Sample records for affect skeletal development

  1. Developing bones are differentially affected by compromised skeletal muscle formation

    PubMed Central

    Nowlan, Niamh C.; Bourdon, Céline; Dumas, Gérard; Tajbakhsh, Shahragim; Prendergast, Patrick J.; Murphy, Paula

    2010-01-01

    Mechanical forces are essential for normal adult bone function and repair, but the impact of prenatal muscle contractions on bone development remains to be explored in depth in mammalian model systems. In this study, we analyze skeletogenesis in two ‘muscleless’ mouse mutant models in which the formation of skeletal muscle development is disrupted; Myf5nlacZ/nlacZ:MyoD−/− and Pax3Sp/Sp (Splotch). Ossification centers were found to be differentially affected in the muscleless limbs, with significant decreases in bone formation in the scapula, humerus, ulna and femur, but not in the tibia. In the scapula and humerus, the morphologies of ossification centers were abnormal in muscleless limbs. Histology of the humerus revealed a decreased extent of the hypertrophic zone in mutant limbs but no change in the shape of this region. The elbow joint was also found to be clearly affected with a dramatic reduction in the joint line, while no abnormalities were evident in the knee. The humeral deltoid tuberosity was significantly reduced in size in the Myf5nlacZ/nlacZ:MyoD−/− mutants while a change in shape but not in size was found in the humeral tuberosities of the Pax3Sp/Sp mutants. We also examined skeletal development in a ‘reduced muscle’ model, the Myf5nlacZ/+:MyoD−/− mutant, in which skeletal muscle forms but with reduced muscle mass. The reduced muscle phenotype appeared to have an intermediate effect on skeletal development, with reduced bone formation in the scapula and humerus compared to controls, but not in other rudiments. In summary, we have demonstrated that skeletal development is differentially affected by the lack of skeletal muscle, with certain rudiments and joints being more severely affected than others. These findings indicate that the response of skeletal progenitor cells to biophysical stimuli may depend upon their location in the embryonic limb, implying a complex interaction between mechanical forces and location

  2. A Human Pluripotent Stem Cell Model of Facioscapulohumeral Muscular Dystrophy-Affected Skeletal Muscles.

    PubMed

    Caron, Leslie; Kher, Devaki; Lee, Kian Leong; McKernan, Robert; Dumevska, Biljana; Hidalgo, Alejandro; Li, Jia; Yang, Henry; Main, Heather; Ferri, Giulia; Petek, Lisa M; Poellinger, Lorenz; Miller, Daniel G; Gabellini, Davide; Schmidt, Uli

    2016-09-01

    : Facioscapulohumeral muscular dystrophy (FSHD) represents a major unmet clinical need arising from the progressive weakness and atrophy of skeletal muscles. The dearth of adequate experimental models has severely hampered our understanding of the disease. To date, no treatment is available for FSHD. Human embryonic stem cells (hESCs) potentially represent a renewable source of skeletal muscle cells (SkMCs) and provide an alternative to invasive patient biopsies. We developed a scalable monolayer system to differentiate hESCs into mature SkMCs within 26 days, without cell sorting or genetic manipulation. Here we show that SkMCs derived from FSHD1-affected hESC lines exclusively express the FSHD pathogenic marker double homeobox 4 and exhibit some of the defects reported in FSHD. FSHD1 myotubes are thinner when compared with unaffected and Becker muscular dystrophy myotubes, and differentially regulate genes involved in cell cycle control, oxidative stress response, and cell adhesion. This cellular model will be a powerful tool for studying FSHD and will ultimately assist in the development of effective treatments for muscular dystrophies. This work describes an efficient and highly scalable monolayer system to differentiate human pluripotent stem cells (hPSCs) into skeletal muscle cells (SkMCs) and demonstrates disease-specific phenotypes in SkMCs derived from both embryonic and induced hPSCs affected with facioscapulohumeral muscular dystrophy. This study represents the first human stem cell-based cellular model for a muscular dystrophy that is suitable for high-throughput screening and drug development. ©AlphaMed Press.

  3. Mest but Not MiR-335 Affects Skeletal Muscle Growth and Regeneration

    PubMed Central

    Hiramuki, Yosuke; Sato, Takahiko; Furuta, Yasuhide; Surani, M. Azim; Sehara-Fujisawa, Atsuko

    2015-01-01

    When skeletal muscle fibers are injured, they regenerate and grow until their sizes are adjusted to surrounding muscle fibers and other relevant organs. In this study, we examined whether Mest, one of paternally expressed imprinted genes that regulates body size during development, and miR-335 located in the second intron of the Mest gene play roles in muscle regeneration. We generated miR-335-deficient mice, and found that miR-335 is a paternally expressed imprinted microRNA. Although both Mest and miR-335 are highly expressed during muscle development and regeneration, only Mest+/- (maternal/paternal) mice show retardation of body growth. In addition to reduced body weight in Mest+/-; DMD-null mice, decreased muscle growth was observed in Mest+/- mice during cardiotoxin-induced regeneration, suggesting roles of Mest in muscle regeneration. Moreover, expressions of H19 and Igf2r, maternally expressed imprinted genes were affected in tibialis anterior muscle of Mest+/-; DMD-null mice compared to DMD-null mice. Thus, Mest likely mediates muscle regeneration through regulation of imprinted gene networks in skeletal muscle. PMID:26098312

  4. Mest but Not MiR-335 Affects Skeletal Muscle Growth and Regeneration.

    PubMed

    Hiramuki, Yosuke; Sato, Takahiko; Furuta, Yasuhide; Surani, M Azim; Sehara-Fujisawa, Atsuko

    2015-01-01

    When skeletal muscle fibers are injured, they regenerate and grow until their sizes are adjusted to surrounding muscle fibers and other relevant organs. In this study, we examined whether Mest, one of paternally expressed imprinted genes that regulates body size during development, and miR-335 located in the second intron of the Mest gene play roles in muscle regeneration. We generated miR-335-deficient mice, and found that miR-335 is a paternally expressed imprinted microRNA. Although both Mest and miR-335 are highly expressed during muscle development and regeneration, only Mest+/- (maternal/paternal) mice show retardation of body growth. In addition to reduced body weight in Mest+/-; DMD-null mice, decreased muscle growth was observed in Mest+/- mice during cardiotoxin-induced regeneration, suggesting roles of Mest in muscle regeneration. Moreover, expressions of H19 and Igf2r, maternally expressed imprinted genes were affected in tibialis anterior muscle of Mest+/-; DMD-null mice compared to DMD-null mice. Thus, Mest likely mediates muscle regeneration through regulation of imprinted gene networks in skeletal muscle.

  5. Symbiodinium Clade Affects Coral Skeletal Isotopic Ratio

    NASA Astrophysics Data System (ADS)

    Carilli, J.; Charles, C. D.; Garren, M.; McField, M.; Norris, R. D.

    2011-12-01

    The influence of different physiologies of Symbiodinium dinoflagellate symbiont clades on the skeletal chemistry of associated coral hosts has not previously been investigated. This is an important issue because coral skeletons are routinely used for tropical paleoclimatic reconstructions. We analyzed coral skeletal samples collected simultaneously from neighboring colonies off Belize and found that those harboring different clades of Symbiodinium displayed significantly different skeletal oxygen isotopic compositions. We also found evidence for mean shifts in skeletal oxygen isotopic composition after coral bleaching (the loss and potential exchange of symbionts) in two of four longer coral cores from the Mesoamerican Reef, though all experienced similar climatic conditions. Thus, we suggest that symbiont clade identity leaves a signature in the coral skeletal archive and that this influence must be considered for quantitative environmental reconstruction. In addition, we suggest that the skeletal isotopic signature may be used to identify changes in the dominant symbiont clade that have occurred in the past, to identify how common and widespread this phenomenon is--a potential adaptation to climate change.

  6. Role of FGFs/FGFRs in skeletal development and bone regeneration.

    PubMed

    Du, Xiaolan; Xie, Yangli; Xian, Cory J; Chen, Lin

    2012-12-01

    Fibroblast growth factor (FGF)/FGF (FGFR) signaling is an important pathway involved in skeletal development. Missense mutations in FGFs and FGFRs were found clinically to cause multiple congenital skeleton diseases including chondrodysplasia, craniosynostosis, syndromes with dysregulated phosphate metabolism. FGFs/FGFRs also have crucial roles in bone fracture repair and bone regeneration. Understanding the molecular mechanisms for the role of FGFs/FGFRs in the regulation of skeletal development, genetic skeletal diseases, and fracture healing will ultimately lead to better treatment of skeleton diseases caused by mutations of FGFs/FGFRs and fracture. This review summarizes the major findings on the role of FGF signaling in skeletal development, genetic skeletal diseases and bone healing, and discusses issues that remain to be resolved in applying FGF signaling-related measures to promote bone healing. This review has also provided a perspective view on future work for exploring the roles and action mechanisms of FGF signaling in skeletal development, genetic skeletal diseases, and fracture healing. Copyright © 2012 Wiley Periodicals, Inc.

  7. Fibroblast growth factor signaling in skeletal development and disease

    PubMed Central

    Ornitz, David M.; Marie, Pierre J.

    2015-01-01

    Fibroblast growth factor (FGF) signaling pathways are essential regulators of vertebrate skeletal development. FGF signaling regulates development of the limb bud and formation of the mesenchymal condensation and has key roles in regulating chondrogenesis, osteogenesis, and bone and mineral homeostasis. This review updates our review on FGFs in skeletal development published in Genes & Development in 2002, examines progress made on understanding the functions of the FGF signaling pathway during critical stages of skeletogenesis, and explores the mechanisms by which mutations in FGF signaling molecules cause skeletal malformations in humans. Links between FGF signaling pathways and other interacting pathways that are critical for skeletal development and could be exploited to treat genetic diseases and repair bone are also explored. PMID:26220993

  8. Fibroblast growth factor signaling in skeletal development and disease.

    PubMed

    Ornitz, David M; Marie, Pierre J

    2015-07-15

    Fibroblast growth factor (FGF) signaling pathways are essential regulators of vertebrate skeletal development. FGF signaling regulates development of the limb bud and formation of the mesenchymal condensation and has key roles in regulating chondrogenesis, osteogenesis, and bone and mineral homeostasis. This review updates our review on FGFs in skeletal development published in Genes & Development in 2002, examines progress made on understanding the functions of the FGF signaling pathway during critical stages of skeletogenesis, and explores the mechanisms by which mutations in FGF signaling molecules cause skeletal malformations in humans. Links between FGF signaling pathways and other interacting pathways that are critical for skeletal development and could be exploited to treat genetic diseases and repair bone are also explored. © 2015 Ornitz and Marie; Published by Cold Spring Harbor Laboratory Press.

  9. Caffeine at a Moderate Dose Did Not Affect the Skeletal System of Rats with Streptozotocin-Induced Diabetes.

    PubMed

    Folwarczna, Joanna; Janas, Aleksandra; Cegieła, Urszula; Pytlik, Maria; Śliwiński, Leszek; Matejczyk, Magdalena; Nowacka, Anna; Rudy, Karolina; Krivošíková, Zora; Štefíková, Kornélia; Gajdoš, Martin

    2017-10-30

    Diabetes may lead to the development of osteoporosis. Coffee drinking, apart from its health benefits, is taken into consideration as an osteoporosis risk factor. Data from human and animal studies on coffee and caffeine bone effects are inconsistent. The aim of the study was to investigate effects of caffeine at a moderate dose on the skeletal system of rats in two models of experimental diabetes induced by streptozotocin. Effects of caffeine administered orally (20 mg/kg aily for four weeks) were investigated in three-month-old female Wistar rats, which, two weeks before the start of caffeine administration, received streptozotocin (60 mg/kg, intraperitoneally) alone or streptozotocin after nicotinamide (230 mg/kg, intraperitoneally). Bone turnover markers, mass, mineral density, histomorphometric parameters, and mechanical properties were examined. Streptozotocin induced diabetes, with profound changes in the skeletal system due to increased bone resorption and decreased bone formation. Although streptozotocin administered after nicotinamide induced slight increases in glucose levels at the beginning of the experiment only, slight, but significant unfavorable changes in the skeletal system were demonstrated. Administration of caffeine did not affect the investigated skeletal parameters of rats with streptozotocin-induced disorders. In conclusion, caffeine at a moderate dose did not exert a damaging effect on the skeletal system of diabetic rats.

  10. Substrate stiffness affects skeletal myoblast differentiation in vitro

    NASA Astrophysics Data System (ADS)

    Romanazzo, Sara; Forte, Giancarlo; Ebara, Mitsuhiro; Uto, Koichiro; Pagliari, Stefania; Aoyagi, Takao; Traversa, Enrico; Taniguchi, Akiyoshi

    2012-12-01

    To maximize the therapeutic efficacy of cardiac muscle constructs produced by stem cells and tissue engineering protocols, suitable scaffolds should be designed to recapitulate all the characteristics of native muscle and mimic the microenvironment encountered by cells in vivo. Moreover, so not to interfere with cardiac contractility, the scaffold should be deformable enough to withstand muscle contraction. Recently, it was suggested that the mechanical properties of scaffolds can interfere with stem/progenitor cell functions, and thus careful consideration is required when choosing polymers for targeted applications. In this study, cross-linked poly-ɛ-caprolactone membranes having similar chemical composition and controlled stiffness in a supra-physiological range were challenged with two sources of myoblasts to evaluate the suitability of substrates with different stiffness for cell adhesion, proliferation and differentiation. Furthermore, muscle-specific and non-related feeder layers were prepared on stiff surfaces to reveal the contribution of biological and mechanical cues to skeletal muscle progenitor differentiation. We demonstrated that substrate stiffness does affect myogenic differentiation, meaning that softer substrates can promote differentiation and that a muscle-specific feeder layer can improve the degree of maturation in skeletal muscle stem cells.

  11. Histone Deacetylases in Bone Development and Skeletal Disorders

    PubMed Central

    Bradley, Elizabeth W.; Carpio, Lomeli R.; van Wijnen, Andre J.; McGee-Lawrence, Meghan E.; Westendorf, Jennifer J.

    2015-01-01

    Histone deacetylases (Hdacs) are conserved enzymes that remove acetyl groups from lysine side chains in histones and other proteins. Eleven of the 18 Hdacs encoded by the human and mouse genomes depend on Zn2+ for enzymatic activity, while the other 7, the sirtuins (Sirts), require NAD2+. Collectively, Hdacs and Sirts regulate numerous cellular and mitochondrial processes including gene transcription, DNA repair, protein stability, cytoskeletal dynamics, and signaling pathways to affect both development and aging. Of clinical relevance, Hdacs inhibitors are United States Food and Drug Administration-approved cancer therapeutics and are candidate therapies for other common diseases including arthritis, diabetes, epilepsy, heart disease, HIV infection, neurodegeneration, and numerous aging-related disorders. Hdacs and Sirts influence skeletal development, maintenance of mineral density and bone strength by affecting intramembranous and endochondral ossification, as well as bone resorption. With few exceptions, inhibition of Hdac or Sirt activity though either loss-of-function mutations or prolonged chemical inhibition has negative and/or toxic effects on skeletal development and bone mineral density. Specifically, Hdac/Sirt suppression causes abnormalities in physiological development such as craniofacial dimorphisms, short stature, and bone fragility that are associated with several human syndromes or diseases. In contrast, activation of Sirts may protect the skeleton from aging and immobilization-related bone loss. This knowledge may prolong healthspan and prevent adverse events caused by epigenetic therapies that are entering the clinical realm at an unprecedented rate. In this review, we summarize the general properties of Hdacs/Sirts and the research that has revealed their essential functions in bone forming cells (e.g., osteoblasts and chondrocytes) and bone resorbing osteoclasts. Finally, we offer predictions on future research in this area and the utility of

  12. Advances on microRNA in regulating mammalian skeletal muscle development.

    PubMed

    Li, Xin-Yun; Fu, Liang-Liang; Cheng, Hui-Jun; Zhao, Shu-Hong

    2017-11-20

    MicroRNA (miRNA) is a class of short non-coding RNA, which is about 22 bp in length. In mammals, miRNA exerts its funtion through binding with the 3°-UTR region of target genes and inhibiting their translation. Skeletal muscle development is a complex event, including: proliferation, migration and differentiation of skeletal muscle stem cells; proliferation, differentiation and fusion of myocytes; as well as hypertrophy, energy metabolism and conversion of muscle fiber types. The miRNA plays important roles in all processes of skeletal muscle development through targeting the key factors of different stages. Herein we summarize the miRNA related to muscle development, providing a better understanding of the skeletal muscle development.

  13. Ocean acidification affects coral growth by reducing skeletal density.

    PubMed

    Mollica, Nathaniel R; Guo, Weifu; Cohen, Anne L; Huang, Kuo-Fang; Foster, Gavin L; Donald, Hannah K; Solow, Andrew R

    2018-02-20

    Ocean acidification (OA) is considered an important threat to coral reef ecosystems, because it reduces the availability of carbonate ions that reef-building corals need to produce their skeletons. However, while theory predicts that coral calcification rates decline as carbonate ion concentrations decrease, this prediction is not consistently borne out in laboratory manipulation experiments or in studies of corals inhabiting naturally low-pH reefs today. The skeletal growth of corals consists of two distinct processes: extension (upward growth) and densification (lateral thickening). Here, we show that skeletal density is directly sensitive to changes in seawater carbonate ion concentration and thus, to OA, whereas extension is not. We present a numerical model of Porites skeletal growth that links skeletal density with the external seawater environment via its influence on the chemistry of coral calcifying fluid. We validate the model using existing coral skeletal datasets from six Porites species collected across five reef sites and use this framework to project the impact of 21st century OA on Porites skeletal density across the global tropics. Our model predicts that OA alone will drive up to 20.3 ± 5.4% decline in the skeletal density of reef-building Porites corals.

  14. Leptin administration affects growth and skeletal development in a rat intrauterine growth restriction model: preliminary study.

    PubMed

    Bar-El Dadon, Shimrit; Shahar, Ron; Katalan, Vered; Monsonego-Ornan, Efrat; Reifen, Ram

    2011-09-01

    Skeletal abnormalities are one of the hallmarks of growth delay during gestation. The aim of this study was to determine changes induced by leptin in skeletal growth and development in a rat model of intrauterine growth retardation (IUGR) and to elucidate the possible underlying mechanisms. Intrauterine growth retardation was induced prepartum and the effects of leptin to mothers prenatally or to offspring postnatally were studied. Radii were harvested and tested mechanically and structurally. Tibias were evaluated for growth-plate morphometry. On day 40 postpartum, total bone length and mineral density and tibial growth-plate width and numbers of cells within its zones of offspring treated with leptin were significantly greater than in the control group. Postnatal leptin administration in an IUGR model improves the structural properties and elongation rate of bone. These findings could pave the way to preventing some phenotypic presentations of IUGR. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Skeletal muscle and fetal alcohol spectrum disorder.

    PubMed

    Myrie, Semone B; Pinder, Mark A

    2018-04-01

    Skeletal muscle is critical for mobility and many metabolic functions integral to survival and long-term health. Alcohol can affect skeletal muscle physiology and metabolism, which will have immediate and long-term consequences on health. While skeletal muscle abnormalities, including morphological, biochemical, and functional impairments, are well-documented in adults that excessively consume alcohol, there is a scarcity of information about the skeletal muscle in the offspring prenatally exposed to alcohol ("prenatal alcohol exposure"; PAE). This minireview examines the available studies addressing skeletal muscle abnormalities due to PAE. Growth restriction, fetal alcohol myopathy, and abnormalities in the neuromuscular system, which contribute to deficits in locomotion, are some direct, immediate consequences of PAE on skeletal muscle morphology and function. Long-term health consequences of PAE-related skeletal abnormalities include impaired glucose metabolism in the skeletal muscle, resulting in glucose intolerance and insulin resistance, leading to an increased risk of type 2 diabetes. In general, there is limited information on the morphological, biochemical, and functional features of skeletal abnormalities in PAE offspring. There is a need to understand how PAE affects muscle growth and function at the cellular level during early development to improve the immediate and long-term health of offspring suffering from PAE.

  16. Hypertrophic Cardiomyopathy Cardiac Troponin C Mutations Differentially Affect Slow Skeletal and Cardiac Muscle Regulation

    PubMed Central

    Veltri, Tiago; Landim-Vieira, Maicon; Parvatiyar, Michelle S.; Gonzalez-Martinez, David; Dieseldorff Jones, Karissa M.; Michell, Clara A.; Dweck, David; Landstrom, Andrew P.; Chase, P. Bryant; Pinto, Jose R.

    2017-01-01

    Mutations in TNNC1—the gene encoding cardiac troponin C (cTnC)—that have been associated with hypertrophic cardiomyopathy (HCM) and cardiac dysfunction may also affect Ca2+-regulation and function of slow skeletal muscle since the same gene is expressed in both cardiac and slow skeletal muscle. Therefore, we reconstituted rabbit soleus fibers and bovine masseter myofibrils with mutant cTnCs (A8V, C84Y, E134D, and D145E) associated with HCM to investigate their effects on contractile force and ATPase rates, respectively. Previously, we showed that these HCM cTnC mutants, except for E134D, increased the Ca2+ sensitivity of force development in cardiac preparations. In the current study, an increase in Ca2+ sensitivity of isometric force was only observed for the C84Y mutant when reconstituted in soleus fibers. Incorporation of cTnC C84Y in bovine masseter myofibrils reduced the ATPase activity at saturating [Ca2+], whereas, incorporation of cTnC D145E increased the ATPase activity at inhibiting and saturating [Ca2+]. We also tested whether reconstitution of cardiac fibers with troponin complexes containing the cTnC mutants and slow skeletal troponin I (ssTnI) could emulate the slow skeletal functional phenotype. Reconstitution of cardiac fibers with troponin complexes containing ssTnI attenuated the Ca2+ sensitization of isometric force when cTnC A8V and D145E were present; however, it was enhanced for C84Y. In summary, although the A8V and D145E mutants are present in both muscle types, their functional phenotype is more prominent in cardiac muscle than in slow skeletal muscle, which has implications for the protein-protein interactions within the troponin complex. The C84Y mutant warrants further investigation since it drastically alters the properties of both muscle types and may account for the earlier clinical onset in the proband. PMID:28473771

  17. Skeletal and body composition evaluation

    NASA Technical Reports Server (NTRS)

    Mazess, R. B.

    1983-01-01

    Research on radiation detectors for absorptiometry; analysis of errors affective single photon absorptiometry and development of instrumentation; analysis of errors affecting dual photon absorptiometry and development of instrumentation; comparison of skeletal measurements with other techniques; cooperation with NASA projects for skeletal evaluation in spaceflight (Experiment MO-78) and in laboratory studies with immobilized animals; studies of postmenopausal osteoporosis; organization of scientific meetings and workshops on absorptiometric measurement; and development of instrumentation for measurement of fluid shifts in the human body were performed. Instrumentation was developed that allows accurate and precise (2% error) measurements of mineral content in compact and trabecular bone and of the total skeleton. Instrumentation was also developed to measure fluid shifts in the extremities. Radiation exposure with those procedures is low (2-10 MREM). One hundred seventy three technical reports and one hundred and four published papers of studies from the University of Wisconsin Bone Mineral Lab are listed.

  18. Different dietary energy intake affects skeletal muscle development through an Akt-dependent pathway in Dorper × Small Thin-Tailed crossbred ewe lambs.

    PubMed

    Zhao, J X; Liu, X D; Li, K; Liu, W Z; Ren, Y S; Zhang, J X

    2016-10-01

    The objective of this experiment was to investigate the mechanisms through which different levels of dietary energy affect postnatal skeletal muscle development in ewe lambs. Twelve Dorper × Small Thin-Tailed crossbred ewe lambs (100 d of age; 20 ± 0.5 kg BW) were selected randomly and divided into 2 groups in a completely randomized design. Animals were offered identical diets at 100% or 65% of ad libitum intake. Lambs were euthanized when BW in the ad libitum group reached 35 kg and the semitendinosus muscle was sampled. Final BW and skeletal muscle weight were decreased (P < 0.01) by feed restriction. Both muscle fiber size distribution and myofibril cross-sectional area were altered by feed restriction. Insulin-like growth factor 1 (IGF-1) messenger RNA (mRNA) content was decreased (P < 0.05) when lambs were underfed, whereas no difference for IGF-2 mRNA expression was observed (P > 0.05). Feed restriction altered phosphor-Akt protein abundance (P < 0.01). Moreover, the mammalian target of rapamycin (mTOR) pathway was inhibited by feed restriction, which was associated with decreased phosphor-mTOR, phosphorylated eukaryotic initiation factor 4E binding protein 1 (phosphor-4EBP1), and phosphorylated ribosomal protein S6 kinase (phosphor-S6K). Both mRNA expression of myostatin and its protein content were elevated in feed-restricted ewe lambs (P < 0.05). In addition, mRNA expression of both muscle RING finger 1 and muscle atrophy F-box was increased when ewe lambs were underfed. In summary, feed restriction in young growing ewe lambs attenuates skeletal muscle hypertrophy by inhibiting protein synthesis and increasing protein degradation, which may act through the Akt-dependent pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Skeletal muscle performance and ageing

    PubMed Central

    Trouwborst, Inez; Clark, Brian C.

    2017-01-01

    Abstract The world population is ageing rapidly. As society ages, the incidence of physical limitations is dramatically increasing, which reduces the quality of life and increases healthcare expenditures. In western society, ~30% of the population over 55 years is confronted with moderate or severe physical limitations. These physical limitations increase the risk of falls, institutionalization, co‐morbidity, and premature death. An important cause of physical limitations is the age‐related loss of skeletal muscle mass, also referred to as sarcopenia. Emerging evidence, however, clearly shows that the decline in skeletal muscle mass is not the sole contributor to the decline in physical performance. For instance, the loss of muscle strength is also a strong contributor to reduced physical performance in the elderly. In addition, there is ample data to suggest that motor coordination, excitation–contraction coupling, skeletal integrity, and other factors related to the nervous, muscular, and skeletal systems are critically important for physical performance in the elderly. To better understand the loss of skeletal muscle performance with ageing, we aim to provide a broad overview on the underlying mechanisms associated with elderly skeletal muscle performance. We start with a system level discussion and continue with a discussion on the influence of lifestyle, biological, and psychosocial factors on elderly skeletal muscle performance. Developing a broad understanding of the many factors affecting elderly skeletal muscle performance has major implications for scientists, clinicians, and health professionals who are developing therapeutic interventions aiming to enhance muscle function and/or prevent mobility and physical limitations and, as such, support healthy ageing. PMID:29151281

  20. Effects of audiogenic hazard on fetal skeletal development in mice

    NASA Astrophysics Data System (ADS)

    Murata, M.; Kawade, F.; Kondo, M.; Takigawa, H.; Sakamoto, H.

    1990-06-01

    The effects of noise on fetal skeletal development in mice were examined. Pregnant ICR mice were exposed to a wide octave-band noise at 100 dB(C) for 6 hours a day in three ways: the first group was continuously exposed only on day 7 of pregnancy (group "N"); the second was exposed intermittently (15 min on/15 min off) only on day 7 of pregnancy (group "IN"); and the third was exposed to a continuous noise recurrently during days 7-12 of pregnancy (group "RN"). On day 18 of pregnancy, fetuses were removed and prepared as skeletons of cleared specimens stained with alizarin red S for examining skeletal development. Skeletal immaturity was observed in group "RN". The percentage of fetuses with skeletal malformations was significantly increased in group "N", as compared with the control. Significantly higher percentages of fetuses with variations in cervical vertebral arches were observed in groups "N" and "RN".

  1. Skeletal development in Pan paniscus with comparisons to Pan troglodytes.

    PubMed

    Bolter, Debra R; Zihlman, Adrienne L

    2012-04-01

    Fusion of skeletal elements provides markers for timing of growth and is one component of a chimpanzee's physical development. Epiphyseal closure defines bone growth and signals a mature skeleton. Most of what we know about timing of development in chimpanzees derives from dental studies on Pan troglodytes. Much less is known about the sister species, Pan paniscus, with few in captivity and a wild range restricted to central Africa. Here, we report on the timing of skeletal fusion for female captive P. paniscus (n = 5) whose known ages range from 0.83 to age 11.68 years. Observations on the skeletons were made after the individuals were dissected and bones cleaned. Comparisons with 10 female captive P. troglodytes confirm a generally uniform pattern in the sequence of skeletal fusion in the two captive species. We also compared the P. paniscus to a sample of three unknown-aged female wild P. paniscus, and 10 female wild P. troglodytes of known age from the Taï National Park, Côte d'Ivoire. The sequence of teeth emergence to bone fusion is generally consistent between the two species, with slight variations in late juvenile and subadult stages. The direct-age comparisons show that skeletal growth in captive P. paniscus is accelerated compared with both captive and wild P. troglodytes populations. The skeletal data combined with dental stages have implications for estimating the life stage of immature skeletal materials of wild P. paniscus and for more broadly comparing the skeletal growth rates among captive and wild chimpanzees (Pan), Homo sapiens, and fossil hominins. Copyright © 2012 Wiley Periodicals, Inc.

  2. Effects of hypodynamic simulations on the skeletal system of monkeys

    NASA Technical Reports Server (NTRS)

    Young, D. R.; Tremor, J. W.

    1977-01-01

    A research and development program was undertaken to evaluate the skeletal losses of subhuman primates in hypodynamic environments. The goals of the program are: (1) to uncover the mechanisms by which weightlessness affects the skeletal system; (2) to determine the consequences and reversibility of bone mineral losses; and (3) to acquire a body of data needed to formulate an appropriate countermeasure program for the prevention of skeletal deconditioning. Space flight experiment simulation facilities are under development and will be tested for their capability in supporting certain of the requirements for these investigations.

  3. Passive stiffness of rat skeletal muscle undernourished during fetal development

    PubMed Central

    Toscano, Ana Elisa; Ferraz, Karla Mônica; de Castro, Raul Manhães; Canon, Francis

    2010-01-01

    OBJECTIVES: The aim of the study was to investigate the effect of fetal undernutrition on the passive mechanical properties of skeletal muscle of weaned and young adult rats. INTRODUCTION: A poor nutrition supply during fetal development affects physiological functions of the fetus. From a mechanical point of view, skeletal muscle can be also characterized by its resistance to passive stretch. METHODS: Male Wistar rats were divided into two groups according to their mother's diet during pregnancy: a control group (mothers fed a 17% protein diet) and an isocaloric low‐protein group (mothers fed a 7.8% protein diet). At birth, all mothers received a standardized meal ad libitum. At the age of 25 and 90 days, the soleus muscle and extensor digitorum longus (EDL) muscles were removed in order to test the passive mechanical properties. A first mechanical test consisted of an incremental stepwise extension test using fast velocity stretching (500 mm/s) enabling us to measure, for each extension stepwise, the dynamic stress (σd) and the steady stress (σs). A second test consisted of a slow velocity stretch in order to calculate normalized stiffness and tangent modulus from the stress–strain relationship. RESULTS: The results for the mechanical properties showed an important increase in passive stiffness in both the soleus and EDL muscles in weaned rat. In contrast, no modification was observed in young adult rats. CONCLUSIONS: The increase in passive stiffness in skeletal muscle of weaned rat submitted to intrauterine undernutrition it is most likely due to changes in muscle passive stiffness. PMID:21340228

  4. Myosin Transducer Mutations Differentially Affect Motor Function, Myofibril Structure, and the Performance of Skeletal and Cardiac Muscles

    PubMed Central

    Cammarato, Anthony; Dambacher, Corey M.; Knowles, Aileen F.; Kronert, William A.; Bodmer, Rolf

    2008-01-01

    Striated muscle myosin is a multidomain ATP-dependent molecular motor. Alterations to various domains affect the chemomechanical properties of the motor, and they are associated with skeletal and cardiac myopathies. The myosin transducer domain is located near the nucleotide-binding site. Here, we helped define the role of the transducer by using an integrative approach to study how Drosophila melanogaster transducer mutations D45 and Mhc5 affect myosin function and skeletal and cardiac muscle structure and performance. We found D45 (A261T) myosin has depressed ATPase activity and in vitro actin motility, whereas Mhc5 (G200D) myosin has these properties enhanced. Depressed D45 myosin activity protects against age-associated dysfunction in metabolically demanding skeletal muscles. In contrast, enhanced Mhc5 myosin function allows normal skeletal myofibril assembly, but it induces degradation of the myofibrillar apparatus, probably as a result of contractile disinhibition. Analysis of beating hearts demonstrates depressed motor function evokes a dilatory response, similar to that seen with vertebrate dilated cardiomyopathy myosin mutations, and it disrupts contractile rhythmicity. Enhanced myosin performance generates a phenotype apparently analogous to that of human restrictive cardiomyopathy, possibly indicating myosin-based origins for the disease. The D45 and Mhc5 mutations illustrate the transducer's role in influencing the chemomechanical properties of myosin and produce unique pathologies in distinct muscles. Our data suggest Drosophila is a valuable system for identifying and modeling mutations analogous to those associated with specific human muscle disorders. PMID:18045988

  5. GSK-3β Function in Bone Regulates Skeletal Development, Whole-Body Metabolism, and Male Life Span

    PubMed Central

    Gillespie, J. R.; Bush, J. R.; Bell, G. I.; Aubrey, L. A.; Dupuis, H.; Ferron, M.; Kream, B.; DiMattia, G.; Patel, S.; Woodgett, J. R.; Karsenty, G.; Hess, D. A.; Beier, F.

    2016-01-01

    Glycogen synthase kinase 3 β (GSK-3β) is an essential negative regulator or “brake” on many anabolic-signaling pathways including Wnt and insulin. Global deletion of GSK-3β results in peri-natal lethality and various skeletal defects. The goal of our research was to determine GSK-3β cell-autonomous effects and postnatal roles in the skeleton. We used the 3.6-kb Col1a1 promoter to inactivate the Gsk3b gene (Col1a1-Gsk3b knockout) in skeletal cells. Mutant mice exhibit decreased body fat and postnatal bone growth, as well as delayed development of several skeletal elements. Surprisingly, the mutant mice display decreased circulating glucose and insulin levels despite normal expression of GSK-3β in metabolic tissues. We showed that these effects are due to an increase in global insulin sensitivity. Most of the male mutant mice died after weaning. Prior to death, blood glucose changed from low to high, suggesting a possible switch from insulin sensitivity to resistance. These male mice die with extremely large bladders that are preceded by damage to the urogenital tract, defects that are also seen type 2 diabetes. Our data suggest that skeletal-specific deletion of GSK-3β affects global metabolism and sensitizes male mice to developing type 2 diabetes. PMID:23904355

  6. Rapamycin does not affect post-absorptive protein metabolism in human skeletal muscle

    PubMed Central

    Dickinson, Jared M.; Drummond, Micah J.; Fry, Christopher S.; Gundermann, David M.; Walker, Dillon K.; Timmerman, Kyle L.; Volpi, Elena; Rasmussen, Blake B.

    2013-01-01

    Administration of the mTORC1 inhibitor, rapamycin, to humans blocks the increase in skeletal muscle protein synthesis in response to resistance exercise or amino acid ingestion. Objective To determine whether rapamycin administration influences basal post-absorptive protein synthesis or breakdown in human skeletal muscle. Materials/Methods Six young (26±2 years) subjects were studied during two separate trials, in which each trial was divided into two consecutive 2h basal periods. The trials were identical except during one trial a single oral dose (16mg) of rapamycin was administered immediately prior to the second basal period. Muscle biopsies were obtained from the vastus lateralis at 0, 2, and 4h to examine protein synthesis, mTORC1 signaling, and markers of autophagy (LC3B-I and LC3B-II protein) associated with each 2h basal period. Results During the Control trial, muscle protein synthesis, whole body protein breakdown (phenylalanine Ra), mTORC1 signaling, and markers of autophagy were similar between both basal periods (p>0.05). During the Rapamycin trial, these variables were similar to the Control trial (p>0.05) and were unaltered by rapamycin administration (p>0.05). Thus, post-absorptive muscle protein metabolism and mTORC1 signaling were not affected by rapamycin administration. Conclusions Short-term rapamycin administration may only impair protein synthesis in human skeletal muscle when combined with a stimulus such as resistance exercise or increased amino acid availability. PMID:22959478

  7. Integrative Analysis of Porcine microRNAome during Skeletal Muscle Development

    PubMed Central

    Qin, Lijun; Chen, Yaosheng; Liu, Xiaohong; Ye, Sanxing; Yu, Kaifan; Huang, Zheng; Yu, Jingwei; Zhou, Xingyu; Chen, Hu; Mo, Delin

    2013-01-01

    Pig is an important agricultural animal for meat production and provides a valuable model for many human diseases. Functional studies have demonstrated that microRNAs (miRNAs) play critical roles in almost all aspects of skeletal muscle development and disease pathogenesis. To investigate the miRNAs involved in regulating different periods of skeletal muscle development, we herein performed a comprehensive research for porcine microRNAome (miRNAome) during 10 skeletal muscle developmental stages including 35, 49, 63, 77, 91 dpc (days post coitum) and 2, 28, 90, 120, 180 dpn (days postnatal) using Solexa sequencing technology. Our results extend the repertoire of pig miRNAome to 247 known miRNAs processed from 210 pre-miRNAs and 297 candidate novel miRNAs through comparison with known miRNAs in the miRBase. Expression analysis of the 15 most abundant miRNAs in every library indicated that functional miRNAome may be smaller and tend to be highly expressed. A series of muscle-related miRNAs summarized in our study present different patterns between myofibers formation phase and muscle maturation phase, providing valuable reference for investigation of functional miRNAs during skeletal muscle development. Analysis of temporal profiles of miRNA expression identifies 18 novel candidate myogenic miRNAs in pig, which might provide new insight into regulation mechanism mediated by miRNAs underlying muscle development. PMID:24039761

  8. Skeletal muscle performance and ageing.

    PubMed

    Tieland, Michael; Trouwborst, Inez; Clark, Brian C

    2018-02-01

    The world population is ageing rapidly. As society ages, the incidence of physical limitations is dramatically increasing, which reduces the quality of life and increases healthcare expenditures. In western society, ~30% of the population over 55 years is confronted with moderate or severe physical limitations. These physical limitations increase the risk of falls, institutionalization, co-morbidity, and premature death. An important cause of physical limitations is the age-related loss of skeletal muscle mass, also referred to as sarcopenia. Emerging evidence, however, clearly shows that the decline in skeletal muscle mass is not the sole contributor to the decline in physical performance. For instance, the loss of muscle strength is also a strong contributor to reduced physical performance in the elderly. In addition, there is ample data to suggest that motor coordination, excitation-contraction coupling, skeletal integrity, and other factors related to the nervous, muscular, and skeletal systems are critically important for physical performance in the elderly. To better understand the loss of skeletal muscle performance with ageing, we aim to provide a broad overview on the underlying mechanisms associated with elderly skeletal muscle performance. We start with a system level discussion and continue with a discussion on the influence of lifestyle, biological, and psychosocial factors on elderly skeletal muscle performance. Developing a broad understanding of the many factors affecting elderly skeletal muscle performance has major implications for scientists, clinicians, and health professionals who are developing therapeutic interventions aiming to enhance muscle function and/or prevent mobility and physical limitations and, as such, support healthy ageing. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  9. Connective tissue growth factor is required for skeletal development and postnatal skeletal homeostasis in male mice.

    PubMed

    Canalis, Ernesto; Zanotti, Stefano; Beamer, Wesley G; Economides, Aris N; Smerdel-Ramoya, Anna

    2010-08-01

    Connective tissue growth factor (CTGF), a member of the cysteine-rich 61 (Cyr 61), CTGF, nephroblastoma overexpressed (NOV) (CCN) family of proteins, is synthesized by osteoblasts, and its overexpression inhibits osteoblastogenesis and causes osteopenia. The global inactivation of Ctgf leads to defective endochondral bone formation and perinatal lethality; therefore, the consequences of Ctgf inactivation on the postnatal skeleton are not known. To study the function of CTGF, we generated Ctgf(+/LacZ) heterozygous null mice and tissue-specific null Ctgf mice by mating Ctgf conditional mice, where Ctgf is flanked by lox sequences with mice expressing the Cre recombinase under the control of the paired-related homeobox gene 1 (Prx1) enhancer (Prx1-Cre) or the osteocalcin promoter (Oc-Cre). Ctgf(+/LacZ) heterozygous mice exhibited transient osteopenia at 1 month of age secondary to decreased trabecular number. A similar osteopenic phenotype was observed in 1-month-old Ctgf conditional null male mice generated with Prx1-Cre, suggesting that the decreased trabecular number was secondary to impaired endochondral bone formation. In contrast, when the conditional deletion of Ctgf was achieved by Oc-Cre, an osteopenic phenotype was observed only in 6-month-old male mice. Osteoblast and osteoclast number, bone formation, and eroded surface were not affected in Ctgf heterozygous or conditional null mice. In conclusion, CTGF is necessary for normal skeletal development but to a lesser extent for postnatal skeletal homeostasis.

  10. Space travel directly induces skeletal muscle atrophy

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H.; Chromiak, J.; Shansky, J.; Del Tatto, M.; Lemaire, J.

    1999-01-01

    Space travel causes rapid and pronounced skeletal muscle wasting in humans that reduces their long-term flight capabilities. To develop effective countermeasures, the basis of this atrophy needs to be better understood. Space travel may cause muscle atrophy indirectly by altering circulating levels of factors such as growth hormone, glucocorticoids, and anabolic steroids and/or by a direct effect on the muscle fibers themselves. To determine whether skeletal muscle cells are directly affected by space travel, tissue-cultured avian skeletal muscle cells were tissue engineered into bioartificial muscles and flown in perfusion bioreactors for 9 to 10 days aboard the Space Transportation System (STS, i.e., Space Shuttle). Significant muscle fiber atrophy occurred due to a decrease in protein synthesis rates without alterations in protein degradation. Return of the muscle cells to Earth stimulated protein synthesis rates of both muscle-specific and extracellular matrix proteins relative to ground controls. These results show for the first time that skeletal muscle fibers are directly responsive to space travel and should be a target for countermeasure development.

  11. Expression of Pannexin 1 and Pannexin 3 during skeletal muscle development, regeneration, and Duchenne muscular dystrophy.

    PubMed

    Pham, Tammy L; St-Pierre, Marie-Eve; Ravel-Chapuis, Aymeric; Parks, Tara E C; Langlois, Stéphanie; Penuela, Silvia; Jasmin, Bernard J; Cowan, Kyle N

    2018-05-10

    Pannexin 1 (Panx1) and Pannexin 3 (Panx3) are single membrane channels recently implicated in myogenic commitment, as well as myoblast proliferation and differentiation in vitro. However, their expression patterns during skeletal muscle development and regeneration had yet to be investigated. Here, we show that Panx1 levels increase during skeletal muscle development becoming highly expressed together with Panx3 in adult skeletal muscle. In adult mice, Panx1 and Panx3 were differentially expressed in fast- and slow-twitch muscles. We also report that Panx1/PANX1 and Panx3/PANX3 are co-expressed in mouse and human satellite cells, which play crucial roles in skeletal muscle regeneration. Interestingly, Panx1 and Panx3 levels were modulated in muscle degeneration/regeneration, similar to the pattern seen during skeletal muscle development. As Duchenne muscular dystrophy is characterized by skeletal muscle degeneration and impaired regeneration, we next used mild and severe mouse models of this disease and found a significant dysregulation of Panx1 and Panx3 levels in dystrophic skeletal muscles. Together, our results are the first demonstration that Panx1 and Panx3 are differentially expressed amongst skeletal muscle types with their levels being highly modulated during skeletal muscle development, regeneration, and dystrophy. These findings suggest that Panx1 and Panx3 channels may play important and distinct roles in healthy and diseased skeletal muscles. © 2018 Wiley Periodicals, Inc.

  12. MeCP2 Affects Skeletal Muscle Growth and Morphology through Non Cell-Autonomous Mechanisms.

    PubMed

    Conti, Valentina; Gandaglia, Anna; Galli, Francesco; Tirone, Mario; Bellini, Elisa; Campana, Lara; Kilstrup-Nielsen, Charlotte; Rovere-Querini, Patrizia; Brunelli, Silvia; Landsberger, Nicoletta

    2015-01-01

    Rett syndrome (RTT) is an autism spectrum disorder mainly caused by mutations in the X-linked MECP2 gene and affecting roughly 1 out of 10.000 born girls. Symptoms range in severity and include stereotypical movement, lack of spoken language, seizures, ataxia and severe intellectual disability. Notably, muscle tone is generally abnormal in RTT girls and women and the Mecp2-null mouse model constitutively reflects this disease feature. We hypothesized that MeCP2 in muscle might physiologically contribute to its development and/or homeostasis, and conversely its defects in RTT might alter the tissue integrity or function. We show here that a disorganized architecture, with hypotrophic fibres and tissue fibrosis, characterizes skeletal muscles retrieved from Mecp2-null mice. Alterations of the IGF-1/Akt/mTOR pathway accompany the muscle phenotype. A conditional mouse model selectively depleted of Mecp2 in skeletal muscles is characterized by healthy muscles that are morphologically and molecularly indistinguishable from those of wild-type mice raising the possibility that hypotonia in RTT is mainly, if not exclusively, mediated by non-cell autonomous effects. Our results suggest that defects in paracrine/endocrine signaling and, in particular, in the GH/IGF axis appear as the major cause of the observed muscular defects. Remarkably, this is the first study describing the selective deletion of Mecp2 outside the brain. Similar future studies will permit to unambiguously define the direct impact of MeCP2 on tissue dysfunctions.

  13. Insulin-like growth factors in embryonic and fetal growth and skeletal development (Review).

    PubMed

    Agrogiannis, Georgios D; Sifakis, Stavros; Patsouris, Efstratios S; Konstantinidou, Anastasia E

    2014-08-01

    The insulin-like growth factors (IGF)-I and -II have a predominant role in fetal growth and development. IGFs are involved in the proliferation, differentiation and apoptosis of fetal cells in vitro and the IGF serum concentration has been shown to be closely correlated with fetal growth and length. IGF transcripts and peptides have been detected in almost every fetal tissue from as early in development as pre‑implantation to the final maturation stage. Furthermore, IGFs have been demonstrated to be involved in limb morphogenesis. However, although ablation of Igf genes in mice resulted in growth retardation and delay in skeletal maturation, no impact on outgrowth and patterning of embryonic limbs was observed. Additionally, various molecular defects in the Igf1 and Igf1r genes in humans have been associated with severe intrauterine growth retardation and impaired skeletal maturation, but not with truncated limbs or severe skeletal dysplasia. The conflicting data between in vitro and in vivo observations with regard to bone morphogenesis suggests that IGFs may not be the sole trophic factors involved in fetal skeletal growth and that redundant mechanisms may exist in chondro- and osteogenesis. Further investigation is required in order to elucidate the functions of IGFs in skeletal development.

  14. Inferring the Skeletal Muscle Developmental Changes of Grazing and Barn-Fed Goats from Gene Expression Data.

    PubMed

    Huang, Jinyu; Jiao, Jinzhen; Tan, Zhi-Liang; He, Zhixiong; Beauchemin, Karen A; Forster, Robert; Han, Xue-Feng; Tang, Shao-Xun; Kang, Jinghe; Zhou, Chuanshe

    2016-09-14

    Thirty-six Xiangdong black goats were used to investigate age-related mRNA and protein expression levels of some genes related to skeletal muscle structural proteins, MRFs and MEF2 family, and skeletal muscle fiber type and composition during skeletal muscle growth under grazing (G) and barn-fed (BF) feeding systems. Goats were slaughtered at six time points selected to reflect developmental changes of skeletal muscle during nonrumination (days 0, 7, and 14), transition (day 42), and rumination phases (days 56 and 70). It was observed that the number of type IIx in the longissimus dorsi was increased quickly while numbers of type IIa and IIb decreased slightly, indicating that these genes were coordinated during the rapid growth and development stages of skeletal muscle. No gene expression was affected (P > 0.05) by feeding system except Myf5 and Myf6. Protein expressions of MYOZ3 and MEF2C were affected (P < 0.05) by age, whereas PGC-1α was linearly decreased in the G group, and only MYOZ3 protein was affected (P < 0.001) by feeding system. Moreover, it was found that PGC-1α and MEF2C proteins may interact with each other in promoting muscle growth. The current results indicate that (1) skeletal muscle growth during days 0-70 after birth is mainly myofiber hypertrophy and differentiation, (2) weaning affects the expression of relevant genes of skeletal muscle structural proteins, skeletal muscle growth, and skeletal muscle fiber type and composition, and (3) nutrition or feeding regimen mainly influences the expression of skeletal muscle growth genes.

  15. Association between growth stunting with dental development and skeletal maturation stage.

    PubMed

    Flores-Mir, Carlos; Mauricio, Franco Raul; Orellana, Maria Fernanda; Major, Paul William

    2005-11-01

    The aim of this study was to determine the influence of growth stunting on the maturation stage of the medium phalanx of the third finger (MP3) and the dental development of the left mandibular canine in 280 high school children (140 stunted and 140 normal controls; equally distributed by sex) between 9.5 and 16.5 years of age, from a representative Peruvian school. Periapical radiographs of the MP3 from the left hand were used to determine the skeletal maturity stage, according to an adaptation of the Hägg and Taranger method. Panoramic radiographs were used to determine the dental maturity stage of the lower left canine, according to Demirjian method. Stunting was determined by relating height and age, according to the World Health Organization recommendations. There was no statistically significant difference in the skeletal maturation stage (P = .134) and the dental development stage (P = .497) according to nutritional status, even when considering different age groups (P > .183). A high correlation (r = 0.85) was found between both maturity indicators regardless of the nutritional status (growth stunted, r = 0.855 and normal controls, r = 0.863) or sex (boys, r = 0.809 and girls, r = 0.892). When skeletal level was considered, correlations values were similar between advanced (r = 0.903) and average (r = 0.895) maturers but lower (r = 0.751) for delayed maturers. Growth stunting was not associated with dental development and skeletal maturity stages in Peruvian school children.

  16. Insights into skeletal muscle development and applications in regenerative medicine.

    PubMed

    Tran, T; Andersen, R; Sherman, S P; Pyle, A D

    2013-01-01

    Embryonic and postnatal development of skeletal muscle entails highly regulated processes whose complexity continues to be deconstructed. One key stage of development is the satellite cell, whose niche is composed of multiple cell types that eventually contribute to terminally differentiated myotubes. Understanding these developmental processes will ultimately facilitate treatments of myopathies such as Duchenne muscular dystrophy (DMD), a disease characterized by compromised cell membrane structure, resulting in severe muscle wasting. One theoretical approach is to use pluripotent stem cells in a therapeutic setting to help replace degenerated muscle tissue. This chapter discusses key myogenic developmental stages and their regulatory pathways; artificial myogenic induction in pluripotent stem cells; advantages and disadvantages of DMD animal models; and therapeutic approaches targeting DMD. Furthermore, skeletal muscle serves as an excellent paradigm for understanding general cell fate decisions throughout development. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Matrilin-3 Is Dispensable for Mouse Skeletal Growth and Development

    PubMed Central

    Ko, Yaping; Kobbe, Birgit; Nicolae, Claudia; Miosge, Nicolai; Paulsson, Mats; Wagener, Raimund; Aszódi, Attila

    2004-01-01

    Matrilin-3 belongs to the matrilin family of extracellular matrix (ECM) proteins and is primarily expressed in cartilage. Mutations in the gene encoding human matrilin-3 (MATN-3) lead to autosomal dominant skeletal disorders, such as multiple epiphyseal dysplasia (MED), which is characterized by short stature and early-onset osteoarthritis, and bilateral hereditary microepiphyseal dysplasia, a variant form of MED characterized by pain in the hip and knee joints. To assess the function of matrilin-3 during skeletal development, we have generated Matn-3 null mice. Homozygous mutant mice appear normal, are fertile, and show no obvious skeletal malformations. Histological and ultrastructural analyses reveal endochondral bone formation indistinguishable from that of wild-type animals. Northern blot, immunohistochemical, and biochemical analyses indicated no compensatory upregulation of any other member of the matrilin family. Altogether, our findings suggest functional redundancy among matrilins and demonstrate that the phenotypes of MED disorders are not caused by the absence of matrilin-3 in cartilage ECM. PMID:14749384

  18. Identification of mechanosensitive genes during skeletal development: alteration of genes associated with cytoskeletal rearrangement and cell signalling pathways.

    PubMed

    Rolfe, Rebecca A; Nowlan, Niamh C; Kenny, Elaine M; Cormican, Paul; Morris, Derek W; Prendergast, Patrick J; Kelly, Daniel; Murphy, Paula

    2014-01-20

    Mechanical stimulation is necessary for regulating correct formation of the skeleton. Here we test the hypothesis that mechanical stimulation of the embryonic skeletal system impacts expression levels of genes implicated in developmentally important signalling pathways in a genome wide approach. We use a mutant mouse model with altered mechanical stimulation due to the absence of limb skeletal muscle (Splotch-delayed) where muscle-less embryos show specific defects in skeletal elements including delayed ossification, changes in the size and shape of cartilage rudiments and joint fusion. We used Microarray and RNA sequencing analysis tools to identify differentially expressed genes between muscle-less and control embryonic (TS23) humerus tissue. We found that 680 independent genes were down-regulated and 452 genes up-regulated in humeri from muscle-less Spd embryos compared to littermate controls (at least 2-fold; corrected p-value ≤0.05). We analysed the resulting differentially expressed gene sets using Gene Ontology annotations to identify significant enrichment of genes associated with particular biological processes, showing that removal of mechanical stimuli from muscle contractions affected genes associated with development and differentiation, cytoskeletal architecture and cell signalling. Among cell signalling pathways, the most strongly disturbed was Wnt signalling, with 34 genes including 19 pathway target genes affected. Spatial gene expression analysis showed that both a Wnt ligand encoding gene (Wnt4) and a pathway antagonist (Sfrp2) are up-regulated specifically in the developing joint line, while the expression of a Wnt target gene, Cd44, is no longer detectable in muscle-less embryos. The identification of 84 genes associated with the cytoskeleton that are down-regulated in the absence of muscle indicates a number of candidate genes that are both mechanoresponsive and potentially involved in mechanotransduction, converting a mechanical stimulus

  19. Identification of mechanosensitive genes during skeletal development: alteration of genes associated with cytoskeletal rearrangement and cell signalling pathways

    PubMed Central

    2014-01-01

    Background Mechanical stimulation is necessary for regulating correct formation of the skeleton. Here we test the hypothesis that mechanical stimulation of the embryonic skeletal system impacts expression levels of genes implicated in developmentally important signalling pathways in a genome wide approach. We use a mutant mouse model with altered mechanical stimulation due to the absence of limb skeletal muscle (Splotch-delayed) where muscle-less embryos show specific defects in skeletal elements including delayed ossification, changes in the size and shape of cartilage rudiments and joint fusion. We used Microarray and RNA sequencing analysis tools to identify differentially expressed genes between muscle-less and control embryonic (TS23) humerus tissue. Results We found that 680 independent genes were down-regulated and 452 genes up-regulated in humeri from muscle-less Spd embryos compared to littermate controls (at least 2-fold; corrected p-value ≤0.05). We analysed the resulting differentially expressed gene sets using Gene Ontology annotations to identify significant enrichment of genes associated with particular biological processes, showing that removal of mechanical stimuli from muscle contractions affected genes associated with development and differentiation, cytoskeletal architecture and cell signalling. Among cell signalling pathways, the most strongly disturbed was Wnt signalling, with 34 genes including 19 pathway target genes affected. Spatial gene expression analysis showed that both a Wnt ligand encoding gene (Wnt4) and a pathway antagonist (Sfrp2) are up-regulated specifically in the developing joint line, while the expression of a Wnt target gene, Cd44, is no longer detectable in muscle-less embryos. The identification of 84 genes associated with the cytoskeleton that are down-regulated in the absence of muscle indicates a number of candidate genes that are both mechanoresponsive and potentially involved in mechanotransduction, converting a

  20. PUFAs acutely affect triacylglycerol-derived skeletal muscle fatty acid uptake and increase postprandial insulin sensitivity.

    PubMed

    Jans, Anneke; Konings, Ellen; Goossens, Gijs H; Bouwman, Freek G; Moors, Chantalle C; Boekschoten, Mark V; Afman, Lydia A; Müller, Michael; Mariman, Edwin C; Blaak, Ellen E

    2012-04-01

    Dietary fat quality may influence skeletal muscle lipid processing and fat accumulation, thereby modulating insulin sensitivity. The objective was to examine the acute effects of meals with various fatty acid (FA) compositions on skeletal muscle FA processing and postprandial insulin sensitivity in obese, insulin-resistant men. In a single-blind, randomized, crossover study, 10 insulin-resistant men consumed 3 high-fat mixed meals (2.6 MJ), which were high in SFAs, MUFAs, or PUFAs. Fasting and postprandial skeletal muscle FA processing was examined by measuring differences in arteriovenous concentrations across the forearm muscle. [²H₂]Palmitate was infused intravenously to label endogenous triacylglycerol and FFAs in the circulation, and [U-¹³C]palmitate was added to the meal to label chylomicron-triacylglycerol. Skeletal muscle biopsy samples were taken to assess intramuscular lipid metabolism and gene expression. Insulin and glucose responses (AUC) after the SFA meal were significantly higher than those after the PUFA meal (P = 0.006 and 0.033, respectively). Uptake of triacylglycerol-derived FAs was lower in the postprandial phase after the PUFA meal than after the other meals (AUC₆₀₋₂₄₀; P = 0.02). The fractional synthetic rate of the triacylglycerol, diacylglycerol, and phospholipid pool was higher after the MUFA meal than after the SFA meal. PUFA induced less transcriptional downregulation of oxidative pathways than did the other meals. PUFAs reduced triacylglycerol-derived skeletal muscle FA uptake, which was accompanied by higher postprandial insulin sensitivity, a more transcriptional oxidative phenotype, and altered intramyocellular lipid partitioning and may therefore be protective against the development of insulin resistance.

  1. DMP-1-mediated Ghr gene recombination compromises skeletal development and impairs skeletal response to intermittent PTH.

    PubMed

    Liu, Zhongbo; Kennedy, Oran D; Cardoso, Luis; Basta-Pljakic, Jelena; Partridge, Nicola C; Schaffler, Mitchell B; Rosen, Clifford J; Yakar, Shoshana

    2016-02-01

    Bone minerals are acquired during growth and are key determinants of adult skeletal health. During puberty, the serum levels of growth hormone (GH) and its downstream effector IGF-1 increase and play critical roles in bone acquisition. The goal of the current study was to determine how bone cells integrate signals from the GH/IGF-1 to enhance skeletal mineralization and strength during pubertal growth. Osteocytes, the most abundant bone cells, were shown to orchestrate bone modeling during growth. We used dentin matrix protein (Dmp)-1-mediated Ghr knockout (DMP-GHRKO) mice to address the role of the GH/IGF axis in osteocytes. We found that DMP-GHRKO did not affect linear growth but compromised overall bone accrual. DMP-GHRKO mice exhibited reduced serum inorganic phosphate and parathyroid hormone (PTH) levels and decreased bone formation indices and were associated with an impaired response to intermittent PTH treatment. Using an osteocyte-like cell line along with in vivo studies, we found that PTH sensitized the response of bone to GH by increasing Janus kinase-2 and IGF-1R protein levels. We concluded that endogenously secreted PTH and GHR signaling in bone are necessary to establish radial bone growth and optimize mineral acquisition during growth. © FASEB.

  2. An analysis of dental development in Pleistocene Homo using skeletal growth and chronological age.

    PubMed

    Šešelj, Maja

    2017-07-01

    This study takes a new approach to interpreting dental development in Pleistocene Homo in comparison with recent modern humans. As rates of dental development and skeletal growth are correlated given age in modern humans, using age and skeletal growth in tandem yields more accurate dental development estimates. Here, I apply these models to fossil Homo to obtain more individualized predictions and interpretations of their dental development relative to recent modern humans. Proportional odds logistic regression models based on three recent modern human samples (N = 181) were used to predict permanent mandibular tooth development scores in five Pleistocene subadults: Homo erectus/ergaster, Neanderthals, and anatomically modern humans (AMHs). Explanatory variables include a skeletal growth indicator (i.e., diaphyseal femoral length), and chronological age. AMHs Lagar Velho 1 and Qafzeh 10 share delayed incisor development, but exhibit considerable idiosyncratic variation within and across tooth types, relative to each other and to the reference samples. Neanderthals Dederiyeh 1 and Le Moustier 1 exhibit delayed incisor coupled with advanced molar development, but differences are reduced when femoral diaphysis length is considered. Dental development in KNM-WT 15,000 Homo erectus/ergaster, while advanced for his age, almost exactly matches the predictions once femoral length is included in the models. This study provides a new interpretation of dental development in KNM-WT 15000 as primarily reflecting his faster rates of skeletal growth. While the two AMH specimens exhibit considerable individual variation, the Neanderthals exhibit delayed incisor development early and advanced molar development later in ontogeny. © 2017 Wiley Periodicals, Inc.

  3. Sall4-Gli3 system in early limb progenitors is essential for the development of limb skeletal elements.

    PubMed

    Akiyama, Ryutaro; Kawakami, Hiroko; Wong, Julia; Oishi, Isao; Nishinakamura, Ryuichi; Kawakami, Yasuhiko

    2015-04-21

    Limb skeletal elements originate from the limb progenitor cells, which undergo expansion and patterning to develop each skeletal element. Posterior-distal skeletal elements, such as the ulna/fibula and posterior digits develop in a Sonic hedgehog (Shh)-dependent manner. However, it is poorly understood how anterior-proximal elements, such as the humerus/femur, the radius/tibia and the anterior digits, are developed. Here we show that the zinc finger factors Sall4 and Gli3 cooperate for proper development of the anterior-proximal skeletal elements and also function upstream of Shh-dependent posterior skeletal element development. Conditional inactivation of Sall4 in the mesoderm before limb outgrowth caused severe defects in the anterior-proximal skeletal elements in the hindlimb. We found that Gli3 expression is reduced in Sall4 mutant hindlimbs, but not in forelimbs. This reduction caused posteriorization of nascent hindlimb buds, which is correlated with a loss of anterior digits. In proximal development, Sall4 integrates Gli3 and the Plzf-Hox system, in addition to proliferative expansion of cells in the mesenchymal core of nascent hindlimb buds. Whereas forelimbs developed normally in Sall4 mutants, further genetic analysis identified that the Sall4-Gli3 system is a common regulator of the early limb progenitor cells in both forelimbs and hindlimbs. The Sall4-Gli3 system also functions upstream of the Shh-expressing ZPA and the Fgf8-expressing AER in fore- and hindlimbs. Therefore, our study identified a critical role of the Sall4-Gli3 system at the early steps of limb development for proper development of the appendicular skeletal elements.

  4. How does tissue preparation affect skeletal muscle transverse isotropy?

    PubMed Central

    Wheatley, Benjamin B.; Odegard, Gregory M.; Kaufman, Kenton R.; Haut Donahue, Tammy L.

    2016-01-01

    The passive tensile properties of skeletal muscle play a key role in its physiological function. Previous research has identified conflicting reports of muscle transverse isotropy, with some data suggesting the longitudinal direction is stiffest, while others show the transverse direction is stiffest. Accurate constitutive models of skeletal muscle must be employed to provide correct recommendations for and observations of clinical methods. The goal of this work was to identify transversely isotropic tensile muscle properties as a function of post mortem handling. Six pairs of tibialis anterior muscles were harvested from Giant Flemish rabbits and split into two groups: fresh testing (within four hours post mortem), and non-fresh testing (subject to delayed testing and a freeze/thaw cycle). Longitudinal and transverse samples were removed from each muscle and tested to identify tensile modulus and relaxation behavior. Longitudinal non-fresh samples exhibited a higher initial modulus value and faster relaxation than longitudinal fresh, transverse fresh, and transverse rigor samples (p<0.05), while longitudinal fresh samples were less stiff at lower strain levels than longitudinal non-fresh, transverse fresh, and transverse non-fresh samples (p<0.05), but exhibited more nonlinear behavior. While fresh skeletal muscle exhibits a higher transverse modulus than longitudinal modulus, discrepancies in previously published data may be the result of a number of differences in experimental protocol. Constitutive modeling of fresh muscle should reflect these data by identifying the material as truly transversely isotropic and not as an isotropic matrix reinforced with fibers. PMID:27425557

  5. Development of Sensory Receptors in Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    DeSantis, Mark

    2000-01-01

    There were two major goals for my project. One was to examine the hindlimb walking pattern of offspring from the Flight dams as compared with offspring of the ground control groups from initiation of walking up to two months thereafter. This initial goal was subsequently modified so that additional developmental measures were taken (e.g. body weight, eye opening) as the progeny developed, and the study period was lengthened to eighty days. Also videotapes taken shortly after the pregnant Flight dams returned to Earth were scored for locomotor activity and compared to those for the Synchronous control dams at the same stage of pregnancy. The second goal was to examine skeletal muscle. Selected hindlimb skeletal muscles were to be identified, weighed, and examined for the presence and integrity of muscle receptors, (both muscle spindles and tendon organs), at the level of the light and electron microscope. Muscles were examined from rats that were at fetal (G20), newborn (postnatal day 1 or P1, where P1 = day of birth), and young adult (approx. P100) stages. At the present time data from only the last group of rats (i.e. P100) has been completely examined.

  6. MicroRNA-128 targets myostatin at coding domain sequence to regulate myoblasts in skeletal muscle development.

    PubMed

    Shi, Lei; Zhou, Bo; Li, Pinghua; Schinckel, Allan P; Liang, Tingting; Wang, Han; Li, Huizhi; Fu, Lingling; Chu, Qingpo; Huang, Ruihua

    2015-09-01

    MicroRNAs (miRNAs or miRs) play a critical role in skeletal muscle development. In a previous study we observed that miR-128 was highly expressed in skeletal muscle. However, its function in regulating skeletal muscle development is not clear. Our hypothesis was that miR-128 is involved in the regulation of the proliferation and differentiation of skeletal myoblasts. In this study, through bioinformatics analyses, we demonstrate that miR-128 specifically targeted mRNA of myostatin (MSTN), a critical inhibitor of skeletal myogenesis, at coding domain sequence (CDS) region, resulting in down-regulating of myostatin post-transcription. Overexpression of miR-128 inhibited proliferation of mouse C2C12 myoblast cells but promoted myotube formation; whereas knockdown of miR-128 had completely opposite effects. In addition, ectopic miR-128 regulated the expression of myogenic factor 5 (Myf5), myogenin (MyoG), paired box (Pax) 3 and 7. Furthermore, an inverse relationship was found between the expression of miR-128 and MSTN protein expression in vivo and in vitro. Taken together, these results reveal that there is a novel pathway in skeletal muscle development in which miR-128 regulates myostatin at CDS region to inhibit proliferation but promote differentiation of myoblast cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Reactive oxygen species are involved in lipopolysaccharide-induced intrauterine growth restriction and skeletal development retardation in mice.

    PubMed

    Xu, De-Xiang; Chen, Yuan-Hua; Zhao, Lei; Wang, Hua; Wei, Wei

    2006-12-01

    Maternal infection is a cause of adverse developmental outcomes including embryonic resorption, intrauterine fetal death, and preterm labor. Lipopolysaccharide-induced developmental toxicity at early gestational stages has been well characterized. The purpose of the present study was to investigate the effects of maternal lipopolysaccharide exposure at late gestational stages on intrauterine fetal growth and skeletal development and to assess the potential role of reactive oxygen species in lipopolysaccharide-induced intrauterine fetal growth restriction and skeletal development retardation. The timed pregnant CD-1 mice were intraperitoneally injected with lipopolysaccharide (25 to 75 microg/kg per day) on gestational day 15 to 17. To investigate the role of reactive oxygen species on lipopolysaccharide-induced intrauterine fetal growth restriction and skeletal development retardation, the pregnant mice were injected with alpha-phenyl-N-t-butylnitrone (100 mg/kg, intraperitoneally) at 30 minutes before lipopolysaccharide (75 microg/kg per day, intraperitoneally), followed by an additional dose of alpha-phenyl-N-t-butylnitrone (50 mg/kg, intraperitoneally) at 3 hours after lipopolysaccharide. The number of live fetuses, dead fetuses, and resorption sites was counted on gestational day 18. Live fetuses in each litter were weighed. Crown-rump and tail lengths were examined and skeletal development was evaluated. Maternal lipopolysaccharide exposure significantly increased fetal mortality, reduced fetal weight and crown-rump and tail lengths of live fetuses, and retarded skeletal ossification in caudal vertebrae, anterior and posterior phalanges, and supraoccipital bone in a dose-dependent manner. Alpha-phenyl-N-t-butylnitrone, a free radical spin-trapping agent, almost completely blocked lipopolysaccharide-induced fetal death (63.2% in lipopolysaccharide group versus 6.5% in alpha-phenyl-N-t-butylnitrone + lipopolysaccharide group, P < .01). In addition, alpha

  8. The patellofemoral joint: do age and gender affect skeletal maturation of the osseous morphology in children?

    PubMed

    Kim, Hee Kyung; Shiraj, Sahar; Anton, Christopher; Horn, Paul S

    2014-02-01

    The osseous morphology of the patellofemoral joint is an independent factor that affects the biomechanics of patellofemoral instability. The purpose of this study is to determine age- and gender-related differences in the osseous morphology of the patellofemoral joint in children during skeletal maturation. This study was approved by the institutional review board and was HIPAA-compliant. We included 97 children and young adults (age range 5-22 years; 51 girls and 46 boys, mean ages 14.3 years and 13.7 years, respectively). We studied 1.5-T knee MR exams, measuring the osseous morphology of the patellofemoral joint (lateral trochlear inclination, trochlear facet asymmetry, trochlear depth, patellar height ratio, tibial tubercle-trochlear groove distance, and lateral patellofemoral angle) for each MR exam. We compared measurements to published values for patellofemoral instability. Physeal patency (open or closing/closed) was determined on MR. We assessed the associations between MR osseous measurements and gender, age and physeal patency using Wilcoxon rank sum test and least square means regression models. The osseous patellofemoral joint morphology measurements were all within a normal range. There were no significant correlations between MR osseous measurements and age, gender or physeal patency. During skeletal maturation, age and gender do not affect the osseous morphology or congruency of the patellofemoral joint.

  9. Role of skeletal muscle in ear development.

    PubMed

    Rot, Irena; Baguma-Nibasheka, Mark; Costain, Willard J; Hong, Paul; Tafra, Robert; Mardesic-Brakus, Snjezana; Mrduljas-Djujic, Natasa; Saraga-Babic, Mirna; Kablar, Boris

    2017-10-01

    The current paper is a continuation of our work described in Rot and Kablar, 2010. Here, we show lists of 10 up- and 87 down-regulated genes obtained by a cDNA microarray analysis that compared developing Myf5-/-:Myod-/- (and Mrf4-/-) petrous part of the temporal bone, containing middle and inner ear, to the control, at embryonic day 18.5. Myf5-/-:Myod-/- fetuses entirely lack skeletal myoblasts and muscles. They are unable to move their head, which interferes with the perception of angular acceleration. Previously, we showed that the inner ear areas most affected in Myf5-/-:Myod-/- fetuses were the vestibular cristae ampullaris, sensitive to angular acceleration. Our finding that the type I hair cells were absent in the mutants' cristae was further used here to identify a profile of genes specific to the lacking cell type. Microarrays followed by a detailed consultation of web-accessible mouse databases allowed us to identify 6 candidate genes with a possible role in the development of the inner ear sensory organs: Actc1, Pgam2, Ldb3, Eno3, Hspb7 and Smpx. Additionally, we searched for human homologues of the candidate genes since a number of syndromes in humans have associated inner ear abnormalities. Mutations in one of our candidate genes, Smpx, have been reported as the cause of X-linked deafness in humans. Our current study suggests an epigenetic role that mechanical, and potentially other, stimuli originating from muscle, play in organogenesis, and offers an approach to finding novel genes responsible for altered inner ear phenotypes.

  10. Skeletal muscle wasting: new role of nonclassical renin-angiotensin system.

    PubMed

    Cabello-Verrugio, Claudio; Rivera, Juan C; Garcia, Dominga

    2017-05-01

    Skeletal muscle can be affected by many physiological and pathological conditions that contribute to the development of muscle weakness, including skeletal muscle loss, inflammatory processes, or fibrosis. Therefore, research into therapeutic treatment alternatives or alleviation of these effects on skeletal muscle is of great importance. Recent studies have shown that angiotensin (1-7) [Ang-(1-7)] - a vasoactive peptide of the nonclassical axis in the renin-angiotensin system (RAS) - and its Mas receptor are expressed in skeletal muscle. Ang-(1-7), through its Mas receptor, prevents or diminishes deleterious effects induced by skeletal muscle disease or injury. Specifically, the Ang-(1-7)-Mas receptor axis modulates molecular mechanisms involved in muscle mass regulation, such as the ubiquitin proteasome pathway, the insulin-like growth factor type 1/Akt (protein kinase B) pathway, or myonuclear apoptosis, and also inflammation and fibrosis pathways. Although further research into this topic and the possible side effects of Ang-(1-7) is necessary, these findings are promising, and suggest that the Ang-(1-7)-Mas axis can be considered a possible therapeutic target for treating patients with muscular disorders.

  11. Do Skeletal Density Changes Within the Tissue Layer of Corals Affect Paleoclimate Reconstructions?

    NASA Astrophysics Data System (ADS)

    Griffiths, J. S.; DeLong, K. L.; Quinn, T.; Taylor, F. W.; Kilbourne, K. H.; Wagner, A. J.

    2016-02-01

    Sea surface temperature (SST) reconstructions from coral geochemistry provide information on past climate variability; however, not all coral studies agree on a common calibration slope. Therefore, understanding the impacts of coral skeletal growth on strontium-to-calcium ratios (Sr/Ca) and oxygen isotopic ratios (δ18O) is necessary to ensure accurate calibrations. The study of Gagan et al. (2012) suggests that for the Pacific coral genera Porites, SST calibrations for coral Sr/Ca and δ18O need to be adjusted to account for skeletal density changes in the tissue layer, which may attenuate the seasonal cycle in coral geochemistry. We attempt to duplicate those results and density patterns in several Porites lutea colonies from two locations, yet our results do not show an increase in density in the tissue layer. Another study with Montastraea faveolata reveals reduced seasonality in coral Sr/Ca compared to slower-growing Siderastrea siderea in close proximity and same water depth, suggesting the faster growing M. faveolata geochemistry may be attenuated. By measuring skeletal density changes by micromilling a standard volume throughout the tissue layer and immediately below, we find no pattern of skeletal accumulation in the tissue layer of multiple colonies of M. faveolata and S. siderea from different locations. We conclude that these species lay down all of their skeletal material at the skeleton surface, thus skeletal density changes in the tissue layer do not account for reduced seasonality. We propose that time averaging occurs in M. faveolata as a result of the coral polyp's deep calyces mixing time intervals in the adjacent thecal wall in which micromilling for geochemical analysis produces a sample area that contains several growth increments. Our results show that skeletal density growth effects cannot be applied to all coral genera and paves the way for new research on calyx depth as an alternative explanation for differences in coral calibration slopes.

  12. Transcriptional profiling identifies differentially expressed genes in developing turkey skeletal muscle

    PubMed Central

    2011-01-01

    Background Skeletal muscle growth and development from embryo to adult consists of a series of carefully regulated changes in gene expression. Understanding these developmental changes in agriculturally important species is essential to the production of high quality meat products. For example, consumer demand for lean, inexpensive meat products has driven the turkey industry to unprecedented production through intensive genetic selection. However, achievements of increased body weight and muscle mass have been countered by an increased incidence of myopathies and meat quality defects. In a previous study, we developed and validated a turkey skeletal muscle-specific microarray as a tool for functional genomics studies. The goals of the current study were to utilize this microarray to elucidate functional pathways of genes responsible for key events in turkey skeletal muscle development and to compare differences in gene expression between two genetic lines of turkeys. To achieve these goals, skeletal muscle samples were collected at three critical stages in muscle development: 18d embryo (hyperplasia), 1d post-hatch (shift from myoblast-mediated growth to satellite cell-modulated growth by hypertrophy), and 16wk (market age) from two genetic lines: a randombred control line (RBC2) maintained without selection pressure, and a line (F) selected from the RBC2 line for increased 16wk body weight. Array hybridizations were performed in two experiments: Experiment 1 directly compared the developmental stages within genetic line, while Experiment 2 directly compared the two lines within each developmental stage. Results A total of 3474 genes were differentially expressed (false discovery rate; FDR < 0.001) by overall effect of development, while 16 genes were differentially expressed (FDR < 0.10) by overall effect of genetic line. Ingenuity Pathways Analysis was used to group annotated genes into networks, functions, and canonical pathways. The expression of 28 genes

  13. Wnt antagonist, secreted frizzled-related protein 1, is involved in prenatal skeletal muscle development and is a target of miRNA-1/206 in pigs.

