng, Junice Y. S.; Wong, Mee-Lian

    2016-01-01

    Objectives We assessed the proportion of and socio-ecological factors associated with ever having had sex with female sex workers (FSWs) among heterosexual adolescents. We also described the characteristics of the adolescents who reported inconsistent condom use with FSWs. Methods This is a cross-sectional study (response rate: 73%) of 300 heterosexually active male adolescents of 16 to 19 years attending a national STI clinic in Singapore between 2009 and 2014. We assessed the ecological factors (individual, parental, peer, school and medial influences) and sexual risk behaviors using a self-reported questionnaire. Poisson regression was used to obtain the adjusted prevalence ratios (aPR) and confidence intervals (CI). Results The proportion of heterosexual male adolescents who had ever had sex with FSWs was 39%. Multivariate analysis showed that significant factors associated with ever having had sex with FSWs were sex initiation before 16 years old (aPR 1.79 CI: 1.30–2.46), never had a sexually active girlfriend (aPR 1.75 CI 1.28–2.38), reported lower self-esteem score (aPR 0.96 CI: 0.93–0.98), higher rebelliousness score (aPR 1.03 CI: 1.00–1.07) and more frequent viewing of pornography (aPR 1.47 CI: 1.04–2.09). Lifetime inconsistent condom use with FSWs was 30%. Conclusions A significant proportion of heterosexual male adolescents attending the public STI clinic had ever had sex with FSWs. A targeted intervention that addresses different levels of influence to this behavior is needed. This is even more so because a considerable proportion of adolescents reported inconsistent condom use with FSWs, who may serve as a bridge of STI transmission to the community. National surveys on adolescent health should include the assessment of frequency of commercial sex visits and condom use with FSWs for long-term monitoring and surveillance. PMID:26808561

  17. Cortisol Stress Response Variability in Early Adolescence: Attachment, Affect and Sex.

    PubMed

    Cameron, Catherine Ann; McKay, Stacey; Susman, Elizabeth J; Wynne-Edwards, Katherine; Wright, Joan M; Weinberg, Joanne

    2017-01-01

    Attachment, affect, and sex shape responsivity to psychosocial stress. Concurrent social contexts influence cortisol secretion, a stress hormone and biological marker of hypothalamic-pituitary-adrenal axis activity. Patterns of attachment, emotion status, and sex were hypothesized to relate to bifurcated, that is, accentuated and attenuated, cortisol reactivity. The theoretical framework for this study posits that multiple individual differences mediate a cortisol stress response. The effects of two psychosocial stress interventions, a modified Trier Social Stress Test for Teens and the Frustration Social Stressor for Adolescents were developed and investigated with early adolescents. Both of these protocols induced a significant stress reaction and evoked predicted bifurcation in cortisol responses; an increase or decrease from baseline to reactivity. In Study I, 120 predominantly middle-class, Euro-Canadian early adolescents with a mean age of 13.43 years were studied. The girls' attenuated cortisol reactivity to the public performance stressor related significantly to their self-reported lower maternal-attachment and higher trait-anger. In Study II, a community sample of 146 predominantly Euro-Canadian middle-class youth, with an average age of 14.5 years participated. Their self-reports of higher trait-anger and trait-anxiety, and lower parental attachment by both sexes related differentially to accentuated and attenuated cortisol reactivity to the frustration stressor. Thus, attachment, affect, sex, and the stressor contextual factors were associated with the adrenal-cortical responses of these adolescents through complex interactions. Further studies of individual differences in physiological responses to stress are called for in order to clarify the identities of concurrent protective and risk factors in the psychosocial stress and physiological stress responses of early adolescents.

  18. Logging affects fledgling sex ratios and baseline corticosterone in a forest songbird.

    PubMed

    Leshyk, Rhiannon; Nol, Erica; Burke, Dawn M; Burness, Gary

    2012-01-01

    Silviculture (logging) creates a disturbance to forested environments. The degree to which forests are modified depends on the logging prescription and forest stand characteristics. In this study we compared the effects of two methods of group-selection ("moderate" and "heavy") silviculture (GSS) and undisturbed reference stands on stress and offspring sex ratios of a forest interior species, the Ovenbird (Seiurus aurocapilla), in Algonquin Provincial Park, Canada. Blood samples were taken from nestlings for corticosterone and molecular sexing. We found that logging creates a disturbance that is stressful for nestling Ovenbirds, as illustrated by elevated baseline corticosterone in cut sites. Ovenbirds nesting in undisturbed reference forest produce fewer male offspring per brood (proportion male = 30%) while logging with progressively greater forest disturbance, shifted the offspring sex ratio towards males (proportion male: moderate = 50%, heavy = 70%). If Ovenbirds in undisturbed forests usually produce female-biased broods, then the production of males as a result of logging may disrupt population viability. We recommend a broad examination of nestling sex ratios in response to anthropogenic disturbance to determine the generality of our findings.

  19. Logging Affects Fledgling Sex Ratios and Baseline Corticosterone in a Forest Songbird

    PubMed Central

    Leshyk, Rhiannon; Nol, Erica; Burke, Dawn M.; Burness, Gary

    2012-01-01

    Silviculture (logging) creates a disturbance to forested environments. The degree to which forests are modified depends on the logging prescription and forest stand characteristics. In this study we compared the effects of two methods of group-selection (“moderate” and “heavy”) silviculture (GSS) and undisturbed reference stands on stress and offspring sex ratios of a forest interior species, the Ovenbird (Seiurus aurocapilla), in Algonquin Provincial Park, Canada. Blood samples were taken from nestlings for corticosterone and molecular sexing. We found that logging creates a disturbance that is stressful for nestling Ovenbirds, as illustrated by elevated baseline corticosterone in cut sites. Ovenbirds nesting in undisturbed reference forest produce fewer male offspring per brood (proportion male = 30%) while logging with progressively greater forest disturbance, shifted the offspring sex ratio towards males (proportion male: moderate = 50%, heavy = 70%). If Ovenbirds in undisturbed forests usually produce female-biased broods, then the production of males as a result of logging may disrupt population viability. We recommend a broad examination of nestling sex ratios in response to anthropogenic disturbance to determine the generality of our findings. PMID:22432000

  20. Genomic Instability of the Sex-Determining Locus in Atlantic Salmon (Salmo salar).

    PubMed

    Lubieniecki, Krzysztof P; Lin, Song; Cabana, Emily I; Li, Jieying; Lai, Yvonne Y Y; Davidson, William S

    2015-09-22

    Atlantic salmon and rainbow trout, like other members of the subfamily Salmoninae, are gonochoristic with male heterogamety. The finding that sex-linked genetic markers varied between species suggested that the sex-determining gene differs among salmonid species, or that there is one sex-determining gene that has the capacity to move around the genome. The discovery of sdY, the sex-determining gene in rainbow trout, and its presence in many male salmonids gave support to the latter. Additional evidence for a salmonid-specific, sex-determining jumping gene came from the mapping of the sex-determining locus to three different chromosomes in Tasmanian male Atlantic salmon lineages. To characterize the sex-determining region, we isolated three sdY containing BACs from an Atlantic salmon male library. Sequencing of these BACs yielded two contigs, one of which contained the sdY gene. Sequence analysis of the borders of male-specific and female/male common regions revealed highly repetitive sequences associated with mobile elements, which may allow an sdY cassette to jump around the genome. FISH analysis using a BAC or a plasmid containing the sdY gene showed that the sdY gene did indeed localize to the chromosomes where SEX had been mapped in different Tasmanian Atlantic salmon families. Moreover, the plasmid sdY gene probe hybridized primarily to one of the sex chromosomes as would be expected of a male-specific gene. Our results suggest that a common salmonid sex-determining gene (sdY) can move between three specific loci on chromosomes 2, 3, and 6, giving the impression that there are multiple SEX loci both within and between salmonid species.

  1. Brain activity and connectivity in response to negative affective stimuli: Impact of dysphoric mood and sex across diagnoses.

    PubMed

    Mareckova, Klara; Holsen, Laura M; Admon, Roee; Makris, Nikos; Seidman, Larry; Buka, Stephen; Whitfield-Gabrieli, Susan; Goldstein, Jill M

    2016-11-01

    Negative affective stimuli elicit behavioral and neural responses which vary on a continuum from adaptive to maladaptive, yet are typically investigated in a dichotomous manner (healthy controls vs. psychiatric diagnoses). This practice may limit our ability to fully capture variance from acute responses to negative affective stimuli to psychopathology at the extreme end. To address this, we conducted a functional magnetic resonance imaging study to examine the neural responses to negative valence/high arousal and neutral valence/low arousal images as a function of dysphoric mood and sex across individuals (n = 99) who represented traditional categories of healthy controls, major depressive disorder, bipolar psychosis, and schizophrenia. Observation of negative (vs. neutral) stimuli elicited blood oxygen-level dependent responses in the following circuitry: periaqueductal gray, hypothalamus (HYPO), amygdala (AMYG), hippocampus (HIPP), orbitofrontal cortex (OFC), medial prefrontal cortex (mPFC), and greater connectivity between AMYG and mPFC. Across all subjects, severity of dysphoric mood was associated with hyperactivity of HYPO, and, among females, right (R) AMYG. Females also demonstrated inverse relationships between severity of dysphoric mood and connectivity between HYPO - R OFC, R AMYG - R OFC, and R AMYG - R HIPP. Overall, our findings demonstrated sex-dependent deficits in response to negative affective stimuli increasing as a function of dysphoric mood state. Females demonstrated greater inability to regulate arousal as mood became more dysphoric. These findings contribute to elucidating biosignatures associated with response to negative stimuli across disorders and suggest the importance of a sex-dependent lens in determining these biosignatures. Hum Brain Mapp 37:3733-3744, 2016. © 2016 Wiley Periodicals, Inc.

  2. Colocalization of WT1 and cell proliferation reveals conserved mechanisms in temperature-dependent sex determination.

    PubMed

    Schmahl, Jennifer; Yao, Humphrey H; Pierucci-Alves, Fernando; Capel, Blanche

    2003-04-01

    During vertebrate development the gonad has two possible fates, the testis or the ovary. The choice between these fates is made by a variety of sex-determining mechanisms, from the sex-determining gene on the Y chromosome (Sry) in mammals, to nongenetic temperature-dependent systems in many reptiles. Despite the differences in the mechanisms at the top of the sex-determining cascade, the resulting morphology and many genes involved in early testis and ovarian development are common to most vertebrates, leading to the hypothesis that the underlying processes of sex determination are conserved. In this study, we examined the early steps of gonad development in the red-eared slider turtle (Trachemys scripta), a species that uses the temperature of egg incubation to determine sex. A dramatic increase in cell proliferation was observed in the male gonad during the earliest stages of sex determination. Using the localization of Wilms' Tumor suppressor 1 (WT1), we determined that this proliferation increase occurred in a population that contained pre-Sertoli cells. The proliferation of pre-Sertoli cells has been documented during sex determination in both mice and alligators, suggesting that proliferation of this cell type has an important role in vertebrate testis organogenesis and the determination of male fate.

  3. Single locus sex determination and female heterogamety in the basket willow (Salix viminalis L.)

    PubMed Central

    Pucholt, P; Rönnberg-Wästljung, A-C; Berlin, S

    2015-01-01

    Most eukaryotes reproduce sexually and a wealth of different sex determination mechanisms have evolved in this lineage. Dioecy or separate sexes are rare among flowering plants but have repeatedly evolved from hermaphroditic ancestors possibly involving male or female sterility mutations. Willows (Salix spp.) and poplars (Populus spp.) are predominantly dioecious and are members of the Salicaceae family. All studied poplars have sex determination loci on chromosome XIX, however, the position differs among species and both male and female heterogametic system exists. In contrast to the situation in poplars, knowledge of sex determination mechanisms in willows is sparse. In the present study, we have for the first time positioned the sex determination locus on chromosome XV in S. viminalis using quantitative trait locus mapping. All female offspring carried a maternally inherited haplotype, suggesting a system of female heterogamety or ZW. We used a comparative mapping approach and compared the positions of the markers between the S. viminalis linkage map and the physical maps of S. purpurea, S. suchowensis and P. trichocarpa. As we found no evidence for chromosomal rearrangements between chromosome XV and XIX between S. viminalis and P. trichocarpa, it shows that the sex determination loci in the willow and the poplar most likely do not share a common origin and has thus evolved separately. This demonstrates that sex determination mechanisms in the Salicaceae family have a high turnover rate and as such it is excellent for studies of evolutionary processes involved in sex chromosome turnover. PMID:25649501

  4. Single locus sex determination and female heterogamety in the basket willow (Salix viminalis L.).

    PubMed

    Pucholt, P; Rönnberg-Wästljung, A-C; Berlin, S

    2015-06-01

    Most eukaryotes reproduce sexually and a wealth of different sex determination mechanisms have evolved in this lineage. Dioecy or separate sexes are rare among flowering plants but have repeatedly evolved from hermaphroditic ancestors possibly involving male or female sterility mutations. Willows (Salix spp.) and poplars (Populus spp.) are predominantly dioecious and are members of the Salicaceae family. All studied poplars have sex determination loci on chromosome XIX, however, the position differs among species and both male and female heterogametic system exists. In contrast to the situation in poplars, knowledge of sex determination mechanisms in willows is sparse. In the present study, we have for the first time positioned the sex determination locus on chromosome XV in S. viminalis using quantitative trait locus mapping. All female offspring carried a maternally inherited haplotype, suggesting a system of female heterogamety or ZW. We used a comparative mapping approach and compared the positions of the markers between the S. viminalis linkage map and the physical maps of S. purpurea, S. suchowensis and P. trichocarpa. As we found no evidence for chromosomal rearrangements between chromosome XV and XIX between S. viminalis and P. trichocarpa, it shows that the sex determination loci in the willow and the poplar most likely do not share a common origin and has thus evolved separately. This demonstrates that sex determination mechanisms in the Salicaceae family have a high turnover rate and as such it is excellent for studies of evolutionary processes involved in sex chromosome turnover.

  5. Structural and functional conservation of fungal MatA and human SRY sex-determining proteins.

    PubMed

    Czaja, Wioletta; Miller, Karen Y; Skinner, Michael K; Miller, Bruce L

    2014-11-17

    Sex determination in animals and fungi is regulated by specific sex-determining genes. The Aspergillus nidulans mating type gene matA and the human SRY (Sex-Determining Region Y) encode proteins containing a single HMG (high-mobility group) domain. Analysis of the amino-acid sequence of MatA and SRY transcription factors revealed significant structural similarity. The human SRY protein is able to functionally replace MatA and drives the sexual cycle in the fungus A. nidulans. Functional studies indicate that SRY drives early fruiting body development, and hybrid MatA protein carrying the SRY HMG box is fully capable of driving both early and late stages of sexual development, including gametogenesis. Our data suggest that SRY and MatA are both structurally and functionally related and conserved in regulating sexual processes. The fundamental mechanisms driving evolution of the genetic pathways underlying sex determination, sex chromosomes and sexual reproduction in eukaryotes appear similar.

  6. Determinant Factors of Attitude towards Quantitative Subjects: Differences between Sexes

    ERIC Educational Resources Information Center

    Mondejar-Jimenez, Jose; Vargas-Vargas, Manuel

    2010-01-01

    Nowadays, almost all curricula in the social sciences contain at least one course in statistics, given the importance of this discipline as an analytical tool. This work identifies the latent factors relating to students' motivation and attitude towards statistics, tests their covariance structure for samples of both sexes, and identifies the…

  7. Factors in the Determination of Intimate Same-Sex Friendship

    ERIC Educational Resources Information Center

    Knapp, Craig W.; Harwood, B. Thomas

    1977-01-01

    Five hundred unmarried male and female college students were administered a questionnaire and instructed to rate the importance of 39 variables in the formation of an intimate, same-sex friendship. Six factors emerged: Initial attraction, personableness, proximity, attitudinal similarity, intimate accessibility, and reciprocal candor. (BD)

  8. Temperature-dependent sex determination ruled out in the Chinese soft-shelled turtle (Pelodiscus sinensis) via molecular cytogenetics and incubation experiments across populations.

    PubMed

    Mu, Yi; Zhao, Bo; Tang, Wen-Qi; Sun, Bao-Jun; Zeng, Zhi-Gao; Valenzuela, Nicole; Du, Wei-Guo

    2015-01-01

    The sex determination mechanism for the Chinese soft-shelled turtle (Pelodiscus sinensis) is subject to controversy. Some populations have been shown to possess sex chromosomes and thus genotypic sex determination (GSD), while others were reported to exhibit temperature-dependent sex determination (TSD). To test whether TSD and GSD coexist in this species or whether populations differ in their sex-determining system, we conducted egg incubation experiments to investigate how temperature influences hatchling sex in a wide range of populations of this species in China. In parallel, we used comparative genome hybridization (CGH) to study the micro-sex chromosomes of adult P. sinensis in the 2 populations that were previously identified to be TSD. The incubation experiments showed that temperature did not affect hatchling sex in any of the studied populations. CGH indicated that turtles have micro-sex chromosomes of the female heterogametic (ZZ/ZW) system in the 2 disputed populations. These results indicate that P. sinensis is a GSD rather than a TSD species. Thus, the apparent coexistence of TSD and GSD in this species is the result of previous misdiagnosis in purportedly TSD populations.

  9. Sex determination of human skeletal populations using latent profile analysis.

    PubMed

    Passalacqua, Nicholas V; Zhang, Zhen; Pierce, Steven J

    2013-08-01

    Accurately estimating biological sex from the human skeleton can be especially difficult for fragmentary or incomplete remains often encountered in bioarchaeological contexts. Where typical anatomically dimorphic skeletal regions are incomplete or absent, observers often take their best guess to classify biological sex. Latent profile analysis (LPA) is a mixture modeling technique which uses observed continuous data to estimate unobserved categorical group membership using posterior probabilities. In this study, sex is the latent variable (male and female are the two latent classes), and the indicator variables used here were eight standard linear measurements (long bone lengths, diaphyseal and articular breadths, and circumferences). Mplus (Muthén and Muthén: Mplus user's guide, 6th ed. Los Angeles: Muthén & Muthén, 2010) was used to obtain maximum likelihood estimates for latent class membership from a known sample of individuals from the forensic data bank (FDB) (Jantz and Moore-Jansen: Database for forensic anthropology in the United States 1962-1991, Ann Arbor, MI: Interuniversity Consortium for Political and Social Research, 2000) (n = 1,831), yielding 87% of correct classification for sex. Then, a simulation extracted 5,000 different random samples of 206 complete cases each from the FDB (these cases also had known sex). We then artificially imposed patterns of missing data similar to that observed in a poorly preserved bioarchaeological sample from Medieval Asturias, Spain (n = 206), and ran LPA on each sample. This tested the efficacy of LPA under extreme conditions of poor preservation (missing data, 42%). The simulation yielded an average of 82% accuracy, indicating that LPA is robust to large amounts of missing data when analyzing incomplete skeletons.

  10. Popularity among same-sex and cross-sex peers: A process-oriented examination of links to aggressive behaviors and depressive affect

    PubMed Central

    Troop-Gordon, Wendy; Ranney, John D.

    2014-01-01

    Popularity has been linked to heightened aggression and fewer depressive symptoms. The current study extends this literature by examining the unique contributions of same-sex and cross-sex popularity to children’s development, as well as potential mediating processes. Third-and fourth-graders (212 boys, 250 girls) provided data at three time points over two school years. Data included peer-reported popularity, social exclusion, friendships, peer victimization, and aggression, and self-reported social self-esteem and depressive affect. Same-sex and cross-sex popularity independently contributed to the prediction of aggression and depressive affect. Popularity was associated with heightened aggression through reduced social exclusion and was indirectly related to lower levels of depressive affect through increased friendships. For boys only, same-sex popularity was further associated with dampened depressive affect through reduced social exclusion and peer victimization and increased social self-esteem. Findings are discussed in light of the potential tradeoffs associated with popularity in preadolescence. PMID:24684714

  11. Evolution of sex determination and sexually dimorphic larval sizes in parasitic barnacles.

    PubMed

    Yamaguchi, Sachi; Høeg, Jens T; Iwasa, Yoh

    2014-04-21

    The parasitic (rhizocephalan) barnacles include species of which larval sex is determined by the mother (genetic sex determination, GSD), male larvae are larger than female larvae, and a female accepts only two dwarf males who sire all the eggs laid by her. In contrast, other species of parasitic barnacles exhibit monomorphic larvae that choose to become male or female depending on the condition of the host they settle (environmental sex determination, or ESD), and a female accepts numerous dwarf males. Here, we ask why these set of traits are observed together, by examining the evolution of sex determination and the larval size. ESD has an advantage over GSD because each larva has a higher chance of encountering a suitable host. On the other hand, GSD has two advantages over ESD: the larval size can be chosen differently between sexes, and their larvae can avoid spending time for sex determination on the host. We conclude that, in species whose female accepts only two males, the male larvae engage in intense contest competition for reproductive opportunities, and male's success-size relation is very different from female's. Then, larvae with predetermined sex (GSD) with sexually dimorphic larvae is more advantageous than ESD. In contrast, in species whose females accept many dwarf males, the competition among males is less intense, and producing larvae with undetermined sex should evolve. We also discuss the condition for females to evolve receptacles to limit the number of males she accepts.

  12. Early postnatal genistein administration permanently affects nitrergic and vasopressinergic systems in a sex-specific way.

    PubMed

    Ponti, G; Rodriguez-Gomez, A; Farinetti, A; Marraudino, M; Filice, F; Foglio, B; Sciacca, G; Panzica, G C; Gotti, S

    2017-03-27

    Genistein (GEN) is a natural xenoestrogen (isoflavonoid) that may interfere with the development of estrogen-sensitive neural circuits. Due to the large and increasing use of soy-based formulas for babies (characterized by a high content of GEN), there are some concerns that this could result in an impairment of some estrogen-sensitive neural circuits and behaviors. In a previous study, we demonstrated that its oral administration to female mice during late pregnancy and early lactation induced a significant decrease of nitric oxide synthase-positive cells in the amygdala of their male offspring. In the present study, we have used a different experimental protocol mimicking, in mice, the direct precocious exposure to GEN. Mice pups of both sexes were fed either with oil, estradiol or GEN from birth to postnatal day 8. Nitric oxide synthase and vasopressin neural systems were analyzed in adult mice. Interestingly, we observed that GEN effect was time specific (when compared to our previous study), sex specific, and not always comparable to the effects of estradiol. This last observation suggests that GEN may act through different intracellular pathways. Present results indicate that the effect of natural xenoestrogens on the development of the brain may be highly variable: a plethora of neuronal circuits may be affected depending on sex, time of exposure, intracellular pathway involved, and target cells. This raises concern on the possible long-term effects of the use of soy-based formulas for babies, which may be currently underestimated.

  13. A sex-linked SCAR marker in Bryonia dioica (Cucurbitaceae), a dioecious species with XY sex-determination and homomorphic sex chromosomes.

    PubMed

    Oyama, R K; Volz, S M; Renner, S S

    2009-01-01

    Genetic crosses between the dioecious Bryonia dioica (Cucurbitaceae) and the monoecious B. alba in 1903 provided the first clear evidence for Mendelian inheritance of dioecy and made B. dioica the first organism for which XY sex-determination was experimentally proven. Applying molecular tools to this system, we developed a sex-linked sequence-characterized amplified region (SCAR) marker for B. dioica and sequenced it for individuals representing the full geographic range of the species from Scotland to North Africa. For comparison, we also sequenced this marker for representatives of the dioecious B. cretica, B. multiflora and B. syriaca, and monoecious B. alba. In no case did any individual, male or female, yield more than two haplotypes. In northern Europe, we found strong linkage between our marker and sex, with all Y-sequences being identical to each other. In southern Europe, however, the linkage between our marker and sex was weak, with recombination detected within both the X- and the Y-homologues. Population genetic analyses suggest that the SCAR marker experienced different evolutionary pressures in northern and southern Europe. These findings fit with phylogenetic evidence that the XY system in Bryonia is labile and suggest that the genus may be a good system in which to study the early steps of sex chromosome evolution.

  14. Otoacoustic emissions, auditory evoked potentials and self-reported gender in people affected by disorders of sex development (DSD).

    PubMed

    Wisniewski, Amy B; Espinoza-Varas, Blas; Aston, Christopher E; Edmundson, Shelagh; Champlin, Craig A; Pasanen, Edward G; McFadden, Dennis

    2014-08-01

    Both otoacoustic emissions (OAEs) and auditory evoked potentials (AEPs) are sexually dimorphic, and both are believed to be influenced by prenatal androgen exposure. OAEs and AEPs were collected from people affected by 1 of 3 categories of disorders of sex development (DSD) - (1) women with complete androgen insensitivity syndrome (CAIS); (2) women with congenital adrenal hyperplasia (CAH); and (3) individuals with 46,XY DSD including prenatal androgen exposure who developed a male gender despite initial rearing as females (men with DSD). Gender identity (GI) and role (GR) were measured both retrospectively and at the time of study participation, using standardized questionnaires. The main objective of this study was to determine if patterns of OAEs and AEPs correlate with gender in people affected by DSD and in controls. A second objective was to assess if OAE and AEP patterns differed according to degrees of prenatal androgen exposure across groups. Control males, men with DSD, and women with CAH produced fewer spontaneous OAEs (SOAEs) - the male-typical pattern - than control females and women with CAIS. Additionally, the number of SOAEs produced correlated with gender development across all groups tested. Although some sex differences in AEPs were observed between control males and females, AEP measures did not correlate with gender development, nor did they vary according to degrees of prenatal androgen exposure, among people with DSD. Thus, OAEs, but not AEPs, may prove useful as bioassays for assessing early brain exposure to androgens and predicting gender development in people with DSD.

  15. Otoacoustic Emissions, Auditory Evoked Potentials and Self-Reported Gender in People Affected by Disorders of Sex Development (DSD)

    PubMed Central

    Wisniewski, Amy B.; Espinoza-Varas, Blas; Aston, Christopher E.; Edmundson, Shelagh; Champlin, Craig A.; Pasanen, Edward G.; McFadden, Dennis

    2014-01-01

    Both otoacoustic emissions (OAEs) and auditory evoked potentials (AEPs) are sexually dimorphic, and both are believed to be influenced by prenatal androgen exposure. OAEs and AEPs were collected from people affected by 1 of 3 categories of disorders of sex development (DSD) – (1) women with complete androgen insensitivity syndrome (CAIS); (2) women with congenital adrenal hyperplasia (CAH); and (3) individuals with 46, XY DSD including prenatal androgen exposure who developed a male gender despite initial rearing as females (men with DSD). Gender identity (GI) and role (GR) were measured both retrospectively and at the time of study participation, using standardized questionnaires. The main objective of this study was to determine if patterns of OAEs and AEPs correlate with gender in people affected by DSD and in controls. A second objective was to assess if OAE and AEP patterns differed according to degrees of prenatal androgen exposure across groups. Control males, men with DSD, and women with CAH produced fewer spontaneous OAEs (SOAEs) – the male-typical pattern – than control females and women with CAIS. Additionally, the number of SOAEs produced correlated with gender development across all groups tested. Although some sex differences in AEPs were observed between control males and females, AEP measures did not correlate with gender development, nor did they vary according to degrees of prenatal androgen exposure, among people with DSD. Thus, OAEs, but not AEPs, may prove useful as bioassays for assessing early brain exposure to androgens and predicting gender development in people with DSD. PMID:25038289

  16. An ARMS-based technique for sex determination of red panda (Ailurus fulgens).

    PubMed

    Li, Yuzhi; Xu, Xiao; Zhang, Liang; Zhang, Zhihe; Shen, Fujun; Zhang, Wenping; Yue, Bisong

    2011-03-01

    Molecular sexing is a key component in the investigation of wild populations. In this study, we developed a fast, accurate and reliable amplification refractory mutation system (ARMS) technique for sex determination of red panda based on the exon 4 of the ZFX/ZFY gene. The amplicons were distinguished simply by agarose gel electrophoresis, exhibiting one fragment in females (X: 300 bp) and two in males (X: 300 bp, Y: 166 bp). Robustness of this ARMS system was confirmed by testing both 43 captive red pandas using DNA samples with known-sex and 10 wild red pandas using faecal DNA samples with unknown sex.

  17. A novel sex determination system in a close relative of the house mouse.

    PubMed

    Veyrunes, Frederic; Chevret, Pascale; Catalan, Josette; Castiglia, Riccardo; Watson, Johan; Dobigny, Gauthier; Robinson, Terence J; Britton-Davidian, Janice

    2010-04-07

    Therian mammals have an extremely conserved XX/XY sex determination system. A limited number of mammal species have, however, evolved to escape convention and present aberrant sex chromosome complements. In this study, we identified a new case of atypical sex determination in the African pygmy mouse Mus minutoides, a close evolutionary relative of the house mouse. The pygmy mouse is characterized by a very high proportion of XY females (74%, n = 27) from geographically widespread Southern and Eastern African populations. Sequencing of the high mobility group domain of the mammalian sex determining gene Sry, and karyological analyses using fluorescence in situ hybridization and G-banding data, suggest that the sex reversal is most probably not owing to a mutation of Sry, but rather to a chromosomal rearrangement on the X chromosome. In effect, two morphologically different X chromosomes were identified, one of which, designated X*, is invariably associated with sex-reversed females. The asterisk designates the still unknown mutation converting X*Y individuals into females. Although relatively still unexplored, such an atypical sex chromosome system offers a unique opportunity to unravel new genetic interactions involved in the initiation of sex determination in mammals.

  18. Osteometry at muscle origin and insertion in sex determination.

    PubMed

    France, D L

    1988-08-01

    Multivariate statistical analyses were performed on 22 size measurements of the humerus from five sample populations: Sudanese Nubians, Arikara, Pecos Pueblos, American blacks, and American whites. The effects of muscle use ("occupational" differences) on identification of sex in this long bone are examined, particularly at points of muscle origins and insertions. The ramifications of the results of this research on sexual dimorphism studies of other bones are discussed.

  19. SEX DETERMINATION. A male-determining factor in the mosquito Aedes aegypti.

    PubMed

    Hall, Andrew Brantley; Basu, Sanjay; Jiang, Xiaofang; Qi, Yumin; Timoshevskiy, Vladimir A; Biedler, James K; Sharakhova, Maria V; Elahi, Rubayet; Anderson, Michelle A E; Chen, Xiao-Guang; Sharakhov, Igor V; Adelman, Zach N; Tu, Zhijian

    2015-06-12

    Sex determination in the mosquito Aedes aegypti is governed by a dominant male-determining factor (M factor) located within a Y chromosome-like region called the M locus. Here, we show that an M-locus gene, Nix, functions as an M factor in A. aegypti. Nix exhibits persistent M linkage and early embryonic expression, two characteristics required of an M factor. Nix knockout with clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 resulted in largely feminized genetic males and the production of female isoforms of two key regulators of sexual differentiation: doublesex and fruitless. Ectopic expression of Nix resulted in genetic females with nearly complete male genitalia. Thus, Nix is both required and sufficient to initiate male development. This study provides a foundation for mosquito control strategies that convert female mosquitoes into harmless males.

  20. Genetic Evidence That the Sans Fille Locus Is Involved in Drosophila Sex Determination

    PubMed Central

    Oliver, B.; Perrimon, N.; Mahowald, A. P.

    1988-01-01

    Females homozygous for sans fille(1621) (= fs(1)1621) have an abnormal germ line. Instead of producing eggs, the germ-line cells proliferate forming ovarian tumors or excessive numbers of nurse cells. The Sex-lethal gene product(s) regulate the branch point of the dosage compensation and sex determination pathways in the soma. The role of Sex-lethal in the germ line is not clear but the germ line of females homozygous for female sterile Sex-lethal alleles or germ-line clones of loss-of-function alleles are characterized by ovarian tumors. Females heterozygous for sans fille(1621) or Sex-lethal are phenotypically wild type with respect to viability and fertility but females trans-heterozygous for sans fille(1621) and Sex-lethal show ovarian tumors, somatic sexual transformations, and greatly reduced viability. PMID:3220249

  1. Mastoid triangle for sex determination in adult Nigerian population: a validation study.

    PubMed

    Jaja, Blessing N R; Ajua, Christiana O; Didia, Blessing C

    2013-11-01

    In the quest for a simple, reliable technique to estimate the sex of human remains several novel metric skeletal indices have been reported. Only a few have been examined for utility in populations different from those in which they were developed. In this study, the mastoid process was evaluated for sex determination using 102 lateral cephalograms of a Nigerian sample of known age and sex. The asterion-mastoidale distance and mastoid triangular area were sexually dimorphic with mean values higher in males compared with females (p = 0.02). On analysis of the discriminant function, overall accuracy for sex classification was 55%. On cross-validation, the triangular area accurately identified 80% of females and 48% of males. The asterion-mastoidale distance was slightly more accurate at sexing the sample. The practical utility of the mastoid triangle area technique to differentiate sex in Nigerian populations is not supported by the results of this study.

  2. Development of PCR‐Based Markers to Determine the Sex of Kelps

    PubMed Central

    Lipinska, Agnieszka P.; Ahmed, Sophia; Peters, Akira F.; Faugeron, Sylvain; Cock, J. Mark; Coelho, Susana M.

    2015-01-01

    Sex discriminating genetic markers are commonly used to facilitate breeding programs in economically and ecologically important animal and plant species. However, despite their considerable economic and ecological value, the development of sex markers for kelp species has been very limited. In this study, we used the recently described sequence of the sex determining region (SDR) of the brown algal model Ectocarpus to develop novel DNA-based sex-markers for three commercially relevant kelps: Laminaria digitata, Undaria pinnatifida and Macrocystis pyrifera. Markers were designed within nine protein coding genes of Ectocarpus male and female (U/V) sex chromosomes and tested on gametophytes of the three kelp species. Seven primer pairs corresponding to three loci in the Ectocarpus SDR amplified sex-specific bands in the three kelp species, yielding at least one male and one female marker for each species. Our work has generated the first male sex-specific markers for L. digitata and U. pinnatifida, as well as the first sex markers developed for the genus Macrocystis. The markers and methodology presented here will not only facilitate seaweed breeding programs but also represent useful tools for population and demography studies and provide a means to investigate the evolution of sex determination across this largely understudied eukaryotic group. PMID:26496392

  3. Development of PCR-Based Markers to Determine the Sex of Kelps.

    PubMed

    Lipinska, Agnieszka P; Ahmed, Sophia; Peters, Akira F; Faugeron, Sylvain; Cock, J Mark; Coelho, Susana M

    2015-01-01

    Sex discriminating genetic markers are commonly used to facilitate breeding programs in economically and ecologically important animal and plant species. However, despite their considerable economic and ecological value, the development of sex markers for kelp species has been very limited. In this study, we used the recently described sequence of the sex determining region (SDR) of the brown algal model Ectocarpus to develop novel DNA-based sex-markers for three commercially relevant kelps: Laminaria digitata, Undaria pinnatifida and Macrocystis pyrifera. Markers were designed within nine protein coding genes of Ectocarpus male and female (U/V) sex chromosomes and tested on gametophytes of the three kelp species. Seven primer pairs corresponding to three loci in the Ectocarpus SDR amplified sex-specific bands in the three kelp species, yielding at least one male and one female marker for each species. Our work has generated the first male sex-specific markers for L. digitata and U. pinnatifida, as well as the first sex markers developed for the genus Macrocystis. The markers and methodology presented here will not only facilitate seaweed breeding programs but also represent useful tools for population and demography studies and provide a means to investigate the evolution of sex determination across this largely understudied eukaryotic group.

  4. Analyzing the Coordinated Gene Network Underlying Temperature-Dependent Sex Determination in Reptiles

    PubMed Central

    Shoemaker, Christina M.; Crews, David

    2009-01-01

    Although gonadogenesis has been extensively studied in vertebrates with genetic sex determination, investigations at the molecular level in nontraditional model organisms with temperature-dependent sex determination are a relatively new area of research. Results show that while the key players of the molecular network underlying gonad development appear to be retained, their functions range from conserved to novel roles. In this review, we summarize experiments investigating candidate molecular players underlying temperature-dependent sex determination. We discuss some of the problems encountered unraveling this network, pose potential solutions, and suggest rewarding future directions of research. PMID:19022389

  5. The effects of temperature on sex determination in the bloater Coregonus hoyi: a hypothesis test

    USGS Publications Warehouse

    Eck, Gary W.; Allen, Jeffrey D.

    1995-01-01

    The hypothesis that temperature was an epigamic factor in bloater (Coregonus hoyi) sex determination in Lake Michigan was tested by rearing bloater larvae in the laboratory at 6, 11, and 15 degrees C for the first 80 days after hatching. The percentages of females of fish exposed to the three treatment temperatures did not differ significantly from the expected, 50%. Therefore, the null hypothesis, that temperature did not influence bloater sex determination within the confines of this study, could not be rejected. Our study of bloater sex determination was an attempt to explain the extreme female predominance (> 95%) that occurred in the Lake Michigan bloater population during the 1960s.

  6. Exogenous application of estradiol to eggs unexpectedly induces male development in two turtle species with temperature-dependent sex determination.

    PubMed

    Warner, Daniel A; Addis, Elizabeth; Du, Wei-guo; Wibbels, Thane; Janzen, Fredric J

    2014-09-15

    Steroid hormones affect sex determination in a variety of vertebrates. The feminizing effects of exposure to estradiol and the masculinizing effects of aromatase inhibition during development are well established in a broad range of vertebrate taxa, but paradoxical findings are occasionally reported. Four independent experiments were conducted on two turtle species with temperature-dependent sex determination (Chrysemys picta and Chelydra serpentina) to quantify the effects of egg incubation temperature, estradiol, and an aromatase inhibitor on offspring sex ratios. As expected, the warmer incubation temperatures induced female development and the cooler temperatures produced primarily males. However, application of an aromatase inhibitor had no effect on offspring sex ratios, and exogenous applications of estradiol to eggs produced male offspring across all incubation temperatures. These unexpected results were remarkably consistent across all four experiments and both study species. Elevated concentrations of estradiol could interact with androgen receptors or inhibit aromatase expression, which might result in relatively high testosterone concentrations that lead to testis development. These findings add to a short list of studies that report paradoxical effects of steroid hormones, which addresses the need for a more comprehensive understanding of the role of sex steroids in sexual development.