    PubMed

    Yang, Yalan; Sun, Wei; Wang, Ruiqi; Lei, Chuzhao; Zhou, Rong; Tang, Zhonglin; Li, Kui

    2015-03-08

    The Wnt signaling pathway is involved in the control of cell proliferation and differentiation during skeletal muscle development. Secreted frizzled-related proteins (SFRPs), such as SFRP1, function as inhibitors of Wnt signaling. MicroRNA-1/206(miRNA-1/206) is specifically expressed in skeletal muscle and play a critical role in myogenesis. The miRNA-mRNA profiles and bioinformatics study suggested that the SFRP1 gene was potentially regulated by miRNA-1/206 during porcine skeletal muscle development. To understand the function of SFRP1 and miRNA-1/206 in swine myogenesis, we first predicted the targets of miRNA-1/206 with the TargetScan and PicTar programs, and analyzed the molecular characterization of the porcine SFRP1 gene. We performed a temporal-spatial expression analysis of SFRP1 mRNA and miRNA-206 in Tongcheng pigs (a Chinese indigenous breed) by quantitative real-time polymerase chain reaction, and conducted the co-expression analyses of SFRP1 and miRNA-1/206. Subsequently, the interaction between SFRP1 and miRNA-1/206 was validated via dual luciferase and Western blot assays. The bioinformatics analysis predicted SFRP1 to be a target of miRNA-1/206. The expression level of the SFRP1 was highly varied across numerous pig tissues and it was down-regulated during porcine skeletal muscle development. The expression level of the SFRP1 was significantly higher in the embryonic skeletal compared with postnatal skeletal muscle, whereas miR-206 showed the inverse pattern of expression. A significant negative correlation was observed between the expression of miR-1/206 and SFRP1 during porcine skeletal muscle development (p <0.05). Dual luciferase assay and Western-blot results demonstrated that SFRP1 was a target of miR-1/206 in porcine iliac endothelial cells. Our results indicate that the SFRP1 gene is regulated by miR-1/206 and potentially affects skeletal muscle development. These findings increase understanding of the biological functions and the regulation

  14. An Old Problem: Aging and Skeletal-Muscle-Strain Injury.

    PubMed

    Baker, Brent A

    2017-04-01

    Clinical Scenario: Even though chronological aging is an inevitable phenomenological consequence occurring in every living organism, it is biological aging that may be the most significant factor challenging our quality of life. Development of functional limitations, resulting from improper maintenance and restoration of various organ systems, ultimately leads to reduced health and independence. Skeletal muscle is an organ system that, when challenged, is often injured in response to varying stimuli. Overt muscle-strain injury can be traumatic, clinically diagnosable, properly managed, and a remarkably common event, yet our contemporary understanding of how age and environmental stressors affect the initial and subsequent induction of injury and how the biological processes resulting from this event are modifiable and, eventually, lead to functional restoration and healing of skeletal muscle and adjacent tissues is presently unclear. Even though the secondary injury response to and recovery from "contraction-induced" skeletal-muscle injury are impaired with aging, there is no scientific consensus as to the exact mechanism responsible for this event. Given the multitude of investigative approaches, particular consideration given to the appropriateness of the muscle-injury model, or research paradigm, is critical so that outcomes may be physiologically relevant and translational. In this case, methods implementing stretch-shortening contractions, the most common form of muscle movements used by all mammals during physical movement, work, and activity, are highlighted. Understanding the fundamental evidence regarding how aging influences the responsivity of skeletal muscle to strain injury is vital for informing how clinicians approach and implement preventive strategies, as well as therapeutic interventions. From a practical perspective, maintaining or improving the overall health and tissue quality of skeletal muscle as one ages will positively affect skeletal

  15. Influence of complex childhood diseases on variation in growth and skeletal development.

    PubMed

    Zemel, Babette S

    2017-03-01

    The study of human growth and skeletal development by human biologists is framed by the larger theoretical concerns regarding the underpinnings of population variation and human evolution. This unique perspective is directly relevant to the assessment of child health and well-being at the individual and group level, as well as the construction of growth charts. Environmental, behavioral (nutrition and physical activity), and disease-related factors can prevent attainment of full genetic potential for growth. Undernutrition is most often the cause of growth faltering and poor skeletal development. Disease related factors, such as malabsorption, inflammation, and immobility also have profound effects. These effects will be illustrated with examples from diseases such as cystic fibrosis, inflammatory bowel disease, and Down syndrome. The need for separate growth charts for children with genetic disorders is often controversial because of potential medical and/or nutritional complications associated with some disorders. Children with Alagille syndrome and Down syndrome will be used to illustrate the advantages and limitations of syndrome-specific charts. This overview of health and disease effects on growth and skeletal development provides insights into the plasticity of human growth and its sensitivity to overall health and well-being. © 2017 Wiley Periodicals, Inc.

  16. Emerging new tools to study and treat muscle pathologies: genetics and molecular mechanisms underlying skeletal muscle development, regeneration, and disease.

    PubMed

    Crist, Colin

    2017-01-01

    Skeletal muscle is the most abundant tissue in our body, is responsible for generating the force required for movement, and is also an important thermogenic organ. Skeletal muscle is an enigmatic tissue because while on the one hand, skeletal muscle regeneration after injury is arguably one of the best-studied stem cell-dependent regenerative processes, on the other hand, skeletal muscle is still subject to many degenerative disorders with few therapeutic options in the clinic. It is important to develop new regenerative medicine-based therapies for skeletal muscle. Future therapeutic strategies should take advantage of rapidly developing technologies enabling the differentiation of skeletal muscle from human pluripotent stem cells, along with precise genome editing, which will go hand in hand with a steady and focused approach to understanding underlying mechanisms of skeletal muscle development, regeneration, and disease. In this review, I focus on highlighting the recent advances that particularly have relied on developmental and molecular biology approaches to understanding muscle development and stem cell function. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  17. A review of the thermal sensitivity of the mechanics of vertebrate skeletal muscle.

    PubMed

    James, Rob S

    2013-08-01

    Environmental temperature varies spatially and temporally, affecting many aspects of an organism's biology. In ectotherms, variation in environmental temperature can cause parallel changes in skeletal muscle temperature, potentially leading to significant alterations in muscle performance. Endotherms can also undergo meaningful changes in skeletal muscle temperature that can affect muscle performance. Alterations in skeletal muscle temperature can affect contractile performance in both endotherms and ectotherms, changing the rates of force generation and relaxation, shortening velocity, and consequently mechanical power. Such alterations in the mechanical performance of skeletal muscle can in turn affect locomotory performance and behaviour. For instance, as temperature increases, a consequent improvement in limb muscle performance causes some lizard species to be more likely to flee from a potential predator. However, at lower temperatures, they are much more likely to stand their ground, show threatening displays and even bite. There is no consistent pattern in reported effects of temperature on skeletal muscle fatigue resistance. This review focuses on the effects of temperature variation on skeletal muscle performance in vertebrates, and investigates the thermal sensitivity of different mechanical measures of skeletal muscle performance. The plasticity of thermal sensitivity in skeletal muscle performance has been reviewed to investigate the extent to which individuals can acclimate to chronic changes in their thermal environment. The effects of thermal sensitivity of muscle performance are placed in a wider context by relating thermal sensitivity of skeletal muscle performance to aspects of vertebrate species distribution.

  18. Skeletal Muscle Tissue Engineering: Methods to Form Skeletal Myotubes and Their Applications

    PubMed Central

    Ostrovidov, Serge; Hosseini, Vahid; Ahadian, Samad; Fujie, Toshinori; Parthiban, Selvakumar Prakash; Ramalingam, Murugan; Bae, Hojae; Kaji, Hirokazu

    2014-01-01

    Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technical aspects of SMTE, including cell alignment and differentiation. We describe the structure and organization of muscle and discuss the methods for myoblast alignment cultured in vitro. To better understand muscle formation and to enhance the engineering of skeletal muscle, we also address the molecular basics of myogenesis and discuss different methods to induce myoblast differentiation into myotubes. We then provide an overview of different coculture systems involving skeletal muscle cells, and highlight major applications of engineered skeletal muscle tissues. Finally, potential challenges and future research directions for SMTE are outlined. PMID:24320971

  19. Enhanced Development of Skeletal Myotubes from Porcine Induced Pluripotent Stem Cells

    PubMed Central

    Genovese, Nicholas J.; Domeier, Timothy L.; Telugu, Bhanu Prakash V. L.; Roberts, R. Michael

    2017-01-01

    The pig is recognized as a valuable model in biomedical research in addition to its agricultural importance. Here we describe a means for generating skeletal muscle efficiently from porcine induced pluripotent stem cells (piPSC) in vitro thereby providing a versatile platform for applications ranging from regenerative biology to the ex vivo cultivation of meat. The GSK3B inhibitor, CHIR99021 was employed to suppress apoptosis, elicit WNT signaling events and drive naïve-type piPSC along the mesoderm lineage, and, in combination with the DNA methylation inhibitor 5-aza-cytidine, to activate an early skeletal muscle transcription program. Terminal differentiation was then induced by activation of an ectopically expressed MYOD1. Myotubes, characterized by myofibril development and both spontaneous and stimuli-elicited excitation-contraction coupling cycles appeared within 11 days. Efficient lineage-specific differentiation was confirmed by uniform NCAM1 and myosin heavy chain expression. These results provide an approach for generating skeletal muscle that is potentially applicable to other pluripotent cell lines and to generating other forms of muscle. PMID:28165492

  20. Bmp signaling regulates a dose-dependent transcriptional program to control facial skeletal development.

    PubMed

    Bonilla-Claudio, Margarita; Wang, Jun; Bai, Yan; Klysik, Elzbieta; Selever, Jennifer; Martin, James F

    2012-02-01

    We performed an in depth analysis of Bmp4, a critical regulator of development, disease, and evolution, in cranial neural crest (CNC). Conditional Bmp4 overexpression, using a tetracycline-regulated Bmp4 gain-of-function allele, resulted in facial skeletal changes that were most dramatic after an E10.5 Bmp4 induction. Expression profiling uncovered a signature of Bmp4-induced genes (BIG) composed predominantly of transcriptional regulators that control self-renewal, osteoblast differentiation and negative Bmp autoregulation. The complimentary experiment, CNC inactivation of Bmp2, Bmp4 and Bmp7, resulted in complete or partial loss of multiple CNC-derived skeletal elements, revealing a crucial requirement for Bmp signaling in membranous bone and cartilage development. Importantly, the BIG signature was reduced in Bmp loss-of-function mutants, indicating Bmp-regulated target genes are modulated by Bmp dose. Chromatin immunoprecipitation (ChIP) revealed a subset of the BIG signature, including Satb2, Smad6, Hand1, Gadd45γ and Gata3, that was bound by Smad1/5 in the developing mandible, revealing direct Smad-mediated regulation. These data support the hypothesis that Bmp signaling regulates craniofacial skeletal development by balancing self-renewal and differentiation pathways in CNC progenitors.

  1. Advances in Skeletal Dysplasia Genetics

    PubMed Central

    Geister, Krista A.; Camper, Sally A.

    2017-01-01

    Skeletal dysplasias result from disruptions in normal skeletal growth and development and are a major contributor to severe short stature. They occur in approximately 1/5,000 births, and some are lethal. Since the most recent publication of the Nosology and Classification of Genetic Skeletal Disorders, genetic causes of 56 skeletal disorders have been uncovered. This remarkable rate of discovery is largely due to the expanded use of high-throughput genomic technologies. In this review, we discuss these recent discoveries and our understanding of the molecular mechanisms behind these skeletal dysplasia phenotypes. We also cover potential therapies, unusual genetic mechanisms, and novel skeletal syndromes both with and without known genetic causes. The acceleration of skeletal dysplasia genetics is truly spectacular, and these advances hold great promise for diagnostics, risk prediction, and therapeutic design. PMID:25939055

  2. Activity Participation Intensity Is Associated with Skeletal Development in Pre-Pubertal Children with Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Tsang, William W. N.; Guo, X.; Fong, Shirley S. M.; Mak, Kwok-Kei; Pang, Marco Y. C.

    2012-01-01

    Purpose: This study aimed (1) to compare the skeletal maturity and activity participation pattern between children with and without developmental coordination disorder (DCD); and (2) to determine whether activity participation pattern was associated with the skeletal development among children with DCD. Materials and methods: Thirty-three children…

  3. Muscle-specific deletion of Prkaa1 enhances skeletal muscle lipid accumulation in mice fed a high-fat diet.

    PubMed

    Wu, Weiche; Xu, Ziye; Zhang, Ling; Liu, Jiaqi; Feng, Jie; Wang, Xinxia; Shan, Tizhong; Wang, Yizhen

    2018-05-01

    Excessive intramyocellular triacylglycerols (IMTGs, muscle lipids) are associated with the abnormal energy metabolism and insulin resistance of skeletal muscle. AMP-activated protein kinase (AMPK), a crucial cellular energy sensor, consists of α, β and γ subunits. Researchers have not clearly determined whether Prkaa1 (also known as AMPKα1) affects IMTG accumulation in skeletal muscle. Here, we show an important role of Prkaa1 in skeletal muscle lipid metabolism. Deletion of muscle Prkaa1 leads to the delayed development of skeletal muscles but does not affect glucose tolerance or insulin sensitivity in animals fed a normal diet. Notably, when animals are fed a high-fat diet, the skeletal muscle of muscle-specific Prkaa1 knockout mice accumulates more lipids than the skeletal muscle of wild-type (WT) mice, with concomitant upregulation of adipogenic gene expressions and downregulation of the expression of genes associated with mitochondrial oxidation. Muscle-specific Prkaa1 ablation also results in hyperlipidemia, which may contribute to the increased IMTG levels. Furthermore, Prkaa1 deletion activates skeletal muscle mTOR signalling, which has a central role in lipid metabolism and mitochondrial oxidation. Collectively, our study provides new insights into the role of Prkaa1 in skeletal muscle. This knowledge may contribute to the treatment of related metabolic diseases.

  4. [Development and prospect on skeletal age evaluation methods of X-ray film].

    PubMed

    Wang, Ya-hui; Zhu, Guang-you; Qiao, Ke; Bian, Shi-zhong; Fan, Li-hua; Cheng, Yi-bin; Ying, Chong-liang; Shen, Yan

    2007-10-01

    The traditional methods of skeletal age estimation mainly include Numeration, Atlas, and Counting scores. In recent years, other new methods were proposed by several scholars. Utilizing image logical characteristics of X-ray film to extrapolate skeletal age is a key means by present forensic medicine workers in evaluating skeletal age. However, there exist some variations when we present the conclusion of skeletal age as an "evidence" directly to the Justice Trial Authority. In order to enhance the accuracy of skeletal age determination, further investigation for appropriate methodology should be undertaken. After a collective study of pertinent domestic and international literatures, we present this review of the research and advancement on skeletal age evaluation methods of X-ray film.

  5. The Biological Nature of Geochemical Proxies: algal symbionts affect coral skeletal chemistry

    NASA Astrophysics Data System (ADS)

    Owens, K.; Cohen, A. L.; Shimizu, N.

    2001-12-01

    The strontium-calcium ratio (Sr/Ca) of reef coral skeleton is an important ocean temperature proxy that has been used to address some particularly controversial climate change issues. However, the paleothermometer has sometimes proven unreliable and there are indications that the temperature-dependence of Sr/Ca in coral aragonite is linked to the photosynthetic activity of algal symbionts (zooxanthellae) in coral tissue. We examined the effect of algal symbiosis on skeletal chemistry using Astrangia danae, a small colonial temperate scleractinian that occurs naturally with and without zooxanthellae. Live symbiotic (deep brown) and asymbiotic (white) colonies of similar size were collected in Woods Hole where water temperatures fluctuate seasonally between -2oC and 23oC. We used a microbeam technique (Secondary Ion Mass Spectrometry) and a 30 micron diameter sampling beam to construct high-resolution Sr/Ca profiles, 2500 microns long, down the growth axes of the outer calical (thecal) walls. Profiles generated from co-occuring symbiotic and asymbiotic colonies are remarkably different despite their exposure to identical water temperatures. Symbiotic coral Sr/Ca displays four large-amplitude annual cycles with high values in the winter, low values in the summer and a temperature dependence similar to that of tropical reef corals. By comparison, Sr/Ca profiles constructed from asymbiotic coral skeleton display little variability over the same time period. Asymbiont Sr/Ca is relatively insensitive to the enormous temperature changes experienced over the year; the temperature dependence is similar to that of nighttime skeletal deposits in tropical reef corals and non-biological aragonite precipitates. We propose that the large variations in skeletal Sr/Ca observed in all symbiont-hosting coral species are not related to SST variability per se but are driven primarily by large seasonal variations in skeletal calcification rate associated with symbiont photosynthesis. Our

  6. Dependence of normal development of skeletal muscle in neonatal rats on load bearing

    NASA Technical Reports Server (NTRS)

    Ohira, Y.; Tanaka, T.; Yoshinaga, T.; Kawano, F.; Nomura, T.; Nonaka, I.; Allen, D. L.; Roy, R. R.; Edgerton, V. R.

    2000-01-01

    Antigravity function plays an important role in determining the morphological and physiological properties of the neuromuscular system. Inhibition of the normal development of the neuromuscular system is induced by hindlimb unloading during the neonatal period in rats. However, the role of gravitational loading on the development of skeletal muscle in rats is not well understood. It could be hypothesized that during the early postnatal period, i.e. when minimal weight-supporting activity occurs, the activity imposed by gravity would be of little consequence in directing the normal development of the skeletal musculature. We have addressed this issue by limiting the amount of postnatal weight-support activity of the hindlimbs of rats during the lactation period. We have focused on the development of three characteristics of the muscle fibers, i.e. size, myonuclear number and myosin heavy chain expression.

  7. Skeletal Muscle Pathophysiology: The Emerging Role of Spermine Oxidase and Spermidine.

    PubMed

    Cervelli, Manuela; Leonetti, Alessia; Duranti, Guglielmo; Sabatini, Stefania; Ceci, Roberta; Mariottini, Paolo

    2018-02-14

    Skeletal muscle comprises approximately 40% of the total body mass. Preserving muscle health and function is essential for the entire body in order to counteract chronic diseases such as type II diabetes, cardiovascular diseases, and cancer. Prolonged physical inactivity, particularly among the elderly, causes muscle atrophy, a pathological state with adverse outcomes such as poor quality of life, physical disability, and high mortality. In murine skeletal muscle C2C12 cells, increased expression of the spermine oxidase (SMOX) enzyme has been found during cell differentiation. Notably, SMOX overexpression increases muscle fiber size, while SMOX reduction was enough to induce muscle atrophy in multiple murine models. Of note, the SMOX reaction product spermidine appears to be involved in skeletal muscle atrophy/hypertrophy. It is effective in reactivating autophagy, ameliorating the myopathic defects of collagen VI-null mice. Moreover, spermidine treatment, if combined with exercise, can affect D-gal-induced aging-related skeletal muscle atrophy. This review hypothesizes a role for SMOX during skeletal muscle differentiation and outlines its role and that of spermidine in muscle atrophy. The identification of new molecular pathways involved in the maintenance of skeletal muscle health could be beneficial in developing novel therapeutic lead compounds to treat muscle atrophy.

  8. Skeletal Muscle Pathophysiology: The Emerging Role of Spermine Oxidase and Spermidine

    PubMed Central

    Duranti, Guglielmo; Sabatini, Stefania; Ceci, Roberta; Mariottini, Paolo

    2018-01-01

    Skeletal muscle comprises approximately 40% of the total body mass. Preserving muscle health and function is essential for the entire body in order to counteract chronic diseases such as type II diabetes, cardiovascular diseases, and cancer. Prolonged physical inactivity, particularly among the elderly, causes muscle atrophy, a pathological state with adverse outcomes such as poor quality of life, physical disability, and high mortality. In murine skeletal muscle C2C12 cells, increased expression of the spermine oxidase (SMOX) enzyme has been found during cell differentiation. Notably, SMOX overexpression increases muscle fiber size, while SMOX reduction was enough to induce muscle atrophy in multiple murine models. Of note, the SMOX reaction product spermidine appears to be involved in skeletal muscle atrophy/hypertrophy. It is effective in reactivating autophagy, ameliorating the myopathic defects of collagen VI-null mice. Moreover, spermidine treatment, if combined with exercise, can affect D-gal-induced aging-related skeletal muscle atrophy. This review hypothesizes a role for SMOX during skeletal muscle differentiation and outlines its role and that of spermidine in muscle atrophy. The identification of new molecular pathways involved in the maintenance of skeletal muscle health could be beneficial in developing novel therapeutic lead compounds to treat muscle atrophy. PMID:29443878

  9. Development and external validation of nomograms to predict the risk of skeletal metastasis at the time of diagnosis and skeletal metastasis-free survival in nasopharyngeal carcinoma.

    PubMed

    Yang, Lin; Xia, Liangping; Wang, Yan; He, Shasha; Chen, Haiyang; Liang, Shaobo; Peng, Peijian; Hong, Shaodong; Chen, Yong

    2017-09-06

    The skeletal system is the most common site of distant metastasis in nasopharyngeal carcinoma (NPC); various prognostic factors have been reported for skeletal metastasis, though most studies have focused on a single factor. We aimed to establish nomograms to effectively predict skeletal metastasis at initial diagnosis (SMAD) and skeletal metastasis-free survival (SMFS) in NPC. A total of 2685 patients with NPC who received bone scintigraphy (BS) and/or 18F-deoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) and 2496 patients without skeletal metastasis were retrospectively assessed to develop individual nomograms for SMAD and SMFS. The models were validated externally using separate cohorts of 1329 and 1231 patients treated at two other institutions. Five independent prognostic factors were included in each nomogram. The SMAD nomogram had a significantly higher c-index than the TNM staging system (training cohort, P = 0.005; validation cohort, P < 0.001). The SMFS nomogram had significantly higher c-index values in the training and validation sets than the TNM staging system (P < 0.001 and P = 0.005, respectively). Three proposed risk stratification groups were created using the nomograms, and enabled significant discrimination of SMFS for each risk group. The prognostic nomograms established in this study enable accurate stratification of distinct risk groups for skeletal metastasis, which may improve counseling and facilitate individualized management of patients with NPC.

  10. Structure-function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    NASA Astrophysics Data System (ADS)

    Gao, Yingxin; Zhang, Chi

    2015-03-01

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure-function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure-function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure-function relationship of skeletal muscle into the design of artificial muscle.

  11. Role of Thyroid Hormones in Skeletal Development and Bone Maintenance

    PubMed Central

    Bassett, J. H. Duncan

    2016-01-01

    The skeleton is an exquisitely sensitive and archetypal T3-target tissue that demonstrates the critical role for thyroid hormones during development, linear growth, and adult bone turnover and maintenance. Thyrotoxicosis is an established cause of secondary osteoporosis, and abnormal thyroid hormone signaling has recently been identified as a novel risk factor for osteoarthritis. Skeletal phenotypes in genetically modified mice have faithfully reproduced genetic disorders in humans, revealing the complex physiological relationship between centrally regulated thyroid status and the peripheral actions of thyroid hormones. Studies in mutant mice also established the paradigm that T3 exerts anabolic actions during growth and catabolic effects on adult bone. Thus, the skeleton represents an ideal physiological system in which to characterize thyroid hormone transport, metabolism, and action during development and adulthood and in response to injury. Future analysis of T3 action in individual skeletal cell lineages will provide new insights into cell-specific molecular mechanisms and may ultimately identify novel therapeutic targets for chronic degenerative diseases such as osteoporosis and osteoarthritis. This review provides a comprehensive analysis of the current state of the art. PMID:26862888

  12. Adipocyte-myocyte crosstalk in skeletal muscle insulin resistance; is there a role for thyroid hormone?

    PubMed

    Havekes, Bas; Sauerwein, Hans P

    2010-11-01

    To review original research studies and reviews that present data on adipocyte-myocyte crosstalk in the development of skeletal muscle insulin resistance with a specific focus on thyroid hormone. Adipose tissue communicates with skeletal muscle not only through free fatty acids but also through secretion of various products called adipokines. Adipokines came out as governors of insulin sensitivity and are deregulated in obesity. In addition to well known leptin, adiponectin, interleukin-6 and tumor necrosis factor-alpha, newer adipokines like retinol-binding protein 4 have been associated with insulin resistance. There is mounting evidence that not only adipose tissue but also skeletal muscle produces and secretes biologically active proteins or 'myokines' that facilitate metabolic crosstalk between organ systems. In recent years, increased expression of myostatin, a secreted anabolic inhibitor of muscle growth and development, has been associated with obesity and insulin resistance. Both hypothyroidism and hyperthyroidism affect insulin sensitivity in multiple ways that might overlap adipocyte-myocyte crosstalk. Recent studies have provided new insights in effects of processing of the parent hormone T4 to the active T3 at the level of the skeletal muscle. Adipocyte-myocyte crosstalk is an important modulator in the development of skeletal muscle insulin resistance. Thyroid disorders are very common and may have detrimental effects on skeletal muscle insulin resistance, potentially by interacting with adipocyte-myocyte crosstalk.

  13. PI3K-mediated PDGFRα signaling regulates survival and proliferation in skeletal development through p53-dependent intracellular pathways

    PubMed Central

    Fantauzzo, Katherine A.; Soriano, Philippe

    2014-01-01

    Previous studies have identified phosphatidylinositol 3-kinase (PI3K) as the main downstream effector of PDGFRα signaling during murine skeletal development. Autophosphorylation mutant knock-in embryos in which PDGFRα is unable to bind PI3K (PdgfraPI3K/PI3K) exhibit skeletal defects affecting the palatal shelves, shoulder girdle, vertebrae, and sternum. To identify proteins phosphorylated by Akt downstream from PI3K-mediated PDGFRα signaling, we immunoprecipitated Akt phosphorylation substrates from PDGF-AA-treated primary mouse embryonic palatal mesenchyme (MEPM) lysates and analyzed the peptides by nanoliquid chromatography coupled to tandem mass spectrometry (nano-LC-MS/MS). Our analysis generated a list of 56 proteins, including 10 that regulate cell survival and proliferation. We demonstrate that MEPM cell survival is impaired in the presence of a PI3K inhibitor and that PdgfraPI3K/PI3K-derived MEPMs do not proliferate in response to PDGF-AA treatment. Several of the identified Akt phosphorylation targets, including Ybox1, mediate cell survival through regulation of p53. We show that Ybox1 binds both the Trp53 promoter and the p53 protein and that expression of Trp53 is significantly decreased upon PDGF-AA treatment in MEPMs. Finally, we demonstrate that introduction of a Trp53-null allele attenuates the vertebral defects found in PdgfraPI3K/PI3K neonates. Our findings identify p53 as a novel effector downstream from PI3K-engaged PDGFRα signaling that regulates survival and proliferation during skeletal development in vivo. PMID:24788519

  14. Testing times: identifying puberty in an identified skeletal sample.

    PubMed

    Henderson, Charlotte Y; Padez, Cristina

    2017-06-01

    Identifying the onset of puberty in skeletal remains can provide evidence of social changes associated with the onset of adulthood. This paper presents the first test of a skeletal method for identifying stages of development associated with the onset of puberty in a skeletal sample of known age and cause of death. Skeletal methods for assessing skeletal development associated with changes associated with puberty were recorded in the identified skeletal collection in Coimbra, Portugal. Historical data on the onset of menarche in this country are used to test the method. As expected, females mature faster than their male counterparts. There is some side asymmetry in development. Menarche was found to have been achieved by an average age of 15. Asymmetry must be taken into account when dealing with partially preserved skeletons. Age of menarche is consistent, although marginally higher, than the age expected based on historical data for this time and location. Skeletal development in males could not be tested against historical data, due to the lack of counterpart historical data. The ill health known to be present in this prematurely deceased population may have delayed skeletal development and the onset of puberty.

  15. Skeletal Malocclusion: A Developmental Disorder With a Life-Long Morbidity

    PubMed Central

    Joshi, Nishitha; Hamdan, Ahmad M.; Fakhouri, Walid D.

    2014-01-01

    The likelihood of birth defects in orofacial tissues is high due to the structural and developmental complexity of the face and the susceptibility to intrinsic and extrinsic perturbations. Skeletal malocclusion is caused by the distortion of the proper mandibular and/or maxillary growth during fetal development. Patients with skeletal malocclusion may suffer from dental deformities, bruxism, teeth crowding, trismus, mastication difficulties, breathing obstruction and digestion disturbance if the problem is left untreated. In this review, we focused on skeletal malocclusion that affects 27.9% of the US population with different severity levels. We summarized the prevalence of class I, II and III of malocclusion in different ethnic groups and discussed the most frequent medical disorders associated with skeletal malocclusion. Dental anomalies that lead to malocclusion such as tooth agenesis, crowding, missing teeth and abnormal tooth size are not addressed in this review. We propose a modified version of malocclusion classification for research purposes to exhibit a clear distinction between skeletal vs. dental malocclusion in comparison to Angle’s classification. In addition, we performed a cross-sectional analysis on orthodontic (malocclusion) data through the BigMouth Dental Data Repository to calculate potential association between malocclusion with other medical conditions. In conclusion, this review emphasizes the need to identify genetic and environmental factors that cause or contribute risk to skeletal malocclusion and the possible association with other medical conditions to improve assessment, prognosis and therapeutic approaches. PMID:25247012

  16. Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development

    PubMed Central

    Heers, Ashley M.; Baier, David B.; Jackson, Brandon E.; Dial, Kenneth P.

    2016-01-01

    Some of the greatest transformations in vertebrate history involve developmental and evolutionary origins of avian flight. Flight is the most power-demanding mode of locomotion, and volant adult birds have many anatomical features that presumably help meet these demands. However, juvenile birds, like the first winged dinosaurs, lack many hallmarks of advanced flight capacity. Instead of large wings they have small “protowings”, and instead of robust, interlocking forelimb skeletons their limbs are more gracile and their joints less constrained. Such traits are often thought to preclude extinct theropods from powered flight, yet young birds with similarly rudimentary anatomies flap-run up slopes and even briefly fly, thereby challenging longstanding ideas on skeletal and feather function in the theropod-avian lineage. Though skeletons and feathers are the common link between extinct and extant theropods and figure prominently in discussions on flight performance (extant birds) and flight origins (extinct theropods), skeletal inter-workings are hidden from view and their functional relationship with aerodynamically active wings is not known. For the first time, we use X-ray Reconstruction of Moving Morphology to visualize skeletal movement in developing birds, and explore how development of the avian flight apparatus corresponds with ontogenetic trajectories in skeletal kinematics, aerodynamic performance, and the locomotor transition from pre-flight flapping behaviors to full flight capacity. Our findings reveal that developing chukars (Alectoris chukar) with rudimentary flight apparatuses acquire an “avian” flight stroke early in ontogeny, initially by using their wings and legs cooperatively and, as they acquire flight capacity, counteracting ontogenetic increases in aerodynamic output with greater skeletal channelization. In conjunction with previous work, juvenile birds thereby demonstrate that the initial function of developing wings is to enhance leg

  17. Transcriptome analysis reveals long intergenic non-coding RNAs involved in skeletal muscle growth and development in pig.

    PubMed

    Zou, Cheng; Li, Jingxuan; Luo, Wenzhe; Li, Long; Hu, An; Fu, Yuhua; Hou, Ye; Li, Changchun

    2017-08-18

    Long intergenic non-coding RNAs (lincRNAs) play essential roles in numerous biological processes and are widely studied. The skeletal muscle is an important tissue that plays an essential role in individual movement ability. However, lincRNAs in pig skeletal muscles are largely undiscovered and their biological functions remain elusive. In this study, we assembled transcriptomes using RNA-seq data published in previous studies of our laboratory group and identified 323 lincRNAs in porcine leg muscle. We found that these lincRNAs have shorter transcript length, fewer exons and lower expression level than protein-coding genes. Gene ontology and pathway analyses indicated that many potential target genes (PTGs) of lincRNAs were involved in skeletal-muscle-related processes, such as muscle contraction and muscle system process. Combined our previous studies, we found a potential regulatory mechanism in which the promoter methylation of lincRNAs can negatively regulate lincRNA expression and then positively regulate PTG expression, which can finally result in abnormal phenotypes of cloned piglets through a certain unknown pathway. This work detailed a number of lincRNAs and their target genes involved in skeletal muscle growth and development and can facilitate future studies on their roles in skeletal muscle growth and development.

  18. Robot-assisted mechanical therapy attenuates stroke-induced limb skeletal muscle injury.

    PubMed

    Sen, Chandan K; Khanna, Savita; Harris, Hallie; Stewart, Richard; Balch, Maria; Heigel, Mallory; Teplitsky, Seth; Gnyawali, Surya; Rink, Cameron

    2017-03-01

    The efficacy and optimization of poststroke physical therapy paradigms is challenged in part by a lack of objective tools available to researchers for systematic preclinical testing. This work represents a maiden effort to develop a robot-assisted mechanical therapy (RAMT) device to objectively address the significance of mechanical physiotherapy on poststroke outcomes. Wistar rats were subjected to right hemisphere middle-cerebral artery occlusion and reperfusion. After 24 h, rats were split into control (RAMT - ) or RAMT + groups (30 min daily RAMT over the stroke-affected gastrocnemius) and were followed up to poststroke d 14. RAMT + increased perfusion 1.5-fold in stroke-affected gastrocnemius as compared to RAMT - controls. Furthermore, RAMT + rats demonstrated improved poststroke track width (11% wider), stride length (21% longer), and travel distance (61% greater), as objectively measured using software-automated testing platforms. Stroke injury acutely increased myostatin (3-fold) and lowered brain-derived neurotrophic factor (BDNF) expression (0.6-fold) in the stroke-affected gastrocnemius, as compared to the contralateral one. RAMT attenuated the stroke-induced increase in myostatin and increased BDNF expression in skeletal muscle. Additional RAMT-sensitive myokine targets in skeletal muscle (IL-1ra and IP-10/CXCL10) were identified from a cytokine array. Taken together, outcomes suggest stroke acutely influences signal transduction in hindlimb skeletal muscle. Regimens based on mechanical therapy have the clear potential to protect hindlimb function from such adverse influence.-Sen, C. K., Khanna, S., Harris, H., Stewart, R., Balch, M., Heigel, M., Teplitsky, S., Gnyawali, S., Rink, C. Robot-assisted mechanical therapy attenuates stroke-induced limb skeletal muscle injury. © FASEB.

  19. Robot-assisted mechanical therapy attenuates stroke-induced limb skeletal muscle injury

    PubMed Central

    Sen, Chandan K.; Khanna, Savita; Harris, Hallie; Stewart, Richard; Balch, Maria; Heigel, Mallory; Teplitsky, Seth; Gnyawali, Surya; Rink, Cameron

    2017-01-01

    The efficacy and optimization of poststroke physical therapy paradigms is challenged in part by a lack of objective tools available to researchers for systematic preclinical testing. This work represents a maiden effort to develop a robot-assisted mechanical therapy (RAMT) device to objectively address the significance of mechanical physiotherapy on poststroke outcomes. Wistar rats were subjected to right hemisphere middle-cerebral artery occlusion and reperfusion. After 24 h, rats were split into control (RAMT−) or RAMT+ groups (30 min daily RAMT over the stroke-affected gastrocnemius) and were followed up to poststroke d 14. RAMT+ increased perfusion 1.5-fold in stroke-affected gastrocnemius as compared to RAMT− controls. Furthermore, RAMT+ rats demonstrated improved poststroke track width (11% wider), stride length (21% longer), and travel distance (61% greater), as objectively measured using software-automated testing platforms. Stroke injury acutely increased myostatin (3-fold) and lowered brain-derived neurotrophic factor (BDNF) expression (0.6-fold) in the stroke-affected gastrocnemius, as compared to the contralateral one. RAMT attenuated the stroke-induced increase in myostatin and increased BDNF expression in skeletal muscle. Additional RAMT-sensitive myokine targets in skeletal muscle (IL-1ra and IP-10/CXCL10) were identified from a cytokine array. Taken together, outcomes suggest stroke acutely influences signal transduction in hindlimb skeletal muscle. Regimens based on mechanical therapy have the clear potential to protect hindlimb function from such adverse influence.—Sen, C. K., Khanna, S., Harris, H., Stewart, R., Balch, M., Heigel, M., Teplitsky, S., Gnyawali, S., Rink, C. Robot-assisted mechanical therapy attenuates stroke-induced limb skeletal muscle injury. PMID:27895105

  20. EFFECTS OF HYPERTHERMIA AND BORIC ACID ON SKELETAL DEVELOPMENT IN RAT EMBRYOS

    EPA Science Inventory

    BACKGROUND: The individual effects of boric acid (BA) and hyperthermia on the development of the axial skeleton have previously been reported. Both cause an increased incidence of axial skeletal defects including a decrease in the total number of ribs and vertebrae. Because of th...

  1. Skeletal muscle expression of p43, a truncated thyroid hormone receptor α, affects lipid composition and metabolism.

    PubMed

    Casas, François; Fouret, Gilles; Lecomte, Jérome; Cortade, Fabienne; Pessemesse, Laurence; Blanchet, Emilie; Wrutniak-Cabello, Chantal; Coudray, Charles; Feillet-Coudray, Christine

    2018-02-01

    Thyroid hormone is a major regulator of metabolism and mitochondrial function. Thyroid hormone also affects reactions in almost all pathways of lipids metabolism and as such is considered as the main hormonal regulator of lipid biogenesis. The aim of this study was to explore the possible involvement of p43, a 43 Kda truncated form of the nuclear thyroid hormone receptor TRα1 which stimulates mitochondrial activity. Therefore, using mouse models overexpressing p43 in skeletal muscle (p43-Tg) or lacking p43 (p43-/-), we have investigated the lipid composition in quadriceps muscle and in mitochondria. Here, we reported in the quadriceps muscle of p43-/- mice, a fall in triglycerides, an inhibition of monounsaturated fatty acids (MUFA) synthesis, an increase in elongase index and an decrease in desaturase index. However, in mitochondria from p43-/- mice, fatty acid profile was barely modified. In the quadriceps muscle of p43-Tg mice, MUFA content was decreased whereas the unsaturation index was increased. In addition, in quadriceps mitochondria of p43-Tg mice, we found an increase of linoleic acid level and unsaturation index. Last, we showed that cardiolipin content, a key phospholipid for mitochondrial function, remained unchanged both in quadriceps muscle and in its mitochondria whatever the mice genotype. In conclusion, this study shows that muscle lipid content and fatty acid profile are strongly affected in skeletal muscle by p43 levels. We also demonstrate that regulation of cardiolipin biosynthesis by the thyroid hormone does not imply p43.

  2. The complexities of skeletal biology

    NASA Technical Reports Server (NTRS)

    Karsenty, Gerard

    2003-01-01

    For a long time, the skeleton was seen as an amorphous tissue of little biological interest. But such a view ignored the large number of genetic and degenerative diseases affecting this organ. Over the past 15 years, molecular and genetic studies have modified our understanding of skeletal biology. By so doing this progress has affected our understanding of diseases and suggested in many instances new therapeutic opportunities.

  3. Increase in relative skeletal muscle mass over time and its inverse association with metabolic syndrome development: a 7-year retrospective cohort study.

    PubMed

    Kim, Gyuri; Lee, Seung-Eun; Jun, Ji Eun; Lee, You-Bin; Ahn, Jiyeon; Bae, Ji Cheol; Jin, Sang-Man; Hur, Kyu Yeon; Jee, Jae Hwan; Lee, Moon-Kyu; Kim, Jae Hyeon

    2018-02-05

    Skeletal muscle mass was negatively associated with metabolic syndrome prevalence in previous cross-sectional studies. The aim of this study was to investigate the impact of baseline skeletal muscle mass and changes in skeletal muscle mass over time on the development of metabolic syndrome in a large population-based 7-year cohort study. A total of 14,830 and 11,639 individuals who underwent health examinations at the Health Promotion Center at Samsung Medical Center, Seoul, Korea were included in the analyses of baseline skeletal muscle mass and those changes from baseline over 1 year, respectively. Skeletal muscle mass was estimated by bioelectrical impedance analysis and was presented as a skeletal muscle mass index (SMI), a body weight-adjusted appendicular skeletal muscle mass value. Using Cox regression models, hazard ratio for developing metabolic syndrome associated with SMI values at baseline or changes of SMI over a year was analyzed. During 7 years of follow-up, 20.1% of subjects developed metabolic syndrome. Compared to the lowest sex-specific SMI tertile at baseline, the highest sex-specific SMI tertile showed a significant inverse association with metabolic syndrome risk (adjusted hazard ratio [AHR] = 0.61, 95% confidence interval [CI] 0.54-0.68). Furthermore, compared with SMI changes < 0% over a year, multivariate-AHRs for metabolic syndrome development were 0.87 (95% CI 0.78-0.97) for 0-1% changes and 0.67 (0.56-0.79) for > 1% changes in SMI over 1 year after additionally adjusting for baseline SMI and glycometabolic parameters. An increase in relative skeletal muscle mass over time has a potential preventive effect on developing metabolic syndrome, independently of baseline skeletal muscle mass and glycometabolic parameters.

  4. A Murine Model for Human ECO Syndrome Reveals a Critical Role of Intestinal Cell Kinase in Skeletal Development.

    PubMed

    Ding, Mengmeng; Jin, Li; Xie, Lin; Park, So Hyun; Tong, Yixin; Wu, Di; Chhabra, A Bobby; Fu, Zheng; Li, Xudong

    2018-03-01

    An autosomal-recessive inactivating mutation R272Q in the human intestinal cell kinase (ICK) gene caused profound multiplex developmental defects in human endocrine-cerebro-osteodysplasia (ECO) syndrome. ECO patients exhibited a wide variety of skeletal abnormalities, yet the underlying mechanisms by which ICK regulates skeletal development remained largely unknown. The goal of this study was to understand the structural and mechanistic basis underlying skeletal anomalies caused by ICK dysfunction. Ick R272Q knock-in transgenic mouse model not only recapitulated major ECO skeletal defects such as short limbs and polydactyly but also revealed a deformed spine with defective intervertebral disk. Loss of ICK function markedly reduced mineralization in the spinal column, ribs, and long bones. Ick mutants showed a significant decrease in the proliferation zone of long bones and the number of type X collagen-expressing hypertrophic chondrocytes in the spinal column and the growth plate of long bones. These results implicate that ICK plays an important role in bone and cartilage development by promoting chondrocyte proliferation and maturation. Our findings provided new mechanistic insights into the skeletal phenotype of human ECO and ECO-like syndromes.

  5. Physical exercise in aging human skeletal muscle increases mitochondrial calcium uniporter expression levels and affects mitochondria dynamics.

    PubMed

    Zampieri, Sandra; Mammucari, Cristina; Romanello, Vanina; Barberi, Laura; Pietrangelo, Laura; Fusella, Aurora; Mosole, Simone; Gherardi, Gaia; Höfer, Christian; Löfler, Stefan; Sarabon, Nejc; Cvecka, Jan; Krenn, Matthias; Carraro, Ugo; Kern, Helmut; Protasi, Feliciano; Musarò, Antonio; Sandri, Marco; Rizzuto, Rosario

    2016-12-01

    Age-related sarcopenia is characterized by a progressive loss of muscle mass with decline in specific force, having dramatic consequences on mobility and quality of life in seniors. The etiology of sarcopenia is multifactorial and underlying mechanisms are currently not fully elucidated. Physical exercise is known to have beneficial effects on muscle trophism and force production. Alterations of mitochondrial Ca 2+ homeostasis regulated by mitochondrial calcium uniporter (MCU) have been recently shown to affect muscle trophism in vivo in mice. To understand the relevance of MCU-dependent mitochondrial Ca 2+ uptake in aging and to investigate the effect of physical exercise on MCU expression and mitochondria dynamics, we analyzed skeletal muscle biopsies from 70-year-old subjects 9 weeks trained with either neuromuscular electrical stimulation (ES) or leg press. Here, we demonstrate that improved muscle function and structure induced by both trainings are linked to increased protein levels of MCU Ultrastructural analyses by electron microscopy showed remodeling of mitochondrial apparatus in ES-trained muscles that is consistent with an adaptation to physical exercise, a response likely mediated by an increased expression of mitochondrial fusion protein OPA1. Altogether these results indicate that the ES-dependent physiological effects on skeletal muscle size and force are associated with changes in mitochondrial-related proteins involved in Ca 2+ homeostasis and mitochondrial shape. These original findings in aging human skeletal muscle confirm the data obtained in mice and propose MCU and mitochondria-related proteins as potential pharmacological targets to counteract age-related muscle loss. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  6. Favorable effect of moderate dose caffeine on the skeletal system in ovariectomized rats.

    PubMed

    Folwarczna, Joanna; Pytlik, Maria; Zych, Maria; Cegieła, Urszula; Kaczmarczyk-Sedlak, Ilona; Nowińska, Barbara; Sliwiński, Leszek

    2013-10-01

    Caffeine, a methylxanthine present in coffee, has been postulated to be responsible for an increased risk of osteoporosis in coffee drinkers; however, the data are inconsistent. The aim of the present study was to investigate the effects of a moderate dose of caffeine on the skeletal system of rats with normal and decreased estrogen level (developing osteoporosis due to estrogen deficiency). The experiments were carried out on mature nonovariectomized and ovariectomized Wistar rats, divided into control rats and rats receiving caffeine once daily, 20 mg/kg p.o., for 4 wk. Serum bone turnover markers, bone mass, mass of bone mineral, calcium and phosphorus content, histomorphometric parameters, and bone mechanical properties were examined. Caffeine favorably affected the skeletal system of ovariectomized rats, slightly inhibiting the development of bone changes induced by estrogen deficiency (increasing bone mineralization, and improving the strength and structure of cancellous bone). Moreover, it favorably affected mechanical properties of compact bone. There were no significant effects of caffeine in rats with normal estrogen levels. In conclusion, results of the present study indicate that low-to-moderate caffeine intake may exert some beneficial effects on the skeletal system of mature organisms. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Impact of placental insufficiency on fetal skeletal muscle growth

    PubMed Central

    Hay, William W.

    2016-01-01

    Intrauterine growth restriction (IUGR) caused by placental insufficiency is one of the most common and complex problems in perinatology, with no known cure. In pregnancies affected by placental insufficiency, a poorly functioning placenta restricts nutrient supply to the fetus and prevents normal fetal growth. Among other significant deficits in organ development, the IUGR fetus characteristically has less lean body and skeletal muscle mass than their appropriately-grown counterparts. Reduced skeletal muscle growth is not fully compensated after birth, as individuals who were born small for gestational age (SGA) from IUGR have persistent reductions in muscle mass and strength into adulthood. The consequences of restricted muscle growth and accelerated postnatal “catch-up” growth in the form of adiposity may contribute to the increased later life risk for visceral adiposity, peripheral insulin resistance, diabetes, and cardiovascular disease in individuals who were formerly IUGR. This review will discuss how an insufficient placenta results in impaired fetal skeletal muscle growth and how lifelong reductions in muscle mass might contribute to increased metabolic disease risk in this vulnerable population. PMID:26994511

  8. [Size of lower jaw as an early indicator of skeletal class III development].

    PubMed

    Stojanović, Zdenka; Nikodijević, Angelina; Udovicić, Bozidar; Milić, Jasmina; Nikolić, Predrag

    2008-08-01

    Malocclusion of skeletal class III is a complex abnormality, with a characteristic sagital position of the lower jaw in front of the upper one. A higher level of prognatism of the lower jaw in relation to the upper one can be the consequence of its excessive length. The aim of this study was to find the differences in the length of the lower jaw in the children with skeletal class III and the children with normal sagital interjaw relation (skeletal class I) in the period of mixed dentition. After clinical and x-ray diagnostics, profile tele-x-rays of the head were analyzed in 60 examinees with mixed dentition, aged from 6 to 12 years. The examinees were divided into two groups: group 1--the children with skeletal class III and group 2--the children with skeletal class I. The length of the lower jaw, upper jaw and cranial base were measured. The proportional relations between the lengths measured within each group were established and the level of difference in the lengths measured and their proportions between the groups were estimated. No significant difference between the groups was found in the body length, ramus and the total length of the lower jaw. Proportional relation between the body length and the length of the lower jaw ramus and proportional relation between the forward cranial base and the lower jaw body were not significantly different. A significant difference was found in proportional relations of the total length of the lower jaw with the total lengths of cranial base and the upper jaw and proportional relation of the length of the lower and upper jaw body. Of all the analyzed parameters, the following were selected as the early indicators of the development of skeletal class III on the lower jaw: greater total length of the lower jaw, proportional to the total lengths of cranial base and theupper jaw, as well as greater length of the lower jaw body, proportional to the length of the upper jaw body.

  9. Extensive alternative splicing transitions during postnatal skeletal muscle development are required for calcium handling functions

    PubMed Central

    Brinegar, Amy E; Xia, Zheng; Loehr, James Anthony; Li, Wei; Rodney, George Gerald

    2017-01-01

    Postnatal development of skeletal muscle is a highly dynamic period of tissue remodeling. Here, we used RNA-seq to identify transcriptome changes from late embryonic to adult mouse muscle and demonstrate that alternative splicing developmental transitions impact muscle physiology. The first 2 weeks after birth are particularly dynamic for differential gene expression and alternative splicing transitions, and calcium-handling functions are significantly enriched among genes that undergo alternative splicing. We focused on the postnatal splicing transitions of the three calcineurin A genes, calcium-dependent phosphatases that regulate multiple aspects of muscle biology. Redirected splicing of calcineurin A to the fetal isoforms in adult muscle and in differentiated C2C12 slows the timing of muscle relaxation, promotes nuclear localization of calcineurin target Nfatc3, and/or affects expression of Nfatc transcription targets. The results demonstrate a previously unknown specificity of calcineurin isoforms as well as the broader impact of alternative splicing during muscle postnatal development. PMID:28826478

  10. Lack of Skeletal Muscle IL-6 Affects Pyruvate Dehydrogenase Activity at Rest and during Prolonged Exercise.

    PubMed

    Gudiksen, Anders; Schwartz, Camilla Lindgren; Bertholdt, Lærke; Joensen, Ella; Knudsen, Jakob G; Pilegaard, Henriette

    2016-01-01

    Pyruvate dehydrogenase (PDH) plays a key role in the regulation of skeletal muscle substrate utilization. IL-6 is produced in skeletal muscle during exercise in a duration dependent manner and has been reported to increase whole body fatty acid oxidation, muscle glucose uptake and decrease PDHa activity in skeletal muscle of fed mice. The aim of the present study was to examine whether muscle IL-6 contributes to exercise-induced PDH regulation in skeletal muscle. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice and floxed littermate controls (control) completed a single bout of treadmill exercise for 10, 60 or 120 min, with rested mice of each genotype serving as basal controls. The respiratory exchange ratio (RER) was overall higher (P<0.05) in IL-6 MKO than control mice during the 120 min of treadmill exercise, while RER decreased during exercise independent of genotype. AMPK and ACC phosphorylation also increased with exercise independent of genotype. PDHa activity was in control mice higher (P<0.05) at 10 and 60 min of exercise than at rest but remained unchanged in IL-6 MKO mice. In addition, PDHa activity was higher (P<0.05) in IL-6 MKO than control mice at rest and 60 min of exercise. Neither PDH phosphorylation nor acetylation could explain the genotype differences in PDHa activity. Together, this provides evidence that skeletal muscle IL-6 contributes to the regulation of PDH at rest and during prolonged exercise and suggests that muscle IL-6 normally dampens carbohydrate utilization during prolonged exercise via effects on PDH.

  11. Fibroblast growth factor (FGF) signaling in development and skeletal diseases.

    PubMed

    Teven, Chad M; Farina, Evan M; Rivas, Jane; Reid, Russell R

    2014-12-01

    Fibroblast growth factors (FGF) and their receptors serve many functions in both the developing and adult organism. Humans contain 18 FGF ligands and four FGF receptors (FGFR). FGF ligands are polypeptide growth factors that regulate several developmental processes including cellular proliferation, differentiation, and migration, morphogenesis, and patterning. FGF-FGFR signaling is also critical to the developing axial and craniofacial skeleton. In particular, the signaling cascade has been implicated in intramembranous ossification of cranial bones as well as cranial suture homeostasis. In the adult, FGFs and FGFRs are crucial for tissue repair. FGF signaling generally follows one of three transduction pathways: RAS/MAP kinase, PI3/AKT, or PLCγ. Each pathway likely regulates specific cellular behaviors. Inappropriate expression of FGF and improper activation of FGFRs are associated with various pathologic conditions, unregulated cell growth, and tumorigenesis. Additionally, aberrant signaling has been implicated in many skeletal abnormalities including achondroplasia and craniosynostosis. The biology and mechanisms of the FGF family have been the subject of significant research over the past 30 years. Recently, work has focused on the therapeutic targeting and potential of FGF ligands and their associated receptors. The majority of FGF-related therapy is aimed at age-related disorders. Increased understanding of FGF signaling and biology may reveal additional therapeutic roles, both in utero and postnatally. This review discusses the role of FGF signaling in general physiologic and pathologic embryogenesis and further explores it within the context of skeletal development.

  12. Fibroblast growth factor (FGF) signaling in development and skeletal diseases

    PubMed Central

    Teven, Chad M.; Farina, Evan M.; Rivas, Jane; Reid, Russell R.

    2014-01-01

    Fibroblast growth factors (FGF) and their receptors serve many functions in both the developing and adult organism. Humans contain 18 FGF ligands and four FGF receptors (FGFR). FGF ligands are polypeptide growth factors that regulate several developmental processes including cellular proliferation, differentiation, and migration, morphogenesis, and patterning. FGF-FGFR signaling is also critical to the developing axial and craniofacial skeleton. In particular, the signaling cascade has been implicated in intramembranous ossification of cranial bones as well as cranial suture homeostasis. In the adult, FGFs and FGFRs are crucial for tissue repair. FGF signaling generally follows one of three transduction pathways: RAS/MAP kinase, PI3/AKT, or PLCγ. Each pathway likely regulates specific cellular behaviors. Inappropriate expression of FGF and improper activation of FGFRs are associated with various pathologic conditions, unregulated cell growth, and tumorigenesis. Additionally, aberrant signaling has been implicated in many skeletal abnormalities including achondroplasia and craniosynostosis. The biology and mechanisms of the FGF family have been the subject of significant research over the past 30 years. Recently, work has focused on the therapeutic targeting and potential of FGF ligands and their associated receptors. The majority of FGF-related therapy is aimed at age-related disorders. Increased understanding of FGF signaling and biology may reveal additional therapeutic roles, both in utero and postnatally. This review discusses the role of FGF signaling in general physiologic and pathologic embryogenesis and further explores it within the context of skeletal development. PMID:25679016

  13. [Effects of lycopene on the skeletal system].

    PubMed

    Sołtysiak, Patrycja; Folwarczna, Joanna

    2015-02-21

    Antioxidant substances of plant origin, such as lycopene, may favorably affect the skeletal system. Lycopene is a carotenoid pigment, responsible for characteristic red color of tomatoes. It is believed that lycopene may play a role in the prevention of various diseases; despite theoretical premises and results of experimental studies, the effectiveness of lycopene has not yet been clearly demonstrated in studies carried out in humans. The aim of the study was to present the current state of knowledge on the effects of lycopene on the osseous tissue in in vitro and in vivo experimental models and on the skeletal system in humans. Results of the studies indicate that lycopene may inhibit bone resorption. Favorable effects of high doses of lycopene on the rat skeletal system in experimental conditions, including the model of osteoporosis induced by estrogen deficiency, have been demonstrated. The few epidemiological and clinical studies, although not fully conclusive, suggest a possible beneficial effect of lycopene present in the diet on the skeletal system.

  14. Dietary protein intake affects expression of genes for lipid metabolism in porcine skeletal muscle in a genotype-dependent manner.

    PubMed

    Liu, Yingying; Li, Fengna; He, Lingyun; Tan, Bie; Deng, Jinping; Kong, Xiangfeng; Li, Yinghui; Geng, Meimei; Yin, Yulong; Wu, Guoyao

    2015-04-14

    Skeletal muscle is a major site for the oxidation of fatty acids (FA) in mammals, including humans. Using a swine model, we tested the hypothesis that dietary protein intake regulates the expression of key genes for lipid metabolism in skeletal muscle. A total of ninety-six barrows (forty-eight pure-bred Bama mini-pigs (fatty genotype) and forty-eight Landrace pigs (lean genotype)) were fed from 5 weeks of age to market weight. Pigs of fatty or lean genotype were randomly assigned to one of two dietary treatments (low- or adequate-protein diet), with twenty-four individually fed pigs per treatment. Our data showed that dietary protein levels affected the expression of genes involved in the anabolism and catabolism of lipids in the longissimus dorsi and biceps femoris muscles in a genotype-dependent manner. Specifically, Bama mini-pigs had more intramuscular fat, SFA and MUFA, as well as elevated mRNA expression levels of lipogenic genes, compared with Landrace pigs. In contrast, Bama mini-pigs had lower mRNA expression levels of lipolytic genes than Landrace pigs fed an adequate-protein diet in the growing phase. These data are consistent with higher white-fat deposition in Bama mini-pigs than in Landrace pigs. In conclusion, adequate provision of dietary protein (amino acids) plays an important role in regulating the expression of key lipogenic genes, and the growth of white adipose tissue, in a genotype- and tissue-specific manner. These findings have important implications for developing novel dietary strategies in pig production.

  15. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish.

    PubMed

    Housley, Michael P; Njaine, Brian; Ricciardi, Filomena; Stone, Oliver A; Hölper, Soraya; Krüger, Marcus; Kostin, Sawa; Stainier, Didier Y R

    2016-06-01

    Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD), lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy.

  16. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish

    PubMed Central

    Housley, Michael P.; Njaine, Brian; Ricciardi, Filomena; Stone, Oliver A.; Hölper, Soraya; Krüger, Marcus; Kostin, Sawa; Stainier, Didier Y. R.

    2016-01-01

    Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD), lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy. PMID:27294373

  17. Margaret Buckingham, discoveries in skeletal and cardiac muscle development, elected to the National Academy of Science.

    PubMed

    Rudnicki, Michael A

    2012-06-07

    Margaret Buckingham was presented as a newly elected member to the National Academy of Sciences on 28 April 2012. Over the course of her career, Dr Buckingham made many seminal contributions to the understanding of skeletal muscle and cardiac development. Her studies on cardiac progenitor populations has provided insight into understanding heart malformations, while her work on skeletal muscle progenitors has elucidated their embryonic origins and the transcriptional hierarchies controlling their developmental progression.

  18. Human age estimation combining third molar and skeletal development.

    PubMed

    Thevissen, P W; Kaur, J; Willems, G

    2012-03-01

    The wide prediction intervals obtained with age estimation methods based on third molar development could be reduced by combining these dental observations with age-related skeletal information. Therefore, on cephalometric radiographs, the most accurate age-estimating skeletal variable and related registration method were searched and added to a regression model, with age as response and third molar stages as explanatory variable. In a pilot set up on a dataset of 496 (283 M; 213 F) cephalometric radiographs, the techniques of Baccetti et al. (2005) (BA), Seedat et al. (2005) (SE), Caldas et al. (2007) and Rai et al. (2008) (RA) were verified. In the main study, data from 460 (208 F, 224 M) individuals in an age range between 3 and 26 years, for which at the same day an orthopantogram and a cephalogram were taken, were collected. On the orthopantomograms, the left third molar development was registered using the scoring system described by Gleiser and Hunt (1955) and modified by Köhler (1994) (GH). On the cephalograms, cervical vertebrae development was registered according to the BA and SE techniques. A regression model, with age as response and the GH scores as explanatory variable, was fitted to the data. Next, information of BA, SE and BA + SE was, respectively, added to this model. From all obtained models, the determination coefficients and the root mean squared errors were calculated. Inclusion of information from cephalograms based on the BA, as well as the SE, technique improved the amount of explained variance in age acquired from panoramic radiographs using the GH technique with 48%. Inclusion of cephalometric BA + SE information marginally improved the previous result (+1%). The RMSE decreased with 1.93, 1.85 and 2.03 years by adding, respectively, BA, SE and BA + SE information to the GH model. The SE technique allows clinically the fastest and easiest registration of the degree of development of the cervical vertebrae. Therefore, the choice of

  19. [Regulatory mechanism for lncRNAs in skeletal muscle development and progress on its research in domestic animals].

    PubMed

    Zhou, Rui; Wang, Yi Xin; Long, Ke Ren; Jiang, An An; Jin, Long

    2018-04-20

    Skeletal muscle is an essential tissue to maintain the normal functions of an organism. It is also closely associated with important economic performance, such as carcass weight, of domestic animals. In recent years, studies using high-throughput sequencing techniques have identified numerous long non-coding RNAs (lncRNAs) with myogenic functions involved in regulation of gene expression at multiple levels, including epigenetic, transcriptional and post-transcriptional regulation. These lncRNAs target myogenic factors, which participate in all processes of skeletal muscle development, including proliferation, migration and differentiation of skeletal muscle stem cells, proliferation, differentiation and fusion of myocytes, muscle hypertrophy and conversion of muscle fiber types. In this review, we summarize the functional roles of lncRNAs in regulation of myogenesis in humans and mice, describe the methods for the analysis of lncRNA function, discuss the progress of lncRNA research in domestic animals, and highlight the current problems and challenges in lncRNA research on livestock production. We hope to provide a useful reference for research on lncRNA in domestic animals, thereby further identifying the molecular regulatory mechanisms in skeletal muscle growth and development.

  20. Development of Sensory Receptors in Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    DeSantis, Mark

    2000-01-01

    The two major goals for this project is to (1) examine the hindlimb walking pattern of offspring from the Flight dams as compared with offspring of the ground control groups from initiation of walking up to two months thereafter; and (2) examine skeletal muscle.

  1. Diacylglycerol kinase-δ regulates AMPK signaling, lipid metabolism, and skeletal muscle energetics.

    PubMed

    Jiang, Lake Q; de Castro Barbosa, Thais; Massart, Julie; Deshmukh, Atul S; Löfgren, Lars; Duque-Guimaraes, Daniella E; Ozilgen, Arda; Osler, Megan E; Chibalin, Alexander V; Zierath, Juleen R

    2016-01-01

    Decrease of AMPK-related signal transduction and insufficient lipid oxidation contributes to the pathogenesis of obesity and type 2 diabetes. Previously, we identified that diacylglycerol kinase-δ (DGKδ), an enzyme involved in triglyceride biosynthesis, is reduced in skeletal muscle from type 2 diabetic patients. Here, we tested the hypothesis that DGKδ plays a role in maintaining appropriate AMPK action in skeletal muscle and energetic aspects of contraction. Voluntary running activity was reduced in DGKδ(+/-) mice, but glycogen content and mitochondrial markers were unaltered, suggesting that DGKδ deficiency affects skeletal muscle energetics but not mitochondrial protein abundance. We next determined the role of DGKδ in AMPK-related signal transduction and lipid metabolism in isolated skeletal muscle. AMPK activation and signaling were reduced in DGKδ(+/-) mice, concomitant with impaired lipid oxidation and elevated incorporation of free fatty acids into triglycerides. Strikingly, DGKδ deficiency impaired work performance, as evident by altered force production and relaxation dynamics in response to repeated contractions. In conclusion, DGKδ deficiency impairs AMPK signaling and lipid metabolism, thereby highlighting the deleterious role of excessive lipid metabolites in the development of peripheral insulin resistance and type 2 diabetes pathogenesis. DGKδ deficiency also influences skeletal muscle energetics, which may lead to low physical activity levels in type 2 diabetes. Copyright © 2016 the American Physiological Society.

  2. Skeletal Responses to Long-Duration Simulated Weightlessness in Rats

    NASA Technical Reports Server (NTRS)

    Adams, Julia; Torres, Samantha; Schreurs, Ann-Sofie; Alwood, Joshua S.; Shirazi-Fard, Yasaman; Tahimic, Candice; Globus, Ruth

    2017-01-01

    Damaging effects due to spaceflight and long-duration weightlessness are seen in the musculoskeletal system, specifically with regards to bone loss, bone resorption, and changes in overall bone structure. These adverse effects are all seen with indicators of oxidative stress and a variation in the levels of oxidative gene expression. Once gravity is restored, however, the recovery is slow and incomplete. Despite this, few reports have investigated the correlation between oxidative damage and general modifications within the bone. In this project, we will make use of a ground-based model of simulated weightlessness (hindlimb unloading, HU) in order to observe skeletal changes in response to induced microgravity due to changes in oxidative pressures. With this model we will analyze samples at 14-day and 90-day time points following HU for the determination of acute and chronic effects, each with corresponding controls. We hypothesize that simulated microgravity will lead to skeletal adaptations including time-dependent activation of pro-oxidative processes and pro-osteoclastogenic signals related to the progression, plateau, and recovery of the bone. Microcomputed tomography techniques will be utilized to measure skeletal changes in response to HU. With the results of this study, we hope to further the understanding of skeletal affects as a result of long-duration weightlessness and develop countermeasures to combat bone loss in spaceflight and osteoporosis on Earth.

  3. Baseline shifts in coral skeletal oxygen isotopic composition: a signature of symbiont shuffling?

    NASA Astrophysics Data System (ADS)

    Carilli, J. E.; Charles, C. D.; Garren, M.; McField, M.; Norris, R. D.

    2013-06-01

    Decades-long records of the stable isotopic composition of coral skeletal cores were analyzed from four sites on the Mesoamerican Reef. Two of the sites exhibited baseline shifts in oxygen isotopic composition after known coral bleaching events. Changes in pH at the calcification site caused by a change in the associated symbiont community are invoked to explain the observed shift in the isotopic composition. To test the hypothesis that changes in symbiont clade could affect skeletal chemistry, additional coral samples were collected from Belize for paired Symbiodinium identification and skeletal stable isotopic analysis. We found some evidence that skeletal stable isotopic composition may be affected by symbiont clade and suggest this is an important topic for future investigation. If different Symbiodinium clades leave consistent signatures in skeletal geochemical composition, the signature will provide a method to quantify past symbiont shuffling events, important for understanding how corals are likely to respond to climate change.

  4. Muscle contraction controls skeletal morphogenesis through regulation of chondrocyte convergent extension.

    PubMed

    Shwartz, Yulia; Farkas, Zsuzsanna; Stern, Tomer; Aszódi, Attila; Zelzer, Elazar

    2012-10-01

    Convergent extension driven by mediolateral intercalation of chondrocytes is a key process that contributes to skeletal growth and morphogenesis. While progress has been made in deciphering the molecular mechanism that underlies this process, the involvement of mechanical load exerted by muscle contraction in its regulation has not been studied. Using the zebrafish as a model system, we found abnormal pharyngeal cartilage morphology in both chemically and genetically paralyzed embryos, demonstrating the importance of muscle contraction for zebrafish skeletal development. The shortening of skeletal elements was accompanied by prominent changes in cell morphology and organization. While in control the cells were elongated, chondrocytes in paralyzed zebrafish were smaller and exhibited a more rounded shape, confirmed by a reduction in their length-to-width ratio. The typical columnar organization of cells was affected too, as chondrocytes in various skeletal elements exhibited abnormal stacking patterns, indicating aberrant intercalation. Finally, we demonstrate impaired chondrocyte intercalation in growth plates of muscle-less Sp(d) mouse embryos, implying the evolutionary conservation of muscle force regulation of this essential morphogenetic process.Our findings provide a new perspective on the regulatory interaction between muscle contraction and skeletal morphogenesis by uncovering the role of muscle-induced mechanical loads in regulating chondrocyte intercalation in two different vertebrate models. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Skeletal manifestations of juvenile hypothyroidism and the impact of treatment on skeletal system.

    PubMed

    Gutch, Manish; Philip, Rajeev; Philip, Renjit; Toms, Ajit; Saran, Sanjay; Gupta, K K

    2013-10-01

    Thyroid hormone mediates growth and development of the skeleton through its direct effects and through its permissive effects on growth hormone. The effect of hypothyroidism on bone is well described in congenital hypothyroidism, but the impact of thyroid hormone deficiency on a growing skeleton, as it happens with juvenile hypothyroidism, is less defined. In addition, the extent to which the skeletal defects of juvenile hypothyroidism revert on the replacement of thyroid hormone is not known. A study was undertaken in 29 juvenile autoimmune hypothyroid patients to study the skeletal manifestations of juvenile hypothyroidism and the impact of treatment of hypothyroidism on the skeletal system of juvenile patients. Hypothyroidism has a profound impact on the skeletal system and delayed bone age, dwarfism, and thickened bands at the metaphyseal ends being the most common findings. Post treatment, skeletal findings like delayed bone age and dwarfism improved significantly, but there were no significant changes in enlargement of sella, presence of wormian bones, epihyseal dysgenesis, vertebral changes and thickened band at the metaphyseal ends. With the treatment of hypothyroidism, there is an exuberant advancement of bone age, the catch up of bone age being approximately double of the chronological age advancement.

  6. Core-binding factor beta interacts with Runx2 and is required for skeletal development.

    PubMed

    Yoshida, Carolina A; Furuichi, Tatsuya; Fujita, Takashi; Fukuyama, Ryo; Kanatani, Naoko; Kobayashi, Shinji; Satake, Masanobu; Takada, Kenji; Komori, Toshihisa

    2002-12-01

    Core-binding factor beta (CBFbeta, also called polyomavirus enhancer binding protein 2beta (PEBP2B)) is associated with an inversion of chromosome 16 and is associated with acute myeloid leukemia in humans. CBFbeta forms a heterodimer with RUNX1 (runt-related transcription factor 1), which has a DNA binding domain homologous to the pair-rule protein runt in Drosophila melanogaster. Both RUNX1 and CBFbeta are essential for hematopoiesis. Haploinsufficiency of another runt-related protein, RUNX2 (also called CBFA1), causes cleidocranial dysplasia in humans and is essential in skeletal development by regulating osteoblast differentiation and chondrocyte maturation. Mice deficient in Cbfb (Cbfb(-/-)) die at midgestation, so the function of Cbfbeta in skeletal development has yet to be ascertained. To investigate this issue, we rescued hematopoiesis of Cbfb(-/-) mice by introducing Cbfb using the Gata1 promoter. The rescued Cbfb(-/-) mice recapitulated fetal liver hematopoiesis in erythroid and megakaryocytic lineages and survived until birth, but showed severely delayed bone formation. Although mesenchymal cells differentiated into immature osteoblasts, intramembranous bones were poorly formed. The maturation of chondrocytes into hypertrophic cells was markedly delayed, and no endochondral bones were formed. Electrophoretic mobility shift assays and reporter assays showed that Cbfbeta was necessary for the efficient DNA binding of Runx2 and for Runx2-dependent transcriptional activation. These findings indicate that Cbfbeta is required for the function of Runx2 in skeletal development.

  7. Development of a novel spike-like auxiliary skeletal anchorage device to enhance miniscrew stability.

    PubMed

    Miyawaki, Shouichi; Tomonari, Hiroshi; Yagi, Takakazu; Kuninori, Takaharu; Oga, Yasuhiko; Kikuchi, Masafumi

    2015-08-01

    Miniscrews are frequently used for skeletal anchorage during edgewise treatment, and their clinical use has been verified. However, their disadvantage is an approximately 15% failure rate, which is primarily attributed to the low mechanical stability between the miniscrew and cortical bone and to the miniscrew's close proximity to the dental root. To solve these problems, we developed a novel spike-like auxiliary skeletal anchorage device for use with a miniscrew to increase its stability. The retention force was compared between miniscrews with and without the auxiliary skeletal anchorage device at each displacement of the miniscrew. The combined unit was also implanted into the bones of 2 rabbits in vivo, and implantation was visually assessed at 4 weeks postoperatively while the compression force was applied. The retention force of the combined unit was significantly and approximately 3 to 5 times stronger on average than that of the miniscrew alone at each displacement. The spiked portion of the auxiliary anchorage device embedded into the cortical bone of the hind limb at approximately a 0.3-mm depth at 4 weeks postimplantation in both rabbits. The auxiliary skeletal anchorage device may increase miniscrew stability, allow a shortened miniscrew, and enable 3-dimensional absolute anchorage. Further evaluation of its clinical application is necessary. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  8. Interleukin-2 therapy reverses some immunosuppressive effects of skeletal unloading

    NASA Technical Reports Server (NTRS)

    Armstrong, Jason W.; Balch, Signe; Chapes, Stephen K.

    1994-01-01

    Using antiorthostatic suspension, we characterized hematopoietic changes that may be responsible for the detrimental effect of skeletal unloading on macrophage development. Skeletally unloaded mice had suppressed macrophage development in unloaded and loaded bones, which indicated a systemic effect. Bone marrow cells from unloaded mice secreted less macrophage colony-stimulating factor and interleukin-6 than control mice. Additionally, T-lymphocyte proliferation was reduced after skeletal unloading. We show that polyethylene glycol-interleukin-2 therapy reversed the effects of skeletal unloading on macrophage development and cell proliferation.

  9. Primary skeletal muscle cells cultured on gelatin bead microcarriers develop structural and biochemical features characteristic of adult skeletal muscle.

    PubMed

    Kubis, Hans-Peter; Scheibe, Renate J; Decker, Brigitte; Hufendiek, Karsten; Hanke, Nina; Gros, Gerolf; Meissner, Joachim D

    2016-04-01

    A primary skeletal muscle cell culture, in which myoblasts derived from newborn rabbit hindlimb muscles grow on gelatin bead microcarriers in suspension and differentiate into myotubes, has been established previously. In the course of differentiation and beginning spontaneous contractions, these multinucleated myotubes do not detach from their support. Here, we describe the development of the primary myotubes with respect to their ultrastructural differentiation. Scanning electron microscopy reveals that myotubes not only grow around the surface of one carrier bead but also attach themselves to neighboring carriers, forming bridges between carriers. Transmission electron microscopy demonstrates highly ordered myofibrils, T-tubules, and sarcoplasmic reticulum. The functionality of the contractile apparatus is evidenced by contractile activity that occurs spontaneously or can be elicited by electrostimulation. Creatine kinase activity increases steadily until day 20 of culture. Regarding the expression of isoforms of myosin heavy chains (MHC), we could demonstrate that from day 16 on, no non-adult MHC isoform mRNAs are present. Instead, on day 28 the myotubes express predominantly adult fast MHCIId/x mRNA and protein. This MHC pattern resembles that of fast muscles of adult rabbits. In contrast, primary myotubes grown on matrigel-covered culture dishes express substantial amounts of non-adult MHC protein even on day 21. To conclude, primary myotubes grown on microcarriers in their later stages exhibit many features of adult skeletal muscle and characteristics of fast type II fibers. Thus, the culture represents an excellent model of adult fast skeletal muscle, for example, when investigating molecular mechanisms of fast-to-slow fiber-type transformation. © 2015 International Federation for Cell Biology.

  10. Disease-Induced Skeletal Muscle Atrophy and Fatigue

    PubMed Central

    Powers, Scott K.; Lynch, Gordon S.; Murphy, Kate T.; Reid, Michael B.; Zijdewind, Inge

    2016-01-01

    Numerous health problems including acute critical illness, cancer, diseases associated with chronic inflammation, and neurological disorders often result in skeletal muscle weakness and fatigue. Disease-related muscle atrophy and fatigue is an important clinical problem because acquired skeletal muscle weakness can increase the duration of hospitalization, result in exercise limitation, and contribute to a poor quality of life. Importantly, skeletal muscle atrophy is also associated with increased morbidity and mortality of patients. Therefore, improving our understanding of the mechanism(s) responsible for skeletal muscle weakness and fatigue in patients is a required first step to develop clinical protocols to prevent these skeletal muscle problems. This review will highlight the consequences and potential mechanisms responsible for skeletal muscle atrophy and fatigue in patients suffering from acute critical illness, cancer, chronic inflammatory diseases, and neurological disorders. PMID:27128663

  11. Transcriptomic analyses reveal rhythmic and CLOCK-driven pathways in human skeletal muscle

    PubMed Central

    Perrin, Laurent; Hulo, Nicolas; Isenegger, Laura; Weger, Benjamin D; Migliavacca, Eugenia; Charpagne, Aline; Betts, James A; Walhin, Jean-Philippe; Templeman, Iain; Stokes, Keith; Thompson, Dylan; Tsintzas, Kostas; Robert, Maud; Howald, Cedric; Riezman, Howard; Feige, Jerome N; Karagounis, Leonidas G; Johnston, Jonathan D; Dermitzakis, Emmanouil T

    2018-01-01

    Circadian regulation of transcriptional processes has a broad impact on cell metabolism. Here, we compared the diurnal transcriptome of human skeletal muscle conducted on serial muscle biopsies in vivo with profiles of human skeletal myotubes synchronized in vitro. More extensive rhythmic transcription was observed in human skeletal muscle compared to in vitro cell culture as a large part of the in vivo mRNA rhythmicity was lost in vitro. siRNA-mediated clock disruption in primary myotubes significantly affected the expression of ~8% of all genes, with impact on glucose homeostasis and lipid metabolism. Genes involved in GLUT4 expression, translocation and recycling were negatively affected, whereas lipid metabolic genes were altered to promote activation of lipid utilization. Moreover, basal and insulin-stimulated glucose uptake were significantly reduced upon CLOCK depletion. Our findings suggest an essential role for the circadian coordination of skeletal muscle glucose homeostasis and lipid metabolism in humans. PMID:29658882

  12. A contemporary Colombian skeletal reference collection: A resource for the development of population specific standards.

    PubMed

    Sanabria-Medina, Cesar; González-Colmenares, Gretel; Restrepo, Hadaluz Osorio; Rodríguez, Juan Manuel Guerrero

    2016-09-01

    Several authors who have discussed human variability and its impact on the forensic identification of bodies pose the need for regional studies documenting the global variation of the attributes analyzed osteological characteristics that aid in establishing biological profile (sex, ancestry, biological age and height). This is primarily accomplished by studying documented human skeletal collections in order to investigate secular trends in skeletal development and aging, among others in the Colombian population. The purpose of this paper is to disclose the details of the new "Contemporary Colombian Skeletal Reference Collection" that currently comprises 600 identified skeletons of both sexes, who died between 2005 and 2008; and which contain information about their cause of death. This collection has infinite potential for research, open to the national and international community, and still has pending opportunities to address a variety of topics such as studies on osteopathology, bone trauma and taphonomic studies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Ca2+/calmodulin-dependent transcriptional pathways: potential mediators of skeletal muscle growth and development.