  7. Sex differences in the brain response to affective scenes with or without humans.

    PubMed

    Proverbio, Alice Mado; Adorni, Roberta; Zani, Alberto; Trestianu, Laura

    2009-10-01

    Recent findings have demonstrated that women might be more reactive than men to viewing painful stimuli (vicarious response to pain), and therefore more empathic [Han, S., Fan, Y., & Mao, L. (2008). Gender difference in empathy for pain: An electrophysiological investigation. Brain Research, 1196, 85-93]. We investigated whether the two sexes differed in their cerebral responses to affective pictures portraying humans in different positive or negative contexts compared to natural or urban scenarios. 440 IAPS slides were presented to 24 Italian students (12 women and 12 men). Half the pictures displayed humans while the remaining scenes lacked visible persons. ERPs were recorded from 128 electrodes and swLORETA (standardized weighted Low-Resolution Electromagnetic Tomography) source reconstruction was performed. Occipital P115 was greater in response to persons than to scenes and was affected by the emotional valence of the human pictures. This suggests that processing of biologically relevant stimuli is prioritized. Orbitofrontal N2 was greater in response to positive than negative human pictures in women but not in men, and not to scenes. A late positivity (LP) to suffering humans far exceeded the response to negative scenes in women but not in men. In both sexes, the contrast suffering-minus-happy humans revealed a difference in the activation of the occipito/temporal, right occipital (BA19), bilateral parahippocampal, left dorsal prefrontal cortex (DPFC) and left amygdala. However, increased right amygdala and right frontal area activities were observed only in women. The humans-minus-scenes contrast revealed a difference in the activation of the middle occipital gyrus (MOG) in men, and of the left inferior parietal (BA40), left superior temporal gyrus (STG, BA38) and right cingulate (BA31) in women (270-290 ms). These data indicate a sex-related difference in the brain response to humans, possibly supporting human empathy.

  8. Gender identity/role differentiation in adolescents affected by syndromes of abnormal sex differentiation.

    PubMed

    Wisniewski, Amy B; Migeon, Claude J

    2002-02-01

    Adolescents with abnormal sexual differentiation or intersex conditions present a unique challenge to their healthcare providers. While sex refers to the biologic considerations that specify a person as male or female, gender refers to the sex of rearing. For the child with an intersex condition, sex may differ from gender, and as that child grows into adolescence, this may lead to many concerns, questions, and decisions. Although gender is usually fixed by adolescence, there will be those adolescents with intersex conditions wishing a gender reassignment during this period. Often a physician is the best resource for information and counsel to these young adults. Although most infants with ambiguous genitalia will have a karyotype done to determine gender identity, there are occasions when a gender discrepancy is not noticed until an adolescent presents with delayed pubarche. Regardless of the age at diagnosis, at adolescence, the physician must the address the medical consequences of infertility, bone health, and hormone replacement in addition to handling the heightened psychological concerns of gender identity during puberty. It is hoped that adolescents with intersex conditions will have the support and information necessary to allow them to live as normal a life as possible.

  9. Non-invasive prenatal diagnosis for fetal sex determination: benefits and disadvantages from the service users' perspective

    PubMed Central

    Lewis, Celine; Hill, Melissa; Skirton, Heather; Chitty, Lyn S

    2012-01-01

    Prenatal fetal sex determination is clinically indicated for women who are at risk of having a child with a serious genetic disorder affecting a particular sex. Ultrasound has been the traditional method used, but early fetal sex determination using non-invasive prenatal diagnosis (NIPD) can now be performed using cell-free fetal DNA in maternal plasma. The study aim was to assess the views and experiences of service users who had used NIPD for fetal sex determination. In this paper, we report on the perceived benefits and disadvantages. A qualitative approach using semi-structured interviews was used. A total of 44 participants (38 women and 6 partners of participating women) were recruited. Participants' views and experiences of NIPD were overwhelmingly positive. Concerning benefits over traditional methods, three themes emerged: (1) technical aspects of technology; (2) timing; and (3) enhanced decision-making. Practical advantages of NIPD included avoiding miscarriage, and there were a number of psychological advantages associated with timing such as perceived control, early re-engagement, normalization of pregnancy and peace of mind. Participants also valued NIPD as it enabled a stepwise approach to decision-making. A number of disadvantages were discussed including concerns about social sexing and increased bonding at a time in pregnancy when miscarriage risk is high. However, participants felt these were fairly minor in comparison with the advantages of NIPD. Until definitive genetic diagnosis using NIPD is available, NIPD for fetal sex determination is perceived as a good interim measure with a number of notable advantages over traditional methods. PMID:22453293

  10. Evolutionary conservation of regulatory strategies for the sex determination factor transformer-2.

    PubMed Central

    Chandler, D; McGuffin, M E; Piskur, J; Yao, J; Baker, B S; Mattox, W

    1997-01-01

    Sex determination in Drosophila melanogaster is regulated by a cascade of splicing factors which direct the sex-specific expression of gene products needed for male and female differentiation. The splicing factor TRA-2 affects sex-specific splicing of multiple pre-mRNAs involved in sexual differentiation. The tra-2 gene itself expresses a complex set of mRNAs generated through alternative processing that collectively encode three distinct protein isoforms. The expression of these isoforms differs in the soma and germ line. In the male germ line the ratio of two isoforms present is governed by autoregulation of splicing. However, the functional significance of multiple TRA-2 isoforms has remained uncertain. Here we have examined whether the structure, function, and regulation of tra-2 are conserved in Drosophila virilis, a species diverged from D. melanogaster by over 60 million years. We find that the D. virilis homolog of tra-2 produces alternatively spliced RNAs encoding a set of protein isoforms analogous to those found in D. melanogaster. When introduced into the genome of D. melanogaster, this homolog can functionally replace the endogenous tra-2 gene for both normal female sexual differentiation and spermatogenesis. Examination of alternative mRNAs produced in D. virilis testes suggests that germ line-specific autoregulation of tra-2 function is accomplished by a strategy similar to that used in D. melanogaster. The similarity in structure and function of the tra-2 genes in these divergent Drosophila species supports the idea that sexual differentiation in D. melanogaster and D. virilis is accomplished under the control of similar regulatory pathways. PMID:9111363

  11. Transcriptome Differences between Alternative Sex Determining Genotypes in the House Fly, Musca domestica

    PubMed Central

    Meisel, Richard P.; Scott, Jeffrey G.; Clark, Andrew G.

    2015-01-01

    Sex determination evolves rapidly, often because of turnover of the genes at the top of the pathway. The house fly, Musca domestica, has a multifactorial sex determination system, allowing us to identify the selective forces responsible for the evolutionary turnover of sex determination in action. There is a male determining factor, M, on the Y chromosome (YM), which is probably the ancestral state. An M factor on the third chromosome (IIIM) has reached high frequencies in multiple populations across the world, but the evolutionary forces responsible for the invasion of IIIM are not resolved. To test whether the IIIM chromosome invaded because of sex-specific selection pressures, we used mRNA sequencing to determine whether isogenic males that differ only in the presence of the YM or IIIM chromosome have different gene expression profiles. We find that more genes are differentially expressed between YM and IIIM males in testis than head, and that genes with male-biased expression are most likely to be differentially expressed between YM and IIIM males. We additionally find that IIIM males have a “masculinized” gene expression profile, suggesting that the IIIM chromosome has accumulated an excess of male-beneficial alleles because of its male-limited transmission. These results are consistent with the hypothesis that sex-specific selection acts on alleles linked to the male-determining locus driving evolutionary turnover in the sex determination pathway. PMID:26142430

  12. Assessment of craniometric traits in South Indian dry skulls for sex determination.

    PubMed

    Ramamoorthy, Balakrishnan; Pai, Mangala M; Prabhu, Latha V; Muralimanju, B V; Rai, Rajalakshmi

    2016-01-01

    The skeleton plays an important role in sex determination in forensic anthropology. The skull bone is considered as the second best after the pelvic bone in sex determination due to its better retention of morphological features. Different populations have varying skeletal characteristics, making population specific analysis for sex determination essential. Hence the objective of this investigation is to obtain the accuracy of sex determination using cranial parameters of adult skulls to the highest percentage in South Indian population and to provide a baseline data for sex determination in South India. Seventy adult preserved human skulls were taken and based on the morphological traits were classified into 43 male skulls and 27 female skulls. A total of 26 craniometric parameters were studied. The data were analyzed by using the SPSS discriminant function. The analysis of stepwise, multivariate, and univariate discriminant function gave an accuracy of 77.1%, 85.7%, and 72.9% respectively. Multivariate direct discriminant function analysis classified skull bones into male and female with highest levels of accuracy. Using stepwise discriminant function analysis, the most dimorphic variable to determine sex of the skull, was biauricular breadth followed by weight. Subjecting the best dimorphic variables to univariate discriminant analysis, high levels of accuracy of sexual dimorphism was obtained. Percentage classification of high accuracies were obtained in this study indicating high level of sexual dimorphism in the crania, setting specific discriminant equations for the gender determination in South Indian people.

  13. Identification of the sex-determining region in flathead grey mullet (Mugil cephalus).

    PubMed

    Dor, L; Shirak, A; Rosenfeld, H; Ashkenazi, I M; Band, M R; Korol, A; Ronin, Y; Seroussi, E; Weller, J I; Ron, M

    2016-12-01

    Elucidation of the sex-determination mechanism in flathead grey mullet (Mugil cephalus) is required to exploit its economic potential by production of genetically determined monosex populations and application of hormonal treatment to parents rather than to the marketed progeny. Our objective was to construct a first-generation linkage map of the M. cephalus in order to identify the sex-determining region and sex-determination system. Deep-sequencing data of a single male was assembled and aligned to the genome of Nile tilapia (Oreochromis niloticus). A total 245 M. cephalus microsatellite markers were designed, spanning the syntenic tilapia genome assembly at intervals of 10 Mb. In the mapping family of full-sib progeny, 156 segregating markers were used to construct a first-generation linkage map of 24 linkage groups (LGs), corresponding to the number of chromosomes. The linkage map spanned approximately 1200 cM with an average inter-marker distance of 10.6 cM. Markers segregating on LG9 in two independent mapping families showed nearly complete concordance with gender (R(2)  = 0.95). The sex determining locus was fine mapped within an interval of 8.6 cM on LG9. The sex of offspring was determined only by the alleles transmitted from the father, thus indicating an XY sex-determination system.

  14. BAC-derived diagnostic markers for sex determination in asparagus.

    PubMed

    Jamsari, A; Nitz, I; Reamon-Büttner, S M; Jung, C

    2004-04-01

    A HindIII BAC (bacterial artificial chromosome) library of asparagus ( Asparagus officinalis L.) was established from a single male plant homozygous for the male flowering gene ( MM). The library represents approximately 5.5 haploid genome equivalents with an average insert size of 82 kb. A subset of the library (2.6 haploid genome equivalents) was arranged into DNA pools. Using nine sex-linked amplified fragment length polymorphism (AFLP) and two sequence-tagged site (STS) markers, 13 different BAC clones were identified from this part of the library. The BACs were arranged into a first-generation physical map around the sex locus. Four PCR-derived markers were developed from the BAC ends, one of which could be scored in a co-dominant way. Using a mapping population of 802 plants we mapped the BAC-derived markers to the same position close to the M gene as the corresponding AFLP and STS markers. The markers are useful for further chromosome walking studies and as diagnostic markers for selecting male plants homozygous for the M gene.

  15. Identification of the Major Sex-Determining Region of Turbot (Scophthalmus maximus)

    PubMed Central

    Martínez, Paulino; Bouza, Carmen; Hermida, Miguel; Fernández, Jesús; Toro, Miguel Angel; Vera, Manuel; Pardo, Belén; Millán, Adrián; Fernández, Carlos; Vilas, Román; Viñas, Ana; Sánchez, Laura; Felip, Alicia; Piferrer, Francesc; Ferreiro, Isabel; Cabaleiro, Santiago

    2009-01-01

    Sex determination in fish is a labile character in evolutionary terms. The sex-determining (SD) master gene can differ even between closely related fish species. This group is an interesting model for studying the evolution of the SD region and the gonadal differentiation pathway. The turbot (Scophthalmus maximus) is a flatfish of great commercial value, where a strong sexual dimorphism exists for growth rate. Following a QTL and marker association approach in five families and a natural population, we identified the main SD region of turbot at the proximal end of linkage group (LG) 5, close to the SmaUSC-E30 marker. The refined map of this region suggested that this marker would be 2.6 cM and 1.4 Mb from the putative SD gene. This region appeared mostly undifferentiated between males and females, and no relevant recombination frequency differences were detected between sexes. Comparative genomics of LG5 marker sequences against five model species showed no similarity of this chromosome to the sex chromosomes of medaka, stickleback, and fugu, but suggested a similarity to a sex-associated QTL from Oreochromis spp. The segregation analysis of the closest markers to the SD region demonstrated a ZW/ZZ model of sex determination in turbot. A small proportion of families did not fit perfectly with this model, which suggests that other minor genetic and/or environmental factors are involved in sex determination in this species. PMID:19786621

  16. Evidence for a genetic sex determination in Cnidaria, the Mediterranean red coral (Corallium rubrum)

    PubMed Central

    Haguenauer, A.; Chenesseau, S.; Brener, K. ; Mitta, G.; Toulza, E.; Bonabaud, M.; Rialle, S. ; Aurelle, D.

    2017-01-01

    Sexual reproduction is widespread among eukaryotes, and the sex-determining processes vary greatly among species. While genetic sex determination (GSD) has been intensively described in bilaterian species, no example has yet been recorded among non-bilaterians. However, the quasi-ubiquitous repartition of GSD among multicellular species suggests that similar evolutionary forces can promote this system, and that these forces could occur also in non-bilaterians. Studying sex determination across the range of Metazoan diversity is indeed important to understand better the evolution of this mechanism and its lability. We tested the existence of sex-linked genes in the gonochoric red coral (Corallium rubrum, Cnidaria) using restriction site-associated DNA sequencing. We analysed 27 461 single nucleotide polymorphisms (SNPs) in 354 individuals from 12 populations including 53 that were morphologically sexed. We found a strong association between the allele frequencies of 472 SNPs and the sex of individuals, suggesting an XX/XY sex-determination system. This result was confirmed by the identification of 435 male-specific loci. An independent test confirmed that the amplification of these loci enabled us to identify males with absolute certainty. This is the first demonstration of a GSD system among non-bilaterian species and a new example of its convergence in multicellular eukaryotes.

  17. The role of the transformer gene in sex determination and reproduction in the tephritid fruit fly, Bactrocera dorsalis (Hendel)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transformer (tra) is a double-switch gene in the somatic sex-determination hierarchy that regulates sexual dimorphism based on RNA splicing in many insects. In tephritids, a Y-linked male determining gene (M) controls sex in the sex-determination pathway. Here, homologues of Drosophila tra and trans...

  18. A noninvasive, direct real-time PCR method for sex determination in multiple avian species

    USGS Publications Warehouse

    Brubaker, Jessica L.; Karouna-Renier, Natalie K.; Chen, Yu; Jenko, Kathryn; Sprague, Daniel T.; Henry, Paula F.P.

    2011-01-01

    Polymerase chain reaction (PCR)-based methods to determine the sex of birds are well established and have seen few modifications since they were first introduced in the 1990s. Although these methods allowed for sex determination in species that were previously difficult to analyse, they were not conducive to high-throughput analysis because of the laboriousness of DNA extraction and gel electrophoresis. We developed a high-throughput real-time PCR-based method for analysis of sex in birds, which uses noninvasive sample collection and avoids DNA extraction and gel electrophoresis.

  19. A noninvasive, direct real-time PCR method for sex determination in multiple avian species.

    PubMed

    Brubaker, Jessica L; Karouna-Renier, Natalie K; Chen, Yu; Jenko, Kathryn; Sprague, Daniel T; Henry, Paula F P

    2011-03-01

    Polymerase chain reaction (PCR)-based methods to determine the sex of birds are well established and have seen few modifications since they were first introduced in the 1990s. Although these methods allowed for sex determination in species that were previously difficult to analyse, they were not conducive to high-throughput analysis because of the laboriousness of DNA extraction and gel electrophoresis. We developed a high-throughput real-time PCR-based method for analysis of sex in birds, which uses noninvasive sample collection and avoids DNA extraction and gel electrophoresis.

  20. Sex determination and differentiation in Aurelia sp.1: the absence of temperature dependence

    NASA Astrophysics Data System (ADS)

    Liu, Chunsheng; Gu, Zhifeng; Xing, Mengxin; Sun, Yun; Chen, Siqing; Chen, Zhaoting

    2017-03-01

    Cnidarians, being regarded as `basal' metazoan animals, are considered to have relatively high plasticity in terms of sex reversal. In this study we used an experimental approach to demonstrate sexual differentiation and plasticity in benthic polyps and pelagic medusae of Aurelia sp.1 maintained at different temperatures. Results indicated that in Aurelia sp.1, sex differentiation has been determined at the polyp stage and that all medusae originating from a given polyp are, phenotypically, of the same sex. In addition, the sex of polyps budding from the same clone (either male or female) at different temperatures appears to be the same as that of the parent. The sex of medusae that had originated from a known-sex polyp was observed to remain the same as that of the parent, irrespective of differences in strobilation or rearing temperatures. These results indicate that the mechanism of sex determination of Aurelia sp.1. is not influenced by prevailing temperature regimes. A comparison of variability in terms of sexual plasticity of Aurelia sp.1 with that of Hydrozoa and Anthozoa suggests that species characterized by a free-swimming medusa life stage have a high dispersal potential, which probably results in a lower rate of sex reversal.

  1. Sex determination in the wild: a field application of loop-mediated isothermal amplification successfully determines sex across three raptor species.

    PubMed

    Centeno-Cuadros, A; Abbasi, I; Nathan, R

    2017-03-01

    PCR-based methods are the most common technique for sex determination of birds. Although these methods are fast, easy and accurate, they still require special facilities that preclude their application outdoors. Consequently, there is a time lag between sampling and obtaining results that impedes researchers to take decisions in situ and in real time considering individuals' sex. We present an outdoor technique for sex determination of birds based on the amplification of the duplicated sex-chromosome-specific gene Chromo-Helicase-DNA binding protein using a loop-mediated isothermal amplification (LAMP). We tested our method on Griffon Vulture (Gyps fulvus), Egyptian Vulture (Neophron percnopterus) and Black Kite (Milvus migrans) (family Accipitridae). We introduce the first fieldwork procedure for sex determination of animals in the wild, successfully applied to raptor species of three different subfamilies using the same specific LAMP primers. This molecular technique can be deployed directly in sampling areas because it only needs a voltage inverter to adapt a thermo-block to a car lighter and results can be obtained by the unaided eye based on colour change within the reaction tubes. Primers and reagents are prepared in advance to facilitate their storage at room temperature. We provide detailed guidelines how to implement this procedure, which is simpler (no electrophoresis required), cheaper and faster (results in c. 90 min) than PCR-based laboratory methods. Our successful cross-species application across three different raptor subfamilies posits our set of markers as a promising tool for molecular sexing of other raptor families and our field protocol extensible to all bird species.

  2. Sex-determining chromosomes and sexual dimorphism: insights from genetic mapping of sex expression in a natural hybrid Fragaria × ananassa subsp. cuneifolia.

    PubMed

    Govindarajulu, R; Liston, A; Ashman, T-L

    2013-05-01

    We studied the natural hybrid (Fragaria × ananassa subsp. cuneifolia) between two sexually dimorphic octoploid strawberry species (Fragaria virginiana and Fragaria chiloensis) to gain insight into the dynamics of sex chromosomes and the genesis of sexual dimorphism. Male sterility is dominant in both the parental species and thus will be inherited maternally, but the chromosome that houses the sex-determining region differs. Thus, we asked whether (1) the cytotypic composition of hybrid populations represents one or both maternal species, (2) the sex-determining chromosome of the hybrid reflects the location of male sterility within the maternal donor species and (3) crosses from the hybrid species show less sexual dimorphism than the parental species. We found that F. × ananassa subsp. cuneifolia populations consisted of both parental cytotypes but one predominated within each population. Genetic linkage mapping of two crosses showed dominance of male sterility similar to the parental species, however, the map location of male sterility reflected the maternal donor in one cross, but not the other. Moreover, female function mapped to a single region in the first cross, but to two regions in the second cross. Aside from components of female function (fruit set and seed set), other traits that have been found to be significantly sexually dimorphic in the pure species were either not dimorphic or were dimorphic in the opposite direction to the parental species. These results suggest that hybrids experience some disruption of dimorphism in secondary sexual traits, as well as novel location and number of quantitative trait locus (QTL) affecting sex function.

  3. Sex-determining chromosomes and sexual dimorphism: insights from genetic mapping of sex expression in a natural hybrid Fragaria × ananassa subsp. cuneifolia

    PubMed Central

    Govindarajulu, R; Liston, A; Ashman, T-L

    2013-01-01

    We studied the natural hybrid (Fragaria × ananassa subsp. cuneifolia) between two sexually dimorphic octoploid strawberry species (Fragaria virginiana and Fragaria chiloensis) to gain insight into the dynamics of sex chromosomes and the genesis of sexual dimorphism. Male sterility is dominant in both the parental species and thus will be inherited maternally, but the chromosome that houses the sex-determining region differs. Thus, we asked whether (1) the cytotypic composition of hybrid populations represents one or both maternal species, (2) the sex-determining chromosome of the hybrid reflects the location of male sterility within the maternal donor species and (3) crosses from the hybrid species show less sexual dimorphism than the parental species. We found that F. × ananassa subsp. cuneifolia populations consisted of both parental cytotypes but one predominated within each population. Genetic linkage mapping of two crosses showed dominance of male sterility similar to the parental species, however, the map location of male sterility reflected the maternal donor in one cross, but not the other. Moreover, female function mapped to a single region in the first cross, but to two regions in the second cross. Aside from components of female function (fruit set and seed set), other traits that have been found to be significantly sexually dimorphic in the pure species were either not dimorphic or were dimorphic in the opposite direction to the parental species. These results suggest that hybrids experience some disruption of dimorphism in secondary sexual traits, as well as novel location and number of quantitative trait locus (QTL) affecting sex function. PMID:23169558

  4. Use of B-mode ultrasonography for fetal sex determination in dogs.

    PubMed

    Gil, E M U; Garcia, D A A; Giannico, A T; Froes, T R

    2015-10-01

    Ultrasonographic determination of fetal sex in dogs has not previously been reported. The aim of this study was to describe a method for determination of intrauterine fetal sex using ultrasound. A cohort study was conducted in pregnant bitches to perform ultrasound examination of the fetal genitalia between the eighth and ninth week of gestation. Fetal sex was determined in utero by consensus agreement of two sonographers. Eighteen pregnant bitches were included in this study, and a total of 39 fetuses were evaluated. The accuracy of ultrasonography to determine the sex with a 95% confidence interval was 62.24% to female fetuses and 65.48% to male fetuses. The sonographic accuracy in determining fetal sex can be achieved at 100% when there are up to two fetuses in the litter; however, the accuracy of the technique reduces (66.7%) when more than three fetuses are present. This study describes the sonographic appearance of the external genitalia in canine fetuses in utero associated with a specific position of the fetus and reports that sex determination is possible between 55 and 58 days of gestation.

  5. The Caenorhabditis Elegans Gene Sdc-2 Controls Sex Determination and Dosage Compensation in Xx Animals

    PubMed Central

    Nusbaum, C.; Meyer, B. J.

    1989-01-01

    We have identified a new X-linked gene, sdc-2, that controls the hermaphrodite (XX) modes of both sex determination and X chromosome dosage compensation in Caenorhabditis elegans. Mutations in sdc-2 cause phenotypes that appear to result from a shift of both the sex determination and dosage compensation processes in XX animals to the XO modes of expression. Twenty-eight independent sdc-2 mutations have no apparent effect in XO animals, but cause two distinct phenotypes in XX animals: masculinization, reflecting a defect in sex determination, and lethality or dumpiness, reflecting a disruption in dosage compensation. The dosage compensation defect can be demonstrated directly by showing that sdc-2 mutations cause elevated levels of several X-linked transcripts in XX but not XO animals. While the masculinization is blocked by mutations in sex determining genes required for male development (her-1 and fem-3), the lethality, dumpiness and overexpression of X-linked genes are not, indicating that the effect of sdc-2 mutations on sex determination and dosage compensation are ultimately implemented by two independent pathways. We propose a model in which sdc-2 is involved in the coordinate control of both sex determination and dosage compensation in XX animals and acts in the regulatory hierarchy at a step prior to the divergence of the two pathways. PMID:2759421

  6. Sex determination in 58 bird species and evaluation of CHD gene as a universal molecular marker in bird sexing.

    PubMed

    Vucicevic, Milos; Stevanov-Pavlovic, Marija; Stevanovic, Jevrosima; Bosnjak, Jasna; Gajic, Bojan; Aleksic, Nevenka; Stanimirovic, Zoran

    2013-01-01

    The aim of this research was to test the CHD gene (Chromo Helicase DNA-binding gene) as a universal molecular marker for sexing birds of relatively distant species. The CHD gene corresponds to the aim because of its high degree of conservation and different lengths in Z and W chromosomes due to different intron sizes. DNA was isolated from feathers and the amplification of the CHD gene was performed with the following sets of polymerase chain reaction (PCR) primers: 2550F/2718R and P2/P8. Sex determination was attempted in 284 samples of 58 bird species. It was successful in 50 bird species; in 16 of those (Alopochen aegyptiacus, Ara severus, Aratinga acuticaudata, Bucorvus leadbeateri, Cereopsis novaehollandiae, Columba arquatrix, Corvus corax, C. frugilegus, Cyanoliseus patagonus, Guttera plumifera, Lamprotornis superbus, Milvus milvus, Neophron percnopterus, Ocyphaps lophotes, Podiceps cristatus, and Poicephalus senegalus), it was carried out for the first time using molecular markers and PCR. It is reasonable to assume that extensive research is necessary to define the CHD gene as a universal molecular marker for successful sex determination in all bird species (with exception of ratites). The results of this study may largely contribute to the aim.

  7. Age and sex determination of juvenile band-tailed pigeons

    USGS Publications Warehouse

    White, J.A.; Braun, C.E.

    1978-01-01

    Captive band-tailed pigeons (Columbafasciata) were studied to document progression of molts and plumages from juvenal to adult age. Immature pigeons began the post-juvenal molt at 35 days which continued up to 340 days. The only 3 plumage characters useful for identification and estimation of age were presence of juvenal lesser, middle, and greater secondary coverts, juvenal secondaries, and juvenal primaries. While juvenal primaries were still present, hatching dates could be estimated up to 252 days (N = 84). Secondary feather presence and molt stage could be used to identify juvenile pigeons for more than 340 days (N = 24). Using coloration of the crown and breast feathers, 96 percent of the immature pigeons examined (106 of 110) at 80 days of age were classified accurately as to sex.

  8. Mapping platypus SOX genes; autosomal location of SOX9 excludes it from sex determining role.

    PubMed

    Wallis, M C; Delbridge, M L; Pask, A J; Alsop, A E; Grutzner, F; O'Brien, P C M; Rens, W; Ferguson-Smith, M A; Graves, J A M

    2007-01-01

    In the absence of an SRY orthologue the platypus sex determining gene is unknown, so genes in the human testis determining pathway are of particular interest as candidates. SOX9 is an attractive choice because SOX9 deletions cause male-to-female sex reversal in humans and mice, and SOX9 duplications cause female-to-male sex reversal. We have localized platypus SOX9, as well as the related SOX10, to platypus chromosomes 15 and 10, respectively, the first assignments to these platypus chromosomes, and the first comparative mapping markers from human chromosomes 17 and 22. The autosomal localization of platypus SOX9 in this study contradicts the hypothesis that SOX9 acts as the sex determining switch in platypus.

  9. Relationship Satisfaction, Affectivity, and Gay-Specific Stressors in Same-Sex Couples Joined in Civil Unions

    ERIC Educational Resources Information Center

    Todosijevic, Jelica; Rothblum, Esther D.; Solomon, Sondra E.

    2005-01-01

    Relationship satisfaction, affect, and stress were examined in 313 same-sex couples who had had civil unions in Vermont during the first year of this legislation. Similarity between partners on age and on positive/negative affectivity was related to relationship satisfaction whereas there was no association with similarity in income, education,…

  10. Relevance of the Tripartite Dimensions of Affect for Anxiety and Depression in Youth: Examining Sex and Psychopathology Status

    ERIC Educational Resources Information Center

    De Bolle, Marleen; Decuyper, Mieke; De Clercq, Barbara; De Fruyt, Filip

    2010-01-01

    Using a combined sample (N = 1,215) of referred children and children from the general population aged between 8 and 14 years, the present study addressed two research goals: First, latent mean differences (depending on the individual's sex or psychopathology level) in anxiety, depression, Positive Affect (PA), Negative Affect (NA) and…

  11. Determination of sex origin of meat and meat products on the DNA basis: a review.

    PubMed

    Gokulakrishnan, Palanisamy; Kumar, Rajiv Ranjan; Sharma, Brahm Deo; Mendiratta, Sanjod Kumar; Malav, Omprakash; Sharma, Deepak

    2015-01-01

    Sex determination of domestic animal's meat is of potential value in meat authentication and quality control studies. Methods aiming at determining the sex origin of meat may be based either on the analysis of hormone or on the analysis of nucleic acids. At the present time, sex determination of meat and meat products based on hormone analysis employ gas chromatography-mass spectrometry (GC-MS), high-performance liquid chromatography-mass spectrometry/mass spectrometry (HPLC-MS/MS), and enzyme-linked immunosorbent assay (ELISA). Most of the hormone-based methods proved to be highly specific and sensitive but were not performed on a regular basis for meat sexing due to the technical limitations or the expensive equipments required. On the other hand, the most common methodology to determine the sex of meat is unquestionably traditional polymerase chain reaction (PCR) that involves gel electrophoresis of DNA amplicons. This review is intended to provide an overview of the DNA-based methods for sex determination of meat and meat products.

  12. Evolution of Dosage Compensation in Anolis carolinensis, a Reptile with XX/XY Chromosomal Sex Determination

    PubMed Central

    Rupp, Shawn M.; Webster, Timothy H.; Olney, Kimberly C.; Hutchins, Elizabeth D.; Kusumi, Kenro

    2017-01-01

    In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes will result in unequal gene expression between the sexes (e.g. between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes achieve equal gene expression. We compared genome-wide levels of transcription between males and females, and between the X chromosome and the autosomes in the green anole, Anolis carolinensis. We present evidence for dosage compensation between the sexes, and between the sex chromosomes and the autosomes. When dividing the X chromosome into regions based on linkage groups, we discovered that genes in the first reported X-linked region, anole linkage group b (LGb), exhibit complete dosage compensation, although the rest of the X-linked genes exhibit incomplete dosage compensation. Our data further suggest that the mechanism of this dosage compensation is upregulation of the X chromosome in males. We report that approximately 10% of coding genes, most of which are on the autosomes, are differentially expressed between males and females. In addition, genes on the X chromosome exhibited higher ratios of nonsynonymous to synonymous substitution than autosomal genes, consistent with the fast-X effect. Our results from the green anole add an additional observation of dosage compensation in a species with XX/XY sex determination. PMID:28206607

  13. A polygenic hypothesis for sex determination in the European sea bass Dicentrarchus labrax.

    PubMed

    Vandeputte, Marc; Dupont-Nivet, Mathilde; Chavanne, Hervé; Chatain, Béatrice

    2007-06-01

    Polygenic sex determination, although suspected in several species, is thought to be evolutionarily unstable and has been proven in very few cases. In the European sea bass, temperature is known to influence the sex ratio. We set up a factorial mating, producing 5.893 individuals from 253 full-sib families, all reared in a single batch to avoid any between-families environmental effects. The proportion of females in the offspring was 18.3%, with a large variation between families. Interpreting sex as a threshold trait, the heritability estimate was 0.62 +/- 0.12. The observed distribution of family sex ratios was in accordance with a polygenic model or with a four-sex-factors system with environmental variance and could not be explained by any genetic model without environmental variance. We showed that there was a positive genetic correlation between weight and sex (r(A) = 0.50 +/- 0.09), apart from the phenotypic sex dimorphism in favor of females. This supports the hypothesis that a minimum size is required for sea bass juveniles to differentiate as females. An evolution of sex ratio by frequency-dependent selection is expected during the domestication process of Dicentrarchus labrax populations, raising concern about the release of such fish in the wild.

  14. Is Multifactorial Sex Determination in the House Fly, Musca domestica (L.), Stable Over Time?

    PubMed

    Meisel, Richard P; Davey, Taira; Son, Jae Hak; Gerry, Alec C; Shono, Toshio; Scott, Jeffrey G

    2016-01-01

    Sex determination pathways evolve rapidly, usually because of turnover of master regulatory genes at the top of the developmental pathway. Polygenic sex determination is expected to be a transient state between ancestral and derived conditions. However, polygenic sex determination has been observed in numerous animal species, including the house fly, Musca domestica House fly males carry a male-determining factor (M) that can be located on any chromosome, and an individual male may have multiple M factors. Females lack M and/or have a dominant allele of the Md-tra gene (Md-tra (D) ) that acts as a female-determining locus even in the presence of multiple copies of M. We found the frequency and linkage of M in house flies collected in Chino, CA (USA) was relatively unchanged between 1982 and 2014. The frequency of females with Md-tra (D) in the 2014 collection was 33.6% (n = 140). Analysis of these results, plus previously published data, revealed a strong correlation between the frequencies of Md-tra (D) and multiple M males, and we find that these populations are expected to have balanced sex ratios. We also find that fitness values that allow for the invasion and maintenance of multiple sex determining loci suggest that sexually antagonistic selection could be responsible for maintaining polygenic sex determination in house fly populations. The stability over time and equilibrium frequencies within populations suggest the house fly polygenic sex determination system is not in transition, and provide guidance for future investigations on the factors responsible for the polymorphism.

  15. The role of estrogen in turtle sex determination and the effect of PCBs

    SciTech Connect

    Crews, D.; Bergeron, J.M.; McLachlan, J.A.

    1995-10-01

    Gonadal sex is fixed at fertilization by specific chromosomes, a process known as genotypic sex determination (GSD). Only after the gonad is formed do hormones begin to exert an influence that modifies specific structures that eventually will differ between the sexes. Many egg-laying reptiles do not exhibit GSD but rather depend on the temperature of the incubating egg to determine the gonadal sex of the offspring, a process termed temperature-dependent sex determination (TSD). Research on TSD indicates that gonadal sex is not irrevocably set by the genetic composition inherited at fertilization but depends ultimately on which genes encoding for steroidogenic enzymes and hormone receptors are activated during the midtrimester of embryonic development by temperature. Incubation temperature modifies the activity as well as the temporal and spatial sequence of enzymes and hormone receptors to determine gonad type. Estrogen is the physiologic equivalent of incubation temperature and the proximate cue that initiates female sex determination. increasing evidence indicates some polychlorinated biphenyl (PCB) compounds are capable of disrupting reproductive and endocrine function in fish, birds, and mammals, including humans. Reproductive disorders resulting from exposure to these xenobiotic compounds may include reductions in fertility, hatch rate in fish and birds, and viability of offspring, as well as alterations in hormone levels or adult sexual behaviors. Research on the mechanism through which these compounds may be acting to alter reproductive function indicates estrogenic activity, by which the compounds may be altering sexual differentiation. In TSD turtles, the estrogenic effect of some PCBs reverses gonadal sex in individuals incubating at an otherwise male-producing temperature. Furthermore, certain PCBs are synergistic in their effect at very low concentrations. 19 refs., 3 figs., 1 tab.

  16. B chromosomes have a functional effect on female sex determination in Lake Victoria cichlid fishes.

    PubMed

    Yoshida, Kohta; Terai, Yohey; Mizoiri, Shinji; Aibara, Mitsuto; Nishihara, Hidenori; Watanabe, Masakatsu; Kuroiwa, Asato; Hirai, Hirohisa; Hirai, Yuriko; Matsuda, Yoichi; Okada, Norihiro

    2011-08-01

    The endemic cichlid fishes in Lake Victoria are a model system for speciation through adaptive radiation. Although the evolution of the sex-determination system may also play a role in speciation, little is known about the sex-determination system of Lake Victoria cichlids. To understand the evolution of the sex-determination system in these fish, we performed cytogenetic analysis in 11 cichlid species from Lake Victoria. B chromosomes, which are present in addition to standard chromosomes, were found at a high prevalence rate (85%) in these cichlids. In one species, B chromosomes were female-specific. Cross-breeding using females with and without the B chromosomes demonstrated that the presence of the B chromosomes leads to a female-biased sex ratio in this species. Although B chromosomes were believed to be selfish genetic elements with little effect on phenotype and to lack protein-coding genes, the present study provides evidence that B chromosomes have a functional effect on female sex determination. FISH analysis using a BAC clone containing B chromosome DNA suggested that the B chromosomes are derived from sex chromosomes. Determination of the nucleotide sequences of this clone (104.5 kb) revealed the presence of several protein-coding genes in the B chromosome, suggesting that B chromosomes have the potential to contain functional genes. Because some sex chromosomes in amphibians and arthropods are thought to be derived from B chromosomes, the B chromosomes in Lake Victoria cichlids may represent an evolutionary transition toward the generation of sex chromosomes.