    PubMed

    Al-Shanti, Nasser; Stewart, Claire E

    2009-11-01

    The loss of muscle mass with age and disuse has a significant impact on the physiological and social well-being of the aged; this is an increasingly important problem as the population becomes skewed towards older age. Exercise has psychological benefits but it also impacts on muscle protein synthesis and degradation, increasing muscle tissue volume in both young and older individuals. Skeletal muscle hypertrophy involves an increase in muscle mass and cross-sectional area and associated increased myofibrillar protein content. Attempts to understand the molecular mechanisms that underlie muscle growth, development and maintenance, have focused on characterising the molecular pathways that initiate, maintain and regenerate skeletal muscle. Such understanding may aid in improving targeted interventional therapies for age-related muscle loss and muscle wasting associated with diseases. Two major routes through which skeletal muscle development and growth are regulated are insulin-like growth factor I (IGF-I) and Ca(2+)/calmodulin-dependent transcriptional pathways. Many reviews have focused on understanding the signalling pathways of IGF-I and its receptor, which govern skeletal muscle hypertrophy. However, alternative molecular signalling pathways such as the Ca(2+)/calmodulin-dependent transcriptional pathways should also be considered as potential mediators of muscle growth. These latter pathways have received relatively little attention and the purpose herein is to highlight the progress being made in the understanding of these pathways and associated molecules: calmodulin, calmodulin kinases (CaMKs), calcineurin and nuclear factor of activated T-cell (NFAT), which are involved in skeletal muscle regulation. We describe: (1) how conformational changes in the Ca(2+) sensor calmodulin result in the exposure of binding pockets for the target proteins (CaMKs and calcineurin). (2) How Calmodulin consequently activates either the Ca(2+)/calmodulin-dependent kinases

  14. Mesodermal iPSC–derived progenitor cells functionally regenerate cardiac and skeletal muscle

    PubMed Central

    Quattrocelli, Mattia; Swinnen, Melissa; Giacomazzi, Giorgia; Camps, Jordi; Barthélemy, Ines; Ceccarelli, Gabriele; Caluwé, Ellen; Grosemans, Hanne; Thorrez, Lieven; Pelizzo, Gloria; Muijtjens, Manja; Verfaillie, Catherine M.; Blot, Stephane; Janssens, Stefan; Sampaolesi, Maurilio

    2015-01-01

    Conditions such as muscular dystrophies (MDs) that affect both cardiac and skeletal muscles would benefit from therapeutic strategies that enable regeneration of both of these striated muscle types. Protocols have been developed to promote induced pluripotent stem cells (iPSCs) to differentiate toward cardiac or skeletal muscle; however, there are currently no strategies to simultaneously target both muscle types. Tissues exhibit specific epigenetic alterations; therefore, source-related lineage biases have the potential to improve iPSC-driven multilineage differentiation. Here, we determined that differential myogenic propensity influences the commitment of isogenic iPSCs and a specifically isolated pool of mesodermal iPSC-derived progenitors (MiPs) toward the striated muscle lineages. Differential myogenic propensity did not influence pluripotency, but did selectively enhance chimerism of MiP-derived tissue in both fetal and adult skeletal muscle. When injected into dystrophic mice, MiPs engrafted and repaired both skeletal and cardiac muscle, reducing functional defects. Similarly, engraftment into dystrophic mice of canine MiPs from dystrophic dogs that had undergone TALEN-mediated correction of the MD-associated mutation also resulted in functional striatal muscle regeneration. Moreover, human MiPs exhibited the same capacity for the dual differentiation observed in murine and canine MiPs. The findings of this study suggest that MiPs should be further explored for combined therapy of cardiac and skeletal muscles. PMID:26571398

  15. Effects of microgravity on myogenic factor expressions during postnatal development of rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Inobe, Manabu; Inobe, Ikuko; Adams, Gregory R.; Baldwin, Kenneth M.; Takeda, Shin'Ichi

    2002-01-01

    To clarify the role of gravity in the postnatal development of skeletal muscle, we exposed neonatal rats at 7 days of age to microgravity. After 16 days of spaceflight, tibialis anterior, plantaris, medial gastrocnemius, and soleus muscles were removed from the hindlimb musculature and examined for the expression of MyoD-family transcription factors such as MyoD, myogenin, and MRF4. For this purpose, we established a unique semiquantitative method, based on RT-PCR, using specific primers tagged with infrared fluorescence. The relative expression of MyoD in the tibialis anterior and plantaris muscles and that of myogenin in the plantaris and soleus muscles were significantly reduced (P < 0.001) in the flight animals. In contrast, MRF4 expression was not changed in any muscle. These results suggest that MyoD and myogenin, but not MRF4, are sensitive to gravity-related stimuli in some skeletal muscles during postnatal development.

  16. Skeletal dysplasia in ancient Egypt.

    PubMed

    Kozma, Chahira

    2008-12-01

    The ancient Egyptian civilization lasted for over 3000 years and ended in 30 BCE. Many aspects of ancient Egyptian culture, including the existence of skeletal dysplasias, and in particular achondroplasia, are well known through the monuments and records that survived until modern times. The hot and dry climate in Egypt allowed for the preservation of bodies and skeletal anomalies. The oldest dwarf skeleton, the Badarian skeleton (4500 BCE), possibly represents an epiphyseal disorder. Among the remains of dwarfs with achondroplasia from ancient Egypt (2686-2190 BCE), exists a skeleton of a pregnant female, believed to have died during delivery with a baby's remains in situ. British museums have partial skeletons of dwarfs with achondroplasia, humeri probably affected with mucopolysaccharidoses, and a skeleton of a child with osteogenesis imperfecta. Skeletal dysplasia is also found among royal remains. The mummy of the pharaoh Siptah (1342-1197 BCE) shows a deformity of the left leg and foot. A mummified fetus, believed to be the daughter of king Tutankhamun, has scoliosis, spina bifida, and Sprengel deformity. In 2006 I reviewed the previously existing knowledge of dwarfism in ancient Egypt. The purpose of this second historical review is to add to that knowledge with an expanded contribution. The artistic documentation of people with skeletal dysplasia from ancient Egypt is plentiful including hundreds of amulets, statues, and drawing on tomb and temple walls. Examination of artistic reliefs provides a glance of the role of people with skeletal dysplasia and the societal attitudes toward them. Both artistic evidence and moral teachings in ancient Egypt reveal wide integration of individuals with disabilities into the society. Copyright (c) 2008 Wiley-Liss, Inc.

  17. Factors affecting the structure and maturation of human tissue engineered skeletal muscle.

    PubMed

    Martin, Neil R W; Passey, Samantha L; Player, Darren J; Khodabukus, Alastair; Ferguson, Richard A; Sharples, Adam P; Mudera, Vivek; Baar, Keith; Lewis, Mark P

    2013-07-01

    Tissue engineered skeletal muscle has great utility in experimental studies of physiology, clinical testing and its potential for transplantation to replace damaged tissue. Despite recent work in rodent tissue or cell lines, there is a paucity of literature concerned with the culture of human muscle derived cells (MDCs) in engineered constructs. Here we aimed to tissue engineer for the first time in the literature human skeletal muscle in self-assembling fibrin hydrogels and determine the effect of MDC seeding density and myogenic proportion on the structure and maturation of the constructs. Constructs seeded with 4 × 10(5) MDCs assembled to a greater extent than those at 1 × 10(5) or 2 × 10(5), and immunostaining revealed a higher fusion index and a higher density of myotubes within the constructs, showing greater structural semblance to in vivo tissue. These constructs primarily expressed perinatal and slow type I myosin heavy chain mRNA after 21 days in culture. In subsequent experiments MACS(®) technology was used to separate myogenic and non-myogenic cells from their heterogeneous parent population and these cells were seeded at varying myogenic (desmin +) proportions in fibrin based constructs. Only in the constructs seeded with 75% desmin + cells was there evidence of striations when immunostained for slow myosin heavy chain compared with constructs seeded with 10 or 50% desmin + cells. Overall, this work reveals the importance of cell number and myogenic proportions in tissue engineering human skeletal muscle with structural resemblance to in vivo tissue. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. A unified anatomy ontology of the vertebrate skeletal system.

    PubMed

    Dahdul, Wasila M; Balhoff, James P; Blackburn, David C; Diehl, Alexander D; Haendel, Melissa A; Hall, Brian K; Lapp, Hilmar; Lundberg, John G; Mungall, Christopher J; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E; Vickaryous, Matthew K; Westerfield, Monte; Mabee, Paula M

    2012-01-01

    The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity.

  19. A Unified Anatomy Ontology of the Vertebrate Skeletal System

    PubMed Central

    Dahdul, Wasila M.; Balhoff, James P.; Blackburn, David C.; Diehl, Alexander D.; Haendel, Melissa A.; Hall, Brian K.; Lapp, Hilmar; Lundberg, John G.; Mungall, Christopher J.; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E.; Vickaryous, Matthew K.; Westerfield, Monte; Mabee, Paula M.

    2012-01-01

    The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity. PMID:23251424

  20. Low-level lasers affect uncoupling protein gene expression in skin and skeletal muscle tissues

    NASA Astrophysics Data System (ADS)

    Canuto, K. S.; Sergio, L. P. S.; Paoli, F.; Mencalha, A. L.; Fonseca, A. S.

    2016-03-01

    Wavelength, frequency, power, fluence, and emission mode determine the photophysical, photochemical, and photobiological responses of biological tissues to low-level lasers. Free radicals are involved in these responses acting as second messengers in intracellular signaling processes. Irradiated cells present defenses against these chemical species to avoid unwanted effects, such as uncoupling proteins (UCPs), which are part of protective mechanisms and minimize the effects of free radical generation in mitochondria. In this work UCP2 and UCP3 mRNA gene relative expression in the skin and skeletal muscle tissues of Wistar rats exposed to low-level red and infrared lasers was evaluated. Samples of the skin and skeletal muscle tissue of Wistar rats exposed to low-level red and infrared lasers were withdrawn for total RNA extraction, cDNA synthesis, and the evaluation of gene expression by quantitative polymerase chain reaction. UCP2 and UCP3 mRNA expression was differently altered in skin and skeletal muscle tissues exposed to lasers in a wavelength-dependent effect, with the UCP3 mRNA expression dose-dependent. Alteration on UCP gene expression could be part of the biostimulation effect and is necessary to make cells exposed to red and infrared low-level lasers more resistant or capable of adapting in damaged tissues or diseases.

  1. Genomic architecture of histone 3 lysine 27 trimethylation during late ovine skeletal muscle development.

    PubMed

    Byrne, K; McWilliam, S; Vuocolo, T; Gondro, C; Cockett, N E; Tellam, R L

    2014-06-01

    The ruminant developmental transition from late foetus to lamb is associated with marked changes in skeletal muscle structure and function that reflect programming for new physiological demands following birth. To determine whether epigenetic changes are involved in this transition, we investigated the genomic architecture of the chromatin modification, histone 3 lysine 27 trimethylation (H3K27me3), which typically regulates early life developmental processes; however, its role in later life processes is unclear. Chromatin immunoprecipitation coupled with next-generation sequencing was used to map H3K27me3 nucleosomes in ovine longissimus lumborum skeletal muscle at 100 days of gestation and 12 weeks post-partum. In both states, H3K27me3 modification was associated with genes, transcription start sites and CpG islands and with transcriptional silencing. The H3K27me3 peaks consisted of two major categories, promoter specific and regional, with the latter the dominant feature. Genes encoding homeobox transcription factors regulating early life development and genes involved in neural functions, particularly gated ion channels, were strongly modified by H3K27me3. Gene promoters differentially modified by H3K27me3 in the foetus and lamb were enriched for gated ion channels, which may reflect changes in neuromuscular function. However, most modified genes showed no changes, indicating that H3K27me3 does not have a large role in late muscle maturation. Notably, promyogenic transcription factors were strongly modified with H3K27me3 but showed no differences between the late gestation foetus and lamb, likely reflecting their lack of involvement in the myofibre fusion process occurring in this transition. H3K27me3 is a major architectural feature of the epigenetic landscape of ruminant skeletal muscle, and it comments on gene transcription and gene function in the context of late skeletal muscle development. © 2014 The Authors. Animal Genetics published by John Wiley

  2. Correlation among chronologic age, skeletal maturity, and dental age.

    PubMed

    Sukhia, Rashna H; Fida, Mubassar

    2010-01-01

    To determine the correlation among chronologic age, skeletal maturity, and dental age in reference to both sexes. In 380 subjects (147 males and 233 females) between 7 and 17 years of age, skeletal maturity was assessed using the cervical vertebral maturation stages described by Baccetti et al. Dental age was determined using the Demirjian method. The correlation between skeletal maturity and chronologic age on one side and between skeletal maturity and dental age on the other was assessed with Spearman rank correlation coefficients. Pearson correlation coefficients were used to assess the correlation between chronologic and dental age. For both sexes, significant correlations among chronologic age, skeletal maturity, and dental age were found. The mandibular first premolar had the highest correlation with skeletal maturation in both sexes. As skeletal maturity and dental age are significantly correlated, tooth development may be used to assess a patient's skeletal maturity at an early age. © 2011 BY QUINTESSENCE PUBLISHING CO, INC.

  3. Exercise, Hormones, and Skeletal Adaptations During Childhood and Adolescence

    PubMed Central

    Farr, Joshua N.; Laddu, Deepika R.; Going, Scott B.

    2015-01-01

    Although primarily considered a disorder of the elderly, emerging evidence suggests the antecedents of osteoporosis are established during childhood and adolescence. A complex interplay of genetic, environmental, hormonal and behavioral factors determines skeletal development, and a greater effort is needed to identify the most critical factors that establish peak bone strength. Indeed, knowledge of modifiable factors that determine skeletal development may permit optimization of skeletal health during growth and could potentially offset reductions in bone strength with aging. The peripubertal years represent a unique period when the skeleton is particularly responsive to loading exercises, and there is now overwhelming evidence that exercise can optimize skeletal development. While this is not controversial, the most effective exercise prescription and how much investment in this prescription is needed to significantly impact bone health continues to be debated. Despite considerable progress, these issues are not easy to address, and important questions remain unresolved. This review focuses on the key determinants of skeletal development, whether exercise during childhood and adolescence should be advocated as a safe and effective strategy for optimizing peak bone strength, and whether investment in exercise early in life protects against the development of osteoporosis and fractures later in life. PMID:25372373

  4. Cutaneous skeletal hypophosphatemia syndrome: clinical spectrum, natural history, and treatment.

    PubMed

    Ovejero, D; Lim, Y H; Boyce, A M; Gafni, R I; McCarthy, E; Nguyen, T A; Eichenfield, L F; DeKlotz, C M C; Guthrie, L C; Tosi, L L; Thornton, P S; Choate, K A; Collins, M T

    2016-12-01

    Cutaneous skeletal hypophosphatemia syndrome (CSHS), caused by somatic RAS mutations, features excess fibroblast growth factor-23 (FGF23) and skeletal dysplasia. Records from 56 individuals were reviewed and demonstrated fractures, scoliosis, and non-congenital hypophosphatemia that in some cases were resolved. Phosphate and calcitriol, but not skin lesion removal, were effective at controlling hypophosphatemia. No skeletal malignancies were found. CSHS is a disorder defined by the association of epidermal and/or melanocytic nevi, a mosaic skeletal dysplasia, and an FGF23-mediated hypophosphatemia. To date, somatic RAS mutations have been identified in all patients whose affected tissue has undergone DNA sequencing. However, the clinical spectrum and treatment are poorly defined in CSHS. The purpose of this study is to determine the spectrum of the phenotype, natural history of the disease, and response to treatment of hypophosphatemia. Five CSHS subjects underwent prospective data collection at clinical research centers. A review of the literature identified 45 reports that included a total of 51 additional patients, in whom the findings were compatible with CSHS. Data on nevi subtypes, bone histology, mineral and skeletal disorders, abnormalities in other tissues, and response to treatment of hypophosphatemia were analyzed. Fractures, limb deformities, and scoliosis affected most CSHS subjects. Hypophosphatemia was not present at birth. Histology revealed severe osteomalacia but no other abnormalities. Skeletal dysplasia was reported in all anatomical compartments, though less frequently in the spine; there was no clear correlation between the location of nevi and the skeletal lesions. Phosphate and calcitriol supplementation was the most effective therapy for rickets. Convincing data that nevi removal improved blood phosphate levels was lacking. An age-dependent improvement in mineral abnormalities was observed. A spectrum of extra

  5. Relationship between Body Mass Index, Skeletal Maturation and Dental Development in 6- to 15- Year Old Orthodontic Patients in a Sample of Iranian Population.

    PubMed

    Hedayati, Zohreh; Khalafinejad, Fatemeh

    2014-12-01

    The prevalence of overweight and obesity has been increasing markedly in recent years. It may influence growth in pre pubertal children. The purpose of this study was to determine whether increased Body Mass Index (BMI) is associated with accelerated skeletal maturation and dental maturation in six to fifteen years old orthodontic patients in Shiraz, Iran. Skeletal maturation and dental development of 95 orthodontic patients (65 females and 30 males), aged 6 to 15 years, were determined. Dental development was assessed using the Demerjian method and skeletal maturation was evaluated by cervical vertebral method as presented by Bacetti. The BMI was determined for each patient. T-test was applied to compare the mean difference between chronologic and dental age among the study groups. A regression model was used to assess the relationship between BMI percentile, skeletal maturation, and dental development. 18.9% of subjects were overweight and obese. The mean differences between dental age and chronologic age were 0.73±1.3 for underweight and normal weight children and 1.8±1.08 for overweight and obese children. These results highlighted the correlation between accelerated dental maturity and increasing BMI percentile (p= 0.002). A new formula was introduced for this relationship. There was not any significant relationship between BMI percentile and skeletal maturation. Children who were overweight or obese had accelerated dental development whereas they did not have accelerated skeletal maturation significantly after being adjusted for age and gender.

  6. AHNAK1 and AHNAK2 are costameric proteins: AHNAK1 affects transverse skeletal muscle fiber stiffness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marg, Andreas, E-mail: andreas.marg@mdc-berlin.de; Haase, Hannelore; Neumann, Tanja

    2010-10-08

    Research highlights: {yields} AHNAK1 and AHNAK2 are costameric proteins. {yields} Intact membrane repair in AHNAK1-deficient mice. {yields} AHNAK1{sup -/-} single fibers have a higher transverse stiffness. -- Abstract: The AHNAK scaffold PDZ-protein family is implicated in various cellular processes including membrane repair; however, AHNAK function and subcellular localization in skeletal muscle are unclear. We used specific AHNAK1 and AHNAK2 antibodies to analyzed the detailed localization of both proteins in mouse skeletal muscle. Co-localization of AHNAK1 and AHNAK2 with vinculin clearly demonstrates that both proteins are components of the costameric network. In contrast, no AHNAK expression was detected in the T-tubulemore » system. A laser wounding assay with AHNAK1-deficient fibers suggests that AHNAK1 is not involved in membrane repair. Using atomic force microscopy (AFM), we observed a significantly higher transverse stiffness of AHNAK1{sup -/-} fibers. These findings suggest novel functions of AHNAK proteins in skeletal muscle.« less

  7. Osteoblast differentiation and skeletal development are regulated by Mdm2–p53 signaling

    PubMed Central

    Lengner, Christopher J.; Steinman, Heather A.; Gagnon, James; Smith, Thomas W.; Henderson, Janet E.; Kream, Barbara E.; Stein, Gary S.; Lian, Jane B.; Jones, Stephen N.

    2006-01-01

    Mdm2 is required to negatively regulate p53 activity at the peri-implantation stage of early mouse development. However, the absolute requirement for Mdm2 throughout embryogenesis and in organogenesis is unknown. To explore Mdm2–p53 signaling in osteogenesis, Mdm2-conditional mice were bred with Col3.6-Cre–transgenic mice that express Cre recombinase in osteoblast lineage cells. Mdm2-conditional Col3.6-Cre mice die at birth and display multiple skeletal defects. Osteoblast progenitor cells deleted for Mdm2 have elevated p53 activity, reduced proliferation, reduced levels of the master osteoblast transcriptional regulator Runx2, and reduced differentiation. In contrast, p53-null osteoprogenitor cells have increased proliferation, increased expression of Runx2, increased osteoblast maturation, and increased tumorigenic potential, as mice specifically deleted for p53 in osteoblasts develop osteosarcomas. These results demonstrate that p53 plays a critical role in bone organogenesis and homeostasis by negatively regulating bone development and growth and by suppressing bone neoplasia and that Mdm2-mediated inhibition of p53 function is a prerequisite for Runx2 activation, osteoblast differentiation, and proper skeletal formation. PMID:16533949

  8. Redox Control of Skeletal Muscle Regeneration.

    PubMed

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane; Chazaud, Bénédicte; Mounier, Rémi

    2017-08-10

    Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.

  9. Redox Control of Skeletal Muscle Regeneration

    PubMed Central

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane

    2017-01-01

    Abstract Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276–310. PMID:28027662

  10. Raptor ablation in skeletal muscle decreases Cav1.1 expression and affects the function of the excitation–contraction coupling supramolecular complex

    PubMed Central

    Lopez, Rubén J.; Mosca, Barbara; Treves, Susan; Maj, Marcin; Bergamelli, Leda; Calderon, Juan C.; Bentzinger, C. Florian; Romanino, Klaas; Hall, Michael N.; Rüegg, Markus A.; Delbono, Osvaldo; Caputo, Carlo; Zorzato, Francesco

    2016-01-01

    The protein mammalian target of rapamycin (mTOR) is a serine/threonine kinase regulating a number of biochemical pathways controlling cell growth. mTOR exists in two complexes termed mTORC1 and mTORC2. Regulatory associated protein of mTOR (raptor) is associated with mTORC1 and is essential for its function. Ablation of raptor in skeletal muscle results in several phenotypic changes including decreased life expectancy, increased glycogen deposits and alterations of the twitch kinetics of slow fibres. In the present paper, we show that in muscle-specific raptor knockout (RamKO), the bulk of glycogen phosphorylase (GP) is mainly associated in its cAMP-non-stimulated form with sarcoplasmic reticulum (SR) membranes. In addition, 3[H]–ryanodine and 3[H]–PN200-110 equilibrium binding show a ryanodine to dihydropyridine receptors (DHPRs) ratio of 0.79 and 1.35 for wild-type (WT) and raptor KO skeletal muscle membranes respectively. Peak amplitude and time to peak of the global calcium transients evoked by supramaximal field stimulation were not different between WT and raptor KO. However, the increase in the voltage sensor-uncoupled RyRs leads to an increase of both frequency and mass of elementary calcium release events (ECRE) induced by hyper-osmotic shock in flexor digitorum brevis (FDB) fibres from raptor KO. The present study shows that the protein composition and function of the molecular machinery involved in skeletal muscle excitation–contraction (E–C) coupling is affected by mTORC1 signalling. PMID:25431931

  11. Skeletal muscle regeneration and impact of aging and nutrition.

    PubMed

    Domingues-Faria, Carla; Vasson, Marie-Paule; Goncalves-Mendes, Nicolas; Boirie, Yves; Walrand, Stephane

    2016-03-01

    After skeletal muscle injury a regeneration process takes place to repair muscle. Skeletal muscle recovery is a highly coordinated process involving cross-talk between immune and muscle cells. It is well known that the physiological activities of both immune cells and muscle stem cells decline with advancing age, thereby blunting the capacity of skeletal muscle to regenerate. The age-related reduction in muscle repair efficiency contributes to the development of sarcopenia, one of the most important factors of disability in elderly people. Preserving muscle regeneration capacity may slow the development of this syndrome. In this context, nutrition has drawn much attention: studies have demonstrated that nutrients such as amino acids, n-3 polyunsaturated fatty acids, polyphenols and vitamin D can improve skeletal muscle regeneration by targeting key functions of immune cells, muscle cells or both. Here we review the process of skeletal muscle regeneration with a special focus on the cross-talk between immune and muscle cells. We address the effect of aging on immune and skeletal muscle cells involved in muscle regeneration. Finally, the mechanisms of nutrient action on muscle regeneration are described, showing that quality of nutrition may help to preserve the capacity for skeletal muscle regeneration with age. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Epigenetic Control of Skeletal Development by the Histone Methyltransferase Ezh2*

    PubMed Central

    Dudakovic, Amel; Camilleri, Emily T.; Xu, Fuhua; Riester, Scott M.; McGee-Lawrence, Meghan E.; Bradley, Elizabeth W.; Paradise, Christopher R.; Lewallen, Eric A.; Thaler, Roman; Deyle, David R.; Larson, A. Noelle; Lewallen, David G.; Dietz, Allan B.; Stein, Gary S.; Montecino, Martin A.; Westendorf, Jennifer J.; van Wijnen, Andre J.

    2015-01-01

    Epigenetic control of gene expression is critical for normal fetal development. However, chromatin-related mechanisms that activate bone-specific programs during osteogenesis have remained underexplored. Therefore, we investigated the expression profiles of a large cohort of epigenetic regulators (>300) during osteogenic differentiation of human mesenchymal cells derived from the stromal vascular fraction of adipose tissue (AMSCs). Molecular analyses establish that the polycomb group protein EZH2 (enhancer of zeste homolog 2) is down-regulated during osteoblastic differentiation of AMSCs. Chemical inhibitor and siRNA knockdown studies show that EZH2, a histone methyltransferase that catalyzes trimethylation of histone 3 lysine 27 (H3K27me3), suppresses osteogenic differentiation. Blocking EZH2 activity promotes osteoblast differentiation and suppresses adipogenic differentiation of AMSCs. High throughput RNA sequence (mRNASeq) analysis reveals that EZH2 inhibition stimulates cell cycle inhibitory proteins and enhances the production of extracellular matrix proteins. Conditional genetic loss of Ezh2 in uncommitted mesenchymal cells (Prrx1-Cre) results in multiple defects in skeletal patterning and bone formation, including shortened forelimbs, craniosynostosis, and clinodactyly. Histological analysis and mRNASeq profiling suggest that these effects are attributable to growth plate abnormalities and premature cranial suture closure because of precocious maturation of osteoblasts. We conclude that the epigenetic activity of EZH2 is required for skeletal patterning and development, but EZH2 expression declines during terminal osteoblast differentiation and matrix production. PMID:26424790

  13. Embryonic development of Python sebae - I: Staging criteria and macroscopic skeletal morphogenesis of the head and limbs.

    PubMed

    Boughner, Julia C; Buchtová, Marcela; Fu, Katherine; Diewert, Virginia; Hallgrímsson, Benedikt; Richman, Joy M

    2007-01-01

    This study explores the post-ovipositional craniofacial development of the African Rock Python (Python sebae). We first describe a staging system based on external characteristics and next use whole-mount skeletal staining supplemented with Computed tomography (CT) scanning to examine skeletal development. Our results show that python embryos are in early stages of organogenesis at the time of laying, with separate facial prominences and pharyngeal clefts still visible. Limb buds are also visible. By 11 days (stage 3), the chondrocranium is nearly fully formed; however, few intramembranous bones can be detected. One week later (stage 4), many of the intramembranous upper and lower jaw bones are visible but the calvaria are not present. Skeletal elements in the limbs also begin to form. Between stages 4 (day 18) and 7 (day 44), the complete set of intramembranous bones in the jaws and calvaria develops. Hindlimb development does not progress beyond stage 6 (33 days) and remains rudimentary throughout adult life. In contrast to other reptiles, there are two rows of teeth in the upper jaw. The outer tooth row is attached to the maxillary and premaxillary bones, whereas the inner row is attached to the pterygoid and palatine bones. Erupted teeth can be seen in whole-mount stage 10 specimens and are present in an unerupted, mineralized state at stage 7. Micro-CT analysis reveals that all the young membranous bones can be recognized even out of the context of the skull. These data demonstrate intrinsic patterning of the intramembranous bones, even though they form without a cartilaginous template. In addition, intramembranous bone morphology is established prior to muscle function, which can influence bone shape through differential force application. After careful staging, we conclude that python skeletal development occurs slowly enough to observe in good detail the early stages of craniofacial skeletogenesis. Thus, reptilian animal models will offer unique

  14. Ultrasound diagnosis of fetal thanatophoric skeletal dysplasia: Three cases report and a brief review.

    PubMed

    Zhao, Qing-Hong; Shi, Hua; Hu, Jia-Qi; Wang, Dan; Fang, Gui; Zhang, Yu-Guo; Wang, Yan-Qing; Yang, Jing

    2017-02-01

    Congenital skeletal deformity of fetus varies and may be attributed to a range of reasons. Congenital skeletal deformity seriously affects body function or even leads to neonatal death directly. The disease brings great pain to victim and their family. We reviewed the fetal prenatal ultrasonic data conducted during period from Jan. 2013 to June 2016, and there were 84 fetuses with skeletal abnormalities among 12 000 cases, and 3 fetuses with thanatophoric dysplasia. Our report described and reviewed three common types of thanatophoric dysplasia, aiming to explore the value of standardized prenatal ultrasonic diagnosis of fetal abnormalities in the skeletal system.

  15. mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation

    PubMed Central

    Matthews, Mary P.; Martin, Sally K.; Xie, Jianling; Ooi, Soo Siang; Walkley, Carl R.; Codrington, John D.; Ruegg, Markus A.; Hall, Michael N.; Proud, Christopher G.; Gronthos, Stan; Zannettino, Andrew C. W.

    2017-01-01

    ABSTRACT The mammalian target of rapamycin complex 1 (mTORC1) is activated by extracellular factors that control bone accrual. However, the direct role of this complex in osteoblast biology remains to be determined. To investigate this question, we disrupted mTORC1 function in preosteoblasts by targeted deletion of Raptor (Rptor) in Osterix-expressing cells. Deletion of Rptor resulted in reduced limb length that was associated with smaller epiphyseal growth plates in the postnatal skeleton. Rptor deletion caused a marked reduction in pre- and postnatal bone accrual, which was evident in skeletal elements derived from both intramembranous and endochondrial ossification. The decrease in bone accrual, as well as the associated increase in skeletal fragility, was due to a reduction in osteoblast function. In vitro, osteoblasts derived from knockout mice display a reduced osteogenic potential, and an assessment of bone-developmental markers in Rptor knockout osteoblasts revealed a transcriptional profile consistent with an immature osteoblast phenotype suggesting that osteoblast differentiation was stalled early in osteogenesis. Metabolic labeling and an assessment of cell size of Rptor knockout osteoblasts revealed a significant decrease in protein synthesis, a major driver of cell growth. These findings demonstrate that mTORC1 plays an important role in skeletal development by regulating mRNA translation during preosteoblast differentiation. PMID:28069737

  16. Synergistic effects of TGFβ2, WNT9a, and FGFR4 signals attenuate satellite cell differentiation during skeletal muscle development.

    PubMed

    Zhang, Weiya; Xu, Yueyuan; Zhang, Lu; Wang, Sheng; Yin, Binxu; Zhao, Shuhong; Li, Xinyun

    2018-06-04

    Satellite cells play a key role in the aging, generation, and damage repair of skeletal muscle. The molecular mechanism of satellite cells in these processes remains largely unknown. This study systematically investigated for the first time the characteristics of mouse satellite cells at ten different ages. Results indicated that the number and differentiation capacity of satellite cells decreased with age during skeletal muscle development. Transcriptome analysis revealed that 2,907 genes were differentially expressed at six time points at postnatal stage. WGCNA and GO analysis indicated that 1,739 of the 2,907 DEGs were mainly involved in skeletal muscle development processes. Moreover, the results of WGCNA and protein interaction analysis demonstrated that Tgfβ2, Wnt9a, and Fgfr4 were the key genes responsible for the differentiation of satellite cells. Functional analysis showed that TGFβ2 and WNT9a inhibited, whereas FGFR4 promoted the differentiation of satellite cells. Furthermore, each two of them had a regulatory relationship at the protein level. In vivo study also confirmed that TGFβ2 could regulate the regeneration of skeletal muscle, as well as the expression of WNT9a and FGFR4. Therefore, we concluded that the synergistic effects of TGFβ2, WNT9a, and FGFR4 were responsible for attenuating of the differentiation of aging satellite cells during skeletal muscle development. This study provided new insights into the molecular mechanism of satellite cell development. The target genes and signaling pathways investigated in this study would be useful for improving the muscle growth of livestock or treating muscle diseases in clinical settings. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  17. AMPK in skeletal muscle function and metabolism

    PubMed Central

    Kjøbsted, Rasmus; Hingst, Janne R.; Fentz, Joachim; Foretz, Marc; Sanz, Maria-Nieves; Pehmøller, Christian; Shum, Michael; Marette, André; Mounier, Remi; Treebak, Jonas T.; Wojtaszewski, Jørgen F. P.; Viollet, Benoit; Lantier, Louise

    2018-01-01

    Skeletal muscle possesses a remarkable ability to adapt to various physiologic conditions. AMPK is a sensor of intracellular energy status that maintains energy stores by fine-tuning anabolic and catabolic pathways. AMPK’s role as an energy sensor is particularly critical in tissues displaying highly changeable energy turnover. Due to the drastic changes in energy demand that occur between the resting and exercising state, skeletal muscle is one such tissue. Here, we review the complex regulation of AMPK in skeletal muscle and its consequences on metabolism (e.g., substrate uptake, oxidation, and storage as well as mitochondrial function of skeletal muscle fibers). We focus on the role of AMPK in skeletal muscle during exercise and in exercise recovery. We also address adaptations to exercise training, including skeletal muscle plasticity, highlighting novel concepts and future perspectives that need to be investigated. Furthermore, we discuss the possible role of AMPK as a therapeutic target as well as different AMPK activators and their potential for future drug development.—Kjøbsted, R., Hingst, J. R., Fentz, J., Foretz, M., Sanz, M.-N., Pehmøller, C., Shum, M., Marette, A., Mounier, R., Treebak, J. T., Wojtaszewski, J. F. P., Viollet, B., Lantier, L. AMPK in skeletal muscle function and metabolism. PMID:29242278

  18. Reversing sex steroid deficiency and optimizing skeletal development in the adolescent with gonadal failure.

    PubMed

    Vanderschueren, Dirk; Vandenput, Liesbeth; Boonen, Steven

    2005-01-01

    During puberty, the acquisition of skeletal mass and areal bone mineral density (BMD) mainly reflects an increase in bone size (length and perimeters) and not true volumetric BMD. Sexual dimorphism in bone mass and areal BMD is also explained by differences in bone size (longer and wider bones in males) and not by differences in volumetric BMD. Androgens stimulate skeletal growth by activation of the androgen receptor, whereas estrogens (following aromatization of androgens and stimulation of estrogen receptors) have a biphasic effect on skeletal growth during puberty. Recent evidence from clinical cases has shown that many of the growth-promoting effects of the sex steroids are mediated through estrogens rather than androgens. In addition, skeletal maturation and epiphyseal fusion are also estrogen-dependent in both sexes. Nevertheless, independent actions of androgens in these processes also occur. Both sex steroids maintain volumetric BMD during puberty. Androgens interact with the growth hormone (GH)-insulin-like growth factor-I (IGF-I) axis neonatally, resulting in a sexual dimorphic GH pattern during puberty, whereas estrogens stimulate GH and hereby IGF-I in both sexes. Hypogonadism in adolescents impairs not only bone size but also maintenance of volumetric BMD, hereby severely reducing peak areal BMD. Delayed puberty in boys and Turner's syndrome in women impair both bone length and size, reducing areal BMD. Whether volumetric BMD is also reduced and whether fracture risk is increased in these conditions remains controversial. Replacing sex steroids according to a biphasic pattern (starting at low doses and ending at high-normal doses) seems the safest approach to reach targeted height and to optimize bone development.

  19. Deciphering skeletal patterning: clues from the limb.

    PubMed

    Mariani, Francesca V; Martin, Gail R

    2003-05-15

    Even young children can distinguish a Tyrannosaurus rex from a Brontosaurus by observing differences in bone size, shape, number and arrangement, that is, skeletal pattern. But despite our extensive knowledge about cartilage and bone formation per se, it is still largely a mystery how skeletal pattern is established. Much of what we do know has been learned from studying limb development in chicken and mouse embryos. Based on the data from such studies, models for how limb skeletal pattern is established have been proposed and continue to be hotly debated.

  20. IQ Measurement in Children with Skeletal Dysplasia.

    ERIC Educational Resources Information Center

    Rogers, John G.; And Others

    1979-01-01

    IQ studies on 68 children (5 months-15 years) with skeletal dysplasia (dwarfism) were reviewed to provide counseling to parents of newborn affected children. Results of the study show that this population performs intellectually in the same range as other children. Journal availability: see EC 115 198. (PHR)

  1. Using Human Induced Pluripotent Stem Cells to Model Skeletal Diseases.

    PubMed

    Barruet, Emilie; Hsiao, Edward C

    2016-01-01

    Musculoskeletal disorders affecting the bones and joints are major health problems among children and adults. Major challenges such as the genetic origins or poor diagnostics of severe skeletal disease hinder our understanding of human skeletal diseases. The recent advent of human induced pluripotent stem cells (human iPS cells) provides an unparalleled opportunity to create human-specific models of human skeletal diseases. iPS cells have the ability to self-renew, allowing us to obtain large amounts of starting material, and have the potential to differentiate into any cell types in the body. In addition, they can carry one or more mutations responsible for the disease of interest or be genetically corrected to create isogenic controls. Our work has focused on modeling rare musculoskeletal disorders including fibrodysplasia ossificans progressive (FOP), a congenital disease of increased heterotopic ossification. In this review, we will discuss our experiences and protocols differentiating human iPS cells toward the osteogenic lineage and their application to model skeletal diseases. A number of critical challenges and exciting new approaches are also discussed, which will allow the skeletal biology field to harness the potential of human iPS cells as a critical model system for understanding diseases of abnormal skeletal formation and bone regeneration.

  2. Regulation of skeletal myotube formation and alignment by nanotopographically controlled cell-secreted extracellular matrix.

    PubMed

    Jiao, Alex; Moerk, Charles T; Penland, Nisa; Perla, Mikael; Kim, Jinsung; Smith, Alec S T; Murry, Charles E; Kim, Deok-Ho

    2018-06-01

    Skeletal muscle has a well-organized tissue structure comprised of aligned myofibers and an encasing extracellular matrix (ECM) sheath or lamina, within which reside satellite cells. We hypothesize that the organization of skeletal muscle tissues in culture can affect both the structure of the deposited ECM and the differentiation potential of developing myotubes. Furthermore, we posit that cellular and ECM cues can be a strong determinant of myoblast fusion and morphology in 3D tissue culture environments. To test these, we utilized a thermoresponsive nanofabricated substratum to engineer anisotropic sheets of myoblasts which could then be transferred and stacked into multilayered tissues. Within such engineered tissues, we found that myoblasts rapidly sense topography and deposit structurally organized ECM proteins. Furthermore, the initial tissue structure was found to exert significant control over myoblast fusion and eventual myotube organization. These results highlight the importance of ECM structure on myoblast fusion and organization, and provide insights into substrate-mediated control of myotube formation in the development of novel, more effective, engineered skeletal muscle tissues. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1543-1551, 2018. © 2018 Wiley Periodicals, Inc.

  3. Acclimation temperature affects the metabolic response of amphibian skeletal muscle to insulin.

    PubMed

    Petersen, Ann M; Gleeson, Todd T

    2011-09-01

    Frog skeletal muscle mainly utilizes the substrates glucose and lactate for energy metabolism. The goal of this study was to determine the effect of insulin on the uptake and metabolic fate of lactate and glucose at rest in skeletal muscle of the American bullfrog, Lithobates catesbeiana, under varying temperature regimens. We hypothesize that lactate and glucose metabolic pathways will respond differently to the presence of insulin in cold versus warm acclimated frog tissues, suggesting an interaction between temperature and metabolism under varying environmental conditions. We employed radiolabeled tracer techniques to measure in vitro uptake, oxidation, and incorporation of glucose and lactate into glycogen by isolated muscles from bullfrogs acclimated to 5 °C (cold) or 25 °C (warm). Isolated bundles from Sartorius muscles were incubated at 5 °C, 15 °C, or 25 °C, and in the presence and absence of 0.05 IU/mL bovine insulin. Insulin treatment in the warm acclimated and incubated frogs resulted in an increase in glucose incorporation into glycogen, and an increase in intracellular [glucose] of 0.5 μmol/g (P<0.05). Under the same conditions lactate incorporation into glycogen was reduced (P<0.05) in insulin-treated muscle. When compared to the warm treatment group, cold acclimation and incubation resulted in increased rates of glucose oxidation and glycogen synthesis, and a reduction in free intracellular glucose levels (P<0.05). When muscles from either acclimation group were incubated at an intermediate temperature of 15 °C, insulin's effect on substrate metabolism was attenuated or even reversed. Therefore, a significant interaction between insulin and acclimation condition in controlling skeletal muscle metabolism appears to exist. Our findings further suggest that one of insulin's actions in frog muscle is to increase glucose incorporation into glycogen, and to reduce reliance on lactate as the primary metabolic fuel. Copyright © 2011 Elsevier Inc. All

  4. Synergy in free radical generation is blunted by high-fat diet induced alterations in skeletal muscle mitochondrial metabolism.

    PubMed

    Li, Yanjun; Periwal, Vipul

    2013-03-05

    Due to their role in cellular energetics and metabolism, skeletal muscle mitochondria appear to play a key role in the development of insulin resistance and type II diabetes. High-fat diet can induce higher levels of reactive oxygen species (ROS), evidenced by hydrogen peroxide (H2O2) emission from mitochondria, which may be causal for insulin resistance in skeletal muscle. The underlying mechanisms are unclear. Recent published data on single substrate (pyruvate, succinate, fat) metabolism in both normal diet (CON) and high-fat diet (HFD) states of skeletal muscle allowed us to develop an integrated mathematical model of skeletal muscle mitochondrial metabolism. Model simulations suggested that long-term HFD may affect specific metabolic reaction/pathways by altering enzyme activities. Our model allows us to predict oxygen consumption and ROS generation for any combination of substrates. In particular, we predict a synergy between (iso-membrane potential) combinations of pyruvate and fat in ROS production compared to the sum of ROS production with each substrate singly in both CON and HFD states. This synergy is blunted in the HFD state. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Skeletal features and growth patterns in 14 patients with haploinsufficiency of SHOX: implications for the development of Turner syndrome.

    PubMed

    Kosho, T; Muroya, K; Nagai, T; Fujimoto, M; Yokoya, S; Sakamoto, H; Hirano, T; Terasaki, H; Ohashi, H; Nishimura, G; Sato, S; Matsuo, N; Ogata, T

    1999-12-01

    We report on clinical features in 14 Japanese patients (4 males and 10 females) with partial monosomy of the short arm pseudoautosomal region involving SHOX (n = 11) or total monosomy of the pseudoautosomal region with no involvement of disease genes on the sex-differential regions (n = 3). Skeletal assessment showed that three patients had no discernible skeletal abnormalities, one patient exhibited short 4th metacarpals and borderline cubitus valgus, and the remaining 10 patients had Madelung deformity and/or mesomelia characteristic of Léri-Weill dyschondrosteosis (LWD), together with short 4th metacarpals and/or cubitus valgus. Skeletal lesions were more severe in females and became obvious with age. Growth evaluation revealed that patients without LWD grew along by the -2 SD growth curve before puberty and showed a normal or exaggerated pubertal growth spurt, whereas those with LWD grew along by the standard growth curves before puberty but exhibited an attenuated pubertal growth spurt and resultant short stature. Maturational assessment indicated a tendency of relatively early maturation in patients with LWD. There was no correlation between the clinical phenotype and the deletion size. These findings suggest that haploinsufficiency of SHOX causes not only short stature but also Turner skeletal anomalies (such as short 4th metacarpals, cubitus valgus, and LWD) and that growth pattern is primarily dependent on the presence or absence of LWD. Because skeletal lesions have occurred in a female-dominant and age-influenced fashion, it is inferred that estrogens exert a maturational effect on skeletal tissues that are susceptible to premature fusion of growth plates because of haploinsufficiency of SHOX, facilitating the development of skeletal lesions.

  6. Skeletal muscle stem cells from animals I. Basic cell biology

    USDA-ARS?s Scientific Manuscript database

    Skeletal muscle stem cells from food-producing animals have been of interest to agricultural life scientists seeking to develop a better understanding of the molecular regulation of lean tissue (skeletal muscle protein hypertrophy) and intramuscular fat (marbling) development. Enhanced understanding...

  7. Regenerating skeletal muscle in the face of aging and disease.

    PubMed

    Jasuja, Ravi; LeBrasseur, Nathan K

    2014-11-01

    Skeletal muscle is a fundamental organ in the generation of force and movement, the regulation of whole-body metabolism, and the provision of resiliency. Indeed, physical medicine and rehabilitation is recognized for optimizing skeletal muscle health in the context of aging (sarcopenia) and disease (cachexia). Exercise is, and will remain, the cornerstone of therapies to improve skeletal muscle health. However, there are now a number of promising biologic and small molecule interventions currently under development to rejuvenate skeletal muscle, including myostatin inhibitors, selective androgen receptor modulators, and an activator of the fast skeletal muscle troponin complex. The opportunities for skeletal muscle-based regenerative therapies and a selection of emerging pharmacologic interventions are discussed in this review.

  8. Skeletal and chronological ages in American adolescents: current findings in skeletal maturation.

    PubMed

    Calfee, Ryan P; Sutter, Melanie; Steffen, Jennifer A; Goldfarb, Charles A

    2010-10-01

    This study was designed to assess the relationship between skeletal and chronological ages among current American adolescents using the Greulich and Pyle atlas for skeletal age determination. We used the Greulich and Pyle atlas to prospectively determine skeletal age in a group of 138 otherwise healthy American adolescents from 12 to 18 years of age. 62 males and 76 females were enrolled in this cohort. Paired Student t-tests were used to statistically compare the skeletal and chronological ages in this population. Subgroup analysis examined the effect of gender on differences between chronologic age and skeletal age. For the entire cohort, mean skeletal age was significantly greater than chronological age (mean 0.80 years, P < 0.01). In 29 cases (21%) the skeletal age was at least 2 years greater than the chronologic age. Among females, such cases with marked discrepancy occurred exclusively in those chronologically between 12 and 15 years of age (P < 0.01). Males demonstrated a 2-year or greater discrepancy more commonly than females (26 vs. 17%). In males, 2-year discrepancies were equally likely across chronologic ages (P = 0.82). Current American adolescents are significantly more mature by skeletal age, as determined by the Greulich and Pyle method, than their chronological age would suggest. The skeletal ages of females are most likely to markedly exceed chronologic age between the ages of 12-15 years.

  9. Imaging of Skeletal Disorders Caused by Fibroblast Growth Factor Receptor Gene Mutations.

    PubMed

    Sargar, Kiran M; Singh, Achint K; Kao, Simon C

    2017-10-01

    Fibroblast growth factors and fibroblast growth factor receptors (FGFRs) play important roles in human axial and craniofacial skeletal development. FGFR1, FGFR2, and FGFR3 are crucial for both chondrogenesis and osteogenesis. Mutations in the genes encoding FGFRs, types 1-3, are responsible for various skeletal dysplasias and craniosynostosis syndromes. Many of these disorders are relatively common in the pediatric population, and diagnosis is often challenging. These skeletal disorders can be classified based on which FGFR is affected. Skeletal disorders caused by type 1 mutations include Pfeiffer syndrome (PS) and osteoglophonic dysplasia, and disorders caused by type 2 mutations include Crouzon syndrome (CS), Apert syndrome (AS), and PS. Disorders caused by type 3 mutations include achondroplasia, hypochondroplasia, thanatophoric dysplasia (TD), severe achondroplasia with developmental delay and acanthosis nigricans, Crouzonodermoskeletal syndrome, and Muenke syndrome. Most of these mutations are inherited in an autosomal dominant fashion and are gain-of-function-type mutations. Imaging plays a key role in the evaluation of these skeletal disorders. Knowledge of the characteristic imaging and clinical findings can help confirm the correct diagnosis and guide the appropriate molecular genetic tests. Some characteristics and clinical findings include premature fusion of cranial sutures and deviated broad thumbs and toes in PS; premature fusion of cranial sutures and syndactyly of the hands and feet in AS; craniosynostosis, ocular proptosis, and absence of hand and foot abnormalities in CS; rhizomelic limb shortening, caudal narrowing of the lumbar interpediculate distance, small and square iliac wings, and trident hands in achondroplasia; and micromelia, bowing of the femora, and platyspondyly in TD. © RSNA, 2017.

  10. Mandibular dimensional changes and skeletal maturity.

    PubMed

    Subramaniam, Priya; Naidu, Premila

    2010-10-01

    Growth and development of the human face provides a fascinating interplay of form and function. Among the various facial bones, the mandible plays a very important role during various growth-modification therapies. These treatment modalities will yield a better result in less time if properly correlated with skeletal maturity. It is very essential to know where the site of growth occurs and also the time when it occurs or ceases to occur. This study was conducted to assess the mandibular dimensions at various stages of skeletal maturation. The subjects included 6 to 18-year-old children who were grouped according to their middle phalanx of the third finger stages of skeletal maturity. Lateral cephalographs were taken and, from their cephalometric tracings, linear and angular measurements of the mandible were made. The values obtained were subjected to statistical analysis. Results showed that the mandibular height, length and symphysis thickness increased with skeletal maturity. An increase in angles SNB (Sella, Nasion, Supramentale) and L1-MP (Long axis lower incisors- Mandibular plane) and a decrease in the gonial angle and ANB (Subspinale, Nasion, Supramentale) angle were observed. The study showed a significant correlation between mandibular growth and skeletal maturity.

  11. Substrate kinetics in patients with disorders of skeletal muscle metabolism.

    PubMed

    Ørngreen, Mette Cathrine

    2016-07-01

    The main purpose of the following studies was to investigate pathophysiological mechanisms in fat and carbohydrate metabolism and effect of nutritional interventions in patients with metabolic myopathies and in patients with severe muscle wasting. Yet there is no cure for patients with skeletal muscle disorders. The group of patients is heterozygous and this thesis is focused on patients with metabolic myopathies and low muscle mass due to severe muscle wasting. Disorders of fatty acid oxidation (FAO) are, along with myophosphorylase deficiency (McArdle disease), the most common inborn errors of metabolism leading to recurrent episodes of rhabdomyolysis in adults. Prolonged exercise, fasting, and fever are the main triggering factors for rhabdomyolysis in these conditions, and can be complicated by acute renal failure. Patients with low muscle mass are in risk of loosing their functional skills and depend on a wheel chair and respiratory support. We used nutritional interventions and metabolic studies with stable isotope technique and indirect calorimetry in patients with metabolic myopathies and patients with low muscle mass to get information of the metabolism of the investigated diseases, and to gain knowledge of the biochemical pathways of intermediary metabolism in human skeletal muscle. We have shown that patients with fat metabolism disorders in skeletal muscle affecting the transporting enzyme of fat into the mitochondria (carnitine palmitoyltransferase II deficiency) and affecting the enzyme responsible for breakdown of the long-chain fatty acids (very long chain acyl-CoA dehydrogenase deficiency) have a normal fatty acid oxidation at rest, but enzyme activity is too low to increase fatty acid oxidation during exercise. Furthermore, these patients benefit from a carbohydrate rich diet. Oppositely is exercise capacity worsened by a fat-rich diet in these patients. The patients also benefit from IV glucose, however, when glucose is given orally just before

  12. Dentofacial transverse development in Koreans according to skeletal maturation: A cross-sectional study.

    PubMed

    Hwang, Soonshin; Noh, Yoonjeong; Choi, Yoon Jeong; Chung, Chooryung; Lee, Hye Sun; Kim, Kyung-Ho

    2018-01-01

    The aim of this study was to establish the normative data of dentofacial transverse dimensions according to the skeletal maturation stage in Korean adolescents with good occlusion, assess gender differences and determine correlations between transverse variables. A total of 577 Korean subjects between ages 7 to 19 years and exhibiting skeletal Class I occlusion were categorized by skeletal maturation index (SMI) of Fishman using hand-wrist radiographs. Dentofacial transverse dimensions were assessed using posteroanterior cephalograms. Independent two-sample t -tests were used to analyze differences between genders. Pearson correlation coefficient was used to determine the correlation between transverse measurements. Dentofacial transverse norms relevant to skeletal maturation stages were established. The average maxillomandibular width difference and ratio at growth completion was 22.16 mm and 77.01% for males; 23.70 mm and 74.06% for females, respectively. Males had greater facial, maxillary and mandibular widths compared to females at every SMI stage. The maxillary and mandibular intermolar widths showed the strongest correlation for both sexes (r = 0.826 for males, r = 0.725 for females). Dentofacial transverse norms of Korean adolescents were established according to developmental stage. All dentofacial widths were greater in males at growth completion. Maxillary and mandibular intermolar widths were strongly correlated. This study may serve as a guideline for the assessment of dentofacial transverse growth according to skeletal maturation stage in Korean adolescents with good occlusion.

  13. Determinants of relative skeletal maturity in South African children.

    PubMed

    Hawley, Nicola L; Rousham, Emily K; Johnson, William; Norris, Shane A; Pettifor, John M; Cameron, Noël

    2012-01-01

    The variation of skeletal maturity about chronological age is a sensitive indicator of population health. Age appropriate or advanced skeletal maturity is a reflection of adequate environmental and social conditions, whereas delayed maturation suggests inadequate conditions for optimal development. There remains a paucity of data, however, to indicate which specific biological and environmental factors are associated with advancement or delay in skeletal maturity. The present study utilises longitudinal data from the South African Birth to Twenty (Bt20) study to indentify predictors of relative skeletal maturity (RSM) in early adolescence. A total of 244 black South African children (n=131 male) were included in this analysis. Skeletal maturity at age 9/10 years was assessed using the Tanner and Whitehouse III RUS technique. Longitudinal data on growth, socio-economic position and pubertal development were entered into sex-specific multivariable general linear regression models with relative skeletal maturity (skeletal age-chronological age) as the outcome. At 9/10 years of age males showed an average of 0.66 years delay in skeletal maturation relative to chronological age. Females showed an average of 1.00 year delay relative to chronological age. In males, being taller at 2 years (p<0.01) and heavier at 2 years (p<0.01) predicted less delay in RSM at age 9/10 years, independent of current size and body composition. In females, both height at 2 years and conditional weight at 2 years predicted less delay in RSM at 9/10 years (p<0.05) but this effect was mediated by current body composition. Having greater lean mass at 9/10 years was associated with less delayed RSM in females (p<0.01) as was pubertal status at the time of skeletal maturity assessment (p<0.01). This study identifies several predictors of skeletal maturation at 9/10 years, indicating a role for early life exposures in determining the rate of skeletal maturation during childhood independently of

  14. PGC-1α and fasting-induced PDH regulation in mouse skeletal muscle.

    PubMed

    Gudiksen, Anders; Pilegaard, Henriette

    2017-04-01

    The purpose of the present study was to examine whether lack of skeletal muscle peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 α ) affects the switch in substrate utilization from a fed to fasted state and the fasting-induced pyruvate dehydrogenase (PDH) regulation in skeletal muscle. Skeletal muscle-specific PGC-1 α knockout (MKO) mice and floxed littermate controls were fed or fasted for 24 h. Fasting reduced PDHa activity, increased phosphorylation of all four known sites on PDH-E1 α and increased pyruvate dehydrogenase kinase (PDK4) and sirtuin 3 (SIRT3) protein levels, but did not alter total acetylation of PDH-E1 α Lack of muscle PGC-1 α did not affect the switch from glucose to fat oxidation in the transition from the fed to fasted state, but was associated with lower and higher respiratory exchange ratio (RER) in the fed and fasted state, respectively. PGC-1 α MKO mice had lower skeletal muscle PDH-E1 α , PDK1, 2, 4, and pyruvate dehydrogenase phosphatase (PDP1) protein content than controls, but this did not prevent the fasting-induced increase in PDH-E1 α phosphorylation in PGC-1 α MKO mice. However, lack of skeletal muscle PGC-1 α reduced SIRT3 protein content, increased total lysine PDH-E1 α acetylation in the fed state, and prevented a fasting-induced increase in SIRT3 protein. In conclusion, skeletal muscle PGC-1 α is required for fasting-induced upregulation of skeletal muscle SIRT3 and maintaining high fat oxidation in the fasted state, but is dispensable for preserving the capability to switch substrate during the transition from the fed to the fasted state and for fasting-induced PDH regulation in skeletal muscle. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  15. Toward Affective Development: A Program to Stimulate Psychological and Affective Development.

    ERIC Educational Resources Information Center

    Pearl, Linda F.

    1987-01-01

    Toward Affective Development (TAD), a 191-lesson program designed to stimulate psychological and affective development for third- through sixth-graders, can be used in special education, resource rooms, and remedial settings. TAD's five sections encompass: openness to experience, effects of emotions, group dynamics, individuality, and conflict…

  16. Gene expression deregulation in postnatal skeletal muscle of TK2 deficient mice reveals a lower pool of proliferating myogenic progenitor cells.

    PubMed

    Paredes, João A; Zhou, Xiaoshan; Höglund, Stefan; Karlsson, Anna

    2013-01-01

    Loss of thymidine kinase 2 (TK2) causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA) depletion syndrome (MDS) in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue.

  17. Gene Expression Deregulation in Postnatal Skeletal Muscle of TK2 Deficient Mice Reveals a Lower Pool of Proliferating Myogenic Progenitor Cells

    PubMed Central

    Paredes, João A.; Zhou, Xiaoshan; Höglund, Stefan; Karlsson, Anna

    2013-01-01

    Loss of thymidine kinase 2 (TK2) causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA) depletion syndrome (MDS) in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue. PMID:23341978

  18. Solitary extra-skeletal sinonasal metastasis from a primary skeletal Ewing's sarcoma.

    PubMed

    Hayes, S M; Jani, T N; Rahman, S M; Jogai, S; Harries, P G; Salib, R J

    2011-08-01

    Ewing's sarcoma is a rare, malignant tumour predominantly affecting young adolescent males. We describe a unique case of an isolated extra-skeletal metastasis from a skeletal Ewing's sarcoma primary, arising in the right sinonasal cavity of a young man who presented with severe epistaxis and periorbital cellulitis. Histologically, the lesion comprised closely packed, slightly diffuse, atypical cells with round, hyperchromatic nuclei, scant cytoplasm and occasional mitotic figures, arranged in a sheet-like pattern. Immunohistochemical analysis showed positive staining only for cluster of differentiation 99 glycoprotein. Fluorescent in situ hybridisation identified the Ewing's sarcoma gene, confirming the diagnosis. Complete surgical resection was achieved via a minimally invasive endoscopic transnasal approach; post-operative radiotherapy. Ten months post-operatively, there were no endoscopic or radiological signs of disease. Metastatic Ewing's sarcoma within the head and neck is incredibly rare and can pose significant diagnostic and therapeutic challenges. An awareness of different clinical presentations and distinct histopathological features is important to enable early diagnosis. This case illustrates one potential management strategy, and reinforces the evolving role of endoscopic transnasal approaches in managing sinonasal cavity and anterior skull base tumours.

  19. Aberrant and alternative splicing in skeletal system disease.

    PubMed

    Fan, Xin; Tang, Liling

    2013-10-01

    The main function of skeletal system is to support the body and help movement. A variety of factors can lead to skeletal system disease, including age, exercise, and of course genetic makeup and expression. Pre-mRNA splicing plays a crucial role in gene expression, by creating multiple protein variants with different biological functions. The recent studies show that several skeletal system diseases are related to pre-mRNA splicing. This review focuses on the relationship between pre-mRNA splicing and skeletal system disease. On the one hand, splice site mutation that leads to aberrant splicing often causes genetic skeletal system disease, like COL1A1, SEDL and LRP5. On the other hand, alternative splicing without genomic mutation may generate some marker protein isoforms, for example, FN, VEGF and CD44. Therefore, understanding the relationship between pre-mRNA splicing and skeletal system disease will aid in uncovering the mechanism of disease and contribute to the future development of gene therapy. © 2013 Elsevier B.V. All rights reserved.

  20. Estimation of skeletal muscle mass from body creatine content

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.

    1982-01-01

    Procedures have been developed for studying the effect of changes in gravitational loading on skeletal muscle mass through measurements of the body creatine content. These procedures were developed for studies of gravitational scale effects in a four-species model, comprising the hamster, rat, guinea pig, and rabbit, which provides a sufficient range of body size for assessment of allometric parameters. Since intracellular muscle creatine concentration varies among species, and with age within a given species, the concentration values for metabolically mature individuals of these four species were established. The creatine content of the carcass, skin, viscera, smooth muscle, and skeletal muscle was determined for each species. In addition, the skeletal muscle mass of the major body components was determined, as well as the total and fat-free masses of the body and carcass, and the percent skeletal muscle in each. It is concluded that these procedures are particularly useful for studying the effect of gravitational loading on the skeletal muscle content of the animal carcass, which is the principal weight-bearing organ of the body.

  1. Dentofacial transverse development in Koreans according to skeletal maturation: A cross-sectional study

    PubMed Central

    Hwang, Soonshin; Noh, Yoonjeong; Choi, Yoon Jeong; Chung, Chooryung; Lee, Hye Sun

    2018-01-01

    Objective The aim of this study was to establish the normative data of dentofacial transverse dimensions according to the skeletal maturation stage in Korean adolescents with good occlusion, assess gender differences and determine correlations between transverse variables. Methods A total of 577 Korean subjects between ages 7 to 19 years and exhibiting skeletal Class I occlusion were categorized by skeletal maturation index (SMI) of Fishman using hand-wrist radiographs. Dentofacial transverse dimensions were assessed using posteroanterior cephalograms. Independent two-sample t-tests were used to analyze differences between genders. Pearson correlation coefficient was used to determine the correlation between transverse measurements. Results Dentofacial transverse norms relevant to skeletal maturation stages were established. The average maxillomandibular width difference and ratio at growth completion was 22.16 mm and 77.01% for males; 23.70 mm and 74.06% for females, respectively. Males had greater facial, maxillary and mandibular widths compared to females at every SMI stage. The maxillary and mandibular intermolar widths showed the strongest correlation for both sexes (r = 0.826 for males, r = 0.725 for females). Conclusions Dentofacial transverse norms of Korean adolescents were established according to developmental stage. All dentofacial widths were greater in males at growth completion. Maxillary and mandibular intermolar widths were strongly correlated. This study may serve as a guideline for the assessment of dentofacial transverse growth according to skeletal maturation stage in Korean adolescents with good occlusion. PMID:29291187

  2. Myosin Heavy Chain Gene Expression in Developing Neonatal Skeletal Muscle: Involvement of the Nerve, Gravity, and Thyroid State

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.; Adams, G.; Haddad, F.; Zeng, M.; Qin, A.; Qin, L.; McCue, S.; Bodell, P.

    1999-01-01

    The myosin heavy chain (MHC) gene family encodes at least six MHC proteins (herein designated as neonatal, embryonic, slow type I (beta), and fast IIa, IIx, and IIb) that are expressed in skeletal muscle in a muscle-specific and developmentally-regulated fashion. At birth, both antigravity (e.g. soleus) and locomotor (e.g., plantaris) skeletal muscles are undifferentiated relative to the adult MHC phenotype such that the neonatal and embryonic MHC isoforms account for 80 - 90% of the MHC pool in a fast locomotor muscle; whereas, the embryonic and slow, type I isoforms account for approx. 90% of the pool in a typical antigravity muscle. The goal of this study was to investigate the role of an intact nerve, gravity and thyroid hormone (T3), as well as certain interactions of these interventions, on MHC gene expression in developing neonatal skeletal muscles of rodents.

  3. Sumoylated α-skeletal muscle actin in the skeletal muscle of adult rats.

    PubMed

    Uda, Munehiro; Kawasaki, Hiroaki; Iizumi, Kyoichi; Shigenaga, Ayako; Baba, Takeshi; Naito, Hisashi; Yoshioka, Toshitada; Yamakura, Fumiyuki

    2015-11-01

    Skeletal muscles are composed of two major muscle fiber types: slow-twitch oxidative fibers and fast-twitch glycolytic fibers. The proteins in these muscle fibers are known to differ in their expression, relative abundance, and post-translational modifications. In this study, we report a previously unreported post-translational modification of α-skeletal muscle actin in the skeletal muscles of adult male F344 rats in vivo. Using two-dimensional electrophoresis (2D-PAGE), we first examined the differences in the protein expression profiles between the soleus and plantaris muscles. We found higher intensity protein spots at approximately 60 kDa and pH 9 on 2D-PAGE for the soleus muscle compared with the plantaris muscle. These spots were identified as α-skeletal muscle actin by liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry and western blot analyses. In addition, we found that the 60 kDa α-skeletal muscle actin is modified by small ubiquitin-like modifier (SUMO) 1, using 2D-PAGE and western blot analyses. Furthermore, we found that α-skeletal muscle actin with larger molecular weight was localized in the nuclear and cytosol of the skeletal muscle, but not in the myofibrillar fraction by the combination of subcellular fractionation and western blot analyses. These results suggest that α-skeletal muscle actin is modified by SUMO-1 in the skeletal muscles, localized in nuclear and cytosolic fractions, and the extent of this modification is much higher in the slow muscles than in the fast muscles. This is the first study to show the presence of SUMOylated actin in animal tissues.

  4. MicroRNA Transcriptome Profiles During Swine Skeletal Muscle Development

    USDA-ARS?s Scientific Manuscript database

    MicroRNA (miR) are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts. To evaluate the role of miR in skeletal muscle of swine, global microRNA abundance was measured at specific developmental stages including proliferating satellite cells,...

  5. Deletion of Skeletal Muscle SOCS3 Prevents Insulin Resistance in Obesity

    PubMed Central

    Jorgensen, Sebastian Beck; O’Neill, Hayley M.; Sylow, Lykke; Honeyman, Jane; Hewitt, Kimberly A.; Palanivel, Rengasamy; Fullerton, Morgan D.; Öberg, Lisa; Balendran, Anudharan; Galic, Sandra; van der Poel, Chris; Trounce, Ian A.; Lynch, Gordon S.; Schertzer, Jonathan D.; Steinberg, Gregory R.

    2013-01-01

    Obesity is associated with chronic low-grade inflammation that contributes to defects in energy metabolism and insulin resistance. Suppressor of cytokine signaling (SOCS)-3 expression is increased in skeletal muscle of obese humans. SOCS3 inhibits leptin signaling in the hypothalamus and insulin signal transduction in adipose tissue and the liver. Skeletal muscle is an important tissue for controlling energy expenditure and whole-body insulin sensitivity; however, the physiological importance of SOCS3 in this tissue has not been examined. Therefore, we generated mice that had SOCS3 specifically deleted in skeletal muscle (SOCS MKO). The SOCS3 MKO mice had normal muscle development, body mass, adiposity, appetite, and energy expenditure compared with wild-type (WT) littermates. Despite similar degrees of obesity when fed a high-fat diet, SOCS3 MKO mice were protected against the development of hyperinsulinemia and insulin resistance because of enhanced skeletal muscle insulin receptor substrate 1 (IRS1) and Akt phosphorylation that resulted in increased skeletal muscle glucose uptake. These data indicate that skeletal muscle SOCS3 does not play a critical role in regulating muscle development or energy expenditure, but it is an important contributing factor for inhibiting insulin sensitivity in obesity. Therapies aimed at inhibiting SOCS3 in skeletal muscle may be effective in reversing obesity-related glucose intolerance and insulin resistance. PMID:22961088

  6. Exercise Promotes Healthy Aging of Skeletal Muscle

    PubMed Central

    Cartee, Gregory D.; Hepple, Russell T.; Bamman, Marcas M.; Zierath, Juleen R.

    2016-01-01

    Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics, and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes “healthy aging” by inducing modifications in skeletal muscle. PMID:27304505

  7. Follistatin in chondrocytes: the link between TRPV4 channelopathies and skeletal malformations

    PubMed Central

    Leddy, Holly A.; McNulty, Amy L.; Lee, Suk Hee; Rothfusz, Nicole E.; Gloss, Bernd; Kirby, Margaret L.; Hutson, Mary R.; Cohn, Daniel H.; Guilak, Farshid; Liedtke, Wolfgang

    2014-01-01

    Point mutations in the calcium-permeable TRPV4 ion channel have been identified as the cause of autosomal-dominant human motor neuropathies, arthropathies, and skeletal malformations of varying severity. The objective of this study was to determine the mechanism by which TRPV4 channelopathy mutations cause skeletal dysplasia. The human TRPV4V620I channelopathy mutation was transfected into primary porcine chondrocytes and caused significant (2.6-fold) up-regulation of follistatin (FST) expression levels. Pore altering mutations that prevent calcium influx through the channel prevented significant FST up-regulation (1.1-fold). We generated a mouse model of theTRPV4V620I mutation, and found significant skeletal deformities (e.g., shortening of tibiae and digits, similar to the human disease brachyolmia) and increases in Fst/TRPV4 mRNA levels (2.8-fold). FST was significantly up-regulated in primary chondrocytes transfected with 3 different dysplasia-causing TRPV4 mutations (2- to 2.3-fold), but was not affected by an arthropathy mutation (1.1-fold). Furthermore, FST-loaded microbeads decreased bone ossification in developing chick femora (6%) and tibiae (11%). FST gene and protein levels were also increased 4-fold in human chondrocytes from an individual natively expressing the TRPV4T89I mutation. Taken together, these data strongly support that up-regulation of FST in chondrocytes by skeletal dysplasia-inducing TRPV4 mutations contributes to disease pathogenesis.—Leddy, H. A., McNulty, A. L., Lee, S. H., Rothfusz, N. E., Gloss, B., Kirby, M. L., Hutson, M. R., Cohn, D. H., Guilak, F., Liedtke, W. Follistatin in chondrocytes: the link between TRPV4 channelopathies and skeletal malformations. PMID:24577120

  8. Fatigue mechanisms in patients with cancer: effects of tumor necrosis factor and exercise on skeletal muscle

    NASA Technical Reports Server (NTRS)

    St Pierre, B. A.; Kasper, C. E.; Lindsey, A. M.

    1992-01-01

    Fatigue is a common adverse effect of cancer and its therapy. However, the specific mechanisms underlying cancer fatigue are unclear. One physiologic mechanism may involve changes in skeletal muscle protein stores or metabolite concentration. A reduction in skeletal muscle protein stores may result from endogenous tumor necrosis factor (TNF) or from TNF administered as antineoplastic therapy. This muscle wasting would require patients to exert an unusually high amount of effort to generate adequate contractile force during exercise performance or during extended periods of sitting or standing. This additional effort could result in the onset of fatigue. Additionally, cancer fatigue may develop or become exacerbated during exercise as a consequence of changes in the concentration of skeletal muscle metabolites. These biochemical alterations may interfere with force that is produced by the muscle contractile proteins. These physiologic changes may play a role in the decision to include exercise in the rehabilitation plans of patients with cancer. They also may affect ideas about fatigue.

  9. Proteomic profiling of non-obese type 2 diabetic skeletal muscle.

    PubMed

    Mullen, Edel; Ohlendieck, Kay

    2010-03-01

    Abnormal glucose handling has emerged as a major clinical problem in millions of diabetic patients worldwide. Insulin resistance affects especially one of the main target organs of this hormone, the skeletal musculature, making impaired glucose metabolism in contractile fibres a major feature of type 2 diabetes. High levels of circulating free fatty acids, an increased intramyocellular lipid content, impaired insulin-mediated glucose uptake, diminished mitochondrial functioning and an overall weakened metabolic flexibility are pathobiochemical hallmarks of diabetic skeletal muscles. In order to increase our cellular understanding of the molecular mechanisms that underlie this complex diabetes-associated skeletal muscle pathology, we initiated herein a mass spectrometry-based proteomic analysis of skeletal muscle preparations from the non-obese Goto-Kakizaki rat model of type 2 diabetes. Following staining of high-resolution two-dimensional gels with colloidal Coomassie Blue, 929 protein spots were detected, whereby 21 proteins showed a moderate differential expression pattern. Decreased proteins included carbonic anhydrase, 3-hydroxyisobutyrate dehydrogenase and enolase. Increased proteins were identified as monoglyceride lipase, adenylate kinase, Cu/Zn superoxide dismutase, phosphoglucomutase, aldolase, isocitrate dehydrogenase, cytochrome c oxidase, small heat shock Hsp27/B1, actin and 3-mercaptopyruvate sulfurtransferase. These proteomic findings suggest that the diabetic phenotype is associated with a generally perturbed protein expression pattern, affecting especially glucose, fatty acid, nucleotide and amino acid metabolism, as well as the contractile apparatus, the cellular stress response, the anti-oxidant defense system and detoxification mechanisms. The altered expression levels of distinct skeletal muscle proteins, as documented in this study, might be helpful for the future establishment of a comprehensive biomarker signature of type 2 diabetes

  10. From Nutrient to MicroRNA: a Novel Insight into Cell Signaling Involved in Skeletal Muscle Development and Disease

    PubMed Central

    Zhang, Yong; Yu, Bing; He, Jun; Chen, Daiwen

    2016-01-01

    Skeletal muscle is a remarkably complicated organ comprising many different cell types, and it plays an important role in lifelong metabolic health. Nutrients, as an external regulator, potently regulate skeletal muscle development through various internal regulatory factors, such as mammalian target of rapamycin (mTOR) and microRNAs (miRNAs). As a nutrient sensor, mTOR, integrates nutrient availability to regulate myogenesis and directly or indirectly influences microRNA expression. MiRNAs, a class of small non-coding RNAs mediating gene silencing, are implicated in myogenesis and muscle-related diseases. Meanwhile, growing evidence has emerged supporting the notion that the expression of myogenic miRNAs could be regulated by nutrients in an epigenetic mechanism. Therefore, this review presents a novel insight into the cell signaling network underlying nutrient-mTOR-miRNA pathway regulation of skeletal myogenesis and summarizes the epigenetic modifications in myogenic differentiation, which will provide valuable information for potential therapeutic intervention. PMID:27766039

  11. Thyroid Hormone Receptor α Mutation Causes a Severe and Thyroxine-Resistant Skeletal Dysplasia in Female Mice

    PubMed Central

    Bassett, J. H. Duncan; Boyde, Alan; Zikmund, Tomas; Evans, Holly; Croucher, Peter I.; Zhu, Xuguang; Park, Jeong Won

    2014-01-01

    A new genetic disorder has been identified that results from mutation of THRA, encoding thyroid hormone receptor α1 (TRα1). Affected children have a high serum T3:T4 ratio and variable degrees of intellectual deficit and constipation but exhibit a consistently severe skeletal dysplasia. In an attempt to improve developmental delay and alleviate symptoms of hypothyroidism, patients are receiving varying doses and durations of T4 treatment, but responses have been inconsistent so far. Thra1PV/+ mice express a similar potent dominant-negative mutant TRα1 to affected individuals, and thus represent an excellent disease model. We hypothesized that Thra1PV/+ mice could be used to predict the skeletal outcome of human THRA mutations and determine whether prolonged treatment with a supraphysiological dose of T4 ameliorates the skeletal abnormalities. Adult female Thra1PV/+ mice had short stature, grossly abnormal bone morphology but normal bone strength despite high bone mass. Although T4 treatment suppressed TSH secretion, it had no effect on skeletal maturation, linear growth, or bone mineralization, thus demonstrating profound tissue resistance to thyroid hormone. Despite this, prolonged T4 treatment abnormally increased bone stiffness and strength, suggesting the potential for detrimental consequences in the long term. Our studies establish that TRα1 has an essential role in the developing and adult skeleton and predict that patients with different THRA mutations will display variable responses to T4 treatment, which depend on the severity of the causative mutation. PMID:24914936

  12. The relative expression levels of insulin-like growth factor 1 and myostatin mRNA in the asynchronous development of skeletal muscle in ducks during early development.

    PubMed

    Hu, Yan; Liu, Hongxiang; Shan, Yanju; Ji, Gaige; Xu, Wenjuan; Shu, Jingting; Li, Huifang

    2015-08-10

    Genetic selection is a powerful tool for modifying poultry muscle yield. Insulin-like growth factor I (IGF-I) and myostatin (MSTN) are important regulators of muscle growth, especially in the myogenesis stage. This study compared the developmental pattern of the pectoralis major (PM) and lateral gastrocnemius (LM) muscles, mRNA expression characterization of IGF-I and MSTN-A and their correlation between 14 days in ovo and 1 week post-hatch in two Chinese local duck breeds. During early development, the growth of duck PM and LM followed an asynchronous pattern. Variations in PM growth rate observed with development followed the relative variations of MSTN and IGF-I expression; however, the same behavior was not observed in LM. Moreover, the profile of IGF-I expression in duck skeletal muscles indicated that genetic selection for high meat-yield poultry has altered the temporal expression of IGF-I and affected cellular characteristics and mass by hatch in a PM-specific manner. The MSTN-A expression profile showed synchronization with the growth of skeletal muscle and peaks of myofiber proliferation. The expression patterns of IGF-I and MSTN suggest that duck pectoralis fibers are prioritized for proliferation in embryogenesis. The IGF-1/MSTN-A mRNA ratios in PM and LM presented very similar trends in the changes of myofiber characteristics, and differences in the IGF-1/MSTN-A mRNA ratio in PM between the two breeds corresponded to the timing of differences in PM mass between the varieties. Our results support the hypothesis that relative levels of IGF-I and MSTN mRNA may participate in ordering muscle growth rates with selected development. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Skeletal muscle mechanics, energetics and plasticity.

    PubMed

    Lieber, Richard L; Roberts, Thomas J; Blemker, Silvia S; Lee, Sabrina S M; Herzog, Walter

    2017-10-23

    The following papers by Richard Lieber (Skeletal Muscle as an Actuator), Thomas Roberts (Elastic Mechanisms and Muscle Function), Silvia Blemker (Skeletal Muscle has a Mind of its Own: a Computational Framework to Model the Complex Process of Muscle Adaptation) and Sabrina Lee (Muscle Properties of Spastic Muscle (Stroke and CP) are summaries of their representative contributions for the session on skeletal muscle mechanics, energetics and plasticity at the 2016 Biomechanics and Neural Control of Movement Conference (BANCOM 2016). Dr. Lieber revisits the topic of sarcomere length as a fundamental property of skeletal muscle contraction. Specifically, problems associated with sarcomere length non-uniformity and the role of sarcomerogenesis in diseases such as cerebral palsy are critically discussed. Dr. Roberts then makes us aware of the (often neglected) role of the passive tissues in muscles and discusses the properties of parallel elasticity and series elasticity, and their role in muscle function. Specifically, he identifies the merits of analyzing muscle deformations in three dimensions (rather than just two), because of the potential decoupling of the parallel elastic element length from the contractile element length, and reviews the associated implications for the architectural gear ratio of skeletal muscle contraction. Dr. Blemker then tackles muscle adaptation using a novel way of looking at adaptive processes and what might drive adaptation. She argues that cells do not have pre-programmed behaviors that are controlled by the nervous system. Rather, the adaptive responses of muscle fibers are determined by sub-cellular signaling pathways that are affected by mechanical and biochemical stimuli; an exciting framework with lots of potential. Finally, Dr. Lee takes on the challenging task of determining human muscle properties in vivo. She identifies the dilemma of how we can demonstrate the effectiveness of a treatment, specifically in cases of muscle

  14. Skeletal Complications in Neurofibromatosis Type 1: The Role of Neurofibromin Haploinsufficiency in Defective Skeletal Remodeling and Bone Healing in NF1

    DTIC Science & Technology

    2007-01-01

    including scoliosis and pseudoarthrosis, which are compounded by osteoporosis and poor bone healing. Corrective orthopaedic intervention often fails...3 - Introduction: A large proportion of patients with Neurofibromatosis Type 1 display skeletal abnormalities including scoliosis and...abnormalities including alterations in bone size and shape, the presence of scoliosis , and a tendency to develop pseudoarthrosis. These skeletal

  15. STIM1 as a key regulator for Ca2+ homeostasis in skeletal-muscle development and function

    PubMed Central

    2011-01-01

    Stromal interaction molecules (STIM) were identified as the endoplasmic-reticulum (ER) Ca2+ sensor controlling store-operated Ca2+ entry (SOCE) and Ca2+-release-activated Ca2+ (CRAC) channels in non-excitable cells. STIM proteins target Orai1-3, tetrameric Ca2+-permeable channels in the plasma membrane. Structure-function analysis revealed the molecular determinants and the key steps in the activation process of Orai by STIM. Recently, STIM1 was found to be expressed at high levels in skeletal muscle controlling muscle function and properties. Novel STIM targets besides Orai channels are emerging. Here, we will focus on the role of STIM1 in skeletal-muscle structure, development and function. The molecular mechanism underpinning skeletal-muscle physiology points toward an essential role for STIM1-controlled SOCE to drive Ca2+/calcineurin/nuclear factor of activated T cells (NFAT)-dependent morphogenetic remodeling programs and to support adequate sarcoplasmic-reticulum (SR) Ca2+-store filling. Also in our hands, STIM1 is transiently up-regulated during the initial phase of in vitro myogenesis of C2C12 cells. The molecular targets of STIM1 in these cells likely involve Orai channels and canonical transient receptor potential (TRPC) channels TRPC1 and TRPC3. The fast kinetics of SOCE activation in skeletal muscle seem to depend on the triad-junction formation, favoring a pre-localization and/or pre-formation of STIM1-protein complexes with the plasma-membrane Ca2+-influx channels. Moreover, Orai1-mediated Ca2+ influx seems to be essential for controlling the resting Ca2+ concentration and for proper SR Ca2+ filling. Hence, Ca2+ influx through STIM1-dependent activation of SOCE from the T-tubule system may recycle extracellular Ca2+ losses during muscle stimulation, thereby maintaining proper filling of the SR Ca2+ stores and muscle function. Importantly, mouse models for dystrophic pathologies, like Duchenne muscular dystrophy, point towards an enhanced Ca2+ influx

  16. Exercise Promotes Healthy Aging of Skeletal Muscle.

    PubMed

    Cartee, Gregory D; Hepple, Russell T; Bamman, Marcas M; Zierath, Juleen R

    2016-06-14

    Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes "healthy aging" by inducing modifications in skeletal muscle. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Influence of nasoalveolar molding on skeletal development in patients with unilateral cleft lip and palate at 5 years of age.

    PubMed

    Akarsu-Guven, Bengisu; Arisan, Arda; Ozgur, Figen; Aksu, Muge

    2018-04-01

    The aim of this retrospective study was to assess the influence of presurgical nasoalveolar molding (NAM) on skeletal development in patients with operated unilateral cleft lip and palate at 5 years of age. Lateral cephalometric radiographs of 26 unilateral cleft lip and palate patients who had undergone presurgical NAM (NAM group) and 20 unilateral cleft lip and palate patients who did not have any presurgical NAM (non-NAM group) were analyzed. The radiographs were digitally traced using Quick Ceph Studio software (version 3.5.1.r (1151); Quick Ceph Systems, San Diego, Calif). Independent samples t tests were performed for statistical analysis. No significant differences were observed in sagittal and vertical skeletal measurements between the NAM and non-NAM groups. NAM resulted in no significant difference in skeletal development in unilateral cleft lip and palate patients compared with those without NAM in early childhood. Copyright © 2018. Published by Elsevier Inc.

  18. skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration.

    PubMed

    Park, Chong Yon; Pierce, Stephanie A; von Drehle, Morgan; Ivey, Kathryn N; Morgan, Jayson A; Blau, Helen M; Srivastava, Deepak

    2010-11-30

    Cardiac and skeletal muscle development and maintenance require complex interactions between DNA-binding proteins and chromatin remodeling factors. We previously reported that Smyd1, a muscle-restricted histone methyltransferase, is essential for cardiogenesis and functions with a network of cardiac regulatory proteins. Here we show that the muscle-specific transcription factor skNAC is the major binding partner for Smyd1 in the developing heart. Targeted deletion of skNAC in mice resulted in partial embryonic lethality by embryonic day 12.5, with ventricular hypoplasia and decreased cardiomyocyte proliferation that were similar but less severe than in Smyd1 mutants. Expression of Irx4, a ventricle-specific transcription factor down-regulated in hearts lacking Smyd1, also depended on the presence of skNAC. Viable skNAC(-/-) adult mice had reduced postnatal skeletal muscle growth and impaired regenerative capacity after cardiotoxin-induced injury. Satellite cells isolated from skNAC(-/-) mice had impaired survival compared with wild-type littermate satellite cells. Our results indicate that skNAC plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration in mice.

  19. Regulatory elements driving the expression of skeletal lineage reporters differ during bone development and adulthood.

    PubMed

    Stiers, Pieter-Jan; van Gastel, Nick; Moermans, Karen; Stockmans, Ingrid; Carmeliet, Geert

    2017-12-01

    To improve bone healing or regeneration more insight in the fate and role of the different skeletal cell types is required. Mouse models for fate mapping and lineage tracing of skeletal cells, using stage-specific promoters, have advanced our understanding of bone development, a process that is largely recapitulated during bone repair. However, validation of these models is often only performed during development, whereas proof of the activity and specificity of the used promoters during the bone regenerative process is limited. Here, we show that the regulatory elements of the 6kb collagen type II promoter are not adequate to drive gene expression during bone repair. Similarly, the 2.3kb promoter of collagen type I lacks activity in adult mice, but the 3.2kb promoter is suitable. Furthermore, Cre-mediated fate mapping allows the visualization of progeny, but this label retention may hinder to distinguish these cells from ones with active expression of the marker at later time points. Together, our results show that the lineage-specific regulatory elements driving gene expression during bone development differ from those required later in life and during bone repair, and justify validation of lineage-specific cell tracing and gene silencing strategies during fracture healing and bone regenerative applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. [Skeletal anchorage in the past, today and tomorrow].

    PubMed

    Melsen, Birte; Dalstra, Michel

    2017-03-01

    Skeletal anchorage was not introduced as an alternative to conventional anchorage modalities. The first skeletal anchorage was a ligature through a hole in the infrazygomatic crest. This was replaced by surgical screws and finally the TADs, which were optimized with respect to the material and morphology, were developed. A bracket-like head allows for the use of the mini-implant as indirect anchorage, but should not be a tool for lost control resulting from badly planned biomechanics or failing compliance. Skeletal anchorage should serve as an adjunct to correct biomechanics, to enable treatments that could not be performed prior to the introduction of skeletal anchorage. The aim of this study was to test the hypothesis that temporary anchorage mini-screws help maintain bone density, height and width of alveolar processes in the extraction sites, and thus prevent the thinning of the alveolar ridge usually observed. In adult patients with degenerated dentitions the application of skeletal anchorage can allow for the displacement of teeth where no anchorage units are present, but also for the redevelopment and maintenance of atrophic alveolar bone. The basis for the optimal use of skeletal anchorage is that the correct line of action for the desired tooth displacement is defined and the necessary force system constructed either with the skeletal anchorage as direct or as indirect anchorage. After a period, during which osseointegrated implants were used as anchorage for tooth movement and bone maintenance, it was accepted that the mini-implants could serve also as anchorage for skeletal displacements avoiding loading of teeth. © EDP Sciences, SFODF, 2017.

  1. Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy.

    PubMed

    André, Laurène M; Ausems, C Rosanne M; Wansink, Derick G; Wieringa, Bé

    2018-01-01

    Myotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative neuromuscular disorders characterized by progressive skeletal muscle weakness, atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are characterized by skeletal muscle dysfunction and also share other clinical features, the diseases differ in the muscle groups that are affected. In DM1, distal muscles are mainly affected, whereas in DM2 problems are mostly found in proximal muscles. In addition, manifestation in DM1 is generally more severe, with possible congenital or childhood-onset of disease and prominent CNS involvement. DM1 and DM2 are caused by expansion of (CTG•CAG)n and (CCTG•CAGG)n repeats in the 3' non-coding region of DMPK and in intron 1 of CNBP , respectively, and in overlapping antisense genes. This critical review will focus on the pleiotropic problems that occur during development, growth, regeneration, and aging of skeletal muscle in patients who inherited these expansions. The current best-accepted idea is that most muscle symptoms can be explained by pathomechanistic effects of repeat expansion on RNA-mediated pathways. However, aberrations in DNA replication and transcription of the DM loci or in protein translation and proteome homeostasis could also affect the control of proliferation and differentiation of muscle progenitor cells or the maintenance and physiological integrity of muscle fibers during a patient's lifetime. Here, we will discuss these molecular and cellular processes and summarize current knowledge about the role of embryonic and adult muscle-resident stem cells in growth, homeostasis, regeneration, and premature aging of healthy and diseased muscle tissue. Of particular interest is that also progenitor cells from extramuscular sources, such as pericytes and mesoangioblasts, can participate in myogenic differentiation. We will examine the potential of all these types of cells in the application of regenerative medicine for

  2. Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy

    PubMed Central

    André, Laurène M.; Ausems, C. Rosanne M.; Wansink, Derick G.; Wieringa, Bé

    2018-01-01

    Myotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative neuromuscular disorders characterized by progressive skeletal muscle weakness, atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are characterized by skeletal muscle dysfunction and also share other clinical features, the diseases differ in the muscle groups that are affected. In DM1, distal muscles are mainly affected, whereas in DM2 problems are mostly found in proximal muscles. In addition, manifestation in DM1 is generally more severe, with possible congenital or childhood-onset of disease and prominent CNS involvement. DM1 and DM2 are caused by expansion of (CTG•CAG)n and (CCTG•CAGG)n repeats in the 3′ non-coding region of DMPK and in intron 1 of CNBP, respectively, and in overlapping antisense genes. This critical review will focus on the pleiotropic problems that occur during development, growth, regeneration, and aging of skeletal muscle in patients who inherited these expansions. The current best-accepted idea is that most muscle symptoms can be explained by pathomechanistic effects of repeat expansion on RNA-mediated pathways. However, aberrations in DNA replication and transcription of the DM loci or in protein translation and proteome homeostasis could also affect the control of proliferation and differentiation of muscle progenitor cells or the maintenance and physiological integrity of muscle fibers during a patient’s lifetime. Here, we will discuss these molecular and cellular processes and summarize current knowledge about the role of embryonic and adult muscle-resident stem cells in growth, homeostasis, regeneration, and premature aging of healthy and diseased muscle tissue. Of particular interest is that also progenitor cells from extramuscular sources, such as pericytes and mesoangioblasts, can participate in myogenic differentiation. We will examine the potential of all these types of cells in the application of regenerative medicine

  3. Akt1 deficiency diminishes skeletal muscle hypertrophy by reducing satellite cell proliferation.

    PubMed

    Moriya, Nobuki; Miyazaki, Mitsunori

    2018-05-01

    Skeletal muscle mass is determined by the net dynamic balance between protein synthesis and degradation. Although the Akt/mechanistic target of rapamycin (mTOR)-dependent pathway plays an important role in promoting protein synthesis and subsequent skeletal muscle hypertrophy, the precise molecular regulation of mTOR activity by the upstream protein kinase Akt is largely unknown. In addition, the activation of satellite cells has been indicated as a key regulator of muscle mass. However, the requirement of satellite cells for load-induced skeletal muscle hypertrophy is still under intense debate. In this study, female germline Akt1 knockout (KO) mice were used to examine whether Akt1 deficiency attenuates load-induced skeletal muscle hypertrophy through suppressing mTOR-dependent signaling and satellite cell proliferation. Akt1 KO mice showed a blunted hypertrophic response of skeletal muscle, with a diminished rate of satellite cell proliferation following mechanical overload. In contrast, Akt1 deficiency did not affect the load-induced activation of mTOR signaling and the subsequent enhanced rate of protein synthesis in skeletal muscle. These observations suggest that the load-induced activation of mTOR signaling occurs independently of Akt1 regulation and that Akt1 plays a critical role in regulating satellite cell proliferation during load-induced muscle hypertrophy.

  4. The effect of caffeine on skeletal muscle anabolic signaling and hypertrophy.

    PubMed

    Moore, Timothy M; Mortensen, Xavier M; Ashby, Conrad K; Harris, Alexander M; Kump, Karson J; Laird, David W; Adams, Aaron J; Bray, Jeremy K; Chen, Ting; Thomson, David M

    2017-06-01

    Caffeine is a widely consumed stimulant with the potential to enhance physical performance through multiple mechanisms. However, recent in vitro findings have suggested that caffeine may block skeletal muscle anabolic signaling through AMP-activated protein kinase (AMPK)-mediated inhibition of mechanistic target of rapamycin (mTOR) signaling pathway. This could negatively affect protein synthesis and the capacity for muscle growth. The primary purpose of this study was to assess the effect of caffeine on in vivo AMPK and mTOR pathway signaling, protein synthesis, and muscle growth. In cultured C2C12 muscle cells, physiological levels of caffeine failed to impact mTOR activation or myoblast proliferation or differentiation. We found that caffeine administration to mice did not significantly enhance the phosphorylation of AMPK or inhibit signaling proteins downstream of mTOR (p70S6k, S6, or 4EBP1) or protein synthesis after a bout of electrically stimulated contractions. Skeletal muscle-specific knockout of LKB1, the primary AMPK activator in skeletal muscle, on the other hand, eliminated AMPK activation by contractions and enhanced S6k, S6, and 4EBP1 activation before and after contractions. In rats, the addition of caffeine did not affect plantaris hypertrophy induced by the tenotomy of the gastrocnemius and soleus muscles. In conclusion, caffeine administration does not impair skeletal muscle load-induced mTOR signaling, protein synthesis, or muscle hypertrophy.

  5. Effect of public symphysiodesis on pelvic development in the skeletally immature greyhound.

    PubMed

    Swainson, S W; Conzemius, M G; Riedesel, E A; Smith, G K; Riley, C B

    2000-01-01

    To evaluate the effect of pubic symphysiodesis (PS) on pelvic development in skeletally immature dogs. Prospective randomized clinical trial. Eight 4 month-old, sexually intact female Greyhounds. Initial PS was performed at 4 months of age using a powered stapling device. Because of failure of the initial surgery, a second PS was performed 1 month later by resecting the pubic symphysis with a rongeur followed by placement of handmade bone staples in four dogs. Sham PS was performed in four control dogs at 4 months of age. Pubic growth rate and pelvic development were evaluated using standard plane radiography and computed tomography. Specific measurements included acetabular ventroversion, Norberg angle, lateral center-edge angle, and pelvic inlet dimensions. Hip distraction indices were determined as well. PS at 4 months of age using a stapling device failed. Pubic symphysiodesis using hand made staples was successful at 5 months of age and did not result in any clinically significant intraoperative or postoperative complications. Pubic symphysiodesis markedly decreased pubic symphysis growth in the treatment group. Hip distraction indices and pelvic inlet circumference, area, and width significantly decreased in treated dogs compared to those in the control group. Acetabular ventroversion was significantly increased in treated dogs compared to those in the control group. PS decreases pelvic canal size, increases acetabular ventroversion, and does not appear to have any clinically significant complications. PS performed in skeletally immature dogs with hip dysplasia may provide an effect similar to a triple pelvic osteotomy and warrants further investigation.

  6. Skeletal Muscle Laminopathies: A Review of Clinical and Molecular Features.

    PubMed

    Maggi, Lorenzo; Carboni, Nicola; Bernasconi, Pia

    2016-08-11

    LMNA-related disorders are caused by mutations in the LMNA gene, which encodes for the nuclear envelope proteins, lamin A and C, via alternative splicing. Laminopathies are associated with a wide range of disease phenotypes, including neuromuscular, cardiac, metabolic disorders and premature aging syndromes. The most frequent diseases associated with mutations in the LMNA gene are characterized by skeletal and cardiac muscle involvement. This review will focus on genetics and clinical features of laminopathies affecting primarily skeletal muscle. Although only symptomatic treatment is available for these patients, many achievements have been made in clarifying the pathogenesis and improving the management of these diseases.

  7. A novel approach for treatment of skeletal Class II malocclusion: Miniplates-based skeletal anchorage.

    PubMed

    Al-Dumaini, Abdullsalam Abdulqawi; Halboub, Esam; Alhammadi, Maged Sultan; Ishaq, Ramy Abdul Rahman; Youssef, Mohamed

    2018-02-01

    The objective of this study was to evaluate the effect of a new approach-bimaxillary miniplates-based skeletal anchorage-in the treatment of skeletal Class II malocclusion compared with untreated subjects. The study (miniplates) group comprised 28 patients (14 boys, 14 girls) with skeletal Class II malocclusion due to mandibular retrusion, with a mean age of 11.83 years. After 0.017 × 0.025-in stainless steel archwires were placed in both arches, 4 miniplates were fixed bilaterally, 2 in the maxillary anterior areas and 2 in the mandibular posterior areas, and used for skeletal treatment with elastics. Twenty-four Class II untreated subjects (11 boys, 13 girls), with a mean age of 11.75 years, were included as controls. Skeletal and dental changes were evaluated using pretreatment and posttreatment or observational lateral cephalometric radiographs. The treatment changes were compared with the growth changes observed in the control group using independent t tests. Compared with the minimal changes induced by growth in the control group, the skeletal changes induced by miniplates were more obvious. The mandibular length increased significantly (3 mm), and the mandible moved forward, with a significant restraint in the sagittal position of the maxilla (P <0.001). The overjet correction (-4.26 mm) was found to be a net result of skeletal changes (A-Y-axis = -1.18 mm and B-Y-axis = 3.83 mm). The mandibular plane was significantly decreased by 2.75° (P <0.001). This new technique, bimaxillary miniplates-based skeletal anchorage, is an effective method for treating patients with skeletal Class II malocclusions through obvious skeletal, but minimal dentoalveolar, changes. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  8. Skeletal development of the glenoid and glenoid-coracoid interface in the pediatric population: MRI features.

    PubMed

    Kothary, Shefali; Rosenberg, Zehava Sadka; Poncinelli, Leonardo L; Kwong, Steven

    2014-09-01

    To assess the MRI appearance of normal skeletal development of the glenoid and glenoid-coracoid interface in the pediatric population. To the best of our knowledge, this has not yet been studied in detail in the literature. An IRB-approved, HIPAA-compliant retrospective review of 105 consecutive shoulder MRI studies in children, ages 2 months to 18 years was performed. The morphology, MR signal, and development of the following were assessed: (1) scapular-coracoid bipolar growth plate, (2) glenoid and glenoid-coracoid interface secondary ossification centers, (3) glenoid advancing osseous surface. The glenoid and glenoid-coracoid interface were identified in infancy as a contiguous, cartilaginous mass. A subcoracoid secondary ossification center in the superior glenoid was identified and fused in all by age 12 and 16, respectively. In ten studies, additional secondary ossification centers were identified in the inferior two-thirds of the glenoid. The initial concavity of the glenoid osseous surface gradually transformed to convexity, matching the convex glenoid articular surface. The glenoid growth plate fused by 16 years of age. Our study, based on MRI, demonstrated a similar pattern of development of the glenoid and glenoid coracoid interface to previously reported anatomic and radiographic studies, except for an earlier development and fusion of the secondary ossification centers of the inferior glenoid. The pattern of skeletal development of the glenoid and glenoid-coracoid interface follows a chronological order, which can serve as a guideline when interpreting MRI studies in children.

  9. The role of the renin-angiotensin system in the development of insulin resistance in skeletal muscle.

    PubMed

    Henriksen, Erik J; Prasannarong, Mujalin

    2013-09-25

    The canonical renin-angiotensin system (RAS) involves the initial action of renin to cleave angiotensinogen to angiotensin I (ANG I), which is then converted to ANG II by the angiotensin converting enzyme (ACE). ANG II plays a critical role in numerous physiological functions, and RAS overactivity underlies many conditions of cardiovascular dysregulation. In addition, ANG II, by acting on both endothelial and myocellular AT1 receptors, can induce insulin resistance by increasing cellular oxidative stress, leading to impaired insulin signaling and insulin-stimulated glucose transport activity. This insulin resistance associated with RAS overactivity, when coupled with progressive ß-cell dysfunction, eventually leads to the development of type 2 diabetes. Interventions that target RAS overactivity, including ACE inhibitors, ANG II receptor blockers, and, most recently, renin inhibitors, are effective both in reducing hypertension and in improving whole-body and skeletal muscle insulin action, due at least in part to enhanced Akt-dependent insulin signaling and insulin-dependent glucose transport activity. ANG-(1-7), which is produced from ANG II by the action of ACE2 and acts via Mas receptors, can counterbalance the deleterious actions of the ACE/ANG II/AT1 receptor axis on the insulin-dependent glucose transport system in skeletal muscle. This beneficial effect of the ACE2/ANG-(1-7)/Mas receptor axis appears to depend on the activation of Akt. Collectively, these findings underscore the importance of RAS overactivity in the multifactorial etiology of insulin resistance in skeletal muscle, and provide support for interventions that target the RAS to ameliorate both cardiovascular dysfunctions and insulin resistance in skeletal muscle tissue. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Protein kinase N2 regulates AMP kinase signaling and insulin responsiveness of glucose metabolism in skeletal muscle.

    PubMed

    Ruby, Maxwell A; Riedl, Isabelle; Massart, Julie; Åhlin, Marcus; Zierath, Juleen R

    2017-10-01

    Insulin resistance is central to the development of type 2 diabetes and related metabolic disorders. Because skeletal muscle is responsible for the majority of whole body insulin-stimulated glucose uptake, regulation of glucose metabolism in this tissue is of particular importance. Although Rho GTPases and many of their affecters influence skeletal muscle metabolism, there is a paucity of information on the protein kinase N (PKN) family of serine/threonine protein kinases. We investigated the impact of PKN2 on insulin signaling and glucose metabolism in primary human skeletal muscle cells in vitro and mouse tibialis anterior muscle in vivo. PKN2 knockdown in vitro decreased insulin-stimulated glucose uptake, incorporation into glycogen, and oxidation. PKN2 siRNA increased 5'-adenosine monophosphate-activated protein kinase (AMPK) signaling while stimulating fatty acid oxidation and incorporation into triglycerides and decreasing protein synthesis. At the transcriptional level, PKN2 knockdown increased expression of PGC-1α and SREBP-1c and their target genes. In mature skeletal muscle, in vivo PKN2 knockdown decreased glucose uptake and increased AMPK phosphorylation. Thus, PKN2 alters key signaling pathways and transcriptional networks to regulate glucose and lipid metabolism. Identification of PKN2 as a novel regulator of insulin and AMPK signaling may provide an avenue for manipulation of skeletal muscle metabolism. Copyright © 2017 the American Physiological Society.

  11. Skeletal morphology and development of the olfactory region of Spea (Anura: Scaphiopodidae)

    PubMed Central

    Pugener, L A; Maglia, A M

    2007-01-01

    The nasal capsules of anurans are formed by an intricate set of sac-like cavities that house the olfactory organ and constitute the beginning of the respiratory system. In tadpoles, nasal capsules do not have a respiratory function, but each is composed of a single soft tissue cavity lined with olfactory epithelium. Our study has revealed that in Spea the nasal cartilages and septomaxillae are de novo adult structures that form dorsal to the larval skeleton of the ethmoid region. The only element of the adult nasal capsule that is partially derived from the larval skeleton is the solum nasi. Development of the nasal skeleton begins at about Gosner Stage 31, with chondrification of the septum nasi and lamina orbitonasalis. The alary cartilage and superior prenasal cartilage are the first of the anterior nasal cartilages to chondrify at Gosner Stage 37. By Gosner Stages 40/41, the ethmoid region is composed of the larval structures ventrally and the adult structures dorsally. By Stage 44, the larval structures have eroded. The adult nasal capsule is characterized by: (1) a septum nasi that projects ventrally beyond the plane of the nasal floor; (2) a paranasal commissure that forms the ventral margin of the fenestra nasolateralis; and (3) a large skeletal support for the eminentia olfactoria formed by the nasal floor and vomer. The timing of chondrification of the anterior nasal cartilages and the development of the postnasal wall, inferior prenasal cartilage, fenestra nasolateralis, and paranasal commissure are discussed and compared with those of other anuran species. This study also includes a discussion of the morphology of the skeletal support for the eminentia olfactoria, a structure best developed in distinctly ground-dwelling frogs such as spadefoot toads. Finally, we propose a more precise restriction of the terminology that is used to designate the posterior structures of the olfactory region of anurans. PMID:18045351

  12. Growth hormone mediates pubertal skeletal development independent of hepatic IGF-1 production.

    PubMed

    Courtland, Hayden-William; Sun, Hui; Beth-On, Mordechay; Wu, Yingjie; Elis, Sebastien; Rosen, Clifford J; Yakar, Shoshana

    2011-04-01

    Deficiencies in either growth hormone (GH) or insulin-like growth factor 1 (IGF-1) are associated with reductions in bone size during growth in humans and animal models. Liver-specific IGF-1-deficient (LID) mice, which have 75% reductions in serum IGF-1, were created previously to separate the effects of endocrine (serum) IGF-1 from autocrine/paracrine IGF-1. However, LID mice also have two- to threefold increases in GH, and this may contribute to the observed pubertal skeletal phenotype. To clarify the role of GH in skeletal development under conditions of significantly reduced serum IGF-1 levels (but normal tissue IGF-1 levels), we studied the skeletal response of male LID and control mice to GH inhibition by pegvisomant from 4 to 8 weeks of age. Treatment of LID mice with pegvisomant resulted in significant reductions in body weight, femur length (Le), and femur total area (Tt.Ar), as well as further reductions in serum IGF-1 levels by 8 weeks of age, compared with the mean values of vehicle-treated LID mice. Reductions in both Tt.Ar and Le were proportional after treatment with pegvisomant. On the other hand, the relative amount of cortical tissue formed (RCA) in LID mice treated with pegvisomant was significantly less than that in both vehicle-treated LID and control mice, indicating that antagonizing GH action, either directly (through GH receptor signaling inhibition) or indirectly (through further reductions in serum/tissue IGF-1 levels), results in disproportionate reductions in the amount of cortical bone formed. This resulted in bones with significantly reduced mechanical properties (femoral whole-bone stiffness and work to failure were markedly decreased), suggesting that compensatory increases of GH in states of IGF-1 deficiency (LID mice) act to protect against a severe inhibition of bone modeling during growth, which otherwise would result in bones that are too weak for normal and/or extreme loading conditions. Copyright © 2011 American Society for

  13. Tuberculous Dactylitis: An Uncommon Presentation of Skeletal Tuberculosis.

    PubMed

    Abebe, Workeabeba; Abebe, Betel; Molla, Kebede; Alemayehu, Tinsae

    2016-05-01

    Skeletal involvement accounts 1-5% of all cases of Tuberculosis. The vertebrae are more commonly affected. The bones of the hands are more affected than the bones of the feet. The term "spina ventosa" has been used to describe this disorder because of its radiographic features of cystic expansion of the involved short tubular bones. Tuberculous dactylitis mainly occurs through lympho-hematogenous spread. The lung is the primary focus in 75% of cases. A 4 years old female child developed a painless swelling on her left index finger two months prior to her presentation. Following an unsuccessful treatment as a case of osteomyelitis with antibiotics, imaging showed an expansile lytic lesion with sclerosis, and fine needle aspiration confirmed tuberculous dactylitis. The child was initiated on anti-tubercular treatment with subsequent marked clinical and radiologic improvement. Presence of longstanding finger swelling and pain should alert a clinician to consider active disseminated tuberculosis. Furthermore, proper interpretation of imaging and use of fine needle aspiration has been highlighted.

  14. Conditional inactivation of Has2 reveals a crucial role for hyaluronan in skeletal growth, patterning, chondrocyte maturation and joint formation in the developing limb

    PubMed Central

    Matsumoto, Kazu; Li, Yingcui; Jakuba, Caroline; Sugiyama, Yoshinori; Sayo, Tetsuya; Okuno, Misako; Dealy, Caroline N.; Toole, Bryan P.; Takeda, Junji; Yamaguchi, Yu; Kosher, Robert A.

    2009-01-01

    Summary The glycosaminoglycan hyaluronan (HA) is a structural component of extracellular matrices and also interacts with cell surface receptors to directly influence cell behavior. To explore functions of HA in limb skeletal development, we conditionally inactivated the gene for HA synthase 2, Has2, in limb bud mesoderm using mice that harbor a floxed allele of Has2 and mice carrying a limb mesoderm-specific Prx1-Cre transgene. The skeletal elements of Has2-deficient limbs are severely shortened, indicating that HA is essential for normal longitudinal growth of all limb skeletal elements. Proximal phalanges are duplicated in Has2 mutant limbs indicating an involvement of HA in patterning specific portions of the digits. The growth plates of Has2-deficient skeletal elements are severely abnormal and disorganized, with a decrease in the deposition of aggrecan in the matrix and a disruption in normal columnar cellular relationships. Furthermore, there is a striking reduction in the number of hypertrophic chondrocytes and in the expression domains of markers of hypertrophic differentiation in the mutant growth plates, indicating that HA is necessary for the normal progression of chondrocyte maturation. In addition, secondary ossification centers do not form in the central regions of Has2 mutant growth plates owing to a failure of hypertrophic differentiation. In addition to skeletal defects, the formation of synovial joint cavities is defective in Has2-deficient limbs. Taken together, our results demonstrate that HA has a crucial role in skeletal growth, patterning, chondrocyte maturation and synovial joint formation in the developing limb. PMID:19633173

  15. Conditional inactivation of Has2 reveals a crucial role for hyaluronan in skeletal growth, patterning, chondrocyte maturation and joint formation in the developing limb.

    PubMed

    Matsumoto, Kazu; Li, Yingcui; Jakuba, Caroline; Sugiyama, Yoshinori; Sayo, Tetsuya; Okuno, Misako; Dealy, Caroline N; Toole, Bryan P; Takeda, Junji; Yamaguchi, Yu; Kosher, Robert A

    2009-08-01

    The glycosaminoglycan hyaluronan (HA) is a structural component of extracellular matrices and also interacts with cell surface receptors to directly influence cell behavior. To explore functions of HA in limb skeletal development, we conditionally inactivated the gene for HA synthase 2, Has2, in limb bud mesoderm using mice that harbor a floxed allele of Has2 and mice carrying a limb mesoderm-specific Prx1-Cre transgene. The skeletal elements of Has2-deficient limbs are severely shortened, indicating that HA is essential for normal longitudinal growth of all limb skeletal elements. Proximal phalanges are duplicated in Has2 mutant limbs indicating an involvement of HA in patterning specific portions of the digits. The growth plates of Has2-deficient skeletal elements are severely abnormal and disorganized, with a decrease in the deposition of aggrecan in the matrix and a disruption in normal columnar cellular relationships. Furthermore, there is a striking reduction in the number of hypertrophic chondrocytes and in the expression domains of markers of hypertrophic differentiation in the mutant growth plates, indicating that HA is necessary for the normal progression of chondrocyte maturation. In addition, secondary ossification centers do not form in the central regions of Has2 mutant growth plates owing to a failure of hypertrophic differentiation. In addition to skeletal defects, the formation of synovial joint cavities is defective in Has2-deficient limbs. Taken together, our results demonstrate that HA has a crucial role in skeletal growth, patterning, chondrocyte maturation and synovial joint formation in the developing limb.

  16. Multiscale skeletal representation of images via Voronoi diagrams

    NASA Astrophysics Data System (ADS)

    Marston, R. E.; Shih, Jian C.

    1995-08-01

    Polygonal approximations to skeletal or stroke-based representations of 2D objects may consume less storage and be sufficient to describe their shape for many applications. Multi- scale descriptions of object outlines are well established but corresponding methods for skeletal descriptions have been slower to develop. In this paper we offer a method of generating scale-based skeletal representation via the Voronoi diagram. The method has the advantages of less time complexity, a closer relationship between the skeletons at each scale and better control over simplification of the skeleton at lower scales. This is because the algorithm starts by generating the skeleton at the coarsest scale first, then it produces each finer scale, in an iterative manner, directly from the level below. The skeletal approximations produced by the algorithm also benefit from a strong relationship with the object outline, due to the structure of the Voronoi diagram.

  17. Advanced skeletal maturity in children and adolescents with myelomeningocele.

    PubMed

    Roiz, Ronald; Mueske, Nicole M; Van Speybroeck, Alexander; Ryan, Deirdre D; Gilsanz, Vicente; Wren, Tishya A L

    2017-12-11

    Atypical skeletal development is common in youth with myelomeningocele (MM), though the underlying reasons have not been fully elucidated. This study assessed skeletal maturity in children and adolescents with MM and examined the effects of sex, age, sexual development, ethnicity, anthropometrics and shunt status. Forty-three males and 35 females with MM, 6-16 years old, underwent hand radiographs for bone age determination. The difference between bone age and chronological age was evaluated using Wilcoxon sign rank tests. Relationships between age discrepancy (skeletal-chronological) and participant characteristics were assessed using multiple linear regression with forward selection. Overall, forty percent (31/78) of MM participants had an advanced bone age of 1 year or greater (median: 2.5 years), while 47% (37/78) were within 1 year above or below their chronological age (-0.001 years) and 13% (10/78) were delayed by more than 1 year (-1.4 years). Bone age was advanced compared to chronologic age in both males and females (p⩽ 0.024). Advanced bone age was observed in early to late puberty and after maturation (p⩽ 0.07), as well as in Hispanic participants (p= 0.003) and in those with a shunt (p= 0.0004). Advanced bone age was positively correlated with height, weight and body mass index (BMI) percentiles (p= 0.004). In multiple linear regression analysis, advanced bone age was most strongly associated with higher Tanner stage of sexual development, and higher weight, height or BMI percentile. Advanced skeletal maturity is common in children/adolescents with MM over 8 years of age who have reached puberty (65%), particularly those who are overweight (80%). Hormonal effects associated with adiposity and sexual maturity likely influence skeletal maturation. Clinicians may use Tanner stage and weight or BMI to gain insight into skeletal maturity.

  18. In vitro Differentiation of Functional Human Skeletal Myotubes in a Defined System

    PubMed Central

    Guo, Xiufang; Greene, Keshel; Akanda, Nesar; Smith, Alec; Stancescu, Maria; Lambert, Stephen; Vandenburgh, Herman; Hickman, James

    2013-01-01

    In vitro human skeletal muscle systems are valuable tools for the study of human muscular development, disease and treatment. However, published in vitro human muscle systems have so far only demonstrated limited differentiation capacities. Advanced differentiation features such as cross-striations and contractility have only been observed in co-cultures with motoneurons. Furthermore, it is commonly regarded that cultured human myotubes do not spontaneously contract, and any contraction has been considered to originate from innervation. This study developed a serum-free culture system in which human skeletal myotubes demonstrated advanced differentiation. Characterization by immunocytochemistry, electrophysiology and analysis of contractile function revealed these major features: A) well defined sarcomeric development, as demonstrated by the presence of cross-striations. B) finely developed excitation-contraction coupling apparatus characterized by the close apposition of dihydropyridine receptors on T-tubules and Ryanodine receptors on sarcoplasmic reticulum membranes. C) spontaneous and electrically controlled contractility. This report not only demonstrates an improved level of differentiation of cultured human skeletal myotubes, but also provides the first published evidence that such myotubes are capable of spontaneous contraction. Use of this functional in vitro human skeletal muscle system would advance studies concerning human skeletal muscle development and physiology, as well as muscle-related disease and therapy. PMID:24516722

  19. In vitro Differentiation of Functional Human Skeletal Myotubes in a Defined System.

    PubMed

    Guo, Xiufang; Greene, Keshel; Akanda, Nesar; Smith, Alec; Stancescu, Maria; Lambert, Stephen; Vandenburgh, Herman; Hickman, James

    2014-01-01

    In vitro human skeletal muscle systems are valuable tools for the study of human muscular development, disease and treatment. However, published in vitro human muscle systems have so far only demonstrated limited differentiation capacities. Advanced differentiation features such as cross-striations and contractility have only been observed in co-cultures with motoneurons. Furthermore, it is commonly regarded that cultured human myotubes do not spontaneously contract, and any contraction has been considered to originate from innervation. This study developed a serum-free culture system in which human skeletal myotubes demonstrated advanced differentiation. Characterization by immunocytochemistry, electrophysiology and analysis of contractile function revealed these major features: A) well defined sarcomeric development, as demonstrated by the presence of cross-striations. B) finely developed excitation-contraction coupling apparatus characterized by the close apposition of dihydropyridine receptors on T-tubules and Ryanodine receptors on sarcoplasmic reticulum membranes. C) spontaneous and electrically controlled contractility. This report not only demonstrates an improved level of differentiation of cultured human skeletal myotubes, but also provides the first published evidence that such myotubes are capable of spontaneous contraction. Use of this functional in vitro human skeletal muscle system would advance studies concerning human skeletal muscle development and physiology, as well as muscle-related disease and therapy.

  20. The role of mitochondrial DNA damage at skeletal muscle oxidative stress on the development of type 2 diabetes.

    PubMed

    Dos Santos, Julia Matzenbacher; de Oliveira, Denise Silva; Moreli, Marcos Lazaro; Benite-Ribeiro, Sandra Aparecida

    2018-04-20

    Reduced cellular response to insulin in skeletal muscle is one of the major components of the development of type 2 diabetes (T2D). Mitochondrial dysfunction involves in the accumulation of toxic reactive oxygen species (ROS) that leads to insulin resistance. The aim of this study was to verify the involvement of mitochondrial DNA damage at ROS generation in skeletal muscle during development of T2D. Wistar rats were fed a diet containing 60% fat over 8 weeks and at day 14 a single injection of STZ (25 mg/kg) was administered (T2D-induced). Control rats received standard food and an injection of citrate buffer. Blood and soleus muscle were collected. Abdominal fat was quantified as well as glucose, triglyceride, LDL, HDL, and total cholesterol in plasma and mtDNA copy number, cytochrome b (cytb) mRNA, 8-hydroxyguanosine, and 8-isoprostane (a marker of ROS) in soleus muscle. T2D-induced animal presented similar characteristics to humans that develop T2D such as changes in blood glucose, abdominal fat, LDL, HDL and cholesterol total. In soleus muscle 8-isoprostane, mtDNA copy number and 8-hydroxyguanosine were increased, while cytb mRNA was decreased in T2D. Our results suggest that in the development of T2D, when risks factors of T2D are present, intracellular oxidative stress increases in skeletal muscle and is associated with a decrease in cytb transcription. To overcome this process mtDNA increased but due to the proximity of ROS generation, mtDNA remains damaged by oxidation leading to an increase in ROS in a vicious cycle accounting to the development of insulin resistance and further T2D.

  1. Growth Factors and Tension-Induced Skeletal Muscle Growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  2. Skeletal Muscle Laminopathies: A Review of Clinical and Molecular Features

    PubMed Central

    Maggi, Lorenzo; Carboni, Nicola; Bernasconi, Pia

    2016-01-01

    LMNA-related disorders are caused by mutations in the LMNA gene, which encodes for the nuclear envelope proteins, lamin A and C, via alternative splicing. Laminopathies are associated with a wide range of disease phenotypes, including neuromuscular, cardiac, metabolic disorders and premature aging syndromes. The most frequent diseases associated with mutations in the LMNA gene are characterized by skeletal and cardiac muscle involvement. This review will focus on genetics and clinical features of laminopathies affecting primarily skeletal muscle. Although only symptomatic treatment is available for these patients, many achievements have been made in clarifying the pathogenesis and improving the management of these diseases. PMID:27529282

  3. Study of the relationship between the lifestyle of residents residing in fluorosis endemic areas and adult skeletal fluorosis.

    PubMed

    Liu, GuoJie; Ye, QingFang; Chen, Wei; Zhao, ZhenJuan; Li, Ling; Lin, Ping

    2015-07-01

    The relationship between fluorosis and the lifestyle of adult residents of areas in which fluorosis is endemic was evaluated. A cross-sectional and case-control analysis was performed to study 289 villagers living in fluorosis endemic areas who drank the local water. Subjects were divided into skeletal fluorosis and non-skeletal fluorosis groups according to whether they were afflicted with skeletal fluorosis. A semi-quantitative food frequency questionnaire, homemade lifestyle questionnaires, and general characteristics were analyzed. The factors that affected the occurrence of skeletal fluorosis were determined by generalized estimating equations. Our results showed that protective factors against skeletal fluorosis included drinking boiled water, storing water in a ceramic tank, and ingesting fruits, vitamin A, thiamine, and folic acid. Risk factors for skeletal fluorosis were overweight status and obesity, drinking tea, drinking water without storage, and ingestion of oils, fats, and phosphorus. Our results demonstrate that skeletal fluorosis has a close relationship with lifestyle. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Induction of functional tissue-engineered skeletal muscle constructs by defined electrical stimulation.

    PubMed

    Ito, Akira; Yamamoto, Yasunori; Sato, Masanori; Ikeda, Kazushi; Yamamoto, Masahiro; Fujita, Hideaki; Nagamori, Eiji; Kawabe, Yoshinori; Kamihira, Masamichi

    2014-04-24

    Electrical impulses are necessary for proper in vivo skeletal muscle development. To fabricate functional skeletal muscle tissues in vitro, recapitulation of the in vivo niche, including physical stimuli, is crucial. Here, we report a technique to engineer skeletal muscle tissues in vitro by electrical pulse stimulation (EPS). Electrically excitable tissue-engineered skeletal muscle constructs were stimulated with continuous electrical pulses of 0.3 V/mm amplitude, 4 ms width, and 1 Hz frequency, resulting in a 4.5-fold increase in force at day 14. In myogenic differentiation culture, the percentage of peak twitch force (%Pt) was determined as the load on the tissue constructs during the artificial exercise induced by continuous EPS. We optimized the stimulation protocol, wherein the tissues were first subjected to 24.5%Pt, which was increased to 50-60%Pt as the tissues developed. This technique may be a useful approach to fabricate tissue-engineered functional skeletal muscle constructs.

  5. Secretome profiling of primary human skeletal muscle cells.

    PubMed

    Hartwig, Sonja; Raschke, Silja; Knebel, Birgit; Scheler, Mika; Irmler, Martin; Passlack, Waltraud; Muller, Stefan; Hanisch, Franz-Georg; Franz, Thomas; Li, Xinping; Dicken, Hans-Dieter; Eckardt, Kristin; Beckers, Johannes; de Angelis, Martin Hrabe; Weigert, Cora; Häring, Hans-Ulrich; Al-Hasani, Hadi; Ouwens, D Margriet; Eckel, Jürgen; Kotzka, Jorg; Lehr, Stefan

    2014-05-01

    The skeletal muscle is a metabolically active tissue that secretes various proteins. These so-called myokines have been proposed to affect muscle physiology and to exert systemic effects on other tissues and organs. Yet, changes in the secretory profile may participate in the pathophysiology of metabolic diseases. The present study aimed at characterizing the secretome of differentiated primary human skeletal muscle cells (hSkMC) derived from healthy, adult donors combining three different mass spectrometry based non-targeted approaches as well as one antibody based method. This led to the identification of 548 non-redundant proteins in conditioned media from hSkmc. For 501 proteins, significant mRNA expression could be demonstrated. Applying stringent consecutive filtering using SignalP, SecretomeP and ER_retention signal databases, 305 proteins were assigned as potential myokines of which 12 proteins containing a secretory signal peptide were not previously described. This comprehensive profiling study of the human skeletal muscle secretome expands our knowledge of the composition of the human myokinome and may contribute to our understanding of the role of myokines in multiple biological processes. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge. © 2013.

  6. Genetic engineering for skeletal regenerative medicine.

    PubMed

    Gersbach, Charles A; Phillips, Jennifer E; García, Andrés J

    2007-01-01

    The clinical challenges of skeletal regenerative medicine have motivated significant advances in cellular and tissue engineering in recent years. In particular, advances in molecular biology have provided the tools necessary for the design of gene-based strategies for skeletal tissue repair. Consequently, genetic engineering has emerged as a promising method to address the need for sustained and robust cellular differentiation and extracellular matrix production. As a result, gene therapy has been established as a conventional approach to enhance cellular activities for skeletal tissue repair. Recent literature clearly demonstrates that genetic engineering is a principal factor in constructing effective methods for tissue engineering approaches to bone, cartilage, and connective tissue regeneration. This review highlights this literature, including advances in the development of efficacious gene carriers, novel cell sources, successful delivery strategies, and optimal target genes. The current status of the field and the challenges impeding the clinical realization of these approaches are also discussed.

  7. Cutaneous-Skeletal Hypophosphatemia Syndrome is a Multilineage Somatic Mosaic RASopathy

    PubMed Central

    Lim, Young H.; Ovejero, Diana; Derrick, Kristina M.; Collins, Michael T.; Choate, Keith A.

    2016-01-01

    Background We recently demonstrated multilineage somatic mosaicism in cutaneous-skeletal hypophosphatemia syndrome (CSHS), which features epidermal or melanocytic nevi, elevated fibroblast growth factor-23 (FGF23) and hypophosphatemia, finding identical RAS mutations in affected skin and bone. Objective 1) To provide an updated overview of CSHS; 2) To review its pathobiology; 3) To present a new CSHS patient; and 4) To discuss treatment modalities. Methods We searched PubMed for “nevus AND rickets,” and “nevus AND hypophosphatemia,” identifying cases of nevi with hypophosphatemic rickets or elevated serum FGF23. For our additional CSHS patient, we performed histopathologic and radiographic surveys of skin and skeletal lesions, respectively. Sequencing was performed for HRAS, KRAS, and NRAS to determine causative mutations. Results Our new case harbored somatic activating HRAS p.G13R mutation in affected tissue, consistent with previous findings. While the mechanism of FGF23 dysregulation is unknown in CSHS, interaction between FGF and MAPK pathways may provide insight into pathobiology. Anti-FGF23 antibody KRN23 may be useful in managing CSHS. Limitations Multilineage RAS mutation in CSHS was recently identified; further studies on mechanism are unavailable. Conclusion Patients with nevi in association with skeletal disease should be evaluated for serum phosphate and FGF23. Further studies investigating the role of RAS in FGF23 regulation are needed. PMID:27444071

  8. Knockdown of desmin in zebrafish larvae affects interfilament spacing and mechanical properties of skeletal muscle.

    PubMed

    Li, Mei; Andersson-Lendahl, Monika; Sejersen, Thomas; Arner, Anders

    2013-03-01

    Skeletal muscle was examined in zebrafish larvae in order to address questions related to the function of the intermediate filament protein desmin and its role in the pathogenesis of human desminopathy. A novel approach including mechanical and structural studies of 4-6-d-old larvae was applied. Morpholino antisense oligonucleotides were used to knock down desmin. Expression was assessed using messenger RNA and protein analyses. Histology and synchrotron light-based small angle x-ray diffraction were applied. Functional properties were analyzed with in vivo studies of swimming behavior and with in vitro mechanical examinations of muscle. The two desmin genes normally expressed in zebrafish could be knocked down by ~50%. This resulted in a phenotype with disorganized muscles with altered attachments to the myosepta. The knockdown larvae were smaller and had diminished swimming activity. Active tension was lowered and muscles were less vulnerable to acute stretch-induced injury. X-ray diffraction revealed wider interfilament spacing. In conclusion, desmin intermediate filaments are required for normal active force generation and affect vulnerability during eccentric work. This is related to the role of desmin in anchoring sarcomeres for optimal force transmission. The results also show that a partial lack of desmin, without protein aggregates, is sufficient to cause muscle pathology resembling that in human desminopathy.

  9. Skeletal Mechanism Generation of Surrogate Jet Fuels for Aeropropulsion Modeling

    NASA Astrophysics Data System (ADS)

    Sung, Chih-Jen; Niemeyer, Kyle E.

    2010-05-01

    A novel implementation for the skeletal reduction of large detailed reaction mechanisms using the directed relation graph with error propagation and sensitivity analysis (DRGEPSA) is developed and presented with skeletal reductions of two important hydrocarbon components, n-heptane and n-decane, relevant to surrogate jet fuel development. DRGEPSA integrates two previously developed methods, directed relation graph-aided sensitivity analysis (DRGASA) and directed relation graph with error propagation (DRGEP), by first applying DRGEP to efficiently remove many unimportant species prior to sensitivity analysis to further remove unimportant species, producing an optimally small skeletal mechanism for a given error limit. It is illustrated that the combination of the DRGEP and DRGASA methods allows the DRGEPSA approach to overcome the weaknesses of each previous method, specifically that DRGEP cannot identify all unimportant species and that DRGASA shields unimportant species from removal.

  10. Gene expression during skeletal development in three osteopetrotic rat mutations. Evidence for osteoblast abnormalities.

    PubMed

    Shalhoub, V; Jackson, M E; Lian, J B; Stein, G S; Marks, S C

    1991-05-25

    Osteopetrosis is a group of metabolic bone diseases characterized by reductions in osteoclast development and/or function. These aspects of osteoclast biology are known to be influenced by osteoblasts and their products. To ascertain whether osteoblast dysfunction contributes to aberrations in the structural and functional properties of osteoclasts in osteopetrosis, we systematically examined gene expression as reflected by mRNA levels for a series of cell growth- and tissue-related genes associated with the osteoblast phenotype during skeletal development in normal and mutant rats of three different osteopetrotic stocks. We show that the methods used permit the reproducible isolation of undegraded total cellular RNA from bone and that mRNA levels can be reliably quantitated in these preparations. Each osteopetrotic mutation exhibits a distinct aberrant pattern of osteoblast gene expression that may be correlated with and explain some abnormalities in extracellular matrix composition, mineralization, osteoclast development, and effects of elevated serum levels of 1 alpha,25-dihydroxyvitamin D3, depending upon the mutation. Normal rats show minor variations in gene expression that reflect the genetic background (stock). This, the first comprehensive molecular analysis of osteoblast gene expression in osteopetrosis, suggests that some osteopetroses, particularly in the toothless rat, are associated with and potentially related to mechanisms associated with aberrations in osteoblast function. More generally, the present studies demonstrate alterations in gene expression as reflected by mRNA levels that are associated with functional properties of the osteoblast, particularly those contributing to the recruitment and/or differentiation of osteoclasts, thereby influencing skeletal modeling.

  11. Skeletal muscle atrophy in bioengineered skeletal muscle: a new model system.

    PubMed

    Lee, Peter H U; Vandenburgh, Herman H

    2013-10-01

    Skeletal muscle atrophy has been well characterized in various animal models, and while certain pathways that lead to disuse atrophy and its associated functional deficits have been well studied, available drugs to counteract these deficiencies are limited. An ex vivo tissue-engineered skeletal muscle offers a unique opportunity to study skeletal muscle physiology in a controlled in vitro setting. Primary mouse myoblasts isolated from adult muscle were tissue engineered into bioartificial muscles (BAMs) containing hundreds of aligned postmitotic muscle fibers expressing sarcomeric proteins. When electrically stimulated, BAMs generated measureable active forces within 2-3 days of formation. The maximum isometric tetanic force (Po) increased for ∼3 weeks to 2587±502 μN/BAM and was maintained at this level for greater than 80 days. When BAMs were reduced in length by 25% to 50%, muscle atrophy occurred in as little as 6 days. Length reduction resulted in significant decreases in Po (50.4%), mean myofiber cross-sectional area (21.7%), total protein synthesis rate (22.0%), and noncollagenous protein content (6.9%). No significant changes occurred in either the total metabolic activity or protein degradation rates. This study is the first in vitro demonstration that length reduction alone can induce skeletal muscle atrophy, and establishes a novel in vitro model for the study of skeletal muscle atrophy.

  12. Cannabinoid signalling inhibits sarcoplasmic Ca2+ release and regulates excitation–contraction coupling in mammalian skeletal muscle

    PubMed Central

    Oláh, Tamás; Bodnár, Dóra; Tóth, Adrienn; Vincze, János; Fodor, János; Reischl, Barbara; Kovács, Adrienn; Ruzsnavszky, Olga; Dienes, Beatrix; Szentesi, Péter; Friedrich, Oliver

    2016-01-01

    Key points Marijuana was found to cause muscle weakness, although the exact regulatory role of its receptors (CB1 cannabinoid receptor; CB1R) in the excitation–contraction coupling (ECC) of mammalian skeletal muscle remains unknown.We found that CB1R activation or its knockout did not affect muscle force directly, whereas its activation decreased the Ca2+‐sensitivity of the contractile apparatus and made the muscle fibres more prone to fatigue.We demonstrate that CB1Rs are not connected to the inositol 1,4,5‐trisphosphate pathway either in myotubes or in adult muscle fibres.By contrast, CB1Rs constitutively inhibit sarcoplasmic Ca2+ release and sarcoplasmic reticulum Ca2+ ATPase during ECC in a Gi/o protein‐mediated way in adult skeletal muscle fibres but not in myotubes.These results help with our understanding of the physiological effects and pathological consequences of CB1R activation in skeletal muscle and may be useful in the development of new cannabinoid drugs. Abstract Marijuana was found to cause muscle weakness, although it is unknown whether it affects the muscles directly or modulates only the motor control of the central nervous system. Although the presence of CB1 cannabinoid receptors (CB1R), which are responsible for the psychoactive effects of the drug in the brain, have recently been demonstrated in skeletal muscle, it is unclear how CB1R‐mediated signalling affects the contraction and Ca²⁺ homeostasis of mammalian skeletal muscle. In the present study, we demonstrate that in vitro CB1R activation increased muscle fatigability and decreased the Ca2+‐sensitivity of the contractile apparatus, whereas it did not alter the amplitude of single twitch contractions. In myotubes, CB1R agonists neither evoked, nor influenced inositol 1,4,5‐trisphosphate (IP3)‐mediated Ca2+ transients, nor did they alter excitation–contraction coupling. By contrast, in isolated muscle fibres of wild‐type mice, although CB1R agonists did not evoke IP3

  13. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.

    1987-01-01

    Muscle tissue culture techniques were developed to grow skeletal myofibers which differentiate into more adult-like myofibers. Mechanical simulation studies of these muscle cells in a newly developed mechanical cell simulator can now be performed to study growth processes in skeletal muscle. Conditions in the mechanical cell simulator were defined where mechanical activity can either prevent muscle wasting or stimulate muscle growth. The role of endogenous and exogenous growth factors in tension-induced muscle growth is being investigated under the defined conditions of tissue culture.

  14. Stem Cells in Skeletal Tissue Engineering: Technologies and Models

    PubMed Central

    Langhans, Mark T.; Yu, Shuting; Tuan, Rocky S.

    2017-01-01

    This review surveys the use of pluripotent and multipotent stem cells in skeletal tissue engineering. Specific emphasis is focused on evaluating the function and activities of these cells in the context of development in vivo, and how technologies and methods of stem cell-based tissue engineering for stem cells must draw inspiration from developmental biology. Information on the embryonic origin and in vivo differentiation of skeletal tissues is first reviewed, to shed light on the persistence and activities of adult stem cells that remain in skeletal tissues after embryogenesis. Next, the development and differentiation of pluripotent stem cells is discussed, and some of their advantages and disadvantages in the context of tissue engineering is presented. The final section highlights current use of multipotent adult mesenchymal stem cells, reviewing their origin, differentiation capacity, and potential applications to tissue engineering. PMID:26423296

  15. The effect of malaria and anti-malarial drugs on skeletal and cardiac muscles.

    PubMed

    Marrelli, Mauro Toledo; Brotto, Marco

    2016-11-02

    Malaria remains one of the most important infectious diseases in the world, being a significant public health problem associated with poverty and it is one of the main obstacles to the economy of an endemic country. Among the several complications, the effects of malaria seem to target the skeletal muscle system, leading to symptoms, such as muscle aches, muscle contractures, muscle fatigue, muscle pain, and muscle weakness. Malaria cause also parasitic coronary artery occlusion. This article reviews the current knowledge regarding the effect of malaria disease and the anti-malarial drugs on skeletal and cardiac muscles. Research articles and case report publications that addressed aspects that are important for understanding the involvement of malaria parasites and anti-malarial therapies affecting skeletal and cardiac muscles were analysed and their findings summarized. Sequestration of red blood cells, increased levels of serum creatine kinase and reduced muscle content of essential contractile proteins are some of the potential biomarkers of the damage levels of skeletal and cardiac muscles. These biomarkers might be useful for prevention of complications and determining the effectiveness of interventions designed to protect cardiac and skeletal muscles from malaria-induced damage.

  16. Renin-angiotensin system: an old player with novel functions in skeletal muscle.

    PubMed

    Cabello-Verrugio, Claudio; Morales, María Gabriela; Rivera, Juan Carlos; Cabrera, Daniel; Simon, Felipe

    2015-05-01

    Skeletal muscle is a tissue that shows the most plasticity in the body; it can change in response to physiological and pathological stimuli. Among the diseases that affect skeletal muscle are myopathy-associated fibrosis, insulin resistance, and muscle atrophy. A common factor in these pathologies is the participation of the renin-angiotensin system (RAS). This system can be functionally separated into the classical and nonclassical RAS axis. The main components of the classical RAS pathway are angiotensin-converting enzyme (ACE), angiotensin II (Ang-II), and Ang-II receptors (AT receptors), whereas the nonclassical axis is composed of ACE2, angiotensin 1-7 [Ang (1-7)], and the Mas receptor. Hyperactivity of the classical axis in skeletal muscle has been associated with insulin resistance, atrophy, and fibrosis. In contrast, current evidence supports the action of the nonclassical RAS as a counter-regulator axis of the classical RAS pathway in skeletal muscle. In this review, we describe the mechanisms involved in the pathological effects of the classical RAS, advances in the use of pharmacological molecules to inhibit this axis, and the beneficial effects of stimulation of the nonclassical RAS pathway on insulin resistance, atrophy, and fibrosis in skeletal muscle. © 2015 Wiley Periodicals, Inc.

  17. Skeletal maturity assessment using mandibular canine calcification stages.

    PubMed

    Džemidžić, Vildana; Tiro, Alisa; Zukanović, Amila; Redžić, Ismeta; Nakaš, Enita

    2016-11-01

    The aims of this study were: to investigate the relationship between mandibular canine calcification stages and skeletal maturity; and to evaluate whether the mandibular canine calcification stages may be used as a reliable diagnostic tool for skeletal maturity assessment. This study included 151 subjects: 81 females and 70 males, with ages ranging from 9 to 16 years (mean age: 12.29±1.86 years). The inclusion criteria for subjects were as follows: age between 9 and 16 years; good general health without any hormonal, nutritional, growth or dental development problems. Subjects who were undergoing or had previously received orthodontic treatment were not included in this study. The calcification stages of the left permanent mandibular canine were assessed according to the method of Demirjian, on panoramic radiographs. Assessment of skeletal maturity was carried out using the cervical vertebral maturation index (CVMI), as proposed by the Hassel-Farman method, on lateral cephalograms. The correlation between the calcification stages of mandibular canine and skeletal maturity was estimated separately for male and female subjects. Correlation coefficients between calcification stages of mandibular canine and skeletal maturity were 0.895 for male and 0.701 for female subjects. A significant correlation was found between the calcification stages of the mandibular canine and skeletal maturity. The calcification stages of the mandibular canine show a satisfactory diagnostic performance only for assessment of pre-pubertal growth phase. Copyright © 2016 by Academy of Sciences and Arts of Bosnia and Herzegovina.

  18. Ammonia lowering reverses sarcopenia of cirrhosis by restoring skeletal muscle proteostasis

    PubMed Central

    Kumar, Avinash; Davuluri, Gangarao; deSilva, Rafaella Nasciemento; Engelen, Marielle PKJ; TenHave, Gabrie; Prayson, Richard; Deutz, Nicolaas EP; Dasarathy, Srinivasan

    2017-01-01

    Sarcopenia or skeletal muscle loss is a frequent, potentially reversible complication in cirrhosis that adversely affects clinical outcomes. Hyperammonemia is a consistent abnormality in cirrhosis that results in impaired skeletal muscle protein synthesis and breakdown (proteostasis). Despite availability of effective ammonia lowering therapies, whether lowering ammonia restores proteostasis and reverses muscle mass is unknown. Myotube diameter, protein synthesis and molecular responses in C2C12 murine myotubes to withdrawal of ammonium acetate following 24 h exposure to 10mM ammonium acetate were complemented by in vivo studies in the hyperammonemic portacaval anastomosis rat (PCA) and sham operated, pair-fed (SO) Sprague- Dawley rats treated with ammonia lowering therapy by L-ornithine L-aspartate and rifaximin orally for 4 weeks. We observed reduced myotube diameter, impaired protein synthesis and increased autophagy flux in response to hyperammonemia that were partially reversed following 24h and 48h withdrawal of ammonium acetate. Consistently, 4 weeks of ammonia lowering therapy resulted in significant lowering of blood and skeletal muscle ammonia, increase in lean body mass, improved grip strength and higher skeletal muscle mass, diameter and an increase in type II fibers in the treated compared to untreated PCA rats. Increased skeletal muscle myostatin expression, reduced mTORC1 function, and the hyperammonemic stress response including autophagy markers were also reversed in the PCA rats treated with ammonia lowering therapy. Despite significant improvement, molecular and functional readouts were not completely reversed by ammonia lowering measures. Conclusions Ammonia lowering therapy results in improvement in skeletal muscle phenotype, function and molecular perturbations of hyperammonemia. These preclinical studies complement previous studies on ammonia induced skeletal muscle loss and lay the foundation for prolonged ammonia lowering therapy to reverse

  19. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takegahara, Yuki; Yamanouchi, Keitaro, E-mail: akeita@mail.ecc.u-tokyo.ac.jp; Nakamura, Katsuyuki

    2014-05-15

    Intramuscular adipose tissue (IMAT) formation is observed in some pathological conditions such as Duchenne muscular dystrophy (DMD) and sarcopenia. Several studies have suggested that IMAT formation is not only negatively correlated with skeletal muscle mass but also causes decreased muscle contraction in sarcopenia. In the present study, we examined w hether adipocytes affect myogenesis. For this purpose, skeletal muscle progenitor cells were transfected with siRNA of PPARγ (siPPARγ) in an attempt to inhibit adipogenesis. Myosin heavy chain (MHC)-positive myotube formation was promoted in cells transfected with siPPARγ compared to that of cells transfected with control siRNA. To determine whether directmore » cell-to-cell contact between adipocytes and myoblasts is a prerequisite for adipocytes to affect myogenesis, skeletal muscle progenitor cells were cocultured with pre- or mature adipocytes in a Transwell coculture system. MHC-positive myotube formation was inhibited when skeletal muscle progenitor cells were cocultured with mature adipocytes, but was promoted when they were cocultured with preadipocytes. Similar effects were observed when pre- or mature adipocyte-conditioned medium was used. These results indicate that preadipocytes play an important role in maintaining skeletal muscle mass by promoting myogenesis; once differentiated, the resulting mature adipocytes negatively affect myogenesis, leading to the muscle deterioration observed in skeletal muscle pathologies. - Highlights: • We examined the effects of pre- and mature adipocytes on myogenesis in vitro. • Preadipocytes and mature adipocytes affect myoblast fusion. • Preadipocytes play an important role in maintaining skeletal muscle mass. • Mature adipocytes lead to muscle deterioration observed in skeletal muscle pathologies.« less

  20. Development of the turtle plastron, the order-defining skeletal structure.

    PubMed

    Rice, Ritva; Kallonen, Aki; Cebra-Thomas, Judith; Gilbert, Scott F

    2016-05-10

    The dorsal and ventral aspects of the turtle shell, the carapace and the plastron, are developmentally different entities. The carapace contains axial endochondral skeletal elements and exoskeletal dermal bones. The exoskeletal plastron is found in all extant and extinct species of crown turtles found to date and is synaptomorphic of the order Testudines. However, paleontological reconstructed transition forms lack a fully developed carapace and show a progression of bony elements ancestral to the plastron. To understand the evolutionary development of the plastron, it is essential to know how it has formed. Here we studied the molecular development and patterning of plastron bones in a cryptodire turtle Trachemys scripta We show that plastron development begins at developmental stage 15 when osteochondrogenic mesenchyme forms condensates for each plastron bone at the lateral edges of the ventral mesenchyme. These condensations commit to an osteogenic identity and suppress chondrogenesis. Their development overlaps with that of sternal cartilage development in chicks and mice. Thus, we suggest that in turtles, the sternal morphogenesis is prevented in the ventral mesenchyme by the concomitant induction of osteogenesis and the suppression of chondrogenesis. The osteogenic subroutines later direct the growth and patterning of plastron bones in an autonomous manner. The initiation of plastron bone development coincides with that of carapacial ridge formation, suggesting that the development of dorsal and ventral shells are coordinated from the start and that adopting an osteogenesis-inducing and chondrogenesis-suppressing cell fate in the ventral mesenchyme has permitted turtles to develop their order-specific ventral morphology.

  1. Development of the turtle plastron, the order-defining skeletal structure

    PubMed Central

    Rice, Ritva; Kallonen, Aki; Cebra-Thomas, Judith; Gilbert, Scott F.

    2016-01-01

    The dorsal and ventral aspects of the turtle shell, the carapace and the plastron, are developmentally different entities. The carapace contains axial endochondral skeletal elements and exoskeletal dermal bones. The exoskeletal plastron is found in all extant and extinct species of crown turtles found to date and is synaptomorphic of the order Testudines. However, paleontological reconstructed transition forms lack a fully developed carapace and show a progression of bony elements ancestral to the plastron. To understand the evolutionary development of the plastron, it is essential to know how it has formed. Here we studied the molecular development and patterning of plastron bones in a cryptodire turtle Trachemys scripta. We show that plastron development begins at developmental stage 15 when osteochondrogenic mesenchyme forms condensates for each plastron bone at the lateral edges of the ventral mesenchyme. These condensations commit to an osteogenic identity and suppress chondrogenesis. Their development overlaps with that of sternal cartilage development in chicks and mice. Thus, we suggest that in turtles, the sternal morphogenesis is prevented in the ventral mesenchyme by the concomitant induction of osteogenesis and the suppression of chondrogenesis. The osteogenic subroutines later direct the growth and patterning of plastron bones in an autonomous manner. The initiation of plastron bone development coincides with that of carapacial ridge formation, suggesting that the development of dorsal and ventral shells are coordinated from the start and that adopting an osteogenesis-inducing and chondrogenesis-suppressing cell fate in the ventral mesenchyme has permitted turtles to develop their order-specific ventral morphology. PMID:27114549

  2. Skeletal Characterization of the Fgfr3 Mouse Model of Achondroplasia Using Micro-CT and MRI Volumetric Imaging.

    PubMed

    Shazeeb, Mohammed Salman; Cox, Megan K; Gupta, Anurag; Tang, Wen; Singh, Kuldeep; Pryce, Cynthia T; Fogle, Robert; Mu, Ying; Weber, William D; Bangari, Dinesh S; Ying, Xiaoyou; Sabbagh, Yves

    2018-01-11

    Achondroplasia, the most common form of dwarfism, affects more than a quarter million people worldwide and remains an unmet medical need. Achondroplasia is caused by mutations in the fibroblast growth factor receptor 3 (FGFR3) gene which results in over-activation of the receptor, interfering with normal skeletal development leading to disproportional short stature. Multiple mouse models have been generated to study achondroplasia. The characterization of these preclinical models has been primarily done with 2D measurements. In this study, we explored the transgenic model expressing mouse Fgfr3 containing the achondroplasia mutation G380R under the Col2 promoter (Ach). Survival and growth rate of the Ach mice were reduced compared to wild-type (WT) littermates. Axial skeletal defects and abnormalities of the sternebrae and vertebrae were observed in the Ach mice. Further evaluation of the Ach mouse model was performed by developing 3D parameters from micro-computed tomography (micro-CT) and magnetic resonance imaging (MRI). The 3-week-old mice showed greater differences between the Ach and WT groups compared to the 6-week-old mice for all parameters. Deeper understanding of skeletal abnormalities of this model will help guide future studies for evaluating novel and effective therapeutic approaches for the treatment of achondroplasia.

  3. A case for poroelasticity in skeletal muscle finite element analysis: experiment and modeling.

    PubMed

    Wheatley, Benjamin B; Odegard, Gregory M; Kaufman, Kenton R; Haut Donahue, Tammy L

    2017-05-01

    Finite element models of skeletal muscle typically ignore the biphasic nature of the tissue, associating any time dependence with a viscoelastic formulation. In this study, direct experimental measurement of permeability was conducted as a function of specimen orientation and strain. A finite element model was developed to identify how various permeability formulations affect compressive response of the tissue. Experimental and modeling results suggest the assumption of a constant, isotropic permeability is appropriate. A viscoelastic only model differed considerably from a visco-poroelastic model, suggesting the latter is more appropriate for compressive studies.

  4. Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1

    PubMed Central

    Sylow, Lykke; Møller, Lisbeth L V; Kleinert, Maximilian; Richter, Erik A; Jensen, Thomas E

    2015-01-01

    An alternative to the canonical insulin signalling pathway for glucose transport is muscle contraction/exercise. Mechanical stress is an integrated part of the muscle contraction/relaxation cycle, and passive stretch stimulates muscle glucose transport. However, the signalling mechanism regulating stretch-stimulated glucose transport is not well understood. We recently reported that the actin cytoskeleton regulating GTPase, Rac1, was activated in mouse muscle in response to stretching. Rac1 is a regulator of contraction- and insulin-stimulated glucose transport, however, its role in stretch-stimulated glucose transport and signalling is unknown. We therefore investigated whether stretch-induced glucose transport in skeletal muscle required Rac1 and the actin cytoskeleton. We used muscle-specific inducible Rac1 knockout mice as well as pharmacological inhibitors of Rac1 and the actin cytoskeleton in isolated soleus and extensor digitorum longus muscles. In addition, the role of Rac1 in contraction-stimulated glucose transport during conditions without mechanical load on the muscles was evaluated in loosely hanging muscles and muscles in which cross-bridge formation was blocked by the myosin ATPase inhibitors BTS and Blebbistatin. Knockout as well as pharmacological inhibition of Rac1 reduced stretch-stimulated glucose transport by 30–50% in soleus and extensor digitorum longus muscle. The actin depolymerizing agent latrunculin B similarly decreased glucose transport in response to stretching by 40–50%. Rac1 inhibition reduced contraction-stimulated glucose transport by 30–40% in tension developing muscle but did not affect contraction-stimulated glucose transport in muscles in which force development was prevented. Our findings suggest that Rac1 and the actin cytoskeleton regulate stretch-stimulated glucose transport and that Rac1 is a required part of the mechanical stress-component of the contraction-stimulus to glucose transport in skeletal muscle. Key

  5. Storm-Related Postmortem Damage to Skeletal Remains.

    PubMed

    Maijanen, Heli; Wilson-Taylor, Rebecca J; Jantz, Lee Meadows

    2016-05-01

    In April 2011, human skeletons were exposed to heavy storms at the outdoor Anthropology Research Facility (ARF) in Knoxville, Tennessee. Of the approximate 125 skeletons at the ARF in April 2011, 30 donations exhibited postmortem damage that could be attributed to the storms. At least 20 of the affected donations exhibit postmortem damage clearly associated with hailstones due to the oval shape and similar small size of the defects observed. The irregular shape and larger size of other defects may be a product of other falling objects (e.g., tree branches) associated with the storms. Storm-related damage was observed throughout the skeleton, with the most commonly damaged skeletal elements being the scapula and ilium, but more robust elements (i.e., femora and tibiae) also displayed characteristic features of hailstone damage. Thus, hailstone damage should be considered when forensic practitioners observe unusual postmortem damage in skeletal remains recovered from the outdoor context. © 2016 American Academy of Forensic Sciences.

  6. Skeletal muscle weakness in osteogenesis imperfecta mice.

    PubMed

    Gentry, Bettina A; Ferreira, J Andries; McCambridge, Amanda J; Brown, Marybeth; Phillips, Charlotte L

    2010-09-01

    Exercise intolerance, muscle fatigue and weakness are often-reported, little-investigated concerns of patients with osteogenesis imperfecta (OI). OI is a heritable connective tissue disorder hallmarked by bone fragility resulting primarily from dominant mutations in the proα1(I) or proα2(I) collagen genes and the recently discovered recessive mutations in post-translational modifying proteins of type I collagen. In this study we examined the soleus (S), plantaris (P), gastrocnemius (G), tibialis anterior (TA) and quadriceps (Q) muscles of mice expressing mild (+/oim) and moderately severe (oim/oim) OI for evidence of inherent muscle pathology. In particular, muscle weight, fiber cross-sectional area (CSA), fiber type, fiber histomorphology, fibrillar collagen content, absolute, relative and specific peak tetanic force (P(o), P(o)/mg and P(o)/CSA respectively) of individual muscles were evaluated. Oim/oim mouse muscles were generally smaller, contained less fibrillar collagen, had decreased P(o) and an inability to sustain P(o) for the 300-ms testing duration for specific muscles; +/oim mice had a similar but milder skeletal muscle phenotype. +/oim mice had mild weakness of specific muscles but were less affected than their oim/oim counterparts which demonstrated readily apparent skeletal muscle pathology. Therefore muscle weakness in oim mice reflects inherent skeletal muscle pathology. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Higher skeletal muscle protein synthesis and lower breakdown after chemotherapy in cachectic mice.

    PubMed

    Samuels, S E; Knowles, A L; Tilignac, T; Debiton, E; Madelmont, J C; Attaix, D

    2001-07-01

    The influence of cancer cachexia and chemotherapy and subsequent recovery of skeletal muscle protein mass and turnover was investigated in mice. Cancer cachexia was induced using colon 26 adenocarcinoma, which is characteristic of the human condition, and can be cured with 100% efficacy using an experimental nitrosourea, cystemustine (C(6)H(12)CIN(3)O(4)S). Reduced food intake was not a factor in these studies. Three days after cachexia began, healthy and tumor-bearing mice were given a single intraperitoneal injection of cystemustine (20 mg/kg). Skeletal muscle mass in tumor-bearing mice was 41% lower (P < 0.05) than in healthy mice 2 wk after cachexia began. Skeletal muscle wasting was mediated initially by decreased protein synthesis (-38%; P < 0.05) and increased degradation (+131%; P < 0.05); later wasting resulted solely from decreased synthesis (~-54 to -69%; P < 0.05). Acute cytotoxicity of chemotherapy did not appear to have an important effect on skeletal muscle protein metabolism in either healthy or tumor-bearing mice. Recovery began 2 days after treatment; skeletal muscle mass was only 11% lower than in healthy mice 11 days after chemotherapy. Recovery of skeletal muscle mass was affected initially by decreased protein degradation (-80%; P < 0.05) and later by increased protein synthesis (+46 to +73%; P < 0.05) in cured compared with healthy mice. This study showed that skeletal muscle wasted from cancer cachexia and after chemotherapeutic treatment is able to generate a strong anabolic response by making powerful changes to protein synthesis and degradation.

  8. Evaluation of skeletal maturation using mandibular third molar development in Indian adolescents.

    PubMed

    Mehta, Nishit; Patel, Dolly; Mehta, Falguni; Gupta, Bhaskar; Zaveri, Grishma; Shah, Unnati

    2016-01-01

    This study was done with the following objectives: to estimate dental maturity using the Demirjian Index (DI) for the mandibular third molar; to investigate the relationship between dental maturity and skeletal maturity among growing patients; to evaluate the use of the mandibular third molar as an adjunctive tool for adolescent growth assessment in combination with the cervical vertebrae; to evaluate the clinical value of the third molar as a growth evaluation index. Samples were derived from panoramic radiographs and lateral cephalograms of 615 subjects (300 males and 315 females) of ages ranging 9-18 years, and estimates of dental maturity (DI) and skeletal maturity [cervical vertebrae maturation indicators (CVMI)] were made. A highly significant association (r = 0.81 for males and r = 0.72 for females) was found between DI and CVMI. DI Stage B corresponded to Stage 2 of CVMI (prepeak of pubertal growth spurt) in both sexes. In males, DI stages C and D represent the peak of the pubertal growth spurt. In females, stages B and C show that the peak of the pubertal growth spurt has not been passed. DI stage E in females and DI Stage F in males correlate that the peak of the pubertal growth spurt has been passed. A highly significant association exists between DI and CVMI. Mandibular third molar DI stages are reliable adjunctive indicators of skeletal maturity.

  9. NPPB and ACAN, Two Novel SHOX2 Transcription Targets Implicated in Skeletal Development

    PubMed Central

    Hisado-Oliva, Alfonso; Belinchón, Alberta; Gorbenko-del Blanco, Darya; Rodriguez, Jose Ignacio; Benito-Sanz, Sara; Campos-Barros, Angel; Heath, Karen E.