  17. Unexpected resilience of species with temperature-dependent sex determination at the Cretaceous–Palaeogene boundary

    PubMed Central

    Silber, Sherman; Geisler, Jonathan H.; Bolortsetseg, Minjin

    2011-01-01

    It has been suggested that climate change at the Cretaceous–Palaeogene (K–Pg) boundary, initiated by a bolide impact or volcanic eruptions, caused species with temperature-dependent sex determination (TSD), including dinosaurs, to go extinct because of a skewed sex ratio towards all males. To test this hypothesis, the sex-determining mechanisms (SDMs) of Cretaceous tetrapods of the Hell Creek Formation (Montana, USA) were inferred using parsimony optimizations of SDMs on a tree, including Hell Creek species and their extant relatives. Although the SDMs of non-avian dinosaurs could not be inferred, we were able to determine the SDMs of 62 species; 46 had genotypic sex determination (GSD) and 16 had TSD. The TSD hypothesis for extinctions performed poorly, predicting between 32 and 34 per cent of survivals and extinctions. Most surprisingly, of the 16 species with TSD, 14 of them survived into the Early Palaeocene. In contrast, 61 per cent of species with GSD went extinct. Possible explanations include minimal climate change at the K–Pg, or if climate change did occur, TSD species that survived had egg-laying behaviour that prevented the skewing of sex ratios, or had a sex ratio skewed towards female rather than male preponderance. Application of molecular clocks may allow the SDMs of non-avian dinosaurs to be inferred, which would be an important test of the pattern discovered here. PMID:20980293

  18. Direct LAMP Assay without Prior DNA Purification for Sex Determination of Papaya

    PubMed Central

    Tsai, Chi-Chu; Shih, Huei-Chuan; Ko, Ya-Zhu; Wang, Ren-Huang; Li, Shu-Ju; Chiang, Yu-Chung

    2016-01-01

    Papaya (Carica papaya L.) is an economically important tropical fruit tree with hermaphrodite, male and female sex types. Hermaphroditic plants are the major type used for papaya production because their fruits have more commercial advantages than those of female plants. Sex determination of the seedlings, or during the early growth stages, is very important for the papaya seedling industry. Thus far, the only method for determining the sex type of a papaya at the seedling stage has been DNA analysis. In this study, a molecular technique—based on DNA analysis—was developed for detecting male-hermaphrodite-specific markers to examine the papaya’s sex type. This method is based on the loop-mediated isothermal amplification (LAMP) and does not require prior DNA purification. The results show that the method is an easy, efficient, and inexpensive way to determine a papaya’s sex. This is the first report on the LAMP assay, using intact plant materials-without DNA purification-as samples for the analysis of sex determination of papaya. We found that using high-efficiency DNA polymerase was essential for successful DNA amplification, using trace intact plant material as a template DNA source. PMID:27669237

  19. Sex determination from the calcaneus in a 20th century Greek population using discriminant function analysis.

    PubMed

    Peckmann, Tanya R; Orr, Kayla; Meek, Susan; Manolis, Sotiris K

    2015-12-01

    The skull and post-cranium have been used for the determination of sex for unknown human remains. However, in forensic cases where skeletal remains often exhibit postmortem damage and taphonomic changes the calcaneus may be used for the determination of sex as it is a preservationally favored bone. The goal of the present research was to derive discriminant function equations from the calcaneus for estimation of sex from a contemporary Greek population. Nine parameters were measured on 198 individuals (103 males and 95 females), ranging in age from 20 to 99 years old, from the University of Athens Human Skeletal Reference Collection. The statistical analyses showed that all variables were sexually dimorphic. Discriminant function score equations were generated for use in sex determination. The average accuracy of sex classification ranged from 70% to 90% for the univariate analysis, 82.9% to 87.5% for the direct method, and 86.2% for the stepwise method. Comparisons to other populations were made. Overall, the cross-validated accuracies ranged from 48.6% to 56.1% with males most often identified correctly and females most often misidentified. The calcaneus was shown to be useful for sex determination in the twentieth century Greek population.

  20. Involvement of androgen receptor in sex determination in an amphibian species.

    PubMed

    Fujii, Jun; Kodama, Maho; Oike, Akira; Matsuo, Yasuki; Min, Mi-Sook; Hasebe, Takashi; Ishizuya-Oka, Atsuko; Kawakami, Koichi; Nakamura, Masahisa

    2014-01-01

    In mice and humans, the androgen receptor (AR) gene, located on the X chromosome, is not known to be involved in sex determination. In the Japanese frog Rana rugosa the AR is located on the sex chromosomes (X, Y, Z and W). Phylogenetic analysis shows that the AR on the X chromosome (X-AR) of the Korean R. rugosa is basal and segregates into two clusters: one containing W-AR of Japanese R. rugosa, the other containing Y-AR. AR expression is twice as high in ZZ (male) compared to ZW (female) embryos in which the W-AR is barely expressed. Higher AR-expression may be associated with male sex determination in this species. To examine whether the Z-AR is involved in sex determination in R. rugosa, we produced transgenic (Tg) frogs carrying an exogenous Z-AR. Analysis of ZW Tg frogs revealed development of masculinized gonads or 'ovotestes'. Expression of CYP17 and Dmrt1, genes known to be activated during normal male gonadal development, were up-regulated in the ZW ovotestis. Testosterone, supplied to the rearing water, completed the female-to-male sex-reversal in the AR-Tg ZW frogs. Here we report that Z-AR is involved in male sex-determination in an amphibian species.

  1. Direct LAMP Assay without Prior DNA Purification for Sex Determination of Papaya.

    PubMed

    Tsai, Chi-Chu; Shih, Huei-Chuan; Ko, Ya-Zhu; Wang, Ren-Huang; Li, Shu-Ju; Chiang, Yu-Chung

    2016-09-24

    Papaya (Carica papaya L.) is an economically important tropical fruit tree with hermaphrodite, male and female sex types. Hermaphroditic plants are the major type used for papaya production because their fruits have more commercial advantages than those of female plants. Sex determination of the seedlings, or during the early growth stages, is very important for the papaya seedling industry. Thus far, the only method for determining the sex type of a papaya at the seedling stage has been DNA analysis. In this study, a molecular technique-based on DNA analysis-was developed for detecting male-hermaphrodite-specific markers to examine the papaya's sex type. This method is based on the loop-mediated isothermal amplification (LAMP) and does not require prior DNA purification. The results show that the method is an easy, efficient, and inexpensive way to determine a papaya's sex. This is the first report on the LAMP assay, using intact plant materials-without DNA purification-as samples for the analysis of sex determination of papaya. We found that using high-efficiency DNA polymerase was essential for successful DNA amplification, using trace intact plant material as a template DNA source.

  2. Sex determination from the talus in a contemporary Greek population using discriminant function analysis.

    PubMed

    Peckmann, Tanya R; Orr, Kayla; Meek, Susan; Manolis, Sotiris K

    2015-07-01

    The determination of sex is an important part of building the biological profile for unknown human remains. Many of the bones traditionally used for the determination of sex are often found fragmented or incomplete in forensic and archaeological cases. The goal of the present research was to derive discriminant function equations from the talus, a preservationally favoured bone, for sexing skeletons from a contemporary Greek population. Nine parameters were measured on 182 individuals (96 males and 86 females) from the University of Athens Human Skeletal Reference Collection. The individuals ranged in age from 20 to 99 years old. The statistical analyses showed that all measured parameters were sexually dimorphic. Discriminant function score equations were generated for use in sex determination. The average accuracy of sex classification ranged from 65.2% to 93.4% for the univariate analysis, 90%-96.5% for the direct method and 86.7% for the stepwise method. Comparisons to other populations were made. Overall, the cross-validated accuracies ranged from 65.5% to 83.2% and males were most often correctly identified. The talus was shown to be useful for sex determination in the modern Greek population.

  3. A simple PCR-based marker to determine sex in aspen.

    PubMed

    Pakull, B; Kersten, B; Lüneburg, J; Fladung, M

    2015-01-01

    The genus Populus features a genetically controlled sex determination system, located on chromosome 19. However, different Populus species vary in the position of the sex-linked region on the respective chromosome and the apparent heterogametic sex, and the precise mechanism of sex determination in Populus is still unknown. Using next generation sequencing of pooled samples of male and female aspens, we identified the aspen homologue of the P. trichocarpa gene Potri.019G047300 ('TOZ19') to be male-specific. While in P. tremuloides, the complete gene is missing in the genome of female plants, a short fragment of the 3'-part of the gene is still present in P. tremula females. The male-specific presence and transcription of TOZ19 was further verified using PCR in various different aspen individuals and RT-PCR expression analysis. TOZ19 is potentially involved in early steps of flower development, and represents an interesting candidate gene for involvement in sex determination in aspen. Regardless of its role as candidate gene, TOZ19 represents an ideal marker for determination of the sex of non-flowering aspen individuals or seedlings.

  4. Unexpected resilience of species with temperature-dependent sex determination at the Cretaceous-Palaeogene boundary.

    PubMed

    Silber, Sherman; Geisler, Jonathan H; Bolortsetseg, Minjin

    2011-04-23

    It has been suggested that climate change at the Cretaceous-Palaeogene (K-Pg) boundary, initiated by a bolide impact or volcanic eruptions, caused species with temperature-dependent sex determination (TSD), including dinosaurs, to go extinct because of a skewed sex ratio towards all males. To test this hypothesis, the sex-determining mechanisms (SDMs) of Cretaceous tetrapods of the Hell Creek Formation (Montana, USA) were inferred using parsimony optimizations of SDMs on a tree, including Hell Creek species and their extant relatives. Although the SDMs of non-avian dinosaurs could not be inferred, we were able to determine the SDMs of 62 species; 46 had genotypic sex determination (GSD) and 16 had TSD. The TSD hypothesis for extinctions performed poorly, predicting between 32 and 34 per cent of survivals and extinctions. Most surprisingly, of the 16 species with TSD, 14 of them survived into the Early Palaeocene. In contrast, 61 per cent of species with GSD went extinct. Possible explanations include minimal climate change at the K-Pg, or if climate change did occur, TSD species that survived had egg-laying behaviour that prevented the skewing of sex ratios, or had a sex ratio skewed towards female rather than male preponderance. Application of molecular clocks may allow the SDMs of non-avian dinosaurs to be inferred, which would be an important test of the pattern discovered here.

  5. Molecular marker suggests rapid changes of sex-determining mechanisms in Australian dragon lizards.

    PubMed

    Ezaz, Tariq; Quinn, Alexander E; Sarre, Stephen D; O'Meally, Denis; Georges, Arthur; Graves, Jennifer A Marshall

    2009-01-01

    Distribution of sex-determining mechanisms across Australian agamids shows no clear phylogenetic segregation, suggesting multiple transitions between temperature-dependent (TSD) and genotypic sex determination (GSD). These taxa thus present an excellent opportunity for studying the evolution of sex chromosomes, and evolutionary transitions between TSD and GSD. Here we report the hybridization of a 3 kb genomic sequence (PvZW3) that marks the Z and W microchromosomes of the Australian central bearded dragon (Pogona vitticeps) to chromosomes of 12 species of Australian agamids from eight genera using fluorescence in-situ hybridization (FISH). The probe hybridized to a single microchromosome pair in 11 of these species, but to the tip of the long arm of chromosome pair 2 in the twelfth (Physignathus lesueurii), indicating a micro-macro chromosome rearrangement. Three TSD species shared the marked microchromosome, implying that it is a conserved autosome in related species that determine sex by temperature. C-banding identified the marked microchromosome as the heterochromatic W chromosome in two of the three GSD species. However, in Ctenophorus fordi, the probe hybridized to a different microchromosome from that shown by C-banding to be the heterochromatic W, suggesting an independent origin for the ZW chromosome pair in that species. Given the haphazard distribution of GSD and TSD in this group and the existence of at least two sets of sex microchromosomes in GSD species, we conclude that sex-determining mechanisms in this family have evolved independently, multiple times in a short evolutionary period.

  6. Cattle fetal sex determination by polymerase chain reaction using DNA isolated from maternal plasma.

    PubMed

    da Cruz, A S; Silva, D C; Costa, E O A; De M-Jr, P; da Silva, C C; Silva, D M; da Cruz, A D

    2012-03-01

    The objective of this study was to evaluate the use of polymerase chain reaction analysis (PCR) of fetal cells/DNA in the maternal plasma of pregnant cows to determine the sex of the fetus. Plasma was harvested from 35 cows of mixed genotype at different stages of pregnancy ranging from 5 to 35 weeks. A male calf and a heifer calf provided the control samples. Fetal sex was determined by amplification of Y-specific sequences. For the 35 cows, the fetal sex predicted by this technique was in accordance with the sex of the calf at birth in 88.6% of cases. The agreement between predicted and observed fetal sex was less for cows with a gestational length of 35-48 days (63.6%). Regression analysis showed that there was a strong relationship between the probability of correctly predicting fetal sex and the stage of gestation. It was estimated that the test performed at 43.8 days post fertilization would have 95% accuracy, increasing to 99% accuracy for testing at 48.4 days and 99.9% accuracy for tests at 55.0 days or later. It was concluded that PCR analysis of fetal cells in maternal plasma can be used to predict successfully the sex of the fetus in cattle.

  7. A novel method for sex determination by detecting the number of X chromosomes.

    PubMed

    Nakanishi, Hiroaki; Shojo, Hideki; Ohmori, Takeshi; Hara, Masaaki; Takada, Aya; Adachi, Noboru; Saito, Kazuyuki

    2015-01-01

    A novel method for sex determination, based on the detection of the number of X chromosomes, was established. Current methods, based on the detection of the Y chromosome, can directly identify an unknown sample as male, but female gender is determined indirectly, by not detecting the Y chromosome. Thus, a direct determination of female gender is important because the quality (e.g., fragmentation and amelogenin-Y null allele) of the Y chromosome DNA may lead to a false result. Thus, we developed a novel sex determination method by analyzing the number of X chromosomes using a copy number variation (CNV) detection technique (the comparative Ct method). In this study, we designed a primer set using the amelogenin-X gene without the CNV region as the target to determine the X chromosome copy number, to exclude the influence of the CNV region from the comparative Ct value. The number of X chromosomes was determined statistically using the CopyCaller software with real-time PCR. All DNA samples from participants (20 males, 20 females) were evaluated correctly using this method with 1-ng template DNA. A minimum of 0.2-ng template DNA was found to be necessary for accurate sex determination with this method. When using ultraviolet-irradiated template DNA, as mock forensic samples, the sex of the samples could not be determined by short tandem repeat (STR) analysis but was correctly determined using our method. Thus, we successfully developed a method of sex determination based on the number of X chromosomes. Our novel method will be useful in forensic practice for sex determination.

  8. Determination of SHBG-bound sex hormones by selective ammonium sulphate precipitation.

    PubMed

    Ratajczak, T; Monaco, E M; Hähnel, R

    1981-03-05

    This paper describes a direct method for determining sex hormone binding globulin (SHBG)-bound sex hormones in human plasma after separation of SHBG-bound and unbound hormone fractions by selective precipitation with ammonium sulphate. In normal women variations in SHBG-bound and -free hormone generally paralleled fluctuations in total hormone. Changes in SHBG-free estradiol did not have any marked effect on plasma SHBG and sHBG-free testosterone. Our results suggest a buffer role for SHBG through which the biological response to sudden changes in sex hormone concentration is moderated.

  9. Sex determination in beef by melting curve analysis of PCR amplicons from the amelogenin locus.

    PubMed

    Ballin, Nicolai Z; Madsen, Knud G

    2007-11-01

    Sex determination of beef is important to meet the rules of the Commission Regulation (EC) 765/2002 that qualify for export refunds. A SYBR Green sex identification assay based on melting curve analysis of PCR amplicons from the amelogenin locus (AMELX and AMELY) was developed. The PCR amplicons of 130/130 and 130/67 base pairs produced from female and male beef, respectively, are easily distinguished by both melting curve analysis and gel electrophoresis. Results from the melting curve analysis of amplicons are ready in less than three minutes, and requires no additional work in addition to the PCR setup. Applicability of the sex determination assay was studied by analysis of 12 unknown beef samples and the results were compared to an accredited method based on gel electrophoresis. In addition, six different cattle breeds were examined. All test results were correct in respect to sex.

  10. Image analysis of pubic bone for sex determination in a computed tomography sample.

    PubMed

    López-Alcaraz, Manuel; Garamendi González, Pedro Manuel; Alemán Aguilera, Inmaculada; Botella López, Miguel

    2013-11-01

    Radiology has demonstrated great utility for sex determination, but most studies are based in metrical and morphological methods in order to perform an identification profile. It is presented an easy image analysis-based method aimed to demonstrate the relationship between the bony tissue ultrastructure and sex by using several grey level histogram variables obtained from computed tomography images using sagittal sections of the pubic symphysis surface and the body of the pubis. The CT sample consisted of 169 hospital DICOM archives of known sex and age. The multivariate binary logistic regression models calculated showed reliabilities for sex determination between 87.4 and 95.8 %, with a high intra and inter-observer agreement. The suggested method is not only considered useful to perform an identification profile during Virtopsy, but even for application in further studies in order to attach a quantitative correlation for tissue ultrastructure characteristics without complex and expensive methods beyond image analysis.

  11. Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish.

    PubMed

    Mei, Jie; Gui, Jian-Fang

    2015-02-01

    Aquaculture has made an enormous contribution to the world food production, especially to the sustainable supply of animal proteins. The utility of diverse reproduction strategies in fish, such as the exploiting use of unisexual gynogenesis, has created a typical case of fish genetic breeding. A number of fish species show substantial sexual dimorphism that is closely linked to multiple economic traits including growth rate and body size, and the efficient development of sex-linked genetic markers and sex control biotechnologies has provided significant approaches to increase the production and value for commercial purposes. Along with the rapid development of genomics and molecular genetic techniques, the genetic basis of sexual dimorphism has been gradually deciphered, and great progress has been made in the mechanisms of fish sex determination and identification of sex-determining genes. This review summarizes the progress to provide some directive and objective thinking for further research in this field.

  12. The complex set of late transcripts from the Drosophila sex determination gene sex-lethal encodes multiple related polypeptides.

    PubMed Central

    Samuels, M E; Schedl, P; Cline, T W

    1991-01-01

    Sex-lethal (Sxl), a key sex determination gene in Drosophila melanogaster, is known to express a set of three early transcripts arising during early embryogenesis and a set of seven late transcripts occurring from midembryogenesis through adulthood. Among the late transcripts, male-specific mRNAs were distinguished from their female counterparts by the presence of an extra exon interrupting an otherwise long open reading frame (ORF). We have now analyzed the structures of the late Sxl transcripts by cDNA sequencing, Northern (RNA) blotting, primer extension, and RNase protection. The late transcripts appear to use a common 5' end but differ at their 3' ends by the use of alternative polyadenylation sites. Two of these sites lack canonical AATAAA sequences, and their use correlates in females with the presence of a functional germ line, suggesting possible tissue-specific polyadenylation. Besides the presence of the male-specific exon, no additional sex-specific splicing events were detected, although a number of non-sex-specific splicing variants were observed. In females, the various forms of late Sxl transcript potentially encode up to six slightly different polypeptides. All of the protein-coding differences occur outside the previously defined ribonucleoprotein motifs. One class of Sxl mRNAs also includes a second long ORF in the same frame as the first ORF but separated from it by a single ochre codon. The function of this second ORF is unknown. Significant amounts of apparently partially processed Sxl RNAs were observed, consistent with the hypothesis that the regulated Sxl splices occur relatively slowly. Images PMID:1710769

  13. Working Late: Do Workplace Sex Ratios Affect Partnership Formation and Dissolution?

    ERIC Educational Resources Information Center

    Svarer, Michael

    2007-01-01

    In this paper, I analyze the association between workplace sex ratios and partnership formation and dissolution. I find that the risk of dissolution increases with the fraction of coworkers of the opposite sex at both the female and male workplace. On the other hand, workplace sex ratios are not important for the overall transition rate from…

  14. An Unusual Role for doublesex in Sex Determination in the Dipteran Sciara.

    PubMed

    Ruiz, María Fernanda; Alvarez, Mercedes; Eirín-López, José M; Sarno, Francesca; Kremer, Leonor; Barbero, José L; Sánchez, Lucas

    2015-08-01

    The gene doublesex, which is placed at the bottom of the sex-determination gene cascade, plays the ultimate discriminatory role for sex determination in insects. In all insects where this gene has been characterized, the dsx premessenger RNA (pre-mRNA) follows a sex-specific splicing pattern, producing male- and female-specific mRNAs encoding the male-DSXM and female-DSXF proteins, which determine male and female development, respectively. This article reports the isolation and characterization of the gene doublesex of dipteran Sciara insects. The Sciara doublesex gene is constitutively transcribed during development and adult life of males and females. Sciara had no sex-specific doublesex mRNAs but the same transcripts, produced by alternative splicing of its primary transcript, were present in both sexes, although their relative abundance is sex specific. However, only the female DSXF protein, but not the male DSXM protein, was produced at similar amounts in both sexes. An analysis of the expression of female and male Sciara DSX proteins in Drosophila showed that these proteins conserved female and male function, respectively, on the control of Drosophila yolk-protein genes. The molecular evolution of gene doublesex of all insects where this gene has been characterized revealed that Sciara doublesex displays a considerable degree of divergence in its molecular organization and its splicing pattern with respect to the rest of dipterans as suggested by its basal position within the doublesex phylogeny. It is suggested that the doublesex gene is involved in Sciara sex determination although it appears not to play the discriminatory role performed in other insects.

  15. Dmrt1 polymorphism covaries with sex-determination patterns in Rana temporaria.

    PubMed

    Ma, Wen-Juan; Rodrigues, Nicolas; Sermier, Roberto; Brelsford, Alan; Perrin, Nicolas

    2016-08-01

    Patterns of sex-chromosome differentiation and gonadal development have been shown to vary among populations of Rana temporaria along a latitudinal transect in Sweden. Frogs from the northern-boreal population of Ammarnäs displayed well-differentiated X and Y haplotypes, early gonadal differentiation, and a perfect match between phenotypic and genotypic sex. In contrast, no differentiated Y haplotypes could be detected in the southern population of Tvedöra, where juveniles furthermore showed delayed gonadal differentiation. Here, we show that Dmrt1, a gene that plays a key role in sex determination and sexual development across all metazoans, displays significant sex differentiation in Tvedöra, with a Y-specific haplotype distinct from Ammarnäs. The differential segment is not only much shorter in Tvedöra than in Ammarnäs, it is also less differentiated and associates with both delayed gonadal differentiation and imperfect match between phenotypic and genotypic sex. Whereas Tvedöra juveniles with a local Y haplotype tend to ultimately develop as males, those without it may nevertheless become functional XX males, but with strongly female-biased progeny. Our findings suggest that the variance in patterns of sex determination documented in common frogs might result from a genetic polymorphism within a small genomic region that contains Dmrt1. They also substantiate the view that recurrent convergences of sex determination toward a limited set of chromosome pairs may result from the co-option of small genomic regions that harbor key genes from the sex-determination pathway.

  16. An Unusual Role for doublesex in Sex Determination in the Dipteran Sciara

    PubMed Central

    Ruiz, María Fernanda; Alvarez, Mercedes; Eirín-López, José M.; Sarno, Francesca; Kremer, Leonor; Barbero, José L.; Sánchez, Lucas

    2015-01-01

    The gene doublesex, which is placed at the bottom of the sex-determination gene cascade, plays the ultimate discriminatory role for sex determination in insects. In all insects where this gene has been characterized, the dsx premessenger RNA (pre-mRNA) follows a sex-specific splicing pattern, producing male- and female-specific mRNAs encoding the male-DSXM and female-DSXF proteins, which determine male and female development, respectively. This article reports the isolation and characterization of the gene doublesex of dipteran Sciara insects. The Sciara doublesex gene is constitutively transcribed during development and adult life of males and females. Sciara had no sex-specific doublesex mRNAs but the same transcripts, produced by alternative splicing of its primary transcript, were present in both sexes, although their relative abundance is sex specific. However, only the female DSXF protein, but not the male DSXM protein, was produced at similar amounts in both sexes. An analysis of the expression of female and male Sciara DSX proteins in Drosophila showed that these proteins conserved female and male function, respectively, on the control of Drosophila yolk-protein genes. The molecular evolution of gene doublesex of all insects where this gene has been characterized revealed that Sciara doublesex displays a considerable degree of divergence in its molecular organization and its splicing pattern with respect to the rest of dipterans as suggested by its basal position within the doublesex phylogeny. It is suggested that the doublesex gene is involved in Sciara sex determination although it appears not to play the discriminatory role performed in other insects. PMID:26063659

  17. Environmentally Induced Epigenetic Transgenerational Inheritance of Altered SRY Genomic Binding During Gonadal Sex Determination.

    PubMed

    Skinner, Michael K; Bhandari, Ramji K; Haque, M Muksitul; Nilsson, Eric E

    2015-12-01

    A critical transcription factor required for mammalian male sex determination is SRY (sex determining region on the Y chromosome). The expression of SRY in precursor Sertoli cells is one of the initial events in testis development. The current study was designed to determine the impact of environmentally induced epigenetic transgenerational inheritance on SRY binding during gonadal sex determination in the male. The agricultural fungicide vinclozolin and vehicle control (DMSO) exposed gestating females (F0 generation) during gonadal sex determination promoted the transgenerational inheritance of differential DNA methylation in sperm of the F3 generation (great grand-offspring). The fetal gonads in F3 generation males were used to identify potential alterations in SRY binding sites in the developing Sertoli cells. Chromatin immunoprecipitation with an SRY antibody followed by genome-wide promoter tiling array (ChIP-Chip) was used to identify alterations in SRY binding. A total of 81 adjacent oligonucleotide sites and 173 single oligo SRY binding sites were identified to be altered transgenerationally in the Sertoli cell vinclozolin lineage F3 generation males. Observations demonstrate the majority of the previously identified normal SRY binding sites were not altered and the altered SRY binding sites were novel and new additional sites. The chromosomal locations, gene associations and potentially modified cellular pathways were investigated. In summary, environmentally induced epigenetic transgenerational inheritance of germline epimutations appears to alter the cellular differentiation and development of the precursor Sertoli cell SRY binding during gonadal sex determination that influence the developmental origins of adult onset testis disease.

  18. Molecular cloning and functional characterization of the sex-determination gene doublesex in the sexually dimorphic broad-horned beetle Gnatocerus cornutus (Coleoptera, Tenebrionidae).

    PubMed

    Gotoh, Hiroki; Ishiguro, Mai; Nishikawa, Hideto; Morita, Shinichi; Okada, Kensuke; Miyatake, Takahisa; Yaginuma, Toshinobu; Niimi, Teruyuki

    2016-07-11

    Various types of weapon traits found in insect order Coleoptera are known as outstanding examples of sexually selected exaggerated characters. It is known that the sex determination gene doublesex (dsx) plays a significant role in sex-specific expression of weapon traits in various beetles belonging to the superfamily Scarabaeoidea. Although sex-specific weapon traits have evolved independently in various Coleopteran groups, developmental mechanisms of sex-specific expression have not been studied outside of the Scarabaeoidea. In order to test the hypothesis that dsx-dependent sex-specific expression of weapon traits is a general mechanism among the Coleoptera, we have characterized the dsx in the sexually dimorphic broad-horned beetle Gnatocerus cornutus (Tenebrionidea, Tenebirionidae). By using molecular cloning, we identified five splicing variants of Gnatocerus cornutus dsx (Gcdsx), which are predicted to code four different isoforms. We found one male-specific variant (GcDsx-M), two female-specific variants (GcDsx-FL and GcDsx-FS) and two non-sex-specific variants (correspond to a single isoform, GcDsx-C). Knockdown of all Dsx isoforms resulted in intersex phenotype both in male and female. Also, knockdown of all female-specific isoforms transformed females to intersex phenotype, while did not affect male phenotype. Our results clearly illustrate the important function of Gcdsx in determining sex-specific trait expression in both sexes.

  19. Molecular cloning and functional characterization of the sex-determination gene doublesex in the sexually dimorphic broad-horned beetle Gnatocerus cornutus (Coleoptera, Tenebrionidae)

    PubMed Central

    Gotoh, Hiroki; Ishiguro, Mai; Nishikawa, Hideto; Morita, Shinichi; Okada, Kensuke; Miyatake, Takahisa; Yaginuma, Toshinobu; Niimi, Teruyuki

    2016-01-01

    Various types of weapon traits found in insect order Coleoptera are known as outstanding examples of sexually selected exaggerated characters. It is known that the sex determination gene doublesex (dsx) plays a significant role in sex-specific expression of weapon traits in various beetles belonging to the superfamily Scarabaeoidea. Although sex-specific weapon traits have evolved independently in various Coleopteran groups, developmental mechanisms of sex-specific expression have not been studied outside of the Scarabaeoidea. In order to test the hypothesis that dsx-dependent sex-specific expression of weapon traits is a general mechanism among the Coleoptera, we have characterized the dsx in the sexually dimorphic broad-horned beetle Gnatocerus cornutus (Tenebrionidea, Tenebirionidae). By using molecular cloning, we identified five splicing variants of Gnatocerus cornutus dsx (Gcdsx), which are predicted to code four different isoforms. We found one male-specific variant (GcDsx-M), two female-specific variants (GcDsx-FL and GcDsx-FS) and two non-sex-specific variants (correspond to a single isoform, GcDsx-C). Knockdown of all Dsx isoforms resulted in intersex phenotype both in male and female. Also, knockdown of all female-specific isoforms transformed females to intersex phenotype, while did not affect male phenotype. Our results clearly illustrate the important function of Gcdsx in determining sex-specific trait expression in both sexes. PMID:27404087

  20. The reliability of osteometric techniques for the sex determination of burned human skeletal remains.

    PubMed

    Gonçalves, David

    2011-10-01

    The influence of heat-induced shrinkage on the osteometric sexual dimorphism of human skeletons is still poorly known. In order to investigate this issue, a sample composed of 84 Portuguese individuals cremated at a modern crematorium was examined using standard measurements from the femur, the talus and the calcaneus. In addition, sex determination of the sample was attempted by using osteometric standards developed from the Coimbra collection of identified skeletons. This was carried out to assess the extent of the effect of heat-induced shrinkage on the correct classification of known-sex skeletons while using standards developed on unburned skeletons. Results demonstrated that sexual dimorphism was still observable in the sample of calcined bones despite shrinkage. However, the application of conventional osteometric standards was unsuccessful. As expected, shrinkage caused most females to be correctly classified according to sex, but the sex allocation of males was very poor for all standard measurements. The results were obtained on a small sample but suggest that univariate metric techniques specifically developed for calcined bones may be valuable for sex determination. This would bring new methodological possibilities for biological anthropology and would enlarge the set of techniques regarding sex determination of burned skeletal remains.

  1. Sex determination in goat by amplification of the HMG box using duplex PCR.

    PubMed

    Shi, Lei; Yue, Wenbin; Ren, Youshe; Lei, Fulin; Zhao, Junxing

    2008-05-01

    The objective of this study was to obtain a fast, accurate and reliable method of determining the sex of goat embryos prior to implantation through amplification of the high-motility-group (HMG) box of the sex-determining region of the Y chromosome (SRY) gene of the goats. Goat specific primers were designed for duplex polymerase chain reaction (PCR). As an internal control gene, the goat beta-action gene sequence was simultaneously amplified together with the HMG box of goat SRY gene. Males showed both 1 SRY band and 1 beta-action band, but only 1 beta-action band was present in the agarose gel electrophoresis of females. The result indicated that the goat HMG-box sequence motif of SRY was male specific. Afterward, the optimized PCR procedure was applied in 30 embryo biopsies and the biopsied embryos were transferred into 30 recipient female goats. The sex of the 13 kids proved anatomically corresponded to the sex determined by PCR (100% accuracy). Thus, this study showed that this duplex PCR method can be applied to sex the goat pre-implantation embryos and to manipulate the sex ratio of offspring in goat breeding programs.

  2. Realigning government action with public health evidence: the legal and policy environment affecting sex work and HIV in Asia.

    PubMed

    Gruskin, Sofia; Pierce, Gretchen Williams; Ferguson, Laura

    2014-01-01

    The HIV epidemic has shed light on how government regulation of sex work directly affects the health and well-being of sex workers, their families and communities. A review of the public health evidence highlights the need for supportive legal and policy environments, yet criminalisation of sex work remains standard around the world. Emerging evidence, coupled with evolving political ideologies, is increasingly shaping legal environments that promote the rights and health of sex workers but even as new legislation is created, contradictions often exist with standing problematic legislation. As a region, Asia provides a compelling example in that progressive HIV policies often sit side by side with laws that criminalise sex work. Data from the 21 Asian countries reporting under the UN General Assembly Special Session on HIV in 2010 were analysed to provide evidence of how countries' approach to sex-work regulation might affect HIV-related outcomes. Attention to the links between law and HIV-related outcomes can aid governments to meet their international obligations and ensure appropriate legal environments that cultivate the safe and healthy development and expression of sexuality, ensure access to HIV and other related services and promote and protect human rights.

  3. Sex-determining mechanisms in insects based on imprinting and elimination of chromosomes.

    PubMed

    Sánchez, L

    2014-01-01

    As a rule, the sex of an individual is fixed at fertilization, and the chromosomal constitution of the zygote is a direct consequence of the chromosomal constitution of the gametes. However, there are cases in which the chromosomal differences determining sex are brought about by elimination or inactivation of chromosomes in the embryo. In Sciaridae insects, all zygotes start with the XXX constitution; the loss of either 1 or 2 X chromosomes determines whether the zygote becomes XX (female) or X0 (male). In Cecydomyiidae and Collembola insects, all zygotes start with the XXXX constitution. If the embryo does not eliminate any X chromosome, this remains XXXX and develops as female, whereas if 2 X chromosomes are eliminated, the embryo becomes XX0 and develops as a male. In the coccids (scale insects), the chromosomal differences between the sexes result from either the elimination or the heterochromatinization (inactivation) of half of the chromosomes giving rise to haploid males and diploid females. The chromosomes that are eliminated or inactivated are those inherited from the father. Therefore, in the formation of the sex-determining chromosomal signal in those insects, a marking ('imprinting') process must occur in one of the parents, which determines that the chromosomes to be eliminated or inactivated are of paternal origin. In this article, the sex determination mechanism of these insects and the associated imprinting process are reviewed.

  4. Reliability of mandibular canine and mandibular canine index in sex determination: A study using Uyghur population.

    PubMed

    Iqbal, Raza; Zhang, Shuang; Mi, Congbo

    2015-07-01

    Sex determination is a key process that is required to establish the forensic profile of an individual. Mandibular canine index (MCI) method yields fairly positive results for sex determination. However, this method has been challenged by a few authors. This study aimed to examine the reliability of MCI in Chinese Uyghur population and to establish its normal value for this ethnic group. Dental casts of 216 students (117 males and 119 females) from the College of Stomatology of Xinjiang Medical University in China were used to determine the sexing accuracy of MCI. The mesiodistal (MD) dimension of mandibular canine crowns, the inter-canine distance, and the MCI were calculated. The accuracy of the standard MCI derived from the current data was compared with that of the standard MCIs derived from previous data. Results were statistically described using the independent-samples t-test. The MD dimension of mandibular crown, the inter-canine distance, and the MCI exhibited statistically significant sexual dimorphism. Sex determination using the MCI derived from the current data revealed fairly reliable results. Therefore, MCI is a reliable method for sex determination for Uyghur population, with 0.248 as standard MCI value.

  5. Di (2-ethylhexyl) phthalate exposure during pregnancy disturbs temporal sex determination regulation in mice offspring.

    PubMed

    Wang, Yongan; Liu, Wei; Yang, Qing; Yu, Mingxi; Zhang, Zhou

    2015-10-02

    Animal researches and clinical studies have supported the relevance between phthalates exposure and testicular dysgenesis syndrome (TDS). These disorders may comprise common origin in fetal life, especially during sex determination and differentiation, where the mechanism remains unclear. The present study evaluated the disturbances in gene regulatory networks of sex determination in fetal mouse by in utero Di (2-ethylhexyl) phthalate (DEHP) exposure. Temporal expression of key sex determination genes were examined during the critical narrow time window, using whole-mount in situ hybridization and quantitative-PCR. DEHP exposure resulted in significant reduction in mRNA of Sry during sex determination from gestation day (GD) 11.0 to 11.5 in male fetal mice, and the increasing of Sry expression to threshold level on GD 11.5 was delayed. Meanwhile, Gadd45g and Gata4, the upstream genes of Sry, and downstream gene Sox9 were also significantly downregulated in expression. In fetal females, the expression of Wnt4 and beta-catenin were up-regulated by DEHP exposure. Taken together, the results suggest that the potential mechanism of gonadal development disorder by DEHP may origin from repression of important male sex determination signaling pathway, involving Gadd45g → Gata4 → Sry → Sox9. The results would promote a better understanding of the association between phthalate esters (PAEs) exposure and the reductive disorder.

  6. Dimorphic DNA methylation during temperature-dependent sex determination in the sea turtle Lepidochelys olivacea.

    PubMed

    Venegas, Daniela; Marmolejo-Valencia, Alejandro; Valdes-Quezada, Christian; Govenzensky, Tzipe; Recillas-Targa, Félix; Merchant-Larios, Horacio

    2016-09-15

    Sex determination in vertebrates depends on the expression of a conserved network of genes. Sea turtles such as Lepidochelys olivacea have temperature-dependent sex determination. The present work analyses some of the epigenetic processes involved in this. We describe sexual dimorphism in global DNA methylation patterns between ovaries and testes of L. olivacea and show that the differences may arise from a combination of DNA methylation and demethylation events that occur during sex determination. Irrespective of incubation temperature, 5-hydroxymethylcytosine was abundant in the bipotential gonad; however, following sex determination, this modification was no longer found in pre-Sertoli cells in the testes. These changes correlate with the establishment of the sexually dimorphic DNA methylation patterns, down regulation of Sox9 gene expression in ovaries and irreversible gonadal commitment towards a male or female differentiation pathway. Thus, DNA methylation changes may be necessary for the stabilization of the gene expression networks that drive the differentiation of the bipotential gonad to form either an ovary or a testis in L. olivacea and probably among other species that manifest temperature-dependent sex determination.

  7. Female-only sex-linked amplified fragment length polymorphism markers support ZW/ZZ sex determination in the giant freshwater prawn Macrobrachium rosenbergii.