    2014-01-01

    SHOX and SHOX2 transcription factors are highly homologous, with even identical homeodomains. Genetic alterations in SHOX result in two skeletal dysplasias; Léri-Weill dyschondrosteosis (LWD) and Langer mesomelic dysplasia (LMD), while no human genetic disease has been linked to date with SHOX2. SHOX2 is, though, involved in skeletal development, as shown by different knockout mice models. Due to the high homology between SHOX and SHOX2, and their functional redundancy during heart development, we postulated that SHOX2 might have the same transcriptional targets and cofactors as SHOX in limb development. We selected two SHOX transcription targets regulated by different mechanisms: 1) the natriuretic peptide precursor B gene (NPPB) involved in the endochondral ossification signalling and directly activated by SHOX; and 2) Aggrecan (ACAN), a major component of cartilage extracellular matrix, regulated by the cooperation of SHOX with the SOX trio (SOX5, SOX6 and SOX9) via the protein interaction between SOX5/SOX6 and SHOX. Using the luciferase assay we have demonstrated that SHOX2, like SHOX, regulates NPPB directly whilst activates ACAN via its cooperation with the SOX trio. Subsequently, we have identified and characterized the protein domains implicated in the SHOX2 dimerization and also its protein interaction with SOX5/SOX6 and SHOX using the yeast-two hybrid and co-immunoprecipitation assays. Immunohistochemistry of human fetal growth plates from different time points demonstrated that SHOX2 is coexpressed with SHOX and the members of the SOX trio. Despite these findings, no mutation was identified in SHOX2 in a cohort of 83 LWD patients with no known molecular defect, suggesting that SHOX2 alterations do not cause LWD. In conclusion, our work has identified the first cofactors and two new transcription targets of SHOX2 in limb development, and we hypothesize a time- and tissue-specific functional redundancy between SHOX and SHOX2. PMID:24421874

  10. NPPB and ACAN, two novel SHOX2 transcription targets implicated in skeletal development.

    PubMed

    Aza-Carmona, Miriam; Barca-Tierno, Veronica; Hisado-Oliva, Alfonso; Belinchón, Alberta; Gorbenko-del Blanco, Darya; Rodriguez, Jose Ignacio; Benito-Sanz, Sara; Campos-Barros, Angel; Heath, Karen E

    2014-01-01

    SHOX and SHOX2 transcription factors are highly homologous, with even identical homeodomains. Genetic alterations in SHOX result in two skeletal dysplasias; Léri-Weill dyschondrosteosis (LWD) and Langer mesomelic dysplasia (LMD), while no human genetic disease has been linked to date with SHOX2. SHOX2 is, though, involved in skeletal development, as shown by different knockout mice models. Due to the high homology between SHOX and SHOX2, and their functional redundancy during heart development, we postulated that SHOX2 might have the same transcriptional targets and cofactors as SHOX in limb development. We selected two SHOX transcription targets regulated by different mechanisms: 1) the natriuretic peptide precursor B gene (NPPB) involved in the endochondral ossification signalling and directly activated by SHOX; and 2) Aggrecan (ACAN), a major component of cartilage extracellular matrix, regulated by the cooperation of SHOX with the SOX trio (SOX5, SOX6 and SOX9) via the protein interaction between SOX5/SOX6 and SHOX. Using the luciferase assay we have demonstrated that SHOX2, like SHOX, regulates NPPB directly whilst activates ACAN via its cooperation with the SOX trio. Subsequently, we have identified and characterized the protein domains implicated in the SHOX2 dimerization and also its protein interaction with SOX5/SOX6 and SHOX using the yeast-two hybrid and co-immunoprecipitation assays. Immunohistochemistry of human fetal growth plates from different time points demonstrated that SHOX2 is coexpressed with SHOX and the members of the SOX trio. Despite these findings, no mutation was identified in SHOX2 in a cohort of 83 LWD patients with no known molecular defect, suggesting that SHOX2 alterations do not cause LWD. In conclusion, our work has identified the first cofactors and two new transcription targets of SHOX2 in limb development, and we hypothesize a time- and tissue-specific functional redundancy between SHOX and SHOX2.

  11. Cutaneous skeletal hypophosphatemia syndrome (CSHS) is a multilineage somatic mosaic RASopathy.

    PubMed

    Lim, Young H; Ovejero, Diana; Derrick, Kristina M; Collins, Michael T; Choate, Keith A

    2016-08-01

    We recently demonstrated multilineage somatic mosaicism in cutaneous skeletal hypophosphatemia syndrome (CSHS), which features epidermal or melanocytic nevi, elevated fibroblast growth factor (FGF)-23, and hypophosphatemia, finding identical RAS mutations in affected skin and bone. We sought to: (1) provide an updated overview of CSHS; (2) review its pathobiology; (3) present a new patient with CSHS; and (4) discuss treatment modalities. We searched PubMed for "nevus AND rickets," and "nevus AND hypophosphatemia," identifying cases of nevi with hypophosphatemic rickets or elevated serum FGF-23. For our additional patient with CSHS, we performed histopathologic and radiographic surveys of skin and skeletal lesions, respectively. Sequencing was performed for HRAS, KRAS, and NRAS to determine causative mutations. Our new case harbored somatic activating HRAS p.G13 R mutation in affected tissue, consistent with previous findings. Although the mechanism of FGF-23 dysregulation is unknown in CSHS, interaction between FGF and MAPK pathways may provide insight into pathobiology. Anti-FGF-23 antibody KRN-23 may be useful in managing CSHS. Multilineage RAS mutation in CSHS was recently identified; further studies on mechanism are unavailable. Patients with nevi in association with skeletal disease should be evaluated for serum phosphate and FGF-23. Further studies investigating the role of RAS in FGF-23 regulation are needed. Published by Elsevier Inc.

  12. A Novel GUSB Mutation in Brazilian Terriers with Severe Skeletal Abnormalities Defines the Disease as Mucopolysaccharidosis VII

    PubMed Central

    Hytönen, Marjo K.; Arumilli, Meharji; Lappalainen, Anu K.; Kallio, Heli; Snellman, Marjatta; Sainio, Kirsi; Lohi, Hannes

    2012-01-01

    Hundreds of different human skeletal disorders have been characterized at molecular level and a growing number of resembling dysplasias with orthologous genetic defects are being reported in dogs. This study describes a novel genetic defect in the Brazilian Terrier breed causing a congenital skeletal dysplasia. Affected puppies presented severe skeletal deformities observable within the first month of life. Clinical characterization using radiographic and histological methods identified delayed ossification and spondyloepiphyseal dysplasia. Pedigree analysis suggested an autosomal recessive disorder, and we performed a genome-wide association study to map the disease locus using Illumina’s 22K SNP chip arrays in seven cases and eleven controls. A single association was observed near the centromeric end of chromosome 6 with a genome-wide significance after permutation (pgenome  = 0.033). The affected dogs shared a 13-Mb homozygous region including over 200 genes. A targeted next-generation sequencing of the entire locus revealed a fully segregating missense mutation (c.866C>T) causing a pathogenic p.P289L change in a conserved functional domain of β-glucuronidase (GUSB). The mutation was confirmed in a population of 202 Brazilian terriers (p = 7,71×10−29). GUSB defects cause mucopolysaccharidosis VII (MPS VII) in several species and define the skeletal syndrome in Brazilian Terriers. Our results provide new information about the correlation of the GUSB genotype to phenotype and establish a novel canine model for MPS VII. Currently, MPS VII lacks an efficient treatment and this model could be utilized for the development and validation of therapeutic methods for better treatment of MPS VII patients. Finally, since almost one third of the Brazilian terrier population carries the mutation, breeders will benefit from a genetic test to eradicate the detrimental disease from the breed. PMID:22815736

  13. In utero Undernutrition Programs Skeletal and Cardiac Muscle Metabolism.

    PubMed

    Beauchamp, Brittany; Harper, Mary-Ellen

    2015-01-01

    In utero undernutrition is associated with increased risk for insulin resistance, obesity, and cardiovascular disease during adult life. A common phenotype associated with low birth weight is reduced skeletal muscle mass. Given the central role of skeletal muscle in whole body metabolism, alterations in its mass as well as its metabolic characteristics may contribute to disease risk. This review highlights the metabolic alterations in cardiac and skeletal muscle associated with in utero undernutrition and low birth weight. These tissues have high metabolic demands and are known to be sites of major metabolic dysfunction in obesity, type 2 diabetes, and cardiovascular disease. Recent research demonstrates that mitochondrial energetics are decreased in skeletal and cardiac muscles of adult offspring from undernourished mothers. These effects apparently lead to the development of a thrifty phenotype, which may represent overall a compensatory mechanism programmed in utero to handle times of limited nutrient availability. However, in an environment characterized by food abundance, the effects are maladaptive and increase adulthood risks of metabolic disease.

  14. Effect of experimental hyperthyroidism on protein turnover in skeletal and cardiac muscle.

    PubMed

    Carter, W J; Van Der Weijden Benjamin, W S; Faas, F H

    1980-10-01

    Since experimental hyperthyroidism reduces skeletal muscle mass while simultaneously increasing cardiac muscle mass, the effect of hyperthyroidism on muscle protein degradation was compared in skeletal and cardiac muscle. Pulse-labeling studies using (3H) leucine and (14C) carboxyl labeled aspartate and glutamate were carried out. Hyperthyroidism caused a 25%-29% increase in protein breakdown in both sarcoplasmic and myofibrillar fractions of skeletal muscle. Increased muscle protein degradation may be a major factor in the development of skeletal muscle wasting and weakness in hyperthyroidism. In contrast, protein breakdown appeared to be reduced 22% in the sarcoplasmic fraction of hyperthyroid heart muscle and was unchanged in the myofibrillar fraction. Possible reasons for the contrasting effects of hyperthyroidism on skeletal and cardiac muscle include increased sensitivity of the hyperthyroid heart to catecholamines, increased cardiac work caused by the hemodynamic effects of hyperthyroidism, and a different direct effect of thyroid hormone at the nuclear level in cardiac as opposed to skeletal muscle.

  15. Ectopic lipid deposition and the metabolic profile of skeletal muscle in ovariectomized mice.

    PubMed

    Jackson, Kathryn C; Wohlers, Lindsay M; Lovering, Richard M; Schuh, Rosemary A; Maher, Amy C; Bonen, Arend; Koves, Timothy R; Ilkayeva, Olga; Thomson, David M; Muoio, Deborah M; Spangenburg, Espen E

    2013-02-01

    Disruptions of ovarian function in women are associated with increased risk of metabolic disease due to dysregulation of peripheral glucose homeostasis in skeletal muscle. Our previous evidence suggests that alterations in skeletal muscle lipid metabolism coupled with altered mitochondrial function may also develop. The objective of this study was to use an integrative metabolic approach to identify potential areas of dysfunction that develop in skeletal muscle from ovariectomized (OVX) female mice compared with age-matched ovary-intact adult female mice (sham). The OVX mice exhibited significant increases in body weight, visceral, and inguinal fat mass compared with sham mice. OVX mice also had significant increases in skeletal muscle intramyocellular lipids (IMCL) compared with the sham animals, which corresponded to significant increases in the protein content of the fatty acid transporters CD36/FAT and FABPpm. A targeted metabolic profiling approach identified significantly lower levels of specific acyl carnitine species and various amino acids in skeletal muscle from OVX mice compared with the sham animals, suggesting a potential dysfunction in lipid and amino acid metabolism, respectively. Basal and maximal mitochondrial oxygen consumption rates were significantly impaired in skeletal muscle fibers from OVX mice compared with sham animals. Collectively, these data indicate that loss of ovarian function results in increased IMCL storage that is coupled with alterations in mitochondrial function and changes in the skeletal muscle metabolic profile.

  16. Ectopic lipid deposition and the metabolic profile of skeletal muscle in ovariectomized mice

    PubMed Central

    Jackson, Kathryn C.; Wohlers, Lindsay M.; Lovering, Richard M.; Schuh, Rosemary A.; Maher, Amy C.; Bonen, Arend; Koves, Timothy R.; Ilkayeva, Olga; Thomson, David M.; Muoio, Deborah M.

    2013-01-01

    Disruptions of ovarian function in women are associated with increased risk of metabolic disease due to dysregulation of peripheral glucose homeostasis in skeletal muscle. Our previous evidence suggests that alterations in skeletal muscle lipid metabolism coupled with altered mitochondrial function may also develop. The objective of this study was to use an integrative metabolic approach to identify potential areas of dysfunction that develop in skeletal muscle from ovariectomized (OVX) female mice compared with age-matched ovary-intact adult female mice (sham). The OVX mice exhibited significant increases in body weight, visceral, and inguinal fat mass compared with sham mice. OVX mice also had significant increases in skeletal muscle intramyocellular lipids (IMCL) compared with the sham animals, which corresponded to significant increases in the protein content of the fatty acid transporters CD36/FAT and FABPpm. A targeted metabolic profiling approach identified significantly lower levels of specific acyl carnitine species and various amino acids in skeletal muscle from OVX mice compared with the sham animals, suggesting a potential dysfunction in lipid and amino acid metabolism, respectively. Basal and maximal mitochondrial oxygen consumption rates were significantly impaired in skeletal muscle fibers from OVX mice compared with sham animals. Collectively, these data indicate that loss of ovarian function results in increased IMCL storage that is coupled with alterations in mitochondrial function and changes in the skeletal muscle metabolic profile. PMID:23193112

  17. Proteomics of Skeletal Muscle: Focus on Insulin Resistance and Exercise Biology

    PubMed Central

    Deshmukh, Atul S.

    2016-01-01

    Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence, of altered protein expressions profiles and/or their posttranslational modifications (PTMs). Mass spectrometry (MS)-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle proteomics are challenging. This review describes the technical limitations of skeletal muscle proteomics as well as emerging developments in proteomics workflow with respect to samples preparation, liquid chromatography (LC), MS and computational analysis. These technologies have not yet been fully exploited in the field of skeletal muscle proteomics. Future studies that involve state-of-the-art proteomics technology will broaden our understanding of exercise-induced adaptations as well as molecular pathogenesis of insulin resistance. This could lead to the identification of new therapeutic targets. PMID:28248217

  18. Skeletal muscle mitochondrial health and spinal cord injury.

    PubMed

    O'Brien, Laura C; Gorgey, Ashraf S

    2016-10-18

    Mitochondria are the main source of cellular energy production and are dynamic organelles that undergo biogenesis, remodeling, and degradation. Mitochondrial dysfunction is observed in a number of disease states including acute and chronic central or peripheral nervous system injury by traumatic brain injury, spinal cord injury (SCI), and neurodegenerative disease as well as in metabolic disturbances such as insulin resistance, type II diabetes and obesity. Mitochondrial dysfunction is most commonly observed in high energy requiring tissues like the brain and skeletal muscle. In persons with chronic SCI, changes to skeletal muscle may include remarkable atrophy and conversion of muscle fiber type from oxidative to fast glycolytic, combined with increased infiltration of intramuscular adipose tissue. These changes contribute to a proinflammatory environment, glucose intolerance and insulin resistance. The loss of metabolically active muscle combined with inactivity predisposes individuals with SCI to type II diabetes and obesity. The contribution of skeletal muscle mitochondrial density and electron transport chain activity to the development of the aforementioned comorbidities following SCI is unclear. A better understanding of the mechanisms involved in skeletal muscle mitochondrial dynamics is imperative to designing and testing effective treatments for this growing population. The current editorial will review ways to study mitochondrial function and the importance of improving skeletal muscle mitochondrial health in clinical populations with a special focus on chronic SCI.

  19. Oncological outcomes of patients with Ewing's sarcoma: is there a difference between skeletal and extra-skeletal Ewing's sarcoma?

    PubMed

    Pradhan, A; Grimer, R J; Spooner, D; Peake, D; Carter, S R; Tillman, R M; Abudu, A; Jeys, L

    2011-04-01

    The aim of this study was to identify whether there was any difference in patient, tumour, treatment or outcome characteristics between patients with skeletal or extra-skeletal Ewing's sarcoma. We identified 300 patients with new primary Ewing's sarcoma diagnosed between 1980 and 2005 from the centres' local database. There were 253 (84%) with skeletal and 47 (16%) with extra-skeletal Ewing's sarcomas. Although patients with skeletal Ewing's were younger (mean age 16.8 years) than those with extra-skeletal Ewing's sarcoma (mean age 27.5 years), there was little difference between the groups in terms of tumour stage or treatment. Nearly all the patients were treated with chemotherapy and most had surgery. There was no difference in the overall survival of patients with skeletal (64%) and extra-skeletal Ewing's sarcoma (61%) (p = 0.85), and this was also the case when both groups were split by whether they had metastases or not. This large series has shown that the oncological outcomes of Ewing's sarcoma are related to tumour characteristics and patient age, and not determined by whether they arise in bone or soft tissue.

  20. Satellite cells in human skeletal muscle plasticity

    PubMed Central

    Snijders, Tim; Nederveen, Joshua P.; McKay, Bryon R.; Joanisse, Sophie; Verdijk, Lex B.; van Loon, Luc J. C.; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models. PMID:26557092

  1. Correlation between dento-skeletal characteristics and craniomandibular disorders in growing children and adolescent orthodontic patients: retrospective case-control study

    PubMed Central

    DI VENERE, D.; GAUDIO, R. M.; LAFORGIA, A.; STEFANACHI, G.; TAFURI, S.; PETTINI, F.; SILVESTRE, F.; PETRUZZI, M.; CORSALINI, M.

    2016-01-01

    SUMMARY Purpose The aim of this retrospective case-control study was to identify, in a group of growing children and adolescents affected by malocclusion, specific dento-skeletal characteristics which could be correlated to the onset, in the above-mentioned subjects, of craniomandibular disorders (CMD). Materials and methods Among the patients treated at the Paedodontics and Orthodontics department of Bari Dental School, we recruited a group of patients with malocclusion and symptoms of temporomandibular disorders, as an experimental group. We considered as controls those patients who, match-paired to their skeletal class depending on the ANB angle, did not show any CMD sign or symptom. Results Of the 128 examined patients, 15 showed signs and/or symptoms of CMD (11.7%). When compared to 15 patients non-affected by CMD, we could not detect statistically significant differences in both skeletal and occlusal characteristics. It is still interesting to notice how in CMD patients, characteristics of skeletal hyperdivergence are often to be found. Conclusions The present study seems to confirm that in growing children and adolescents, the presence of signs and/or symptoms of CMD is not associable to a specific vertical skeletal growth pattern or to other specific occlusal characteristics. PMID:28042446

  2. Amino Acid Sensing in Skeletal Muscle

    PubMed Central

    Moro, Tatiana; Ebert, Scott M.; Adams, Christopher M.; Rasmussen, Blake B.

    2016-01-01

    Aging impairs skeletal muscle protein synthesis, leading to muscle weakness and atrophy. However, the underlying molecular mechanisms remain poorly understood. Here, we review evidence that mTORC1- and ATF4-mediated amino acid sensing pathways, triggered by impaired amino acid delivery to aged skeletal muscle, may play important roles in skeletal muscle aging. Interventions that alleviate age-related impairments in muscle protein synthesis, strength and/or muscle mass appear to do so by reversing age-related changes in skeletal muscle amino acid delivery, mTORC1 activity and/or ATF4 activity. An improved understanding of the mechanisms and roles of amino acid sensing pathways in skeletal muscle may lead to evidence-based strategies to attenuate sarcopenia. PMID:27444066

  3. Remodeling of the skeletal muscle microcirculation increases resistance to perfusion in obese Zucker rats.

    PubMed

    Frisbee, Jefferson C

    2003-07-01

    Whereas previous studies have demonstrated that the development of syndrome X in obese Zucker rats (OZR) is associated with impaired arteriolar reactivity to vasoactive stimuli, additional results from these studies indicate that the passive diameter of skeletal muscle arterioles is reduced in OZR versus lean Zucker rats (LZR). On the basis of these prior observations, the present study evaluated structural alterations to the skeletal muscle microcirculation as potential contributors to an elevated vascular resistance. Isolated skeletal muscle resistance arterioles exhibited a reduced passive diameter at all levels of intralumenal pressure and a left-shifted stress-strain curve in OZR versus LZR, indicative of structural remodeling of individual arterioles. Histological analyses using Griffonia simplicifolia I lectin-stained sections of skeletal muscle demonstrated reduced microvessel density (rarefaction) in OZR versus LZR, suggesting remodeling of entire microvascular networks. Finally, under maximally dilated conditions, constant flow-perfused skeletal muscle of OZR exhibited significant elevations in perfusion pressure versus LZR, indicative of an increased resistance to perfusion within the microcirculation. These data suggest that developing structural alterations to the skeletal muscle microcirculation in OZR result in elevated vascular resistance, which may, acting in concert with impaired arteriolar reactivity, contribute to blunted active hyperemic responses and compromised performance of in situ skeletal muscle with elevated metabolic demand.

  4. NOTCH signaling in skeletal progenitors is critical for fracture repair

    PubMed Central

    Wang, Cuicui; Inzana, Jason A.; Mirando, Anthony J.; Liu, Zhaoyang; Shen, Jie; O’Keefe, Regis J.; Awad, Hani A.; Hilton, Matthew J.

    2016-01-01

    Fracture nonunions develop in 10%–20% of patients with fractures, resulting in prolonged disability. Current data suggest that bone union during fracture repair is achieved via proliferation and differentiation of skeletal progenitors within periosteal and soft tissues surrounding bone, while bone marrow stromal/stem cells (BMSCs) and other skeletal progenitors may also contribute. The NOTCH signaling pathway is a critical maintenance factor for BMSCs during skeletal development, although the precise role for NOTCH and the requisite nature of BMSCs following fracture is unknown. Here, we evaluated whether NOTCH and/or BMSCs are required for fracture repair by performing nonstabilized and stabilized fractures on NOTCH-deficient mice with targeted deletion of RBPjk in skeletal progenitors, maturing osteoblasts, and committed chondrocytes. We determined that removal of NOTCH signaling in BMSCs and subsequent depletion of this population result in fracture nonunion, as the fracture repair process was normal in animals harboring either osteoblast- or chondrocyte-specific deletion of RBPjk. Together, this work provides a genetic model of a fracture nonunion and demonstrates the requirement for NOTCH and BMSCs in fracture repair, irrespective of fracture stability and vascularity. PMID:26950423

  5. Unlocking the coral calcification process: Insights from boron isotope measurements and a skeletal growth model

    NASA Astrophysics Data System (ADS)

    Mollica, N. R.; Guo, W.; Cohen, A. L.; Huang, K. F.; Foster, G. L.; Donald, H.; Solow, A.

    2017-12-01

    Carbonate skeletons of scleractinian corals are important archives of ocean climate and environmental change. However, corals don't accrete their skeletons directly from ambient seawater, but from a calcifying fluid whose composition is strongly regulated. There is mounting evidence that the carbonate chemistry of this calcifying fluid significantly impacts the amount of carbonate the coral can precipitate, which in turn affects the geochemical composition of the skeleton produced. However the mechanistic link between calcifying fluid (cf) chemistry, particularly the up-regulation of pHcf and thereby aragonite saturation state (Ωcf), and coral calcification is not well understood. We explored this link by combining boron isotope measurements with in situ measurements of seawater temperature, salinity, and DIC to estimate Ωcf of nine Porites corals from four Pacific reefs. Associated calcification rates were quantified for each core via CT scanning. We do not observe a relationship between calcification rates and Ωcf or Ωsw. Instead, when we deconvolve calcification into linear extension and skeletal density, a significant correlation is observed between density and Ωcf, and also Ωsw while extension does not correlate with either. These observations are consistent with the two-step model of coral calcification, in which skeleton is secreted in two distinct phases: vertical extension creating new skeletal elements, followed by lateral thickening of existing elements that are covered by living tissue. We developed a numerical model of Porites skeletal growth that builds on this two-step model and links skeletal density with the external seawater environment via its influence on the chemistry of coral calcifying fluid. We validated the model using existing coral skeletal datasets from six Porites species collected across five reef sites, and quantified the effects of each seawater parameter (e.g. temperature, pH, DIC) on skeletal density. Our findings illustrate

  6. Effect of hindlimb suspension and clenbuterol treatment on polyamine levels in skeletal muscle

    NASA Technical Reports Server (NTRS)

    Abukhalaf, Imad K.; von Deutsch, Daniel A.; Wineski, Lawrence E.; Silvestrov, Natalia A.; Abera, Saare A.; Sahlu, Sinafikish W.; Potter, David E.; Thierry-Palmer, M. (Principal Investigator)

    2002-01-01

    Polyamines are unbiquitous, naturally occurring small aliphatic, polycationic, endogenous compounds. They are involved in many cellular processes and may serve as secondary or tertiary messengers to hormonal regulation. The relationship of polyamines and skeletal muscle mass of adductor longus, extensor digitorum longus, and gastrocnemius under unloading (hindlimb suspension) conditions was investigated. Unloading significantly affected skeletal muscle polyamine levels in a fiber-type-specific fashion. Under loading conditions, clenbuterol treatment increased all polyamine levels, whereas under unloading conditions, only the spermidine levels were consistently increased. Unloading attenuated the anabolic effects of clenbuterol in predominately slow-twitch muscles (adductor longus), but had little impact on clenbuterol's action as a countermeasure in fast- twitch muscles such as the extensor digitorum longus. Spermidine appeared to be the primary polyamine involved in skeletal muscle atrophy/hypertrophy. Copyright 2002 S. Karger AG, Basel.

  7. Opioid receptor agonists may favorably affect bone mechanical properties in rats with estrogen deficiency-induced osteoporosis.

    PubMed

    Janas, Aleksandra; Folwarczna, Joanna

    2017-02-01

    The results of epidemiological, clinical, and in vivo and in vitro experimental studies on the effect of opioid analgesics on bone are inconsistent. The aim of the present study was to investigate the effect of morphine (an agonist of opioid receptors), buprenorphine (a partial μ opioid receptor agonist and κ opioid receptor antagonist), and naloxone (an antagonist of opioid receptors) on the skeletal system of female rats in vivo. The experiments were carried out on 3-month-old Wistar rats, divided into two groups: nonovariectomized (intact; NOVX) rats and ovariectomized (OVX) rats. The bilateral ovariectomy was performed 7 days before the start of drug administration. Morphine hydrochloride (20 mg/kg/day s.c.), buprenorphine (0.05 mg/kg/day s.c.), or naloxone hydrochloride dihydrate (2 mg/kg/day s.c.) were administered for 4 weeks to NOVX and OVX rats. In OVX rats, the use of morphine and buprenorphine counteracted the development of osteoporotic changes in the skeletal system induced by estrogen deficiency. Morphine and buprenorphine beneficially affected also the skeletal system of NOVX rats, but the effects were much weaker than those in OVX rats. Naloxone generally did not affect the rat skeletal system. The results confirmed the role of opioid receptors in the regulation of bone remodeling processes and demonstrated, in experimental conditions, that the use of opioid analgesics at moderate doses may exert beneficial effects on the skeletal system, especially in estrogen deficiency.

  8. Biomimetic Scaffolds for Regeneration of Volumetric Muscle Loss in Skeletal Muscle Injuries

    PubMed Central

    Grasman, Jonathan M.; Zayas, Michelle J.; Page, Ray; Pins, George D.

    2015-01-01

    Skeletal muscle injuries typically result from traumatic incidents such as combat injuries where soft-tissue extremity injuries are present in one of four cases. Further, about 4.5 million reconstructive surgical procedures are performed annually as a result of car accidents, cancer ablation, or cosmetic procedures. These combat- and trauma-induced skeletal muscle injuries are characterized by volumetric muscle loss (VML), which significantly reduces the functionality of the injured muscle. While skeletal muscle has an innate repair mechanism, it is unable to compensate for VML injuries because large amounts of tissue including connective tissue and basement membrane are removed or destroyed. This results in in a significant need to develop off-the-shelf biomimetic scaffolds to direct skeletal muscle regeneration. Here, the structure and organization of native skeletal muscle tissue is described in order to reveal clear design parameters that are necessary for scaffolds to mimic in order to successfully regenerate muscular tissue. We review the literature with respect to the materials and methodologies used to develop scaffolds for skeletal muscle tissue regeneration as well as the limitations of these materials. We further discuss the variety of cell sources and different injury models to provide some context for the multiple approaches used to evaluate these scaffold materials. Recent findings are highlighted to address the state of the field and directions are outlined for future strategies, both in scaffold design and in the use of different injury models to evaluate these materials, for regenerating functional skeletal muscle. PMID:26219862

  9. Cardiac consequences to skeletal muscle-centric therapeutics for Duchenne muscular dystrophy.

    PubMed

    Townsend, DeWayne; Yasuda, Soichiro; Chamberlain, Jeffrey; Metzger, Joseph M

    2009-02-01

    Duchenne muscular dystrophy (DMD) is a fatal disease of muscle deterioration. Duchenne muscular dystrophy affects all striated muscles in the body, including the heart. Recent advances in palliative care, largely directed at improving respiratory function, have extended life but paradoxically further unmasked emergent heart disease in DMD patients. New experimental strategies have shown promise in restoring dystrophin in the skeletal muscles of dystrophin- deficient animals. These strategies often have little or no capacity for restitution of dystrophin in the hearts of these animals. This article draws on both clinical data and recent experimental data to posit that effective skeletal muscle restricted therapies for DMD will paradoxically heighten cardiomyopathy and heart failure in these patients.

  10. Exercise training increases protein O-GlcNAcylation in rat skeletal muscle.

    PubMed

    Hortemo, Kristin Halvorsen; Lunde, Per Kristian; Anonsen, Jan Haug; Kvaløy, Heidi; Munkvik, Morten; Rehn, Tommy Aune; Sjaastad, Ivar; Lunde, Ida Gjervold; Aronsen, Jan Magnus; Sejersted, Ole M

    2016-09-01

    Protein O-GlcNAcylation has emerged as an important intracellular signaling system with both physiological and pathophysiological functions, but the role of protein O-GlcNAcylation in skeletal muscle remains elusive. In this study, we tested the hypothesis that protein O-GlcNAcylation is a dynamic signaling system in skeletal muscle in exercise and disease. Immunoblotting showed different protein O-GlcNAcylation pattern in the prototypical slow twitch soleus muscle compared to fast twitch EDL from rats, with greater O-GlcNAcylation level in soleus associated with higher expression of the modulating enzymes O-GlcNAc transferase (OGT), O-GlcNAcase (OGA), and glutamine fructose-6-phosphate amidotransferase isoforms 1 and 2 (GFAT1, GFAT2). Six weeks of exercise training by treadmill running, but not an acute exercise bout, increased protein O-GlcNAcylation in rat soleus and EDL There was a striking increase in O-GlcNAcylation of cytoplasmic proteins ~50 kDa in size that judged from mass spectrometry analysis could represent O-GlcNAcylation of one or more key metabolic enzymes. This suggests that cytoplasmic O-GlcNAc signaling is part of the training response. In contrast to exercise training, postinfarction heart failure (HF) in rats and humans did not affect skeletal muscle O-GlcNAcylation level, indicating that aberrant O-GlcNAcylation cannot explain the skeletal muscle dysfunction in HF Human skeletal muscle displayed extensive protein O-GlcNAcylation that by large mirrored the fiber-type-related O-GlcNAcylation pattern in rats, suggesting O-GlcNAcylation as an important signaling system also in human skeletal muscle. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  11. Transverse dental compensation in relation to sagittal and transverse skeletal discrepancies in skeletal Class III patients.

    PubMed

    Ahn, Jaechan; Kim, Sung-Jin; Lee, Ji-Yeon; Chung, Chooryung J; Kim, Kyung-Ho

    2017-01-01

    The purposes of this study were to compare the buccolingual inclinations of the posterior teeth in skeletal Class III patients with and without facial asymmetry with those of skeletal Class I patients and to investigate their relationships with sagittal and transverse skeletal discrepancies. Sixty-three skeletal Class III adult patients were divided into 2 groups according to the degree of menton deviation: a symmetry group with deviation less than 2 mm (n = 30), and an asymmetry group with deviation greater than 4 mm (n = 33). The control group comprised 25 skeletal Class I patients. The buccolingual inclinations of the posterior teeth measured on cone-beam computed tomography images were compared among the 3 groups, and regression analysis was performed to investigate the relationships between the inclinations and the sagittal and transverse skeletal discrepancies. The symmetry group showed greater buccal inclinations of the maxillary posterior teeth and lingual inclinations of the mandibular second molars than did the control, and this was correlated with the ANB angles. The deviated sides in the asymmetry group showed the greatest transverse dental compensation, which was correlated with menton deviation, whereas the nondeviated sides showed no significant transverse dental compensation. Transverse dental compensation is closely related to sagittal and transverse skeletal discrepancy in skeletal Class III patients. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  12. Bone and Skeletal Muscle: Key Players in Mechanotransduction and Potential Overlapping Mechanisms

    PubMed Central

    Goodman, Craig A.; Hornberger, Troy A.; Robling, Alexander G.

    2015-01-01

    The development and maintenance of skeletal muscle and bone mass is critical for movement, health and issues associated with the quality of life. Skeletal muscle and bone mass are regulated by a variety of factors that include changes in mechanical loading. Moreover, bone mass is, in large part, regulated by muscle-derived mechanical forces and thus by changes in muscle mass/strength. A thorough understanding of the cellular mechanism(s) responsible for mechanotransduction in bone and skeletal muscle is essential for the development of effective exercise and pharmaceutical strategies aimed at increasing, and/or preventing the loss of, mass in these tissues. Thus, in this review we will attempt to summarize the current evidence for the major molecular mechanisms involved in mechanotransduction in skeletal muscle and bone. By examining the differences and similarities in mechanotransduction between these two tissues, it is hoped that this review will stimulate new insights and ideas for future research and promote collaboration between bone and muscle biologists. PMID:26453495

  13. The skeletal consequences of thyrotoxicosis.

    PubMed

    Nicholls, Jonathan J; Brassill, Mary Jane; Williams, Graham R; Bassett, J H Duncan

    2012-06-01

    Euthyroid status is essential for normal skeletal development and the maintenance of adult bone structure and strength. Established thyrotoxicosis has long been recognised as a cause of high bone turnover osteoporosis and fracture but more recent studies have suggested that subclinical hyperthyroidism and long-term suppressive doses of thyroxine (T4) may also result in decreased bone mineral density (BMD) and an increased risk of fragility fracture, particularly in postmenopausal women. Furthermore, large population studies of euthyroid individuals have demonstrated that a hypothalamic-pituitary-thyroid axis set point at the upper end of the normal reference range is associated with reduced BMD and increased fracture susceptibility. Despite these findings, the cellular and molecular mechanisms of thyroid hormone action in bone remain controversial and incompletely understood. In this review, we discuss the role of thyroid hormones in bone and the skeletal consequences of hyperthyroidism.

  14. FA composition of heart and skeletal muscle during embryonic development of the king penguin.

    PubMed

    Decrock, Frederic; Groscolas, Rene; Speake, Brian K

    2002-04-01

    Since the yolk lipids of the king penguin (Aptenodytes patagonicus) naturally contain the highest concentrations of DHA and EPA yet reported for the eggs of any avian species, the effects of this (n-3)-rich yolk on the FA profiles of the embryonic heart and skeletal muscle were investigated. The concentrations (mg/g wet tissue) of phospholipid (PL) in the developing heart and leg muscle of the penguin doubled between days 27 and 55 from the beginning of egg incubation (i.e., from the halfway stage of embryonic development to 2 d posthatch), whereas no net increase occurred in pectoral muscle. During this period, the concentration of TAG in heart decreased by half but increased two- and sixfold in leg and pectoral muscle, respectively. The most notable change in cholesteryl ester concentration occurred in pectoral muscle, increasing ninefold between days 27 and 55. Arachidonic acid (ARA) was the major polyunsaturate in PL of the penguin's heart, where it formed about 20% (w/w) of FA at day 55. At the equivalent developmental stage, the heart PL of the chicken contained a 1.3-fold greater proportion of ARA, contained a fifth less DHA, and was almost devoid of EPA, whereas the latter FA was a significant component (7% of FA) of penguin heart PL. Similarly, in PL of leg and pectoral muscle, the chicken displayed about 1.4-fold more ARA, up to 50% less DHA, and far less EPA in comparison with the penguin. Thus, although ARA-rich PL profiles are achieved in the heart and muscle of the penguin embryo, these profiles are significantly affected by the high n-3 content of the yolk.

  15. Development of Bone Targeting Drugs.

    PubMed

    Stapleton, Molly; Sawamoto, Kazuki; Alméciga-Díaz, Carlos J; Mackenzie, William G; Mason, Robert W; Orii, Tadao; Tomatsu, Shunji

    2017-06-23

    The skeletal system, comprising bones, ligaments, cartilage and their connective tissues, is critical for the structure and support of the body. Diseases that affect the skeletal system can be difficult to treat, mainly because of the avascular cartilage region. Targeting drugs to the site of action can not only increase efficacy but also reduce toxicity. Bone-targeting drugs are designed with either of two general targeting moieties, aimed at the entire skeletal system or a specific cell type. Most bone-targeting drugs utilize an affinity to hydroxyapatite, a major component of the bone matrix that includes a high concentration of positively-charged Ca 2+ . The strategies for designing such targeting moieties can involve synthetic and/or biological components including negatively-charged amino acid peptides or bisphosphonates. Efficient delivery of bone-specific drugs provides significant impact in the treatment of skeletal related disorders including infectious diseases (osteoarthritis, osteomyelitis, etc.), osteoporosis, and metabolic skeletal dysplasia. Despite recent advances, however, both delivering the drug to its target without losing activity and avoiding adverse local effects remain a challenge. In this review, we investigate the current development of bone-targeting moieties, their efficacy and limitations, and discuss future directions for the development of these specific targeted treatments.

  16. Development of Bone Targeting Drugs

    PubMed Central

    Stapleton, Molly; Sawamoto, Kazuki; Alméciga-Díaz, Carlos J.; Mackenzie, William G.; Mason, Robert W.; Orii, Tadao; Tomatsu, Shunji

    2017-01-01

    The skeletal system, comprising bones, ligaments, cartilage and their connective tissues, is critical for the structure and support of the body. Diseases that affect the skeletal system can be difficult to treat, mainly because of the avascular cartilage region. Targeting drugs to the site of action can not only increase efficacy but also reduce toxicity. Bone-targeting drugs are designed with either of two general targeting moieties, aimed at the entire skeletal system or a specific cell type. Most bone-targeting drugs utilize an affinity to hydroxyapatite, a major component of the bone matrix that includes a high concentration of positively-charged Ca2+. The strategies for designing such targeting moieties can involve synthetic and/or biological components including negatively-charged amino acid peptides or bisphosphonates. Efficient delivery of bone-specific drugs provides significant impact in the treatment of skeletal related disorders including infectious diseases (osteoarthritis, osteomyelitis, etc.), osteoporosis, and metabolic skeletal dysplasia. Despite recent advances, however, both delivering the drug to its target without losing activity and avoiding adverse local effects remain a challenge. In this review, we investigate the current development of bone-targeting moieties, their efficacy and limitations, and discuss future directions for the development of these specific targeted treatments. PMID:28644392

  17. Skeletal responses to spaceflight

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily R.; Arnaud, Sara B.

    1991-01-01

    The effect of gravity on the skeletal development and on the bone composition and its regulation in vertebrates is discussed. Results are presented from spaceflight and ground studies in both man and rat on the effect of microgravity on the bone-mineral metabolism (in both species) and on bone maturation and growth (in rats). Special attention is given to a ground-based flight-simulation rat model developed at NASA's Ames Research Center for studies of bone structure at the molecular, organ, and whole-body levels and to comparisons of estimated results with spaceflight data.

  18. An Assessment of Correlation between Dermatoglyphic Patterns and Sagittal Skeletal Discrepancies

    PubMed Central

    Philip, Biju; Madathody, Deepika; Mathew, Manu; Paul, Jose; Dlima, Johnson Prakash

    2017-01-01

    Introduction Investigators over years have been fascinated by dermatoglyphic patterns which has led to the development of dermatoglyphics as a science with numerous applications in various fields other than being the best and most widely used method for personal identification. Aim To assess the correlation between dermatoglyphic patterns and sagittal skeletal discrepancies. Materials and Methods A total of 180 patients, aged 18-40 years, were selected from those who attended the outpatient clinic of the Deparment of Orthodontics and Dentofacial Orthopedics, Mar Baselios Dental College, Kothamangalam, Kerala, India. The fingerprints of both hands were taken by ink and stamp method after proper hand washing. The patterns of arches, loops and whorls in fingerprints were assessed. The total ridge count was also evaluated. Data was also sent to the fingerprint experts for expert evaluation. The sagittal jaw relation was determined from the patient’s lateral cephalogram. The collected data was then statistically analyzed using Chi-square tests, ANOVA and Post-hoc tests and a Multinomial regression prediction was also done. Results A significant association was observed between the dermatoglyphic pattern exhibited by eight fingers and the sagittal skeletal discrepancies (p<0.05). An increased distribution of whorl pattern was observed in the skeletal Class II with maxillary excess group and skeletal Class II with mandibular deficiency group while an increased distribution of loop pattern was seen in the skeletal Class III with mandibular excess group and skeletal Class III with maxillary deficiency group. Higher mean of total ridge count was also seen in the groups of skeletal Class II with maxillary excess and skeletal Class II with mandibular deficiency. Multinomial regression predicting skeletal pattern with respect to the fingerprint pattern showed that the left thumb impression fits the best model for predicting the skeletal pattern. Conclusion There was a

  19. In Vivo Rodent Models of Skeletal Muscle Adaptation to Decreased Use.

    PubMed

    Cho, Su Han; Kim, Jang Hoe; Song, Wook

    2016-03-01

    Skeletal muscle possesses plasticity and adaptability to external and internal physiological changes. Due to these characteristics, skeletal muscle shows dramatic changes depending on its response to stimuli such as physical activity, nutritional changes, disease status, and environmental changes. Modulation of the rate of protein synthesis/degradation plays an important role in atrophic responses. The purpose of this review is to describe different features of skeletal muscle adaptation with various models of deceased use. In this review, four models were addressed: immobilization, spinal cord transection, hindlimb unloading, and aging. Immobilization is a form of decreased use in which skeletal muscle shows electrical activity, tension development, and motion. These results differ by muscle group. Spinal cord transection was selected to simulate spinal cord injury. Similar to the immobilization model, dramatic atrophy occurs in addition to fiber type conversion in this model. Despite the fact that electromyography shows unremarkable changes in muscle after hindlimb unloading, decreased muscle mass and contractile force are observed. Lastly, aging significantly decreases the numbers of muscle fibers and motor units. Skeletal muscle responses to decreased use include decreased strength, decreased fiber numbers, and fiber type transformation. These four models demonstrated different changes in the skeletal muscle. This review elucidates the different skeletal muscle adaptations in these four decreased use animal models and encourages further studies.

  20. Biomarker evaluation of skeletal muscle toxicity following clofibrate administration in rats.

    PubMed

    Bodié, Karen; Buck, Wayne R; Pieh, Julia; Liguori, Michael J; Popp, Andreas

    2016-05-01

    The use of sensitive biomarkers to monitor skeletal muscle toxicity in preclinical toxicity studies is important for the risk assessment in humans during the development of a novel compound. Skeletal muscle toxicity in Sprague Dawley Rats was induced with clofibrate at different dose levels for 7 days to compare standard clinical pathology assays with novel skeletal muscle and cardiac muscle biomarkers, gene expression and histopathological changes. The standard clinical pathology assays aspartate aminotransferase (AST), alanine aminotransferase (ALT), and creatine kinase (CK) enzyme activity were compared to novel biomarkers fatty acid binding protein 3 (Fabp3), myosin light chain 3 (Myl3), muscular isoform of CK immunoreactivity (three isoforms CKBB, CKMM, CKMB), parvalbumin (Prv), skeletal troponin I (sTnI), cardiac troponin T (cTnT), cardiac troponin I (cTnI), CKMM, and myoglobin (Myo). The biomarker elevations were correlated to histopathological findings detected in several muscles and gene expression changes. Clofibrate predominantly induced skeletal muscle toxicity of type I fibers of low magnitude. Useful biomarkers for skeletal muscle toxicity were AST, Fabp3, Myl3, (CKMB) and sTnI. Measurements of CK enzyme activity by a standard clinical assay were not useful for monitoring clofibrate-induced skeletal muscle toxicity in the rat at the doses used in this study. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  1. Store-operated Ca(2+) entry (SOCE) contributes to normal skeletal muscle contractility in young but not in aged skeletal muscle.

    PubMed

    Thornton, Angela M; Zhao, Xiaoli; Weisleder, Noah; Brotto, Leticia S; Bougoin, Sylvain; Nosek, Thomas M; Reid, Michael; Hardin, Brian; Pan, Zui; Ma, Jianjie; Parness, Jerome; Brotto, Marco

    2011-06-01

    Muscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca(2+) to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. Using biophysical approaches, we previously showed that store-operated Ca(2+) entry (SOCE) is compromised in aged skeletal muscle but not in young ones. While important, a missing component from previous studies is whether or not SOCE function correlates with contractile function during aging. Here we test the contribution of extracellular Ca(2+) to contractile function of skeletal muscle during aging. First, we demonstrate graded coupling between SR Ca(2+) release channel-mediated Ca(2+) release and activation of SOCE. Inhibition of SOCE produced significant reduction of contractile force in young skeletal muscle, particularly at high frequency stimulation, and such effects were completely absent in aged skeletal muscle. Our data indicate that SOCE contributes to the normal physiological contractile response of young healthy skeletal muscle and that defective extracellular Ca(2+) entry through SOCE contributes to the reduced contractile force characteristic of aged skeletal muscle.

  2. FOXL2 modulates cartilage, skeletal development and IGF1-dependent growth in mice.

    PubMed

    Marongiu, Mara; Marcia, Loredana; Pelosi, Emanuele; Lovicu, Mario; Deiana, Manila; Zhang, Yonqing; Puddu, Alessandro; Loi, Angela; Uda, Manuela; Forabosco, Antonino; Schlessinger, David; Crisponi, Laura

    2015-07-02

    Haploinsufficiency of the FOXL2 transcription factor in humans causes Blepharophimosis/Ptosis/Epicanthus Inversus syndrome (BPES), characterized by eyelid anomalies and premature ovarian failure. Mice lacking Foxl2 recapitulate human eyelid/forehead defects and undergo female gonadal dysgenesis. We report here that mice lacking Foxl2 also show defects in postnatal growth and embryonic bone and cartilage formation. Foxl2 (-/-) male mice at different stages of development have been characterized and compared to wild type. Body length and weight were measured and growth curves were created. Skeletons were stained with alcian blue and/or alizarin red. Bone and cartilage formation was analyzed by Von Kossa staining and immunofluorescence using anti-FOXL2 and anti-SOX9 antibodies followed by confocal microscopy. Genes differentially expressed in skull vaults were evaluated by microarray analysis. Analysis of the GH/IGF1 pathway was done evaluating the expression of several hypothalamic-pituitary-bone axis markers by RT-qPCR. Compared to wild-type, Foxl2 null mice are smaller and show skeletal abnormalities and defects in cartilage and bone mineralization, with down-regulation of the GH/IGF1 axis. Consistent with these effects, we find FOXL2 expressed in embryos at 9.5 dpc in neural tube epithelium, in head mesenchyme near the neural tube, and within the first branchial arch; then, starting at 12.5 dpc, expressed in cartilaginous tissue; and at PO and P7, in hypothalamus. Our results support FOXL2 as a master transcription factor in a spectrum of developmental processes, including growth, cartilage and bone formation. Its action overlaps that of SOX9, though they are antagonistic in female vs male gonadal sex determination but conjoint in cartilage and skeletal development.

  3. Bone deformities and skeletal malformations in the Roman Imperial Age.

    PubMed

    Minozzi, Simona; Catalano, Paola; Pantano, Walter; Caldarini, Carla; Fornaciari, Gino

    2014-01-01

    This paper describes some cases of individuals affected by skeletal deformities resulting in "freak" appearance. The skeletal remains were found during large archaeological excavations in the Roman territory, carried out by the Special Superintendence to the Archeological Heritage of Rome in the last years, dated back to the Imperial Age. The first cases reported are referred to two growth disorders with opposite effects: a case of dwarfism and another of gigantism. The former concerns a young man from the Collatina necropolis with very short and malformed limbs, which allowed a diagnosis of acondroplasic dwarfism, a rare congenital disorder that limits height below 130 cm. The latter case comes from the necropolis of Torre Serpentana in Fidenae, and is instead referred to a young person of very high stature, about 204 cm, suffering from Gigantism, a rare condition which in this case seems to have been linked to a hormonal dysfunction due to a pituitary adenoma. A third case regards a joint disease affecting the vertebral column and causing severe deformities. The skeleton was found in the Collatina necropolis and belongs to an old woman, suffering from ankylosing spondylitis. Finally, the last and very peculiar case is related to an individual recovered in the necropolis of Castel Malnome. The skeletal remains belong to an adult man with a complete fusion of the temporo-mandibular joint, which compromised mastication and caused severe deformation of the maxillofacial complex. These cases are described in detail together with the possible implications that these deformities could have on in the social context.

  4. Skeletal development and abnormalities of the vertebral column and of the fins in hatchery-reared turbot Scophthalmus maximus.

    PubMed

    Tong, X H; Liu, Q H; Xu, S H; Ma, D Y; Xiao, Z Z; Xiao, Y S; Li, J

    2012-03-01

    To describe the skeletal development and abnormalities in turbot Scophthalmus maximus, samples were collected every day from hatching to 60 days after hatching (DAH). A whole-mount cartilage and bone-staining technique was used. Vertebral ontogeny started with the formation of anterior haemal arches at 5·1 mm standard length (L(S) ) c. 11 DAH, and was completed by the full attainment of parapophyses at 16·9 mm L(S) c. 31 DAH. Vertebral centra started to develop at 6·3 mm L(S) c. 16 DAH and ossification in all centra was visible at 11·0 mm L(S) c. 25 DAH. The caudal fin appeared at 5·1 mm L(S) c. 11 DAH and ossification was visible at 20·6 mm L(S) c. 37 DAH. The onset of dorsal and anal fin elements appeared at 5·8 mm L(S) c. 15 DAH and 6·3 mm L(S) c. 16 DAH, respectively. Ossifications of both dorsal fin and anal fin were visible at 20·6 mm L(S) c. 37 DAH. The pectorals were the only fins present before first feeding, their ossifications were completed at 23·5 mm L(S) c. 48 DAH. Pelvic fins began forming at 7·2 mm L(S) c. 19 DAH and calcification of the whole structure was visible at 19·8 mm L(S) c. 36 DAH. In the present study, 24 types of skeletal abnormalities were observed. About 51% of individuals presented skeletal abnormalities, and the highest occurrence was found in the haemal region of the vertebral column. As for each developmental stage, the most common abnormalities were in the dorsal fin during early metamorphic period (stage 2), vertebral fusion during climax metamorphosis (stage 3) and caudal fin abnormality during both late-metamorphic period (stage 4) and post-metamorphic period (stage 5). Such research will be useful for early detection of skeletal malformations during different growth periods of reared S. maximus. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  5. In utero Undernutrition Programs Skeletal and Cardiac Muscle Metabolism

    PubMed Central

    Beauchamp, Brittany; Harper, Mary-Ellen

    2016-01-01

    In utero undernutrition is associated with increased risk for insulin resistance, obesity, and cardiovascular disease during adult life. A common phenotype associated with low birth weight is reduced skeletal muscle mass. Given the central role of skeletal muscle in whole body metabolism, alterations in its mass as well as its metabolic characteristics may contribute to disease risk. This review highlights the metabolic alterations in cardiac and skeletal muscle associated with in utero undernutrition and low birth weight. These tissues have high metabolic demands and are known to be sites of major metabolic dysfunction in obesity, type 2 diabetes, and cardiovascular disease. Recent research demonstrates that mitochondrial energetics are decreased in skeletal and cardiac muscles of adult offspring from undernourished mothers. These effects apparently lead to the development of a thrifty phenotype, which may represent overall a compensatory mechanism programmed in utero to handle times of limited nutrient availability. However, in an environment characterized by food abundance, the effects are maladaptive and increase adulthood risks of metabolic disease. PMID:26779032

  6. Aerobic Exercise and Pharmacological Therapies for Skeletal Myopathy in Heart Failure: Similarities and Differences

    PubMed Central

    Bacurau, Aline V.; Cunha, Telma F.; Souza, Rodrigo W.; Voltarelli, Vanessa A.; Gabriel-Costa, Daniele; Brum, Patricia C.

    2016-01-01

    Skeletal myopathy has been identified as a major comorbidity of heart failure (HF) affecting up to 20% of ambulatory patients leading to shortness of breath, early fatigue, and exercise intolerance. Neurohumoral blockade, through the inhibition of renin angiotensin aldosterone system (RAS) and β-adrenergic receptor blockade (β-blockers), is a mandatory pharmacological therapy of HF since it reduces symptoms, mortality, and sudden death. However, the effect of these drugs on skeletal myopathy needs to be clarified, since exercise intolerance remains in HF patients optimized with β-blockers and inhibitors of RAS. Aerobic exercise training (AET) is efficient in counteracting skeletal myopathy and in improving functional capacity and quality of life. Indeed, AET has beneficial effects on failing heart itself despite being of less magnitude compared with neurohumoral blockade. In this way, AET should be implemented in the care standards, together with pharmacological therapies. Since both neurohumoral inhibition and AET have a direct and/or indirect impact on skeletal muscle, this review aims to provide an overview of the isolated effects of these therapeutic approaches in counteracting skeletal myopathy in HF. The similarities and dissimilarities of neurohumoral inhibition and AET therapies are also discussed to identify potential advantageous effects of these combined therapies for treating HF. PMID:26904163

  7. Characterization of human skeletal stem and bone cell populations using dielectrophoresis.

    PubMed

    Ismail, A; Hughes, M P; Mulhall, H J; Oreffo, R O C; Labeed, F H

    2015-02-01

    Dielectrophoresis (DEP) is a non-invasive cell analysis method that uses differences in electrical properties between particles and surrounding medium to determine a unique set of cellular properties that can be used as a basis for cell separation. Cell-based therapies using skeletal stem cells are currently one of the most promising areas for treating a variety of skeletal and muscular disorders. However, identifying and sorting these cells remains a challenge in the absence of unique skeletal stem cell markers. DEP provides an ideal method for identifying subsets of cells without the need for markers by using their dielectric properties. This study used a 3D dielectrophoretic well chip device to determine the dielectric characteristics of two osteosarcoma cell lines (MG-63 and SAOS-2) and an immunoselected enriched skeletal stem cell fraction (STRO-1 positive cell) of human bone marrow. Skeletal cells were exposed to a series of different frequencies to induce dielectrophoretic cell movement, and a model was developed to generate the membrane and cytoplasmic properties of the cell populations. Differences were observed in the dielectric properties of MG-63, SAOS-2 and STRO-1 enriched skeletal populations, which could potentially be used to sort cells in mixed populations. This study provide evidence of the ability to characterize different human skeletal stem and mature cell populations, and acts as a proof-of-concept that dielectrophoresis can be exploited to detect, isolate and separate skeletal cell populations from heterogeneous bone marrow cell populations. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Influence of racial origin and skeletal muscle properties on disease prevalence and physical performance.

    PubMed

    Suminski, Richard R; Mattern, Craig O; Devor, Steven T

    2002-01-01

    Skeletal muscle properties are related to disease (e.g. obesity) and physical performance. For example, a predominance of type I muscle fibres is associated with better performance in endurance sports and a lower risk of obesity. Disease and physical performance also differ among certain racial groups. African Americans are more likely than Caucasians to develop obesity, diabetes mellitus and hypertension. Empirical studies indicate that aerobic capacity is lower in African Americans than Caucasians. Because genetics is a partial determinant of skeletal muscle properties, it is reasonable to assume that skeletal muscle properties vary as a function of race. As such, genetically determined and race-specific skeletal muscle properties may partially explain racial disparities in disease and physical performance. However, additional research is needed in this area to enable the development of more definitive conclusions.

  9. Skeletal and cardiac muscle pericytes: Functions and therapeutic potential

    PubMed Central

    Murray, Iain R.; Baily, James E.; Chen, William C.W.; Dar, Ayelet; Gonzalez, Zaniah N.; Jensen, Andrew R.; Petrigliano, Frank A.; Deb, Arjun; Henderson, Neil C.

    2017-01-01

    Pericytes are periendothelial mesenchymal cells residing within the microvasculature. Skeletal muscle and cardiac pericytes are now recognized to fulfill an increasing number of functions in normal tissue homeostasis, including contributing to microvascular function by maintaining vessel stability and regulating capillary flow. In the setting of muscle injury, pericytes contribute to a regenerative microenvironment through release of trophic factors and by modulating local immune responses. In skeletal muscle, pericytes also directly enhance tissue healing by differentiating into myofibers. Conversely, pericytes have also been implicated in the development of disease states, including fibrosis, heterotopic ossication and calcification, atherosclerosis, and tumor angiogenesis. Despite increased recognition of pericyte heterogeneity, it is not yet clear whether specific subsets of pericytes are responsible for individual functions in skeletal and cardiac muscle homeostasis and disease. PMID:27595928

  10. Histological image data of limb skeletal tissue from larval and adult Ambystoma mexicanum.

    PubMed

    McCusker, Catherine D; Diaz-Castillo, Carlos; Sosnik, Julian; Phan, Anne; Gardiner, David M

    2016-09-01

    The data presented in this article are related to the article entitled "Cartilage and bone cells do not participate in skeletal regeneration in Ambystoma mexicanum limbs" [1]. Here we present image data of the post-embryonic development of the forelimb skeletal tissue of Ambystoma Mexicanum. Histological staining was performed on sections from the intact limbs of young (6.5 cm) and old (25 cm) animals, and on dissected skeletal tissues (cartilage, bone, and periosteum) from these animals.

  11. Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways.

    PubMed

    Rodriguez, J; Vernus, B; Chelh, I; Cassar-Malek, I; Gabillard, J C; Hadj Sassi, A; Seiliez, I; Picard, B; Bonnieu, A

    2014-11-01

    Myostatin, a member of the transforming growth factor-β superfamily, is a potent negative regulator of skeletal muscle growth and is conserved in many species, from rodents to humans. Myostatin inactivation can induce skeletal muscle hypertrophy, while its overexpression or systemic administration causes muscle atrophy. As it represents a potential target for stimulating muscle growth and/or preventing muscle wasting, myostatin regulation and functions in the control of muscle mass have been extensively studied. A wealth of data strongly suggests that alterations in skeletal muscle mass are associated with dysregulation in myostatin expression. Moreover, myostatin plays a central role in integrating/mediating anabolic and catabolic responses. Myostatin negatively regulates the activity of the Akt pathway, which promotes protein synthesis, and increases the activity of the ubiquitin-proteasome system to induce atrophy. Several new studies have brought new information on how myostatin may affect both ribosomal biogenesis and translation efficiency of specific mRNA subclasses. In addition, although myostatin has been identified as a modulator of the major catabolic pathways, including the ubiquitin-proteasome and the autophagy-lysosome systems, the underlying mechanisms are only partially understood. The goal of this review is to highlight outstanding questions about myostatin-mediated regulation of the anabolic and catabolic signaling pathways in skeletal muscle. Particular emphasis has been placed on (1) the cross-regulation between myostatin, the growth-promoting pathways and the proteolytic systems; (2) how myostatin inhibition leads to muscle hypertrophy; and (3) the regulation of translation by myostatin.

  12. Skeletal maturation, fundamental motor skills and motor coordination in children 7-10 years.

    PubMed

    Freitas, Duarte L; Lausen, Berthold; Maia, José António; Lefevre, Johan; Gouveia, Élvio Rúbio; Thomis, Martine; Antunes, António Manuel; Claessens, Albrecht L; Beunen, Gaston; Malina, Robert M

    2015-01-01

    Relationships between skeletal maturation and fundamental motor skills and gross motor coordination were evaluated in 429 children (213 boys and 216 girls) 7-10 years. Skeletal age was assessed (Tanner-Whitehouse 2 method), and stature, body mass, motor coordination (Körperkoordinations Test für Kinder, KTK) and fundamental motor skills (Test of Gross Motor Development, TGMD-2) were measured. Relationships among chronological age, skeletal age (expressed as the standardised residual of skeletal age on chronological age) and body size and fundamental motor skills and motor coordination were analysed with hierarchical multiple regression. Standardised residual of skeletal age on chronological age interacting with stature and body mass explained a maximum of 7.0% of the variance in fundamental motor skills and motor coordination over that attributed to body size per se. Standardised residual of skeletal age on chronological age alone accounted for a maximum of 9.0% of variance in fundamental motor skills, and motor coordination over that attributed to body size per se and interactions between standardised residual of skeletal age on chronological age and body size. In conclusion, skeletal age alone or interacting with body size has a negligible influence on fundamental motor skills and motor coordination in children 7-10 years.

  13. Store-Operated Ca2+ Entry (SOCE) Contributes to Normal Skeletal Muscle Contractility in young but not in aged skeletal muscle

    PubMed Central

    Brotto, Leticia S.; Bougoin, Sylvain; Nosek, Thomas M.; Reid, Michael; Hardin, Brian; Pan, Zui; Ma, Jianjie; Parness, Jerome

    2011-01-01

    Muscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca2+ to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. Using biophysical approaches, we previously showed that store-operated Ca2+ entry (SOCE) is compromised in aged skeletal muscle but not in young ones. While important, a missing component from previous studies is whether or not SOCE function correlates with contractile function during aging. Here we test the contribution of extracellular Ca2+ to contractile function of skeletal muscle during aging. First, we demonstrate graded coupling between SR Ca2+ release channel-mediated Ca2+ release and activation of SOCE. Inhibition of SOCE produced significant reduction of contractile force in young skeletal muscle, particularly at high frequency stimulation, and such effects were completely absent in aged skeletal muscle. Our data indicate that SOCE contributes to the normal physiological contractile response of young healthy skeletal muscle and that defective extracellular Ca2+ entry through SOCE contributes to the reduced contractile force characteristic of aged skeletal muscle. PMID:21666285

  14. Chronic losartan administration reduces mortality and preserves cardiac but not skeletal muscle function in dystrophic mice.

    PubMed

    Bish, Lawrence T; Yarchoan, Mark; Sleeper, Meg M; Gazzara, Jeffrey A; Morine, Kevin J; Acosta, Pedro; Barton, Elisabeth R; Sweeney, H Lee

    2011-01-01

    Duchenne muscular dystrophy (DMD) is a degenerative disorder affecting skeletal and cardiac muscle for which there is no effective therapy. Angiotension receptor blockade (ARB) has excellent therapeutic potential in DMD based on recent data demonstrating attenuation of skeletal muscle disease progression during 6-9 months of therapy in the mdx mouse model of DMD. Since cardiac-related death is major cause of mortality in DMD, it is important to evaluate the effect of any novel treatment on the heart. Therefore, we evaluated the long-term impact of ARB on both the skeletal muscle and cardiac phenotype of the mdx mouse. Mdx mice received either losartan (0.6 g/L) (n = 8) or standard drinking water (n = 9) for two years, after which echocardiography was performed to assess cardiac function. Skeletal muscle weight, morphology, and function were assessed. Fibrosis was evaluated in the diaphragm and heart by Trichrome stain and by determination of tissue hydroxyproline content. By the study endpoint, 88% of treated mice were alive compared to only 44% of untreated (p = 0.05). No difference in skeletal muscle morphology, function, or fibrosis was noted in losartan-treated animals. Cardiac function was significantly preserved with losartan treatment, with a trend towards reduction in cardiac fibrosis. We saw no impact on the skeletal muscle disease progression, suggesting that other pathways that trigger fibrosis dominate over angiotensin II in skeletal muscle long term, unlike the situation in the heart. Our study suggests that ARB may be an important prophylactic treatment for DMD-associated cardiomyopathy, but will not impact skeletal muscle disease.

  15. Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1.

    PubMed

    Sylow, Lykke; Møller, Lisbeth L V; Kleinert, Maximilian; Richter, Erik A; Jensen, Thomas E

    2015-02-01

    Rac1 regulates stretch-stimulated (i.e. mechanical stress) glucose transport in muscle. Actin depolymerization decreases stretch-induced glucose transport in skeletal muscle. Rac1 is a required part of the mechanical stress-component of the contraction-stimulus to glucose transport in skeletal muscle. An alternative to the canonical insulin signalling pathway for glucose transport is muscle contraction/exercise. Mechanical stress is an integrated part of the muscle contraction/relaxation cycle, and passive stretch stimulates muscle glucose transport. However, the signalling mechanism regulating stretch-stimulated glucose transport is not well understood. We recently reported that the actin cytoskeleton regulating GTPase, Rac1, was activated in mouse muscle in response to stretching. Rac1 is a regulator of contraction- and insulin-stimulated glucose transport, however, its role in stretch-stimulated glucose transport and signalling is unknown. We therefore investigated whether stretch-induced glucose transport in skeletal muscle required Rac1 and the actin cytoskeleton. We used muscle-specific inducible Rac1 knockout mice as well as pharmacological inhibitors of Rac1 and the actin cytoskeleton in isolated soleus and extensor digitorum longus muscles. In addition, the role of Rac1 in contraction-stimulated glucose transport during conditions without mechanical load on the muscles was evaluated in loosely hanging muscles and muscles in which cross-bridge formation was blocked by the myosin ATPase inhibitors BTS and Blebbistatin. Knockout as well as pharmacological inhibition of Rac1 reduced stretch-stimulated glucose transport by 30-50% in soleus and extensor digitorum longus muscle. The actin depolymerizing agent latrunculin B similarly decreased glucose transport in response to stretching by 40-50%. Rac1 inhibition reduced contraction-stimulated glucose transport by 30-40% in tension developing muscle but did not affect contraction-stimulated glucose transport in

  16. Effects of the belt electrode skeletal muscle electrical stimulation system on lower extremity skeletal muscle activity: Evaluation using positron emission tomography.

    PubMed

    Numata, Hitoaki; Nakase, Junsuke; Inaki, Anri; Mochizuki, Takafumi; Oshima, Takeshi; Takata, Yasushi; Kinuya, Seigo; Tsuchiya, Hiroyuki

    2016-01-01

    Lower-extremity muscle weakness in athletes after lower limb trauma or surgery can hinder their return to sports, and the associated muscle atrophy may lead to deterioration in performance after returning to sports. Recently, belt electrode skeletal muscle electrical stimulation (B-SES) which can contract all the lower limb skeletal muscles simultaneously was developed. However, no study has evaluated skeletal muscle activity with B-SES. Since only superficial muscles as well as a limited number of muscles can be investigated using electromyography, we investigated whether positron emission tomography (PET) can evaluate the activity of all the skeletal muscles in the body simultaneously. The purpose of this study was to evaluate the effectiveness of the B-SES system using PET. Twelve healthy males (mean age, 24.3 years) were divided into two groups. The subjects in the control group remained in a sitting position for 10 min, and [(18)F] fluorodeoxyglucose (FDG) was intravenously injected. In the exercise group, subjects exercised using the B-SES system for 20 min daily for three consecutive days as a pre-test exercise. On the measurement day, they exercised for 10 min, received an injection of FDG, and exercised for another 10 min. PET-computed tomography images were obtained in each group 60 min after the FDG injection. Regions of interest were drawn in each lower-extremity muscle. We compared each skeletal muscle metabolism using the standardized uptake value. In the exercise group, FDG accumulation in the gluteus maximus, gluteus medius, gluteus minimus, quadriceps femoris, sartorius, and hamstrings was significantly higher than the muscles in the control (P < 0.05). Exercise with B-SES increased the skeletal muscle activity of the gluteal muscles as well as the most lower-extremity muscles simultaneously. Copyright © 2015 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  17. Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models

    PubMed Central

    Su, Nan; Jin, Min; Chen, Lin

    2014-01-01

    Fibroblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) signaling plays essential roles in bone development and diseases. Missense mutations in FGFs and FGFRs in humans can cause various congenital bone diseases, including chondrodysplasia syndromes, craniosynostosis syndromes and syndromes with dysregulated phosphate metabolism. FGF/FGFR signaling is also an important pathway involved in the maintenance of adult bone homeostasis. Multiple kinds of mouse models, mimicking human skeleton diseases caused by missense mutations in FGFs and FGFRs, have been established by knock-in/out and transgenic technologies. These genetically modified mice provide good models for studying the role of FGF/FGFR signaling in skeleton development and homeostasis. In this review, we summarize the mouse models of FGF signaling-related skeleton diseases and recent progresses regarding the molecular mechanisms, underlying the role of FGFs/FGFRs in the regulation of bone development and homeostasis. This review also provides a perspective view on future works to explore the roles of FGF signaling in skeletal development and homeostasis. PMID:26273516

  18. Does skeletal muscle have an 'epi'-memory? The role of epigenetics in nutritional programming, metabolic disease, aging and exercise.

    PubMed

    Sharples, Adam P; Stewart, Claire E; Seaborne, Robert A

    2016-08-01

    Skeletal muscle mass, quality and adaptability are fundamental in promoting muscle performance, maintaining metabolic function and supporting longevity and healthspan. Skeletal muscle is programmable and can 'remember' early-life metabolic stimuli affecting its function in adult life. In this review, the authors pose the question as to whether skeletal muscle has an 'epi'-memory? Following an initial encounter with an environmental stimulus, we discuss the underlying molecular and epigenetic mechanisms enabling skeletal muscle to adapt, should it re-encounter the stimulus in later life. We also define skeletal muscle memory and outline the scientific literature contributing to this field. Furthermore, we review the evidence for early-life nutrient stress and low birth weight in animals and human cohort studies, respectively, and discuss the underlying molecular mechanisms culminating in skeletal muscle dysfunction, metabolic disease and loss of skeletal muscle mass across the lifespan. We also summarize and discuss studies that isolate muscle stem cells from different environmental niches in vivo (physically active, diabetic, cachectic, aged) and how they reportedly remember this environment once isolated in vitro. Finally, we will outline the molecular and epigenetic mechanisms underlying skeletal muscle memory and review the epigenetic regulation of exercise-induced skeletal muscle adaptation, highlighting exercise interventions as suitable models to investigate skeletal muscle memory in humans. We believe that understanding the 'epi'-memory of skeletal muscle will enable the next generation of targeted therapies to promote muscle growth and reduce muscle loss to enable healthy aging. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. Crossroads between peripheral atherosclerosis, western-type diet and skeletal muscle pathophysiology: emphasis on apolipoprotein E deficiency and peripheral arterial disease.

    PubMed

    Sfyri, Peggy; Matsakas, Antonios

    2017-07-08

    Atherosclerosis is a chronic inflammatory process that, in the presence of hyperlipidaemia, promotes the formation of atheromatous plaques in large vessels of the cardiovascular system. It also affects peripheral arteries with major implications for a number of other non-vascular tissues such as the skeletal muscle, the liver and the kidney. The aim of this review is to critically discuss and assimilate current knowledge on the impact of peripheral atherosclerosis and its implications on skeletal muscle homeostasis. Accumulating data suggests that manifestations of peripheral atherosclerosis in skeletal muscle originates in a combination of increased i)-oxidative stress, ii)-inflammation, iii)-mitochondrial deficits, iv)-altered myofibre morphology and fibrosis, v)-chronic ischemia followed by impaired oxygen supply, vi)-reduced capillary density, vii)- proteolysis and viii)-apoptosis. These structural, biochemical and pathophysiological alterations impact on skeletal muscle metabolic and physiologic homeostasis and its capacity to generate force, which further affects the individual's quality of life. Particular emphasis is given on two major areas representing basic and applied science respectively: a)-the abundant evidence from a well-recognised atherogenic model; the Apolipoprotein E deficient mouse and the role of a western-type diet and b)-on skeletal myopathy and oxidative stress-induced myofibre damage from human studies on peripheral arterial disease. A significant source of reactive oxygen species production and oxidative stress in cardiovascular disease is the family of NADPH oxidases that contribute to several pathologies. Finally, strategies targeting NADPH oxidases in skeletal muscle in an attempt to attenuate cellular oxidative stress are highlighted, providing a better understanding of the crossroads between peripheral atherosclerosis and skeletal muscle pathophysiology.

  20. Insulin resistance after a 72-h fast is associated with impaired AS160 phosphorylation and accumulation of lipid and glycogen in human skeletal muscle

    PubMed Central

    Vendelbo, M. H.; Clasen, B. F. F.; Treebak, J. T.; Møller, L.; Krusenstjerna-Hafstrøm, T.; Madsen, M.; Nielsen, T. S.; Stødkilde-Jørgensen, H.; Pedersen, S. B.; Jørgensen, J. O. L.; Goodyear, L. J.; Wojtaszewski, J. F. P.; Møller, N.

    2012-01-01

    During fasting, human skeletal muscle depends on lipid oxidation for its energy substrate metabolism. This is associated with the development of insulin resistance and a subsequent reduction of insulin-stimulated glucose uptake. The underlying mechanisms controlling insulin action on skeletal muscle under these conditions are unresolved. In a randomized design, we investigated eight healthy subjects after a 72-h fast compared with a 10-h overnight fast. Insulin action on skeletal muscle was assessed by a hyperinsulinemic euglycemic clamp and by determining insulin signaling to glucose transport. In addition, substrate oxidation, skeletal muscle lipid content, regulation of glycogen synthesis, and AMPK signaling were assessed. Skeletal muscle insulin sensitivity was reduced profoundly in response to a 72-h fast and substrate oxidation shifted to predominantly lipid oxidation. This was associated with accumulation of both lipid and glycogen in skeletal muscle. Intracellular insulin signaling to glucose transport was impaired by regulation of phosphorylation at specific sites on AS160 but not TBC1D1, both key regulators of glucose uptake. In contrast, fasting did not impact phosphorylation of AMPK or insulin regulation of Akt, both of which are established upstream kinases of AS160. These findings show that insulin resistance in muscles from healthy individuals is associated with suppression of site-specific phosphorylation of AS160, without Akt or AMPK being affected. This impairment of AS160 phosphorylation, in combination with glycogen accumulation and increased intramuscular lipid content, may provide the underlying mechanisms for resistance to insulin in skeletal muscle after a prolonged fast. PMID:22028408

  1. An Automated System for Skeletal Maturity Assessment by Extreme Learning Machines

    PubMed Central

    Mansourvar, Marjan; Shamshirband, Shahaboddin; Raj, Ram Gopal; Gunalan, Roshan; Mazinani, Iman

    2015-01-01

    Assessing skeletal age is a subjective and tedious examination process. Hence, automated assessment methods have been developed to replace manual evaluation in medical applications. In this study, a new fully automated method based on content-based image retrieval and using extreme learning machines (ELM) is designed and adapted to assess skeletal maturity. The main novelty of this approach is it overcomes the segmentation problem as suffered by existing systems. The estimation results of ELM models are compared with those of genetic programming (GP) and artificial neural networks (ANNs) models. The experimental results signify improvement in assessment accuracy over GP and ANN, while generalization capability is possible with the ELM approach. Moreover, the results are indicated that the ELM model developed can be used confidently in further work on formulating novel models of skeletal age assessment strategies. According to the experimental results, the new presented method has the capacity to learn many hundreds of times faster than traditional learning methods and it has sufficient overall performance in many aspects. It has conclusively been found that applying ELM is particularly promising as an alternative method for evaluating skeletal age. PMID:26402795

  2. Skeletal Muscle Sorbitol Levels in Diabetic Rats with and without Insulin Therapy and Endurance Exercise Training

    PubMed Central

    Sánchez, O. A.; Walseth, T. F.; Snow, L. M.; Serfass, R. C.; Thompson, L. V.

    2009-01-01

    Sorbitol accumulation is postulated to play a role in skeletal muscle dysfunction associated with diabetes. The purpose of this study was to determine the effects of insulin and of endurance exercise on skeletal muscle sorbitol levels in streptozotocin-induced diabetic rats. Rats were assigned to one experimental group (control sedentary, control exercise, diabetic sedentary, diabetic exercise, diabetic sedentary no-insulin). Diabetic rats received daily subcutaneous insulin. The exercise-trained rats ran on a treadmill (1 hour, 5X/wk, for 12 weeks). Skeletal muscle sorbitol levels were the highest in the diabetic sedentary no-insulin group. Diabetic sedentary rats receiving insulin had similar sorbitol levels to control sedentary rats. Endurance exercise did not significantly affect sorbitol levels. These results indicate that insulin treatment lowers sorbitol in skeletal muscle; therefore sorbitol accumulation is probably not related to muscle dysfunction in insulin-treated diabetic individuals. Endurance exercise did not influence intramuscular sorbitol values as strongly as insulin. PMID:20016800

  3. Adipose triglyceride lipase decrement affects skeletal muscle homeostasis during aging through FAs-PPARα-PGC-1α antioxidant response.

    PubMed

    Aquilano, Katia; Baldelli, Sara; La Barbera, Livia; Lettieri Barbato, Daniele; Tatulli, Giuseppe; Ciriolo, Maria Rosa

    2016-04-26

    During aging skeletal muscle shows an accumulation of oxidative damage as well as intramyocellular lipid droplets (IMLDs). However, although the impact of these modifications on muscle tissue physiology is well established, the direct effectors critical for their occurrence are poorly understood. Here we show that during aging the main lipase of triacylglycerols, ATGL, significantly declines in gastrocnemius and its downregulation in C2C12 myoblast leads to the accumulation of lipid droplets. Indeed, we observed an increase of oxidative damage to proteins in terms of carbonylation, S-nitrosylation and ubiquitination that is dependent on a defective antioxidant cell response mediated by ATGL-PPARα-PGC-1α. Overall our findings describe a pivotal role for ATGL in the antioxidant/anti-inflammatory response of muscle cells highlighting this lipase as a therapeutic target for fighting the progressive decline in skeletal muscle mass and strength.

  4. Smad4 deficiency impairs chondrocyte hypertrophy via the Runx2 transcription factor in mouse skeletal development.

    PubMed

    Yan, Jianyun; Li, Jun; Hu, Jun; Zhang, Lu; Wei, Chengguo; Sultana, Nishat; Cai, Xiaoqiang; Zhang, Weijia; Cai, Chen-Leng

    2018-06-15

    Chondrocyte hypertrophy is the terminal step in chondrocyte differentiation and is crucial for endochondral bone formation. How signaling pathways regulate chondrocyte hypertrophic differentiation remains incompletely understood. In this study, using a Tbx18:Cre ( Tbx18 Cre /+ ) gene-deletion approach, we selectively deleted the gene for the signaling protein SMAD family member 4 ( Smad4 f/f ) in the limbs of mice. We found that the Smad4 -deficient mice develop a prominent shortened limb, with decreased expression of chondrocyte differentiation markers, including Col2a1 and Acan , in the humerus at mid-to-late gestation. The most striking defects in these mice were the absence of stylopod elements and failure of chondrocyte hypertrophy in the humerus. Moreover, expression levels of the chondrocyte hypertrophy-related markers Col10a1 and Panx3 were significantly decreased. Of note, we also observed that the expression of runt-related transcription factor 2 ( Runx2 ), a critical mediator of chondrocyte hypertrophy, was also down-regulated in Smad4 -deficient limbs. To determine how the skeletal defects arose in the mouse mutants, we performed RNA-Seq with ChIP-Seq analyses and found that Smad4 directly binds to regulatory elements in the Runx2 promoter. Our results suggest a new mechanism whereby Smad4 controls chondrocyte hypertrophy by up-regulating Runx2 expression during skeletal development. The regulatory mechanism involving Smad4-mediated Runx2 activation uncovered here provides critical insights into bone development and pathogenesis of chondrodysplasia. © 2018 Yan et al.