    PubMed

    Jiang, Xue-Hui; Qiu, Gao-Feng

    2013-12-01

    Sex determination mechanisms in many crustacean species are complex and poorly documented. In the giant freshwater prawn, Macrobrachium rosenbergii, a ZW/ZZ sex determination system was previously proposed based on sex ratio data obtained by crosses of sex-reversed females (neomales). To provide molecular evidence for the proposed system, novel sex-linked molecular markers were isolated in this species. Amplified fragment length polymorphism (AFLP) using 64 primer combinations was employed to screen prawn genomes for DNA markers linked with sex loci. Approximately 8400 legible fragments were produced, 13 of which were uniquely identified in female prawns with no indication of corresponding male-specific markers. These AFLP fragments were reamplified, cloned and sequenced, producing two reliable female-specific sequence characterized amplified region (SCAR) markers. Additional individuals from two unrelated geographic populations were used to verify these findings, confirming female-specific amplification of single bands. Detection of internal polymorphic sites was conducted by designing new primer pairs based on these internal fragments. The internal SCAR fragments also displayed specificity in females, indicating high levels of variation between female and male specimens. The distinctive feature of female-linked SCAR markers can be applied for rapid detection of prawn gender. These sex-specific SCAR markers and sex-associated AFLP candidates unique to female specimens support a sex determination system consistent with female heterogamety (ZW) and male homogamety (ZZ).

  8. Differentiation of sex chromosomes and karyotypic evolution in the eye-lid geckos (Squamata: Gekkota: Eublepharidae), a group with different modes of sex determination.

    PubMed

    Pokorná, Martina; Rábová, Marie; Ráb, Petr; Ferguson-Smith, Malcolm A; Rens, Willem; Kratochvíl, Lukáš

    2010-11-01

    The eyelid geckos (family Eublepharidae) include both species with temperature-dependent sex determination and species where genotypic sex determination (GSD) was suggested based on the observation of equal sex ratios at several incubation temperatures. In this study, we present data on karyotypes and chromosomal characteristics in 12 species (Aeluroscalabotes felinus, Coleonyx brevis, Coleonyx elegans, Coleonyx variegatus, Eublepharis angramainyu, Eublepharis macularius, Goniurosaurus araneus, Goniurosaurus lichtenfelderi, Goniurosaurus luii, Goniurosaurus splendens, Hemitheconyx caudicinctus, and Holodactylus africanus) covering all genera of the family, and search for the presence of heteromorphic sex chromosomes. Phylogenetic mapping of chromosomal changes showed a long evolutionary stasis of karyotypes with all acrocentric chromosomes followed by numerous chromosomal rearrangements in the ancestors of two lineages. We have found heteromorphic sex chromosomes in only one species, which suggests that sex chromosomes in most GSD species of the eyelid geckos are not morphologically differentiated. The sexual difference in karyotype was detected only in C. elegans which has a multiple sex chromosome system (X(1)X(2)Y). The metacentric Y chromosome evolved most likely via centric fusion of two acrocentric chromosomes involving loss of interstitial telomeric sequences. We conclude that the eyelid geckos exhibit diversity in sex determination ranging from the absence of any sexual differences to heteromorphic sex chromosomes, which makes them an interesting system for exploring the evolutionary origin of sexually dimorphic genomes.

  9. Sex determination from scapular length measurements by CT scans images in a Caucasian population.

    PubMed

    Giurazza, F; Schena, E; Del Vescovo, R; Cazzato, R L; Mortato, L; Saccomandi, P; Paternostro, F; Onofri, L; Zobel, B Beomonte

    2013-01-01

    Together with race, stature and age, sex is a main component of the biological identity. Thanks to its proportional correlation with parts of the human body, sex can be evaluated form the skeleton. The most accurate approach to determine sex by bone size is based on os coxae or skull. After natural disaster their presence can never be guaranteed, therefore the development of methods of sex determination using other skeletal elements can result crucial. Herein, sexual dimorphism in the human scapula is used to develop a two-variable discriminant function for sex estimation. We have enrolled 100 males and 100 females who underwent thoracic CT scan evaluation and we have estimated two scapular diameters. The estimation has been carried out by analyzing images of the scapulae of each patient after three dimensional post-processing reconstructions. The two-variable function allows to obtain an overall accuracy of 88% on the calibration sample. Furthermore, we have employed the mentioned function on a collection of 10 individual test sample from the collection of the "Museo di Anatomia Umana di Firenze" of the Università degli Studi di Firenze; sex has been correctly predicted on 9 skeletons.

  10. Computer-assisted sperm morphometry fluorescence-based analysis has potential to determine progeny sex

    PubMed Central

    Santolaria, Pilar; Pauciullo, Alfredo; Silvestre, Miguel A; Vicente-Fiel, Sandra; Villanova, Leyre; Pinton, Alain; Viruel, Juan; Sales, Ester; Yániz, Jesús L

    2016-01-01

    This study was designed to determine the ability of computer-assisted sperm morphometry analysis (CASA-Morph) with fluorescence to discriminate between spermatozoa carrying different sex chromosomes from the nuclear morphometrics generated and different statistical procedures in the bovine species. The study was divided into two experiments. The first was to study the morphometric differences between X- and Y-chromosome-bearing spermatozoa (SX and SY, respectively). Spermatozoa from eight bulls were processed to assess simultaneously the sex chromosome by FISH and sperm morphometry by fluorescence-based CASA-Morph. SX cells were larger than SY cells on average (P < 0.001) although with important differences between bulls. A simultaneous evaluation of all the measured features by discriminant analysis revealed that nuclear area and average fluorescence intensity were the variables selected by stepwise discriminant function analysis as the best discriminators between SX and SY. In the second experiment, the sperm nuclear morphometric results from CASA-Morph in nonsexed (mixed SX and SY) and sexed (SX) semen samples from four bulls were compared. FISH allowed a successful classification of spermatozoa according to their sex chromosome content. X-sexed spermatozoa displayed a larger size and fluorescence intensity than nonsexed spermatozoa (P < 0.05). We conclude that the CASA-Morph fluorescence-based method has the potential to find differences between X- and Y-chromosome-bearing spermatozoa in bovine species although more studies are needed to increase the precision of sex determination by this technique. PMID:27624989

  11. Advances in sex determination in bats and its utility in wind-wildlife studies.

    PubMed

    Korstian, J M; Hale, A M; Bennett, V J; Williams, D A

    2013-09-01

    We developed a simple and reliable genetic method to determine sex in bats from the Vespertilionidae and Molossidae families. Polymerase chain reaction was used to amplify a portion of the introns within the zinc-finger-X (Zfx) and zinc-finger-Y (Zfy) genes. We designed primers to produce size variation between the Zfx and Zfy products that could be visualized using gel electrophoresis. Using an example from our wind-wildlife research, we show how sex data generated using this method are superior to sex data based on external morphology. Our method allows for the generation of sex data across a wide range of bats that can be used to address key questions in wildlife forensics, behavioural ecology, conservation and evolutionary biology.

  12. A microRNA family exerts maternal control on sex determination in C. elegans.

    PubMed

    McJunkin, Katherine; Ambros, Victor

    2017-02-15

    Gene expression in early animal embryogenesis is in large part controlled post-transcriptionally. Maternally contributed microRNAs may therefore play important roles in early development. We elucidated a major biological role of the nematode mir-35 family of maternally contributed essential microRNAs. We show that this microRNA family regulates the sex determination pathway at multiple levels, acting both upstream of and downstream from her-1 to prevent aberrantly activated male developmental programs in hermaphrodite embryos. Both of the predicted target genes that act downstream from the mir-35 family in this process, suppressor-26 (sup-26) and NHL (NCL-1, HT2A, and LIN-41 repeat) domain-containing-2 (nhl-2), encode RNA-binding proteins, thus delineating a previously unknown post-transcriptional regulatory subnetwork within the well-studied sex determination pathway of Caenorhabditis elegans Repression of nhl-2 by the mir-35 family is required for not only proper sex determination but also viability, showing that a single microRNA target site can be essential. Since sex determination in C. elegans requires zygotic gene expression to read the sex chromosome karyotype, early embryos must remain gender-naïve; our findings show that the mir-35 family microRNAs act in the early embryo to function as a developmental timer that preserves naïveté and prevents premature deleterious developmental decisions.

  13. What is the appropriate approach in sex determination of hyoid bones?

    PubMed

    Urbanová, Petra; Hejna, Petr; Zátopková, Lenka; Šafr, Miroslav

    2013-11-01

    The hyoid bone is characterized by sexually dimorphic features, enabling it to occasionally be used in the sex determination aspect of establishing the biological profile in skeletal remains. Based on a sample of 298 fused and non-fused hyoid bones, the present paper compares several methodological approaches to sexing human hyoid bones in order to test the legitimacy of osteometrics-based linear discriminant equations and to explore the potentials of symbolic regression and methods of geometric morphometrics. In addition, two sets of published predictive models, one of which originated in an indigenous population, were validated on the studied sample. The results showed that the hyoid shape itself is a moderate sex predictor and a combination of linear measurements is a better representation of sex-related differences. The symbolic regression was shown to exceed the predictive powers of linear discriminant function analysis when two models based on a logistic and step regression reached 96% of correctly classified cases. There was a positive correlation between discriminant scores and an individual's age as the sex assessment was highly skewed in favour of males. This suggests that the human hyoid undergoes age-related modifications which facilitates determination of male bones and complicates determination of females in older individuals. The validation of discriminant equations by Komenda and Černý (1990) and Kindschud et al. (2010) revealed that there are marked inter-population and inter-sample differences which lessened the power to correctly determine female hyoid bones.

  14. Implications of monotreme and marsupial chromosome evolution on sex determination and differentiation.

    PubMed

    Deakin, Janine E

    2017-04-01

    Studies of chromosomes from monotremes and marsupials endemic to Australasia have provided important insight into the evolution of their genomes as well as uncovering fundamental differences in their sex determination/differentiation pathways. Great advances have been made this century into solving the mystery of the complicated sex chromosome system in monotremes. Monotremes possess multiple different X and Y chromosomes and a candidate sex determining gene has been identified. Even greater advancements have been made for marsupials, with reconstruction of the ancestral karyotype enabling the evolutionary history of marsupial chromosomes to be determined. Furthermore, the study of sex chromosomes in intersex marsupials has afforded insight into differences in the sexual differentiation pathway between marsupials and eutherians, together with experiments showing the insensitivity of the mammary glands, pouch and scrotum to exogenous hormones, led to the hypothesis that there is a gene (or genes) on the X chromosome responsible for the development of either pouch or scrotum. This review highlights the major advancements made towards understanding chromosome evolution and how this has impacted on our understanding of sex determination and differentiation in these interesting mammals.

  15. Incubation history prior to the canonical thermosensitive period determines sex in the American alligator.

    PubMed

    McCoy, Jessica A; Parrott, Benjamin B; Rainwater, Thomas R; Wilkinson, Phillip M; Guillette, Louis J

    2015-10-01

    Despite the widespread occurrence of environmental sex determination (ESD) among vertebrates, our knowledge of the temporal dynamics by which environmental factors act on this process remains limited. In many reptiles, incubation temperature determines sex during a discrete developmental window just prior to and coincident with the differentiation of the gonads. Yet, there is substantial variation in sex ratios among different clutches of eggs incubated at identical temperatures during this period. Here, we test the hypothesis that temperatures experienced prior to the reported thermosensitive period for alligators (Alligator mississippiensis) can impact how the sex determination system responds to thermal cues later in development. Temperature shift experiments on eggs collected from the field within 24  h of oviposition were employed to decouple various maternal influences from thermal effects, and results demonstrate a previously undefined window of thermosensitivity occurring by stage 15 of embryonic development, six stages earlier than previously reported. We also examine the intrasexual expression of several male- and female-biased genes and show that while male-biased genes display no intrasexual differences, ovarian CYP19A1 (aromatase) transcript abundance differs by approximately twofold depending on thermal exposures experienced at early stages of embryonic development. These findings expand our understanding of the ESD in the alligator and provide the rationale for reevaluation of the temporal dynamics of sex determination in other crocodilians.

  16. Oestrogens and temperature-dependent sex determination in reptiles: all is in the gonads.

    PubMed

    Pieau, C; Dorizzi, M

    2004-06-01

    In many species of oviparous reptiles, the first steps of gonadal sex differentiation depend on the incubation temperature of the eggs. Feminization of gonads by exogenous oestrogens at a male-producing temperature and masculinization of gonads by antioestrogens and aromatase inhibitors at a female-producing temperature have irrefutably demonstrated the involvement of oestrogens in ovarian differentiation. Nevertheless, several studies performed on the entire gonad/adrenal/mesonephros complex failed to find differences between male- and female-producing temperatures in oestrogen content, aromatase activity and aromatase gene expression during the thermosensitive period for sex determination. Thus, the key role of aromatase and oestrogens in the first steps of ovarian differentiation has been questioned, and extragonadal organs or tissues, such as adrenal, mesonephros, brain or yolk, were considered as possible targets of temperature and sources of the oestrogens acting on gonadal sex differentiation. In disagreement with this view, experiments and assays carried out on the gonads alone, i.e. separated from the adrenal/mesonephros, provide evidence that the gonads themselves respond to temperature shifts by modifying their sexual differentiation and are the site of aromatase activity and oestrogen synthesis during the thermosensitive period. Oestrogens act locally on both the cortical and the medullary part of the gonad to direct ovarian differentiation. We have concluded that there is no objective reason to search for the implication of other organs in the phenomenon of temperature-dependent sex determination in reptiles. From the comparison with data obtained in other vertebrates, we propose two main directions for future research: to examine how transcription of the aromatase gene is regulated and to identify molecular and cellular targets of oestrogens in gonads during sex differentiation, in species with strict genotypic sex determination and species with

  17. Segregating variation for temperature-dependent sex determination in a lizard

    PubMed Central

    Rhen, T; Schroeder, A; Sakata, J T; Huang, V; Crews, D

    2011-01-01

    Temperature-dependent sex determination (TSD) was first reported in 1966 in an African lizard. It has since been shown that TSD occurs in some fish, several lizards, tuataras, numerous turtles and all crocodilians. Extreme temperatures can also cause sex reversal in several amphibians and lizards with genotypic sex determination. Research in TSD species indicates that estrogen signaling is important for ovary development and that orthologs of mammalian genes have a function in gonad differentiation. Nevertheless, the mechanism that actually transduces temperature into a biological signal for ovary versus testis development is not known in any species. Classical genetics could be used to identify the loci underlying TSD, but only if there is segregating variation for TSD. Here, we use the ‘animal model' to analyze inheritance of sexual phenotype in a 13-generation pedigree of captive leopard geckos, Eublepharis macularius, a TSD reptile. We directly show genetic variance and genotype-by-temperature interactions for sex determination. Additive genetic variation was significant at a temperature that produces a female-biased sex ratio (30 °C), but not at a temperature that produces a male-biased sex ratio (32.5 °C). Conversely, dominance variance was significant at the male-biased temperature (32.5 °C), but not at the female-biased temperature (30 °C). Non-genetic maternal effects on sex determination were negligible in comparison with additive genetic variance, dominance variance and the primary effect of temperature. These data show for the first time that there is segregating variation for TSD in a reptile and consequently that a quantitative trait locus analysis would be practicable for identifying the genes underlying TSD. PMID:20700140

  18. Segregating variation for temperature-dependent sex determination in a lizard.

    PubMed

    Rhen, T; Schroeder, A; Sakata, J T; Huang, V; Crews, D

    2011-04-01

    Temperature-dependent sex determination (TSD) was first reported in 1966 in an African lizard. It has since been shown that TSD occurs in some fish, several lizards, tuataras, numerous turtles and all crocodilians. Extreme temperatures can also cause sex reversal in several amphibians and lizards with genotypic sex determination. Research in TSD species indicates that estrogen signaling is important for ovary development and that orthologs of mammalian genes have a function in gonad differentiation. Nevertheless, the mechanism that actually transduces temperature into a biological signal for ovary versus testis development is not known in any species. Classical genetics could be used to identify the loci underlying TSD, but only if there is segregating variation for TSD. Here, we use the 'animal model' to analyze inheritance of sexual phenotype in a 13-generation pedigree of captive leopard geckos, Eublepharis macularius, a TSD reptile. We directly show genetic variance and genotype-by-temperature interactions for sex determination. Additive genetic variation was significant at a temperature that produces a female-biased sex ratio (30°C), but not at a temperature that produces a male-biased sex ratio (32.5°C). Conversely, dominance variance was significant at the male-biased temperature (32.5°C), but not at the female-biased temperature (30°C). Non-genetic maternal effects on sex determination were negligible in comparison with additive genetic variance, dominance variance and the primary effect of temperature. These data show for the first time that there is segregating variation for TSD in a reptile and consequently that a quantitative trait locus analysis would be practicable for identifying the genes underlying TSD.

  19. Triploid plover female provides support for a role of the W chromosome in avian sex determination

    PubMed Central

    Küpper, Clemens; Augustin, Jakob; Edwards, Scott; Székely, Tamás; Kosztolányi, András; Burke, Terry; Janes, Daniel E.

    2012-01-01

    Two models, Z Dosage and Dominant W, have been proposed to explain sex determination in birds, in which males are characterized by the presence of two Z chromosomes, and females are hemizygous with a Z and a W chromosome. According to the Z Dosage model, high dosage of a Z-linked gene triggers male development, whereas the Dominant W model postulates that a still unknown W-linked gene triggers female development. Using 33 polymorphic microsatellite markers, we describe a female triploid Kentish plover Charadrius alexandrinus identified by characteristic triallelic genotypes at 14 autosomal markers that produced viable diploid offspring. Chromatogram analysis showed that the sex chromosome composition of this female was ZZW. Together with two previously described ZZW female birds, our results suggest a prominent role for a female determining gene on the W chromosome. These results imply that avian sex determination is more dynamic and complex than currently envisioned. PMID:22647929

  20. Yolk-albumen testosterone in a lizard with temperature-dependent sex determination: relation with development.

    PubMed

    Huang, Victoria; Bowden, Rachel M; Crews, David

    2013-06-01

    The leopard gecko (Eublepharis macularius) exhibits temperature-dependent sex determination as well as temperature-influenced polymorphisms. Research suggests that in oviparous reptiles with temperature-dependent sex determination, steroid hormones in the yolk might influence sex determination and sexual differentiation. From captive leopard geckos that were all from the same incubation temperature regime, we gathered freshly laid eggs, incubated them at one of two female-biased incubation temperatures (26 or 34°C), and measured testosterone content in the yolk-albumen at early or late development. No differences in the concentration of testosterone were detected in eggs from different incubation temperatures. We report testosterone concentrations in the yolk-albumen were higher in eggs of late development than early development at 26°C incubation temperatures, a finding opposite that reported in other TSD reptiles studied to date.

  1. Methyl farnesoate synthesis is necessary for the environmental sex determination in the water flea Daphnia pulex.

    PubMed

    Toyota, Kenji; Miyakawa, Hitoshi; Hiruta, Chizue; Furuta, Kenjiro; Ogino, Yukiko; Shinoda, Tetsuro; Tatarazako, Norihisa; Miyagawa, Shinichi; Shaw, Joseph R; Iguchi, Taisen

    2015-09-01

    Sex-determination systems can be divided into two groups: genotypic sex determination (GSD) and environmental sex determination (ESD). ESD is an adaptive life-history strategy that allows control of sex in response to environmental cues in order to optimize fitness. However, the molecular basis of ESD remains largely unknown. The micro crustacean Daphnia pulex exhibits ESD in response to various external stimuli. Although methyl farnesoate (MF: putative juvenile hormone, JH, in daphnids) has been reported to induce male production in daphnids, the role of MF as a sex-determining factor remains elusive due to the lack of a suitable model system for its study. Here, we establish such a system for ESD studies in D. pulex. The WTN6 strain switches from producing females to producing males in response to the shortened day condition, while the MFP strain only produces females, irrespective of day-length. To clarify whether MF has a novel physiological role as a sex-determining factor in D. pulex, we demonstrate that a MF/JH biosynthesis inhibitor suppressed male production in WTN6 strain reared under the male-inducible condition, shortened day-length. Moreover, we show that juvenile hormone acid O-methyltransferase (JHAMT), a critical enzyme of MF/JH biosynthesis, displays MF-generating activity by catalyzing farnesoic acid. Expression of the JHAMT gene increased significantly just before the MF-sensitive period for male production in the WTN6 strain, but not in the MFP strain, when maintained under male-inducible conditions. These results suggest that MF synthesis regulated by JHAMT is necessary for male offspring production in D. pulex. Our findings provide novel insights into the genetic underpinnings of ESD and they begin to shed light on the physiological function of MF as a male-fate determiner in D. pulex.

  2. Multilocus Sex Determination Revealed in Two Populations of Gynodioecious Wild Strawberry, Fragaria vesca subsp. bracteata

    PubMed Central

    Ashman, Tia-Lynn; Tennessen, Jacob A.; Dalton, Rebecca M.; Govindarajulu, Rajanikanth; Koski, Matthew H.; Liston, Aaron

    2015-01-01

    Gynodioecy, the coexistence of females and hermaphrodites, occurs in 20% of angiosperm families and often enables transitions between hermaphroditism and dioecy. Clarifying mechanisms of sex determination in gynodioecious species can thus illuminate sexual system evolution. Genetic determination of gynodioecy, however, can be complex and is not fully characterized in any wild species. We used targeted sequence capture to genetically map a novel nuclear contributor to male sterility in a self-pollinated hermaphrodite of Fragaria vesca subsp. bracteata from the southern portion of its range. To understand its interaction with another identified locus and possibly additional loci, we performed crosses within and between two populations separated by 2000 km, phenotyped the progeny and sequenced candidate markers at both sex-determining loci. The newly mapped locus contains a high density of pentatricopeptide repeat genes, a class commonly involved in restoration of fertility caused by cytoplasmic male sterility. Examination of all crosses revealed three unlinked epistatically interacting loci that determine sexual phenotype and vary in frequency between populations. Fragaria vesca subsp. bracteata represents the first wild gynodioecious species with genomic evidence of both cytoplasmic and nuclear genes in sex determination. We propose a model for the interactions between these loci and new hypotheses for the evolution of sex determining chromosomes in the subdioecious and dioecious Fragaria. PMID:26483011

  3. Multilocus Sex Determination Revealed in Two Populations of Gynodioecious Wild Strawberry, Fragaria vesca subsp. bracteata.

    PubMed

    Ashman, Tia-Lynn; Tennessen, Jacob A; Dalton, Rebecca M; Govindarajulu, Rajanikanth; Koski, Matthew H; Liston, Aaron

    2015-10-19

    Gynodioecy, the coexistence of females and hermaphrodites, occurs in 20% of angiosperm families and often enables transitions between hermaphroditism and dioecy. Clarifying mechanisms of sex determination in gynodioecious species can thus illuminate sexual system evolution. Genetic determination of gynodioecy, however, can be complex and is not fully characterized in any wild species. We used targeted sequence capture to genetically map a novel nuclear contributor to male sterility in a self-pollinated hermaphrodite of Fragaria vesca subsp. bracteata from the southern portion of its range. To understand its interaction with another identified locus and possibly additional loci, we performed crosses within and between two populations separated by 2000 km, phenotyped the progeny and sequenced candidate markers at both sex-determining loci. The newly mapped locus contains a high density of pentatricopeptide repeat genes, a class commonly involved in restoration of fertility caused by cytoplasmic male sterility. Examination of all crosses revealed three unlinked epistatically interacting loci that determine sexual phenotype and vary in frequency between populations. Fragaria vesca subsp. bracteata represents the first wild gynodioecious species with genomic evidence of both cytoplasmic and nuclear genes in sex determination. We propose a model for the interactions between these loci and new hypotheses for the evolution of sex determining chromosomes in the subdioecious and dioecious Fragaria.

  4. Linking physiological approaches to marine vertebrate conservation: using sex steroid hormone determinations in demographic assessments.

    PubMed

    Labrada-Martagón, Vanessa; Zenteno-Savín, Tania; Mangel, Marc

    2014-01-01

    Sex, age and sexual maturation are key biological parameters for aspects of life history and are fundamental information for assessing demographic changes and the reproductive viability and performance of natural populations under exploitation pressures or in response to environmental influences. Much of the information available on the reproductive condition, length at sexual maturity and sex determinations of endangered species has been derived from direct examination of the gonads in dead animals, either intentionally or incidentally caught, or from stranded individuals. However, morphological data, when used alone, do not provide accurate demographic information in sexually monomorphic marine vertebrate species (e.g. sharks, sea turtles, seabirds and cetaceans). Hormone determination is an accurate and non-destructive method that provides indirect information about sex, reproductive condition and sexual maturity of free-ranging individuals. Correlations between sex steroid concentrations and biochemical parameters, gonadal development and state, reproductive behaviour and secondary external features have been already demonstrated in many species. Different non-lethal approaches (e.g. surgical and mark-recapture procedures), with intrinsic advantages and disadvantages when applied on free-ranging organisms, have been proposed to asses sex, growth and reproductive condition. Hormone determination from blood samples will generate valuable additional demographic information needed for stock assessment and biological conservation.

  5. Determination of sex in South Indians and immigrant Tibetans from cephalometric analysis and discriminant functions.

    PubMed

    Naikmasur, Venkatesh G; Shrivastava, Rahul; Mutalik, Sunil

    2010-04-15

    Skeletal components play significant role in sex determination in forensic and anthropological fields. Skull is considered second best, after pelvis, in determination of sex. Methods based on morphological characteristics and morphometry are already in use with reasonable accuracy. Standardized radiographic techniques like cephalometry have advantages of being more precise and objective when compared to morphologic methods. The present study aimed at obtaining and comparing the reliability of cranio-mandibular parameters in South Indian and Indian immigrant of Tibetan populations using lateral and postero-anterior (PA) cephalograms. A total of 11 cephalometric parameters were traced on lateral and PA cephalograms manually. Functions to aid in the sex determination were developed by subjecting the cephalometric parameters to discriminant analysis. Among the chosen parameters bizygomatic width, ramus height, depth of face contributed most for sexual dimorphism in both the populations. Upper facial height was the additional parameter for sexual dimorphism in immigrant Tibetan population. The discrimination accuracy in South Indian population was 81.5% while that of immigrant Tibetan population was 88.2%. With the current study it can be concluded that cephalometric cranio-mandibular parameters can be used to discriminate the sex using discriminant function analysis and similar cranio-mandibular parameters contribute to sex prediction across populations.

  6. Sex determination of Pohnpei Micronesian kingfishers using morphological and molecular genetic techniques

    USGS Publications Warehouse

    Kesler, Dylan C.; Lopes, I.F.; Haig, Susan M.

    2006-01-01

    Conservation-oriented studies of Micronesian Kingfishers (Todiramphus cinnamominus) have been hindered by a lack of basic natural history information, despite the status of the Guam subspecies (T. c. cinnamominus) as one of the most endangered species in the world. We used tissue samples and morphometric measures from museum specimens and wild-captured Pohnpei Micronesian Kingfishers (T. c. reichenbachii) to develop methods for sex determination. We present a modified molecular protocol and a discriminant function that yields the probability that a particular individual is male or female. Our results revealed that females were significantly larger than males, and the discriminant function correctly predicted sex in 73% (30/41) of the individuals. The sex of 86% (18/21) of individuals was correctly assigned when a moderate reliability threshold was set. Sex determination using molecular genetic techniques was more reliable than methods based on morphology. Our results will facilitate recovery efforts for the critically endangered Guam Micronesian Kingfisher and provide a basis for sex determination in the 11 other endangered congeners in the Pacific Basin.

  7. Males on demand: the environmental-neuro-endocrine control of male sex determination in daphnids.

    PubMed

    LeBlanc, Gerald A; Medlock, Elizabeth K

    2015-11-01

    Branchiopod crustaceans (e.g., Daphnia sp.) and some other taxa utilize both asexual and sexual reproduction to maximize population sustainability. The decision to switch from asexual to sexual reproduction is triggered by environmental cues that foretell a potentially detrimental change in environmental conditions. This review describes the cascade of events beginning with environmental cues and ending with changes in gene expression that dictate male sex determination in daphnids, the initial event in the switch to sexual reproduction. Several environmental cues have been identified which, either in isolation or in combination, stimulate male sex determination. These cues are typically associated with change of season, exhaustion of resources or loss of habitat. Maternal daphnids receive and respond to these cues, we propose, through the secretion of neuropeptides, which suppress (hyperglycemic hormone-like neuropeptides, allatostatin) or stimulate (allatotropin) the male sex differentiation program. In response, maternal daphnids produce the male sex-determining hormone, methyl farnesoate. Methyl farnesoate binds to a protein MET that dimerizes with the protein SRC forming an active transcription factor. This complex then regulates the expression of genes, primarily doublesex (dsx), involved in programming the single-celled embryo to develop into a male. In the absence of methyl farnesoate programming, the embryo develops into a female. Epigenetic modifications of the genome as a possible mode of methyl farnesoate action and the utility of this model to decipher the role of epigenetics in sex differentiation in other species are discussed.

  8. Linking physiological approaches to marine vertebrate conservation: using sex steroid hormone determinations in demographic assessments

    PubMed Central

    Labrada-Martagón, Vanessa; Zenteno-Savín, Tania; Mangel, Marc

    2014-01-01

    Sex, age and sexual maturation are key biological parameters for aspects of life history and are fundamental information for assessing demographic changes and the reproductive viability and performance of natural populations under exploitation pressures or in response to environmental influences. Much of the information available on the reproductive condition, length at sexual maturity and sex determinations of endangered species has been derived from direct examination of the gonads in dead animals, either intentionally or incidentally caught, or from stranded individuals. However, morphological data, when used alone, do not provide accurate demographic information in sexually monomorphic marine vertebrate species (e.g. sharks, sea turtles, seabirds and cetaceans). Hormone determination is an accurate and non-destructive method that provides indirect information about sex, reproductive condition and sexual maturity of free-ranging individuals. Correlations between sex steroid concentrations and biochemical parameters, gonadal development and state, reproductive behaviour and secondary external features have been already demonstrated in many species. Different non-lethal approaches (e.g. surgical and mark–recapture procedures), with intrinsic advantages and disadvantages when applied on free-ranging organisms, have been proposed to asses sex, growth and reproductive condition. Hormone determination from blood samples will generate valuable additional demographic information needed for stock assessment and biological conservation. PMID:27293619

  9. Hand-rearing and sex determination tool for the Taveta golden weaver (Ploceus castaneiceps).

    PubMed

    Breeding, Shawnlei; Ferrie, Gina M; Schutz, Paul; Leighty, Katherine A; Plassé, Chelle

    2012-01-01

    Improvements in the ability to hand-rear birds in captivity have aided zoological institutions in the sustainable management of these species, and have provided opportunities to examine their physical growth in varying conditions. Monitoring the weight gain and development of chicks is an important aspect of developing a hand-rearing protocol. In this paper we provide the institutional history for a colonial species of passerine, the Taveta golden weaver, at Disney's Animal Kingdom®, in order to demonstrate the methods of establishing a successful breeding program which largely incorporates hand-rearing in management of the population. We also tested if we could accurately predict sex of chicks using weights collected on Day 14 during the hand-rearing process. Using this tool, we were able to correctly determine sex before fledging in more than 83% of chicks. Early sex determination is important in captive species for genetic management and husbandry purposes. While genetic sexing can be expensive, we found that using growth curves to determine sex can be a reliable and cost-effective tool for population management of a colonial passerine.

  10. Primary Sex Determination in Drosophila melanogaster Does Not Rely on the Male-Specific Lethal Complex.

    PubMed

    Erickson, James W

    2016-02-01

    It has been proposed that the Male Specific Lethal (MSL) complex is active in Drosophila melanogaster embryos of both sexes prior to the maternal-to-zygotic transition. Elevated gene expression from the two X chromosomes of female embryos is proposed to facilitate the stable establishment of Sex-lethal (Sxl) expression, which determines sex and represses further activity of the MSL complex, leaving it active only in males. Important supporting data included female-lethal genetic interactions between the seven msl genes and either Sxl or scute and sisterlessA, two of the X-signal elements (XSE) that regulate early Sxl expression. Here I report contrary findings that there are no female-lethal genetic interactions between the msl genes and Sxl or its XSE regulators. Fly stocks containing the msl3(1) allele were found to exhibit a maternal-effect interaction with Sxl, scute, and sisterlessA mutations, but genetic complementation experiments showed that msl3 is neither necessary nor sufficient for the female-lethal interactions, which appear to be due to an unidentified maternal regulator of Sxl. Published data cited as evidence for an early function of the MSL complex in females, including a maternal effect of msl2, have been reevaluated and found not to support a maternal, or other effect, of the MSL complex in sex determination. These findings suggest that the MSL complex is not involved in primary sex determination or in X chromosome dosage compensation prior to the maternal-to-zygotic transition.

  11. How Does Adult Attachment Affect Human Recognition of Love-related and Sex-related Stimuli: An ERP Study

    PubMed Central

    Hou, Juan; Chen, Xin; Liu, Jinqun; Yao, Fangshu; Huang, Jiani; Ndasauka, Yamikani; Ma, Ru; Zhang, Yuting; Lan, Jing; Liu, Lu; Fang, Xiaoyi

    2016-01-01

    In the present study, we investigated the relationship among three emotion-motivation systems (adult attachment, romantic love, and sex). We recorded event-related potentials in 37 healthy volunteers who had experienced romantic love while they viewed SEX, LOVE, FRIEND, SPORT, and NEUTRAL images. We also measured adult attachment styles, level of passionate love and sexual attitudes. As expected, results showed that, firstly, response to love-related image-stimuli and sex-related image-stimuli on the electrophysiological data significantly different on N1, N2, and positive slow wave (PSW) components. Secondly, the different adult attachment styles affected individuals’ recognition processing in response to love-related and sex-related images, especially, to sex-related images. Further analysis showed that voltages elicited by fearful attachment style individuals were significantly lower than voltages elicited by secure and dismissing attachment style individuals on sex-related images at frontal sites, on N1 and N2 components. Thirdly, from behavior data, we found that adult attachment styles were not significantly related to any dimension of sexual attitudes but were significantly related to passionate love scale (PLS) total points. Thus, the behavior results were not in line with the electrophysiological results. The present study proved that adult attachment styles might mediate individuals’ lust and attraction systems. PMID:27199830

  12. How Does Adult Attachment Affect Human Recognition of Love-related and Sex-related Stimuli: An ERP Study.

    PubMed

    Hou, Juan; Chen, Xin; Liu, Jinqun; Yao, Fangshu; Huang, Jiani; Ndasauka, Yamikani; Ma, Ru; Zhang, Yuting; Lan, Jing; Liu, Lu; Fang, Xiaoyi

    2016-01-01

    In the present study, we investigated the relationship among three emotion-motivation systems (adult attachment, romantic love, and sex). We recorded event-related potentials in 37 healthy volunteers who had experienced romantic love while they viewed SEX, LOVE, FRIEND, SPORT, and NEUTRAL images. We also measured adult attachment styles, level of passionate love and sexual attitudes. As expected, results showed that, firstly, response to love-related image-stimuli and sex-related image-stimuli on the electrophysiological data significantly different on N1, N2, and positive slow wave (PSW) components. Secondly, the different adult attachment styles affected individuals' recognition processing in response to love-related and sex-related images, especially, to sex-related images. Further analysis showed that voltages elicited by fearful attachment style individuals were significantly lower than voltages elicited by secure and dismissing attachment style individuals on sex-related images at frontal sites, on N1 and N2 components. Thirdly, from behavior data, we found that adult attachment styles were not significantly related to any dimension of sexual attitudes but were significantly related to passionate love scale (PLS) total points. Thus, the behavior results were not in line with the electrophysiological results. The present study proved that adult attachment styles might mediate individuals' lust and attraction systems.

  13. Genetic mapping of sex determination in a wild strawberry, Fragaria virginiana reveals earliest form of sex chromosome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The evolution of separate sexes (dioecy) from hermaphroditism is one of the major evolutionary transitions in plants and this transition can be accompanied by the development of sex chromosomes. However, we are now just beginning to gain insight into the initial stages of sex chromosome evolution vi...

  14. Ecology, not the genetics of sex determination, determines who helps in eusocial populations.

    PubMed

    Ross, Laura; Gardner, Andy; Hardy, Nate; West, Stuart A

    2013-12-02

    In eusocial species, the sex ratio of helpers varies from female only, in taxa such as the social Hymenoptera (ants, bees, and wasps) [1], to an unbiased mixture of males and females, as in most termites [2]. Hamilton suggested that this difference owes to the haplodiploid genetics of the Hymenoptera leading to females being relatively more related to their siblings [3]. However, it has been argued that Hamilton's hypothesis does not work [4-9] and that the sex of helpers could instead be explained by variation in the ecological factors that favor eusociality [10]. Here we test these two competing hypotheses, which focus on the possible importance of different terms in Hamilton's rule [2, 11], with a comparative study across all sexual eusocial taxa. We find that the sex ratio of helpers (1) shows no significant correlation with whether species are haplodiploid or diploid and (2) shows a strong correlation with the ecological factor that had favored eusociality. Specifically, when the role of helpers is to defend the nest, both males and females help, whereas when the role of helpers is to provide brood care, then helpers are the sex or sexes that provided parental care ancestrally. More generally, our results confirm the ability of kin selection theory to explain the biology of eusocial species, independently of ploidy, and add support to the idea that haplodiploidy has been more important for shaping conflicts within eusocial societies than for explaining its origins [6, 12-19].

  15. GADD45G functions in male sex determination by promoting p38 signaling and Sry expression.

    PubMed

    Gierl, Mathias S; Gruhn, Wolfram H; von Seggern, Annika; Maltry, Nicole; Niehrs, Christof

    2012-11-13

    Male sex determination in mammals is induced by Sry, a gene whose regulation is poorly understood. Here we show that mice mutant for the stress-response gene Gadd45g display complete male-to-female sex reversal. Gadd45g and Sry have a strikingly similar expression pattern in the genital ridge, and they are coexpressed in gonadal somatic cells. In Gadd45g mutants, Sry expression is delayed and reduced, and yet Sry seemed to remain poised for expression, because its promoter is demethylated on schedule and is occupied by active histone marks. Instead, p38 MAPK signaling is impaired in Gadd45g mutants. Moreover, the transcription factor GATA4, which is required for Sry expression, binds to the Sry promoter in vivo in a MAPK-dependent manner. The results suggest that a signaling cascade, involving GADD45G → p38 MAPK → GATA4 → SRY, regulates male sex determination.

  16. Sex determination using mesiodistal dimension of permanent maxillary incisors and canines

    PubMed Central

    Khangura, Rajbir Kaur; Sircar, Keya; Singh, Sanjeet; Rastogi, Varun

    2011-01-01

    Background: Sexual dimorphism refers to the differences in size, shape, etc., between males and females. The dentition's use in sex assessment has been explored and advocated owing to its strength and resistance to peri- and post-mortem insults. Objectives: The study evaluated permanent maxillary incisors and canines for sexual dimorphism and estimated the level of accuracy with which they could be used for sex determination. Materials and Methods: The study was conducted on 100 subjects (50 males, 50 females). The mesiodistal dimension of permanent maxillary incisors and canines was measured and the data were subjected to statistical analysis. Result: Univariate analysis revealed that all permanent maxillary incisors and canines exhibited larger mean values of mesiodistal dimension in males compared to females but only canines were found to be statistically significant for sexual dimorphism. Conclusion: The study showed maxillary canines exhibiting significant sexual dimorphism and can be used for sex determination along with other procedures. PMID:22408326

  17. The role of non-coding RNAs in male sex determination and differentiation.

    PubMed

    Rastetter, Raphael H; Smith, Craig A; Wilhelm, Dagmar

    2015-09-01

    A complex network of gene regulation and interaction drives male sex determination and differentiation. While many important protein-coding genes that are necessary for proper male development have been identified, many disorders in human sex development are still unexplained at the molecular level. This suggests that key factors and regulatory mechanisms are still unknown. In recent years, extensive data have shown that different classes of non-coding RNAs (ncRNAs) play a role in almost all developmental and physiological pathways. Here we review what is known about their role in male sex determination and differentiation not only in mammals, but also other species. While for some processes a key role for ncRNA has been identified, we are still far from having a complete picture.

  18. What affects fertility of sexed bull semen more, low sperm dosage or the sorting process?

    PubMed

    Frijters, A C J; Mullaart, E; Roelofs, R M G; van Hoorne, R P; Moreno, J F; Moreno, O; Merton, J S

    2009-01-01

    Until now it has been unclear to what extent the reduced fertility with sexed semen in the dairy industry is caused by too few sperm per AI dose, or by the effect of flow cytometric sorting, which is the established procedure for sexing semen. Therefore, we evaluated the effects of low sperm numbers per dose with and without sorting on non-return rates after 56 days (NRR 56); in addition, we evaluated the effects of bulls, in order to further optimize use of sexed semen. Based on results of using sexed semen from seven Holstein bulls, an overall numerical decline of 13.6% in NRR 56 was observed (P<0.05). About two-thirds of this decline (8.6%) was due to the low dose (P<0.05), and a third (5.0%) due to the process of sorting (P<0.05). The effect of low dosage and sorting differed among bulls. We observed a sex ratio of 91.6% females for sexed semen from the first 131 calves born. Currently the best way to increase fertility of sexed semen is by closely monitoring fertility so that the highest fertility bulls are used, and by improving farm animal management. However, to make substantial progress, more in depth studies are needed on the sexing technology, especially on aspects such as sorting procedures and sperm dosage.

  19. Androgenic gland hormone is a sex-reversing factor but cannot be a sex-determining factor in the female crustacean isopods Armadillidium vulgare.

    PubMed

    Suzuki, S

    1999-09-01

    Sex reversal of female isopods, Armadillidium vulgare, has been induced by implantation of the androgenic gland (AG) into individuals after the initiation of morphological sex differentiation. The focus of the present study is to examine whether female gonads are reversed by the androgenic gland hormone (AGH) during the sexually undifferentiated period through postembryonic development in A. vulgare. Instead of injections of AGH, three AGs were implanted into each genetic female at various developmental stages to induce sex reversal. Before implantation fresh AGs were treated with ethanol to stop AGH synthesis, but then still contained AGH. These AGs have been referred to as ethanol-treated AGs (t-AGs). Development of a testis was used as an indicator of gonadal sex reversal. The gonads of genetic females were transformed into testes by implantations of t-AGs during the sex differentiation period. However, when genetic females received implants at sexually undifferentiated stages, development of their gonads was not reversed in the male direction. These results suggest that after the onset of gonadal sex differentiation, AGH is a sex-reversing factor that can turn a female gonad into a male gonad. AGH cannot be a sex-determining factor in female A. vulgare, as undifferentiated gonads of genetic females are not sex reversed by the hormone.

  20. Regulation of sex determination in mice by a non-coding genomic region.

    PubMed

    Arboleda, Valerie A; Fleming, Alice; Barseghyan, Hayk; Délot, Emmanuèle; Sinsheimer, Janet S; Vilain, Eric

    2014-07-01

    To identify novel genomic regions that regulate sex determination, we utilized the powerful C57BL/6J-Y(POS) (B6-Y(POS)) model of XY sex reversal where mice with autosomes from the B6 strain and a Y chromosome from a wild-derived strain, Mus domesticus poschiavinus (Y(POS)), show complete sex reversal. In B6-Y(POS), the presence of a 55-Mb congenic region on chromosome 11 protects from sex reversal in a dose-dependent manner. Using mouse genetic backcross designs and high-density SNP arrays, we narrowed the congenic region to a 1.62-Mb genomic region on chromosome 11 that confers 80% protection from B6-Y(POS) sex reversal when one copy is present and complete protection when two copies are present. It was previously believed that the protective congenic region originated from the 129S1/SviMJ (129) strain. However, genomic analysis revealed that this region is not derived from 129 and most likely is derived from the semi-inbred strain POSA. We show that the small 1.62-Mb congenic region that protects against B6-Y(POS) sex reversal is located within the Sox9 promoter and promotes the expression of Sox9, thereby driving testis development within the B6-Y(POS) background. Through 30 years of backcrossing, this congenic region was maintained, as it promoted male sex determination and fertility despite the female-promoting B6-Y(POS) genetic background. Our findings demonstrate that long-range enhancer regions are critical to developmental processes and can be used to identify the complex interplay between genome variants, epigenetics, and developmental gene regulation.

  1. Intestinal development of bovine foetuses during gestation is affected by foetal sex and maternal nutrition.

    PubMed

    Gionbelli, T R S; Rotta, P P; Veloso, C M; Valadares Filho, S C; Carvalho, B C; Marcondes, M I; Ferreira, M F L; Souza, J V F; Santos, J S A A; Lacerda, L C; Duarte, M S; Gionbelli, M P

    2016-08-03

    We aimed to evaluate the effects of maternal nutrition (MN) and foetal sex on the intestinal development of bovine foetuses throughout different days of gestation (DG). Forty-four multiparous, dry Holstein × Gyr cows with average initial body weight of 480 ± 10 kg were fed the same diet of either restricted feeding at 1.15% of body weight (CO, n = 24) or fed ad libitum (overnourished, ON, n = 20). Six cows from CO group and five cows from ON group were slaughtered at 139, 199, 241 and 268 DG, and foetuses were necropsied to evaluate the intestinal development. The mass, length and density of foetal intestines were not affected by MN (p ≥ 0.260). An interaction between MN and DG was observed for the villi length of jejunum (p = 0.006) and ileum (p < 0.001). Villi length of jejunum and ileum was higher (p < 0.10) in foetuses from ON-fed cows than in foetuses from CO-fed cows at 139 DG. However, at 199 DG, the villi length of jejunum and ileum of foetuses from CO-fed cows was higher than in foetuses from ON-fed cows. Despite these differences, MN did not affect the villi length of jejunum and ileum at 268 DG (p > 0.10). Female foetuses had greater small intestine mass (p = 0.093), large intestine mass (p = 0.022), small intestine mass in proportion to body mass (p = 0.017) and large intestine mass in proportion to body mass (p < 0.001) than male foetuses. Female foetuses had also longer small intestine (p = 0.077) and greater small intestine density (p = 0.021) and villi length of jejunum (p = 0.001) and ileum (p = 0.010) than males. We conclude that MN affects the pathway for the development of foetal villi length throughout the gestation in bovine foetuses without changing the final villi length. Female foetuses had higher intestinal mass, density and villi length than males during the foetal phase in bovines.

  2. The Sex Determination Gene transformer Regulates Male-Female Differences in Drosophila Body Size

    PubMed Central

    Rideout, Elizabeth J.; Narsaiya, Marcus S.; Grewal, Savraj S.

    2015-01-01

    Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra) in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expression in males increases body size. Although we find that Tra exerts autonomous effects on cell size, we also discovered that Tra expression in the fat body augments female body size in a non cell-autonomous manner. These effects of Tra do not require its only known targets doublesex and fruitless. Instead, Tra expression in the female fat body promotes growth by stimulating the secretion of insulin-like peptides from insulin producing cells in the brain. Our data suggest a model of sex-specific growth in which body size is regulated by a previously unrecognized branch of the sex determination pathway, and identify Tra as a novel link between sex and the conserved insulin signaling pathway. PMID:26710087

  3. Sex determination by discriminant function analysis of palatal rugae from a population of coastal Andhra

    PubMed Central

    Bharath, Sreenivasa T; Kumar, Govind Raj; Dhanapal, Raghu; Saraswathi, TR

    2011-01-01

    Objective: The aim of the study was to investigate differences in the palatal rugae patterns in males and females of a cross-sectional hospital-based coastal Andhra population and application of discriminant function analysis in sex identification. Materials and Methods: One hundred pre-orthodontic plaster casts, equally distributed between males and females belonging to an age range of 15-30 years, were examined for different rugae patterns. Thomas classification was adopted for analysis. Association between rugae patterns and sexual dimorphism were tested using Unpaired t test, Chi square test and discriminant function analysis developed using SAS package. Results: Difference in unification pattern among males and females was found to be statistically significant. The total number of the rugae was not statistically significant between the sexes. Association between rugae length and shape with sex determination was computed using discriminant analysis which enabled sex differentiation in this population with an accuracy of 78%. Conclusion: Palatal rugae revealed a specific pattern in unification among males and females of the coastal Andhra population. Discriminant function analysis enabled sex determination of individuals. However, these interpretations were precluded by the small sample size and further research work on larger samples and use of different classification systems is required to validate its use in forensic science. PMID:22408321

  4. Early sex determination in the canine foetus by ultrasound and PCR.

    PubMed

    Prugnard, Camille; Lamia, Amirat-Briand; Cherel, Yannick; Babarit, Candice; Guintard, Claude; Betti, Eric; Tainturier, Daniel; Bencharif, Djemil

    2016-02-01

    Twenty bitches were seen in consultation at the Department of Reproduction at ONIRIS (College of Veterinary Medicine, Food Science and Engineering, Loire Atlantique, Nantes, France) between 25 and 50 days of gestation for early sex determination of the canine foetus using ultrasound. The genital tubercle is not visible before 26 days; between 26 and 30 days, it is visible between the pelvic limbs; between 33 and 50 days, the position of the genital tubercle enables sex determination as it migrates caudally in the female and cranially in the male. Good statistical concordance between sexing via ultrasound and sexing at birth has been established (kappa coefficient of 0.8). Macroscopic, microscopic, and histological examinations of the external genital organs were also performed on 10 foetuses at 35 days of gestation; a cartilaginous structure was visualized in the genital apparatus of the male but also in half of the females. Finally, the development of a PCR technique on the SRY gene using formaldehyde-preserved tissues has been described for the first time in this study. It served as a reference for sexing canine foetuses.

  5. Determination of Sperm Sex Ratio in Bovine Semen Using Multiplex Real-time Polymerase Chain Reaction.

    PubMed

    Khamlor, Trisadee; Pongpiachan, Petai; Sangsritavong, Siwat; Chokesajjawatee, Nipa

    2014-10-01

    Gender selection is important in livestock industries; for example, female calves are required in the dairy industry. Sex-sorted semen is commonly used for the production of calves of the desired gender. However, assessment of the sex ratio of the sorted semen is tedious and expensive. In this study, a rapid, cost effective and reliable method for determining the sex ratio was developed using a multiplex real-time polymerase chain reaction (PCR) assay. In this assay, the X and Y chromosome-specific markers, i.e., bovine proteolipid protein (PLP) gene and sex-determining region Y (SRY) were simultaneously quantified in a single tube. The multiplex real-time PCR assay was shown to have high amplification efficiencies (97% to 99%) comparable to the separated-tube simplex real-time PCR assay. The results obtained from both assays were not significantly different (p>0.05). The multiplex assay was validated using reference DNA of known X ratio (10%, 50%, and 90%) as templates. The measured %X in semen samples were the same within 95% confidence intervals as the expected values, i.e., >90% in X-sorted semen, <10% in Y-sorted semen and close to 50% in the unsorted semen. The multiplex real-time PCR assay as shown in this study can thus be used to assess purity of sex-sorted semen.

  6. The Sex Determination Gene transformer Regulates Male-Female Differences in Drosophila Body Size.

    PubMed

    Rideout, Elizabeth J; Narsaiya, Marcus S; Grewal, Savraj S

    2015-12-01

    Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra) in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expression in males increases body size. Although we find that Tra exerts autonomous effects on cell size, we also discovered that Tra expression in the fat body augments female body size in a non cell-autonomous manner. These effects of Tra do not require its only known targets doublesex and fruitless. Instead, Tra expression in the female fat body promotes growth by stimulating the secretion of insulin-like peptides from insulin producing cells in the brain. Our data suggest a model of sex-specific growth in which body size is regulated by a previously unrecognized branch of the sex determination pathway, and identify Tra as a novel link between sex and the conserved insulin signaling pathway.

  7. The role of housing in determining HIV risk among female sex workers in Andhra Pradesh, India: considering women's life contexts.

    PubMed

    Reed, Elizabeth; Gupta, Jhumka; Biradavolu, Monica; Devireddy, Vasavi; Blankenship, Kim M

    2011-03-01

    Recent research on HIV prevention, regardless of the population, has increasingly recognized the relevance of contextual factors in determining HIV risk. Investigating such factors among female sex workers (FSW) is especially relevant in the South Indian state of Andhra Pradesh, where HIV rates are among the highest across Indian states and where HIV has largely affected FSW. Stable housing is a particular contextual challenge experienced by female sex workers in this region (as well as elsewhere); however, local studies have not examined the impact of this issue on HIV risk. In this paper, we examine residential instability, defined as a high frequency of reported evictions, among FSW and relation to experiences of violence (as a factor increasing risk for HIV) and sexual risk factors for HIV. Women were recruited through respondent-driven sampling for a survey on HIV risk. Using logistic regression models, we assessed: (1) residential instability and association with HIV sexual risk variables (including unprotected sex, reported STIs, and recent physical and sexual victimization) and (2) whether the association between residential instability and reported STI (as an indicator of HIV risk) was attenuated by individual risk behaviors and violence. In adjusted logistic regression models, FSW who reported residential instability were more likely to report: sexual violence, physical violence, accepting more money for unprotected sex, and a recent STI symptom. Violence associated with residential instability contributed to reported STIs; however, residential instability remained significantly associated with STIs beyond the influence of both violence and unprotected sex with clients. Findings highlight the interrelation among residential instability, violence, and HIV risk. Residential instability appears to be associated with women's HIV risk, above and beyond its association with individual risky sexual behaviors.

  8. Mapping the sex determination locus in the Atlantic halibut (Hippoglossus hippoglossus) using RAD sequencing

    PubMed Central

    2013-01-01

    Background Atlantic halibut (Hippoglossus hippoglossus) is a high-value, niche market species for cold-water marine aquaculture. Production of monosex female stocks is desirable in commercial production since females grow faster and mature later than males. Understanding the sex determination mechanism and developing sex-associated markers will shorten the time for the development of monosex female production, thus decreasing the costs of farming. Results Halibut juveniles were masculinised with 17 α-methyldihydrotestosterone (MDHT) and grown to maturity. Progeny groups from four treated males were reared and sexed. Two of these groups (n = 26 and 70) consisted of only females, while the other two (n = 30 and 71) contained balanced sex ratios (50% and 48% females respectively). DNA from parents and offspring from the two mixed-sex families were used as a template for Restriction-site Associated DNA (RAD) sequencing. The 648 million raw reads produced 90,105 unique RAD-tags. A linkage map was constructed based on 5703 Single Nucleotide Polymorphism (SNP) markers and 7 microsatellites consisting of 24 linkage groups, which corresponds to the number of chromosome pairs in this species. A major sex determining locus was mapped to linkage group 13 in both families. Assays for 10 SNPs with significant association with phenotypic sex were tested in both population data and in 3 additional families. Using a variety of machine-learning algorithms 97% correct classification could be obtained with the 3% of errors being phenotypic males predicted to be females. Conclusion Altogether our findings support the hypothesis that the Atlantic halibut has an XX/XY sex determination system. Assays are described for sex-associated DNA markers developed from the RAD sequencing analysis to fast track progeny testing and implement monosex female halibut production for an immediate improvement in productivity. These should also help to speed up the inclusion of neomales derived

  9. Estrogen receptor 1 (ESR1; ERα), not ESR2 (ERβ), modulates estrogen-induced sex reversal in the American alligator, a species with temperature-dependent sex determination.

    PubMed

    Kohno, Satomi; Bernhard, Melissa C; Katsu, Yoshinao; Zhu, Jianguo; Bryan, Teresa A; Doheny, Brenna M; Iguchi, Taisen; Guillette, Louis J

    2015-05-01

    All crocodilians and many turtles exhibit temperature-dependent sex determination where the temperature of the incubated egg, during a thermo-sensitive period (TSP), determines the sex of the offspring. Estrogens play a critical role in sex determination in crocodilians and turtles, as it likely does in most nonmammalian vertebrates. Indeed, administration of estrogens during the TSP induces male to female sex reversal at a male-producing temperature (MPT). However, it is not clear how estrogens override the influence of temperature during sex determination in these species. Most vertebrates have 2 forms of nuclear estrogen receptor (ESR): ESR1 (ERα) and ESR2 (ERβ). However, there is no direct evidence concerning which ESR is involved in sex determination, because a specific agonist or antagonist for each ESR has not been tested in nonmammalian species. We identified specific pharmaceutical agonists for each ESR using an in vitro transactivation assay employing American alligator ESR1 and ESR2; these were 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) and 7-bromo-2-(4-hydroxyphenyl)-1,3-benzoxazol-5-ol (WAY 200070), respectively. Alligator eggs were exposed to PPT or WAY 200070 at a MPT just before the TSP, and their sex was examined at the last stage of embryonic development. Estradiol-17β and PPT, but not WAY 200070, induced sex reversal at a MPT. PPT-exposed embryos exposed to the highest dose (5.0 μg/g egg weight) exhibited enlargement and advanced differentiation of the Müllerian duct. These results indicate that ESR1 is likely the principal ESR involved in sex reversal as well as embryonic Müllerian duct survival and growth in American alligators.

  10. Determination of sex from the hyoid bone in a contemporary White population.

    PubMed

    Logar, Ciara J; Peckmann, Tanya R; Meek, Susan; Walls, Stephen G

    2016-04-01

    Six discriminant functions, developed from an historic White population, were tested on a contemporary White population for determination of sex from the hyoid. One hundred and thirty four fused and unfused hyoids from a contemporary White population were used. Individuals ranged between 20 and 49 years old. Six historic White discriminant functions were applied to the fused and unfused hyoids of the pooled contemporary White population, i.e. all males and females and all age ranges combined. The overall accuracy rates were between 72.1% and 92.3%. Correct sex determination for contemporary White males ranged between 88.2% and 96.3%, while correct sex determination for contemporary White females ranged between 31.3% and 92.0%. Discriminant functions were created for the contemporary White population with overall mean accuracy rates between 67.0% and 93.0%. The multivariate discriminant function overall accuracy rates were between 89.0% and 93.0% and the univariate discriminant function overall accuracy rates were between 67.0% and 86.8%. The contemporary White population data were compared to other populations and showed significant differences between many of the variables measured. This study illustrated the need for population-specific and temporally-specific discriminant functions for determination of sex from the hyoid bone.

  11. Pattern and scale of geographic variation in environmental sex determination in the Atlantic silverside, Menidia menidia.

    PubMed

    Duffy, Tara A; Hice, Lyndie A; Conover, David O

    2015-08-01

    The Atlantic silverside, Menidia menidia (Pisces: Atherinidae), exhibits an exceptionally high level of clinal variation in sex determination across its geographic range. Previous work suggested linear changes in the level of temperature-dependent sex determination (TSD) with increasing latitude. Based on comparisons at 31 sites encompassing the entire species' range, we find that the change in level of TSD with latitude is instead highly nonlinear. The level of TSD is uniformly high in the south (Florida to New Jersey), then declines rapidly into the northern Gulf of Maine where genotypic sex determination (GSD) predominates and then rebounds to moderate levels of TSD in the northern-most populations of the Gulf of St. Lawrence. Major latitudinal breakpoints occur in central New Jersey (40(o)N) and the northern Gulf of Maine (44(o)N). No populations display pure TSD or GSD. Length of the growing season is the likely agent of selection driving variation in TSD with a threshold at 210 days. Because gene flow among populations is high, such distinct patterns of geographic variation in TSD/GSD are likely maintained by contemporary selection thereby demonstrating the adaptive fine tuning of sex determining mechanisms.

  12. Cultural Influence on Pupils' Understanding of Conception, Birth of Twins and Sex Determination in Kenya

    ERIC Educational Resources Information Center

    Keraro, Fred N.; Okere, Mark I. O.; Anditi, Zephania O.

    2013-01-01

    This study investigated the extent to which primary and secondary school pupils believe in cultural interpretations of the biological concepts of conception, birth of twins and sex determination and the influence of education level and gender. Cross-sectional survey research design was used. The target population was Standard Seven (7th grade in…

  13. A Case of Problematic Diffusion: The Use of Sex Determination Techniques in India.

    ERIC Educational Resources Information Center

    Luthra, Rashmi

    1994-01-01

    Discussion of model shifts in diffusion research focuses on the growth in the use of sex determination techniques in India and their consequences relating to gender and power. Topics addressed include development, underdevelopment, and modernization; the adoption of innovations; and meanings of innovations within particular social systems.…

  14. Sex-Composition of Occupation and the Determinants of Women's Earnings.

    ERIC Educational Resources Information Center

    Abrams, Doris L.

    A study examined the impact of sex composition of occupation on women's earnings and the structure of wage determination in "masculine" and "feminine" occupations. Data--a national sample of women--came from the Project Talent Data Bank. Results indicated that, overall, women in "masculine" occupations earned approximately 42% more annually than…

  15. Determinants of Youths' Educational and Occupational Goals: Sex and Race Differences.

    ERIC Educational Resources Information Center

    Hoffman, Emily P.

    1987-01-01

    Using National Longitudinal Survey data for 1966-68 and 1979, this study explores possible differences between Black and White, and male and female, youths' educational and occupational goals and determines whether these differences have changed. Not only were occupational and educational goals related, but sex and race differences do exist and…

  16. Transposon insertions causing constitutive sex-lethal activity in Drosophila melanogaster affect Sxl sex-specific transcript splicing

    SciTech Connect

    Berstein, M.; Cline, T.W. |; Lersch, R.A.; Subrahmanyan, L.

    1995-02-01

    Sex-lethal (Sxl) gene products induce female development in Drosophila melanogaster and suppress the transcriptional hyperactivation of X-linked genes responsible for male X-chromosome dosage compensation. Control of Sxl functioning by the dose of X-chromosomes normally ensures that the female-specific functions of this developmental switch gene are only expressed in diplo-X individuals. Although the immediate effect of X-chromosome dose is on Sxl transcription, during most of the life cycle {open_quotes}on{close_quotes} vs. {open_quotes}off{close_quotes} reflects alternative Sxl RNA splicing, with the female (productive) splicing mode maintained by a positive feedback activity of SXL protein on Sxl pre-mRNA splicing. {open_quotes}Male-lethal{close_quotes} (Sxl{sup M}) gain-of-function alleles subvert Sxl control by X-chromosome dose, allowing female Sxl functions to be expressed independent of the positive regulators upstream of Sxl. As a consequence, Sxl{sup M} haplo-X animals (chromosomal males) die because of improper dosage compensation, and Sxl{sup m} chromosomal females survive the otherwise lethal effects of mutations in upstream positive regulators. Transcript analysis of double-mutant male-viable Sxl{sup M} derivatives in which the Sxl{sup M} insertion is cis to loss-of-function mutations, combined with other results reported here, indicates that the constitutive character of these Sxl{sup M} alleles is a consequence of an alteration of the structure of the pre-mRNA that allow some level of female splicing to occur even in the absence of functional SXL protein. Surprisingly, however, most of the constitutive character of Sxl{sup M} alleles appears to depend on the mutant alleles` responsiveness, perhaps greater than wild-type, to the autoregulatory splicing activity of the wild-type SXL proteins they produce. 47 refs., 10 figs., 4 tabs.

  17. Determination of sex and scrapie resistance genotype in preimplantation ovine embryos.

    PubMed

    Guignot, Florence; Baril, Gerard; Dupont, Francis; Cognie, Yves; Folch, Jose; Alabart, Jose Luis; Poulin, Naty; Beckers, Jean-Francois; Bed'hom, Bertrand; Babilliot, Jean-Marc; Mermillod, Pascal

    2009-02-01

    The aim of this study was to test the accuracy of genotype diagnosis after pre-amplification of DNA extracted from biopsies obtained by microblade cutting of ovine embryos and to evaluate the viability of biopsied embryos after vitrification/warming and transfer to recipients. Sex and PrP genotypes were determined. Sex diagnosis was done by PCR amplification of ZFX/ZFY and SRY sequences after PEP-PCR while PrP genotype determination was performed after specific pre-amplification of specific target including codons 136, 154 and 171. Embryos were collected at Day 7 after oestrus. Blastocysts and expanded blastocysts were biopsied immediately after collection whereas compacted morulae were biopsied after 24 hr of in vitro culture. Eighty-nine biopsied embryos were frozen by vitrification. Fresh and vitrified whole embryos were kept as control. DNA of biopsies was extracted and pre-amplified. Sex diagnosis was efficient for 96.6% of biopsies and PrP genotyping was determined in 95.8% of codons. After embryo transfer, no significant difference was observed in lambing rate between biopsied, vitrified control and fresh embryos (54.5%, 60% and 66.6%, respectively). Embryo survival rate was not different between biopsied and whole vitrified embryos (P = 0.38). At birth, 96.7% of diagnosed sex and 95.4% of predetermined codons were correct. Lamb PrP profiles were in agreement with parental genotype. PEP-PCR coupled with sex diagnosis and nested PCR coupled with PrP genotype predetermination are very accurate techniques to genotype ovine embryo before transfer. These original results allow planning of selection of resistant genotype to scrapie and sex of offspring before transfer of cryopreserved embryo.

  18. Role of reductase and aromatase in sex determination in the red-eared slider (Trachemys scripta), a turtle with temperature-dependent sex determination.

    PubMed

    Crews, D; Bergeron, J M

    1994-11-01

    In many turtles the temperature during the middle of incubation determines the gonadal sex of the hatchling. In the red-eared slider turtle (Trachemys scripta), an incubation temperature of 26 degrees C results in all male offspring, whereas an incubation temperature of 31 degrees C results in all female offspring; at temperatures intermediate to these (e.g. 29, 29.2, 29.4 degrees C) a mixed sex ratio is obtained. Administration of exogenous oestrogens will overcome the effects of an all-male producing incubation temperature to cause female sex determination, whereas administration of exogenous dihydrotestosterone (DHT) or testosterone to eggs incubating at an all-female temperature will have no discernible effect. Administration of DHT will cause male sex determination only if administered at intermediate incubation temperatures whereas administration of testosterone to eggs incubating at all male-producing and male-biased intermediate temperatures results in a significant number of female offspring, an effect presumably due to aromatization of testosterone to oestradiol (OE2). Since testosterone serves as the precursor to both DHT and OE2, being metabolized by reductase and aromatase respectively, three experiments were conducted to determine whether various putative reductase and aromatase inhibitors would overcome the effect of incubation temperature. First, while administration of testosterone to eggs incubating at all male-producing and male-biased intermediate temperatures produced females in a dose- and temperature-dependent manner, significant numbers of intersex individuals resulted from high dosage testosterone treatment to eggs incubating at a female-biased intermediate temperature. The reductase inhibitors 4MA and MK906 were capable of producing female offspring if administered at intermediate temperatures, but not in a dose-dependent fashion. Administration of the aromatase inhibitors CGS16949A and CGS20267 resulted in male offspring at both female

  19. Genomic analysis of the Pacific oyster (Crassostrea gigas) reveals possible conservation of vertebrate sex determination in a mollusc.

    PubMed

    Zhang, Na; Xu, Fei; Guo, Ximing

    2014-09-11

    Despite the prevalence of sex in animal kingdom, we have only limited understanding of how sex is determined and evolved in many taxa. The mollusc Pacific oyster Crassostrea gigas exhibits complex modes of sexual reproduction that consists of protandric dioecy, sex change, and occasional hermaphroditism. This complex system is controlled by both environmental and genetic factors through unknown molecular mechanisms. In this study, we investigated genes related to sex-determining pathways in C. gigas through transcriptome sequencing and analysis of female and male gonads. Our analysis identified or confirmed novel homologs in the oyster of key sex-determining genes (SoxH or Sry-like and FoxL2) that were thought to be vertebrate-specific. Their expression profile in C. gigas is consistent with conserved roles in sex determination, under a proposed model where a novel testis-determining CgSoxH may serve as a primary regulator, directly or indirectly interacting with a testis-promoting CgDsx and an ovary-promoting CgFoxL2. Our findings plus previous results suggest that key vertebrate sex-determining genes such as Sry and FoxL2 may not be inventions of vertebrates. The presence of such genes in a mollusc with expression profiles consistent with expected roles in sex determination suggest that sex determination may be deeply conserved in animals, despite rapid evolution of the regulatory pathways that in C. gigas may involve both genetic and environmental factors.

  20. Genomic Analysis of the Pacific Oyster (Crassostrea gigas) Reveals Possible Conservation of Vertebrate Sex Determination in a Mollusc

    PubMed Central

    Zhang, Na; Xu, Fei; Guo, Ximing

    2014-01-01

    Despite the prevalence of sex in animal kingdom, we have only limited understanding of how sex is determined and evolved in many taxa. The mollusc Pacific oyster Crassostrea gigas exhibits complex modes of sexual reproduction that consists of protandric dioecy, sex change, and occasional hermaphroditism. This complex system is controlled by both environmental and genetic factors through unknown molecular mechanisms. In this study, we investigated genes related to sex-determining pathways in C. gigas through transcriptome sequencing and analysis of female and male gonads. Our analysis identified or confirmed novel homologs in the oyster of key sex-determining genes (SoxH or Sry-like and FoxL2) that were thought to be vertebrate-specific. Their expression profile in C. gigas is consistent with conserved roles in sex determination, under a proposed model where a novel testis-determining CgSoxH may serve as a primary regulator, directly or indirectly interacting with a testis-promoting CgDsx and an ovary-promoting CgFoxL2. Our findings plus previous results suggest that key vertebrate sex-determining genes such as Sry and FoxL2 may not be inventions of vertebrates. The presence of such genes in a mollusc with expression profiles consistent with expected roles in sex determination suggest that sex determination may be deeply conserved in animals, despite rapid evolution of the regulatory pathways that in C. gigas may involve both genetic and environmental factors. PMID:25213692

  1. He throws like a girl (but only when he's sad): emotion affects sex-decoding of biological motion displays.

    PubMed

    Johnson, Kerri L; McKay, Lawrie S; Pollick, Frank E

    2011-05-01

    Gender stereotypes have been implicated in sex-typed perceptions of facial emotion. Such interpretations were recently called into question because facial cues of emotion are confounded with sexually dimorphic facial cues. Here we examine the role of visual cues and gender stereotypes in perceptions of biological motion displays, thus overcoming the morphological confounding inherent in facial displays. In four studies, participants' judgments revealed gender stereotyping. Observers accurately perceived emotion from biological motion displays (Study 1), and this affected sex categorizations. Angry displays were overwhelmingly judged to be men; sad displays were judged to be women (Studies 2-4). Moreover, this pattern remained strong when stimuli were equated for velocity (Study 3). We argue that these results were obtained because perceivers applied gender stereotypes of emotion to infer sex category (Study 4). Implications for both vision sciences and social psychology are discussed.

  2. Transcriptional sexual dimorphism in elongating bovine embryos: implications for XCI and sex determination genes.

    PubMed

    Bermejo-Alvarez, P; Rizos, D; Lonergan, P; Gutierrez-Adan, A

    2011-06-01

    Sex chromosome transcripts can lead to a broad transcriptional sexual dimorphism in the absence of concomitant or previous exposure to sex hormones, especially when X-chromosome inactivation (XCI) is not complete. XCI timing has been suggested to differ greatly among species, and in bovine, most of the X-linked transcripts are upregulated in female blastocysts. To determine the timing of XCI, we analyzed in day 14 bovine embryos the sexual dimorphic transcription of seven X-linked genes known to be upregulated in female blastocysts (X24112, brain-expressed X-linked 2 (BEX2), ubiquitin-conjugating enzyme E2A (UBE2A), glucose-6-phosphate dehydrogenase (G6PD), brain-expressed X-linked 1 (BEX1), calpain 6 (CAPN6), and spermidine/spermine N-acetyltransferase 1 (SAT1)). The transcription of five genes whose expression differs between sexes at the blastocyst stage (DNMT3A, interferon tau (IFNT2), glutathione S-transferase mu 3 (GSTM3), progesterone receptor membrane component 1 (PGRMC1), and laminin alpha 1 (LAMA1)) and four genes related with sex determination (Wilms tumor 1 (WT1), gata binding protein 4 (GATA4), zinc finger protein multitype 2 (ZFPM2), and DMRT1) was also analyzed to determine the evolution of transcriptional sexual dimorphism. The expression level of five X-linked transcripts was effectively equalized among sexes suggesting that, in cattle, a substantial XCI occurs during the period between blastocyst hatching and initiation of elongation, although UBE2A and SAT1 displayed significant transcriptional differences. Similarly, sexual dimorphism was also reduced for autosomal genes with only DNMT3A and IFNT2 exhibiting sex-related differences. Among the genes potentially involved in sex determination, Wilms tumor 1 (WT1) was significantly upregulated in males and GATA4 in females, whereas no differences were observed for ZFPM2 and DMRT1. In conclusion, a major XCI occurred between the blastocyst and early elongation stages leading to a reduction in the

  3. PCBs as environmental estrogens: Turtle sex determination as a biomarker of environmental contamination

    SciTech Connect

    Bergeron, J.M.; Crews, D. ); McLachlan, J.A. )

    1994-09-01

    Polychlorinated biphenyls (PCBs) are widespread, low-level environmental pollutants associated with adverse health effects such as immune suppression and teratogenicity. There is increasing evidence that some PCB compounds are capable of disrupting reproductive and endocrine function in fish, birds, and mammals, including humans, particularly during development. Research on the mechanism through which these compounds act to alter reproductive function indicates estrogenic activity, whereby the compounds may be altering sexual differentiation. Here we demonstrate the estrogenic effect of some PCBs by reversing gonadal sex in a reptile species that exhibits temperature-dependent sex determination. 17 refs., 1 fig., 1 tab.

  4. Sequence length polymorphisms within primate amelogenin and amelogenin-like genes: usefulness in sex determination.

    PubMed

    Morrill, Benson H; Rickords, Lee F; Schafstall, Heather J

    2008-10-01

    Sequence length polymorphisms between the amelogenin (AMELX) and the amelogenin-like (AMELY) genes both within and between several mammalian species have been identified and utilized for sex determination, species identification, and to elucidate evolutionary relationships. Sex determination via polymerase chain reaction (PCR) assays of the AMELX and AMELY genes has been successful in greater apes, prosimians, and two species of old world monkeys. To date, no sex determination PCR assay using AMELX and AMELY has been developed for new world monkeys. In this study, we present partial AMELX and AMELY sequences for five old world monkey species (Mandrillus sphinx, Macaca nemestrina, Macaca fuscata, Macaca mulatta, and Macaca fascicularis) along with primer sets that can be used for sex determination of these five species. In addition, we compare the sequences we generated with other primate AMELX and AMELY sequences available on GenBank and discuss sequence length polymorphisms and their usefulness in sex determination within primates. The mandrill and four species of macaque all share two similar deletion regions with each other, the human, and the chimpanzee in the region sequenced. These two deletion regions are 176-181 and 8 nucleotides in length. In analyzing existing primate sequences on GenBank, we also discovered that a separate six-nucleotide polymorphism located approximately 300 nucleotides upstream of the 177 nucleotide polymorphism in sequences of humans and chimps was also present in two species of new world monkeys (Saimiri boliviensis and Saimiri sciureus). We designed primers that incorporate this polymorphism, creating the first AMELX and AMELY PCR primer set that has been used successfully to generate two bands in a new world monkey species.

  5. Evolutionary implications for the determination of gametocyte sex ratios under fecundity variation for the malaria parasite.