  5. Combination of small RNAs for skeletal muscle regeneration.

    PubMed

    Kim, NaJung; Yoo, James J; Atala, Anthony; Lee, Sang Jin

    2016-03-01

    Selectively controlling the expression of the target genes through RNA interference (RNAi) has significant therapeutic potential for injuries or diseases of tissues. We used this strategy to accelerate and enhance skeletal muscle regeneration for the treatment of muscular atrophy. In this study, we used myostatin small interfering (si)RNA (siGDF-8), a major inhibitory factor in the development and postnatal regeneration of skeletal muscle and muscle-specific microRNAs (miR-1 and -206) to further accelerate muscle regeneration. This combination of 3 small RNAs significantly improved the gene expression of myogenic regulatory factors in vitro, suggesting myogenic activation. Moreover, cell proliferation and myotube formation improved without compromising each other, which indicates the myogenic potential of this combination of small RNAs. The recovery of chemically injured tibialis anterior muscles in rats was significantly accelerated, both functionally and structurally. This novel combination of siRNA and miRNAs has promising therapeutic potential to improve in situ skeletal muscle regeneration. © FASEB.

  6. Contrasting roles for MyoD in organizing myogenic promoter structures during embryonic skeletal muscle development.

    PubMed

    Cho, Ok Hyun; Mallappa, Chandrashekara; Hernández-Hernández, J Manuel; Rivera-Pérez, Jaime A; Imbalzano, Anthony N

    2015-01-01

    Among the complexities of skeletal muscle differentiation is a temporal distinction in the onset of expression of different lineage-specific genes. The lineage-determining factor MyoD is bound to myogenic genes at the onset of differentiation whether gene activation is immediate or delayed. How temporal regulation of differentiation-specific genes is established remains unclear. Using embryonic tissue, we addressed the molecular differences in the organization of the myogenin and muscle creatine kinase (MCK) gene promoters by examining regulatory factor binding as a function of both time and spatial organization during somitogenesis. At the myogenin promoter, binding of the homeodomain factor Pbx1 coincided with H3 hyperacetylation and was followed by binding of co-activators that modulate chromatin structure. MyoD and myogenin binding occurred subsequently, demonstrating that Pbx1 facilitates chromatin remodeling and modification before myogenic regulatory factor binding. At the same time, the MCK promoter was bound by HDAC2 and MyoD, and activating histone marks were largely absent. The association of HDAC2 and MyoD was confirmed by co-immunoprecipitation, proximity ligation assay (PLA), and sequential ChIP. MyoD differentially promotes activated and repressed chromatin structures at myogenic genes early after the onset of skeletal muscle differentiation in the developing mouse embryo. © 2014 Wiley Periodicals, Inc.

  7. Computer-aided mechanogenesis of skeletal muscle organs from single cells in vitro

    NASA Technical Reports Server (NTRS)

    Vanderburgh, Herman H.; Swasdison, Somporn; Karlisch, Patricia

    1991-01-01

    Complex mechanical forces generated in the growing embryo play an important role in organogenesis. Computerized application of similar forces to differentiating skeletal muscle myoblasts in vitro generate three dimensional artificial muscle organs. These organs contain parallel networks of long unbranched myofibers organized into fascicle-like structures. Tendon development is initiated and the muscles are capable of performing directed, functional work. Kinetically engineered organs provide a new method for studying the growth and development of normal and diseased skeletal muscle.

  8. Computer aided mechanogenesis of skeletal muscle organs from single cells in vitro

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.; Swasdison, Somporn; Karlisch, Patricia

    1990-01-01

    Complex mechanical forces generated in the growing embryo play an important role in organogenesis. Computerized application of similar forces to differentiating skeletal muscle myoblasts in vitro generate three dimensional artificial muscle organs. These organs contain parallel networks of long unbranched myofibers organized into fascicle-like structures. Tendon development is initiated and the muscles are capable of performing directed, functional work. Kinetically engineered organs provide a new method for studying the growth and development of normal and diseased skeletal muscle.

  9. Recovery time course in contractile function of fast and slow skeletal muscle after hindlimb immobilization

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Kim, D. H.; Fitts, R. H.

    1982-01-01

    The present study was undertaken to characterize the time course and extent of recovery in the isometric and isotonic contractile properties of fast and slow skeletal muscle following 6 wk of hindlimb immobilization. Female Sprague-Dawley rats were randomly assigned to an immobilized group or a control group. The results of the study show that fast and slow skeletal muscles possess the ability to completely recover normal contractile function following 6 wk of hindlimb immobilization. The rate of recovery is dependent on the fiber type composition of the affected muscle.

  10. Autophagy is altered in skeletal and cardiac muscle of spontaneously hypertensive rats.

    PubMed

    Bloemberg, D; McDonald, E; Dulay, D; Quadrilatero, J

    2014-02-01

    Autophagy is a subcellular degradation mechanism important for muscle maintenance. Hypertension induces well-characterized pathological changes to the heart and is associated with impaired function and increased apoptotic signalling in skeletal muscle. We examined whether essential hypertension affects several autophagy markers in skeletal and cardiac muscle. Immunoblotting and qRT-PCR were used to measure autophagy-related proteins/mRNA in multiple skeletal muscles as well as left ventricle (LV) of spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). Skeletal muscles of hypertensive rats had decreased (P < 0.01) cross-sectional area of type I fibres (e.g. soleus WKY: 2952.9 ± 64.4 μm(2) vs. SHR: 2579.9 ± 85.8 μm(2)) and a fibre redistribution towards a 'fast' phenotype. Immunoblot analysis revealed that some SHR skeletal muscles displayed a decreased LC3II/I ratio (P < 0.05), but none showed differences in p62 protein. LC3 and LAMP2 mRNA levels were increased approx. 2-3-fold in all skeletal muscles (P < 0.05), while cathepsin activity, cathepsin L mRNA and Atg7 protein were increased 16-17% (P < 0.01), 2-3-fold (P < 0.05) and 29-49% (P < 0.01), respectively, in fast muscles of hypertensive animals. Finally, protein levels of BAG3, a marker of chaperone-assisted selective autophagy, were 18-25% lower (P < 0.05) in SHR skeletal muscles. In the LV of SHR, LC3I and p62 protein were elevated 34% (P < 0.05) and 47% (P < 0.01), respectively. Furthermore, p62 mRNA was 68% higher (P < 0.05), while LAMP2 mRNA was 45% lower (P < 0.05), in SHR cardiac muscle. There was no difference in Beclin1, Atg7, Bnip3 or BAG3 protein in the LV between strains. These results suggest that autophagy is altered in skeletal and cardiac muscle during hypertension. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  11. Prolonged Culture of Aligned Skeletal Myotubes on Micromolded Gelatin Hydrogels

    PubMed Central

    Bettadapur, Archana; Suh, Gio C.; Geisse, Nicholas A.; Wang, Evelyn R.; Hua, Clara; Huber, Holly A.; Viscio, Alyssa A.; Kim, Joon Young; Strickland, Julie B.; McCain, Megan L.

    2016-01-01

    In vitro models of skeletal muscle are critically needed to elucidate disease mechanisms, identify therapeutic targets, and test drugs pre-clinically. However, culturing skeletal muscle has been challenging due to myotube delamination from synthetic culture substrates approximately one week after initiating differentiation from myoblasts. In this study, we successfully maintained aligned skeletal myotubes differentiated from C2C12 mouse skeletal myoblasts for three weeks by utilizing micromolded (μmolded) gelatin hydrogels as culture substrates, which we thoroughly characterized using atomic force microscopy (AFM). Compared to polydimethylsiloxane (PDMS) microcontact printed (μprinted) with fibronectin (FN), cell adhesion on gelatin hydrogel constructs was significantly higher one week and three weeks after initiating differentiation. Delamination from FN-μprinted PDMS precluded robust detection of myotubes. Compared to a softer blend of PDMS μprinted with FN, myogenic index, myotube width, and myotube length on μmolded gelatin hydrogels was similar one week after initiating differentiation. However, three weeks after initiating differentiation, these parameters were significantly higher on μmolded gelatin hydrogels compared to FN-μprinted soft PDMS constructs. Similar results were observed on isotropic versions of each substrate, suggesting that these findings are independent of substrate patterning. Our platform enables novel studies into skeletal muscle development and disease and chronic drug testing in vitro. PMID:27350122

  12. Methods for the determination of skeletal muscle blood flow: development, strengths and limitations.

    PubMed

    Gliemann, Lasse; Mortensen, Stefan P; Hellsten, Ylva

    2018-06-01

    Since the first measurements of limb blood flow at rest and during nerve stimulation were conducted in the late 1800s, a number of methods have been developed for the determination of limb and skeletal muscle blood flow in humans. The methods, which have been applied in the study of aspects such as blood flow regulation, oxygen uptake and metabolism, differ in terms of strengths and degree of limitations but most have advantages for specific settings. The purpose of this review is to describe the origin and the basic principles of the methods, important aspects and requirements of the procedures. One of the earliest methods, venous occlusion plethysmography, is a noninvasive method which still is extensively used and which provides similar values as other more direct blood flow methods such as ultrasound Doppler. The constant infusion thermodilution method remains the most appropriate for the determination of blood flow during maximal exercise. For resting blood flow and light-to-moderate exercise, the non-invasive ultrasound Doppler methodology, if handled by a skilled operator, is recommendable. Positron emission tomography with radiolabeled water is an advanced method which requires highly sophisticated equipment and allows for the determination of muscle-specific blood flow, regional blood flows and estimate of blood flow heterogeneity within a muscle. Finally, the contrast-enhanced ultrasound method holds promise for assessment of muscle-specific blood flow, but the interpretation of the data obtained remains uncertain. Currently lacking is high-resolution methods for continuous visualization and monitoring of the skeletal muscle microcirculation in humans.

  13. Quantification of skeletal fraction volume of a soil pit by means of photogrammetry

    NASA Astrophysics Data System (ADS)

    Baruck, Jasmin; Zieher, Thomas; Bremer, Magnus; Rutzinger, Martin; Geitner, Clemens

    2015-04-01

    The grain size distribution of a soil is a key parameter determining soil water behaviour, soil fertility and land use potential. It plays an important role in soil classification and allows drawing conclusions on landscape development as well as soil formation processes. However, fine soil material (i.e. particle diameter ≤2 mm) is usually documented more thoroughly than the skeletal fraction (i.e. particle diameter >2 mm). While fine soil material is commonly analysed in the laboratory in order to determine the soil type, the skeletal fraction is typically estimated in the field at the profile. For a more precise determination of the skeletal fraction other methods can be applied and combined. These methods can be volume-related (sampling rings, percussion coring tubes) or non-volume-related (sieve of spade excavation). In this study we present a framework for the quantification of skeletal fraction volumes of a soil pit by means of photogrammetry. As a first step 3D point clouds of both soil pit and skeletal grains were generated. Therefore all skeletal grains of the pit were spread out onto a plane, clean plastic sheet in the field and numerous digital photos were taken using a reflex camera. With the help of the open source tool VisualSFM (structure from motion) two scaled 3D point clouds were derived. As a second step the skeletal fraction point cloud was segmented by radiometric attributes in order to determine volumes of single skeletal grains. The comparison of the total skeletal fraction volume with the volume of the pit (closed by spline interpolation) yields an estimate of the volumetric proportion of skeletal grains. The presented framework therefore provides an objective reference value of skeletal fraction for the support of qualitative field records.

  14. Distinct transcriptomic changes in E14.5 mouse skeletal muscle lacking RYR1 or Cav1.1 converge at E18.5

    PubMed Central

    Henry, Margit; Rotshteyn, Tamara; Brunn, Anna; Carstov, Mariana; Deckert, Martina; Hescheler, Jürgen; Sachinidis, Agapios; Pfitzer, Gabriele

    2018-01-01

    In skeletal muscle the coordinated actions of two mechanically coupled Ca2+ channels—the 1,4-dihydropyridine receptor (Cav1.1) and the type 1 ryanodine receptor (RYR1)–underlie the molecular mechanism of rapid cytosolic [Ca2+] increase leading to contraction. While both [Ca2+]i and contractile activity have been implicated in the regulation of myogenesis, less is known about potential specific roles of Cav1.1 and RYR1 in skeletal muscle development. In this study, we analyzed the histology and the transcriptomic changes occurring at E14.5 –the end of primary myogenesis and around the onset of intrauterine limb movement, and at E18.5 –the end of secondary myogenesis, in WT, RYR1-/-, and Cav1.1-/- murine limb skeletal muscle. At E14.5 the muscle histology of both mutants exhibited initial alterations, which became much more severe at E18.5. Immunohistological analysis also revealed higher levels of activated caspase-3 in the Cav1.1-/- muscles at E14.5, indicating an increase in apoptosis. With WT littermates as controls, microarray analyses identified 61 and 97 differentially regulated genes (DEGs) at E14.5, and 493 and 1047 DEGs at E18.5, in RYR1-/- and Cav1.1-/- samples, respectively. Gene enrichment analysis detected no overlap in the affected biological processes and pathways in the two mutants at E14.5, whereas at E18.5 there was a significant overlap of DEGs in both mutants, affecting predominantly processes linked to muscle contraction. Moreover, the E18.5 vs. E14.5 comparison revealed multiple genotype-specific DEGs involved in contraction, cell cycle and miRNA-mediated signaling in WT, neuronal and bone development in RYR1-/-, and lipid metabolism in Cav1.1-/- samples. Taken together, our study reveals discrete changes in the global transcriptome occurring in limb skeletal muscle from E14.5 to E18.5 in WT, RYR1-/- and Cav1.1-/- mice. Our results suggest distinct functional roles for RYR1 and Cav1.1 in skeletal primary and secondary myogenesis. PMID

  15. Skeletal and cardiac myogenesis accompany adipogenesis in P19 embryonal stem cells.

    PubMed

    Bouchard, Frédéric; Paquin, Joanne

    2009-09-01

    P19 embryonic carcinoma cells resemble normal embryonic stem (ES) cells. They generate cardiac and skeletal myocytes in response to retinoic acid (RA) or oxytocin (OT). RA treatment followed by exposure to triiodothyronine (T3) and insulin induces ES cells differentiation into adipocytes and skeletomyocytes. On the other hand, OT (10(-7) M) was reported to inhibit 3T3 preadipocyte maturation. The present work was undertaken to determine whether P19 cells have an adipogenic potential that could be affected by OT. Cells were treated with RA (10(-6) M)/T3+insulin (adipogenic protocol) or 10(-7) M OT (cardiomyogenic protocol), and analyzed by polymerase chain reaction, immunotechniques, and cytochemistry. Oil-Red-O staining and expression of peroxisome proliferator-activated receptor-gamma (PPARgamma) and aP2 indicated the generation of adipocytes in cultures submitted to the adipogenic protocol. Contracting cells were also generated. Cells positive for sarcomeric actinin and negative for cardiac troponin inhibitor (cTpnI) indicated generation of skeletomyocytes, and cTpnI positive cells revealed generation of cardiomyocytes. Levels of cTpnI and of the skeletal marker MyoD were almost similar in both protocols, whereas no Oil-Red-O staining was associated with the cardiomyogenic protocol. Addition of 10(-7) M OT to the adipogenic protocol did not affect Oil-Red-O staining and PPARgamma expression. Interestingly, Oct3/4 pluripotency marker disappeared in the adipogenic protocol but remained expressed in the cardiomyogenic one. P19 cells thus have an adipogenic potential non affected by 10(-7) M OT. RA/T3+insulin combination generates a larger spectrum of mesodermal cell derivatives and is a more potent morphogenic treatment than OT. P19 cells could help investigating mechanisms of cell fate decision during development.

  16. Large Deletions at the SHOX Locus in the Pseudoautosomal Region Are Associated with Skeletal Atavism in Shetland Ponies

    PubMed Central

    Rafati, Nima; Andersson, Lisa S.; Mikko, Sofia; Feng, Chungang; Raudsepp, Terje; Pettersson, Jessica; Janecka, Jan; Wattle, Ove; Ameur, Adam; Thyreen, Gunilla; Eberth, John; Huddleston, John; Malig, Maika; Bailey, Ernest; Eichler, Evan E.; Dalin, Göran; Chowdary, Bhanu; Andersson, Leif; Lindgren, Gabriella; Rubin, Carl-Johan

    2016-01-01

    Skeletal atavism in Shetland ponies is a heritable disorder characterized by abnormal growth of the ulna and fibula that extend the carpal and tarsal joints, respectively. This causes abnormal skeletal structure and impaired movements, and affected foals are usually killed. In order to identify the causal mutation we subjected six confirmed Swedish cases and a DNA pool consisting of 21 control individuals to whole genome resequencing. We screened for polymorphisms where the cases and the control pool were fixed for opposite alleles and observed this signature for only 25 SNPs, most of which were scattered on genome assembly unassigned scaffolds. Read depth analysis at these loci revealed homozygosity or compound heterozygosity for two partially overlapping large deletions in the pseudoautosomal region (PAR) of chromosome X/Y in cases but not in the control pool. One of these deletions removes the entire coding region of the SHOX gene and both deletions remove parts of the CRLF2 gene located downstream of SHOX. The horse reference assembly of the PAR is highly fragmented, and in order to characterize this region we sequenced bacterial artificial chromosome (BAC) clones by single-molecule real-time (SMRT) sequencing technology. This considerably improved the assembly and enabled size estimations of the two deletions to 160−180 kb and 60−80 kb, respectively. Complete association between the presence of these deletions and disease status was verified in eight other affected horses. The result of the present study is consistent with previous studies in humans showing crucial importance of SHOX for normal skeletal development. PMID:27207956

  17. Hsp47 mediates Cx43-dependent skeletal growth and patterning in the regenerating fin.

    PubMed

    Bhadra, Joyita; Iovine, M Kathryn

    2015-11-01

    Skeletal morphogenesis describes how bones achieve their correct shape and size and appropriately position joints. We use the regenerating caudal fin of zebrafish to study this process. Our examination of the fin length mutant short fin (sof (b123)) has revealed that the gap junction protein Cx43 is involved in skeletal morphogenesis by promoting cell proliferation and inhibiting joint formation, thereby coordinating skeletal growth and patterning. Here we demonstrate that serpinh1b is molecularly and functionally downstream of cx43. The gene serpinh1b codes for a protein called Hsp47, a molecular chaperone responsible for proper folding of procollagen molecules. Knockdown of Hsp47 in regenerating fins recapitulates the sof (b123) phenotypes of reduced fin length, reduced segment length and reduced level of cell proliferation. Furthermore, Hsp47 knockdown affects the organization and localization of the collagen-based actinotrichia. Together, our findings reveal that serpinh1b acts in a cx43 dependent manner to regulate cell proliferation and joint formation. We conclude that disruption of the collagen-based extracellular matrix influences signaling events required for cell proliferation, as well as the patterning of skeletal precursor cells that influences segment length. Therefore, we suggest that Hsp47 function is necessary for skeletal growth and patterning during fin regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Serum PTHrP level as a biomarker in assessing skeletal maturation during circumpubertal development.

    PubMed

    Hussain, Mohammed Zahid; Talapaneni, Ashok Kumar; Prasad, Mandava; Krishnan, Ramalingam

    2013-04-01

    Many investigators have studied the cellular organization and the local and systemic factors regulating endochondral bone growth in the growth plate and condylar cartilage. Parathyroid hormone-related protein (PTHrP) and Indian hedgehog protein have been reported to regulate multiple steps during such skeletal morphogenesis. The aims of this study were to quantify serum PTHrP levels at 6 cervical vertebral stages and to correlate serum PTHrP levels to the 6 skeletal maturation stages for use as a biologic indicator of skeletal maturation. Mean serum PTHrP levels were measured in 90 subjects categorized into 6 cervical vertebral stages. Mean serum PTHrP levels were significantly higher in the late pubertal stages than in the early pubertal stages. Pearson correlation showed that serum PTHrP levels had a positive correlation with cervical vertebral maturation stages from the prepubertal to the late pubertal stages, and a negative correlation from the late pubertal to the postpubertal stages. Peak serum PTHrP levels do not correlate with early pubertal stages characterized by maximum growth increments. Hence, the validity of using serum PTHrP levels to predict peak growth velocity is questionable. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  19. Changes of some functional speech disorders after surgical correction of skeletal anterior open bite.

    PubMed

    Knez Ambrožič, Mojca; Hočevar Boltežar, Irena; Ihan Hren, Nataša

    2015-09-01

    Skeletal anterior open bite (AOB) or apertognathism is characterized by the absence of contact of the anterior teeth and affects articulation parameters, chewing, biting and voice quality. The treatment of AOB consists of orthognatic surgical procedures. The aim of this study was to evaluate the effects of treatment on voice quality, articulation and nasality in speech with respect to skeletal changes. The study was prospective; 15 patients with AOB were evaluated before and after surgery. Lateral cephalometric x-ray parameters (facial angle, interincisal distance, Wits appraisal) were measured to determine skeletal changes. Before surgery, nine patients still had articulation disorders despite speech therapy during childhood. The voice quality parameters were determined by acoustic analysis of the vowel sound /a/ (fundamental frequency-F0, jitter, shimmer). Spectral analysis of vowels /a/, /e/, /i/, /o/, /u/ was carried out by determining the mean frequency of the first (F1) and second (F2) formants. Nasality in speech was expressed as the ratio between the nasal and the oral sound energies during speech samples. After surgery, normalizations of facial skeletal parameters were observed in all patients, but no statistically significant changes in articulation and voice quality parameters occurred despite subjective observations of easier articulation. Any deterioration in velopharyngeal insufficiency was absent in all of the patients. In conclusion, the surgical treatment of skeletal AOB does not lead to deterioration in voice, resonance and articulation qualities. Despite surgical correction of the unfavourable skeletal situation of the speech apparatus, the pre-existing articulation disorder cannot improve without professional intervention.

  20. Insulin alleviates degradation of skeletal muscle protein by inhibiting the ubiquitin-proteasome system in septic rats.

    PubMed

    Chen, Qiyi; Li, Ning; Zhu, Weiming; Li, Weiqin; Tang, Shaoqiu; Yu, Wenkui; Gao, Tao; Zhang, Juanjuan; Li, Jieshou

    2011-06-03

    Hypercatabolism is common under septic conditions. Skeletal muscle is the main target organ for hypercatabolism, and this phenomenon is a vital factor in the deterioration of recovery in septic patients. In skeletal muscle, activation of the ubiquitin-proteasome system plays an important role in hypercatabolism under septic status. Insulin is a vital anticatabolic hormone and previous evidence suggests that insulin administration inhibits various steps in the ubiquitin-proteasome system. However, whether insulin can alleviate the degradation of skeletal muscle protein by inhibiting the ubiquitin-proteasome system under septic condition is unclear. This paper confirmed that mRNA and protein levels of the ubiquitin-proteasome system were upregulated and molecular markers of skeletal muscle proteolysis (tyrosine and 3-methylhistidine) simultaneously increased in the skeletal muscle of septic rats. Septic rats were infused with insulin at a constant rate of 2.4 mU.kg-1.min-1 for 8 hours. Concentrations of mRNA and proteins of the ubiquitin-proteasome system and molecular markers of skeletal muscle proteolysis were mildly affected. When the insulin infusion dose increased to 4.8 mU.kg-1.min-1, mRNA for ubiquitin, E2-14 KDa, and the C2 subunit were all sharply downregulated. At the same time, the levels of ubiquitinated proteins, E2-14KDa, and the C2 subunit protein were significantly reduced. Tyrosine and 3-methylhistidine decreased significantly. We concluded that the ubiquitin-proteasome system is important skeletal muscle hypercatabolism in septic rats. Infusion of insulin can reverse the detrimental metabolism of skeletal muscle by inhibiting the ubiquitin-proteasome system, and the effect is proportional to the insulin infusion dose.

  1. Do Secular Trends in Skeletal Maturity Occur Equally in Both Sexes?

    PubMed

    Duren, Dana L; Nahhas, Ramzi W; Sherwood, Richard J

    2015-08-01

    Skeletal maturity assessment provides information on a child's physical development and expectations based on chronological age. Given recently recognized trends for earlier maturity in a variety of systems, most notably puberty, examination of sex-specific secular trends in skeletal maturation is important. For the orthopaedist, recent trends and changes in developmental timing can affect clinical management (eg, treatment timing) if they are currently based on outdated sources. (1) Has the male or female pediatric skeleton experienced a secular trend for earlier maturation over the past 80 years? (2) Do all indicators of maturity trend in the same direction (earlier versus later)? In this retrospective study, a total of 1240 children were examined longitudinally through hand-wrist radiographs for skeletal maturity based on the Fels method. All subjects participate in the Fels Longitudinal Study based in Ohio and were born between 1930 and 1964 for the "early" cohort and between 1965 and 2001 for the "recent" cohort. Sex-specific secular trends were estimated for (1) mean relative skeletal maturity through linear mixed models; and (2) median age of maturation for individual maturity indicators through logistic regression and generalized estimating equations. Overall relative skeletal maturity was significantly advanced in the recent cohort (maximum difference of 5 months at age 13 years for girls, 4 months at age 15 years for boys). For individual maturity indicators, the direction and magnitude of secular trends varied by indicator type and sex. The following statistically significant secular trends were found: (1) earlier maturation of indicators of fusion in both sexes (4 months for girls, 3 months for boys); (2) later maturation of indicators of projection in long bones in both sexes (3 months for girls, 2 months for boys); (3) earlier maturation of indicators of density (4 months) and projection (3 months) in carpals and density in long bones (6

  2. Quantitative sonoelastography for the in vivo assessment of skeletal muscle viscoelasticity

    NASA Astrophysics Data System (ADS)

    Hoyt, Kenneth; Kneezel, Timothy; Castaneda, Benjamin; Parker, Kevin J.

    2008-08-01

    A novel quantitative sonoelastography technique for assessing the viscoelastic properties of skeletal muscle tissue was developed. Slowly propagating shear wave interference patterns (termed crawling waves) were generated using a two-source configuration vibrating normal to the surface. Theoretical models predict crawling wave displacement fields, which were validated through phantom studies. In experiments, a viscoelastic model was fit to dispersive shear wave speed sonoelastographic data using nonlinear least-squares techniques to determine frequency-independent shear modulus and viscosity estimates. Shear modulus estimates derived using the viscoelastic model were in agreement with that obtained by mechanical testing on phantom samples. Preliminary sonoelastographic data acquired in healthy human skeletal muscles confirm that high-quality quantitative elasticity data can be acquired in vivo. Studies on relaxed muscle indicate discernible differences in both shear modulus and viscosity estimates between different skeletal muscle groups. Investigations into the dynamic viscoelastic properties of (healthy) human skeletal muscles revealed that voluntarily contracted muscles exhibit considerable increases in both shear modulus and viscosity estimates as compared to the relaxed state. Overall, preliminary results are encouraging and quantitative sonoelastography may prove clinically feasible for in vivo characterization of the dynamic viscoelastic properties of human skeletal muscle.

  3. Metabolic Disturbance in PCOS: Clinical and Molecular Effects on Skeletal Muscle Tissue

    PubMed Central

    Silva Dantas, Wagner; Gualano, Bruno; Patrocínio Rocha, Michele; Roberto Grimaldi Barcellos, Cristiano; dos Reis Vieira Yance, Viviane; Miguel Marcondes, José Antonio

    2013-01-01

    Polycystic ovary syndrome is a complex hormonal disorder affecting the reproductive and metabolic systems with signs and symptoms related to anovulation, infertility, menstrual irregularity and hirsutism. Skeletal muscle plays a vital role in the peripheral glucose uptake. Since PCOS is associated with defects in the activation and pancreatic dysfunction of β-cell insulin, it is important to understand the molecular mechanisms of insulin resistance in PCOS. Studies of muscle tissue in patients with PCOS reveal defects in insulin signaling. Muscle biopsies performed during euglycemic hyperinsulinemic clamp showed a significant reduction in glucose uptake, and insulin-mediated IRS-2 increased significantly in skeletal muscle. It is recognized that the etiology of insulin resistance in PCOS is likely to be as complicated as in type 2 diabetes and it has an important role in metabolic and reproductive phenotypes of this syndrome. Thus, further evidence regarding the effect of nonpharmacological approaches (e.g., physical exercise) in skeletal muscle of women with PCOS is required for a better therapeutic approach in the management of various metabolic and reproductive problems caused by this syndrome. PMID:23844380

  4. Metabolic disturbance in PCOS: clinical and molecular effects on skeletal muscle tissue.

    PubMed

    Dantas, Wagner Silva; Gualano, Bruno; Rocha, Michele Patrocínio; Barcellos, Cristiano Roberto Grimaldi; dos Reis Vieira Yance, Viviane; Marcondes, José Antonio Miguel

    2013-01-01

    Polycystic ovary syndrome is a complex hormonal disorder affecting the reproductive and metabolic systems with signs and symptoms related to anovulation, infertility, menstrual irregularity and hirsutism. Skeletal muscle plays a vital role in the peripheral glucose uptake. Since PCOS is associated with defects in the activation and pancreatic dysfunction of β-cell insulin, it is important to understand the molecular mechanisms of insulin resistance in PCOS. Studies of muscle tissue in patients with PCOS reveal defects in insulin signaling. Muscle biopsies performed during euglycemic hyperinsulinemic clamp showed a significant reduction in glucose uptake, and insulin-mediated IRS-2 increased significantly in skeletal muscle. It is recognized that the etiology of insulin resistance in PCOS is likely to be as complicated as in type 2 diabetes and it has an important role in metabolic and reproductive phenotypes of this syndrome. Thus, further evidence regarding the effect of nonpharmacological approaches (e.g., physical exercise) in skeletal muscle of women with PCOS is required for a better therapeutic approach in the management of various metabolic and reproductive problems caused by this syndrome.

  5. Skeletal maturation in obese patients.

    PubMed

    Giuca, Maria Rita; Pasini, Marco; Tecco, Simona; Marchetti, Enrico; Giannotti, Laura; Marzo, Giuseppe

    2012-12-01

    The objective of this study was to compare skeletal maturation in obese patients and in subjects of normal weight to evaluate the best timing for orthopedic and orthodontic treatment. The null hypothesis was that obese and normal-weight patients show similar degrees of skeletal maturation. The sample for this retrospective study consisted of 50 white patients (28 boys, 22 girls) whose x-rays (hand-wrist and lateral cephalometric radiographs) were already available. The test group included 25 obese patients (11 girls, 14 boys; average age, 9.8 ± 2.11 years), and the control group included 25 subjects of normal weight (11 girls, 14 boys; average age, 9.9 ± 2.5 years). Skeletal maturation was determined by using the carpal analysis method and the cervical vertebral maturation method. According to the carpal analysis, there was a significant difference between skeletal and chronologic ages between the test group (11.8 ± 11.4 months) and the control group (-2.9 ± 3.1 months). Furthermore, the obese subjects exhibited a significantly higher mean cervical vertebral maturation score (2.8 ± 0.7) than did the control subjects (2 ± 0.6) (P <0.05). Compared with the normal-weight subjects, the obese subjects showed a higher mean discrepancy between skeletal and chronologic ages according to the carpal analysis and had a significantly higher cervical vertebral maturation score. Thus, to account for the growth in obese patients with skeletal discrepancies, it might be necessary to perform examinations and dentofacial and orthopedic treatments earlier than in normal-weight subjects. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  6. Myogenic Maturation by Optical-Training in Cultured Skeletal Muscle Cells.

    PubMed

    Asano, Toshifumi; Ishizuka, Toru; Yawo, Hiromu

    2017-01-01

    Optogenetic techniques are powerful tools for manipulating biological processes in identified cells using light under high temporal and spatial resolutions. Here, we describe an optogenetic training strategy to promote morphological maturation and functional development of skeletal muscle cells in vitro. Optical stimulation with a rhythmical frequency facilitates specific structural alignment of sarcomeric proteins. Optical stimulation also depolarizes the membrane potential, and induces contractile responses in synchrony with the given pattern of light pulses. These results suggest that optogenetic techniques can be employed to manipulate activity-dependent processes during myogenic development and control contraction of photosensitive skeletal muscle cells with high temporal and special precision.

  7. Alterations in Skeletal Muscle Fatty Acid Handling Predisposes Middle-Aged Mice to Diet-Induced Insulin Resistance

    PubMed Central

    Koonen, Debby P.Y.; Sung, Miranda M.Y.; Kao, Cindy K.C.; Dolinsky, Vernon W.; Koves, Timothy R.; Ilkayeva, Olga; Jacobs, René L.; Vance, Dennis E.; Light, Peter E.; Muoio, Deborah M.; Febbraio, Maria; Dyck, Jason R.B.

    2010-01-01

    OBJECTIVE Although advanced age is a risk factor for type 2 diabetes, a clear understanding of the changes that occur during middle age that contribute to the development of skeletal muscle insulin resistance is currently lacking. Therefore, we sought to investigate how middle age impacts skeletal muscle fatty acid handling and to determine how this contributes to the development of diet-induced insulin resistance. RESEARCH DESIGN AND METHODS Whole-body and skeletal muscle insulin resistance were studied in young and middle-aged wild-type and CD36 knockout (KO) mice fed either a standard or a high-fat diet for 12 weeks. Molecular signaling pathways, intramuscular triglycerides accumulation, and targeted metabolomics of in vivo mitochondrial substrate flux were also analyzed in the skeletal muscle of mice of all ages. RESULTS Middle-aged mice fed a standard diet demonstrated an increase in intramuscular triglycerides without a concomitant increase in insulin resistance. However, middle-aged mice fed a high-fat diet were more susceptible to the development of insulin resistance—a condition that could be prevented by limiting skeletal muscle fatty acid transport and excessive lipid accumulation in middle-aged CD36 KO mice. CONCLUSION Our data provide insight into the mechanisms by which aging becomes a risk factor for the development of insulin resistance. Our data also demonstrate that limiting skeletal muscle fatty acid transport is an effective approach for delaying the development of age-associated insulin resistance and metabolic disease during exposure to a high-fat diet. PMID:20299464

  8. A modern documented Italian identified skeletal collection of 2127 skeletons: the CAL Milano Cemetery Skeletal Collection.

    PubMed

    Cattaneo, Cristina; Mazzarelli, Debora; Cappella, Annalisa; Castoldi, Elisa; Mattia, Mirko; Poppa, Pasquale; De Angelis, Danilo; Vitello, Antonio; Biehler-Gomez, Lucie

    2018-06-01

    The CAL Milano Cemetery Skeletal Collection is a modern and continuously growing identified osteological collection of 2127 skeletons under study in the Laboratorio di Antropologia e Odontologia Forense (LABANOF) in the Department of Biomedical Sciences for Health of the University of Milan (Italy), and part of the Collezione Antropologica LABANOF (CAL). The collection presents individuals of both sexes and of all age groups with a high representation of the elderly and an interesting sample of infants. Each individual is associated with a documentation that includes sex, age-at-death, dates of birth and death, and a death certificate that specifies the exact cause of death and the chain of events that led to it (related pathological conditions or traumatic events). It was also possible to recover for several individuals the autopsy reports and antemortem photographs. This documented osteological collection is of crucial interest in physical and forensic anthropology: it provides unique teaching opportunities and more importantly considerable research possibilities to test and develop sex and age estimation methods, investigate key subjects of forensic relevance and discuss pathological markers, among others. The aim of this paper is to introduce the CAL Milano Cemetery Skeletal Collection as a new identified skeletal collection and present its research and teaching potential. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Effects of caffeic and chlorogenic acids on the rat skeletal system.

    PubMed

    Folwarczna, J; Pytlik, M; Zych, M; Cegieła, U; Nowinska, B; Kaczmarczyk-Sedlak, I; Sliwinski, L; Trzeciak, H; Trzeciak, H I

    2015-02-01

    Caffeic acid, predominantly as esters linked to quinic acid (chlorogenic acids), is a phenolic acid present at high levels in coffee. The aim of the study was to investigate effects of caffeic and chlorogenic acids on the skeletal system of female rats with normal estrogen levels and estrogen-deficient. Caffeic acid (5 and 50 mg/kg p.o. daily) and chlorogenic acid (100 mg/kg p.o. daily) were administered for 4 weeks to non-ovariectomized and bilaterally ovariectomized mature Wistar rats, and their effects were compared with appropriate controls. Moreover, estradiol (0.2 mg/kg p.o. daily) was administered to ovariectomized rats. Bone turnover markers, mass, mineralization and mechanical properties were examined. Although caffeic acid at a low dose exerted some unfavorable effects on the skeletal system, at high doses, caffeic and chlorogenic acids slightly increased mineralization in the tibia and improved mechanical properties of the femoral diaphysis (compact bone). Unlike estradiol, they did not counteract the worsening of the tibial metaphysis bone strength (cancellous bone) and increases in osteocalcin concentration induced by estrogen deficiency. High doses of the phenolic acids slightly favorably affected the rat skeletal system independently of the estrogen status.

  10. Serum IGF-1 is insufficient to restore skeletal size in the total absence of the growth hormone receptor

    PubMed Central

    Wu, Yingjie; Sun, Hui; Basta-Pljakic, Jelena; Cardoso, Luis; Kennedy, Oran D; Jasper, Hector; Domené, Horacio; Karabatas, Liliana; Guida, Clara; Schaffler, Mitchell B; Rosen, Clifford J; Yakar, Shoshana

    2013-01-01

    States of growth hormone (GH) resistance, such those observed in Laron’s dwarf patients, are characterized by mutations in the GH receptor (GHR), decreased serum and tissue IGF-1 levels, impaired glucose tolerance, and impaired skeletal acquisition. IGF-1 replacement therapy in such patients increases growth velocity but does not normalize growth. Herein we combined the GH-resistant (GHR knockout, GHRKO) mouse model with mice expressing the hepatic Igf-1 transgene (HIT) to generate the GHRKO-HIT mouse model. In GHRKOHIT mice, serum IGF-1 levels were restored via transgenic expression of Igf-1 allowing us to study how endocrine IGF-1 affects growth, metabolic homeostasis, and skeletal integrity. We show that in a GH-resistant state, normalization of serum IGF-1 improved body adiposity and restored glucose tolerance but was insufficient to support normal skeletal growth, resulting in an osteopenic skeletal phenotype. The inability of serum IGF-1 to restore skeletal integrity in the total absence of GHR likely resulted from reduced skeletal Igf-1 gene expression, blunted GH-mediated effects on the skeleton that are independent of serum or tissue IGF-1, and from poor delivery of IGF-1 to the tissues. These findings are consistent with clinical data showing that IGF-I replacement therapy in patients with Laron’s syndrome does not achieve full skeletal growth. PMID:23456957

  11. ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae.

    PubMed

    Elefteriou, Florent; Benson, M Douglas; Sowa, Hideaki; Starbuck, Michael; Liu, Xiuyun; Ron, David; Parada, Luis F; Karsenty, Gerard

    2006-12-01

    The transcription factor ATF4 enhances bone formation by favoring amino acid import and collagen synthesis in osteoblasts, a function requiring its phosphorylation by RSK2, the kinase inactivated in Coffin-Lowry Syndrome. Here, we show that in contrast, RSK2 activity, ATF4-dependent collagen synthesis, and bone formation are increased in mice lacking neurofibromin in osteoblasts (Nf1(ob)(-/-) mice). Independently of RSK2, ATF4 phosphorylation by PKA is enhanced in Nf1(ob)(-/-) mice, thereby increasing Rankl expression, osteoclast differentiation, and bone resorption. In agreement with ATF4 function in amino acid transport, a low-protein diet decreased bone protein synthesis and normalized bone formation and bone mass in Nf1(ob)(-/-) mice without affecting other organ weight, while a high-protein diet overcame Atf4(-/-) and Rsk2(-/-) mice developmental defects, perinatal lethality, and low bone mass. By showing that ATF4-dependent skeletal dysplasiae are treatable by dietary manipulations, this study reveals a molecular connection between nutrition and skeletal development.

  12. Skeletal muscle tissue transcriptome differences in lean and obese female beagle dogs.

    PubMed

    Grant, R W; Vester Boler, B M; Ridge, T K; Graves, T K; Swanson, K S

    2013-08-01

    Skeletal muscle is a large and insulin-sensitive tissue that is an important contributor to metabolic homeostasis and energy expenditure. Many metabolic processes are altered with obesity, but the contribution of muscle tissue in this regard is unclear. A limited number of studies have compared skeletal muscle gene expression of lean and obese dogs. Using microarray technology, our objective was to identify genes and functional classes differentially expressed in skeletal muscle of obese (14.6 kg; 8.2 body condition score; 44.5% body fat) vs. lean (8.6 kg; 4.1 body condition score; 22.9% body fat) female beagle adult dogs. Alterations in 77 transcripts was observed in genes pertaining to the functional classes of signaling, transport, protein catabolism and proteolysis, protein modification, development, transcription and apoptosis, cell cycle and differentiation. Genes differentially expressed in obese vs. lean dog skeletal muscle indicate oxidative stress and altered skeletal muscle cell differentiation. Many genes traditionally associated with lipid, protein and carbohydrate metabolism were not altered in obese vs. lean dogs, but genes pertaining to endocannabinoid metabolism, insulin signaling, type II diabetes mellitus and carnitine transport were differentially expressed. The relatively small response of skeletal muscle could indicate that changes are occurring at a post-transcriptional level, that other tissues (e.g., adipose tissue) were buffering skeletal muscle from metabolic dysfunction or that obesity-induced changes in skeletal muscle require a longer period of time and that the length of our study was not sufficient to detect them. Although only a limited number of differentially expressed genes were detected, these results highlight genes and functional classes that may be important in determining the etiology of obesity-induced derangement of skeletal muscle function. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation

  13. Altered stored calcium release in skeletal myotubes deficient of triadin and junctin

    PubMed Central

    Wang, Ying; Li, Xinghai; Duan, Hongzhe; Fulton, Timothy R.; Eu, Jerry P.; Meissner, Gerhard

    2008-01-01

    Summary Triadin and junctin are integral sarcoplasmic reticulum membrane proteins that form a macromolecular complex with the skeletal muscle ryanodine receptor (RyR1) but their roles in skeletal muscle calcium homeostasis remain incompletely understood. Here we report that delivery of siRNAs specific for triadin or junctin into C2C12 skeletal myoblasts reduced the expression of triadin and junctin in 8-day-old myotubes by 80 and 100%, respectively. Knocking down either triadin or junctin in these cells reduced Ca2+ release induced by depolarization (10 mM KCl) by 20–25%. Unlike triadin knockdown myotubes, junctin knockdown and junctin/triadin double knockdown myotubes also had reduced Ca2+ release induced by 400 μM 4-chloro-m-cresol, 10 mM caffeine, 400 μM UTP, or 1 μM thapsigargin. Thus, knocking down junctin compromised the Ca2+ stores in the sarcoplasmic reticulum of these cells. Our subsequent studies showed that in junctin knockdown myotubes at least two sarcoplasmic reticulum proteins (RyR1 and skeletal muscle calsequestrin) were down-regulated while these proteins’ mRNA expression was not affected. The results suggest that triadin has a role in facilitating KCl depolarization-induced Ca2+ release in contrast to junctin which has a role in maintaining sarcoplasmic reticulum Ca2+ store size in C2C12 myotubes. PMID:18620751

  14. Engineered skeletal muscle tissue for soft robotics: fabrication strategies, current applications, and future challenges.

    PubMed

    Duffy, Rebecca M; Feinberg, Adam W

    2014-01-01

    Skeletal muscle is a scalable actuator system used throughout nature from the millimeter to meter length scales and over a wide range of frequencies and force regimes. This adaptability has spurred interest in using engineered skeletal muscle to power soft robotics devices and in biotechnology and medical applications. However, the challenges to doing this are similar to those facing the tissue engineering and regenerative medicine fields; specifically, how do we translate our understanding of myogenesis in vivo to the engineering of muscle constructs in vitro to achieve functional integration with devices. To do this researchers are developing a number of ways to engineer the cellular microenvironment to guide skeletal muscle tissue formation. This includes understanding the role of substrate stiffness and the mechanical environment, engineering the spatial organization of biochemical and physical cues to guide muscle alignment, and developing bioreactors for mechanical and electrical conditioning. Examples of engineered skeletal muscle that can potentially be used in soft robotics include 2D cantilever-based skeletal muscle actuators and 3D skeletal muscle tissues engineered using scaffolds or directed self-organization. Integration into devices has led to basic muscle-powered devices such as grippers and pumps as well as more sophisticated muscle-powered soft robots that walk and swim. Looking forward, current, and future challenges include identifying the best source of muscle precursor cells to expand and differentiate into myotubes, replacing cardiomyocytes with skeletal muscle tissue as the bio-actuator of choice for soft robots, and vascularization and innervation to enable control and nourishment of larger muscle tissue constructs. © 2013 Wiley Periodicals, Inc.

  15. Neural-Thyroid Interaction on Skeletal Isomyosin in Zero Gravity

    NASA Technical Reports Server (NTRS)

    Baldwin, Kenneth M.

    2000-01-01

    The primary goal of the project was to develop a ground based model to first study the role of the nerve and of thyroid hormone (T3) in the regulation of body growth and skeletal muscle growth and differentiation in rodents. A primary objective was to test the hypothesis that normal weight bearing activity is essential for the development of antigravity, slow twitch skeletal muscle and the corresponding slow myosin heavy chain (MHC) gene; whereas, T3 was obligatory for general body and muscle growth and the establishment of fast MHC phenotype in typically fast locomoter muscles. These ground based experiments would provide both the efficacy and background for a spaceflight experiment (referred to as the Neurolab Mission) jointly sponsored by the NIH and NASA.

  16. Thyroid hormones and skeletal muscle — new insights and potential implications

    PubMed Central

    Salvatore, Domenico; Simonides, Warner S.; Dentice, Monica; Zavacki, Ann Marie; Larsen, P. Reed

    2014-01-01

    Thyroid hormone signalling regulates crucial biological functions, including energy expenditure, thermogenesis, development and growth. The skeletal muscle is a major target of thyroid hormone signalling. The type two (DIO2) and three (DIO3) iodothyronine deiodinases have been identified in skeletal muscle. DIO2 expression is tightly regulated and catalyzes outer ring monodeiodination of the secreted prohormone tetraiodothyronine (T4) to generate the active hormone triiodothyronine (T3). T3 may remain in the myocyte to signal through nuclear receptors or exit the cell to mix with the extracellular pool. By contrast, DIO3 inactivates T3 through removal of an inner ring iodine. Regulation of the expression and activity of deiodinases constitutes a cell-autonomous, pre-receptor mechanism for controlling the intracellular concentration of T3. This local control of T3 activity is crucial during the various phases of myogenesis. Here, we review the roles of T3 in skeletal muscle development and homeostasis, with a focus on the emerging local deiodinase-mediated control of T3 signalling. Moreover, we discuss these novel findings in the context of both muscle homeostasis and pathology, and examine how they can be therapeutically harnessed to improve satellite cell-mediated muscle repair in patients with skeletal muscle disorders, muscle atrophy or injury. PMID:24322650

  17. Graphic representation of skeletal maturity determinations.

    PubMed

    Boechat, M Ines; Lee, David Choen

    2007-10-01

    Skeletal maturation determinations are usually reported as numeric data indicating accordance with chronologic age. However, significant changes in skeletal maturation can occur without falling outside two SDs. The purpose of our study was to design simple computer-generated sex-based charts to enhance the evaluation of skeletal maturation, especially when frequent assessments are made. The graphic representation of successive reports clearly depicts whether values retain their position in relation to the mean. In addition, the report includes computation of the exact SD score.

  18. Comparison of second molar eruption patterns in patients with skeletal Class II and skeletal Class I malocclusions.

    PubMed

    Brin, Ilana; Camasuvi, Semin; Dali, Nasser; Aizenbud, Dror

    2006-12-01

    The eruptive positions of the second molars in Class I and Class II malocclusions were studied. Pretreatment records of 221 patients with a mean age of 11.3 years were evaluated. About 19% of them had skeletal Class I, 31% had skeletal maxillary Class II, and 50% had skeletal mandibular Class II malocclusions. The mean values of the dental and chronologic ages of the subjects were similar. The eruptive positions in relation to a reference line, the developmental stages of the patients' second molars and dental ages were recorded from the panoramic roentgenograms. The distribution of the various developmental stages in each malocclusion group was similar, and no association between skeletal malocclusion and dental developmental stage of the second molars was encountered. The eruptive position of the maxillary second molars was more occlusal only in the oldest maxillary Class II group, above 12 years of age (P = .02). These results support, in part, previous reports suggesting that the maxillary second molars may erupt earlier in patients with skeletal maxillary Class II malocclusions.

  19. Interactive effects of temperature, food and skeletal mineralogy mediate biological responses to ocean acidification in a widely distributed bryozoan

    PubMed Central

    Bean, Jessica R.; Ninokawa, Aaron T.; Hill, Tessa M.; Gaylord, Brian; Sanford, Eric

    2017-01-01

    Marine invertebrates with skeletons made of high-magnesium calcite may be especially susceptible to ocean acidification (OA) due to the elevated solubility of this form of calcium carbonate. However, skeletal composition can vary plastically within some species, and it is largely unknown how concurrent changes in multiple oceanographic parameters will interact to affect skeletal mineralogy, growth and vulnerability to future OA. We explored these interactive effects by culturing genetic clones of the bryozoan Jellyella tuberculata (formerly Membranipora tuberculata) under factorial combinations of dissolved carbon dioxide (CO2), temperature and food concentrations. High CO2 and cold temperature induced degeneration of zooids in colonies. However, colonies still maintained high growth efficiencies under these adverse conditions, indicating a compensatory trade-off whereby colonies degenerate more zooids under stress, redirecting energy to the growth and maintenance of new zooids. Low-food concentration and elevated temperatures also had interactive effects on skeletal mineralogy, resulting in skeletal calcite with higher concentrations of magnesium, which readily dissolved under high CO2. For taxa that weakly regulate skeletal magnesium concentration, skeletal dissolution may be a more widespread phenomenon than is currently documented and is a growing concern as oceans continue to warm and acidify. PMID:28424343

  20. Sarcoplasmic reticulum function in slow- and fast-twitch skeletal muscles from mdx mice.

    PubMed

    Divet, Alexandra; Huchet-Cadiou, Corinne

    2002-08-01

    The aim of the present study was to establish whether alterations in sarcoplasmic reticulum function are involved in the abnormal Ca(2+) homeostasis of skeletal muscle in mice with muscular dystrophy ( mdx). The properties of the sarcoplasmic reticulum and contractile proteins of fast- and slow-twitch muscles were therefore investigated in chemically skinned fibres isolated from the extensor digitorum longus (EDL) and soleus muscles of normal (C57BL/10) and mdx mice at 4 and 11 weeks of development. Sarcoplasmic reticulum Ca(2+) uptake, estimated by the Ca(2+) release following exposure to caffeine, was significantly slower in mdx mice, while the maximal Ca(2+) quantity did not differ in either type of skeletal muscle at either stage of development. In 4-week-old mice spontaneous sarcoplasmic reticulum Ca(2+) leakage was observed in EDL and soleus fibres and this was more pronounced in mdx mice. In addition, the maximal Ca(2+)-activated tension was smaller in mdx than in normal fibres, while the Ca(2+) sensitivity of the contractile apparatus was not significantly different. These results indicate that mdx hindlimb muscles are affected differently by the disease process and suggest that a reduced ability of the Ca(2+)-ATPase to load Ca(2+) and a leaky sarcoplasmic reticulum membrane may be involved in the altered intracellular Ca(2+) homeostasis.

  1. Neutral sphingomyelinase-3 mediates TNF-stimulated oxidant activity in skeletal muscle.

    PubMed

    Moylan, Jennifer S; Smith, Jeffrey D; Wolf Horrell, Erin M; McLean, Julie B; Deevska, Gergana M; Bonnell, Mark R; Nikolova-Karakashian, Mariana N; Reid, Michael B

    2014-01-01

    Sphingolipid and oxidant signaling affect glucose uptake, atrophy, and force production of skeletal muscle similarly and both are stimulated by tumor necrosis factor (TNF), suggesting a connection between systems. Sphingolipid signaling is initiated by neutral sphingomyelinase (nSMase), a family of agonist-activated effector enzymes. Northern blot analyses suggest that nSMase3 may be a striated muscle-specific nSMase. The present study tested the hypothesis that nSMase3 protein is expressed in skeletal muscle and functions to regulate TNF-stimulated oxidant production. We demonstrate constitutive nSMase activity in skeletal muscles of healthy mice and humans and in differentiated C2C12 myotubes. nSMase3 (Smpd4 gene) mRNA is highly expressed in muscle. An nSMase3 protein doublet (88 and 85 kD) is derived from alternative mRNA splicing of exon 11. The proteins partition differently. The full-length 88 kD isoform (nSMase3a) fractionates with membrane proteins that are resistant to detergent extraction; the 85 kD isoform lacking exon 11 (nSMase3b) is more readily extracted and fractionates with detergent soluble membrane proteins; neither variant is detected in the cytosol. By immunofluorescence microscopy, nSMase3 resides in both internal and sarcolemmal membranes. Finally, myotube nSMase activity and cytosolic oxidant activity are stimulated by TNF. Both if these responses are inhibited by nSMase3 knockdown. These findings identify nSMase3 as an intermediate that links TNF receptor activation, sphingolipid signaling, and skeletal muscle oxidant production. Our data show that nSMase3 acts as a signaling nSMase in skeletal muscle that is essential for TNF-stimulated oxidant activity.

  2. Regional responsiveness of the tibia to intermittent administration of parathyroid hormone as affected by skeletal unloading

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Bikle, D. D.; Harris, J.; Tanner, S.; Curren, T.; Morey-Holton, E.

    1997-01-01

    To determine whether the acute inhibition of bone formation and deficit in bone mineral induced by skeletal unloading can be prevented, we studied the effects of intermittent parathyroid hormone (PTH) administration (8 micrograms/100 g/day) on growing rats submitted to 8 days of skeletal unloading. Loss of weight bearing decreased periosteal bone formation by 34 and 51% at the tibiofibular junction and tibial midshaft, respectively, and reduced the normal gain in tibial mass by 35%. Treatment with PTH of normally loaded and unloaded animals increased mRNA for osteocalcin (+58 and +148%, respectively), cancellous bone volume in the proximal tibia (+41 and +42%, respectively), and bone formation at the tibiofibular junction (+27 and +27%, respectively). Formation was also stimulated at the midshaft in unloaded (+47%, p < 0.05), but not loaded animals (-3%, NS). Although cancellous bone volume was preserved in PTH-treated, unloaded animals, PTH did not restore periosteal bone formation to normal nor prevent the deficit in overall tibial mass induced by unloading. We conclude that the effects of PTH on bone formation are region specific and load dependent. PTH can prevent the decrease in cancellous bone volume and reduce the decrement in cortical bone formation induced by loss of weight bearing.

  3. The skeletal endocannabinoid system: clinical and experimental insights.

    PubMed

    Raphael, Bitya; Gabet, Yankel

    2016-05-01

    Recently, there has been a rapidly growing interest in the role of cannabinoids in the regulation of skeletal remodeling and bone mass, addressed in basic, translational and clinical research. Since the first publications in 2005, there are more than 1000 publications addressing the skeletal endocannabinoid system. This review focuses on the roles of the endocannabinoid system in skeletal biology via the cannabinoid receptors CB1, CB2 and others. Endocannabinoids play important roles in bone formation, bone resorption and skeletal growth, and are sometimes age, gender, species and strain dependent. Controversies in the literature and potential therapeutic approaches targeting the endocannabinoid system in skeletal disorders are also discussed.

  4. Selenium regulates gene expression of selenoprotein W in chicken skeletal muscle system.

    PubMed

    Ruan, Hongfeng; Zhang, Ziwei; Wu, Qiong; Yao, Haidong; Li, Jinlong; Li, Shu; Xu, Shiwen

    2012-01-01

    Selenoprotein W (SelW) is abundantly expressed in skeletal muscles of mammals and necessary for the metabolism of skeletal muscles. However, its expression pattern in skeletal muscle system of birds is still uncovered. Herein, to investigate the distribution of SelW mRNA in chicken skeletal muscle system and its response to different selenium (Se) status, 1-day-old chickens were exposed to various concentrations of Se as sodium selenite in the feed for 35 days. In addition, myoblasts were treated with different concentrations of Se in the medium for 72 h. Then the levels of SelW mRNA in skeletal muscles (wing muscle, pectoral muscle, thigh muscle) and myoblasts were determined on days 1, 15, 25, and 35 and at 0, 24, 48, and 72 h, respectively. The results showed that SelW was detected in all these muscle components and it increased both along with the growth of organism and the differentiation process of myoblasts. The thigh muscle is more responsive to Se intake than the other two skeletal muscle tissues while the optimal Se supplementation for SelW mRNA expression in chicken myoblasts was 10(-7) M. In summary, Se plays important roles in the development of chicken skeletal muscles. To effect optimal SelW gene expression, Se must be provided in the diet and the media in adequate amounts and neither at excessive nor deficient levels.

  5. External skeletal robusticity of children and adolescents - European references from birth to adulthood and international comparisons.

    PubMed

    Mumm, Rebekka; Godina, Elena; Koziel, Slawomir; Musalek, Martin; Sedlak, Petr; Wittwer-Backofen, Ursula; Hesse, Volker; Dasgupta, Parasmani; Henneberg, Maciej; Scheffler, Christiane

    2018-06-11

    Background: In our modern world, the way of life in nutritional and activity behaviour has changed. As a consequence, parallel trends of an epidemic of overweight and a decline in external skeletal robusticity are observed in children and adolescents. Aim: We aim to develop reference centiles for external skeletal robusticity of European girls and boys aged 0 to 18 years using the Frame Index as an indicator and identify population specific age-related patterns. Methods: We analysed cross-sectional & longitudinal data on body height and elbow breadth of boys and girls from Europe (0-18 years, n = 41.679), India (7-18 years, n = 3.297) and South Africa (3-18 years, n = 4.346). As an indicator of external skeletal robusticity Frame Index after Frisancho (1990) was used. We developed centiles for boys and girls using the LMS-method and its extension. Results: Boys have greater external skeletal robusticity than girls. Whereas in girls Frame Index decreases continuously during growth, an increase of Frame Index from 12 to 16 years in European boys can be observed. Indian and South African boys are almost similar in Frame Index to European boys. In girls, the pattern is slightly different. Whereas South African girls are similar to European girls, Indian girls show a lesser external skeletal robusticity. Conclusion: Accurate references for external skeletal robusticity are needed to evaluate if skeletal development is adequate per age. They should be used to monitor effects of changes in way of life and physical activity levels in children and adolescents to avoid negative health outcomes like osteoporosis and arthrosis.

  6. An analysis of human skeletal remains with cerebral palsy: associated skeletal age delay and dental pathologies.

    PubMed

    Megyesi, Mary S; Tubbs, Ryan M; Sauer, Norman J

    2009-03-01

    In 2002 the authors were asked to examine the skeletal remains of an individual with a known history of severe cerebral palsy (CP) who was 21-23 years old at death. Skeletal age estimates of 11-15 years and dental age estimates of c. 16 years are younger than the known age of the decedent. Skeletal analysis also identified dental pathologies such as chronic tooth grinding and substantial calculus deposits. Scarce literature exists on forensic human remains cases with CP, and this study contrasts the age discrepancy and other features of this case with typical clinical characteristics of CP. A review of the CP literature suggests that delayed skeletal maturation and dental pathologies such as those observed in this case are indicative of complications related to CP. This article may alert future investigators to some of the osteological signs of CP and the probability that age indicators may be misleading.

  7. Experimental skeletal teratogenesis in the frog tadpole.

    PubMed

    Roth, M

    1978-01-01

    Severe deformities of the hind limb skeleton such as shortening, abnormal curvatures, terminal expansions, curled toes and joint dislocations were produced in frog tadpoles by the osteolathyrogenic principle. Gross-anatomical features of the deformed skeleton and of the respective nervous trunks were studied in specimens cleared according to WILLIAMS' technique. The findings support the previously suggested osteo-neural concept: Experimental skeletal deformities represent adaptations of the bone growth at the organ level to the inadequate extensive growth of the nervous trunks. The neural growth appears to be more severely affected by the teratogen than the bone growth proper.

  8. The intestinal microbiome and skeletal fitness: connecting bugs and bones

    PubMed Central

    Charles, Julia F.; Ermann, Joerg; Aliprantis, Antonios O.

    2015-01-01

    Recent advances have dramatically increased our understanding of how organ systems interact. This has been especially true for immunology and bone biology, where the term “osteoimmunology” was coined to capture this relationship. The importance of the microbiome to the immune system has also emerged as a driver of health and disease. It makes sense therefore to ask the question: how does the intestinal microbiome influence bone biology and does dysbiosis promote bone disease? Surprisingly, few studies have analyzed this connection. A broader interpretation of this question reveals many mechanisms whereby the microbiome may affect bone cells. These include effects of the microbiome on immune cells, including myeloid progenitors and Th17 cells, as well as steroid hormones, fatty acids, serotonin and vitamin D. As mechanistic interactions of the microbiome and skeletal system are revealed within and without the immune system, novel strategies to optimize skeletal fitness may emerge. PMID:25840106

  9. Effects of Statins on Skeletal Muscle: A Perspective for Physical Therapists

    PubMed Central

    Di Stasi, Stephanie L.; MacLeod, Toran D.; Winters, Joshua D.

    2010-01-01

    Hyperlipidemia, also known as high blood cholesterol, is a cardiovascular health risk that affects more than one third of adults in the United States. Statins are commonly prescribed and successful lipid-lowering medications that reduce the risks associated with cardiovascular disease. The side effects most commonly associated with statin use involve muscle cramping, soreness, fatigue, weakness, and, in rare cases, rapid muscle breakdown that can lead to death. Often, these side effects can become apparent during or after strenuous bouts of exercise. Although the mechanisms by which statins affect muscle performance are not entirely understood, recent research has identified some common causative factors. As musculoskeletal and exercise specialists, physical therapists have a unique opportunity to identify adverse effects related to statin use. The purposes of this perspective article are: (1) to review the metabolism and mechanisms of actions of statins, (2) to discuss the effects of statins on skeletal muscle function, (3) to detail the clinical presentation of statin-induced myopathies, (4) to outline the testing used to diagnose statin-induced myopathies, and (5) to introduce a role for the physical therapist for the screening and detection of suspected statin-induced skeletal muscle myopathy. PMID:20688875

  10. Blue rubber bleb nevus syndrome with simultaneous neurological and skeletal involvement.

    PubMed

    Tzoufi, Meropi S; Sixlimiri, Polyxeni; Nakou, Iliada; Argyropoulou, Maria I; Stefanidis, Constantinos J; Siamopoulou-Mavridou, Antigone

    2008-08-01

    Blue rubber bleb nevus syndrome (BRBNS) is a rare disorder characterized by venous malformations usually affecting the skin and the gastrointestinal tract. These skin haemangiomas are present at birth and deteriorate as the body grows, causing primarily cosmetic problems. The haemangiomas of the gastrointestinal tract may appear later in life and may bleed, causing chronic anaemia, or may present with severe complications such as rupture, intestinal torsion, and intussusception. Other organs may also be involved. This article describes a 13-year-old boy with multiple haemangiomas of the skin, the mucous membranes, and the gastrointestinal tract, which caused anaemia and ileoileic intussusception. In this patient, the nervous system was significantly affected with a haemangioma of the left occipital lobe, with complications of stroke. He also had multiple paravertebral heamangiomas, which caused pressure signs and symptoms. This boy suffered from complex partial and generalized seizures and cerebral palsy. Multiple skeletal anomalies were also present from birth. In the relevant literature, this is the first case of BRBNS with simultaneous neurological and skeletal involvement. Such cases should be recognized early, as they can lead to serious multiple health problems and handicaps.

  11. Signalling and the control of skeletal muscle size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otto, Anthony; Patel, Ketan, E-mail: ketan.patel@reading.ac.uk

    2010-11-01

    Skeletal muscle is highly adaptive to environmental stimuli and can alter its mass accordingly. This tissue is almost unique in that it can increase its size through two distinct mechanisms. It can grow through a cellular process mediated by cell fusion, or it can increase its size simply by increasing its protein content. Understanding how these processes are regulated is crucial for the development of potential therapies against debilitating skeletal muscle wasting diseases. Two key signalling molecules, Insulin like Growth Factor (IGF) and GDF-8/myostatin, have emerged in recent years to be potent regulators of skeletal muscle size. In this reviewmore » we bring together recent data highlighting the important and novel aspects of both molecules and their signalling pathways, culminating in a discussion of the cellular and tissue phenotypic outcomes of their stimulation or antagonism. We emphasise the complex regulatory mechanisms and discuss the temporal and spatial differences that control their action, understanding of which is crucial to further their use as potential therapeutic targets.« less

  12. FISH SKELETAL ANOMALIES IN THE GULF OF MEXICO

    EPA Science Inventory

    Measurement of skeletal deformities in fish has been proposed as a means of monitoring pollution effects in marine environments. Effects of organic and inorganic contaminants on bone integrity are similar in that vertebral anomalies are produced, although they may develop through...

  13. Increased expression of Myosin binding protein H in the skeletal muscle of amyotrophic lateral sclerosis patients.

    PubMed

    Conti, Antonio; Riva, Nilo; Pesca, Mariasabina; Iannaccone, Sandro; Cannistraci, Carlo V; Corbo, Massimo; Previtali, Stefano C; Quattrini, Angelo; Alessio, Massimo

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe and fatal neurodegenerative disease of still unknown pathogenesis. Recent findings suggest that the skeletal muscle may play an active pathogenetic role. To investigate ALS's pathogenesis and to seek diagnostic markers, we analyzed skeletal muscle biopsies with the differential expression proteomic approach. We studied skeletal muscle biopsies from healthy controls (CN), sporadic ALS (sALS), motor neuropathies (MN) and myopathies (M). Pre-eminently among several differentially expressed proteins, Myosin binding protein H (MyBP-H) expression in ALS samples was anomalously high. MyBP-H is a component of the thick filaments of the skeletal muscle and has strong affinity for myosin, but its function is still unclear. High MyBP-H expression level was associated with abnormal expression of Rho kinase 2 (ROCK2), LIM domain kinase 1 (LIMK1) and cofilin2, that might affect the actin-myosin interaction. We propose that MyBP-H expression level serves, as a putative biomarker in the skeletal muscle, to discriminate ALS from motor neuropathies, and that it signals the onset of dysregulation in actin-myosin interaction; this in turn might contribute to the pathogenesis of ALS. © 2013 Elsevier B.V. All rights reserved.

  14. Effect of electrical stimulation on beta-adrenergic receptor population and cyclic amp production in chicken and rat skeletal muscle cell cultures

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.; Strietzel, C. J.

    2000-01-01

    Expression of the beta-adrenergic receptor (betaAR) and its coupling to cyclic AMP (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the betaAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically, chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7 d in culture were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the betaAR population was not significantly affected by electrical stimulation; however, the ability of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the betaAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.

  15. Effect of Electrical Stimulation on Beta-Adrenergic Receptor Population and Cyclic AMP Production in Chicken and Rat Skeletal Muscle Cell Cultures

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, Kristin Y.; Strietzel, Catherine J.

    2000-01-01

    Expression of the beta-adrenergic receptor (PAR) and its coupling to Adenosine 3'5' Cyclic Monophosphate (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the PAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7 d in culture, were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the PAR population was not significantly affected by electrical stimulation; however, the ability, of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the PAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.

  16. Skeletal sequelae of radiation therapy for malignant childhood tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, M.S.; Robertson, W.W. Jr.; Rate, W.

    1990-02-01

    One hundred forty-three patients who received radiation therapy for childhood tumors, and survived to the age of skeletal maturity, were studied by retrospective review of oncology records and roentgenograms. Diagnoses for the patients were the following: Hodgkin's lymphoma (44), Wilms's tumor (30), acute lymphocytic leukemia (26), non-Hodgkin's lymphoma (18), Ewing's sarcoma (nine), rhabdomyosarcoma (six), neuroblastoma (six), and others (four). Age at the follow-up examination averaged 18 years (range, 14-28 years). Average length of follow-up study was 9.9 years (range, two to 18 years). Asymmetry of the chest and ribs was seen in 51 (36%) of these children. Fifty (35%) hadmore » scoliosis; 14 had kyphosis. In two children, the scoliosis was treated with a brace, while one developed significant kyphosing scoliosis after laminectomy and had spinal fusion. Twenty-three (16%) patients complained of significant pain at the radiation sites. Twelve of the patients developed leg-length inequality; eight of those were symptomatic. Three patients developed second primary tumors. Currently, the incidence of significant skeletal sequelae is lower and the manifestations are less severe than reported in the years from 1940 to 1970. The reduction in skeletal complications may be attributed to shielding of growth centers, symmetric field selection, decreased total radiation doses, and sequence changes in chemotherapy.« less

  17. Management of severe skeletal Class III malocclusion with bimaxillary orthognathic surgery

    PubMed Central

    Haryani, Jitesh; Nagar, Amit; Mehrotra, Divya; Ranabhatt, Rani

    2016-01-01

    Orthognathic surgery in conjunction with fixed orthodontics is a common indication for interdisciplinary management of severe skeletal Class III malocclusion. A thorough analysis of pretreatment investigations and development of a surgical visual treatment objective is essential to plan the type of surgical technique required. Bimaxillary orthognathic surgery is the most common type of surgical procedure for severe skeletal discrepancies. The present case report is a combined ortho-surgical team management of a skeletally Class III patient. The severity of the case required bilateral upper first premolar extraction for dentoalveolar decompensation and simultaneous “Two-jaw surgery” with maxillary advancement of 4 mm and mandibular setback of 7 mm. Postsurgery, a pleasing good facial profile was achieved with Class II molar relation and positive overjet. PMID:27994433

  18. [Molecular mechanisms of skeletal muscle hypertrophy].

    PubMed

    Astratenkova, I V; Rogozkin, V A

    2014-06-01

    Enzymes Akt, AMPK, mTOR, S6K and PGC-1a coactivator take part in skeletal muscles in the regulation of synthesis of proteins. The expression of these proteins is regulated by growth factors, hormones, nutrients, mechanical loading and leads to an increase in muscle mass and skeletal muscle hypertrophy. The review presents the results of studies published in the past four years, which expand knowledge on the effects of various factors on protein synthesis in skeletal muscle. The attention is focused on the achievements that reveal and clarify the signaling pathways involved in the regulation of protein synthesis in skeletal muscle. The central place is taken by mTOR enzyme which controls and regulates the main stages of the cascade of reactions of muscle proteins providing synthesis in the conditions of human life. coactivator PGC-1a.

  19. Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models

    NASA Technical Reports Server (NTRS)

    Marquette, Michele L.; Sognier, Marguerite A.

    2013-01-01

    An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.

  20. The dynamic response and shock-recovery of porcine skeletal muscle tissue

    NASA Astrophysics Data System (ADS)

    Wilgeroth, James Michael; Hazell, Paul; Appleby-Thomas, Gareth James

    2012-03-01

    A soft-capture system allowing for one-dimensional shock loading and release of soft tissues via the plate-impact technique has been developed. In addition, we present the numerical simulation of a shock-recovery experiment involving porcine skeletal muscle and further investigate the effects of the transient wave on the structure of the tissue via transmission electron microscope (TEM). This paper forms part of an ongoing research programme on the dynamic behaviour of skeletal muscle tissue.

  1. Sema4d is required for the development of the hindbrain boundary and skeletal muscle in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jie; Zeng, Zhen; Wei, Juncheng

    2013-04-05

    Highlights: ► Sema4d was expressed at all developmental stages of zebrafish. ► Knockdown of sema4d in embryos resulted in defects in the hindbrain and the trunk structure. ► Knockdown of sema4d in embryos upregulated the expression of three hindbrain rhombomere markers. ► Knockdown of sema4d in embryos increased the expression of myogenic regulatory factors. ► Knockdown of sema4d in embryos resulted in an obvious increase of cell apoptosis. -- Abstract: Semaphorin4d (SEMA4D), also known as CD100, an oligodendrocyte secreted R-Ras GTPase-activating protein (GAP), affecting axonal growth is involved in a range of processes including cell adhesion, motility, angiogenesis, immune responsesmore » and tumour progression. However, its actual physiological mechanisms and its role in development remain unclear. This study has focused on the role of sema4d in the development and expression patterns in zebrafish embryos and the effect of its suppression on development using sema4d-specific antisense morpholino-oligonucleotides. In this study the knockdown of sema4d, expressed at all developmental stages, lead to defects in the hindbrain and trunk structure of zebrafish embryos. In addition, these phenotypes appeared to be associated with the abnormal expression of three hindbrain rhombomere boundary markers, wnt1, epha4a and foxb1.2, and two myogenic regulatory factors, myod and myog. Further, a notable increase of cell apoptosis appeared in the sema4d knockdown embryos, while no obvious reduction in cell proliferation was observed. Collectively, these data suggest that sema4d plays an important role in the development of the hindbrain and skeletal muscle.« less

  2. Current Methods for Skeletal Muscle Tissue Repair and Regeneration

    PubMed Central

    Liu, Juan; Saul, Dominik; Böker, Kai Oliver; Ernst, Jennifer; Lehman, Wolfgang

    2018-01-01

    Skeletal muscle has the capacity of regeneration after injury. However, for large volumes of muscle loss, this regeneration needs interventional support. Consequently, muscle injury provides an ongoing reconstructive and regenerative challenge in clinical work. To promote muscle repair and regeneration, different strategies have been developed within the last century and especially during the last few decades, including surgical techniques, physical therapy, biomaterials, and muscular tissue engineering as well as cell therapy. Still, there is a great need to develop new methods and materials, which promote skeletal muscle repair and functional regeneration. In this review, we give a comprehensive overview over the epidemiology of muscle tissue loss, highlight current strategies in clinical treatment, and discuss novel methods for muscle regeneration and challenges for their future clinical translation. PMID:29850487

  3. Cardiac troponin T and fast skeletal muscle denervation in ageing

    PubMed Central

    Xu, Zherong; Feng, Xin; Dong, Juan; Wang, Zhong‐Min; Lee, Jingyun; Furdui, Cristina; Files, Daniel Clark; Beavers, Kristen M.; Kritchevsky, Stephen; Milligan, Carolanne; Jin, Jian‐Ping; Delbono, Osvaldo

    2017-01-01

    Abstract Background Ageing skeletal muscle undergoes chronic denervation, and the neuromuscular junction (NMJ), the key structure that connects motor neuron nerves with muscle cells, shows increased defects with ageing. Previous studies in various species have shown that with ageing, type II fast‐twitch skeletal muscle fibres show more atrophy and NMJ deterioration than type I slow‐twitch fibres. However, how this process is regulated is largely unknown. A better understanding of the mechanisms regulating skeletal muscle fibre‐type specific denervation at the NMJ could be critical to identifying novel treatments for sarcopenia. Cardiac troponin T (cTnT), the heart muscle‐specific isoform of TnT, is a key component of the mechanisms of muscle contraction. It is expressed in skeletal muscle during early development, after acute sciatic nerve denervation, in various neuromuscular diseases and possibly in ageing muscle. Yet the subcellular localization and function of cTnT in skeletal muscle is largely unknown. Methods Studies were carried out on isolated skeletal muscles from mice, vervet monkeys, and humans. Immunoblotting, immunoprecipitation, and mass spectrometry were used to analyse protein expression, real‐time reverse transcription polymerase chain reaction was used to measure gene expression, immunofluorescence staining was performed for subcellular distribution assay of proteins, and electromyographic recording was used to analyse neurotransmission at the NMJ. Results Levels of cTnT expression in skeletal muscle increased with ageing in mice. In addition, cTnT was highly enriched at the NMJ region—but mainly in the fast‐twitch, not the slow‐twitch, muscle of old mice. We further found that the protein kinase A (PKA) RIα subunit was largely removed from, while PKA RIIα and RIIβ are enriched at, the NMJ—again, preferentially in fast‐twitch but not slow‐twitch muscle in old mice. Knocking down cTnT in fast skeletal muscle of old mice: (i

  4. Cardiac troponin T and fast skeletal muscle denervation in ageing.

    PubMed

    Xu, Zherong; Feng, Xin; Dong, Juan; Wang, Zhong-Min; Lee, Jingyun; Furdui, Cristina; Files, Daniel Clark; Beavers, Kristen M; Kritchevsky, Stephen; Milligan, Carolanne; Jin, Jian-Ping; Delbono, Osvaldo; Zhang, Tan

    2017-10-01

    Ageing skeletal muscle undergoes chronic denervation, and the neuromuscular junction (NMJ), the key structure that connects motor neuron nerves with muscle cells, shows increased defects with ageing. Previous studies in various species have shown that with ageing, type II fast-twitch skeletal muscle fibres show more atrophy and NMJ deterioration than type I slow-twitch fibres. However, how this process is regulated is largely unknown. A better understanding of the mechanisms regulating skeletal muscle fibre-type specific denervation at the NMJ could be critical to identifying novel treatments for sarcopenia. Cardiac troponin T (cTnT), the heart muscle-specific isoform of TnT, is a key component of the mechanisms of muscle contraction. It is expressed in skeletal muscle during early development, after acute sciatic nerve denervation, in various neuromuscular diseases and possibly in ageing muscle. Yet the subcellular localization and function of cTnT in skeletal muscle is largely unknown. Studies were carried out on isolated skeletal muscles from mice, vervet monkeys, and humans. Immunoblotting, immunoprecipitation, and mass spectrometry were used to analyse protein expression, real-time reverse transcription polymerase chain reaction was used to measure gene expression, immunofluorescence staining was performed for subcellular distribution assay of proteins, and electromyographic recording was used to analyse neurotransmission at the NMJ. Levels of cTnT expression in skeletal muscle increased with ageing in mice. In addition, cTnT was highly enriched at the NMJ region-but mainly in the fast-twitch, not the slow-twitch, muscle of old mice. We further found that the protein kinase A (PKA) RIα subunit was largely removed from, while PKA RIIα and RIIβ are enriched at, the NMJ-again, preferentially in fast-twitch but not slow-twitch muscle in old mice. Knocking down cTnT in fast skeletal muscle of old mice: (i) increased PKA RIα and reduced PKA RIIα at the NMJ; (ii

  5. Membrane Cholesterol in Skeletal Muscle: A Novel Player in Excitation-Contraction Coupling and Insulin Resistance

    PubMed Central

    Barrientos, G.; Sánchez-Aguilera, P.; Jaimovich, E.; Hidalgo, C.

    2017-01-01

    Membrane cholesterol is critical for signaling processes in a variety of tissues. We will address here current evidence supporting an emerging role of cholesterol on excitation-contraction coupling and glucose transport in skeletal muscle. We have centered our review on the transverse tubule system, a complex network of narrow plasma membrane invaginations that propagate membrane depolarization into the fiber interior and allow nutrient delivery into the fibers. We will discuss current evidence showing that transverse tubule membranes have remarkably high cholesterol levels and we will address how modifications of cholesterol content influence excitation-contraction coupling. In addition, we will discuss how membrane cholesterol levels affect glucose transport by modulating the insertion into the membrane of the main insulin-sensitive glucose transporter GLUT4. Finally, we will address how the increased membrane cholesterol levels displayed by obese animals, which also present insulin resistance, affect these two particular skeletal muscle functions. PMID:28367451

  6. Bone age in children with obstetrical brachial plexus palsy: effect of peripheral nerve injury on skeletal maturation.

    PubMed

    Oktay, Fügen; Cömert, Didem; Gökkaya, Nilüfer Kutay Ordu; Ozbudak, Sibel Demir; Uysal, Hilmi

    2014-02-01

    The purpose of this retrospective study was to analyze the effect of peripheral nerve injury on the skeletal maturation process. The bone ages of the affected and unaffected hand-wrists of 42 children with obstetrical brachial palsy were determined according to the Greulich and Pyle atlas. In 23 patients, the bone ages of the both sides were identical (bone-age-symmetrical group), in 19 patients the bone age of the affected side was delayed (bone-age-delayed group). The mean bone age of the affected side was delayed 0.48 ± 0.25 years that of the unaffected side (P = .000), and the delay of bone age was inversely correlated with chronological age (R (2) = .45, P < .02) in the bone-age-delayed group. Skeletal retardation can be recognized after appearance of ossification centers by plain radiography, dating from the third month of life, in early infancy. Thus, bone age determination method might be helpful for predicting potential future limb shortness.

  7. Mandibular growth and dentoalveolar development in the treatment of class II, division 1, malocclusion using Balters Bionator according to the skeletal maturation.

    PubMed

    dos Santos-Pinto, Paulo Roberto; Martins, Lídia Parsekian; dos Santos-Pinto, Ary; Gandini Júnior, Luiz Gonzaga; Raveli, Dirceu Barnabé; dos Santos-Pinto, Cristiane Celli Matheus

    2013-01-01

    The purpose of the study was to evaluate the influence of the skeletal maturation in the mandibular and dentoalveolar growth and development during the Class II, division 1, malocclusion correction with Balters bionator. Three groups of children with Class II, division 1, malocclusion were evaluated. Two of them were treated for one year with the bionator of Balters appliance in different skeletal ages (Group 1: 6 children, 7 to 8 years old and Group 2: 10 children, 9 to 10 years old) and the other one was followed without treatment ( 7 children, 8 to 9 years old). Lateral 45 degree cephalometric radiographs were used for the evaluation of the mandibular growth and dentoalveolar development. Tantalum metallic implants were used as fixed and stable references for radiograph superimposition and data acquisition. Student's t test was used in the statistical analysis of the displacement of the points in the condyle, ramus, mandibular base and dental points. One-fixed criteria analysis of variance was used to evaluate group differences (95% of level of significance). The intragroup evaluation showed that all groups present significant skeletal growth for all points analyzed (1.2 to 3.7 mm), but in an intergroup comparison, the increments of the mandibular growth in the condyle, ramus and mandibular base were not statically different. For the dentoalveolar modifications, the less mature children showed greater labial inclination of the lower incisors (1.86 mm) and the most mature children showed greater first permanent molar extrusion (4.8 mm).

  8. MicroRNA in Skeletal Muscle: Its Crucial Roles in Signal Proteins, Mus cle Fiber Type, and Muscle Protein Synthesis.

    PubMed

    Zhang, Jing; Liu, Yu Lan

    2017-01-01

    Pork is one of the most economical sources of animal protein for human consumption. Meat quality is an important economic trait for the swine industry, which is primarily determined by prenatal muscle development and postnatal growth. Identification of the molecular mechanisms underlying skeletal muscle development is a key priority. MicroRNAs (miRNAs) are a class of small noncoding RNAs that have emerged as key regulators of skeletal muscle development. A number of muscle-related miRNAs have been identified by functional gain and loss experiments in mouse model. However, determining miRNA-mRNA interactions involved in pig skeletal muscle still remains a significant challenge. For a comprehensive understanding of miRNA-mediated mechanisms underlying muscle development, miRNAome analyses of pig skeletal muscle have been performed by deep sequencing. Additionally, porcine miRNA single nucleotide polymorphisms have been implicated in muscle fiber types and meat quality. The present review provides an overview of current knowledge on recently identified miRNAs involved in myogenesis, muscle fiber type and muscle protein metabolism. Undoubtedly, further systematic understanding of the functions of miRNAs in pig skeletal muscle development will be helpful to expand the knowledge of basic skeletal muscle biology and be beneficial for the genetic improvement of meat quality traits. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Fenoterol did not enhance glucocorticoid-induced skeletal changes in male rats.

    PubMed

    Folwarczna, Joanna; Nowińska, Barbara; Śliwiński, Leszek; Pytlik, Maria; Cegieła, Urszula; Betka, Anna

    2011-01-01

    Glucocorticoids and β(2)-adrenergic receptor agonists are the most commonly used drugs in the treatment of asthma. Both therapies are potentially dangerous to the skeletal system. The aim of the present study was to investigate the effects of fenoterol, a β(2)-receptor agonist, on the development of bone changes induced by glucocorticoid (prednisolone) administration in mature male rats. The experiments were carried out on 24-week-old male Wistar rats. The effects of prednisolone 21-hemisuccinate sodium salt (7 mg/kg s.c. daily) or/and fenoterol hydrobromide (1.4 mg/kg i.p. daily), administered for 4 weeks, on the skeletal system were studied. Bone turnover markers, geometric parameters, mass, mass of bone mineral in the tibia, femur and L-4 vertebra, bone histomorphometric parameters and mechanical properties of tibial metaphysis, femoral diaphysis and femoral neck were determined. Both prednisolone and fenoterol had damaging effects on the skeletal system of mature male rats. However, concurrent administration of fenoterol and prednisolone did not result in the intensification of the deleterious skeletal effect of either drug administered separately.

  10. Metabolic inflexibility in skeletal muscle: a prelude to the cardiometabolic syndrome?

    PubMed

    Thyfault, John P; Rector, R Scott; Noland, Robert C

    2006-01-01

    Peripheral insulin resistance, which is largely dependent on skeletal muscle, is closely linked to the development of the cardiometabolic syndrome. Metabolic flexibility is the capacity for skeletal muscle to acutely shift its reliance between lipids or glucose during fasting or postprandial conditions. Obese and insulin-resistant individuals display elevated intramuscular lipids, impaired vasculature function, decreased fatty add oxidation during fasting, and reduced postprandial glucose metabolism. Impairments in metabolic flexibility are linked to physical inactivity, excess energy intake and obesity, and genetic predisposition. Each of these factors precludes the development of insulin resistance and the cardiometabolic syndrome by mechanistic links that are not fully understood.

  11. Bone mineral density, chemical composition and biomechanical properties of the tibia of female rats exposed to cadmium since weaning up to skeletal maturity.

    PubMed

    Brzóska, M M; Majewska, K; Moniuszko-Jakoniuk, J

    2005-10-01

    The influence of exposure to cadmium (Cd) during skeletal development on the risk of bone fractures at the stage of skeletal maturity was investigated on a female rat model of human exposure. The tibias of rats treated with 1, 5 or 50 mg Cd/l in drinking water for 3, 6, 9 and 12 months (since weaning) were used. The exposure to Cd dose- and time-dependently influenced the tibia bone mineral density (BMD) and chemical composition. In skeletally matured animals, at each level of the exposure to Cd, the BMD at the whole tibia and its diaphysis as well as the percentage of minerals content in the bone, including the content of zinc, copper and iron, were decreased compared to control. Moreover, in the 50 mg Cd/l group, the percentage of organic components content increased. The Cd-induced changes, at all levels of exposure, resulted in weakening in the yield strength and fracture strength of the tibia (a three-point bending test of the diaphysis and compression test with vertical loading) of the skeletally matured females. A very important and clinically useful finding of this study is that a decrease (even by several percent) in the tibia BMD results in weakness in the bone biomechanical properties and that the BMD may predict the risk of its fracture at the exposure to Cd. Moreover, the results together with our previous findings seem to suggest that tibia, due to higher vulnerability of its diaphysis, compared to the femoral diaphysis, to damage by Cd may be more useful than femur to investigate the effect of Cd on the cortical bone. The present study revealed that a low exposure to Cd (1 mg Cd/l), corresponding to low human environmental exposure, during the skeletal development affects the tibia mineral status leading to weakening in its mechanical properties at the skeletal maturity. The findings allow for the conclusion that environmental exposure to Cd during childhood and adolescence may enhance the risk of low BMD and fractures at adulthood.

  12. Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles.

    PubMed

    Sugo, Tsukasa; Terada, Michiko; Oikawa, Tatsuo; Miyata, Kenichi; Nishimura, Satoshi; Kenjo, Eriya; Ogasawara-Shimizu, Mari; Makita, Yukimasa; Imaichi, Sachiko; Murata, Shumpei; Otake, Kentaro; Kikuchi, Kuniko; Teratani, Mika; Masuda, Yasushi; Kamei, Takayuki; Takagahara, Shuichi; Ikeda, Shota; Ohtaki, Tetsuya; Matsumoto, Hirokazu

    2016-09-10

    Despite considerable efforts to develop efficient carriers, the major target organ of short-interfering RNAs (siRNAs) remains limited to the liver. Expanding the application outside the liver is required to increase the value of siRNAs. Here we report on a novel platform targeted to muscular organs by conjugation of siRNAs with anti-CD71 Fab' fragment. This conjugate showed durable gene-silencing in the heart and skeletal muscle for one month after intravenous administration in normal mice. In particular, 1μg siRNA conjugate showed significant gene-silencing in the gastrocnemius when injected intramuscularly. In a mouse model of peripheral artery disease, the treatment with myostatin-targeting siRNA conjugate by intramuscular injection resulted in significant silencing of myostatin and hypertrophy of the gastrocnemius, which was translated into the recovery of running performance. These data demonstrate the utility of antibody conjugation for siRNA delivery and the therapeutic potential for muscular diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. In vivo two-photon imaging of macrophage activities in skeletal muscle regeneration

    NASA Astrophysics Data System (ADS)

    Qin, Zhongya; Long, Yanyang; Sun, Qiqi; He, Sicong; Li, Xuesong; Chen, Congping; Wu, Zhenguo; Qu, Jianan Y.

    2018-02-01

    Macrophages are essential for the regeneration of skeletal muscle after injury. It has been demonstrated that depletion of macrophages results in delay of necrotic fiber phagocytosis and decreased size of regenerated myofibers. In this work, we developed a multi-modal two-photon microscope system for in vivo study of macrophage activities in the regenerative and fibrotic healing process of injured skeletal muscles. The system is capable to image the muscles based on the second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) signals simultaneously. The dynamic activities of macrophages and muscle satellite cells are recorded in different time windows post the muscle injury. Moreover, we found that infiltrating macrophages emitted strong autofluorescence in the injured skeletal muscle of mouse model, which has not been reported previously. The macrophage autofluorescence was characterized in both spectral and temporal domains. The information extracted from the autofluorescence signals may facilitate the understanding on the formation mechanisms and possible applications in biological research related to skeletal muscle regeneration.

  14. Skeletal preservation of children's remains in the archaeological record.

    PubMed

    Manifold, B M

    2015-12-01

    Taphonomy is an important consideration in the reconstruction of past environments and events. Taphonomic alterations and processes are commonly encountered on human skeletal remains in both archaeological and forensic contexts. It is these processes that can alter the appearance of bone after death and the properties of the bones influence their reaction to these processes thus leading to differential preservation within a skeletal sample, none more so than the remains of children. This study investigates the skeletal preservation of 790 child and adolescent skeletons from six contrasting early and late medieval cemeteries from Britain in an attempt to assess whether geographical location and geology had an effect on the overall preservation of the skeletons. Skeletons were examined from six cemeteries, namely; Auldhame in Scotland, Edix Hill and Great Chesterford from Cambridgeshire; St Oswald's Priory from Gloucester and Wharram Percy from Yorkshire, and finally, the site of Llandough in Wales. The state of preservation was assessed using the anatomical preservation index (AP1), qualitative bone index (QBI) and the bone representation index (BRI). Also the presence of natural and artificial taphonomic processes was recorded for each skeleton. The results show a specific pattern of preservation and representation for non-adult remains across all sites with some differences in the states of preservation from different geographical locations and geological influences. Children under two years of age were found to be less affected by taphonomic processes than their older counterparts. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. Mutations in the Neuroblastoma Amplified Sequence gene in a family affected by Acrofrontofacionasal Dysostosis type 1.

    PubMed

    Palagano, Eleonora; Zuccarini, Giulia; Prontera, Paolo; Borgatti, Renato; Stangoni, Gabriela; Elisei, Sandro; Mantero, Stefano; Menale, Ciro; Forlino, Antonella; Uva, Paolo; Oppo, Manuela; Vezzoni, Paolo; Villa, Anna; Merlo, Giorgio R; Sobacchi, Cristina

    2018-06-19

    Acrofrontofacionasal Dysostosis type 1 (AFFND1) is an extremely rare, autosomal recessive syndrome, comprising facial and skeletal abnormalities, short stature and intellectual disability. We analyzed an Indian family with two affected siblings by exome sequencing and identified a novel homozygous truncating mutation in the Neuroblastoma-Amplified Sequence (NBAS) gene in the patients' genome. Mutations in the NBAS gene have recently been associated with different phenotypes mainly involving skeletal formation, liver and cognitive development. The NBAS protein has been implicated in two key cellular processes, namely the non-sense mediated decay and the Golgi-to-Endoplasmic Reticulum retrograde traffic. Both functions were impaired in HEK293T cells overexpressing the truncated NBAS protein, as assessed by Real-Time PCR, Western blot analysis, co-immunoprecipitation, and immunofluorescence analysis. We examined the expression of NBAS protein in mouse embryos at various developmental stages by immunohistochemistry, and detected expression in developing chondrogenic and osteogenic structures of the skeleton as well as in the cortex, hippocampus and cerebellum, which is compatible with a role in bone and brain development. Functional genetics in the zebrafish model showed that depletion of endogenous z-nbas in fish embryos results in defective morphogenesis of chondrogenic cranial skeletal elements. Overall, our data point to a conserved function of NBAS in skeletal morphogenesis during development, support the hypothesis of a causative role of the mutated NBAS gene in the pathogenesis of AFFND1 and extend the spectrum of phenotypes associated with defects in this gene. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Decellularised skeletal muscles allow functional muscle regeneration by promoting host cell migration.

    PubMed

    Urciuolo, Anna; Urbani, Luca; Perin, Silvia; Maghsoudlou, Panagiotis; Scottoni, Federico; Gjinovci, Asllan; Collins-Hooper, Henry; Loukogeorgakis, Stavros; Tyraskis, Athanasios; Torelli, Silvia; Germinario, Elena; Fallas, Mario Enrique Alvarez; Julia-Vilella, Carla; Eaton, Simon; Blaauw, Bert; Patel, Ketan; De Coppi, Paolo

    2018-05-30

    Pathological conditions affecting skeletal muscle function may lead to irreversible volumetric muscle loss (VML). Therapeutic approaches involving acellular matrices represent an emerging and promising strategy to promote regeneration of skeletal muscle following injury. Here we investigated the ability of three different decellularised skeletal muscle scaffolds to support muscle regeneration in a xenogeneic immune-competent model of VML, in which the EDL muscle was surgically resected. All implanted acellular matrices, used to replace the resected muscles, were able to generate functional artificial muscles by promoting host myogenic cell migration and differentiation, as well as nervous fibres, vascular networks, and satellite cell (SC) homing. However, acellular tissue mainly composed of extracellular matrix (ECM) allowed better myofibre three-dimensional (3D) organization and the restoration of SC pool, when compared to scaffolds which also preserved muscular cytoskeletal structures. Finally, we showed that fibroblasts are indispensable to promote efficient migration and myogenesis by muscle stem cells across the scaffolds in vitro. This data strongly support the use of xenogeneic acellular muscles as device to treat VML conditions in absence of donor cell implementation, as well as in vitro model for studying cell interplay during myogenesis.

  17. Skeletal muscle and nuclear hormone receptors: implications for cardiovascular and metabolic disease.

    PubMed

    Smith, Aaron G; Muscat, George E O

    2005-10-01

    Skeletal muscle is a major mass peripheral tissue that accounts for approximately 40% of the total body mass and a major player in energy balance. It accounts for >30% of energy expenditure, is the primary tissue of insulin stimulated glucose uptake, disposal, and storage. Furthermore, it influences metabolism via modulation of circulating and stored lipid (and cholesterol) flux. Lipid catabolism supplies up to 70% of the energy requirements for resting muscle. However, initial aerobic exercise utilizes stored muscle glycogen but as exercise continues, glucose and stored muscle triglycerides become important energy substrates. Endurance exercise increasingly depends on fatty acid oxidation (and lipid mobilization from other tissues). This underscores the importance of lipid and glucose utilization as an energy source in muscle. Consequently skeletal muscle has a significant role in insulin sensitivity, the blood lipid profile, and obesity. Moreover, caloric excess, obesity and physical inactivity lead to skeletal muscle insulin resistance, a risk factor for the development of type II diabetes. In this context skeletal muscle is an important therapeutic target in the battle against cardiovascular disease, the worlds most serious public health threat. Major risk factors for cardiovascular disease include dyslipidemia, hypertension, obesity, sedentary lifestyle, and diabetes. These risk factors are directly influenced by diet, metabolism and physical activity. Metabolism is largely regulated by nuclear hormone receptors which function as hormone regulated transcription factors that bind DNA and mediate the patho-physiological regulation of gene expression. Metabolism and activity, which directly influence cardiovascular disease risk factors, are primarily driven by skeletal muscle. Recently, many nuclear receptors expressed in skeletal muscle have been shown to improve glucose tolerance, insulin resistance, and dyslipidemia. Skeletal muscle and nuclear receptors are

  18. Interactive effects of temperature, food and skeletal mineralogy mediate biological responses to ocean acidification in a widely distributed bryozoan.

    PubMed

    Swezey, Daniel S; Bean, Jessica R; Ninokawa, Aaron T; Hill, Tessa M; Gaylord, Brian; Sanford, Eric

    2017-04-26

    Marine invertebrates with skeletons made of high-magnesium calcite may be especially susceptible to ocean acidification (OA) due to the elevated solubility of this form of calcium carbonate. However, skeletal composition can vary plastically within some species, and it is largely unknown how concurrent changes in multiple oceanographic parameters will interact to affect skeletal mineralogy, growth and vulnerability to future OA. We explored these interactive effects by culturing genetic clones of the bryozoan Jellyella tuberculata (formerly Membranipora tuberculata ) under factorial combinations of dissolved carbon dioxide (CO 2 ), temperature and food concentrations. High CO 2 and cold temperature induced degeneration of zooids in colonies. However, colonies still maintained high growth efficiencies under these adverse conditions, indicating a compensatory trade-off whereby colonies degenerate more zooids under stress, redirecting energy to the growth and maintenance of new zooids. Low-food concentration and elevated temperatures also had interactive effects on skeletal mineralogy, resulting in skeletal calcite with higher concentrations of magnesium, which readily dissolved under high CO 2 For taxa that weakly regulate skeletal magnesium concentration, skeletal dissolution may be a more widespread phenomenon than is currently documented and is a growing concern as oceans continue to warm and acidify. © 2017 The Author(s).

  19. Image-based modelling of skeletal muscle oxygenation

    PubMed Central

    Clough, G. F.

    2017-01-01

    The supply of oxygen in sufficient quantity is vital for the correct functioning of all organs in the human body, in particular for skeletal muscle during exercise. Disease is often associated with both an inhibition of the microvascular supply capability and is thought to relate to changes in the structure of blood vessel networks. Different methods exist to investigate the influence of the microvascular structure on tissue oxygenation, varying over a range of application areas, i.e. biological in vivo and in vitro experiments, imaging and mathematical modelling. Ideally, all of these methods should be combined within the same framework in order to fully understand the processes involved. This review discusses the mathematical models of skeletal muscle oxygenation currently available that are based upon images taken of the muscle microvasculature in vivo and ex vivo. Imaging systems suitable for capturing the blood vessel networks are discussed and respective contrasting methods presented. The review further informs the association between anatomical characteristics in health and disease. With this review we give the reader a tool to understand and establish the workflow of developing an image-based model of skeletal muscle oxygenation. Finally, we give an outlook for improvements needed for measurements and imaging techniques to adequately investigate the microvascular capability for oxygen exchange. PMID:28202595

  20. [Skeletal muscles, physical activity and health].

    PubMed

    Saltin, B; Helge, J W

    2000-11-01

    The metabolic capacity of skeletal muscle plays a significant role for insulin sensitivity and the blood lipid profile. The metabolic capacity of the muscle is a function of the individual's physical activity level. This is also true for the content of type IIa muscle fibres, which is reduced, and the number of capillaries, which is elevated with muscle usage. Several of these skeletal muscle features are risk factors for or linked with life-style induced diseases such as type II diabetes, hypertension, hyperlipemia and obesity. The central role of the skeletal muscle and its functional metabolic capacity for life style diseases highlights the importance of people maintaining daily physical activity. This article focuses on the link between the metabolic capacity of skeletal muscle and the metabolic syndrome and briefly discusses the explanations for this relationship. As one important aspect if skeletal muscle has a high capacity for lipid oxidation, then more saturated fatty acids are oxidised and more unsaturated fatty acids are built in the phospholipid fraction of the plasma membrane, giving it more fluidity and improved insulin sensitivity. Moreover, the article points at the role of these fatty acids in activating genes via the PPAR-receptor system essential for enzyme and transport proteins in the lipid metabolism.

  1. Mastocytosis presenting as a skeletal disorder.

    PubMed Central

    Delsignore, J. L.; Dvoretsky, P. M.; Hicks, D. G.; O'Keefe, R. J.; Rosier, R. N.

    1996-01-01

    Mastocytosis is a rare disease of mast-cell proliferation with involvement of the reticuloendothelial systems including skin, bone, gastrointestinal tract, liver, lungs, spleen, and lymph nodes. Systemic mastocytosis is characterized by a combination of symptoms that relate to the mast cells' release of vasoactive substances, such as histamine. These symptoms include urticaria pigmentosa, flushing, syncope with hypotension, headaches, nausea, vomiting, diarrhea, and occasional bronchospasm. The diagnosis of mastocytosis is typically based on the presence of the characteristic extraosseus manifestations. A well recognized roentgenographic feature seen in 70-75% of patients with mastocytosis is diffuse osteolysis and osteosclerosis, affecting primarily the axial skeleton and the ends of the long bones. Rarely, the bony involvement consists of generalized osteoporosis, which may lead to pathologic fracture, or solitary lesions (mastocytomas) which may cause symptoms of localized pain. Four patients with previously diagnosed systemic mastocytosis had unusual skeletal lesions. Clinical and laboratory evaluation of these patients eventually led to the correct diagnosis of systemic mastocytosis. We report these four cases to emphasize the need for thorough evaluation of unusual musculoskeletal findings in association with extraosseus symptoms that are characteristic of mastocytosis. Knowledge of a wide differential diagnosis of unusual skeletal lesions should include systemic mastosytosis. Images Figure 1 Figure 2 Figure 3A Figure 3B Figure 4 Figure 5A Figure 5B-5C Figure 6 PMID:9129284

  2. A single day of bed rest, irrespective of energy balance, does not affect skeletal muscle gene expression or insulin sensitivity.

    PubMed

    Dirks, Marlou L; Stephens, Francis B; Jackman, Sarah R; Galera Gordo, Jesús; Machin, David J; Pulsford, Richard M; van Loon, Luc J C; Wall, Benjamin T

    2018-06-01

    What is the central question of this study? What are the initial metabolic and molecular events that underpin bed rest-induced skeletal muscle deconditioning, and what is the contribution of energy balance? What is the main finding and its importance? A single day of bed rest, irrespective of energy balance, did not lead to overt changes in skeletal muscle gene expression or insulin sensitivity. More than 1 day of physical inactivity is required to observe the insulin resistance and robust skeletal muscle transcriptional responses associated with bed rest and consequent alterations in energy balance. The initial metabolic and molecular events that underpin disuse-induced skeletal muscle deconditioning, and the contribution of energy balance, remain to be investigated. Ten young, healthy men (age 25 ± 1 years; body mass index 25.3 ± 0.8 kg·m -2 ) underwent three 24 h laboratory-based experimental periods in a randomized, crossover manner: (i) controlled habitual physical activity with an energy-balanced diet (CON); (ii) strict bed rest with a diet to maintain energy balance (BR-B); and (iii) strict bed rest with a diet identical to CON, consequently resulting in positive energy balance. Continuous glucose monitoring was performed throughout each visit, with vastus lateralis muscle biopsies and an oral glucose tolerance test performed before and after. In parallel with muscle samples collected from a previous 7 day bed rest study, biopsies were used to examine the expression of genes associated with the regulation of muscle mass and insulin sensitivity. A single day of bed rest, irrespective of energy balance, did not lead to overt changes in whole-body substrate oxidation, indices of insulin sensitivity [i.e. homeostatic model assessment of insulin resistance, BR-B from 2.7 ± 1.7 to 3.1 ± 1.5 (P > 0.05) and Matsuda index, BR-B from 5.9 ± 3.3 to 5.2 ± 2.9 (P > 0.05)] or 24 h glycaemic control/variability compared with CON. Seven days of

  3. STIM1 signaling controls store operated calcium entry required for development and contractile function in skeletal muscle

    PubMed Central

    Stiber, Jonathan; Hawkins, April; Zhang, Zhu-Shan; Wang, Sunny; Burch, Jarrett; Graham, Victoria; Ward, Cary C.; Seth, Malini; Finch, Elizabeth; Malouf, Nadia; Williams, R. Sanders; Eu, Jerry P.; Rosenberg, Paul

    2009-01-01

    It is now well established that stromal interaction molecule 1 (STIM1) is the calcium sensor of endoplasmic reticulum (ER) stores required to activate store-operated calcium entry (SOC) channels at the surface of non-excitable cells. Yet little is known about STIM1 in excitable cells such as striated muscle where the complement of calcium regulatory molecules is rather disparate from that of non-excitable cells. Here, we show that STIM1 is expressed in both myotubes and adult skeletal muscle. Myotubes lacking functional STIM1 fail to exhibit SOC and fatigue rapidly. Moreover, mice lacking functional STIM1 die perinatally from a skeletal myopathy. In addition, STIM1 haploinsufficiency confers a contractile defect only under conditions where rapid refilling of stores would be needed. These findings provide novel insight to the role of STIM1 in skeletal muscle and suggest that STIM1 has a universal role as an ER/SR calcium sensor in both excitable and non-excitable cells. PMID:18488020

  4. Rap1b Is an Effector of Axin2 Regulating Crosstalk of Signaling Pathways During Skeletal Development.

    PubMed

    Maruyama, Takamitsu; Jiang, Ming; Abbott, Alycia; Yu, H-M Ivy; Huang, Qirong; Chrzanowska-Wodnicka, Magdalena; Chen, Emily I; Hsu, Wei

    2017-09-01

    Recent identification and isolation of suture stem cells capable of long-term self-renewal, clonal expanding, and differentiating demonstrate their essential role in calvarial bone development, homeostasis, and injury repair. These bona fide stem cells express a high level of Axin2 and are able to mediate bone regeneration and repair in a cell autonomous fashion. The importance of Axin2 is further demonstrated by its genetic inactivation in mice causing skeletal deformities resembling craniosynostosis in humans. The fate determination and subsequent differentiation of Axin2+ stem cells are highly orchestrated by a variety of evolutionary conserved signaling pathways including Wnt, FGF, and BMP. These signals are often antagonistic of each other and possess differential effects on osteogenic and chondrogenic cell types. However, the mechanisms underlying the interplay of these signaling transductions remain largely elusive. Here we identify Rap1b acting downstream of Axin2 as a signaling interrogator for FGF and BMP. Genetic analysis reveals that Rap1b is essential for development of craniofacial and body skeletons. Axin2 regulates Rap1b through modulation of canonical BMP signaling. The BMP-mediated activation of Rap1b promotes chondrogenic fate and chondrogenesis. Furthermore, by inhibiting MAPK signaling, Rap1b mediates the antagonizing effect of BMP on FGF to repress osteoblast differentiation. Disruption of Rap1b in mice not only enhances osteoblast differentiation but also impairs chondrocyte differentiation during intramembranous and endochondral ossifications, respectively, leading to severe defects in craniofacial and body skeletons. Our findings reveal a dual role of Rap1b in development of the skeletogenic cell types. Rap1b is critical for balancing the signaling effects of BMP and FGF during skeletal development and disease. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  5. In Vitro Tissue-Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease.

    PubMed

    Khodabukus, Alastair; Prabhu, Neel; Wang, Jason; Bursac, Nenad

    2018-04-25

    Healthy skeletal muscle possesses the extraordinary ability to regenerate in response to small-scale injuries; however, this self-repair capacity becomes overwhelmed with aging, genetic myopathies, and large muscle loss. The failure of small animal models to accurately replicate human muscle disease, injury and to predict clinically-relevant drug responses has driven the development of high fidelity in vitro skeletal muscle models. Herein, the progress made and challenges ahead in engineering biomimetic human skeletal muscle tissues that can recapitulate muscle development, genetic diseases, regeneration, and drug response is discussed. Bioengineering approaches used to improve engineered muscle structure and function as well as the functionality of satellite cells to allow modeling muscle regeneration in vitro are also highlighted. Next, a historical overview on the generation of skeletal muscle cells and tissues from human pluripotent stem cells, and a discussion on the potential of these approaches to model and treat genetic diseases such as Duchenne muscular dystrophy, is provided. Finally, the need to integrate multiorgan microphysiological systems to generate improved drug discovery technologies with the potential to complement or supersede current preclinical animal models of muscle disease is described. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Radiographic correlation of dental and skeletal age: Third molar, an age indicator.

    PubMed

    Suma, Gn; Rao, Balaji B; Annigeri, Rajeshwari G; Rao, Dayashankara Jk; Goel, Sumit

    2011-01-01

    Age estimation plays a great role in forensic investigations, orthodontic and surgical treatment planning, and tooth transplantation. Teeth offer an excellent material for age determination by stages of development below the age of 25 years and by secondary changes after the age of 25 years. Third molar is often not included for this purpose due to its notorious developmental patterns. The aim of this study was to evaluate the development of third molar anlage in relation to skeletal maturities and the chronological age. One hundred and fifty-six young individuals, 78 males and 78 females, were selected. The stages of development of all the third molars in every individual were determined from panoramic radiographs. The skeletal development was assessed using hand wrist radiographs. Data were analyzed statistically for mean value, standard deviation and the relationship between the recorded characteristics. A STRONG CORRELATION WAS FOUND BETWEEN THIRD MOLAR DEVELOPMENT AND SKELETAL MATURITY (IN MALES: r=0.88, P<0.001; in females: r=0.77 for maxillary third molar and 0.89 for mandibular third molar, P<0.001). Hence, it is concluded that a strong correlation exists between chronological age, developmental stages of third molars and maturation of epiphyses of hand. Any of the three parameters could be used for the assessment of other maturities.

  7. Effect of saponin treatment on the sarcoplasmic reticulum of rat, cane toad and crustacean (yabby) skeletal muscle.

    PubMed Central

    Launikonis, B S; Stephenson, D G

    1997-01-01

    1. Mechanically skinned fibres from skeletal muscles of the rat, toad and yabby were used to investigate the effect of saponin treatment on sarcoplasmic reticulum (SR) Ca2+ loading properties. The SR was loaded submaximally under control conditions before and after treatment with saponin and SR Ca2+ was released with caffeine. 2. Treatment with 10 micrograms ml-1 saponin greatly reduced the SR Ca2+ loading ability of skinned fibres from the extensor digitorum longus muscle of the rat with a rate constant of 0.24 min-1. Saponin concentrations up to 150 micrograms ml-1 and increased exposure time up to 30 min did not further reduce the SR Ca2+ loading ability of the SR, which indicates that the inhibitory action of 10-150 micrograms ml-1 saponin is not dose dependent. The effect of saponin was also not dependent on the state of polarization of the transverse-tubular system. 3. Treatment with saponin at concentrations up to 100 micrograms ml-1 for 30 min did not affect the Ca2+ loading ability of SR in skinned skeletal muscle fibres from the twitch portion of the toad iliofibularis muscle but SR Ca2+ loading ability decreased markedly with a time constant of 0.22 min-1 in the presence of 150 micrograms ml-1 saponin. 4. The saponin dependent increase in permeability could be reversed in both rat and toad fibres by short treatment with 6 microM Ruthenium Red, a potent SR Ca2+ channel blocker, suggesting that saponin does affect the SR Ca2+ channel properties in mammalian and anuran skeletal muscle. 5. Treatment of skinned fibres of long sarcomere length (> 6 microns) from the claw muscle of the yabby (a freshwater decapod crustacean) with 10 micrograms ml-1 saponin for 30 min abolished the ability of the SR to load Ca2+, indicating that saponin affects differently the SR from skeletal muscles of mammals, anurans and crustaceans. 6. It is concluded that at relatively low concentrations, saponin causes inhibition of the skeletal SR Ca2+ loading ability in a species

  8. Effect of saponin treatment on the sarcoplasmic reticulum of rat, cane toad and crustacean (yabby) skeletal muscle.

    PubMed

    Launikonis, B S; Stephenson, D G

    1997-10-15

    1. Mechanically skinned fibres from skeletal muscles of the rat, toad and yabby were used to investigate the effect of saponin treatment on sarcoplasmic reticulum (SR) Ca2+ loading properties. The SR was loaded submaximally under control conditions before and after treatment with saponin and SR Ca2+ was released with caffeine. 2. Treatment with 10 micrograms ml-1 saponin greatly reduced the SR Ca2+ loading ability of skinned fibres from the extensor digitorum longus muscle of the rat with a rate constant of 0.24 min-1. Saponin concentrations up to 150 micrograms ml-1 and increased exposure time up to 30 min did not further reduce the SR Ca2+ loading ability of the SR, which indicates that the inhibitory action of 10-150 micrograms ml-1 saponin is not dose dependent. The effect of saponin was also not dependent on the state of polarization of the transverse-tubular system. 3. Treatment with saponin at concentrations up to 100 micrograms ml-1 for 30 min did not affect the Ca2+ loading ability of SR in skinned skeletal muscle fibres from the twitch portion of the toad iliofibularis muscle but SR Ca2+ loading ability decreased markedly with a time constant of 0.22 min-1 in the presence of 150 micrograms ml-1 saponin. 4. The saponin dependent increase in permeability could be reversed in both rat and toad fibres by short treatment with 6 microM Ruthenium Red, a potent SR Ca2+ channel blocker, suggesting that saponin does affect the SR Ca2+ channel properties in mammalian and anuran skeletal muscle. 5. Treatment of skinned fibres of long sarcomere length (> 6 microns) from the claw muscle of the yabby (a freshwater decapod crustacean) with 10 micrograms ml-1 saponin for 30 min abolished the ability of the SR to load Ca2+, indicating that saponin affects differently the SR from skeletal muscles of mammals, anurans and crustaceans. 6. It is concluded that at relatively low concentrations, saponin causes inhibition of the skeletal SR Ca2+ loading ability in a species

  9. Human skeletal muscle-derived stem cells retain stem cell properties after expansion in myosphere culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Yan; Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guang Zhou; Li, Yuan

    2011-04-15

    Human skeletal muscle contains an accessible adult stem-cell compartment in which differentiated myofibers are maintained and replaced by a self-renewing stem cell pool. Previously, studies using mouse models have established a critical role for resident stem cells in skeletal muscle, but little is known about this paradigm in human muscle. Here, we report the reproducible isolation of a population of cells from human skeletal muscle that is able to proliferate for extended periods of time as floating clusters of rounded cells, termed 'myospheres' or myosphere-derived progenitor cells (MDPCs). The phenotypic characteristics and functional properties of these cells were determined usingmore » reverse transcription-polymerase chain reaction (RT-PCR), flow cytometry and immunocytochemistry. Our results showed that these cells are clonogenic, express skeletal progenitor cell markers Pax7, ALDH1, Myod, and Desmin and the stem cell markers Nanog, Sox2, and Oct3/4 significantly elevated over controls. They could be maintained proliferatively active in vitro for more than 20 weeks and passaged at least 18 times, despite an average donor-age of 63 years. Individual clones (4.2%) derived from single cells were successfully expanded showing clonogenic potential and sustained proliferation of a subpopulation in the myospheres. Myosphere-derived cells were capable of spontaneous differentiation into myotubes in differentiation media and into other mesodermal cell lineages in induction media. We demonstrate here that direct culture and expansion of stem cells from human skeletal muscle is straightforward and reproducible with the appropriate technique. These cells may provide a viable resource of adult stem cells for future therapies of disease affecting skeletal muscle or mesenchymal lineage derived cell types.« less

  10. Image analysis for skeletal evaluation of carpal bones

    NASA Astrophysics Data System (ADS)

    Ko, Chien-Chuan; Mao, Chi-Wu; Lin, Chi-Jen; Sun, Yung-Nien

    1995-04-01

    The assessment of bone age is an important field to the pediatric radiology. It provides very important information for treatment and prediction of skeletal growth in a developing child. So far, various computerized algorithms for automatically assessing the skeletal growth have been reported. Most of these methods made attempt to analyze the phalangeal growth. The most fundamental step in these automatic measurement methods is the image segmentation that extracts bones from soft-tissue and background. These automatic segmentation methods of hand radiographs can roughly be categorized into two main approaches that are edge and region based methods. This paper presents a region-based carpal-bone segmentation approach. It is organized into four stages: contrast enhancement, moment-preserving thresholding, morphological processing, and region-growing labeling.

  11. Gravity and Skeletal Growth

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily; Turner, Russell T.

    1999-01-01

    Two simultaneous experiments were performed using 5-week-old male Sprague Dawley rats; in one study, the rats were flown in low earth orbit; in the other study, the hindlimbs of the growing rats were elevated to prevent weight bearing. Following 9 d of unloading, weight bearing was restored for 4, 28, and 76 hrs. Afterwards, additional hindlimb unloading experiments were performed to evaluate the skeletal response to 0, 2, 4, 6, 8, 10, 12, 16, and 24 hrs of restored weight bearing following 7 d of unloading. Cancellous and cortical bone histomorphometry were evaluated in the left tibia at the proximal metaphysis and in the left femur at mid-diaphysis, respectively. Steady-state mRNA levels for bone matrix proteins and skeletal signaling peptides were determined in total cellular RNA extracted from trabeculae from the right proximal tibiametaphysis and periosteum from the right femur. Spaceflight and hindlimb unloading each resulted in cancellous osteopenia, as well as a tendency towards decreased periosteal bone formation. Both models for skeletal unloading resulted in site specific reductions in mRNA levels for transforming growth factor-beta (sub 1) (TGF-beta) osteocalcin (OC), and prepro-alpha (I) subunit of type 1 collagen (collagen) and little or no changes in mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAP) and insulin-like growth factor I (IGF-I). Restoration of normal weight bearing resulted in transient increases in mRNA levels for the bone matrix proteins and TGF-beta in the proximal metaphysis and periosteum and no changes in either GAP or IGF-I mRNA levels. The timecourse for the response differed between the two skeletal compartments; the tibial metaphysis responded much more quickly to reloading. These results suggest that the skeletal adaptation to acute physiological changes in mechanical usage are mediated, in part, by changes in mRNA levels for bone matrix proteins and TGF-beta.

  12. Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niemeyer, Kyle E.; Sung, Chih-Jen; Raju, Mandhapati P.

    2010-09-15

    A novel implementation for the skeletal reduction of large detailed reaction mechanisms using the directed relation graph with error propagation and sensitivity analysis (DRGEPSA) is developed and presented with examples for three hydrocarbon components, n-heptane, iso-octane, and n-decane, relevant to surrogate fuel development. DRGEPSA integrates two previously developed methods, directed relation graph-aided sensitivity analysis (DRGASA) and directed relation graph with error propagation (DRGEP), by first applying DRGEP to efficiently remove many unimportant species prior to sensitivity analysis to further remove unimportant species, producing an optimally small skeletal mechanism for a given error limit. It is illustrated that the combination ofmore » the DRGEP and DRGASA methods allows the DRGEPSA approach to overcome the weaknesses of each, specifically that DRGEP cannot identify all unimportant species and that DRGASA shields unimportant species from removal. Skeletal mechanisms for n-heptane and iso-octane generated using the DRGEP, DRGASA, and DRGEPSA methods are presented and compared to illustrate the improvement of DRGEPSA. From a detailed reaction mechanism for n-alkanes covering n-octane to n-hexadecane with 2115 species and 8157 reactions, two skeletal mechanisms for n-decane generated using DRGEPSA, one covering a comprehensive range of temperature, pressure, and equivalence ratio conditions for autoignition and the other limited to high temperatures, are presented and validated. The comprehensive skeletal mechanism consists of 202 species and 846 reactions and the high-temperature skeletal mechanism consists of 51 species and 256 reactions. Both mechanisms are further demonstrated to well reproduce the results of the detailed mechanism in perfectly-stirred reactor and laminar flame simulations over a wide range of conditions. The comprehensive and high-temperature n-decane skeletal mechanisms are included as supplementary material with this

  13. Effect of L-carnitine supplementation on the body carnitine pool, skeletal muscle energy metabolism and physical performance in male vegetarians.

    PubMed

    Novakova, Katerina; Kummer, Oliver; Bouitbir, Jamal; Stoffel, Sonja D; Hoerler-Koerner, Ulrike; Bodmer, Michael; Roberts, Paul; Urwyler, Albert; Ehrsam, Rolf; Krähenbühl, Stephan

    2016-02-01

    More than 95% of the body carnitine is located in skeletal muscle, where it is essential for energy metabolism. Vegetarians ingest less carnitine and carnitine precursors and have lower plasma carnitine concentrations than omnivores. Principle aims of the current study were to assess the plasma and skeletal muscle carnitine content and physical performance of male vegetarians and matched omnivores under basal conditions and after L-carnitine supplementation. Sixteen vegetarians and eight omnivores participated in this interventional study with oral supplementation of 2 g L-carnitine for 12 weeks. Before carnitine supplementation, vegetarians had a 10% lower plasma carnitine concentration, but maintained skeletal muscle carnitine stores compared to omnivores. Skeletal muscle phosphocreatine, ATP, glycogen and lactate contents were also not different from omnivores. Maximal oxygen uptake (VO2max) and workload (P max) per bodyweight (bicycle spiroergometry) were not significantly different between vegetarians and omnivores. Sub-maximal exercise (75% VO2max for 1 h) revealed no significant differences between vegetarians and omnivores (respiratory exchange ratio, blood lactate and muscle metabolites). Supplementation with L-carnitine significantly increased the total plasma carnitine concentration (24% in omnivores, 31% in vegetarians) and the muscle carnitine content in vegetarians (13%). Despite this increase, P max and VO2max as well as muscle phosphocreatine, lactate and glycogen were not significantly affected by carnitine administration. Vegetarians have lower plasma carnitine concentrations, but maintained muscle carnitine stores compared to omnivores. Oral L-carnitine supplementation normalizes the plasma carnitine stores and slightly increases the skeletal muscle carnitine content in vegetarians, but without affecting muscle function and energy metabolism.

  14. Systematic Sensitivity Analysis of Metabolic Controllers During Reductions in Skeletal Muscle Blood Flow

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Cabrera, Marco

    2000-01-01

    An acute reduction in oxygen delivery to skeletal muscle is generally associated with profound derangements in substrate metabolism. Given the complexity of the human bioenergetic system and its components, it is difficult to quantify the interaction of cellular metabolic processes to maintain ATP homeostasis during stress (e.g., hypoxia, ischemia, and exercise). Of special interest is the determination of mechanisms relating tissue oxygenation to observed metabolic responses at the tissue, organ, and whole body levels and the quantification of how changes in oxygen availability affect the pathways of ATP synthesis and their regulation. In this study, we apply a previously developed mathematical model of human bioenergetics to study effects of ischemia during periods of increased ATP turnover (e.g., exercise). By using systematic sensitivity analysis the oxidative phosphorylation rate was found to be the most important rate parameter affecting lactate production during ischemia under resting conditions. Here we examine whether mild exercise under ischemic conditions alters the relative importance of pathways and parameters previously obtained.

  15. Autophagy and Mis-targeting of Therapeutic Enzyme in Skeletal Muscle in Pompe Disease

    PubMed Central

    Fukuda, Tokiko; Ahearn, Meghan; Roberts, Ashley; Mattaliano, Robert J.; Zaal, Kristien; Ralston, Evelyn; Plotz, Paul H.; Raben, Nina

    2009-01-01

    Enzyme replacement therapy (ERT) became a reality for patients with Pompe disease, a fatal cardiomyopathy and skeletal muscle myopathy caused by a deficiency of glycogen-degrading lysosomal enzyme acid alpha-glucosidase (GAA). The therapy, which relies on receptor-mediated endocytosis of recombinant human GAA (rhGAA), appears to be effective in cardiac muscle, but less so in skeletal muscle. We have previously shown a profound disturbance of the lysosomal degradative pathway (autophagy) in therapy-resistant muscle of GAA knockout mice (KO). Our findings here demonstrate a progressive age-dependent autophagic build-up in addition to enlargement of glycogen-filled lysosomes in multiple muscle groups in the KO. Trafficking and processing of the therapeutic enzyme along the endocytic pathway appear to be affected by the autophagy. Confocal microscopy of live single muscle fibers exposed to fluorescently labeled rhGAA indicates that a significant portion of the endocytosed enzyme in the KO was trapped as a partially processed form in the autophagic areas instead of reaching its target – the lysosomes. A fluid-phase endocytic marker was similarly mis-targeted and accumulated in vesicular structures within the autophagic areas. These findings may explain why ERT often falls short of reversing the disease process, and point to new avenues for the development of pharmacological intervention. PMID:17008131

  16. A 3-day EGCG-supplementation reduces interstitial lactate concentration in skeletal muscle of overweight subjects

    PubMed Central

    Most, Jasper; van Can, Judith G P; van Dijk, Jan-Willem; Goossens, Gijs H.; Jocken, Johan; Hospers, Jeannette J.; Bendik, Igor; Blaak, Ellen E.

    2015-01-01

    Green tea, particularly epigallocatechin-3-gallate (EGCG), may affect body weight and composition, possibly by enhancing fat oxidation. The aim of this double-blind, randomized placebo-controlled cross-over study was to investigate whether 3-day supplementation with EGCG (282mg/day) stimulates fat oxidation and lipolysis in 24 overweight subjects (age = 30 ± 2yrs, BMI = 27.7 ± 0.3 kg/m2). Energy expenditure, substrate metabolism and circulating metabolites were determined during fasting and postprandial conditions. After 6 h, a fat biopsy was collected to examine gene expression. In 12 subjects, skeletal muscle glycerol, glucose and lactate concentrations were determined using microdialysis. EGCG-supplementation did not alter energy expenditure and substrate oxidation compared to placebo. Although EGCG reduced postprandial circulating glycerol concentrations (P = 0.015), no difference in skeletal muscle lipolysis was observed. Fasting (P = 0.001) and postprandial (P = 0.003) skeletal muscle lactate concentrations were reduced after EGCG-supplementation compared to placebo, despite similar tissue blood flow. Adipose tissue leptin (P = 0.05) and FAT/CD36 expression (P = 0.08) were increased after EGCG compared to placebo. In conclusion, 3-day EGCG-supplementation decreased postprandial plasma glycerol concentrations, but had no significant effects on skeletal muscle lipolysis and whole-body fat oxidation in overweight individuals. Furthermore, EGCG decreased skeletal muscle lactate concentrations, which suggest a shift towards a more oxidative muscle phenotype. PMID:26647963

  17. Skeletal maturity and body size of teenage Belgian track and field athletes.

    PubMed

    Malina, R M; Beunen, G; Wellens, R; Claessens, A

    1986-01-01

    Attained skeletal maturity (TW2 RUS method), skeletal maturity relative to chronological age, and body size of national-level Belgian track and field athletes 15 to 18 years of age were considered. Among the 47 male athletes, 29 (62%) were skeletally mature, while 15 (52%) of the 29 female athletes were skeletally mature. There appeared to be a predominance of skeletally mature individuals among male sprinters and jumpers, while a majority of female sprinters were not skeletally mature. Both skeletally mature and immature individuals were rather evenly represented in the other track and field categories, with the exception of female throwers, who were skeletally mature. Mean statures and weights of skeletally mature and immature 16-, 17-and 18-year-old male athletes did not differ significantly, though the skeletally mature tended to be heavier. In contrast, the skeletally mature female athletes, on the average, were taller and heavier than the skeletally immature, although the differences among the small groups were not statistically significant.

  18. Association of visceral fat area with abdominal skeletal muscle distribution in overweight Japanese adults.

    PubMed

    Tanaka, Noriko I; Murakami, Haruka; Ohmori, Yumi; Aiba, Naomi; Morita, Akemi; Watanabe, Shaw; Miyachi, Motohiko

    2016-07-20

    Quantitative evaluation of visceral fat mass and skeletal muscle mass is important for health promotion. Recently, some studies suggested the existence of adipocyte-myocyte negative crosstalk. If so, abdominal skeletal muscles may easily and negatively affected not only by the age but also the visceral fat because age-related reduction in abdominal region is greater compared with limbs. We cross-sectionally examined the existence of quantitative associations between visceral fat area and abdominal skeletal muscle distribution in overweight people. A total of 230 Japanese males and females who aged 40-64 years and whose body mass index (BMI) was 28.0-44.8kg/m 2 participated in this study. The cross-sectional area (CSA) of the visceral fat, subcutaneous fat, and abdominal skeletal muscles, namely, the rectus abdominis, abdominal oblique, erector spinae, and iliopsoas muscles were measured by the computed tomography images. Stepwise regression analyses revealed the existence of sex difference in the relation between visceral fat CSA and other morphological variables. In males, BMI was a positive, and the iliopsoas muscle group CSA was a negative contributor of the visceral fat CSA. In females, both age and BMI were selected as positive contributors. These data suggested that the visceral fat CSA may negatively associated with iliopsoas muscle group CSA in males. In females, the visceral fat CSA was not significantly related to the distribution of the abdominal skeletal muscle groups. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  19. Macrophage Plasticity and the Role of Inflammation in Skeletal Muscle Repair

    PubMed Central

    Kharraz, Yacine; Guerra, Joana; Mann, Christopher J.; Serrano, Antonio L.; Muñoz-Cánoves, Pura

    2013-01-01

    Effective repair of damaged tissues and organs requires the coordinated action of several cell types, including infiltrating inflammatory cells and resident cells. Recent findings have uncovered a central role for macrophages in the repair of skeletal muscle after acute damage. If damage persists, as in skeletal muscle pathologies such as Duchenne muscular dystrophy (DMD), macrophage infiltration perpetuates and leads to progressive fibrosis, thus exacerbating disease severity. Here we discuss how dynamic changes in macrophage populations and activation states in the damaged muscle tissue contribute to its efficient regeneration. We describe how ordered changes in macrophage polarization, from M1 to M2 subtypes, can differently affect muscle stem cell (satellite cell) functions. Finally, we also highlight some of the new mechanisms underlying macrophage plasticity and briefly discuss the emerging implications of lymphocytes and other inflammatory cell types in normal versus pathological muscle repair. PMID:23509419

  20. The postcranial skeletal maturation of Australopithecus sediba.

    PubMed

    Cameron, Noel; Bogin, Barry; Bolter, Debra; Berger, Lee R

    2017-07-01

    In 2008, an immature hominin defined as the holotype of the new species Australopithecus sediba was discovered at the 1.9 million year old Malapa site in South Africa. The specimen (MH1) includes substantial post-cranial skeletal material, and provides a unique opportunity to assess its skeletal maturation. Skeletal maturity indicators observed on the proximal and distal humerus, proximal ulna, distal radius, third metacarpal, ilium and ischium, proximal femur and calcaneus were used to assess the maturity of each bone in comparison to references for modern humans and for wild chimpanzees (Pan troglodytes). In comparison to humans the skeletal maturational ages for Au. sediba correspond to between 12.0 years and 15.0 years with a mean (SD) age of 13.1 (1.1) years. In comparison to the maturational pattern of chimpanzees the Au. sediba indicators suggest a skeletal maturational age of 9-11 years. Based on either of these skeletal maturity estimates and the body length at death of MH1, an adult height of 150-156 cm is predicted. We conclude that the skeletal remains of MH1 are consistent with an ape-like pattern of maturity when dental age estimates are also taken into consideration. This maturity schedule in australopiths is consistent with ape-like estimates of age at death for the Nariokotome Homo erectus remains (KMN-WT 15000), which are of similar postcranial immaturity to MH1. The findings suggest that humans may have distinctive and delayed post-cranial schedules from australopiths and H. erectus, implicating a recent evolution of somatic and possibly life history strategies in human evolution. © 2017 Wiley Periodicals, Inc.

  1. The Skeletal Biology of Hibernating Woodchucks (Marmota monax)

    NASA Astrophysics Data System (ADS)

    Doherty, Alison H.

    Long periods of inactivity in most mammals lead to significant bone loss that may not be completely recovered during an individual's lifetime regardless of future activity. Extended bouts of inactivity are the norm for hibernating mammals. It remains largely unknown, however, how these animals avoid adversely affecting bone, their quality, and ultimately survival given the challenges posed to their skeletons by inactivity and nutritional deprivation during hibernation. The primary goal of this project was to identify the physiological mechanisms regulating bone density, area and strength during extended periods of annual inactivity in hibernating woodchucks (Marmota monax). The overall hypothesis that bone integrity is unaffected by several months of inactivity during hibernation in woodchucks was tested across multiple levels of biological function. To gain a holistic assessment of seasonal bone integrity, the locomotor behavior and estimated stresses acting on woodchuck bones were investigated in conjunction with computed tomography scans and three-point bending tests to determine bone density, geometry, and mechanical properties of the long bones throughout the year. In addition, serum protein expression was examined to ascertain bone resorption and formation processes indicative of overall annual skeletal health. It was determined that woodchucks avoid significant changes in gait preference, but experience a decrease in bending stresses acting on distal limb bones following hibernation. Computed tomography scans indicated that bone mass, distribution, and trabecular structure are maintained in these animals throughout the year. Surprisingly, cortical density increased significantly posthibernation. Furthermore, three-point bending tests revealed that although less stiff, woodchuck femora were just as tough during the hibernation season, unlike brittle bones associated with osteoporosis. Finally, bone serum markers suggested a net maintenance of bone resorption

  2. Creatine Supplementation and Skeletal Muscle Metabolism for Building Muscle Mass- Review of the Potential Mechanisms of Action.

    PubMed

    Farshidfar, Farnaz; Pinder, Mark A; Myrie, Semone B

    2017-01-01

    Creatine, a very popular supplement among athletic populations, is of growing interest for clinical applications. Since over 90% of creatine is stored in skeletal muscle, the effect of creatine supplementation on muscle metabolism is a widely studied area. While numerous studies over the past few decades have shown that creatine supplementation has many favorable effects on skeletal muscle physiology and metabolism, including enhancing muscle mass (growth/hypertrophy); the underlying mechanisms are poorly understood. This report reviews studies addressing the mechanisms of action of creatine supplementation on skeletal muscle growth/hypertrophy. Early research proposed that the osmotic effect of creatine supplementation serves as a cellular stressor (osmosensing) that acts as an anabolic stimulus for protein synthesis signal pathways. Other reports indicated that creatine directly affects muscle protein synthesis via modulations of components in the mammalian target of rapamycin (mTOR) pathway. Creatine may also directly affect the myogenic process (formation of muscle tissue), by altering secretions of myokines, such as myostatin and insulin-like growth factor-1, and expressions of myogenic regulatory factors, resulting in enhanced satellite cells mitotic activities and differentiation into myofiber. Overall, there is still no clear understanding of the mechanisms of action regarding how creatine affects muscle mass/growth, but current evidence suggests it may exert its effects through multiple approaches, with converging impacts on protein synthesis and myogenesis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Omega-3 Fatty Acids and Skeletal Muscle Health

    PubMed Central

    Jeromson, Stewart; Gallagher, Iain J.; Galloway, Stuart D. R.; Hamilton, D. Lee

    2015-01-01

    Skeletal muscle is a plastic tissue capable of adapting and mal-adapting to physical activity and diet. The response of skeletal muscle to adaptive stimuli, such as exercise, can be modified by the prior nutritional status of the muscle. The influence of nutrition on skeletal muscle has the potential to substantially impact physical function and whole body metabolism. Animal and cell based models show that omega-3 fatty acids, in particular those of marine origin, can influence skeletal muscle metabolism. Furthermore, recent human studies demonstrate that omega-3 fatty acids of marine origin can influence the exercise and nutritional response of skeletal muscle. These studies show that the prior omega-3 status influences not only the metabolic response of muscle to nutrition, but also the functional response to a period of exercise training. Omega-3 fatty acids of marine origin therefore have the potential to alter the trajectory of a number of human diseases including the physical decline associated with aging. We explore the potential molecular mechanisms by which omega-3 fatty acids may act in skeletal muscle, considering the n-3/n-6 ratio, inflammation and lipidomic remodelling as possible mechanisms of action. Finally, we suggest some avenues for further research to clarify how omega-3 fatty acids may be exerting their biological action in skeletal muscle. PMID:26610527

  4. Ancient skeletal evidence for leprosy in India (2000 B.C.).

    PubMed

    Robbins, Gwen; Tripathy, V Mushrif; Misra, V N; Mohanty, R K; Shinde, V S; Gray, Kelsey M; Schug, Malcolm D

    2009-05-27

    Leprosy is a chronic infectious disease caused by Mycobacterium leprae that affects almost 250,000 people worldwide. The timing of first infection, geographic origin, and pattern of transmission of the disease are still under investigation. Comparative genomics research has suggested M. leprae evolved either in East Africa or South Asia during the Late Pleistocene before spreading to Europe and the rest of the World. The earliest widely accepted evidence for leprosy is in Asian texts dated to 600 B.C. We report an analysis of pathological conditions in skeletal remains from the second millennium B.C. in India. A middle aged adult male skeleton demonstrates pathological changes in the rhinomaxillary region, degenerative joint disease, infectious involvement of the tibia (periostitis), and injury to the peripheral skeleton. The presence and patterning of lesions was subject to a process of differential diagnosis for leprosy including treponemal disease, leishmaniasis, tuberculosis, osteomyelitis, and non-specific infection. Results indicate that lepromatous leprosy was present in India by 2000 B.C. This evidence represents the oldest documented skeletal evidence for the disease. Our results indicate that Vedic burial traditions in cases of leprosy were present in northwest India prior to the first millennium B.C. Our results also support translations of early Vedic scriptures as the first textual reference to leprosy. The presence of leprosy in skeletal material dated to the post-urban phase of the Indus Age suggests that if M. leprae evolved in Africa, the disease migrated to India before the Late Holocene, possibly during the third millennium B.C. at a time when there was substantial interaction among the Indus Civilization, Mesopotamia, and Egypt. This evidence should be impetus to look for additional skeletal and molecular evidence of leprosy in India and Africa to confirm the African origin of the disease.

  5. Ancient Skeletal Evidence for Leprosy in India (2000 B.C.)

    PubMed Central

    Robbins, Gwen; Tripathy, V. Mushrif; Misra, V. N.; Mohanty, R. K.; Shinde, V. S.; Gray, Kelsey M.; Schug, Malcolm D.

    2009-01-01

    Background Leprosy is a chronic infectious disease caused by Mycobacterium leprae that affects almost 250,000 people worldwide. The timing of first infection, geographic origin, and pattern of transmission of the disease are still under investigation. Comparative genomics research has suggested M. leprae evolved either in East Africa or South Asia during the Late Pleistocene before spreading to Europe and the rest of the World. The earliest widely accepted evidence for leprosy is in Asian texts dated to 600 B.C. Methodology/Principal Findings We report an analysis of pathological conditions in skeletal remains from the second millennium B.C. in India. A middle aged adult male skeleton demonstrates pathological changes in the rhinomaxillary region, degenerative joint disease, infectious involvement of the tibia (periostitis), and injury to the peripheral skeleton. The presence and patterning of lesions was subject to a process of differential diagnosis for leprosy including treponemal disease, leishmaniasis, tuberculosis, osteomyelitis, and non-specific infection. Conclusions/Significance Results indicate that lepromatous leprosy was present in India by 2000 B.C. This evidence represents the oldest documented skeletal evidence for the disease. Our results indicate that Vedic burial traditions in cases of leprosy were present in northwest India prior to the first millennium B.C. Our results also support translations of early Vedic scriptures as the first textual reference to leprosy. The presence of leprosy in skeletal material dated to the post-urban phase of the Indus Age suggests that if M. leprae evolved in Africa, the disease migrated to India before the Late Holocene, possibly during the third millennium B.C. at a time when there was substantial interaction among the Indus Civilization, Mesopotamia, and Egypt. This evidence should be impetus to look for additional skeletal and molecular evidence of leprosy in India and Africa to confirm the African origin of

  6. Robust generation and expansion of skeletal muscle progenitors and myocytes from human pluripotent stem cells.

    PubMed

    Shelton, Michael; Kocharyan, Avetik; Liu, Jun; Skerjanc, Ilona S; Stanford, William L

    2016-05-15

    Human pluripotent stem cells provide a developmental model to study early embryonic and tissue development, tease apart human disease processes, perform drug screens to identify potential molecular effectors of in situ regeneration, and provide a source for cell and tissue based transplantation. Highly efficient differentiation protocols have been established for many cell types and tissues; however, until very recently robust differentiation into skeletal muscle cells had not been possible unless driven by transgenic expression of master regulators of myogenesis. Nevertheless, several breakthrough protocols have been published in the past two years that efficiently generate cells of the skeletal muscle lineage from pluripotent stem cells. Here, we present an updated version of our recently described 50-day protocol in detail, whereby chemically defined media are used to drive and support muscle lineage development from initial CHIR99021-induced mesoderm through to PAX7-expressing skeletal muscle progenitors and mature skeletal myocytes. Furthermore, we report an optional method to passage and expand differentiating skeletal muscle progenitors approximately 3-fold every 2weeks using Collagenase IV and continued FGF2 supplementation. Both protocols have been optimized using a variety of human pluripotent stem cell lines including patient-derived induced pluripotent stem cells. Taken together, our differentiation and expansion protocols provide sufficient quantities of skeletal muscle progenitors and myocytes that could be used for a variety of studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. A three-dimensional analysis of skeletal and dental characteristics in skeletal class III patients with facial asymmetry.

    PubMed

    Yu, Jinfeng; Hu, Yun; Huang, Mingna; Chen, Jun; Ding, Xiaoqian; Zheng, Leilei

    2018-03-15

    To evaluate the skeletal and dental characteristics in skeletal class III patients with facial asymmetry and to analyse the relationships among various parts of the stomatognathic system to provide a theoretical basis for clinical practice. Asymmetric cone-beam computed tomography data acquired from 56 patients were evaluated using Mimics 10.0 and 3-Matic software. Skeletal and dental measurements were performed to assess the three-dimensional differences between two sides. Pearson correlation analysis was used to determine the correlations among measurements. Linear measurements, such as ramal height, mandible body length, ramal height above the sigmoid notch (RHASN), maxillary height, condylar height, buccal and total cancellous bone thickness, and measurements of condylar size, were significantly larger on the nondeviated side than on the deviated side (P <  0.05). Crown root ratio and buccolingual angle of mandibular first molar were found to be significantly smaller on the nondeviated side than on the deviated side (P <  0.05). A negative correlation was also discovered between the buccolingual angle of mandibular first molar and the ramal height (P <  0.01). In patients with facial asymmetry, asymmetries in the mandible, maxilla and condylar morphology, and skeletal canting served as major components of skeletal asymmetry. Furthermore, a reduced thickness of buccal cancellous bone and a larger crown root ratio were found on the deviated side, indicating that orthodontic camouflage has limitations and potential risks. A combination of orthodontics and orthognathic surgery may be the advisable choice in patients with a menton deviation greater than 4 mm. An important association between vertical skeletal disharmony and dental compensation was also observed.

  8. Prefabricated scalping forehead flap with skeletal support.

    PubMed

    Fujiwara, Masao; Suzuki, Ayano; Mizukami, Takahide; Terai, Tsutomu; Fukamizu, Hidekazu

    2009-07-01

    It is difficult to reconstruct a nose with adequate shape, color, and texture in patients who have full-thickness nasal defects with extensive loss of skeletal support. The scalping forehead flap is a reliable technique for nasal reconstruction. To our knowledge, however, there have been no reports about a prefabricated scalping forehead flap with a bone graft as skeletal support. In the case reported here, a prefabricated scalping forehead flap combined with an iliac bone graft as skeletal support was used to successfully reconstruct a full-thickness defect of the nose associated with partial frontal bone loss and complete loss of the nasal bones. Acceptable functional and aesthetic results were achieved. This method may be a good alternative for reconstruction of full-thickness nasal defects with extensive loss of skeletal support.

  9. A systems biology approach using transcriptomic data reveals genes and pathways in porcine skeletal muscle affected by dietary lysine

    USDA-ARS?s Scientific Manuscript database

    Meeting the increasing market demands for pork products requires improvement of the feed efficiency of growing pigs. The use of Affymetrix Porcine Gene 1.0 ST array containing 19,211 genes in this study provides a comprehensive gene expression profile of skeletal muscle of finishing pigs in response...

  10. The skeletal vascular system - Breathing life into bone tissue.

    PubMed

    Stegen, Steve; Carmeliet, Geert

    2017-08-26

    During bone development, homeostasis and repair, a dense vascular system provides oxygen and nutrients to highly anabolic skeletal cells. Characteristic for the vascular system in bone is the serial organization of two capillary systems, each typified by specific morphological and physiological features. Especially the arterial capillaries mediate the growth of the bone vascular system, serve as a niche for skeletal and hematopoietic progenitors and couple angiogenesis to osteogenesis. Endothelial cells and osteoprogenitor cells interact not only physically, but also communicate to each other by secretion of growth factors. A vital angiogenic growth factor is vascular endothelial growth factor and its expression in skeletal cells is controlled by osteogenic transcription factors and hypoxia signaling, whereas the secretion of angiocrine factors by endothelial cells is regulated by Notch signaling, blood flow and possibly hypoxia. Bone loss and impaired fracture repair are often associated with reduced and disorganized blood vessel network and therapeutic targeting of the angiogenic response may contribute to enhanced bone regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Skeletal muscle

    USDA-ARS?s Scientific Manuscript database

    There are approximately 650-850 muscles in the human body these include skeletal (striated), smooth and cardiac muscle. The approximation is based on what some anatomists consider separate muscle or muscle systems. Muscles are classified based on their anatomy (striated vs. smooth) and if they are v...

  12. Tumor Necrosis Factor-α Regulates Distinct Molecular Pathways and Gene Networks in Cultured Skeletal Muscle Cells

    PubMed Central

    Gupta, Sanjay K.; Dahiya, Saurabh; Lundy, Robert F.; Kumar, Ashok

    2010-01-01

    Background Skeletal muscle wasting is a debilitating consequence of large number of disease states and conditions. Tumor necrosis factor-α (TNF-α) is one of the most important muscle-wasting cytokine, elevated levels of which cause significant muscular abnormalities. However, the underpinning molecular mechanisms by which TNF-α causes skeletal muscle wasting are less well-understood. Methodology/Principal Findings We have used microarray, quantitative real-time PCR (QRT-PCR), Western blot, and bioinformatics tools to study the effects of TNF-α on various molecular pathways and gene networks in C2C12 cells (a mouse myoblastic cell line). Microarray analyses of C2C12 myotubes treated with TNF-α (10 ng/ml) for 18h showed differential expression of a number of genes involved in distinct molecular pathways. The genes involved in nuclear factor-kappa B (NF-kappaB) signaling, 26s proteasome pathway, Notch1 signaling, and chemokine networks are the most important ones affected by TNF-α. The expression of some of the genes in microarray dataset showed good correlation in independent QRT-PCR and Western blot assays. Analysis of TNF-treated myotubes showed that TNF-α augments the activity of both canonical and alternative NF-κB signaling pathways in myotubes. Bioinformatics analyses of microarray dataset revealed that TNF-α affects the activity of several important pathways including those involved in oxidative stress, hepatic fibrosis, mitochondrial dysfunction, cholesterol biosynthesis, and TGF-β signaling. Furthermore, TNF-α was found to affect the gene networks related to drug metabolism, cell cycle, cancer, neurological disease, organismal injury, and abnormalities in myotubes. Conclusions TNF-α regulates the expression of multiple genes involved in various toxic pathways which may be responsible for TNF-induced muscle loss in catabolic conditions. Our study suggests that TNF-α activates both canonical and alternative NF-κB signaling pathways in a time

  13. ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae

    PubMed Central

    Elefteriou, Florent; Benson, M. Douglas; Sowa, Hideaki; Starbuck, Michael; Liu, Xiuyun; Ron, David; Parada, Luis F.; Karsenty, Gerard

    2009-01-01

    Summary The transcription factor ATF4 enhances bone formation by favoring amino acid import and collagen synthesis in osteoblasts, a function requiring its phosphorylation by RSK2, the kinase inactivated in Coffin-Lowry Syndrome. Here, we show that in contrast, RSK2 activity, ATF4-dependent collagen synthesis, and bone formation are increased in mice lacking neurofibromin in osteoblasts (Nf1ob−/− mice). Independently of RSK2, ATF4 phosphorylation by PKA is enhanced in Nf1ob−/− mice, thereby increasing Rankl expression, osteoclast differentiation, and bone resorption. In agreement with ATF4 function in amino acid transport, a low-protein diet decreased bone protein synthesis and normalized bone formation and bone mass in Nf1ob−/− mice without affecting other organ weight, while a high-protein diet overcame Atf4−/− and Rsk2−/− mice developmental defects, perinatal lethality, and low bone mass. By showing that ATF4-dependent skeletal dysplasiae are treatable by dietary manipulations, this study reveals a molecular connection between nutrition and skeletal development. PMID:17141628

  14. [Calcium in the developing skeletal muscles of the chick embryo].

    PubMed

    Samosudova, N V; Enenko, S O; Larin, Iu S; Shungskaia, V E

    1982-07-01

    The osmium-pyroantimonate technique was used for the ultrastructural study of Ca2+-localization in two types of chick embryo skeletal muscles: m. pectoralis and m. soleus. In 8- and 12-day old embryos the pyroantimonate precipitate was found on plasmalemma, condensed chromatine and ribosomes and in N-lines of I-band. During myogenesis (15-, 21-day old embryos) the calcium precipitate is redistributed from the above mentioned sites to terminal cisternae and N-line of I-band. It is proposed that calcium of N-lines may be involved in the glycogenolysis, its association with the muscle contraction occurring particularly at early developmental stages.

  15. Loss of Prox1 in striated muscle causes slow to fast skeletal muscle fiber conversion and dilated cardiomyopathy.

    PubMed

    Petchey, Louisa K; Risebro, Catherine A; Vieira, Joaquim M; Roberts, Tom; Bryson, John B; Greensmith, Linda; Lythgoe, Mark F; Riley, Paul R

    2014-07-01

    Correct regulation of troponin and myosin contractile protein gene isoforms is a critical determinant of cardiac and skeletal striated muscle development and function, with misexpression frequently associated with impaired contractility or disease. Here we reveal a novel requirement for Prospero-related homeobox factor 1 (Prox1) during mouse heart development in the direct transcriptional repression of the fast-twitch skeletal muscle genes troponin T3, troponin I2, and myosin light chain 1. A proportion of cardiac-specific Prox1 knockout mice survive beyond birth with hearts characterized by marked overexpression of fast-twitch genes and postnatal development of a fatal dilated cardiomyopathy. Through conditional knockout of Prox1 from skeletal muscle, we demonstrate a conserved requirement for Prox1 in the repression of troponin T3, troponin I2, and myosin light chain 1 between cardiac and slow-twitch skeletal muscle and establish Prox1 ablation as sufficient to cause a switch from a slow- to fast-twitch muscle phenotype. Our study identifies conserved roles for Prox1 between cardiac and skeletal muscle, specifically implicated in slow-twitch fiber-type specification, function, and cardiomyopathic disease.

  16. Loss of Prox1 in striated muscle causes slow to fast skeletal muscle fiber conversion and dilated cardiomyopathy

    PubMed Central

    Petchey, Louisa K.; Risebro, Catherine A.; Vieira, Joaquim M.; Roberts, Tom; Bryson, John B.; Greensmith, Linda; Lythgoe, Mark F.; Riley, Paul R.

    2014-01-01

    Correct regulation of troponin and myosin contractile protein gene isoforms is a critical determinant of cardiac and skeletal striated muscle development and function, with misexpression frequently associated with impaired contractility or disease. Here we reveal a novel requirement for Prospero-related homeobox factor 1 (Prox1) during mouse heart development in the direct transcriptional repression of the fast-twitch skeletal muscle genes troponin T3, troponin I2, and myosin light chain 1. A proportion of cardiac-specific Prox1 knockout mice survive beyond birth with hearts characterized by marked overexpression of fast-twitch genes and postnatal development of a fatal dilated cardiomyopathy. Through conditional knockout of Prox1 from skeletal muscle, we demonstrate a conserved requirement for Prox1 in the repression of troponin T3, troponin I2, and myosin light chain 1 between cardiac and slow-twitch skeletal muscle and establish Prox1 ablation as sufficient to cause a switch from a slow- to fast-twitch muscle phenotype. Our study identifies conserved roles for Prox1 between cardiac and skeletal muscle, specifically implicated in slow-twitch fiber-type specification, function, and cardiomyopathic disease. PMID:24938781

  17. The effects of Capn1 gene inactivation on skeletal muscle growth, development, and atrophy, and the compensatory role of other proteolytic systems.

    PubMed

    Kemp, C M; Oliver, W T; Wheeler, T L; Chishti, A H; Koohmaraie, M

    2013-07-01

    Myofibrillar protein turnover is a key component of muscle growth and degeneration, requiring proteolytic enzymes to degrade the skeletal muscle proteins. The objective of this study was to investigate the role of the calpain proteolytic system in muscle growth development using μ-calpain knockout (KO) mice in comparison with control wild-type (WT) mice, and evaluate the subsequent effects of silencing this gene on other proteolytic systems. No differences in muscle development between genotypes were observed during the early stages of growth due to the up regulation of other proteolytic systems. The KO mice showed significantly greater m-calpain protein abundance (P < 0.01) and activity (P < 0.001), and greater caspase 3/7 activity (P < 0.05). At 30 wk of age, KO mice showed increased protein:DNA (P < 0.05) and RNA:DNA ratios (P < 0.01), greater protein content (P < 0.01) at the expense of lipid deposition (P < 0.05), and an increase in size and number of fast-twitch glycolytic muscle fibers (P < 0.05), suggesting that KO mice exhibit an increased capacity to accumulate and maintain protein in their skeletal muscle. Also, expression of proteins associated with muscle regeneration (neural cell adhesion molecule and myoD) were both reduced in the mature KO mice (P < 0.05 and P < 0.01, respectively), indicating less muscle regeneration and, therefore, less muscle damage. These findings indicate the concerted action of proteolytic systems to ensure muscle protein homeostasis in vivo. Furthermore, these data contribute to the existing evidence of the importance of the calpain system's involvement in muscle growth, development, and atrophy. Collectively, these data suggest that there are opportunities to target the calpain system to promote the growth and/or restoration of skeletal muscle mass.

  18. SoxB2 in sea urchin development: implications in neurogenesis, ciliogenesis and skeletal patterning.

    PubMed

    Anishchenko, Evgeniya; Arnone, Maria Ina; D'Aniello, Salvatore

    2018-01-01

    Current studies in evolutionary developmental biology are focused on the reconstruction of gene regulatory networks in target animal species. From decades, the scientific interest on genetic mechanisms orchestrating embryos development has been increasing in consequence to the fact that common features shared by evolutionarily distant phyla are being clarified. In 2011, a study across eumetazoan species showed for the first time the existence of a highly conserved non-coding element controlling the SoxB2 gene, which is involved in the early specification of the nervous system. This discovery raised several questions about SoxB2 function and regulation in deuterostomes from an evolutionary point of view. Due to the relevant phylogenetic position within deuterostomes, the sea urchin Strongylocentrotus purpuratus represents an advantageous animal model in the field of evolutionary developmental biology. Herein, we show a comprehensive study of SoxB2 functions in sea urchins, in particular its expression pattern in a wide range of developmental stages, and its co-localization with other neurogenic markers, as SoxB1 , SoxC and Elav . Moreover, this work provides a detailed description of the phenotype of sea urchin SoxB2 knocked-down embryos, confirming its key function in neurogenesis and revealing, for the first time, its additional roles in oral and aboral ectoderm cilia and skeletal rod morphology. We concluded that SoxB2 in sea urchins has a neurogenic function; however, this gene could have multiple roles in sea urchin embryogenesis, expanding its expression in non-neurogenic cells. We showed that SoxB2 is functionally conserved among deuterostomes and suggested that in S. purpuratus this gene acquired additional functions, being involved in ciliogenesis and skeletal patterning.

  19. Skeletal anomaly assessment in diploid and triploid juvenile Atlantic salmon (Salmo salar L.) and the effect of temperature in freshwater.