    PubMed

    Teboh-Ewungkem, Miranda I; Yuster, Thomas

    2016-11-07

    We investigate sex ratio determination strategies for the Malaria parasite based on putative changes in its male fecundity over the lifetime of an infection, and how such strategies might have evolved. We model fitness using the incomplete fertilization limit developed in Teboh-Ewungkem and Yuster (2010). We divide the infection lifetime of a strain into two periods, assume each human is infected by two different strains, and assume that there are two different strategies present among the many strains in the general malaria parasite population. A unique parameter dependent ESS exists for all parameter values in both of our main models, with many such strategies unbeatable. These strategies produce both male and female biased population sex ratios with female bias predominating over most of the parameter space. The first model (SKM) suggests that strains without the ability to detect characteristics of other strains present could still have evolved strategies to vary sex ratio over their lifetimes, and the second model (DKM) suggests strains with detection abilities might have evolved after that. Our analysis suggests that once the ability to detect the population sizes and fecundities of other strains has developed, detection of their sex ratio choices confers no additional selective advantage in that a DKM ESS is still an ESS among sex ratio detecting strategies. The sex ratio choices for each DKM ESS are given by the equilibrium values of the parameter equivalent sex ratio detecting strategy described in Teboh-Ewungkem and Wang (2012), in the case where two strains employing that strategy encounter each other.

  6. Female-Bias in a Long-Term Study of a Species with Temperature-Dependent Sex Determination: Monitoring Sex Ratios for Climate Change Research

    PubMed Central

    Braun McNeill, Joanne; Avens, Larisa; Goodman Hall, April; Goshe, Lisa R.; Harms, Craig A.; Owens, David W.

    2016-01-01

    Alterations have occurred and continue to manifest in the Earth’s biota as a result of climate change. Animals exhibiting temperature dependent sex determination (TSD), including sea turtles, are perhaps most vulnerable to a warming of the Earth as highly skewed sex ratios can result, potentially leading to population extinction resulting from decreased male recruitment. Recent studies have begun to quantify climate change impacts to sea turtle populations, especially in terms of predicting effects on hatchling sex ratios. However, given the inherent difficulty in studying sex ratios at this life stage, a more accurate assessment of changes in population sex ratios might be derived by evaluating the juvenile portion of foraging aggregations. We investigated the long-term trend in sex ratio of a juvenile loggerhead (Caretta caretta) sea turtle population inhabiting Pamlico and Core Sounds, North Carolina, USA. We used plasma testosterone reference ranges measured using radioimmunoassay (RIA) to assign sex for 959 turtles and confirmed sex assignment of a subset (N = 58) of the sampled turtles through laparoscopic examination of their gonads. Our results demonstrate that for this particular population of loggerheads, sex ratios (3Females:1Male) had not significantly changed over a 10 year period (1998–2007), nor showed any significant difference among 5-cm straight carapace length (SCL) size classes. Ultimately, these findings provide a basis for comparison with future sex ratios, and highlight the importance of establishing similar long-term studies monitoring secondary, rather than primary, sex ratios, so that needed mitigation measures to climate change impacts can be implemented. PMID:27579608

  7. Female-Bias in a Long-Term Study of a Species with Temperature-Dependent Sex Determination: Monitoring Sex Ratios for Climate Change Research.

    PubMed

    Braun McNeill, Joanne; Avens, Larisa; Goodman Hall, April; Goshe, Lisa R; Harms, Craig A; Owens, David W

    2016-01-01

    Alterations have occurred and continue to manifest in the Earth's biota as a result of climate change. Animals exhibiting temperature dependent sex determination (TSD), including sea turtles, are perhaps most vulnerable to a warming of the Earth as highly skewed sex ratios can result, potentially leading to population extinction resulting from decreased male recruitment. Recent studies have begun to quantify climate change impacts to sea turtle populations, especially in terms of predicting effects on hatchling sex ratios. However, given the inherent difficulty in studying sex ratios at this life stage, a more accurate assessment of changes in population sex ratios might be derived by evaluating the juvenile portion of foraging aggregations. We investigated the long-term trend in sex ratio of a juvenile loggerhead (Caretta caretta) sea turtle population inhabiting Pamlico and Core Sounds, North Carolina, USA. We used plasma testosterone reference ranges measured using radioimmunoassay (RIA) to assign sex for 959 turtles and confirmed sex assignment of a subset (N = 58) of the sampled turtles through laparoscopic examination of their gonads. Our results demonstrate that for this particular population of loggerheads, sex ratios (3Females:1Male) had not significantly changed over a 10 year period (1998-2007), nor showed any significant difference among 5-cm straight carapace length (SCL) size classes. Ultimately, these findings provide a basis for comparison with future sex ratios, and highlight the importance of establishing similar long-term studies monitoring secondary, rather than primary, sex ratios, so that needed mitigation measures to climate change impacts can be implemented.

  8. Efficacy of Sex Determination from Human Dental Pulp Tissue and its Reliability as a Tool in Forensic Dentistry

    PubMed Central

    Khanna, Kaveri Surya

    2015-01-01

    Background: Sex determination is one of the primary steps in forensics. Barr body can be used as a histological method for identification of sex as it is found to be specific to female somatic cells and rare in male cells. To demarcate human dental pulp as an important identification tool of sex in forensic odontology (FO) and to evaluate the time period till which sex can be determined from pulp tissue using three stains H and E, Feulgen, and acridine - orange under fluorescence so as. Materials and Methods: 90 pulp samples (45 males and 45 females) were subjected to Barr body analysis for determination of sex using light and fluorescent microscopy. Results: Barr body was found to be positive for female samples and negative or rare in the male sample (<3%). Conclusion: Barr body from human dental pulp tissue can be used as a successful determinant of sex identification in FO. PMID:26668474

  9. Sex determination in mammals--before and after the evolution of SRY.

    PubMed

    Wallis, M C; Waters, P D; Graves, J A M

    2008-10-01

    Therian mammals (marsupials and placentals) have an XX female: XY male sex chromosome system, which is homologous to autosomes in other vertebrates. The testis-determining gene, SRY, is conserved on the Y throughout therians, but is absent in other vertebrates, suggesting that the mammal system evolved about 310 million years ago (MYA). However, recent work on the basal monotreme mammals has completely changed our conception of how and when this change occurred. Platypus and echidna lack SRY, and the therian X and Y are represented by autosomes, implying that SRY evolved in therians after their divergence from monotremes only 166 MYA. Clues to the ancestral mechanism usurped by SRY in therians are provided by the monotremes, whose sex chromosomes are homologous to the ZW of birds. This suggests that the therian X and Y, and the SRY gene, evolved from an ancient bird-like sex chromosome system which predates the divergence of mammals and reptiles 310 MYA.

  10. Effect of cell cycle synchronization on the accuracy of murine and bovine embryo sex determination.

    PubMed

    Hossepian de Lima, V F; De Bem, A R; Jorge, W; Moreira-Filho, C A

    1994-02-01

    Different cell cycle synchronization methods were used to increase the mitotic index and accuracy of sex determination in murine and bovine embryos. For sexing purposes, colchicine treatment for 2, 4, 6 and 8 h and the FdU-thymidine-colchicine combination were tested in murine embryos. The best results were obtained with colchicine treatment for 8 h (96.88% accuracy) and with FdU-thymidine-colchicine (97.22% accuracy). Mitotic indexes differed significantly between the 2 treatments (21.71% for colchicine and 32.95% for FdU-thymidine-colchicine). For sex identification of murine and bovine demi-embryos, both treatments were demonstrated to be equally effective (nearly 90%). The mitotic index for the FdU-treated murine demi-embryos (19.04%) was higher than the one obtained for the 8-h colchicine treatment (15.62%).

  11. Ultrasonographic fetometry and determination of fetal sex in buffaloes (Bubalus bubalis).

    PubMed

    Ali, A; Fahmy, S

    2008-06-01

    The aim of the current study was to establish ultrasonic biometric threshold of different fetal parts in buffaloes and to evaluate the feasibility and accuracy of ultrasonic fetal sex determination. Serial ultrasonographic examinations were carried out on twelve pregnant buffalo-cows, during which fetal parts were measured, and fetal sex and presentation were determined. The obtained results revealed that embryo and amniotic vesicle (AV) were detected by the forth and fifth week of pregnancy, respectively. Organization was observed by the seventh week, while ossification was indicated between the eighth and 10th week. High correlations were found between different studied parameters and gestational age, where the highest correlation was found with the crown-rump length (CRL) and amniotic vesicle diameter (AVD) at the early-gestation; the biparietal diameter (BPD) at the mid-gestation; and the eyeball diameter (EBD) at the mid- and late-gestation. The results also revealed that the best window for fetal sexing was found between the 10th and 18th week of gestations, with an overall accuracy of 97.1%. The final polarity with all fetuses in anterior presentation was adopted by the 30th week. In conclusion, the overall data indicated the feasibility and value of ultrasonographic fetometry in buffaloes for evaluation of fetal development, estimation of gestational age and determination of fetal sex.

  12. Equine fetal sex determination using circulating cell-free fetal DNA (ccffDNA).

    PubMed

    de Leon, Priscila Marques Moura; Campos, Vinicius Farias; Dellagostin, Odir Antônio; Deschamps, João Carlos; Seixas, Fabiana Kömmling; Collares, Tiago

    2012-02-01

    In this study, polymerase chain reaction (PCR) reamplification of the first PCR product (2nd-PCR) and a qPCR assay were used to detect the sex determining region Y (SRY) gene from circulating cell-free fetal DNA (ccffDNA) in blood plasma of pregnant mares to determine fetal sex. The ccffDNA was isolated from plasma of 20 Thoroughbred mares (5-13 y old) in the final 3 mo of pregnancy (fetal sex was verified after foaling). For controls, plasma from two non-pregnant mares and two virgin mares were used, in addition to the non-template control. The 182 bp nucleotide sequence corresponding to the SRY-PCR product was confirmed by DNA sequencing. Based on SRY/PCR, 8 of 11 male and 9 of 9 female fetuses were correctly identified, resulting in a sensitivity of 72.7% (for male fetuses) and an overall accuracy of 85%. Furthermore, using SRY/2nd-PCR and qPCR techniques, sensitivity and accuracy were 90.9 and 95%, respectively. In conclusion, this study is apparently the first report of fetal sex determination in mares using ccffDNA.

  13. Role of P-450 aromatase in sex determination of the diamondback terrapin, Malaclemys terrapin.

    PubMed

    Jeyasuria, P; Roosenburg, W M; Place, A R

    1994-09-15

    Sex determination in the diamondback terrapin, Malaclemys terrapin, is temperature-dependent. Eggs incubated at 31 degrees C, and above, hatch in approximately 45 days as females. Eggs incubated below 27 degrees C hatch in about 60 days as males. Sex is not reversible after hatching. Nest temperatures in the wild can be as low as 20 degrees C and as high as 37 degrees C with as much as a 10 degrees C diel cycle. The shortest incubation time measured in nature was 56 days and the longest approaching 120 days. Nests in our study site produced predominantly (> 95%) male hatchlings. Treatment of developing embryos with estrogen produces females at male producing temperatures while treatment with fadrozole (a nonsteroidal aromatase inhibitor) induces partial male-like gonads. Treatment with a steroidal aromatase inhibitor (4-hydroxyandrostenedione, 4-OHA) had no effect on sex determination. Both fadrozole and 4-OHA are potent competitive inhibitors (Ki approximately 40-50 nM) for terrapin in vitro aromatase activity. These findings are consistent with aromatase expression being a key step in sex determination of terrapins. We have cloned a partial single copy P-450 aromatase from the terrapin using a cDNA library constructed from ovarian mRNA. This partial clone is highly homologous to other vertebrate aromatases.

  14. Phylogenetic distribution and evolutionary dynamics of the sex determination genes doublesex and transformer in insects.

    PubMed

    Geuverink, E; Beukeboom, L W

    2014-01-01

    Sex determination in insects is characterized by a gene cascade that is conserved at the bottom but contains diverse primary signals at the top. The bottom master switch gene doublesex is found in all insects. Its upstream regulator transformer is present in the orders Hymenoptera, Coleoptera and Diptera, but has thus far not been found in Lepidoptera and in the basal lineages of Diptera. transformer is presumed to be ancestral to the holometabolous insects based on its shared domains and conserved features of autoregulation and sex-specific splicing. We interpret that its absence in basal lineages of Diptera and its order-specific conserved domains indicate multiple independent losses or recruitments into the sex determination cascade. Duplications of transformer are found in derived families within the Hymenoptera, characterized by their complementary sex determination mechanism. As duplications are not found in any other insect order, they appear linked to the haplodiploid reproduction of the Hymenoptera. Further phylogenetic analyses combined with functional studies are needed to understand the evolutionary history of the transformer gene among insects.

  15. Intrinsic Disorder in Male Sex Determination: Disorderedness of Proteins from the Sry Transcriptional Network.

    PubMed

    Merone, Jean; Nwogu, Onyekahi; Redington, Jennifer M; Uversky, Vladimir N

    2016-10-28

    Sex differentiation is a complex process where sexually indifferent embryo progressively acquires male or female characteristics via tightly controlled, perfectly timed, and sophisticatedly intertwined chain of events. This process is controlled and regulated by a set of specific proteins, with one of the first steps in sex differentiation being the activation of the Y-chromosomal Sry gene (sex-determining region Y) in males that acts as a switch from undifferentiated gonad somatic cells to testis development. There are several key players in this process, which constitute the Sry transcriptional network, and collective action of which governs testis determination. Although it is accepted now that many proteins engaged in signal transduction as well as regulation and control of various biological processes are intrinsically disordered (i.e., do not have unique structure and remain unstructured, or incompletely structured, under physiological conditions), the roles and profusion of intrinsic disorder in proteins involved in the male sex determination have not been accessed as of yet. The goal of this study is to cover this gap by analyzing some key players of the Sry transcriptional network. To this end, we employed a broad set of computational tools for intrinsic disorder analysis and conducted intensive literature search in order to gain information on the structural peculiarities of the Sry network-related proteins, their intrinsic disorder predispositions, and the roles of intrinsic disorder in their functions.

  16. Sex determination from hand and foot dimensions in a North Indian population.

    PubMed

    Krishan, Kewal; Kanchan, Tanuj; Sharma, Abhilasha

    2011-03-01

    Hands and feet are often recovered from the site of natural as well as man-made disasters because of bomb blasts, train accidents, plane crashes, or mass homicides. This study is intended to establish standards for determination of sex from the dimensions of hands and feet in a North Indian population. The data for this study comprise 123 men and 123 women aged between 17 and 20 years from the "Rajput" population of Himachal Pradesh in North India. Four anthropometric measurements viz. hand length, hand breadth, foot length, and foot breadth have been taken on both sides of each subject following international anthropometric standards. The hand index (hand breadth/hand length × 100) and the foot index (foot breadth/foot length × 100) were calculated. Sectioning points and regression models are derived for the hand and foot dimensions and the derived indices. The hand and foot dimensions show a higher accuracy in sex determination by sectioning point analysis when compared to hand and foot index. Of the hand and the foot dimensions, hand breadth and foot breadth showed better accuracy in sex determination. Hand index and foot index remain poor sex discriminators in the study.

  17. [Study of determinants of unprotected sex in sailors of the Senegalese merchant navy].

    PubMed

    Faye, A; Faye, M D; Leye, M M; Diongue, M; Niang, K; Camara, M D; Tal-Dia, A

    2014-05-01

    Sailors are a mobile population travelling a lot and therefore being often exposed to casual sex. The aim of this study is to analyze the determinants of unprotected sex among sailors in Senegal. A descriptive and analytical study was conducted among sailors of the merchant navy. Data on knowledge, attitudes and practices were collected during a personal interview. A multivariate analysis was performed using a multiple logistic regression. A total of 400 sailors were interviewed, 57.9% had casual sex of whom 23.7% were not protected. Sexual intercourse without protection was more common among the uneducated (OR = 2.29 [1.23 to 5.99]) and married (OR = 2.29 [1.23-5.99]). Sailors who thought that using condom reduces pleasure during sexual intercourse (OR = 2.5 [1.2-5.1]) and those who consumed alcohol (OR = 5.4 [2.07-14.2]) were less protected during casual sex. Sexual contact is one of the main modes of transmission of HIV / AIDS. Sailors often have unprotected sex. Interventions using specific ways must be performed taking into account the mobility of these men who are often uneducated.

  18. First-trimester fetal sex determination in maternal serum using real-time PCR.

    PubMed

    Costa, J M; Benachi, A; Gautier, E; Jouannic, J M; Ernault, P; Dumez, Y

    2001-12-01

    Fetal sex prediction can be achieved using PCR targeted at the SRY gene by analysing cell-free fetal DNA in maternal serum. Unfortunately, the results reported to date show a lack of sensitivity, especially during the first trimester of pregnancy. Therefore, determination of fetal sex by maternal serum analysis could not replace karyotype analysis following chorionic villus sampling. A new highly sensitive real-time PCR was developed to detect an SRY gene sequence in maternal serum. Analysis was performed on 121 pregnant women during the first trimester of pregnancy (mean gestational age: 11.8 weeks). Among them, 51 had at least one previous male-bearing pregnancy. Results were compared with fetal sex. SRY PCR analysis of maternal serum was in complete concordance with fetal sex. Among the 121 pregnant women, 61 were bearing a male fetus and 60 a female fetus. No false-negative results were observed. Furthermore, no false-positive results occurred, even though 27 women carrying a female fetus during the current pregnancy had at least one previous male-bearing pregnancy. This study demonstrates that a reliable, non-invasive sex determination can be achieved by PCR analysis of maternal serum during the first trimester of pregnancy. This non-invasive approach for fetal sex prediction should have great implications in the management of pregnant women who are carriers of an X-linked genetic disorder. Prenatal diagnosis might thus be performed for male fetuses only, avoiding invasive procedures and the risk of the loss of female fetuses.

  19. Sequences homologous to ZFY, a candidate human sex-determining gene, are autosomal in marsupials.

    PubMed

    Sinclair, A H; Foster, J W; Spencer, J A; Page, D C; Palmer, M; Goodfellow, P N; Graves, J A

    Sexual differentiation in placental mammals results from the action of a testis-determining gene encoded by the Y chromosome. This gene causes the indifferent gonad to develop as a testis, thereby initiating a hormonal cascade which produces a male phenotype. Recently, a candidate for the testis-determining gene (ZFY, Y-borne zinc-finger protein) has been cloned. The ZFY probe detects a male-specific (Y-linked) sequence in DNA from a range of eutherian mammals, as well as an X-linked sequence (ZFX) which maps to the human X chromosome. In marsupials it is also the Y chromosome that seems to determine the fate of the gonad, but not all sexual dimorphisms. Using the ZFY probe we find, surprisingly, that the ZFY homologous sequences are not on either the X or the Y chromosome in marsupials, but map to the autosomes. This implies ZFY is not the primary sex-determining gene in marsupials. Either the genetic pathways of sex determination in marsupials and eutherians differ, or they are identical and ZFY is not the primary signal in human sex determination.

  20. Evaluation of an Improved Non-invasive Fetal Sex Determination in Haemophilia A Patients

    PubMed Central

    Mokari-Zadeh, Narmin

    2015-01-01

    Background Haemophilia A (HA) is the most severe sex-linked bleeding disorder that is characterized with non-controlled and often threatening Haemorrhage. Routine fetal sex determination in early pregnancy with Haemophilia is based on invasive procedures that can be dangerous to the mother and fetus. Aim The goal of this study is to present an improved assay for the non-invasive fetal sex determination using a Real-Time duplex PCR on the free fetal DNA (ffDNA) obtained from the maternal serum of the HA carriers. Materials and Methods Blood samples were eventually collected from 23 pregnant HA carriers between the 8th and 12th weeks of gestation, and after amplification by duplex-PCR of the single copy of Y chromosome-specific sequence (SRY), the product was then subjected to Real-Time PCR analysis. Results Data were compared with the outcome of chorionic villus sampling (CVS) and indicated that the SRY sequence was detected in 6 of 6 serum samples from male pregnancies and that sequence was absent in 9 samples where the fetus was female. The remaining samples determined without having the CVS positive samples. Conclusion We tried to develop a Real-Time duplex PCR for accurate diagnosis of fetal gender early in the pregnancy of HA carriers. This study has brought up two remarkable points, the first is the method’s improvement with high specificity in sex determination, especially in screening of prenatal sex-linked disorders in male gender and the second is that fresh serum samples would be a good source for this purpose, advocated by similar studies carried out in this regard. PMID:26393142

  1. A Novel Candidate Gene for Temperature-Dependent Sex Determination in the Common Snapping Turtle.

    PubMed

    Schroeder, Anthony L; Metzger, Kelsey J; Miller, Alexandra; Rhen, Turk

    2016-05-01

    Temperature-dependent sex determination (TSD) was described nearly 50 years ago. Researchers have since identified many genes that display differential expression at male- vs. female-producing temperatures. Yet, it is unclear whether these genes (1) are involved in sex determination per se, (2) are downstream effectors involved in differentiation of ovaries and testes, or (3) are thermo-sensitive but unrelated to gonad development. Here we present multiple lines of evidence linking CIRBP to sex determination in the snapping turtle, Chelydra serpentina We demonstrate significant associations between a single nucleotide polymorphism (SNP) (c63A > C) in CIRBP, transcript levels in embryonic gonads during specification of gonad fate, and sex in hatchlings from a thermal regime that produces mixed sex ratios. The A allele was induced in embryos exposed to a female-producing temperature, while expression of the C allele did not differ between female- and male-producing temperatures. In accord with this pattern of temperature-dependent, allele-specific expression, AA homozygotes were more likely to develop ovaries than AC heterozygotes, which, in turn, were more likely to develop ovaries than CC homozygotes. Multiple regression using SNPs in CIRBP and adjacent loci suggests that c63A > C may be the causal variant or closely linked to it. Differences in CIRBP allele frequencies among turtles from northern Minnesota, southern Minnesota, and Texas reflect small and large-scale latitudinal differences in TSD pattern. Finally, analysis of CIRBP protein localization reveals that CIRBP is in a position to mediate temperature effects on the developing gonads. Together, these studies strongly suggest that CIRBP is involved in determining the fate of the bipotential gonad.

  2. Beauty and the Eye of the Beholder: Gender and Attractiveness Affect Judgments in Teacher Sex Offense Cases.

    PubMed

    Mackelprang, Emily; Becker, Judith V

    2015-08-03

    The present study investigated the effects of gender and attractiveness on judgments of bail requirements, incarceration, and sex offender registration lengths, and attitudes toward offenders and victims in a teacher-student sexual perpetration scenario. Researchers presented 432 undergraduate students at a large southwestern university with one of four vignettes detailing a sexual relationship between a 35-year-old teacher and a 14-year-old student. Vignettes varied by both attractiveness and gender of the offender (using heterosexual offender-victim dyads). Results indicate that both gender and attractiveness affect judgments of sex offenders; specifically, female sexual offenders were viewed more leniently and judged less punitively than male sexual offenders. Although attractive female sexual offenders were given particularly lenient treatment, attractiveness did not affect judgments toward male sex offenders. In addition, although male and female participants tended to rate male offenders similarly, male participants were more lenient toward female offenders than were female participants. Finally, post hoc analyses revealed that, for many variables, unattractive female sexual offenders may not be viewed differently from male sexual offenders. These results have serious implications for the legal system, sex offender management, and societal views regarding male and female sexual offenders and their victims.

  3. The human and mouse sex-determining SRY genes repress the Rspol/beta-catenin signaling.

    PubMed

    Lau, Yun-Fai Chris; Li, Yunmin

    2009-04-01

    The sex-determining region Y (SRY) is the gene on the Y chromosome responsible for switching on male sex determination during mammalian embryogenesis. In its absence, ovaries develop in the embryo. Hence, ovarian determination and differentiation is considered to be a default, or passive, developmental pathway. Recently this classical paradigm of sex determination has been challenged with the discovery of the R-spondin 1 (RSPO1) as an active ovarian determinant. Mutations of RSPO1 cause a female-to-male sex reversal. RSPO1 synergizes with WNT4 in activating an ovarian development in the bipotential gonad via the canonical Wnt signaling. Early studies showed that SRY represses such Wnt signaling, but also generated discrepancies on whether only mouse Sry is capable of inhibiting such Wnt signaling and whether both human and mouse SRY proteins are able to interact with beta-catenin, the intracellular messenger responsible for executing the Wnt signals. Our studies show that both human SRY and mouse Sry are capable of repressing the Rspo1/Wnt/beta-catenin signaling. However, the repression activities vary among different SRY/Sry proteins and paradoxically related to the presence and/or size of an acidic/glutamine-rich domain. The HMG box of human SRY could bind directly to beta-catenin while the mouse Sry binds to beta-catenin via its HMG box and glutamine-rich domain. The results clarify some of the initial discrepancies, and raise the possibility that SRY interacts with beta-catenin in the nucleus and represses the transcriptional activation of the Rspo1/Wnt target genes involved in ovarian determination, thereby switching on testis determination.

  4. Constraints on temperature-dependent sex determination in the leopard gecko (Eublepharis macularius): response to Kratochvil et al.

    PubMed

    Huang, Victoria; Sakata, Jon T; Rhen, Turk; Coomber, Patricia; Simmonds, Sarah; Crews, David

    2008-12-01

    Kratochvil et al. (Naturwissenschaften 95:209-215, 2008) reported recently that in the leopard gecko (Eublepharis macularius) of the family Eublepharidae with temperature-dependent sex determination (TSD), clutches in which eggs were incubated at the same temperature produce only same-sex siblings. Interpreting this result in light of studies of sex steroid hormone involvement in sex determination, they suggested that maternally derived yolk steroid hormones could constrain sex-determining mechanisms in TSD reptiles. We have worked extensively with this species and have routinely incubated clutches at constant temperatures. To test the consistency of high frequency same-sex clutches across different incubation temperatures, we examined our records of clutches at the University of Texas at Austin from 1992 to 2001. We observed that clutches in which eggs were incubated at the same incubation temperature produced mixed-sex clutches as well as same-sex clutches. Furthermore, cases in which eggs within a clutch were separated and incubated at different temperatures produced the expected number of mixed-sex clutches. These results suggest that maternal influences on sex determination are secondary relative to incubation temperature effects.

  5. Constraints on temperature-dependent sex determination in the leopard gecko ( Eublepharis macularius): response to Kratochvil et al.

    NASA Astrophysics Data System (ADS)

    Huang, Victoria; Sakata, Jon T.; Rhen, Turk; Coomber, Patricia; Simmonds, Sarah; Crews, David

    2008-12-01

    Kratochvil et al. (Naturwissenschaften 95:209 215, 2008) reported recently that in the leopard gecko ( Eublepharis macularius) of the family Eublepharidae with temperature-dependent sex determination (TSD), clutches in which eggs were incubated at the same temperature produce only same-sex siblings. Interpreting this result in light of studies of sex steroid hormone involvement in sex determination, they suggested that maternally derived yolk steroid hormones could constrain sex-determining mechanisms in TSD reptiles. We have worked extensively with this species and have routinely incubated clutches at constant temperatures. To test the consistency of high frequency same-sex clutches across different incubation temperatures, we examined our records of clutches at the University of Texas at Austin from 1992 to 2001. We observed that clutches in which eggs were incubated at the same incubation temperature produced mixed-sex clutches as well as same-sex clutches. Furthermore, cases in which eggs within a clutch were separated and incubated at different temperatures produced the expected number of mixed-sex clutches. These results suggest that maternal influences on sex determination are secondary relative to incubation temperature effects.

  6. The Prevalence and Correlates of Physical and Sexual Violence Affecting Female Sex Workers in Swaziland.

    PubMed

    Berger, Blair O; Grosso, Ashley; Adams, Darrin; Ketende, Sosthenes; Sithole, Bhekie; Mabuza, Xolile S; Mavimbela, Mpumelelo J; Baral, Stefan

    2016-02-12

    Female sex workers (FSW) have a heightened vulnerability to violence and negative sexual/reproductive health outcomes. Limited research has examined how experiencing physical and sexual violence (PSV) mediates risk for poor health outcomes among FSW in Swaziland. The present analyses aim to contribute to literature linking violence with poor health outcomes, high-risk behaviors, and reduced health service-seeking among FSW. Data were analyzed from a cross-sectional study conducted in Swaziland between July and September 2011 with 325 adult women who reported exchanging sex for money, goods, or favors in the last 12 months, recruited through respondent-driven sampling (RDS). Logistic regression was used to assess the relationship between PSV and ancillary violence/abuse exposures, risk behaviors, and sexual/reproductive and mental health outcomes. PSV was conceptualized as either ever having been beaten up as a result of selling sex or ever being forced to have sex since the age of 18, or both. Prevalence of PSV in this sample was 59.0% in crude estimation, and 48.4% (95% confidence interval [CI]:[39.2,57.6]) with RDS weighting. Separate RDS-weighted estimates of being beaten up as a result of sex work and ever being forced to have sex were 32.4% (95%CI=[24.4,40.4]) and 33.1% (95%CI =[25.0,41.2%]), respectively. Experiencing PSV was associated with being blackmailed (adjusted odds ratio [aOR]= 1.93, 95%CI= [1.07,3.52]), non-injection drug use in the last 12 months (aOR= 1.84, 95%CI= [1.02,3.33]), and feeling afraid to seek health services as a result of selling sex (aOR = 1.74, 95%CI= [1.01,2.99]). Given these findings, violence prevention strategies should be prioritized in programs that address Swazi FSW health, empowerment, and safety.

  7. Somatic and cognitive-affective depressive symptoms among patients with heart disease: differences by sex and age

    PubMed Central

    Dessotte, Carina Aparecida Marosti; Silva, Fernanda Souza; Furuya, Rejane Kiyomi; Ciol, Marcia Aparecida; Hoffman, Jeanne Marie; Dantas, Rosana Aparecida Spadoti

    2015-01-01

    OBJECTIVE: this study investigated the association of somatic and cognitive-affective symptoms with sex and age, among patients hospitalized with heart disease. METHOD: this study was a secondary analysis of two previous observational studies totaling 531 patients with heart disease, hospitalized from 2005 to 2011 in two public hospitals in Ribeirão Preto, state of São Paulo, Brazil. Somatic and cognitive-affective symptoms were assessed using the subscales of the Beck Depression Inventory - I (BDI-I). RESULTS: of 531 participants, 62.7% were male, with a mean age 57.3 years (SD= 13.0) for males and 56.2 years (SD= 12.1) for females. Analyses of variance showed an effect of sex (p<0.001 for somatic and p=0.005 for cognitive-affective symptoms), but no effect of age. Women presented with higher mean values than men in both BDI-I subscales: 7.1 (4.5) vs. 5.4 (4.3) for somatic, and 8.3 (7.9) vs. 6.7 (7.2) for cognitive-affective symptoms. There were no differences by age for somatic (p=0.84) or cognitive-affective symptoms (p=0.84). CONCLUSION: women hospitalized with heart disease had more somatic and cognitive-affective symptoms than men. We found no association of somatic and cognitive-affective symptoms with age. Future research for these patients could reveal whether these differences according to sex continue throughout the rehabilitation process. PMID:26039290

  8. Comparative Analysis of the Shared Sex-Determination Region (SDR) among Salmonid Fishes

    PubMed Central

    Faber-Hammond, Joshua J.; Phillips, Ruth B.; Brown, Kim H.

    2015-01-01

    Salmonids present an excellent model for studying evolution of young sex-chromosomes. Within the genus, Oncorhynchus, at least six independent sex-chromosome pairs have evolved, many unique to individual species. This variation results from the movement of the sex-determining gene, sdY, throughout the salmonid genome. While sdY is known to define sexual differentiation in salmonids, the mechanism of its movement throughout the genome has remained elusive due to high frequencies of repetitive elements, rDNA sequences, and transposons surrounding the sex-determining regions (SDR). Despite these difficulties, bacterial artificial chromosome (BAC) library clones from both rainbow trout and Atlantic salmon containing the sdY region have been reported. Here, we report the sequences for these BACs as well as the extended sequence for the known SDR in Chinook gained through genome walking methods. Comparative analysis allowed us to study the overlapping SDRs from three unique salmonid Y chromosomes to define the specific content, size, and variation present between the species. We found approximately 4.1 kb of orthologous sequence common to all three species, which contains the genetic content necessary for masculinization. The regions contain transposable elements that may be responsible for the translocations of the SDR throughout salmonid genomes and we examine potential mechanistic roles of each one. PMID:26112966

  9. Sex determination using the second cervical vertebra--A test of the method.

    PubMed

    Marlow, Emily J; Pastor, Robert F

    2011-01-01

    Sex is one of the critical questions addressed when unidentified skeletal remains are discovered in forensic or archeological contexts. Continuous testing and re-evaluation of existing techniques is essential to improve accuracy and precision. The Wescott (J Forensic Sci 2000;45(2):462-6) method of sex determination from dimensions of the second cervical vertebra was blind-tested on 153 adult individuals from the Spitalfields documented collection of human skeletal remains held at the Natural History Museum, London. Significant sex differences were determined for all dimensions measured (independent two-sample t-test, p<0.05-0.001). The discriminant functions developed by Wescott were shown to have an overall accuracy of classification of 76.99%. Using stepwise discriminant analysis, a discriminant function based on the Spitalfields data correctly classified sex in 83.3% of individuals and was able to classify males and females with equal accuracy. Additional discriminant functions are presented for use in instances where preservation of the second cervical vertebra is poor.

  10. Sex determination using discriminant analysis of the medial and lateral condyles of the femur in Koreans.

    PubMed

    Kim, Deog-Im; Kwak, Dai-Soon; Han, Seung-Ho

    2013-12-10

    The proximal and distal parts of the femur show the differences between the sexes. Head diameter and the breadth of the epicondyle of the femur are known to distinguish males from females. The proximal end of the femur is studied to determine sex using discriminant analysis but; its distal end is not done. This study aims to develop an equation specific to Koreans by using the medial and lateral condyles of the femur, and to demonstrate the usefulness of equations for specific population groups. We used three-dimensional images from 202 Korean femurs. Twelve variables were measured with a computer program after the femurs were in alignment. Eleven variables showed a statistically significant difference between the sexes (P<0.01). The most accurate equation used width of the medial and lateral condyles (WDC), with of the medial condyle (WMC), depth of the lateral condyle (DLC), and depth of the intercondylar notch (DIN) (94.1%), and is as follows: D = 0.336 × WDC + (-0.097) × WMC + (-0.153) × DLC + 0.372 × DIN - 20.912. The second highest accuracy was 90.1% for the width dimensional group and WDC. This study shows that the medial and lateral condyles of the femur should be helpful for sex determination in situations where the skull and pelvis are missing and part of the femur is available. The study also demonstrates the need for different equations for different population groups.

  11. Comparative Analysis of the Shared Sex-Determination Region (SDR) among Salmonid Fishes.

    PubMed

    Faber-Hammond, Joshua J; Phillips, Ruth B; Brown, Kim H

    2015-06-25

    Salmonids present an excellent model for studying evolution of young sex-chromosomes. Within the genus, Oncorhynchus, at least six independent sex-chromosome pairs have evolved, many unique to individual species. This variation results from the movement of the sex-determining gene, sdY, throughout the salmonid genome. While sdY is known to define sexual differentiation in salmonids, the mechanism of its movement throughout the genome has remained elusive due to high frequencies of repetitive elements, rDNA sequences, and transposons surrounding the sex-determining regions (SDR). Despite these difficulties, bacterial artificial chromosome (BAC) library clones from both rainbow trout and Atlantic salmon containing the sdY region have been reported. Here, we report the sequences for these BACs as well as the extended sequence for the known SDR in Chinook gained through genome walking methods. Comparative analysis allowed us to study the overlapping SDRs from three unique salmonid Y chromosomes to define the specific content, size, and variation present between the species. We found approximately 4.1 kb of orthologous sequence common to all three species, which contains the genetic content necessary for masculinization. The regions contain transposable elements that may be responsible for the translocations of the SDR throughout salmonid genomes and we examine potential mechanistic roles of each one.

  12. High-density linkage mapping revealed suppression of recombination at the sex determination locus in papaya.

    PubMed Central

    Ma, Hao; Moore, Paul H; Liu, Zhiyong; Kim, Minna S; Yu, Qingyi; Fitch, Maureen M M; Sekioka, Terry; Paterson, Andrew H; Ming, Ray

    2004-01-01

    A high-density genetic map of papaya (Carica papaya L.) was constructed using 54 F(2) plants derived from cultivars Kapoho and SunUp with 1501 markers, including 1498 amplified fragment length polymorphism (AFLP) markers, the papaya ringspot virus coat protein marker, morphological sex type, and fruit flesh color. These markers were mapped into 12 linkage groups at a LOD score of 5.0 and recombination frequency of 0.25. The 12 major linkage groups covered a total length of 3294.2 cM, with an average distance of 2.2 cM between adjacent markers. This map revealed severe suppression of recombination around the sex determination locus with a total of 225 markers cosegregating with sex types. The cytosine bases were highly methylated in this region on the basis of the distribution of methylation-sensitive and -insensitive markers. This high-density genetic map is essential for cloning of specific genes of interest such as the sex determination gene and for the integration of genetic and physical maps of papaya. PMID:15020433

  13. Utility of the Determine Syphilis TP rapid test in commercial sex venues in Peru

    PubMed Central

    Campos, P E; Buffardi, A L; Chiappe, M; Buendía, C; Garcia, P J; Carcamo, C P; Garnett, G; White, P

    2006-01-01

    Objectives This study sought to evaluate the utility of the Determine Syphilis TP test performed in Peruvian commercial sex venues for the detection of active syphilis; and determine the feasibility of integrating rapid syphilis testing for female sex workers (FSW) into existing health outreach services. Methods We tested 3586 female sex workers for syphilis by Determine in the field using whole blood fingerstick, and by rapid plasma reagin (RPR) and Treponema pallidum haemagglutination assay (TPHA) in a central laboratory in Lima using sera. Results 97.4% of the FSW offered rapid syphilis testing participated; and among those who tested positive, 87% visited the local health centre for treatment. More than twice as many specimens were RPR reactive using serum in Lima (5.7%) than tested positive by whole blood Determine in the field (2.8%), and although most were confirmed by TPHA, only a small proportion (0.7%) were RPR reactive at ⩾1:8 dilutions, and likely indicating active syphilis. Sensitivity, specificity and positive predictive value of the Determine Syphilis TP test in whole blood when compared to serum RPR reactivity at any dilution confirmed by TPHA as the gold standard were 39.3%, 99.2% and 71.4%, respectively. Sensitivity improved to 64.0% when using serum RPR ⩾1:8 confirmed by TPHA. Invalid tests were rare (0.3%). Conclusions Rapid syphilis testing in sex work venues proved feasible, but Determine using whole blood obtained by fingerstick was substantially less sensitive than reported in previous laboratory‐based studies using serum. Although easy to perform in outreach venues, the utility of this rapid syphilis test was relatively low in settings where a large proportion of the targeted population has been previously tested and treated. PMID:17116642

  14. Sex- and Gonad-Affecting Scent Compounds and 3 Male Pheromones in the Rat

    PubMed Central

    Sun, Lixing; Zhang, Jin-Hua; Feng, Zhi-Yong

    2008-01-01

    This study was aimed at identifying sex pheromones of the rat (Rattus norvegicus). We characterized the volatiles and semivolatiles of rat preputial gland and voided urine by using gas chromatography–mass spectrometry (GC–MS) and quantified them by their GC areas (abundances) and percentage of GC areas (relative abundances). Although all the compounds other than 4-heptanone and phenol detected were shared by males and females, the quantities for some of these sex-common compounds exhibited sexual dimorphism and decreased with gonadectomy. Thus, these compounds might be sex pheromones. Among them, squalene from preputial glands and 2-heptanone and 4-ethyl phenol from urine were 3 major compounds. They were richer in males and could be suppressed by castration. Adding any of the 3 compounds (at a concentration higher than its physiological level in male urine) to castrated male urine (CMU) increased the attractiveness of CMU to sex-naive females. Adding the 3 together (at the levels in normal male urine) to CMU significantly increased the attractiveness of CMU to females. However, such combination did not fully restore females' preference for urine from intact males, suggesting that some other trace compounds such as 4-heptanone and phenol might also play some roles in sex attractiveness. Thus, squalene, 2-heptanone, and 4-ethyl phenol were indeed male pheromone molecules in rats. Our study also indicates that E,E-β-farnesene and E-α-farnesene, both richer in females than males, might be putative female pheromones. PMID:18515819

  15. Sex- and gonad-affecting scent compounds and 3 male pheromones in the rat.

    PubMed

    Zhang, Jian-Xu; Sun, Lixing; Zhang, Jin-Hua; Feng, Zhi-Yong

    2008-09-01

    This study was aimed at identifying sex pheromones of the rat (Rattus norvegicus). We characterized the volatiles and semivolatiles of rat preputial gland and voided urine by using gas chromatography-mass spectrometry (GC-MS) and quantified them by their GC areas (abundances) and percentage of GC areas (relative abundances). Although all the compounds other than 4-heptanone and phenol detected were shared by males and females, the quantities for some of these sex-common compounds exhibited sexual dimorphism and decreased with gonadectomy. Thus, these compounds might be sex pheromones. Among them, squalene from preputial glands and 2-heptanone and 4-ethyl phenol from urine were 3 major compounds. They were richer in males and could be suppressed by castration. Adding any of the 3 compounds (at a concentration higher than its physiological level in male urine) to castrated male urine (CMU) increased the attractiveness of CMU to sex-naive females. Adding the 3 together (at the levels in normal male urine) to CMU significantly increased the attractiveness of CMU to females. However, such combination did not fully restore females' preference for urine from intact males, suggesting that some other trace compounds such as 4-heptanone and phenol might also play some roles in sex attractiveness. Thus, squalene, 2-heptanone, and 4-ethyl phenol were indeed male pheromone molecules in rats. Our study also indicates that E,E-beta-farnesene and E-alpha-farnesene, both richer in females than males, might be putative female pheromones.

  16. IVF affects embryonic development in a sex-biased manner in mice.

    PubMed

    Tan, Kun; Wang, Zhuqing; Zhang, Zhenni; An, Lei; Tian, Jianhui

    2016-04-01

    Increasing evidence indicates that IVF (IVF includes in vitro fertilization and culture) embryos and babies are associated with a series of health complications, and some of them show sex-dimorphic patterns. Therefore, we hypothesized that IVF procedures have sex-biased or even sex-specific effects on embryonic and fetal development. Here, we demonstrate that IVF-induced side effects show significant sexual dimorphic patterns from the pre-implantation to the prenatal stage. During the pre-implantation stage, female IVF embryos appear to be more vulnerable to IVF-induced effects, including an increased percentage of apoptosis (7.22 ± 1.94 vs 0.71 ± 0.76, P<0.01), and dysregulated expression of representative sex-dimorphic genes (Xist, Hprt, Pgk1 and Hsp70). During the mid-gestation stage, IVF males had a higher survival rate than IVF females at E13.5 (male:female=1.33:1), accompanied with a female-biased pregnancy loss. In addition, while both IVF males and females had reduced placental vasculogenesis/angiogenesis, the compensatory placental overgrowth was more evident in IVF males. During the late-gestation period, IVF fetuses had a higher sex ratio (male:female=1.48:1) at E19.5, and both male and female IVF placentas showed overgrowth. After birth, IVF males grew faster than their in vivo (IVO) counterparts, while IVF females showed a similar growth pattern with IVO females. The present study provides a new insight into understanding IVF-induced health complications during embryonic and fetal development. By understanding and minimizing these sex-biased effects of the IVF process, the health of IVF-conceived babies may be improved in the future.

  17. Conformity to sex-typed norms, affect, and the self-concept.

    PubMed

    Wood, W; Christensen, P N; Hebl, M R; Rothgerber, H

    1997-09-01

    The self-concept plays an important role in conformity to sex-typed social norms. Normative beliefs that men are powerful, dominant, and self-assertive and that women are caring, intimate with others, and emotionally expressive represent possible standards for whom people ought to be and whom they ideally would like to be. In the present research, to the extent that sex role norms were personally relevant for participants, norm-congruent experiences (i.e., those involving dominance for men and communion for women) yielded positive feelings and brought their actual self-concepts closer to the standards represented by ought and ideal selves.

  18. Sex determination of Joseon people skeletons based on anatomical, cultural and molecular biological clues.

    PubMed

    Kim, Yi-Suk; Oh, Chang Seok; Lee, Sang Jun; Park, Jun Bum; Kim, Myeung Ju; Shin, Dong Hoon

    2011-12-20

    Sex determination is very integral to examinations conducted by anatomists on human skeletons discovered in the archaeological field. In Korea, as in other countries, cultural or anatomical information has been the tool of first resort in making such determinations. In cases in which anatomical examination has revealed only borderline characteristics, PCR-based analysis of X/Y-chromosome genes has been employed. Even so, there are as yet very few reports on how accurately the respective results correspond with each other. In this study on 34 examined medieval Korean skeletons, 11 (32.3%) showed perfectly matching results for the three methods of sex determination. In the cases in which the cultural and anatomical findings were discordant, the amelogenin assay corroborated either the former or the latter. Although we must admit the relatively limited role of aDNA analysis, when only very small amounts of amplifiable DNA remain, we believe that the amelogenin assay can be very meaningful to Korean anatomists when employed in adjunct to conventional anatomically or culturally based sex determination.

  19. Evidence for the evolutionary nascence of a novel sex determination pathway in honeybees.

    PubMed

    Hasselmann, Martin; Gempe, Tanja; Schiøtt, Morten; Nunes-Silva, Carlos Gustavo; Otte, Marianne; Beye, Martin

    2008-07-24

    Sex determination in honeybees (Apis mellifera) is governed by heterozygosity at a single locus harbouring the complementary sex determiner (csd) gene, in contrast to the well-studied sex chromosome system of Drosophila melanogaster. Bees heterozygous at csd are females, whereas homozygotes and hemizygotes (haploid individuals) are males. Although at least 15 different csd alleles are known among natural bee populations, the mechanisms linking allelic interactions to switching of the sexual development programme are still obscure. Here we report a new component of the sex-determining pathway in honeybees, encoded 12 kilobases upstream of csd. The gene feminizer (fem) is the ancestrally conserved progenitor gene from which csd arose and encodes an SR-type protein, harbouring an Arg/Ser-rich domain. Fem shares the same arrangement of Arg/Ser- and proline-rich-domain with the Drosophila principal sex-determining gene transformer (tra), but lacks conserved motifs except for a 30-amino-acid motif that Fem shares only with Tra of another fly, Ceratitis capitata. Like tra, the fem transcript is alternatively spliced. The male-specific splice variant contains a premature stop codon and yields no functional product, whereas the female-specific splice variant encodes the functional protein. We show that RNA interference (RNAi)-induced knockdowns of the female-specific fem splice variant result in male bees, indicating that the fem product is required for entire female development. Furthermore, RNAi-induced knockdowns of female allelic csd transcripts result in the male-specific fem splice variant, suggesting that the fem gene implements the switch of developmental pathways controlled by heterozygosity at csd. Comparative analysis of fem and csd coding sequences from five bee species indicates a recent origin of csd in the honeybee lineage from the fem progenitor and provides evidence for positive selection at csd accompanied by purifying selection at fem. The fem locus in

  20. Sexing the Sciuridae: a simple and accurate set of molecular methods to determine sex in tree squirrels, ground squirrels and marmots.

    PubMed

    Gorrell, Jamieson C; Boutin, Stan; Raveh, Shirley; Neuhaus, Peter; Côté, Steeve D; Coltman, David W

    2012-09-01

    We determined the sequence of the male-specific minor histocompatibility complex antigen (Smcy) from the Y chromosome of seven squirrel species (Sciuridae, Rodentia). Based on conserved regions inside the Smcy intron sequence, we designed PCR primers for sex determination in these species that can be co-amplified with nuclear loci as controls. PCR co-amplification yields two products for males and one for females that are easily visualized as bands by agarose gel electrophoresis. Our method provides simple and reliable sex determination across a wide range of squirrel species.

  1. Switching on sex: transcriptional regulation of the testis-determining gene Sry.

    PubMed

    Larney, Christian; Bailey, Timothy L; Koopman, Peter

    2014-06-01

    Mammalian sex determination hinges on the development of ovaries or testes, with testis fate being triggered by the expression of the transcription factor sex-determining region Y (Sry). Reduced or delayed Sry expression impairs testis development, highlighting the importance of its accurate spatiotemporal regulation and implying a potential role for SRY dysregulation in human intersex disorders. Several epigenetic modifiers, transcription factors and kinases are implicated in regulating Sry transcription, but it remains unclear whether or how this farrago of factors acts co-ordinately. Here we review our current understanding of Sry regulation and provide a model that assembles all known regulators into three modules, each converging on a single transcription factor that binds to the Sry promoter. We also discuss potential future avenues for discovering the cis-elements and trans-factors required for Sry regulation.

  2. MYB transcription factor gene involved in sex determination in Asparagus officinalis.

    PubMed

    Murase, Kohji; Shigenobu, Shuji; Fujii, Sota; Ueda, Kazuki; Murata, Takanori; Sakamoto, Ai; Wada, Yuko; Yamaguchi, Katsushi; Osakabe, Yuriko; Osakabe, Keishi; Kanno, Akira; Ozaki, Yukio; Takayama, Seiji

    2017-01-01

    Dioecy is a plant mating system in which individuals of a species are either male or female. Although many flowering plants evolved independently from hermaphroditism to dioecy, the molecular mechanism underlying this transition remains largely unknown. Sex determination in the dioecious plant Asparagus officinalis is controlled by X and Y chromosomes; the male and female karyotypes are XY and XX, respectively. Transcriptome analysis of A. officinalis buds showed that a MYB-like gene, Male Specific Expression 1 (MSE1), is specifically expressed in males. MSE1 exhibits tight linkage with the Y chromosome, specific expression in early anther development and loss of function on the X chromosome. Knockout of the MSE1 orthologue in Arabidopsis induces male sterility. Thus, MSE1 acts in sex determination in A. officinalis.

  3. Fetal sex determination of macaque monkeys by a nested PCR using maternal plasma.

    PubMed

    Mitsunaga, Fusako; Ueiwa, Miyuki; Kamanaka, Yoshirou; Morimoto, Mayumi; Nakamura, Shin

    2010-01-01

    Non-invasive fetal sex determination is required for biomedical studies, in which some sexual difference would be expected in fetal events, in order to make a choice of male or female fetus. To detect male fetal DNA of the sex-determining region Y gene (SRY) in maternal macaque plasma, nested real-time PCR using the SYBR Green system was developed. In all cases of pregnant macaques with male fetuses, a nested PCR product of SRY was amplified from the mother's plasma, while no amplicon was detected in any case of pregnancy with a female fetus. Interestingly, fetal SRY DNA appeared to be cleared rapidly from the maternal blood after parturition. The current method is sensitive and can be performed with a regular PCR machine.

  4. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods

    PubMed Central

    Barth, Claudia; Villringer, Arno; Sacher, Julia

    2015-01-01

    Sex hormones have been implicated in neurite outgrowth, synaptogenesis, dendritic branching, myelination and other important mechanisms of neural plasticity. Here we review the evidence from animal experiments and human studies reporting interactions between sex hormones and the dominant neurotransmitters, such as serotonin, dopamine, GABA and glutamate. We provide an overview of accumulating data during physiological and pathological conditions and discuss currently conceptualized theories on how sex hormones potentially trigger neuroplasticity changes through these four neurochemical systems. Many brain regions have been demonstrated to express high densities for estrogen- and progesterone receptors, such as the amygdala, the hypothalamus, and the hippocampus. As the hippocampus is of particular relevance in the context of mediating structural plasticity in the adult brain, we put particular emphasis on what evidence could be gathered thus far that links differences in behavior, neurochemical patterns and hippocampal structure to a changing hormonal environment. Finally, we discuss how physiologically occurring hormonal transition periods in humans can be used to model how changes in sex hormones influence functional connectivity, neurotransmission and brain structure in vivo. PMID:25750611

  5. How sex and age affect immune responses, susceptibility to infections, and response to vaccination

    PubMed Central

    Giefing-Kröll, Carmen; Berger, Peter; Lepperdinger, Günter; Grubeck-Loebenstein, Beatrix

    2015-01-01

    Do men die young and sick, or do women live long and healthy? By trying to explain the sexual dimorphism in life expectancy, both biological and environmental aspects are presently being addressed. Besides age-related changes, both the immune and the endocrine system exhibit significant sex-specific differences. This review deals with the aging immune system and its interplay with sex steroid hormones. Together, they impact on the etiopathology of many infectious diseases, which are still the major causes of morbidity and mortality in people at old age. Among men, susceptibilities toward many infectious diseases and the corresponding mortality rates are higher. Responses to various types of vaccination are often higher among women thereby also mounting stronger humoral responses. Women appear immune-privileged. The major sex steroid hormones exhibit opposing effects on cells of both the adaptive and the innate immune system: estradiol being mainly enhancing, testosterone by and large suppressive. However, levels of sex hormones change with age. At menopause transition, dropping estradiol potentially enhances immunosenescence effects posing postmenopausal women at additional, yet specific risks. Conclusively during aging, interventions, which distinctively consider the changing level of individual hormones, shall provide potent options in maintaining optimal immune functions. PMID:25720438

  6. Sex pheromone dispenser type and trap design affect capture of dogwood borer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The capture of dogwood borer (DWB), Synanthedon scitula Harris (Lepidoptera: Sesiidae), was evaluated in field trapping studies using wing-style sticky traps baited with rubber septum or polyethylene vial dispensers containing the most effective sex pheromone ternary blend [86:6:6 v:v:v (Z,Z)-3,13-o...

  7. Dispenser and trap design affect the effectiveness of sex pheromone on trap capture of dogwood borer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The capture of dogwood borer (DWB), Synanthedon scitula Harris (Lepidoptera: Sesiidae), was evaluated in field trapping studies using wing-style sticky traps baited with rubber septum or polyethylene vial dispensers containing the most effective sex pheromone ternary blend [86:6:6 v:v:v (Z,Z)-3,13-o...

  8. Religiosity, Gender, Sex Anxiety, and AIDS Attitudes as They Affect Attitudes Towards Homosexuals.

    ERIC Educational Resources Information Center

    Russell, C. Denise; Ellis, Jon B.

    Homophobia is a term used to describe irrational fears about, prejudice, and discrimination against homosexuals. Past research has shown that religious people were more homophobic than nonreligious ones and that these same individuals were more likely to have a high level of sex anxiety. In recent research, it has been found that with the onset of…

  9. Sex, Sexual Orientation, and Identification of Positive and Negative Facial Affect

    ERIC Educational Resources Information Center

    Rahman, Qazi; Wilson, Glenn D.; Abrahams, Sharon

    2004-01-01

    Sex and sexual orientation related differences in processing of happy and sad facial emotions were examined using an experimental facial emotion recognition paradigm with a large sample (N=240). Analysis of covariance (controlling for age and IQ) revealed that women (irrespective of sexual orientation) had faster reaction times than men for…

  10. Geometric isomers of sex pheromone components do not affect attractancy of Conopomorpha cramerella in cocoa plantations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sex pheromone of cocoa pod borer (CPB), Conopomorpha cramerella, has previously been identified as a blend of (E,Z,Z)- and (E,E,Z)-4,6,10-hexadecatrienyl acetates and the corresponding alcohols. These pheromone components have been synthesized with modification of the existing method and relative at...

  11. How sex and age affect immune responses, susceptibility to infections, and response to vaccination.

    PubMed

    Giefing-Kröll, Carmen; Berger, Peter; Lepperdinger, Günter; Grubeck-Loebenstein, Beatrix

    2015-06-01

    Do men die young and sick, or do women live long and healthy? By trying to explain the sexual dimorphism in life expectancy, both biological and environmental aspects are presently being addressed. Besides age-related changes, both the immune and the endocrine system exhibit significant sex-specific differences. This review deals with the aging immune system and its interplay with sex steroid hormones. Together, they impact on the etiopathology of many infectious diseases, which are still the major causes of morbidity and mortality in people at old age. Among men, susceptibilities toward many infectious diseases and the corresponding mortality rates are higher. Responses to various types of vaccination are often higher among women thereby also mounting stronger humoral responses. Women appear immune-privileged. The major sex steroid hormones exhibit opposing effects on cells of both the adaptive and the innate immune system: estradiol being mainly enhancing, testosterone by and large suppressive. However, levels of sex hormones change with age. At menopause transition, dropping estradiol potentially enhances immunosenescence effects posing postmenopausal women at additional, yet specific risks. Conclusively during aging, interventions, which distinctively consider the changing level of individual hormones, shall provide potent options in maintaining optimal immune functions.

  12. Factors Affecting Spatial Test Performance: Sex, Handedness, Birth Order, and Experience.

    ERIC Educational Resources Information Center

    Guay, Roland B.

    Four factors have been reported in the literature as being related to spatial test performance. This study investigated the main and interaction effects of sex, handedness, birth order, and experience on three different types of spatial performance; surface development, object rotation, and coordination of viewpoints. A total of 217 undergraduate…

  13. Lip colour affects perceived sex typicality and attractiveness of human faces.

    PubMed

    Stephen, Ian D; McKeegan, Angela M

    2010-01-01

    The luminance contrast between facial features and facial skin is greater in women than in men, and women's use of make-up enhances this contrast. In black-and-white photographs, increased luminance contrast enhances femininity and attractiveness in women's faces, but reduces masculinity and attractiveness in men's faces. In Caucasians, much of the contrast between the lips and facial skin is in redness. Red lips have been considered attractive in women in geographically and temporally diverse cultures, possibly because they mimic vasodilation associated with sexual arousal. Here, we investigate the effects of lip luminance and colour contrast on the attractiveness and sex typicality (masculinity/femininity) of human faces. In a Caucasian sample, we allowed participants to manipulate the colour of the lips in colour-calibrated face photographs along CIELab L* (light--dark), a* (red--green), and b* (yellow--blue) axes to enhance apparent attractiveness and sex typicality. Participants increased redness contrast to enhance femininity and attractiveness of female faces, but reduced redness contrast to enhance masculinity of men's faces. Lip blueness was reduced more in female than male faces. Increased lightness contrast enhanced the attractiveness of both sexes, and had little effect on perceptions of sex typicality. The association between lip colour contrast and attractiveness in women's faces may be attributable to its association with oxygenated blood perfusion indicating oestrogen levels, sexual arousal, and cardiac and respiratory health.

  14. Flying faster: Flight height affects orthokinetic responses during moth flight to sex pheromone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Male Grapholita molesta (Busck) were allowed to fly upwind along horizontal sex pheromone plumes in laboratory flight tunnels. Flying males experienced tunnel-width stripes perpendicular to the wind line, or pseudo randomly distributed dots (5cm diameter, equal to stripe width), and their flights we...

  15. SRY directly regulates the neurotrophin 3 promoter during male sex determination and testis development in rats.

    PubMed

    Clement, Tracy M; Bhandari, Ramji K; Sadler-Riggleman, Ingrid; Skinner, Michael K

    2011-08-01

    Neurotrophin 3 (Ntf3) is expressed in Sertoli cells and acts as a chemo-attractant for cell migration from the mesonephros into the developing testis, a process critical to the early morphological events of testis cord formation. The male sex-determining gene Sry initiates the process of testicular development. Sox9 is a key regulator of male sex determination and is directly regulated by SRY. Information on other downstream target genes of SRY is limited. The current study demonstrates an interaction of SRY with the Ntf3 promoter both in vitro and in vivo. The Ntf3 promoter in both rat and mouse contains at least one putative SRY binding site in the -0.6 kb promoter region. In a luciferase reporter assay system, both SRY and SOX9 stimulated the Ntf3 promoter in vitro through an interaction with this SRY-binding motif. In an immunoprecipitation-based pull-down assay, recombinant SRY protein bound the Ntf3 promoter fragment containing an intact SRY binding site, whereas the same protein did not interact with the fragment containing a mutated SRY motif. Specific antibodies against SRY were used in a chromatin immunoprecipitation (ChIP) assay of embryonic testis and were found to precipitate the Ntf3 promoter region. The SRY ChIP assay confirmed the direct interaction between SRY and the Ntf3 promoter in vivo during male sex determination. Observations suggest that SRY physically interacts with the Ntf3 promoter during male sex determination to coordinate cell migration in the testis to form testis cords.

  16. Independent evolutionary origin of fem paralogous genes and complementary sex determination in hymenopteran insects.

    PubMed

    Koch, Vasco; Nissen, Inga; Schmitt, Björn D; Beye, Martin

    2014-01-01

    The primary signal of sex determination in the honeybee, the complementary sex determiner (csd) gene, evolved from a gene duplication event from an ancestral copy of the fem gene. Recently, other paralogs of the fem gene have been identified in several ant and bumblebee genomes. This discovery and the close phylogenetic relationship of the paralogous gene sequences led to the hypothesis of a single ancestry of the csd genetic system of complementary sex determination in the Hymenopteran insects, in which the fem and csd gene copies evolved as a unit in concert with the mutual transfers of sequences (concerted evolution). Here, we show that the paralogous gene copies evolved repeatedly through independent gene duplication events in the honeybee, bumblebee, and ant lineage. We detected no sequence tracts that would indicate a DNA transfer between the fem and the fem1/csd genes between different ant and bee species. Instead, we found tracts of duplication events in other genomic locations, suggesting that gene duplication was a frequent event in the evolution of these genes. These and other evidences suggest that the fem1/csd gene originated repeatedly through gene duplications in the bumblebee, honeybee, and ant lineages in the last 100 million years. Signatures of concerted evolution were not detectable, implicating that the gene tree based on neutral synonymous sites represents the phylogenetic relationships and origins of the fem and fem1/csd genes. Our results further imply that the fem1 and csd gene in bumblebees, honeybees, and ants are not orthologs, because they originated independently from the fem gene. Hence, the widely shared and conserved complementary sex determination mechanism in Hymenopteran insects is controlled by different genes and molecular processes. These findings highlight the limits of comparative genomics and emphasize the requirement to study gene functions in different species and major hymenopteran lineages.

  17. Epigenetic Regulation of the Sex Determination Gene MeGI in Polyploid Persimmon[OPEN

    PubMed Central

    Kawai, Takashi; Tao, Ryutaro

    2016-01-01

    Epigenetic regulation can add a flexible layer to genetic variation, potentially enabling long-term but reversible cis-regulatory changes to an allele while maintaining its DNA sequence. Here, we present a case in which alternative epigenetic states lead to reversible sex determination in the hexaploid persimmon Diospyros kaki. Previously, we elucidated the molecular mechanism of sex determination in diploid persimmon and demonstrated the action of a Y-encoded sex determinant pseudogene called OGI, which produces small RNAs targeting the autosomal gene MeGI, resulting in separate male and female individuals (dioecy). We contrast these findings with the discovery, in hexaploid persimmon, of an additional layer of regulation in the form of DNA methylation of the MeGI promoter associated with the production of both male and female flowers in genetically male trees. Consistent with this model, developing male buds exhibited higher methylation levels across the MeGI promoter than developing female flowers from either monoecious or female trees. Additionally, a DNA methylation inhibitor induced developing male buds to form feminized flowers. Concurrently, in Y-chromosome-carrying trees, the expression of OGI is silenced by the presence of a SINE (short interspersed nuclear element)-like insertion in the OGI promoter. Our findings provide an example of an adaptive scenario involving epigenetic plasticity. PMID:27956470

  18. Metric Sex Determination of the Human Coxal Bone on a Virtual Sample using Decision Trees.

    PubMed

    Savall, Frédéric; Faruch-Bilfeld, Marie; Dedouit, Fabrice; Sans, Nicolas; Rousseau, Hervé; Rougé, Daniel; Telmon, Norbert

    2015-11-01

    Decision trees provide an alternative to multivariate discriminant analysis, which is still the most commonly used in anthropometric studies. Our study analyzed the metric characterization of a recent virtual sample of 113 coxal bones using decision trees for sex determination. From 17 osteometric type I landmarks, a dataset was built with five classic distances traditionally reported in the literature and six new distances selected using the two-step ratio method. A ten-fold cross-validation was performed, and a decision tree was established on two subsamples (training and test sets). The decision tree established on the training set included three nodes and its application to the test set correctly classified 92% of individuals. This percentage was similar to the data of the literature. The usefulness of decision trees has been demonstrated in numerous fields. They have been already used in sex determination, body mass prediction, and ancestry estimation. This study shows another use of decision trees enabling simple and accurate sex determination.

  19. De novo transcriptome sequencing to identify the sex-determination genes in Hyriopsis schlegelii.

    PubMed

    Shi, Jianwu; Hong, Yijiang; Sheng, Junqing; Peng, Kou; Wang, Junhua

    2015-01-01

    This study presents the first analysis of expressed transcripts in the spermary and ovary of Hyriopsis schlegelii (H. schlegelii). A total of 132,055 unigenes were obtained and 31,781 of these genes were annotated. In addition, 19,511 upregulated and 25,911 downregulated unigenes were identified in the spermary. Ten sex-determination genes were selected and further analyzed by real-time PCR. In addition, mammalian genes reported to govern sex-determination pathways, including Sry, Dmrt1, Dmrt2, Sox9, GATA4, and WT1 in males and Wnt4, Rspo1, Foxl2, and β-catenin in females, were also identified in H. schlegelii. These results suggest that H. schlegelii and mammals use similar gene regulatory mechanisms to control sex determination. Moreover, genes associated with dosage compensation mechanisms, such as Msl1, Msl2, and Msl3, and hermaphrodite phenotypes, such as Tra-1, Tra-2α, Tra-2β, Fem1A, Fem1B, and Fem1C, were also identified in H. schlegelii. The identification of these genes indicates that diverse regulatory mechanisms regulate sexual polymorphism in H. schlegelii.

  20. Comparing discriminant analysis and neural network for the determination of sex using femur head measurements.

    PubMed

    Alunni, Véronique; Jardin, Philippe du; Nogueira, Luisa; Buchet, Luc; Quatrehomme, Gérald

    2015-08-01

    The measurement of the femoral head is usually considered an interesting variable for the sex determination of skeletal remains. To date, there are few published reference measurements of the femoral head in a modern European population for the purpose of sex determination. In this study, 116 femurs from 58 individuals of the South of France (Nice Bone Collection, Nice, France) were studied. Three measurements of the femoral head were taken: the vertical head diameter (VHD), the transversal head diameter (THD) and the head circumference (HC). The results show that: (i) there is no statistical difference between the right and left femurs for each of the three measurements (VHD, THD and HC). Therefore we arbitrarily chose to use the measures from the right femurs (N=58) to pursue our experiments; (ii) the measurements of the femoral head are similar to those of contemporary American populations; (iii) the dimensions of the femoral head place the measurements of the French population somewhere between Germany or Croatia, and Spain; (iv) there is no significant secular trend (in contrast with the femoral neck diameter); (v) the femoral head measurement as a single variable is useful for sex determination: a 96.5% rate of accuracy was obtained using THD and HC measurements with the artificial neural network; and a 94.8% rate of accuracy using VHD, both with the discriminant analysis and the neural network.

  1. The candidate sex-reversing DAX1 gene is autosomal in marsupials: implications for the evolution of sex determination in mammals.

    PubMed

    Pask, A; Toder, R; Wilcox, S A; Camerino, G; Graves, J A

    1997-05-01

    The human X-linked DAX1 gene was cloned from the region of the short arm of the human X found in duplicate in sex-reversed Xdup Y females (E. Zanaria et al., 1994, Nature 372: 635-641). DAX1 is suggested to be required for ovarian differentiation and to play an important role in mammalian sex determination or differentiation pathways. Its proposed dose-dependent effect on sexual development suggests that DAX1 could represent an evolutionary link with an ancestral sex-determining mechanism that depended on the dosage of an X-linked gene. Furthermore, DAX1 could also represent the putative X-linked switch gene, which independently controls sexual dimorphisms in marsupial mammals in an X-dose-dependent manner (D.W. Cooper et al., 1993, Semin. Dev. 4: 117-128). If DAX1 has a present role in marsupial sexual differentiation or had an ancestral role in mammalian sex determination, it would be expected to lie on the marsupial X chromosome, despite the autosomal localization of other human Xp genes. We therefore cloned and mapped the DAX1 gene in the tammar wallaby (Macropus eugenii). DAX1 was located on wallaby chromosome 5p near other human Xp genes, indicating that it was originally autosomal and that it is not involved in X-linked dose-dependent sex determination in an ancestral mammal nor in marsupial sexual differentiation.

  2. The candidate sex-reversing DAX1 gene is autosomal in marsupials: Implications for the evolution of sex determination in mammals

    SciTech Connect

    Pask, A.; Toder, R.; Wilcox, S.A.

    1997-05-01

    The human X-linked DAX1 gene was cloned from the region of the short arm of the human X found in duplicate in sex-reversed X{sub dup}Y females. DAX1 is suggested to be required for ovarian differentiation and to play an important role in mammalian sex determination or differentiation pathways. Its proposed dose-dependent effect on sexual development suggests that DAX1 could represent an evolutionary link with an ancestral sex-determining mechanism that depended on the dosage of an X-linked gene. Furthermore, DAX1 could also represent the putative X-linked switch gene, which independently controls sexual dimorphisms in marsupial mammals in an X-dose-dependent manner. If DAX1 has a present role in marsupial sexual differentiation or had an ancestral role in mammalian sex determination, it would be expected to lie on the marsupial X chromosome, despite the autosomal localization of other human Xp genes. We therefore cloned and mapped the DAX1 gene in the tammar wallaby (Macropus eugenii). DAX1 was located on wallaby chromosome 5p near other human Xp genes, indicating that it was originally autosomal and that it is not involved in X-linked dose-dependent sex determination in an ancestral mammal nor in marsupial sexual differentiation. 28 refs., 4 figs.

  3. Pathways from childhood abuse to prospective revictimization: depression, sex to reduce negative affect, and forecasted sexual behavior.

    PubMed

    Miron, Lynsey R; Orcutt, Holly K

    2014-11-01

    Research suggests that adverse events in childhood, such as childhood physical, sexual, and emotional abuse, confer risk for later sexual assault. Psychological distress, coping strategies, and sexual behavior may help explain the path from childhood abuse to revictimization. The present study explored how the use of sex to regulate negative affect (SRNA) operates independently, and in combination with other psychosocial factors to increase college women's (N=541) risk of experiencing prospective adult sexual assault (ASA). Sequential multiple mediator models in Mplus were used to assess the effect of three different forms of childhood abuse on prospective ASA, both independently and while controlling for other forms of childhood abuse. The indirect effect of adolescent sexual assault (AdolSA), depressive symptoms, SRNA, and participants' response to a sex-related vignette was tested using bias-corrected bootstrapping. In the full path model, childhood emotional abuse and AdolSA predicted ASA, while childhood physical and sexual abuse were directly associated with AdolSA, but not ASA. Additionally, depressive symptoms and participants' estimate of their likely behavior in a sex-related vignette directly predicted prospective ASA. Results using bootstrapping revealed that a history of childhood abuse predicted prospective ASA via diverse direct and indirect paths, as well as through a similar multiple mediator path. Overall, findings suggest that a combination of affective, coping, and sexual expectancy factors contribute to risk for revictimization in adult survivors of childhood abuse. Future research directions and targets for risk-reduction programming are discussed.

  4. Fine Mapping and Evolution of the Major Sex Determining Region in Turbot (Scophthalmus maximus)

    PubMed Central

    Taboada, Xoana; Hermida, Miguel; Pardo, Belén G.; Vera, Manuel; Piferrer, Francesc; Viñas, Ana; Bouza, Carmen; Martínez, Paulino

    2014-01-01

    Fish sex determination (SD) systems are varied, suggesting evolutionary changes including either multiple evolution origins of genetic SD from nongenetic systems (such as environmental SD) and/or turnover events replacing one genetic system by another. When genetic SD is found, cytological differentiation between the two members of the sex chromosome pair is often minor or undetectable. The turbot (Scophthalmus maximus), a valuable commercial flatfish, has a ZZ/ZW system and a major SD region on linkage group 5 (LG5), but there are also other minor genetic and environmental influences. We here report refined mapping of the turbot SD region, supported by comparative mapping with model fish species, to identify the turbot master SD gene. Six genes were located to the SD region, two of them associated with gonad development (sox2 and dnajc19). All showed a high association with sex within families (P = 0), but not at the population level, so they are probably partially sex-linked genes, but not SD gene itself. Analysis of crossovers in LG5 using two families confirmed a ZZ/ZW system in turbot and suggested a revised map position for the master gene. Genetic diversity and differentiation for 25 LG5 genetic markers showed no differences between males and females sampled from a wild population, suggesting a recent origin of the SD region in turbot. We also analyzed associations with markers of the most relevant sex-related linkage groups in brill (S. rhombus), a closely related species to turbot; the data suggest that an ancient XX/XY system in brill changed to a ZZ/ZW mechanism in turbot. PMID:25106948

  5. Sex as a determinant of relapse incidence and progressive course of multiple sclerosis.

    PubMed

    Kalincik, Tomas; Vivek, Vino; Jokubaitis, Vilija; Lechner-Scott, Jeannette; Trojano, Maria; Izquierdo, Guillermo; Lugaresi, Alessandra; Grand'maison, Francois; Hupperts, Raymond; Oreja-Guevara, Celia; Bergamaschi, Roberto; Iuliano, Gerardo; Alroughani, Raed; Van Pesch, Vincent; Amato, Maria Pia; Slee, Mark; Verheul, Freek; Fernandez-Bolanos, Ricardo; Fiol, Marcela; Spitaleri, Daniele La; Cristiano, Edgardo; Gray, Orla; Cabrera-Gomez, Jose Antonio; Shaygannejad, Vahid; Herbert, Joseph; Vucic, Steve; Needham, Merilee; Petkovska-Boskova, Tatjana; Sirbu, Carmen-Adella; Duquette, Pierre; Girard, Marc; Grammond, Pierre; Boz, Cavit; Giuliani, Giorgio; Rio, Maria Edite; Barnett, Michael; Flechter, Shlomo; Moore, Fraser; Singhal, Bhim; Bacile, Elizabeth Alejandra; Saladino, Maria Laura; Shaw, Cameron; Skromne, Eli; Poehlau, Dieter; Vella, Norbert; Spelman, Timothy; Liew, Danny; Kilpatrick, Trevor J; Butzkueven, Helmut

    2013-12-01

    The aim of this work was to evaluate sex differences in the incidence of multiple sclerosis relapses; assess the relationship between sex and primary progressive disease course; and compare effects of age and disease duration on relapse incidence. Annualized relapse rates were calculated using the MSBase registry. Patients with incomplete data or <1 year of follow-up were excluded. Patients with primary progressive multiple sclerosis were only included in the sex ratio analysis. Relapse incidences over 40 years of multiple sclerosis or 70 years of age were compared between females and males with Andersen-Gill and Tweedie models. Female-to-male ratios stratified by annual relapse count were evaluated across disease duration and patient age and compared between relapse-onset and primary progressive multiple sclerosis. The study cohort consisted of 11 570 eligible patients with relapse-onset and 881 patients with primary progressive multiple sclerosis. Among the relapse-onset patients (82 552 patient-years), 48,362 relapses were recorded. Relapse frequency was 17.7% higher in females compared with males. Within the initial 5 years, the female-to-male ratio increased from 2.3:1 to 3.3:1 in patients with 0 versus ≥4 relapses per year, respectively. The magnitude of this sex effect increased at longer disease duration and older age (P < 10(-12)). However, the female-to-male ratio in patients with relapse-onset multiple sclerosis and zero relapses in any given year was double that of the patients with primary progressive multiple sclerosis. Patient age was a more important determinant of decline in relapse incidence than disease duration (P < 10(-12)). Females are predisposed to higher relapse activity than males. However, this difference does not explain the markedly lower female-to-male sex ratio in primary progressive multiple sclerosis. Decline in relapse activity over time is more closely related to patient age than disease duration.

  6. Sex differences in parking are affected by biological and social factors.

    PubMed

    Wolf, Claudia C; Ocklenburg, Sebastian; Oren, Beyza; Becker, Cordula; Hofstätter, Andrea; Bös, Christa; Popken, Markus; Thorstensen, Truls; Güntürkün, Onur

    2010-07-01

    The stereotype of women's limited parking skills is deeply anchored in modern culture. Although laboratory tests prove men's average superiority in visuospatial tasks and parking requires complex, spatial skills, underlying mechanisms remain unexplored. Here, we investigated performance of beginners (nine women, eight men) and more experienced drivers (21 women, 27 men) at different parking manoeuvres. Furthermore, subjects conducted the mental rotation test and self-assessed their parking skills. We show that men park more accurately and especially faster than women. Performance is related to mental rotation skills and self-assessment in beginners, but only to self-assessment in more experienced drivers. We assume that, due to differential feedback, self-assessment incrementally replaces the controlling influence of mental rotation, as parking is trained with increasing experience. Results suggest that sex differences in spatial cognition persist in real-life situations, but that socio-psychological factors modulate the biological causes of sex differences.

  7. An analysis of factors affecting attitudes toward same-sex marriage: do the media matter?

    PubMed

    Lee, Tien-Tsung; Hicks, Gary R

    2011-01-01

    Using a survey of more than 5,000 American consumers, this study examines connections between attitudes toward same-sex marriage and media consumption. A positive attitude is predicted by being liberal and less religious, supporting gender and racial equality, willing to try anything once, considering television the primary form of entertainment, watching political talk shows, and reading blogs. The theoretical and methodological contributions and real-world implications of these findings are discussed.

  8. Factors Affecting Growth of Tengmalm's Owl (Aegolius funereus) Nestlings: Prey Abundance, Sex and Hatching Order.

    PubMed

    Zárybnická, Markéta; Riegert, Jan; Brejšková, Lucie; Šindelář, Jiří; Kouba, Marek; Hanel, Jan; Popelková, Alena; Menclová, Petra; Tomášek, Václav; Šťastný, Karel

    2015-01-01

    In altricial birds, energy supply during growth is a major predictor of the physical condition and survival prospects of fledglings. A number of experimental studies have shown that nestling body mass and wing length can vary with particular extrinsic factors, but between-year observational data on this topic are scarce. Based on a seven-year observational study in a central European Tengmalm's owl population we examine the effect of year, brood size, hatching order, and sex on nestling body mass and wing length, as well as the effect of prey abundance on parameters of growth curve. We found that nestling body mass varied among years, and parameters of growth curve, i.e. growth rate and inflection point in particular, increased with increasing abundance of the owl's main prey (Apodemus mice, Microtus voles), and pooled prey abundance (Apodemus mice, Microtus voles, and Sorex shrews). Furthermore, nestling body mass varied with hatching order and between sexes being larger for females and for the first-hatched brood mates. Brood size had no effect on nestling body mass. Simultaneously, we found no effect of year, brood size, hatching order, or sex on the wing length of nestlings. Our findings suggest that in this temperate owl population, nestling body mass is more sensitive to prey abundance than is wing length. The latter is probably more limited by the physiology of the species.

  9. The sex of the foetus affects maternal blood glucose concentrations in overweight and obese pregnant women.

    PubMed

    Seneviratne, Sumudu N; Derraik, José G B; Jiang, Yannan; McCowan, Lesley M E; Gusso, Silmara; Cutfield, Wayne S; Hofman, Paul L

    2016-12-26

    There is increasing evidence that the sex of the foetus may alter the maternal metabolic milieu during pregnancy. Following a randomized controlled trial of exercise in overweight and obese pregnant women, we assessed whether the sex of the foetus was associated with changes in maternal metabolism. Data were analysed on 74 randomized participants who completed the trial, including 38 mothers carrying males and 36 mothers carrying females. At 19 weeks of gestation, mothers carrying boys had higher blood glucose concentrations than those carrying girls (5.4 vs 4.9 mmol/l; p = .046). At 36 weeks of gestation, differences were more marked, with blood glucose concentrations 15% higher in mothers carrying females (5.7 vs 5.0 mmol/l; p = .004). In addition, mothers carrying girls had higher concentrations of hs-CRP across pregnancy (5.0 vs 3.6 mg/l; p = .029). Our findings provide further evidence that the sex of the foetus appears to influence maternal metabolism.

  10. Automatic sex determination of skulls based on a statistical shape model.

    PubMed

    Luo, Li; Wang, Mengyang; Tian, Yun; Duan, Fuqing; Wu, Zhongke; Zhou, Mingquan; Rozenholc, Yves

    2013-01-01

    Sex determination from skeletons is an important research subject in forensic medicine. Previous skeletal sex assessments are through subjective visual analysis by anthropologists or metric analysis of sexually dimorphic features. In this work, we present an automatic sex determination method for 3D digital skulls, in which a statistical shape model for skulls is constructed, which projects the high-dimensional skull data into a low-dimensional shape space, and Fisher discriminant analysis is used to classify skulls in the shape space. This method combines the advantages of metrical and morphological methods. It is easy to use without professional qualification and tedious manual measurement. With a group of Chinese skulls including 127 males and 81 females, we choose 92 males and 58 females to establish the discriminant model and validate the model with the other skulls. The correct rate is 95.7% and 91.4% for females and males, respectively. Leave-one-out test also shows that the method has a high accuracy.

  11. Endoscopic sex determination and gonadal manipulation in Gulf of Mexico sturgeon (Acipenser oxyrinchus desotoi).

    PubMed

    Hernandez-Divers, Stephen J; Bakal, Robert S; Hickson, Brian H; Rawlings, Clarence A; Wilson, Heather G; Radlinsky, MaryAnn; Hernandez-Divers, Sonia M; Dover, Samuel R

    2004-12-01

    Seventeen Gulf of Mexico sturgeons (Acipenser oxyrinchus desotoi) underwent endoscopic sex determination, gonadal biopsy, and various reproductive surgeries as part of a conservation development plan. The fish were anesthetized with tricaine methanesulfonate (MS-222) buffered with sodium bicarbonate and maintained on a recirculating water anesthesia circuit. A 6-mm Ternamian EndoTip Cannula, placed through the ventral midline, midway between pectoral and pelvic fins, permitted the introduction of a 5-mm telescope. Swim bladder aspiration and CO2 insufflation of the coelomic cavity provided excellent observation. Second and third cannulae were placed under direct visual control, lateral and cranial or caudal to the telescope cannula. Sex determination was successfully performed in all fish; however, five of 17 sturgeons (29%) required endoscopic gonadal biopsy to confirm sex. Bilateral ovariectomy or orchidectomy was successfully performed in three males and four females. Unilateral ovariectomy and bilateral ligation of the müllerian ducts using an extracorporeal suturing technique was accomplished in an additional three females. No apparent morbidity was associated with the anesthesia or endoscopic surgery in any fish. The ability to safely perform minimally invasive reproductive surgery in fish may have important management and conservation benefits.

  12. Evaluation of a nonlethal technique for determining sex of freshwater mussels

    USGS Publications Warehouse

    Saha, S.; Layzer, J.B.

    2008-01-01

    The shells of most North American freshwater mussel species are not sexually dimorphic. During the brooding period, gravid females can be identified by inspection of marsupial gills; however, it is difficult to separate nongravid females from males in species lacking sexual dimorphism. The ability to differentiate males from females throughout the year would assist mussel conservation and research. Our objective was to test the accuracy and safety of a method to determine the sex of live mussels. We used a syringe to extract ???0.2 mL of gonadal fluid from 67 Elliptio dilatata and 65 Actinonaias ligamentina. The fluid was stained and examined microscopically for developing gametes. This method was safe and effective for determining the sex of mussels. After 1 y, survival was indistinguishable between test and control groups for both species. We sacrificed 4 to 7 E. dilatata and A. ligamentina at 3-mo intervals and examined histological sections of gonads. Sex assigned from examination of gonadal fluid and histological sections agreed in most cases (E. dilatata: 100%, A. ligamentina: 89%). ?? 2008 by The North American Benthological Society.

  13. Sex determination by tooth size in a sample of Greek population.

    PubMed

    Mitsea, A G; Moraitis, K; Leon, G; Nicopoulou-Karayianni, K; Spiliopoulou, C

    2014-08-01

    Sex assessment from tooth measurements can be of major importance for forensic and bioarchaeological investigations, especially when only teeth or jaws are available. The purpose of this study is to assess the reliability and applicability of establishing sex identity in a sample of Greek population using the discriminant function proposed by Rösing et al. (1995). The study comprised of 172 dental casts derived from two private orthodontic clinics in Athens. The individuals were randomly selected and all had clear medical history. The mesiodistal crown diameters of all the teeth were measured apart from those of the 3rd molars. The values quoted for the sample to which the discriminant function was first applied were similar to those obtained for the Greek sample. The results of the preliminary statistical analysis did not support the use of the specific discriminant function for a reliable determination of sex by means of the mesiodistal diameter of the teeth. However, there was considerable variation between different populations and this might explain the reason for lack of discriminating power of the specific function in the Greek population. In order to investigate whether a better discriminant function could be obtained using the Greek data, separate discriminant function analysis was performed on the same teeth and a different equation emerged without, however, any real improvement in the classification process, with an overall correct classification of 72%. The results showed that there were a considerably higher percentage of females correctly classified than males. The results lead to the conclusion that the use of the mesiodistal diameter of teeth is not as a reliable method as one would have expected for determining sex of human remains from a forensic context. Therefore, this method could be used only in combination with other identification approaches.

  14. Transition from Environmental to Partial Genetic Sex Determination in Daphnia through the Evolution of a Female-Determining Incipient W Chromosome.

    PubMed

    Reisser, Céline M O; Fasel, Dominique; Hürlimann, Evelin; Dukič, Marinela; Haag-Liautard, Cathy; Thuillier, Virginie; Galimov, Yan; Haag, Christoph R

    2016-12-21

    Sex chromosomes can evolve during the evolution of genetic sex determination (GSD) from environmental sex determination (ESD). Despite theoretical attention, early mechanisms involved in the transition from ESD to GSD have yet to be studied in nature. No mixed ESD-GSD animal species have been reported, except for some species of Daphnia, small freshwater crustaceans in which sex is usually determined solely by the environment, but in which a dominant female sex-determining locus is present in some populations. This locus follows Mendelian single-locus inheritance, but has otherwise not been characterized genetically. We now show that the sex-determining genomic region maps to the same low-recombining peri-centromeric region of linkage group 3 (LG3) in three highly divergent populations of D. magna, and spans 3.6 Mb. Despite low levels of recombination, the associated region contains signs of historical recombination, suggesting a role for selection acting on several genes thereby maintaining linkage disequilibrium among the 36 associated SNPs. The region carries numerous genes involved in sex differentiation in other taxa, including transformer2 and sox9 Taken together, the region determining the genetic females shows characteristics of a sex-related supergene, suggesting that LG3 is potentially an incipient W chromosome despite the lack of significant additional restriction of recombination between Z and W. The occurrence of the female-determining locus in a pre-existing low recombining region illustrates one possible form of recombination suppression in sex chromosomes. D. magna is a promising model for studying the evolutionary transitions from ESD to GSD and early sex chromosome evolution.

  15. Determination of sex by exfoliative cytology using acridine orange confocal microscopy: A short study

    PubMed Central

    Reddy, D Shyam Prasad; Sherlin, Herald J; Ramani, Pratibha; Prakash, P Ajay

    2012-01-01

    Context: Establishing individuality is an imperative aspect in any investigation procedure. Sometimes, in identifying an individual, it becomes necessary to determine the sex of that particular individual. Combining rapidity with reliability, an innovative idea has been put forward using a confocal microscope in exfoliative cytology. In the present study, we have determined the sex of the individual from buccal mucosal scrapings. The exfoliative cells were observed for Barr bodies under a confocal microscope, and the percentage of Barr-body-positive cells was determined. Aims: The main objective of this study is to assess confocal microscopy for the determination of sex by observing Barr bodies in the exfoliative cells of both men and women. Settings and Design: Samples of buccal mucosa smears were made followed by acridine orange staining. The stained slides were observed under a confocal microscope and the data obtained was subjected for statistical analysis, especially for mean and standard deviation. Materials and Methods: Samples of buccal mucosa smears from 20 men and 20 women were obtained by scraping with flat wooden sticks (exfoliative cytology). The smears were fixed in 100% alcohol for 15 min, followed by acridine orange (AO) staining as described by Von Bertalanffy et al. Smears stained with AO were examined under a confocal microscope and the percentage of Barr-body-positive cells was determined. Statistical Analysis Used: Data obtained was subjected for statistical analysis, especially for mean and standard deviation. Results: Two non-overlapping ranges for the percentage of Barr-body-positive cells have been obtained for men and women. It was observed that in the male samples, the percentage of Barr-body-positive cells ranged from 0-3%. In the female samples, the percentage of Barr-body-positive cells ranged from 18-72%, and all the females showed the presence of Barr bodies. Conclusion: The study showed that the presence of Barr body in buccal

  16. The roles of Dmrt (Double sex/Male-abnormal-3 Related Transcription factor) genes in sex determination and differentiation mechanisms: Ubiquity and diversity across the animal kingdom.

    PubMed

    Picard, Marion Anne-Lise; Cosseau, Céline; Mouahid, Gabriel; Duval, David; Grunau, Christoph; Toulza, Ève; Allienne, Jean-François; Boissier, Jérôme

    2015-07-01

    The Dmrt (Double sex/Male-abnormal-3 Related Transcription factor) genes have been intensively studied because they represent major transcription factors in the pathways governing sex determination and differentiation. These genes have been identified in animal groups ranging from cnidarians to mammals, and some of the genes functionally studied. Here, we propose to analyze (i) the presence/absence of various Dmrt gene groups in the different taxa across the animal kingdom; (ii) the relative expression levels of the Dmrt genes in each sex; (iii) the specific spatial (by organ) and temporal (by developmental stage) variations in gene expression. This review considers non-mammalian animals at all levels of study (i.e. no particular importance is given to animal models), and using all types of sexual strategy (hermaphroditic or gonochoric) and means of sex determination (i.e. genetic or environmental). To conclude this global comparison, we offer an analysis of the DM domains conserved among the different DMRT proteins, and propose a general sex-specific pattern for each member of the Dmrt gene family.

  17. GLOBAL EPIDEMIOLOGY OF HIV AMONG FEMALE SEX WORKERS: INFLUENCE OF STRUCTURAL DETERMINANTS

    PubMed Central

    Shannon, K; Strathdee, SA; Goldenberg, SM; Duff, P; Mwangi, P; Rusakova, M; Reza-Paul, S; Lau, J; Deering, K; Pickles, M; Boily, M-C

    2014-01-01

    SUMMARY Female sex workers (FSWs) bear a disproportionately large burden of HIV infection worldwide. Despite decades of research and programme activity, the epidemiology of HIV and the role that structural determinants have in mitigating or potentiating HIV epidemics and access to care for FSWs is poorly understood. We reviewed available published data for HIV prevalence and incidence, condom use, and structural determinants among this group. Only 87 (43%) of 204 unique studies reviewed explicitly examined structural determinants of HIV. Most studies were from Asia, with few from areas with a heavy burden of HIV such as sub-Saharan Africa, Russia, and eastern Europe. To further explore the potential effect of structural determinants on the course of epidemics, we used a deterministic transmission model to simulate potential HIV infections averted through structural changes in regions with concentrated and generalised epidemics, and high HIV prevalence among FSWs. This modelling suggested that elimination of sexual violence alone could avert 17% of HIV infections in Kenya (95% uncertainty interval [UI] 1–31) and 20% in Canada (95% UI 3–39) through its immediate and sustained effect on non-condom use) among FSWs and their clients in the next decade. In Kenya, scaling up of access to antiretroviral therapy among FSWs and their clients to meet WHO eligibility of a CD4 cell count of less than 500 cells per μL could avert 34% (95% UI 25–42) of infections and even modest coverage of sex worker-led outreach could avert 20% (95% UI 8–36) of infections in the next decade. Decriminalisation of sex work would have the greatest effect on the course of HIV epidemics across all settings, averting 33–46% of HIV infections in the next decade. Multipronged structural and community-led interventions are crucial to increase access to prevention and treatment and to promote human rights for FSWs worldwide. PMID:25059947

  18. Food deprivation and leptin prioritize ingestive and sex behavior without affecting estrous cycles in Syrian hamsters.

    PubMed

    Schneider, Jill E; Casper, Janelle F; Barisich, Amanda; Schoengold, Candace; Cherry, Sandeep; Surico, Justine; DeBarba, Ashley; Fabris, Frank; Rabold, Elizabeth

    2007-03-01

    Energy consumption is critical for the energetically expensive processes related to reproduction, and thus, mechanisms that increase ingestive behavior are directly linked to reproductive success. Similarly, the mechanisms that inhibit hunger and ingestive behavior might be most adaptive when these mechanisms cause individuals to stop foraging, hoarding and eating in order to find and court potential mates. In the laboratory, ingestive behaviors are typically studied separately from reproductive behaviors even though it is likely that these behaviors evolved under conditions in which both food and mates were available. We examined the choice between paracopulatory and ingestive behaviors in a semi-natural environment in which both food and potential mates were available. Intact female Syrian hamsters showed a high preference for males on days 3 and 4 (day 4 being the day of ovulation and estrous behavior), and a 48-h period of food deprivation significantly decreased preference for sex and increased preference for eating and food hoarding on day 3 in 89% of the hamsters, although none became anestrous. The same period of food deprivation significantly decreased the level of vaginal marking without significant effects on plasma estradiol concentrations. Next, hamsters were either food deprived (FD) or fed ad libitum, and half of each group was treated with vehicle or the adipocyte hormone leptin. The percentage of females with a low preference for sex was significantly greater in the FD compared to the ad libitum-fed groups, and leptin treatment prevented this effect. Metabolic fuels, possibly acting through leptin and other hormones, might influence sensitivity to estradiol or enhance the downstream effects of estradiol, thereby increasing motivation for sex and decreasing the relative motivation to forage, hoard and eat food.

  19. Sesame ingestion affects sex hormones, antioxidant status, and blood lipids in postmenopausal women.

    PubMed

    Wu, Wen-Huey; Kang, Yu-Ping; Wang, Nai-Hung; Jou, Hei-Jen; Wang, Tzong-An

    2006-05-01

    Sesame ingestion has been shown to improve blood lipids in humans and antioxidative ability in animals. Sesamin, a sesame lignan, was recently reported to be converted by intestinal microflora to enterolactone, a compound with estrogenic activity and also an enterometabolite of flaxseed lignans, which are known to be phytoestrogens. Whether sesame can be a source of phytoestrogens is unknown. This study was designed to investigate the effect of sesame ingestion on blood sex hormones, lipids, tocopherol, and ex vivo LDL oxidation in postmenopausal women. Twenty-six healthy subjects attended, and 24 completed, this randomized, placebo-controlled, crossover study. Half of them consumed 50 g sesame seed powder daily for 5 wk, followed by a 3-wk washout period, then a 5-wk 50-g rice powder placebo period. The other half received the 2 supplements in reverse order. After sesame treatment, plasma total cholesterol (TC), LDL-C, the ratio of LDL-C to HDL-C, thiobarbituric acid reactive substances in oxidized LDL, and serum dehydroepiandrosterone sulfate decreased significantly by 5, 10, 6, 23, and 18%, respectively. The ratio of alpha- and gamma-tocopherol to TC increased significantly by 18 and 73%, respectively. All of these variables differed significantly between the 2 treatments. Serum sex hormone-binding globulin and urinary 2-hydroxyestrone (n = 8) increased significantly by 15 and 72%, respectively, after sesame treatment, and these concentrations tended to differ (P = 0.065 and P = 0.090, respectively) from those after the placebo treatment. These results suggest that sesame ingestion benefits postmenopausal women by improving blood lipids, antioxidant status, and possibly sex hormone status.

  20. Sex determination of early medieval individuals through nested PCR using a new primer set in the SRY gene.

    PubMed

    Luptáková, Lenka; Bábelová, Andrea; Omelka, Radoslav; Kolena, Branislav; Vondráková, Mária; Bauerová, Mária

    2011-04-15

    One of the first questions asked about excavated human skeletal remains is the sex. As the morphological sex determination is complicated in cases involving fragmentary bones and in skeletons from infants and children, the development of DNA-based techniques has led to improvements in sex determination. This study is focused on sex determination from ancient DNA obtained from 25 skeletons found in Middle Aged burials in western Slovakia. We performed separate amplifications of DXZ4 repetitive satellite sequences on the X chromosome, and SRY gene - testis determined factor on the Y chromosome, using nested PCR. Our results showed that DXZ4 was amplified in the case of 23 individuals. With newly designed internal and external primer sets for SRY detection with internal PCR products in lengths of 102 bp and 85 bp we succeeded in detecting the SRY locus in 9 samples. Finally, the gender was determined in 23 individuals (14 females and 9 males). In 20 samples, the gender was determined by morphological and molecular methods. Sex determination of 17 samples using nested PCR matched the morphological one, providing evidence of the authenticity and ancient origin of the PCR amplifications. The DXZ4/SRY nested PCR method represents a useful technique in sex determination of medieval human remains and it is a critical addition to anthropological studies.

  1. Comparison of histological, genetic, metabolomics, and lipid-based methods for sex determination in marine mussels.

    PubMed

    Hines, Adam; Yeung, Wai Ho; Craft, John; Brown, Margaret; Kennedy, Jill; Bignell, John; Stentiford, Grant D; Viant, Mark R

    2007-10-15

    Omics technologies are increasingly being used to monitor organismal responses to environmental stressors. Previous studies have shown that species identification, an appreciation of life history traits, and organism phenotype (e.g., gender) are essential for the accurate interpretation of omics data from field samples. As marine mussels are increasingly being used in ecotoxicogenomics and monitoring, a technique to determine mussel gender throughout their annual reproductive cycle is urgently needed. This study examines four methods for sex determination in the two mussel species found in the United Kingdom, Mytilus edulis and Mytilus galloprovincialis, and their hybrid. Each of these methods-histology, a lipid-based assay, a new reverse transcriptase polymerase chain reaction (RT-PCR) assay, and nuclear magnetic resonance (NMR)-based metabolomics-initially was evaluated using sexually mature ("ripe") mussels whose gender was clearly distinguishable using histology. The methods subsequently were tested on spawned ("spent") mussels. For ripe animals, all techniques yielded high classification accuracies: histology, 100%; RT-PCR, 94.6%; lipid analysis, 90.6%; and metabolomics, 89.5%. The gender of spent animals, however, could not be determined by histology (0%) or lipid analysis (55.6%), but RT-PCR (100%) and metabolomics (88.9%) both proved to be successful. In addition, the RT-PCR, metabolomics, and lipid-based methods identified animals of mixed sex. Our findings highlight the application of a novel RT-PCR method as a robust technique for gender determination of ripe and spent mussels.

  2. Neonatal handling affects learning, reversal learning and antioxidant enzymes activities in a sex-specific manner in rats.

    PubMed

    Noschang, Cristie; Krolow, Rachel; Arcego, Danusa Mar; Toniazzo, Ana Paula; Huffell, Ana Paula; Dalmaz, Carla

    2012-06-01

    Early life experiences have profound influences on behavior and neurochemical parameters in adult life. The aim of this study is to verify neonatal handling-induced sex specific differences on learning and reversal learning as well as oxidative stress parameters in the prefrontal cortex and striatum of adult rats. Litters of rats were non-handled or handled (10 min/day, days 1-10 after birth). In adulthood, learning and reversal learning were evaluated using a Y maze associated with palatable food in male and female rats. Morris water maze reversal learning was verified in males. Oxidative stress parameters were evaluated in both genders. Male neonatal handled animals had a worse performance in the Y maze reversal learning compared to non-handled ones and no difference was observed in the water maze reversal learning task. Regarding females, neonatal handled rats had a better performance during the Y maze learning phase compared to non-handled ones. In addition, neonatal handled female animals showed a decreased SOD/CAT ratio in the PFC compared to non-handled females. We conclude that neonatal handling effects on learning and memory in adult rats are sex and task specific. The sex specific differences are also observed in the evaluation of antioxidant enzymes activities with neonatal handling affecting only females.

  3. Socio-ecological features other than sex affect habitat selection in the socially obligate monogamous Eurasian beaver.

    PubMed

    Steyaert, Sam M J G; Zedrosser, Andreas; Rosell, Frank

    2015-12-01

    Habitat selection is a context-dependent mechanism, in which both the internal state as well as external factors affect the behavior and decisions of an individual. This is well known for polygamous mammals, which are typically sexually dimorphic, and often express great variability in behavior and habitat selection between individuals as well between the sexes. Among monogamous mammals, however, variability in habitat selection should be explained by group characteristics and the presence of offspring rather than by sex. We evaluated this hypothesis in a socially monogamous rodent, the Eurasian beaver (Castor fiber), in a saturated Norwegian population. For the first time in this species we applied GPS tracking devices (N = 22 adult beavers, in 15 territories, 2009-2013), and used resource selection functions (i) to document population-wide habitat selection and the importance of 'territory' therein, and (ii) to evaluate which socio-ecological factors explained potential individual differences in habitat selection. We found that variation in habitat selection was stronger between territories than between years or individuals nested by territory. We identified that family size and the presence of kits, but not sex, explained individual variation in habitat selection. Adults with kits and/or larger families tended to exhibit low risk-taking behavior (avoiding human-related variables such as roads, buildings, and agricultural land), and stayed close to their main lodge (parental care). Our results show that habitat selection is a context-dependent mechanism even in a species which expresses very little behavioral and morphological dimorphism.

  4. Cellular mechanisms of sex determination in the red-eared slider turtle, Trachemys scripta

    PubMed Central

    Yao, Humphrey H.-C.; DiNapoli, Leo; Capel, Blanche

    2014-01-01

    In all vertebrates sex determination is the step at which development of a testis or ovary is initiated in the bipotential gonad. Although Mus musculus and the red-eared slider turtle, Trachemys scripta, use different mechanisms to initiate organogenesis of the testis (the Y-linked gene, Sry, in the mouse vs. the incubation temperature of the egg in the turtle), the structure of the adult testis is strikingly similar. We have identified several cellular mechanisms involved in testis organogenesis in mouse. Here we investigated whether these cellular mechanisms are conserved in T. scripta downstream of the temperature-dependent switch. Cell tracing experiments indicated that the coelomic epithelium in T. scripta contributes precursors for Sertoli cells and interstitial cells as in mouse. However, we detect no male-specific mesonephric cell migration, a process required for the de novo testis cord-forming process in mouse. In contrast to mouse gonads, where no cord structure is discernible until after the divergence of testis development, we find that primitive sex cords continuous with the coelomic epithelium exist in all T. scripta gonads from the earliest bipotential stages examined. We conclude that typical testis architecture results from the maintenance and elaboration of primitive sex cords in T. scripta rather than the assembly of de novo structures as in mouse. PMID:15454268

  5. Protein-protein interactions among components of the Drosophila primary sex determination signal.

    PubMed

    Liu, Y; Belote, J M

    1995-07-28

    Sex determination in Drosophila melanogaster is initiated in the early embryo by a signal provided by three types of genes: (1) X-linked numerator elements [e.g., sisterless-a (sis-a) and sisterless-b (sis-b)], (2) autosomally linked denominator elements [e.g., deadpan (dpn)], and (3) maternal factors [e.g., daughterless (da)]. This signal acts to stimulate transcription from an embryo-specific promoter of the master regulatory gene Sex-lethal (Sxl) in embryos that have two X chromosomes (females), while it fails to activate Sxl in those with only one X (males). It has been previously proposed that competitive dimerizations among the components of this signal might provide the molecular basis for this sex specificity. Here, we use the yeast two-hybrid system to demonstrate specific protein-protein interactions among the above-mentioned factors, and to delimit their interacting domains. These results support and extend the model of the molecular basis of the X/A ratio signal.

  6. The Role of Genetic Sex in Affect Regulation and Expression of GABA-Related Genes Across Species

    PubMed Central

    Seney, Marianne L.; Chang, Lun-Ching; Oh, Hyunjung; Wang, Xingbin; Tseng, George C.; Lewis, David A.; Sibille, Etienne

    2013-01-01

    Although circulating hormones and inhibitory gamma-aminobutyric acid (GABA)-related factors are known to affect mood, considerable knowledge gaps persist for biological mechanisms underlying the female bias in mood disorders. Here, we combine human and mouse studies to investigate sexual dimorphism in the GABA system in the context of major depressive disorder (MDD) and then use a genetic model to dissect the role of sex-related factors in GABA-related gene expression and anxiety-/depressive-like behaviors in mice. First, using meta-analysis of gene array data in human postmortem brain (N = 51 MDD subjects, 50 controls), we show that the previously reported down-regulation in MDD of somatostatin (SST), a marker of a GABA neuron subtype, is significantly greater in women with MDD. Second, using gene co-expression network analysis in control human subjects (N = 214; two frontal cortex regions) and expression quantitative trait loci mapping (N = 170 subjects), we show that expression of SST and the GABA-synthesizing enzymes glutamate decarboxylase 67 (GAD67) and GAD65 are tightly co-regulated and influenced by X-chromosome genetic polymorphisms. Third, using a rodent genetic model [Four Core Genotypes (FCG) mice], in which genetic and gonadal sex are artificially dissociated (N ≥ 12/group), we show that genetic sex (i.e., X/Y-chromosome) influences both gene expression (lower Sst, Gad67, Gad65 in XY mice) and anxiety-like behaviors (higher in XY mice). This suggests that in an intact male animal, the observed behavior represents the outcomes of male genetic sex increasing and male-like testosterone decreasing anxiety-like behaviors. Gonadal sex was the only factor influencing depressive-like behavior (gonadal males < gonadal females). Collectively, these combined human and mouse studies provide mechanistic insight into sexual dimorphism in mood disorders, and specifically demonstrate an unexpected role of male-like factors (XY genetic sex) on

  7. Caste, sex and strain of honey bees (Apis mellifera) affect infestation with tracheal mites (Acarapis woodi).

    PubMed

    Villa, José D; Danka, Robert G

    2005-01-01

    Worker honey bees from genetic strains selected for being resistant (R) or susceptible (S) to tracheal mites typically show large differences in infestation in field colonies and in bioassays that involve controlled exposure to infested bees. We used bioassays exposing newly emerged individuals to infested workers to compare the propensity for tracheal mites to infest queens, drones and workers from R and S colonies. In tests with queens, newly emerged R and S queens were either simultaneously confined in infested colonies (n = 95 and 87 respectively), or individually caged with groups of 5-20 infested workers (n = 119 and 115 respectively). Mite prevalence (percentage of individuals infested) and abundance (foundress mites per individual) after 4-6 days did not differ between R and S queens. In another test, five newly emerged drones and workers from both an R and an S colony, and a queen of one of the two strains, were caged in each of 38 cages with 20 g of workers infested at 60-96% prevalence. Infestations of the R queens (n = 17) and S queens (n = 19) did not differ significantly, but R workers had half the mite abundance of S workers, while R drones received about a third more migrating mites than S drones. In tests to evaluate possible mechanisms, removal of one mesothoracic leg from R and S workers resulted in 2- to 10-fold increase in mite abundance on the treated side, but excising legs did not affect infestation of the corresponding tracheae in drones. This suggests that differences in infestation between R and S workers, but not drones, are largely determined by their ability to remove mites through autogrooming. If autogrooming is the primary mechanism of colony resistance to tracheal mites, selection for resistance to tracheal mites using infestation of hemizygous drones may be inefficient.

  8. Factors affecting incubation patterns and sex roles of black oystercatchers in Alaska

    USGS Publications Warehouse

    Spiegel, Caleb S.; Haig, Susan M.; Goldstein, Michael I.; Huso, Manuela M. P.

    2012-01-01

    Studies examining the effects of human disturbance on avian parental behavior and reproductive success are fundamental to bird conservation. However, many such studies fail to also consider the influence of natural threats, a variable environment, and parental roles. Our work examines interactive relationships of cyclical (time of day, tide, temperature, seasonality) and stochastic (natural/human disturbance) processes with incubation patterns (attendance, bout lengths, recess rates) of the Black Oystercatcher (Haematopus bachmani), a shorebird of conservation concern. We used 24-hour-per-day video monitoring of 13 molecularly-sexed breeding pairs to systematically examine incubation, revealing previously undocumented information that may inform conservation practices for the genus. Seven of 22 video-monitored nests failed, primarily from egg depredation by nocturnally-active mammals. Analyses of 3177 hrs of video footage indicated a near doubling of incubation bout lengths at night, corresponding to the increased risk of nighttime egg predation. Females had higher overall nest attendance (54% vs. 42%) and longer mean incubation bout lengths than males (88 min vs. 73 min). Uninterrupted incubation bouts were over twice as long as bouts interrupted by disturbance. Incubating males departed nests substantially more frequently due to nest-area disturbances than females in one, but not both, years of our study. Our findings suggest that sexes exhibit different, but complimentary, incubation patterns, facilitating efficient egg care in a dynamic environment with several nest threats. We emphasize the importance of considering natural influences when evaluating human threats to shorebird reproductive behavior and success.

  9. Sex ratio determination in bovine semen: a new approach by quantitative real time PCR.

    PubMed

    Parati, K; Bongioni, G; Aleandri, R; Galli, A

    2006-12-01

    Sex preselection of livestock offspring in cattle represents, nowadays, a big potential for genetic improvement and market demand satisfaction. Sperm sorting by flow cytometer provides a powerful tool for artificial insemination and production of predefined sexed embryos but, an accurate verification of the yield of sperm separation remains essential for a field application of this technique or for improvement and validation of other related semen sexing technologies. In this work a new method for the determination of the proportion of X- and Y-bearing spermatozoa in bovine semen sample was developed by real time PCR. Two sets of primers and internal TaqMan probes were designed on specific X- and Y-chromosome genes. To allow a direct quantification, a standard reference was established using two plasmid cDNA clones (ratio 1:1) for the specific gene targets. The method was validated by a series of accuracy, repeatability and reproducibility assays and by testing two sets of sorted and unsorted semen samples. A high degree of accuracy (98.9%), repeatability (CV=2.58%) and reproducibility (CV=2.57%) was shown. The results of X- and Y-sorted semen samples analysed by real time PCR and by flow cytometric reanalysis showed no significant difference (P>0.05). The evaluation of X-chromosome bearing sperms content in unsorted samples showed an average of 51.11+/-0.56% for ejaculates and 50.17+/-0.58% for the commercial semen. This new method for quantification of the sexual chromosome content in spermatozoa demonstrated to be rapid and reliable, providing a valid support to the sperm sexing technologies.

  10. High-density linkage mapping aided by transcriptomics documents ZW sex determination system in the Chinese mitten crab Eriocheir sinensis

    PubMed Central

    Cui, Z; Hui, M; Liu, Y; Song, C; Li, X; Li, Y; Liu, L; Shi, G; Wang, S; Li, F; Zhang, X; Liu, C; Xiang, J; Chu, K H

    2015-01-01

    The sex determination system in crabs is believed to be XY-XX from karyotypy, but centromeres could not be identified in some chromosomes and their morphology is not completely clear. Using quantitative trait locus mapping of the gender phenotype, we revealed a ZW-ZZ sex determination system in Eriocheir sinensis and presented a high-density linkage map covering ~98.5% of the genome, with 73 linkage groups corresponding to the haploid chromosome number. All sex-linked markers in the family we used were located on a single linkage group, LG60, and sex linkage was confirmed by genome-wide association studies (GWAS). Forty-six markers detected by GWAS were heterozygous and segregated only in the female parent. The female LG60 was thus the putative W chromosome, with the homologous male LG60 as the Z chromosome. The putative Z and W sex chromosomes were identical in size and carried many homologous loci. Sex ratio (5:1) skewing towards females in induced triploids using unrelated animals also supported a ZW-ZZ system. Transcriptome data were used to search for candidate sex-determining loci, but only one LG60 gene was identified as an ankyrin-2 gene. Double sex- and mab3-related transcription factor 1 (Dmrt1), a Z-linked gene in birds, was located on a putative autosome. With complete genome sequencing and transcriptomic data, more genes on putative sex chromosomes will be characterised, thus leading towards a comprehensive understanding of the sex determination and differentiation mechanisms of E. sinensis, and decapod crustaceans in general. PMID:25873149

  11. Assessment of cheiloscopy in sex determination using lysochrome - A preliminary study

    PubMed Central

    Ramakrishnan, Prabhath; Bahirwani, Shraddha; Valambath, Smruthi

    2015-01-01

    Introduction: The present study was undertaken with the objective of ascertaining whether latent lip prints generated by persistent lipsticks and developed using lysochrome dyes have the potential of use in sex determination and personal identification. Materials and Methods: This study included a total of 100 subjects (50 males and 50 females) whose latent lip prints were obtained by applying the persistent lipstick Revlon ColorStay Overtime® manufactured by Revlon® consumer products corporation, NewYork, USA, and lifting the prints with cellophane sheets. The prints were then developed using lysochrome dyes, and all the samples were blinded and then graded based on defined patterns from the Suzuki and Tsuchihashi classification. Results: No two lip prints were found to be alike. Type I was found to be the most prevalent type. In the female population, Type I (61%) was most prevalent, followed by Type I’ (28%), Type II (9%), Type III (2%), Type IV (1%), and Type V (1%); in the male population, Type I (33%) was most prevalent, followed by Type II (23%), Type III (18%), Type IV (14%), Type I’ (10%), and Type V (3%). Two examiners were able to determine the correct sexes from the given sample sizes. Their interobserver agreement was assessed using the kappa coefficient for males (κ =0.870) and females (κ = 0.870). Their accuracy was assessed with a confidence interval (CI) of 91.48-99.38. Conclusion: Lysochrome dyes are very efficacious in developing latent lip prints. This preliminary study has conclusively proved that latent lip prints developed with lysochrome dyes hold the potential for use in sex determination and can be maintained in a digital database. PMID:26816459

  12. Identification of floral genes for sex determination in Calamus palustris Griff. by using suppression subtractive hybridization.

    PubMed

    Ng, C Y; Wickneswari, R; Choong, C Y

    2014-08-07

    Calamus palustris Griff. is an economically important dioecious rattan species in Southeast Asia. However, dioecy and onset of flowering at 3-4 years old render uncertainties in desired female:male seedling ratios to establish a productive seed orchard for this rattan species. We constructed a subtractive library for male floral tissue to understand the genetic mechanism for gender determination in C. palustris. The s