    PubMed

    Amoroso, G; Adams, M B; Ventura, T; Carter, C G; Cobcroft, J M

    2016-04-01

    Triploid Atlantic salmon tend to develop a higher prevalence of skeletal anomalies. This tendency may be exacerbated by an inadequate rearing temperature. Early juvenile all-female diploid and triploid Atlantic salmon were screened for skeletal anomalies in consecutive experiments to include two size ranges: the first tested the effect of ploidy (0.2-8 g) and the second the effect of ploidy, temperature (14 °C and 18 °C) and their interaction (8-60 g). The first experiment showed that ploidy had no effect on skeletal anomaly prevalence. A high prevalence of opercular shortening was observed (average prevalence in both ploidies 85.8%) and short lower jaws were common (highest prevalence observed 11.3%). In the second experiment, ploidy, but not temperature, affected the prevalence of short lower jaw (diploids > triploids) and lower jaw deformity (triploids > diploids, highest prevalence observed 11.1% triploids and 2.7% diploids) with a trend indicating a possible developmental link between the two jaw anomalies in triploids. A radiological assessment (n = 240 individuals) showed that at both temperatures triploids had a significantly (P < 0.05) lower number of vertebrae and higher prevalence of deformed individuals. These findings (second experiment) suggest ploidy was more influential than temperature in this study. © 2016 John Wiley & Sons Ltd.

  20. Smad4 is required for the development of cardiac and skeletal muscle in zebrafish.

    PubMed

    Yang, Jie; Wang, Junnai; Zeng, Zhen; Qiao, Long; Zhuang, Liang; Jiang, Lijun; Wei, Juncheng; Ma, Quanfu; Wu, Mingfu; Ye, Shuangmei; Gao, Qinglei; Ma, Ding; Huang, Xiaoyuan

    Transforming growth factor-beta (TGF-beta) regulates cellular functions and plays key roles in development and carcinogenesis. Smad4 is the central intracellular mediator of TGF-beta signaling and plays crucial roles in tissue regeneration, cell differentiation, embryonic development, regulation of the immune system and tumor progression. To clarify the role of smad4 in development, we examined both the pattern of smad4 expression in zebrafish embryos and the effect of smad4 suppression on embryonic development using smad4-specific antisense morpholino-oligonucleotides. We show that smad4 is expressed in zebrafish embryos at all developmental stages examined and that embryonic knockdown of smad4 results in pericardial edema, decreased heartbeat and defects in the trunk structure. Additionally, these phenotypes were associated with abnormal expression of the two heart-chamber markers, cmlc2 and vmhc, as well as abnormal expression of three makers of myogenic terminal differentiation, mylz2, smyhc1 and mck. Furthermore, a notable increase in apoptosis was apparent in the smad4 knockdown embryos, while no obvious reduction in cell proliferation was observed. Collectively, these data suggest that smad4 plays an important role in heart and skeletal muscle development. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  1. [Skeletal Mass Depletion Is a Negative Prognostic Factor in Gastrointestinal Cancer Patients in the Terminal Stage].

    PubMed

    Takahashi, Goro; Yamada, Takeshi; Kan, Hayato; Koizumi, Michihiro; Shinji, Seiichi; Yokoyama, Yasuyuki; Iwai, Takuma; Uchida, Eiji

    2015-10-01

    Skeletal mass depletion has been reported to be a prognostic factor for cancer patients. However, special and expensive devices are required to measure skeletal mass, and this is a major reason why skeletal mass is not used extensively for prognostic marker in clinical settings. We developed a new method to measure skeletal mass for use as a prognostic marker using CT images without special and expensive devices. In this study, we evaluated the usefulness of skeletal mass as measured by this new method as a prognostic marker for gastrointestinal cancer patients. Patients who died from gastrointestinal cancer between March 2010 and October 2013 were included. We measured the right-sided maximum psoas muscle cross sectional area (MPCA) by using CT images before surgery and after the patients developed a terminal condition. The maximum psoas muscle cross sectional area ratio (MPCA-R) was defined as follows: MPCA-R=MPCA before surgery/MPCA after developing a terminal condition. We evaluated the correlation between MPCA-R and survival. Fifty-nine patients were included. The median survival was 44 days, and MPCA-R was significantly correlated with survival (p=0.001). On receiver operating characteristic (ROC) analysis, the area under the curve (AUC) to predict 30-day and 90-day survival was 0.710 and 0.748, respectively. MPCA-R is a new and novel prognostic marker for gastrointestinal cancer patients in terminal condition.

  2. Maturity aggravates sepsis-associated skeletal muscle catabolism in growing pigs

    USDA-ARS?s Scientific Manuscript database

    Synthesis and accretion of muscle protein is elevated in neonates and decreases with development. During sepsis, muscle protein synthesis is reduced, but the effect of development on the metabolic response to sepsis in skeletal muscle is not well understood. Fasted 7- and 26-d-old pigs were infused ...

  3. Sex hormones and skeletal muscle weakness.

    PubMed

    Sipilä, Sarianna; Narici, Marco; Kjaer, Michael; Pöllänen, Eija; Atkinson, Ross A; Hansen, Mette; Kovanen, Vuokko

    2013-06-01

    Human ageing is accompanied with deterioration in endocrine functions the most notable and well characterized of which being the decrease in the production of sex hormones. Current research literature suggests that low sex hormone concentration may be among the key mechanism for sarcopenia and muscle weakness. Within the European large scale MYOAGE project, the role of sex hormones, estrogens and testosterone, in causing the aging-related loss of muscle mass and function was further investigated. Hormone replacement therapy (HRT) in women is shown to diminish age-associated muscle loss, loss in fast muscle function (power), and accumulation of fat in skeletal muscle. Further HRT raises the protein synthesis rate in skeletal muscle after resistance training, and has an anabolic effect upon connective tissue in both skeletal muscle and tendon, which influences matrix structure and mechanical properties. HRT influences gene expression in e.g. cytoskeletal and cell-matrix proteins, has a stimulating effect upon IGF-I, and a role in IL-6 and adipokine regulation. Despite low circulating steroid-hormone level, postmenopausal women have a high local concentration of steroidogenic enzymes in skeletal muscle.

  4. Three-dimensional evaluation of skeletal deformities of the pelvis and lower limbs in ambulant children with cerebral palsy.

    PubMed

    Massaad, Abir; Assi, Ayman; Bakouny, Ziad; Sauret, Christophe; Khalil, Nour; Skalli, Wafa; Ghanem, Ismat

    2016-09-01

    Skeletal abnormalities, affecting posture and walking pattern, increase with motor impairment in children with cerebral palsy (CP). However, it is not known whether these skeletal malalignments occur in children with slight motor impairment. Our aim was to evaluate skeletal malalignment at the level of the pelvis and lower limbs in ambulant children with CP, with slight motor impairment, using a low dose biplanar X-ray technique. Twenty-seven children with spastic CP (mean age: 10.9±4years, 7 Hemiplegia, 20 Diplegia, GMFCS levels I:17, II:10), with no previous treatments at the hips and knees, underwent EOS(®) biplanar X-rays. A control group consisting of 22 typically developing children was also included. Three-dimensional reconstructions of the pelvis and lower limbs were performed in order to calculate 11 radiological parameters related to the pelvis, acetabulum and lower limbs. Pelvic incidence and sacral slope were significantly increased in children with CP compared to TD children (48°±7° vs. 43°±8°, 42°±7° vs. 38°±5°, respectively, p=0.003). Acetabular parameters did not significantly differ between the two groups. Femoral anteversion and neck shaft angle were significantly increased in children with CP (25°±12° vs. 14°±7°, p<0.001; 134°±5° vs. 131°±5°, p=0.005 respectively). No difference was found for tibial torsion. This study showed that even slightly impaired children with CP have an anteverted and abducted femur and present positional and morphological changes of the pelvis in the sagittal plane. The orientation of the acetabulum in 3D seems to not be affected when children with CP present slight motor impairment. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Emerging impact of skeletal muscle in health and disease

    USDA-ARS?s Scientific Manuscript database

    It has been over 60 years since Huxley first described the essential force transmitting properties of voluntary striated skeletal muscle. At no time since then has the importance of skeletal muscle integrity been more pronounced. Although skeletal muscle comprises 40-50% of total body mass, this tis...

  6. Expanding the phenome and variome of skeletal dysplasia.

    PubMed

    Maddirevula, Sateesh; Alsahli, Saud; Alhabeeb, Lamees; Patel, Nisha; Alzahrani, Fatema; Shamseldin, Hanan E; Anazi, Shams; Ewida, Nour; Alsaif, Hessa S; Mohamed, Jawahir Y; Alazami, Anas M; Ibrahim, Niema; Abdulwahab, Firdous; Hashem, Mais; Abouelhoda, Mohamed; Monies, Dorota; Al Tassan, Nada; Alshammari, Muneera; Alsagheir, Afaf; Seidahmed, Mohammed Zain; Sogati, Samira; Aglan, Mona S; Hamad, Muddathir H; Salih, Mustafa A; Hamed, Ahlam A; Alhashmi, Nadia; Nabil, Amira; Alfadli, Fatima; Abdel-Salam, Ghada M H; Alkuraya, Hisham; Peitee, Winnie Ong; Keng, W T; Qasem, Abdullah; Mushiba, Aziza M; Zaki, Maha S; Fassad, Mahmoud R; Alfadhel, Majid; Alexander, Saji; Sabr, Yasser; Temtamy, Samia; Ekbote, Alka V; Ismail, Samira; Hosny, Gamal Ahmed; Otaify, Ghada A; Amr, Khalda; Al Tala, Saeed; Khan, Arif O; Rizk, Tamer; Alaqeel, Aida; Alsiddiky, Abdulmonem; Singh, Ankur; Kapoor, Seema; Alhashem, Amal; Faqeih, Eissa; Shaheen, Ranad; Alkuraya, Fowzan S

    2018-04-05

    PurposeTo describe our experience with a large cohort (411 patients from 288 families) of various forms of skeletal dysplasia who were molecularly characterized.MethodsDetailed phenotyping and next-generation sequencing (panel and exome).ResultsOur analysis revealed 224 pathogenic/likely pathogenic variants (54 (24%) of which are novel) in 123 genes with established or tentative links to skeletal dysplasia. In addition, we propose 5 genes as candidate disease genes with suggestive biological links (WNT3A, SUCO, RIN1, DIP2C, and PAN2). Phenotypically, we note that our cohort spans 36 established phenotypic categories by the International Skeletal Dysplasia Nosology, as well as 18 novel skeletal dysplasia phenotypes that could not be classified under these categories, e.g., the novel C3orf17-related skeletal dysplasia. We also describe novel phenotypic aspects of well-known disease genes, e.g., PGAP3-related Toriello-Carey syndrome-like phenotype. We note a strong founder effect for many genes in our cohort, which allowed us to calculate a minimum disease burden for the autosomal recessive forms of skeletal dysplasia in our population (7.16E-04), which is much higher than the global average.ConclusionBy expanding the phenotypic, allelic, and locus heterogeneity of skeletal dysplasia in humans, we hope our study will improve the diagnostic rate of patients with these conditions.GENETICS in MEDICINE advance online publication, 5 April 2018; doi:10.1038/gim.2018.50.

  7. Lateral comparisons using Fishman's skeletal maturation assessment.

    PubMed

    Safer, Abraham N; Homel, Peter; Chung, David D

    2015-05-01

    To assess lateral differences between ossification events and stages of bone development in the hands and wrists utilizing Fishman's skeletal maturation indicators (SMIs). The skeletal ages of 125 subjects, aged 8 to 20 years, were determined with left and right hand-wrist radiographs using Fishman's SMI assessment. Each subject was also given the Edinburgh Handedness Questionnaire to assess handedness. The skeletal ages of both hand-wrist radiographs were analyzed against each other, handedness, chronologic age, and gender. There were no significant differences overall in right and left SMI scores (P  =  .70); 79% of all patients showed no difference in right and left SMI scores, regardless of handedness, gender, or age. However, when patients were categorized based on clinical levels of SMI score for the right hand-wrist, there was a significant difference (P  =  .01) between the SMI 1-3 group and the SMI 11 group. Subjects in the SMI 1-3 group were more likely to show a left > right SMI score, while subjects in the SMI 11 group were likely to show a right > left SMI score. Although no significant overall lateral differences in SMI scores were noted, it may be advisable to obtain a left hand-wrist radiograph and/or additional diagnostic information to estimate completion of growth in young surgical patients.

  8. Immunology Guides Skeletal Muscle Regeneration.

    PubMed

    Sass, F Andrea; Fuchs, Michael; Pumberger, Matthias; Geissler, Sven; Duda, Georg N; Perka, Carsten; Schmidt-Bleek, Katharina

    2018-03-13

    Soft tissue trauma of skeletal muscle is one of the most common side effects in surgery. Muscle injuries are not only caused by accident-related injuries but can also be of an iatrogenic nature as they occur during surgical interventions when the anatomical region of interest is exposed. If the extent of trauma surpasses the intrinsic regenerative capacities, signs of fatty degeneration and formation of fibrotic scar tissue can occur, and, consequentially, muscle function deteriorates or is diminished. Despite research efforts to investigate the physiological healing cascade following trauma, our understanding of the early onset of healing and how it potentially determines success or failure is still only fragmentary. This review focuses on the initial physiological pathways following skeletal muscle trauma in comparison to bone and tendon trauma and what conclusions can be drawn from new scientific insights for the development of novel therapeutic strategies. Strategies to support regeneration of muscle tissue after injury are scarce, even though muscle trauma has a high incidence. Based on tissue specific differences, possible clinical treatment options such as local immune-modulatory and cell therapeutic approaches are suggested that aim to support the endogenous regenerative potential of injured muscle tissues.

  9. Immunology Guides Skeletal Muscle Regeneration

    PubMed Central

    Sass, F. Andrea; Pumberger, Matthias; Geissler, Sven; Duda, Georg N.; Perka, Carsten; Schmidt-Bleek, Katharina

    2018-01-01

    Soft tissue trauma of skeletal muscle is one of the most common side effects in surgery. Muscle injuries are not only caused by accident-related injuries but can also be of an iatrogenic nature as they occur during surgical interventions when the anatomical region of interest is exposed. If the extent of trauma surpasses the intrinsic regenerative capacities, signs of fatty degeneration and formation of fibrotic scar tissue can occur, and, consequentially, muscle function deteriorates or is diminished. Despite research efforts to investigate the physiological healing cascade following trauma, our understanding of the early onset of healing and how it potentially determines success or failure is still only fragmentary. This review focuses on the initial physiological pathways following skeletal muscle trauma in comparison to bone and tendon trauma and what conclusions can be drawn from new scientific insights for the development of novel therapeutic strategies. Strategies to support regeneration of muscle tissue after injury are scarce, even though muscle trauma has a high incidence. Based on tissue specific differences, possible clinical treatment options such as local immune-modulatory and cell therapeutic approaches are suggested that aim to support the endogenous regenerative potential of injured muscle tissues. PMID:29534011

  10. The Correlation of Skeletal and Cardiac Muscle Dysfunction in Duchenne Muscular Dystrophy.

    PubMed

    Posner, Andrew D; Soslow, Jonathan H; Burnette, W Bryan; Bian, Aihua; Shintani, Ayumi; Sawyer, Douglas B; Markham, Larry W

    2016-01-01

    Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle and cardiac dysfunction. While skeletal muscle dysfunction precedes cardiomyopathy, the relationship between the progressive decline in skeletal and cardiac muscle function is unclear. This relationship is especially important given that the myocardial effects of many developing DMD therapies are largely unknown. Our objective was to assess the relationship between progression of skeletal muscle weakness and onset of cardiac dysfunction in DMD. A total of 77 DMD subjects treated at a single referral center were included. Demographic information, quantitative muscle testing (QMT), subjective muscle strength, cardiac function, and current and retrospective medications were collected. A Spearman rank correlation was used to evaluate for an association between subjective strength and fractional shortening. The effects of total QMT and arm QMT on fractional shortening were examined in generalized least square with and without adjustments for age, ambulatory status, and duration of corticosteroids and cardiac specific medications. We found a significant correlation between maintained subjective skeletal muscle arm and leg strength and maintained cardiac function as defined by fractional shortening (rho=0.47, p=0.004 and rho=0.48, p=0.003, respectively). We also found a significant association between QMT and fractional shortening among non-ambulatory DMD subjects (p=0.03), while this association was not significant in ambulatory subjects. Our findings allow us to conclude that in this population, there exists a significant relationship between skeletal muscle and cardiac function in non-ambulatory DMD patients. While this does not imply a causal relationship, a possible association between skeletal and cardiac muscle function suggests that researchers should carefully monitor cardiac function, even when the primary outcome measures are not cardiac in nature.

  11. Effects of environmental cocaine concentrations on the skeletal muscle of the European eel (Anguilla anguilla).

    PubMed

    Capaldo, Anna; Gay, Flaminia; Lepretti, Marilena; Paolella, Gaetana; Martucciello, Stefania; Lionetti, Lillà; Caputo, Ivana; Laforgia, Vincenza

    2018-06-04

    The presence of illicit drugs in the aquatic environment represents a new potential risk for aquatic organisms, due to their constant exposure to substances with strong pharmacological activity. Currently, little is known about the ecological effects of illicit drugs. The aim of this study was to evaluate the influence of environmental concentrations of cocaine, an illicit drug widespread in surface waters, on the skeletal muscle of the European eel (Anguilla anguilla). The skeletal muscle of silver eels exposed to 20 ng L -1 of cocaine for 50 days were compared to control, vehicle control and two post-exposure recovery groups (3 and 10 days after interruption of cocaine). The eels general health, the morphology of the skeletal muscle and several parameters indicative of the skeletal muscle physiology were evaluated, namely the muscle whole protein profile, marker of the expression levels of the main muscle proteins; cytochrome oxidase activity, markers of oxidative metabolism; caspase-3, marker of apoptosis activation; serum levels of creatine kinase, lactate dehydrogenase and aspartate aminotransferase, markers of skeletal muscle damages. Cocaine-exposed eels appeared hyperactive but they showed the same general health status as the other groups. In contrast, their skeletal muscle showed evidence of serious injury, including muscle breakdown and swelling, similar to that typical of rhabdomyolysis. These changes were still present 10 days after the interruption of cocaine exposure. In fact, with the exception of the expression levels of the main muscle proteins, which remained unchanged, all the other parameters examined showed alterations that persisted for at least 10 days after the interruption of cocaine exposure. This study shows that even low environmental concentrations of cocaine cause severe damage to the morphology and physiology of the skeletal muscle of the silver eel, confirming the harmful impact of cocaine in the environment that

  12. Selumetinib Attenuates Skeletal Muscle Wasting in Murine Cachexia Model through ERK Inhibition and AKT Activation.

    PubMed

    Quan-Jun, Yang; Yan, Huo; Yong-Long, Han; Li-Li, Wan; Jie, Li; Jin-Lu, Huang; Jin, Lu; Peng-Guo, Chen; Run, Gan; Cheng, Guo

    2017-02-01

    Cancer cachexia is a multifactorial syndrome affecting the skeletal muscle. Previous clinical trials showed that treatment with MEK inhibitor selumetinib resulted in skeletal muscle anabolism. However, it is conflicting that MAPK/ERK pathway controls the mass of the skeletal muscle. The current study investigated the therapeutic effect and mechanisms of selumetinib in amelioration of cancer cachexia. The classical cancer cachexia model was established via transplantation of CT26 colon adenocarcinoma cells into BALB/c mice. The effect of selumetinib on body weight, tumor growth, skeletal muscle, food intake, serum proinflammatory cytokines, E3 ligases, and MEK/ERK-related pathways was analyzed. Two independent experiments showed that 30 mg/kg/d selumetinib prevented the loss of body weight in murine cachexia mice. Muscle wasting was attenuated and the expression of E3 ligases, MuRF1 and Fbx32, was inhibited following selumetinib treatment of the gastrocnemius muscle. Furthermore, selumetinib efficiently reduced tumor burden without influencing the cancer cell proliferation, cumulative food intake, and serum cytokines. These results indicated that the role of selumetinib in attenuating muscle wasting was independent of cancer burden. Detailed analysis of the mechanism revealed AKT and mTOR were activated, while ERK, FoxO3a, and GSK3β were inhibited in the selumetinib -treated cachexia group. These indicated that selumetinib effectively prevented skeletal muscle wasting in cancer cachexia model through ERK inhibition and AKT activation in gastrocnemius muscle via cross-inhibition. The study not only elucidated the mechanism of MEK/ERK inhibition in skeletal muscle anabolism, but also validated selumetinib therapy as an effective intervention against cancer cachexia. Mol Cancer Ther; 16(2); 334-43. ©2016 AACR. ©2016 American Association for Cancer Research.

  13. Differential Effects of Leucine Supplementation in Young and Aged Mice at the Onset of Skeletal Muscle Regeneration

    PubMed Central

    Perry, Richard A.; Brown, Lemuel A.; Lee, David E.; Brown, Jacob L.; Baum, Jamie I.; Greene, Nicholas P.; Washington, Tyrone A.

    2016-01-01

    Aging decreases the ability of skeletal muscle to respond to injury. Leucine has been demonstrated to target protein synthetic pathways in skeletal muscle thereby enhancing this response. However, the effect of aging on leucine-induced alterations in protein synthesis at the onset of skeletal muscle regeneration has not been fully elucidated. The purpose of this study was to determine if aging alters skeletal muscle regeneration and leucine-induced alterations in markers of protein synthesis. The tibialis anterior of young (3 months) and aged (24 months) female C57BL/6J mice were injected with either bupivacaine or PBS, and the mice were given ad libitum access to leucine-supplemented or normal drinking water. Protein and gene expression of markers of protein synthesis and degradation, respectively, were analyzed at three days post-injection. Following injury in young mice, leucine supplementation was observed to elevate only p-p70S6K. In aged mice, leucine was shown to elicit higher p-mTOR content with and without injury, and p-4EBP-1 content post-injury. Additionally in aged mice, leucine was shown to elicit higher content of relative p70S6K post-injury. Our study shows that leucine supplementation affects markers of protein synthesis at the onset of skeletal muscle regeneration differentially in young and aged mice. PMID:27327351

  14. Human skeletal muscle drug transporters determine local exposure and toxicity of statins.

    PubMed

    Knauer, Michael J; Urquhart, Bradley L; Meyer zu Schwabedissen, Henriette E; Schwarz, Ute I; Lemke, Christopher J; Leake, Brenda F; Kim, Richard B; Tirona, Rommel G

    2010-02-05

    The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, or statins, are important drugs used in the treatment and prevention of cardiovascular disease. Although statins are well tolerated, many patients develop myopathy manifesting as muscle aches and pain. Rhabdomyolysis is a rare but severe toxicity of statins. Interindividual differences in the activities of hepatic membrane drug transporters and metabolic enzymes are known to influence statin plasma pharmacokinetics and risk for myopathy. Interestingly, little is known regarding the molecular determinants of statin distribution into skeletal muscle and its relevance to toxicity. We sought to identify statin transporters in human skeletal muscle and determine their impact on statin toxicity in vitro. We demonstrate that the uptake transporter OATP2B1 (human organic anion transporting polypeptide 2B1) and the efflux transporters, multidrug resistance-associated protein (MRP)1, MRP4, and MRP5 are expressed on the sarcolemmal membrane of human skeletal muscle fibers and that atorvastatin and rosuvastatin are substrates of these transporters when assessed using a heterologous expression system. In an in vitro model of differentiated, primary human skeletal muscle myoblast cells, we demonstrate basal membrane expression and drug efflux activity of MRP1, which contributes to reducing intracellular statin accumulation. Furthermore, we show that expression of human OATP2B1 in human skeletal muscle myoblast cells by adenoviral vectors increases intracellular accumulation and toxicity of statins and such effects were abrogated when cells overexpressed MRP1. These results identify key membrane transporters as modulators of skeletal muscle statin exposure and toxicity.

  15. Combined prevalence of inherited skeletal disorders in dog breeds in Belgium.

    PubMed

    Coopman, F; Broeckx, B; Verelst, E; Deforce, D; Saunders, J; Duchateau, L; Verhoeven, G

    2014-01-01

    Canine hip dysplasia (CHD), canine elbow dysplasia (CED), and humeral head osteochondrosis (HHOC) are inherited traits with uneven incidence in dog breeds. Knowledge of the combined prevalence of these three disorders is necessary to estimate the effect of the currently applied breeding strategies, in order to improve the genetic health of the population. Official screening results of the Belgian National Committee for Inherited Skeletal Disorders (NCSID) revealed that an average of 31.8% (CHD, CED, or both; n = 1273 dogs) and 47.2% (CHD, CED, HHOC, or a combination of these three diseases; n = 250 dogs) of dogs are mildly to severely affected by at least one skeletal disorder. According to the current breeding recommendations in some dog breeds in Belgium, these animals should be restricted (mild signs) or excluded (moderate to severe signs) from breeding. The introduction of genetic parameters, such as estimated breeding values, might create a better approach to gradually reduce the incidence of these complex inherited joint disorders, without compromising genetic population health.

  16. High sugar intake and development of skeletal muscle insulin resistance and inflammation in mice: a protective role for PPAR- δ agonism.

    PubMed

    Benetti, Elisa; Mastrocola, Raffaella; Rogazzo, Mara; Chiazza, Fausto; Aragno, Manuela; Fantozzi, Roberto; Collino, Massimo; Minetto, Marco A

    2013-01-01

    Peroxisome Proliferator Activated Receptor (PPAR)- δ agonists may serve for treating metabolic diseases. However, the effects of PPAR- δ agonism within the skeletal muscle, which plays a key role in whole-body glucose metabolism, remain unclear. This study aimed to investigate the signaling pathways activated in the gastrocnemius muscle by chronic administration of the selective PPAR- δ agonist, GW0742 (1 mg/kg/day for 16 weeks), in male C57Bl6/J mice treated for 30 weeks with high-fructose corn syrup (HFCS), the major sweetener in foods and soft-drinks (15% wt/vol in drinking water). Mice fed with the HFCS diet exhibited hyperlipidemia, hyperinsulinemia, hyperleptinemia, and hypoadiponectinemia. In the gastrocnemius muscle, HFCS impaired insulin and AMP-activated protein kinase signaling pathways and reduced GLUT-4 and GLUT-5 expression and membrane translocation. GW0742 administration induced PPAR- δ upregulation and improvement in glucose and lipid metabolism. Diet-induced activation of nuclear factor-κB and expression of inducible-nitric-oxide-synthase and intercellular-adhesion-molecule-1 were attenuated by drug treatment. These effects were accompanied by reduction in the serum concentration of interleukin-6 and increase in muscular expression of fibroblast growth factor-21. Overall, here we show that PPAR- δ activation protects the skeletal muscle against the metabolic abnormalities caused by chronic HFCS exposure by affecting multiple levels of the insulin and inflammatory cascades.

  17. A multiplexed chip-based assay system for investigating the functional development of human skeletal myotubes in vitro.

    PubMed

    Smith, A S T; Long, C J; Pirozzi, K; Najjar, S; McAleer, C; Vandenburgh, H H; Hickman, J J

    2014-09-20

    This report details the development of a non-invasive in vitro assay system for investigating the functional maturation and performance of human skeletal myotubes. Data is presented demonstrating the survival and differentiation of human myotubes on microscale silicon cantilevers in a defined, serum-free system. These cultures can be stimulated electrically and the resulting contraction quantified using modified atomic force microscopy technology. This system provides a higher degree of sensitivity for investigating contractile waveforms than video-based analysis, and represents the first system capable of measuring the contractile activity of individual human muscle myotubes in a reliable, high-throughput and non-invasive manner. The development of such a technique is critical for the advancement of body-on-a-chip platforms toward application in pre-clinical drug development screens. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Regulation of skeletal growth and mineral acquisition by the GH/IGF-1 axis: Lessons from mouse models.

    PubMed

    Yakar, Shoshana; Isaksson, Olle

    2016-06-01

    The growth hormone (GH) and its downstream mediator, the insulin-like growth factor-1 (IGF-1), construct a pleotropic axis affecting growth, metabolism, and organ function. Serum levels of GH/IGF-1 rise during pubertal growth and associate with peak bone acquisition, while during aging their levels decline and associate with bone loss. The GH/IGF-1 axis was extensively studied in numerous biological systems including rodent models and cell cultures. Both hormones act in an endocrine and autocrine/paracrine fashion and understanding their distinct and overlapping contributions to skeletal acquisition is still a matter of debate. GH and IGF-1 exert their effects on osteogenic cells via binding to their cognate receptor, leading to activation of an array of genes that mediate cellular differentiation and function. Both hormones interact with other skeletal regulators, such as sex-steroids, thyroid hormone, and parathyroid hormone, to facilitate skeletal growth and metabolism. In this review we summarized several rodent models of the GH/IGF-1 axis and described key experiments that shed new light on the regulation of skeletal growth by the GH/IGF-1 axis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Regulation of skeletal growth and mineral acquisition by the GH/IGF-1 axis: Lessons from mouse models

    PubMed Central

    Yakar, Shoshana; Isaksson, Olle

    2015-01-01

    The growth hormone (GH) and its downstream mediator, the insulin-like growth factor-1 (IGF-1), construct a pleotropic axis affecting growth, metabolism, and organ function. Serum levels of GH/IGF-1 rise during pubertal growth and associate with peak bone acquisition, while during aging their levels decline and associate with bone loss. The GH/IGF-1 axis was extensively studied in numerous biological systems including rodent models and cell cultures. Both hormones act in an endocrine and autocrine/paracrine fashion and understanding their distinct and overlapping contributions to skeletal acquisition is still a matter of debate. GH and IGF-1 exert their effects on osteogenic cells via binding to their cognate receptor, leading to activation of an array of genes that mediate cellular differentiation and function. Both hormones interact with other skeletal regulators, such as sex-steroids, thyroid hormone, and parathyroid hormone, to facilitate skeletal growth and metabolism. In this review we summarized several rodent models of the GH/IGF-1 axis and described key experiments that shed new light on the regulation of skeletal growth by the GH/IGF-1 axis. PMID:26432542

  20. A comparison of skeletal maturation in patients with tooth agenesis and unaffected controls assessed by the cervical vertebral maturation (CVM) index.

    PubMed

    Casey, Christine; Gill, Daljit S; Jones, Steven P

    2013-12-01

    The aims of this study were to (1) investigate if there is a difference in skeletal maturation between tooth agenesis and control patients and (2) whether skeletal maturation is affected by the severity of tooth agenesis. The cervical vertebral maturation (CVM) index can be used to assess skeletal maturation. A retrospective cross-sectional study. Eastman Dental Hospital, London, UK. A total of 360 cephalograms of patients aged 9-17 years (164 males and 196 females) allocated to four subgroups (mild, moderate and severe tooth agenesis patients, and controls) were assessed retrospectively. There were 90 patients in each of the four subgroups. The skeletal maturation of each subject was assessed both quantitatively and qualitatively using the CVM index. All patients in the study were either currently receiving treatment or had been discharged from the hospital. There was no statistically significant relationship between skeletal maturation and the presence of tooth agenesis. Furthermore, there was no statistically significant relationship between the skeletal maturity of patients and different severities of tooth agenesis. The data obtained from this group of patients and using this measurement tool alone does not supply sufficient reason to reject the null hypothesis. However, it suggests that it is possible that no difference exists between the groups.

  1. Time-dependent behavior of passive skeletal muscle

    NASA Astrophysics Data System (ADS)

    Ahamed, T.; Rubin, M. B.; Trimmer, B. A.; Dorfmann, L.

    2016-03-01

    An isotropic three-dimensional nonlinear viscoelastic model is developed to simulate the time-dependent behavior of passive skeletal muscle. The development of the model is stimulated by experimental data that characterize the response during simple uniaxial stress cyclic loading and unloading. Of particular interest is the rate-dependent response, the recovery of muscle properties from the preconditioned to the unconditioned state and stress relaxation at constant stretch during loading and unloading. The model considers the material to be a composite of a nonlinear hyperelastic component in parallel with a nonlinear dissipative component. The strain energy and the corresponding stress measures are separated additively into hyperelastic and dissipative parts. In contrast to standard nonlinear inelastic models, here the dissipative component is modeled using an evolution equation that combines rate-independent and rate-dependent responses smoothly with no finite elastic range. Large deformation evolution equations for the distortional deformations in the elastic and in the dissipative component are presented. A robust, strongly objective numerical integration algorithm is used to model rate-dependent and rate-independent inelastic responses. The constitutive formulation is specialized to simulate the experimental data. The nonlinear viscoelastic model accurately represents the time-dependent passive response of skeletal muscle.

  2. Satellite-like cells contribute to pax7-dependent skeletal muscle repair in adult zebrafish

    PubMed Central

    Berberoglu, Michael A.; Gallagher, Thomas L.; Morrow, Zachary T.; Talbot, Jared C.; Hromowyk, Kimberly J.; Tenente, Inês M.; Langenau, David M.; Amacher, Sharon L.

    2017-01-01

    Satellite cells, also known as muscle stem cells, are responsible for skeletal muscle growth and repair in mammals. Pax7 and Pax3 transcription factors are established satellite cell markers required for muscle development and regeneration, and there is great interest in identifying additional factors that regulate satellite cell proliferation, differentiation, and/or skeletal muscle regeneration. Due to the powerful regenerative capacity of many zebrafish tissues, even in adults, we are exploring the regenerative potential of adult zebrafish skeletal muscle. Here, we show that adult zebrafish skeletal muscle contains cells similar to mammalian satellite cells. Adult zebrafish satellite-like cells have dense heterochromatin, express Pax7 and Pax3, proliferate in response to injury, and show peak myogenic responses 4–5 days post-injury (dpi). Furthermore, using a pax7a-driven GFP reporter, we present evidence implicating satellite-like cells as a possible source of new muscle. In lieu of central nucleation, which distinguishes regenerating myofibers in mammals, we describe several characteristics that robustly identify newly-forming myofibers from surrounding fibers in injured adult zebrafish muscle. These characteristics include partially overlapping expression in satellite cells and regenerating myofibers of two RNA-binding proteins Rbfox2 and Rbfoxl1, known to regulate embryonic muscle development and function. Finally, by analyzing pax7a; pax7b double mutant zebrafish, we show that Pax7 is required for adult skeletal muscle repair, as it is in the mouse. PMID:28279710

  3. Curriculum Development in the Affective Domain.

    ERIC Educational Resources Information Center

    Feldman, Beverly Neuer

    This document presents an affective domain curriculum and reviews the behaviorist and humanist learning theories on which it is based. Recognizing the significance of the relationship between positive self concept and ability to learn, the affective curriculum was designed for the continuing development of self concept and interpersonal skills in…

  4. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  5. Characterization of porcine SKIP gene in skeletal muscle development: polymorphisms, association analysis, expression and regulation of cell growth in C2C12 cells.

    PubMed

    Xiong, Qi; Chai, Jin; Deng, Changyan; Jiang, Siwen; Liu, Yang; Huang, Tao; Suo, Xiaojun; Zhang, Nian; Li, Xiaofeng; Yang, Qianping; Chen, Mingxin; Zheng, Rong

    2012-12-01

    Skeletal muscle and kidney-enriched inositol phosphatase (SKIP) was identified as a 5'-inositol phosphatase that hydrolyzes phosphatidylinositol (3,4,5)-triphosphate (PI(3,4,5)P3) to PI(3,4)P2 and negatively regulates insulin-induced phosphatidylinositol 3-kinase signaling in skeletal muscle. In this study, two new single nucleotide polymorphisms (SNPs) in porcine SKIP introns 1 and 6 were detected. The C1092T locus in intron 1 showed significant associations with some meat traits, whereas the A17G locus in intron 6 showed significant associations with some carcass traits. Expression analysis showed that porcine SKIP is upregulated at d 65 of gestation and Meishan fetuses have higher and prolonged expression of SKIP compared to Large White at d 100 of gestation. Ectopic expression of porcine SKIP decreased insulin-induced cell proliferation and promoted serum starvation-induced cell cycle arrest in G0/G1 phase in C2C12. Our results suggest that SKIP plays a negative regulatory role in skeletal muscle development partly by preventing cell proliferation. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  6. Dicarbonyl stress and glyoxalase enzyme system regulation in human skeletal muscle.

    PubMed

    Mey, Jacob T; Blackburn, Brian K; Miranda, Edwin R; Chaves, Alec B; Briller, Joan; Bonini, Marcelo G; Haus, Jacob M

    2018-02-01

    Skeletal muscle insulin resistance is a hallmark of Type 2 diabetes (T2DM) and may be exacerbated by protein modifications by methylglyoxal (MG), known as dicarbonyl stress. The glyoxalase enzyme system composed of glyoxalase 1/2 (GLO1/GLO2) is the natural defense against dicarbonyl stress, yet its protein expression, activity, and regulation remain largely unexplored in skeletal muscle. Therefore, this study investigated dicarbonyl stress and the glyoxalase enzyme system in the skeletal muscle of subjects with T2DM (age: 56 ± 5 yr.; BMI: 32 ± 2 kg/m 2 ) compared with lean healthy control subjects (LHC; age: 27 ± 1 yr.; BMI: 22 ± 1 kg/m 2 ). Skeletal muscle biopsies obtained from the vastus lateralis at basal and insulin-stimulated states of the hyperinsulinemic (40 mU·m -2 ·min -1 )-euglycemic (5 mM) clamp were analyzed for proteins related to dicarbonyl stress and glyoxalase biology. At baseline, T2DM had increased carbonyl stress and lower GLO1 protein expression (-78.8%), which inversely correlated with BMI, percent body fat, and HOMA-IR, while positively correlating with clamp-derived glucose disposal rates. T2DM also had lower NRF2 protein expression (-31.6%), which is a positive regulator of GLO1, while Keap1 protein expression, a negative regulator of GLO1, was elevated (207%). Additionally, insulin stimulation during the clamp had a differential effect on NRF2, Keap1, and MG-modified protein expression. These data suggest that dicarbonyl stress and the glyoxalase enzyme system are dysregulated in T2DM skeletal muscle and may underlie skeletal muscle insulin resistance. Whether these phenotypic differences contribute to the development of T2DM warrants further investigation.

  7. Melanocortin 4 Receptor Activation Attenuates Mitochondrial Dysfunction in Skeletal Muscle of Diabetic Rats.

    PubMed

    Zhang, Hao-Hao; Liu, Jiao; Qin, Gui-Jun; Li, Xia-Lian; Du, Pei-Jie; Hao, Xiao; Zhao, Di; Tian, Tian; Wu, Jing; Yun, Meng; Bai, Yan-Hui

    2017-11-01

    A previous study has confirmed that the central melanocortin system was able to mediate skeletal muscle AMP-activated protein kinase (AMPK) activation in mice fed a high-fat diet, while activation of the AMPK signaling pathway significantly induced mitochondrial biogenesis. Our hypothesis was that melanocortin 4 receptor (MC4R) was involved in the development of skeletal muscle injury in diabetic rats. In this study, we treated diabetic rats intracerebroventricularly with MC4R agonist R027-3225 or antagonist SHU9119, respectively. Then, we measured the production of reactive oxygen species (ROS), the levels of malondialdehyde (MDA) and glutathione (GSH), the mitochondrial DNA (mtDNA) content and mitochondrial biogenesis, and the protein levels of p-AMPK, AMPK, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), sirtuin 1 (SIRT1), and manganese superoxide dismutase (MnSOD) in the skeletal muscle of diabetic rats. The results showed that there was significant skeletal muscle injury in the diabetic rats along with serious oxidative stress and decreased mitochondrial biogenesis. Treatment with R027-3225 reduced oxidative stress and induced mitochondrial biogenesis in skeletal muscle, and also activated the AMPK-SIRT1-PGC-1α signaling pathway. However, diabetic rats injected with MC4R antagonist SHU9119 showed an aggravated oxidative stress and mitochondrial dysfunction in skeletal muscle. In conclusion, our results revealed that MC4R activation was able to attenuate oxidative stress and mitochondrial dysfunction in skeletal muscle induced by diabetes partially through activating the AMPK-SIRT1-PGC-1α signaling pathway. J. Cell. Biochem. 118: 4072-4079, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Skeletal Muscle Fascicle Arrangements Can Be Reconstructed Using a Laplacian Vector Field Simulation

    PubMed Central

    Choi, Hon Fai; Blemker, Silvia S.

    2013-01-01

    Skeletal muscles are characterized by a large diversity in anatomical architecture and function. Muscle force and contraction are generated by contractile fiber cells grouped in fascicle bundles, which transmit the mechanical action between origin and insertion attachments of the muscle. Therefore, an adequate representation of fascicle arrangements in computational models of skeletal muscles is important, especially when investigating three-dimensional muscle deformations in finite element models. However, obtaining high resolution in vivo measurements of fascicle arrangements in skeletal muscles is currently still challenging. This motivated the development of methods in previous studies to generate numerical representations of fascicle trajectories using interpolation templates. Here, we present an alternative approach based on the hypothesis of a rotation and divergence free (Laplacian) vector field behavior which reflects observed physical characteristics of fascicle trajectories. To obtain this representation, the Laplace equation was solved in anatomical reconstructions of skeletal muscle shapes based on medical images using a uniform flux boundary condition on the attachment areas. Fascicle tracts were generated through a robust flux based tracing algorithm. The concept of this approach was demonstrated in two-dimensional synthetic examples of typical skeletal muscle architectures. A detailed evaluation was performed in an example of the anatomical human tibialis anterior muscle which showed an overall agreement with measurements from the literature. The utility and capability of the proposed method was further demonstrated in other anatomical examples of human skeletal muscles with a wide range of muscle shapes and attachment morphologies. PMID:24204878

  9. The Skeletal Site-Specific Role of Connective Tissue Growth Factor in Prenatal Osteogenesis

    PubMed Central

    Lambi, Alex G.; Pankratz, Talia L.; Mundy, Christina; Gannon, Maureen; Barbe, Mary F.; Richtsmeier, Joan T.; Popoff, Steven N.

    2013-01-01

    Background Connective tissue growth factor (CTGF/CCN2) is a matricellular protein that is highly expressed during bone development. Mice with global CTGF ablation (knockout, KO) have multiple skeletal dysmorphisms and perinatal lethality. A quantitative analysis of the bone phenotype has not been conducted. Results We demonstrated skeletal site-specific changes in growth plate organization, bone microarchitecture, and shape and gene expression levels in CTGF KO compared with wild-type mice. Growth plate malformations included reduced proliferation zone and increased hypertrophic zone lengths. Appendicular skeletal sites demonstrated decreased metaphyseal trabecular bone, while having increased mid-diaphyseal bone and osteogenic expression markers. Axial skeletal analysis showed decreased bone in caudal vertebral bodies, mandibles, and parietal bones in CTGF KO mice, with decreased expression of osteogenic markers. Analysis of skull phenotypes demonstrated global and regional differences in CTGF KO skull shape resulting from allometric (size-based) and nonallometric shape changes. Localized differences in skull morphology included increased skull width and decreased skull length. Dysregulation of the transforming growth factor-β-CTGF axis coupled with unique morphologic traits provides a potential mechanistic explanation for the skull phenotype. Conclusions We present novel data on a skeletal phenotype in CTGF KO mice, in which ablation of CTGF causes site-specific aberrations in bone formation. PMID:23073844

  10. Secondary Hyperparathyroidism in Patients with Endemic Skeletal Fluorosis

    PubMed Central

    Teotia, S. P. S.; Teotia, Mohini

    1973-01-01

    Investigation of 20 patients with skeletal fluorosis showed that five had clear evidence of secondary hyperparathyroidism. The hyperactivity of the parathyroid glands in skeletal fluorosis in the presence of decreased solubility of the bone mineral (fluoroapatite) strongly suggests that it is a compensatory attempt to maintain a normal extracellular ionized calcium equilibrium. Further study of the parathyroid glands and of bone lesions in skeletal fluorosis is in progress. ImagesFIG. 1FIG. 2FIG. 3FIG. 4 PMID:4692708

  11. Biomaterial-based delivery for skeletal muscle repair

    PubMed Central

    Cezar, Christine A.; Mooney, David J.

    2015-01-01

    Skeletal muscle possesses a remarkable capacity for regeneration in response to minor damage, but severe injury resulting in a volumetric muscle loss can lead to extensive and irreversible fibrosis, scarring, and loss of muscle function. In early clinical trials, the intramuscular injection of cultured myoblasts was proven to be a safe but ineffective cell therapy, likely due to rapid death, poor migration, and immune rejection of the injected cells. In recent years, appropriate therapeutic cell types and culturing techniques have improved progenitor cell engraftment upon transplantation. Importantly, the identification of several key biophysical and biochemical cues that synergistically regulate satellite cell fate has paved the way for the development of cell-instructive biomaterials that serve as delivery vehicles for cells to promote in vivo regeneration. Material carriers designed to spatially and temporally mimic the satellite cell niche may be of particular importance for the complete regeneration of severely damaged skeletal muscle. PMID:25271446

  12. Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women.

    PubMed

    Janssen, Ian; Baumgartner, Richard N; Ross, Robert; Rosenberg, Irwin H; Roubenoff, Ronenn

    2004-02-15

    The purpose of this study was to determine skeletal muscle cutpoints for identifying elevated physical disability risk in older adults. Subjects included 4,449 older (> or = 60 years) participants from the Third National Health and Nutrition Examination Survey during 1988-1994. Physical disability was assessed by questionnaire, and bioimpedance was used to estimate skeletal muscle, which was normalized for height. Receiver operating characteristics were used to develop the skeletal muscle cutpoints associated with a high likelihood of physical disability. Odds for physical disability were compared in subjects whose measures fell above and below these cutpoints. Skeletal muscle cutpoints of 5.76-6.75 and < or =5.75 kg/m2 were selected to denote moderate and high physical disability risk in women. The corresponding values in men were 8.51-10.75 and < or =8.50 kg/m2. Compared with women with low-risk skeletal muscle values, women with moderate- and high-risk skeletal muscle values had odds for physical disability of 1.41 (95% confidence interval (CI): 0.97, 2.04) and 3.31 (95% CI: 1.91, 5.73), respectively. The corresponding odds in men were 3.65 (95% CI: 1.92, 6.94) and 4.71 (95% CI: 2.28, 9.74). This study presents skeletal muscle cutpoints for physical disability risk in older adults. Future applications of these cutpoints include the comparison of morbidity risk in older persons with normal muscle mass and those with sarcopenia, the determination and comparison of sarcopenia prevalences, and the estimation of health-care costs attributable to sarcopenia.

  13. Cerium oxide nanozyme modulate the ‘exercise’ redox biology of skeletal muscle

    NASA Astrophysics Data System (ADS)

    Arya, Aditya; Sethy, Niroj Kumar; Gangwar, Anamika; Bhargava, Neelima; Dubey, Amarish; Roy, Manas; Srivastava, Gaurav; Singh, Sushil Kumar; Das, Mainak; Bhargava, Kalpana

    2017-05-01

    ‘Exercise’ is a double-edged sword for the skeletal muscle. Small amount of ROS generated during mild exercise, is essential for normal force generation; whereas large quantity of ROS generated during intense exercise, may cause contractile dysfunction, resulting in muscle weakness and fatigue. One of the key question in skeletal muscle physiology is ‘could antioxidant therapy improve the skeletal muscle endurance? A question, which has resulted in contradictory experimental findings till this date. This work has addressed this ‘very question’ using a synthetic, inorganic, antioxidant nano-material viz., ‘cerium oxide nanozyme’ (CON). It has been introduced in the rat by intramuscular injection, and the skeletal muscle endurance has been evaluated. Intramuscular injections of CON, concurrent with exercise, enhanced muscle mass, glycogen and ATP content, type I fiber ratio, thus resulting in significantly higher muscle endurance. Electron microscope studies confirmed the presence of CON in the vicinity of muscle mitochondria. There was an increase in the number and size of the muscle mitochondria in the CON treated muscle, following exercise, as compared to the untreated group with only exercised muscle. Quantitative proteomics data and subsequent biological network analysis studies, identified higher levels of oxidative phosphorylation, TCA cycle output and glycolysis in CON supplemented exercised muscle over only exercised muscle. This was further associated with significant increase in the mitochondrial respiratory capacity and muscle contraction, primarily due to higher levels of electron transport chain proteins like NDUFA9, SDHA, ATP5B and ATP5D, which were validated by real-time PCR and western blotting. Along with this, persistence of CON in muscle was evaluated with ICP-MS analysis, which revealed clearance of the particles after 90 d, without exhibiting any inflammation or adverse affects on the health of the experimental animals. Thus a

  14. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy*

    PubMed Central

    Woodall, Benjamin P.; Woodall, Meryl C.; Luongo, Timothy S.; Grisanti, Laurel A.; Tilley, Douglas G.; Elrod, John W.; Koch, Walter J.

    2016-01-01

    GRK2, a G protein-coupled receptor kinase, plays a critical role in cardiac physiology. Adrenergic receptors are the primary target for GRK2 activity in the heart; phosphorylation by GRK2 leads to desensitization of these receptors. As such, levels of GRK2 activity in the heart directly correlate with cardiac contractile function. Furthermore, increased expression of GRK2 after cardiac insult exacerbates injury and speeds progression to heart failure. Despite the importance of this kinase in both the physiology and pathophysiology of the heart, relatively little is known about the role of GRK2 in skeletal muscle function and disease. In this study we generated a novel skeletal muscle-specific GRK2 knock-out (KO) mouse (MLC-Cre:GRK2fl/fl) to gain a better understanding of the role of GRK2 in skeletal muscle physiology. In isolated muscle mechanics testing, GRK2 ablation caused a significant decrease in the specific force of contraction of the fast-twitch extensor digitorum longus muscle yet had no effect on the slow-twitch soleus muscle. Despite these effects in isolated muscle, exercise capacity was not altered in MLC-Cre:GRK2fl/fl mice compared with wild-type controls. Skeletal muscle hypertrophy stimulated by clenbuterol, a β2-adrenergic receptor (β2AR) agonist, was significantly enhanced in MLC-Cre:GRK2fl/fl mice; mechanistically, this seems to be due to increased clenbuterol-stimulated pro-hypertrophic Akt signaling in the GRK2 KO skeletal muscle. In summary, our study provides the first insights into the role of GRK2 in skeletal muscle physiology and points to a role for GRK2 as a modulator of contractile properties in skeletal muscle as well as β2AR-induced hypertrophy. PMID:27566547

  15. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy.

    PubMed

    Woodall, Benjamin P; Woodall, Meryl C; Luongo, Timothy S; Grisanti, Laurel A; Tilley, Douglas G; Elrod, John W; Koch, Walter J

    2016-10-14

    GRK2, a G protein-coupled receptor kinase, plays a critical role in cardiac physiology. Adrenergic receptors are the primary target for GRK2 activity in the heart; phosphorylation by GRK2 leads to desensitization of these receptors. As such, levels of GRK2 activity in the heart directly correlate with cardiac contractile function. Furthermore, increased expression of GRK2 after cardiac insult exacerbates injury and speeds progression to heart failure. Despite the importance of this kinase in both the physiology and pathophysiology of the heart, relatively little is known about the role of GRK2 in skeletal muscle function and disease. In this study we generated a novel skeletal muscle-specific GRK2 knock-out (KO) mouse (MLC-Cre:GRK2 fl/fl ) to gain a better understanding of the role of GRK2 in skeletal muscle physiology. In isolated muscle mechanics testing, GRK2 ablation caused a significant decrease in the specific force of contraction of the fast-twitch extensor digitorum longus muscle yet had no effect on the slow-twitch soleus muscle. Despite these effects in isolated muscle, exercise capacity was not altered in MLC-Cre:GRK2 fl/fl mice compared with wild-type controls. Skeletal muscle hypertrophy stimulated by clenbuterol, a β 2 -adrenergic receptor (β 2 AR) agonist, was significantly enhanced in MLC-Cre:GRK2 fl/fl mice; mechanistically, this seems to be due to increased clenbuterol-stimulated pro-hypertrophic Akt signaling in the GRK2 KO skeletal muscle. In summary, our study provides the first insights into the role of GRK2 in skeletal muscle physiology and points to a role for GRK2 as a modulator of contractile properties in skeletal muscle as well as β 2 AR-induced hypertrophy. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Nonshivering thermogenesis in king penguin chicks. I. Role of skeletal muscle.

    PubMed

    Duchamp, C; Barré, H; Rouanet, J L; Lanni, A; Cohen-Adad, F; Berne, G; Brebion, P

    1991-12-01

    In cold-acclimatized (CA) king penguin chicks exhibiting nonshivering thermogenesis (NST), protein content and cytochrome oxidase (CO) activity of tissue homogenates were measured together with protein content, CO, and respiration rates of isolated mitochondria from skeletal muscle (gastrocnemius and pectoralis) and liver. The comparison was made with chicks reared at thermoneutrality (TN) for at least 3 wk. In CA chicks showing a NST despite the lack of brown adipose tissue, an increase in thermogenic capacity was observed in skeletal muscle in which the oxidative capacity rose (+28% and +50% in gastrocnemius and pectoralis muscles, respectively), whereas no change occurred in the liver. Oxidative capacity of skeletal muscle increased together with the development of mitochondrial inner membrane plus cristae in muscles of CA chicks contrary to their TN littermates (+30 to +50%). Subsarcolemmal mitochondria of CA chicks had a higher protein content (+65% in gastrocnemius muscle) and higher oxidative capacities than in controls. The lower respiratory control ratio of these mitochondria might result from a low ADP phosphorylation rate. No change occurred in the intermyofibrillar fraction nor in liver mitochondria. These findings together with earlier results obtained in cold-acclimated ducklings indicate the marked and suited adaptation of skeletal muscle and in particular of subsarcolemmal mitochondria allowing them to play a role in NST.

  17. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration

    PubMed Central

    Stewart, Randi

    2012-01-01

    Among organ systems, skeletal muscle is perhaps the most structurally specialized. The remarkable subcellular architecture of this tissue allows it to empower movement with instructions from motor neurons. Despite this high degree of specialization, skeletal muscle also has intrinsic signaling mechanisms that allow adaptation to long-term changes in demand and regeneration after acute damage. The second messenger adenosine 3′,5′-monophosphate (cAMP) not only elicits acute changes within myofibers during exercise but also contributes to myofiber size and metabolic phenotype in the long term. Strikingly, sustained activation of cAMP signaling leads to pronounced hypertrophic responses in skeletal myofibers through largely elusive molecular mechanisms. These pathways can promote hypertrophy and combat atrophy in animal models of disorders including muscular dystrophy, age-related atrophy, denervation injury, disuse atrophy, cancer cachexia, and sepsis. cAMP also participates in muscle development and regeneration mediated by muscle precursor cells; thus, downstream signaling pathways may potentially be harnessed to promote muscle regeneration in patients with acute damage or muscular dystrophy. In this review, we summarize studies implicating cAMP signaling in skeletal muscle adaptation. We also highlight ligands that induce cAMP signaling and downstream effectors that are promising pharmacological targets. PMID:22354781

  18. Cephalometric skeletal evaluation of patients with Incontinentia Pigmenti

    PubMed Central

    Maahs, Marcia Angelica Peter; Kiszewski, Ana Elisa; Rosa, Rafael Fabiano Machado; Maria, Fernanda Diffini Santa; Prates, Frederico Ballvé; Zen, Paulo Ricardo Gazzola

    2014-01-01

    Purpose The aim of this study was to evaluate the skeletal characteristics of patients with the rare genetic disease of Incontinentia Pigmenti, by lateral cephalometric analysis on the antero-posterior plane and by frontal cephalometric analysis on the horizontal plane. Methods Lateral skeletal cephalometric analyses were performed according to Steiner for evaluation of antero-posterior direction, and frontal skeletal cephalometric analyses according to Ricketts for evaluation of horizontal direction in 9 patients with IP. Left and right facial widths at the level of the zygomatic arch were also evaluated. The Student t-test was used for paired to a 5% level of significance data. Results The lateral skeletal cephalometric findings were not statistically significant, but the Class II was the most frequent finding (44.4%), followed by Class III (33.3%) and Class I (22.2%). The right maxillo-mandibular width was significantly lower than normal values, and the right facial width was significantly higher than the left, at the level of the zygomatic arch. Conclusions Patients with IP showed more skeletal discrepancies of Class II and III than Class I malocclusion, and had significant horizontal facial skeletal asymmetries. This should alert health professionals to route these patients for orthodontic assessment and possible therapeutic interventions. However, larger samples are needed to better elucidate if these cephalometric findings can be specifically related to IP. PMID:25737924

  19. Dynamic changes in genes related to glucose uptake and utilization during pig skeletal and cardiac muscle development.

    PubMed

    Guo, Yanqin; Jin, Long; Wang, Fengjiao; He, Mengnan; Liu, Rui; Li, Mingzhou; Shuai, Surong

    2014-01-01

    Skeletal and cardiac muscle have important roles in glucose uptake and utilization. However, changes in expression of protein coding genes and miRNAs that participate in glucose metabolism during development are not fully understood. In this study, we investigated the expression of genes related to glucose metabolism during muscle development. We found an age-dependent increase in gene expression in cardiac muscle, with enrichment in heart development- and energy-related metabolic processes. A subset of genes that were up-regulated until 30 or 180 days postnatally, and then down-regulated in psoas major muscle was significantly enriched in mitochondrial oxidative-related processes, while genes that up-regulated in longissimus doris muscle was significantly enriched in glycolysis-related processes. Meanwhile, expression of energy-related microRNAs decreased with increasing age. In addition, we investigated the correlation between microRNAs and mRNAs in three muscle types across different stages of development and found many potential microRNA-mRNA pairs involved in regulating glucose metabolism.

  20. Functional nonequality of the cardiac and skeletal ryanodine receptors.

    PubMed

    Nakai, J; Ogura, T; Protasi, F; Franzini-Armstrong, C; Allen, P D; Beam, K G

    1997-02-04

    Dihydropyridine receptors (DHPRs), which are voltage-gated Ca2+ channels, and ryanodine receptors (RyRs), which are intracellular Ca2+ release channels, are expressed in diverse cell types, including skeletal and cardiac muscle. In skeletal muscle, there appears to be reciprocal signaling between the skeletal isoforms of both the DHPR and the RyR (RyR-1), such that Ca2+ release activity of RyR-1 is controlled by the DHPR and Ca2+ channel activity of the DHPR is controlled by RyR-1. Dyspedic skeletal muscle cells, which do not express RyR-1, lack excitation-contraction coupling and have an approximately 30-fold reduction in L-type Ca2+ current density. Here we have examined the ability of the predominant cardiac and brain RyR isoform, RyR-2, to substitute for RyR-1 in interacting with the skeletal DHPR. When RyR-2 is expressed in dyspedic muscle cells, it gives rise to spontaneous intracellular Ca2+ oscillations and supports Ca2+ entry-induced Ca2+ release. However, unlike RyR-1, the expressed RyR-2 does not increase the Ca2+ channel activity of the DHPR, nor is the gating of RyR-2 controlled by the skeletal DHPR. Thus, the ability to participate in skeletal-type reciprocal signaling appears to be a unique feature of RyR-1.

  1. The life cycle of chondrocytes in the developing skeleton

    PubMed Central

    Shum, Lillian; Nuckolls, Glen

    2002-01-01

    Cartilage serves multiple functions in the developing embryo and in postnatal life. Genetic mutations affecting cartilage development are relatively common and lead to skeletal malformations, dysfunction or increased susceptibility to disease or injury. Characterization of these mutations and investigation of the molecular pathways in which these genes function have contributed to an understanding of the mechanisms regulating skeletal patterning, chondrogenesis, endochondral ossification and joint formation. Extracellular growth and differentiation factors including bone morphogenetic proteins, fibroblast growth factors, parathyroid hormone-related peptide, extracellular matrix components, and members of the hedgehog and Wnt families provide important signals for the regulation of cell proliferation, differentiation and apoptosis. Transduction of these signals within the developing mesenchymal cells and chondrocytes results in changes in gene expression mediated by transcription factors including Smads, Msx2, Sox9, signal transducer and activator of transcription (STAT), and core-binding factor alpha 1. Further investigation of the interactions of these signaling pathways will contribute to an understanding of cartilage growth and development, and will allow for the development of strategies for the early detection, prevention and treatment of diseases and disorders affecting the skeleton. PMID:11879545

  2. Action of obestatin in skeletal muscle repair: stem cell expansion, muscle growth, and microenvironment remodeling.

    PubMed

    Gurriarán-Rodríguez, Uxía; Santos-Zas, Icía; González-Sánchez, Jessica; Beiroa, Daniel; Moresi, Viviana; Mosteiro, Carlos S; Lin, Wei; Viñuela, Juan E; Señarís, José; García-Caballero, Tomás; Casanueva, Felipe F; Nogueiras, Rubén; Gallego, Rosalía; Renaud, Jean-Marc; Adamo, Sergio; Pazos, Yolanda; Camiña, Jesús P

    2015-06-01

    The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Overall, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration.

  3. Role of phosphoinositide 3-OH kinase p110β in skeletal myogenesis.

    PubMed

    Matheny, Ronald W; Riddle-Kottke, Melissa A; Leandry, Luis A; Lynch, Christine M; Abdalla, Mary N; Geddis, Alyssa V; Piper, David R; Zhao, Jean J

    2015-04-01

    Phosphoinositide 3-OH kinase (PI3K) regulates a number of developmental and physiologic processes in skeletal muscle; however, the contributions of individual PI3K p110 catalytic subunits to these processes are not well-defined. To address this question, we investigated the role of the 110-kDa PI3K catalytic subunit β (p110β) in myogenesis and metabolism. In C2C12 cells, pharmacological inhibition of p110β delayed differentiation. We next generated mice with conditional deletion of p110β in skeletal muscle (p110β muscle knockout [p110β-mKO] mice). While young p110β-mKO mice possessed a lower quadriceps mass and exhibited less strength than control littermates, no differences in muscle mass or strength were observed between genotypes in old mice. However, old p110β-mKO mice were less glucose tolerant than old control mice. Overexpression of p110β accelerated differentiation in C2C12 cells and primary human myoblasts through an Akt-dependent mechanism, while expression of kinase-inactive p110β had the opposite effect. p110β overexpression was unable to promote myoblast differentiation under conditions of p110α inhibition, but expression of p110α was able to promote differentiation under conditions of p110β inhibition. These findings reveal a role for p110β during myogenesis and demonstrate that long-term reduction of skeletal muscle p110β impairs whole-body glucose tolerance without affecting skeletal muscle size or strength in old mice. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity.

    PubMed

    van Moorsel, Dirk; Hansen, Jan; Havekes, Bas; Scheer, Frank A J L; Jörgensen, Johanna A; Hoeks, Joris; Schrauwen-Hinderling, Vera B; Duez, Helene; Lefebvre, Philippe; Schaper, Nicolaas C; Hesselink, Matthijs K C; Staels, Bart; Schrauwen, Patrick

    2016-08-01

    A disturbed day-night rhythm is associated with metabolic perturbations that can lead to obesity and type 2 diabetes mellitus (T2DM). In skeletal muscle, a reduced oxidative capacity is also associated with the development of T2DM. However, whether oxidative capacity in skeletal muscle displays a day-night rhythm in humans has so far not been investigated. Lean, healthy subjects were enrolled in a standardized living protocol with regular meals, physical activity and sleep to reflect our everyday lifestyle. Mitochondrial oxidative capacity was examined in skeletal muscle biopsies taken at five time points within a 24-hour period. Core-body temperature was lower during the early night, confirming a normal day-night rhythm. Skeletal muscle oxidative capacity demonstrated a robust day-night rhythm, with a significant time effect in ADP-stimulated respiration (state 3 MO, state 3 MOG and state 3 MOGS, p < 0.05). Respiration was lowest at 1 PM and highest at 11 PM (state 3 MOGS: 80.6 ± 4.0 vs. 95.8 ± 4.7 pmol/mg/s). Interestingly, the fluctuation in mitochondrial function was also observed in whole-body energy expenditure, with peak energy expenditure at 11 PM and lowest energy expenditure at 4 AM (p < 0.001). In addition, we demonstrate rhythmicity in mRNA expression of molecular clock genes in human skeletal muscle. Our results suggest that the biological clock drives robust rhythms in human skeletal muscle oxidative metabolism. It is tempting to speculate that disruption of these rhythms contribute to the deterioration of metabolic health associated with circadian misalignment.

  5. Circadian Rhythms, the Molecular Clock, and Skeletal Muscle

    PubMed Central

    Lefta, Mellani; Wolff, Gretchen; Esser, Karyn A.

    2015-01-01

    Almost all organisms ranging from single cell bacteria to humans exhibit a variety of behavioral, physiological, and biochemical rhythms. In mammals, circadian rhythms control the timing of many physiological processes over a 24-h period, including sleep-wake cycles, body temperature, feeding, and hormone production. This body of research has led to defined characteristics of circadian rhythms based on period length, phase, and amplitude. Underlying circadian behaviors is a molecular clock mechanism found in most, if not all, cell types including skeletal muscle. The mammalian molecular clock is a complex of multiple oscillating networks that are regulated through transcriptional mechanisms, timed protein turnover, and input from small molecules. At this time, very little is known about circadian aspects of skeletal muscle function/metabolism but some progress has been made on understanding the molecular clock in skeletal muscle. The goal of this chapter is to provide the basic terminology and concepts of circadian rhythms with a more detailed review of the current state of knowledge of the molecular clock, with reference to what is known in skeletal muscle. Research has demonstrated that the molecular clock is active in skeletal muscles and that the muscle-specific transcription factor, MyoD, is a direct target of the molecular clock. Skeletal muscle of clock-compromised mice, Bmal1−/− and ClockΔ19 mice, are weak and exhibit significant disruptions in expression of many genes required for adult muscle structure and metabolism. We suggest that the interaction between the molecular clock, MyoD, and metabolic factors, such as PGC-1, provide a potential system of feedback loops that may be critical for both maintenance and adaptation of skeletal muscle. PMID:21621073

  6. Three-Dimensional Human iPSC-Derived Artificial Skeletal Muscles Model Muscular Dystrophies and Enable Multilineage Tissue Engineering.

    PubMed

    Maffioletti, Sara Martina; Sarcar, Shilpita; Henderson, Alexander B H; Mannhardt, Ingra; Pinton, Luca; Moyle, Louise Anne; Steele-Stallard, Heather; Cappellari, Ornella; Wells, Kim E; Ferrari, Giulia; Mitchell, Jamie S; Tyzack, Giulia E; Kotiadis, Vassilios N; Khedr, Moustafa; Ragazzi, Martina; Wang, Weixin; Duchen, Michael R; Patani, Rickie; Zammit, Peter S; Wells, Dominic J; Eschenhagen, Thomas; Tedesco, Francesco Saverio

    2018-04-17

    Generating human skeletal muscle models is instrumental for investigating muscle pathology and therapy. Here, we report the generation of three-dimensional (3D) artificial skeletal muscle tissue from human pluripotent stem cells, including induced pluripotent stem cells (iPSCs) from patients with Duchenne, limb-girdle, and congenital muscular dystrophies. 3D skeletal myogenic differentiation of pluripotent cells was induced within hydrogels under tension to provide myofiber alignment. Artificial muscles recapitulated characteristics of human skeletal muscle tissue and could be implanted into immunodeficient mice. Pathological cellular hallmarks of incurable forms of severe muscular dystrophy could be modeled with high fidelity using this 3D platform. Finally, we show generation of fully human iPSC-derived, complex, multilineage muscle models containing key isogenic cellular constituents of skeletal muscle, including vascular endothelial cells, pericytes, and motor neurons. These results lay the foundation for a human skeletal muscle organoid-like platform for disease modeling, regenerative medicine, and therapy development. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. A comparison of skeletal maturity assessed by radiological and ultrasonic methods.

    PubMed

    Utczas, Katinka; Muzsnai, Agota; Cameron, Noel; Zsakai, Annamaria; Bodzsar, Eva B

    2017-07-08

    The estimation of skeletal maturity is a useful tool in pediatric practice to determine the degree of delay or advancement in growth disorders and the effectiveness of treatment in conditions that influence linear growth. Skeletal maturity of children is commonly assessed using either Greulich-Pyle (GP) or Tanner-Whitehouse methods (TW2 and TW3). However, a less invasive ultrasonic method, that does not use ionizing radiation, has been suggested for use in epidemiological studies of skeletal maturity. The main purpose of the present study was to determine the accuracy of an ultrasonic method based on the GP maturity indicators compared to the standard GP radiographic method. Skeletal maturity of 1502 healthy children, aged from 6 to 18 years, was estimated by quantitative ultrasound and compared to GP bone ages estimated from left hand and wrist radiographs of a subsample of 47 randomly selected participants. The ultrasonic bone age estimation demonstrated very strong correlations with all the radiological age estimations. The correlation coefficients ranged between 0.895 and 0.958, and the strongest correlation of ultrasonic skeletal maturity estimation was found with the Tanner-Whitehouse RUS method. The ultrasonic bone age estimation is suggested for use between the chronological ages of 8.5-16.0 years in boys and 7.5-15.0 years in girls. The ultrasonic bone age estimation is suggested for use in epidemiological surveys since the sensitivity for screening for not normal bone development is appropriate, at least within the 8-15 years age interval. © 2017 Wiley Periodicals, Inc.

  8. Macrophage depletion impairs skeletal muscle regeneration: The roles of regulatory factors for muscle regeneration.

    PubMed

    Liu, Xiaoguang; Liu, Yu; Zhao, Linlin; Zeng, Zhigang; Xiao, Weihua; Chen, Peijie

    2017-03-01

    Though macrophages are essential for skeletal muscle regeneration, which is a complex process, the roles and mechanisms of the macrophages in the process of muscle regeneration are still not fully understood. The objective of this study is to explore the roles of macrophages and the mechanisms involved in the regeneration of injured skeletal muscle. One hundred and twelve C57BL/6 mice were randomly divided into muscle contusion and macrophages depleted groups. Their gastrocnemius muscles were harvested at the time points of 12 h, 1, 3, 5, 7, 14 d post-injury. The changes in skeletal muscle morphology were assessed by hematoxylin and eosin (HE) stain. The gene expression was analyzed by real-time polymerase chain reaction. The data showed that CL-liposomes treatment did affect the expression of myogenic regulatory factors (MyoD, myogenin) after injury. In addition, CL-liposomes treatment decreased the expression of regulatory factors of muscle regeneration (HGF, uPA, COX-2, IGF-1, MGF, FGF6) and increased the expression of inflammatory cytokines (TGF-β1, TNF-α, IL-1β, RANTES) in the late stage of regeneration. Moreover, there were significant correlations between macrophages and some regulatory factors (such as HGF, uPA) for muscle regeneration. These results suggested that macrophages depletion impairs skeletal muscle regeneration and that the regulatory factors for muscle regeneration may play important roles in this process. © 2017 International Federation for Cell Biology.

  9. Characterizing the Effects of Chronic 2G Centrifugation on the Rat Skeletal System

    NASA Technical Reports Server (NTRS)

    Johnson, Aimee; Scott, Ryan; Ronca, April E.; Hoban-Higgins, Tana M.; Fuller, Charles A.; Alwood, Joshua S.

    2017-01-01

    During weightlessness, the skeletal system of astronauts is negatively affected by decreased calcium absorption and bone mass loss. Therefore, it is necessary to counteract these changes for long-term skeletal health during space flights. Our long-term plan is to assess artificial gravity (AG) as a possible solution to mitigate these changes. In this study, we aim to determine the skeletal acclimation to chronic centrifugation. We hypothesize that a 2G hypergravity environment causes an anabolic response in growing male rats. Specifically, we predict chronic 2G to increase tissue mineral density, bone volume fraction of the cancellous tissue and to increase overall bone strength. Systemically, we predict that bone formation markers (i.e., osteocalcin) are elevated and resorption markers (i.e., tartrate resistant acid phosphatase) are decreased or unchanged from controls. The experiment has three groups, each with an n8: chronic 2g, cage control (housed on the centrifuge, but not spun), and a vivarium control (normal rat caging). Pre-pubescent, male Long-Evans rats were used to assess our hypothesis. This group was subject to 90 days of 2G via centrifugation performed at the Chronic Acceleration Research Unit (CARU) at University of California Davis. After 90 days, animals were euthanized and tissues collected. Blood was drawn via cardiac puncture and the right leg collected for structural (via microcomputed tomography) and strength quantification. Understanding how counteract these skeletal changes will have major impacts for both the space-faring astronauts and the people living on Earth.

  10. Dual specificity phosphatase 5 and 6 are oppositely regulated in human skeletal muscle by acute exercise.

    PubMed

    Pourteymour, Shirin; Hjorth, Marit; Lee, Sindre; Holen, Torgeir; Langleite, Torgrim M; Jensen, Jørgen; Birkeland, Kåre I; Drevon, Christian A; Eckardt, Kristin

    2017-10-01

    Physical activity promotes specific adaptations in most tissues including skeletal muscle. Acute exercise activates numerous signaling cascades including pathways involving mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK)1/2, which returns to pre-exercise level after exercise. The expression of MAPK phosphatases (MKPs) in human skeletal muscle and their regulation by exercise have not been investigated before. In this study, we used mRNA sequencing to monitor regulation of MKPs in human skeletal muscle after acute cycling. In addition, primary human myotubes were used to gain more insights into the regulation of MKPs. The two ERK1/2-specific MKPs, dual specificity phosphatase 5 (DUSP5) and DUSP6, were the most regulated MKPs in skeletal muscle after acute exercise. DUSP5 expression was ninefold higher immediately after exercise and returned to pre-exercise level within 2 h, whereas DUSP6 expression was reduced by 43% just after exercise and remained below pre-exercise level after 2 h recovery. Cultured myotubes express both MKPs, and incubation with dexamethasone (Dex) mimicked the in vivo expression pattern of DUSP5 and DUSP6 caused by exercise. Using a MAPK kinase inhibitor, we showed that stimulation of ERK1/2 activity by Dex was required for induction of DUSP5 However, maintaining basal ERK1/2 activity was required for basal DUSP6 expression suggesting that the effect of Dex on DUSP6 might involve an ERK1/2-independent mechanism. We conclude that the altered expression of DUSP5 and DUSP6 in skeletal muscle after acute endurance exercise might affect ERK1/2 signaling of importance for adaptations in skeletal muscle during exercise. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  11. Comparative Evaluation of Dental and Skeletal Fluorosis in an Endemic Fluorosed District, Salem, Tamil Nadu.

    PubMed

    Ramesh, Maya; Malathi, N; Ramesh, K; Aruna, Rita Mary; Kuruvilla, Sarah

    2017-11-01

    High levels of fluoride in the drinking water, especially ground water, results in skeletal fluorosis which involves the bone and major joints. This study was conducted to assess the prevalence of skeletal fluorosis to compare with dental fluorosis in an endemically fluorosed population in the District of Salem, Tamil Nadu. Institutional ethical clearance was obtained. A total of 206 patients who reported to the Department of Hematology for blood investigations were the participants in this study. Age, sex, place, weight, height, dental fluorosis, and skeletal complaints were noted down. Body mass index was calculated, and statistical analysis was performed. Dental fluorosis was present in 63.1% and absent in 36.9% of the samples reported. Skeletal fluorosis was present in 24.8% and was absent in 75.2%. A large number of the patients had knee pain and difficulty in bending. Chi-square test was used for statistical analysis. Skeletal fluorosis and age were compared and P value was 0.00 and was significant. Dental fluorosis and skeletal fluorosis were compared and P value was found to be 0.000 and significant. There is a need to take measures to prevent dental and skeletal fluorosis among the residents of Salem district. Calcium balance should be maintained, and fluoride intake should be minimized to reduce the symptoms. The government should provide water with low fluoride level for drinking and cooking. Once the symptoms develop, treatment largely remains symptomatic, using analgesics and physiotherapy.

  12. Health Occupations Module. The Skeletal System--I.

    ERIC Educational Resources Information Center

    Temple Univ., Philadelphia, PA. Div. of Vocational Education.

    This module on the skeletal system is one of eight modules designed for individualized instruction in health occupations education programs at both the secondary and postsecondary levels. This module contains an introduction to the module topic, three objectives (e.g., define the skeletal system and list its functions), and three learning…

  13. Severity of Asynchronous Slipped Capital Femoral Epiphyses in Skeletally Immature Versus More Skeletally Mature Patients.

    PubMed

    Nowicki, Philip D; Silva, Selina; Toelle, Lisa; Strohmeyer, Greg; Wahlquist, Trevor; Li, Ying; Farley, Frances A; Caird, Michelle S

    2017-01-01

    Routine prophylactic screw fixation for skeletally immature patients with slipped capital femoral epiphysis (SCFE) continues to be debated. The purpose of this study was to assess the slip severity of a second SCFE in skeletally immature versus more mature patients and determine necessity of contralateral hip prophylactic screw fixation. All patients treated for SCFE at 3 pediatric hospitals over a 10-year time period (January 1, 2002 to December 31, 2011) were evaluated. Patients were included if they had a unilateral SCFE and a contralateral asynchronous SCFE, and were divided into immature (Oxford triradiate score 1) versus more mature (Oxford triradiate score 2 and 3) groups. Data evaluation included age, time between slips, body mass index, Southwick angles of first then second SCFEs, and follow-up duration. There were a total of 45 patients: 16 patients in the skeletally immature and 29 patients in the more mature group. Average age at first SCFE in immature patients was 10.9 years and in more mature patients 12.1 years (P=0.70). Age at second SCFE in immature patients was 11.5 years and in more mature patients 13.0 years (P=0.023). Average time between SCFEs was 6.6 months for immature and 11.4 months for more mature patients (P=0.093). Southwick angles for immature patient first and second SCFEs were 25 and 12.9 degrees, respectively, and for more mature patient first and second SCFEs were 31 and 21 degrees, respectively. Southwick angles were higher at first and second slips in the more mature group, significant only at the second slip (P=0.032). SCFE severity at initial event was predictive of severity of second SCFE regardless of maturity (P=0.043). Regression analysis of slip severity against multiple patient factors demonstrated triradiate score was not a factor assessing subsequent SCFE magnitude (P=0.099). There was no significant difference between first and second SCFEs regardless of skeletal maturity but severity of initial SCFE did correlate with

  14. Skeletal muscle tensile strain dependence: hyperviscoelastic nonlinearity

    PubMed Central

    Wheatley, Benjamin B; Morrow, Duane A; Odegard, Gregory M; Kaufman, Kenton R; Donahue, Tammy L Haut

    2015-01-01

    Introduction Computational modeling of skeletal muscle requires characterization at the tissue level. While most skeletal muscle studies focus on hyperelasticity, the goal of this study was to examine and model the nonlinear behavior of both time-independent and time-dependent properties of skeletal muscle as a function of strain. Materials and Methods Nine tibialis anterior muscles from New Zealand White rabbits were subject to five consecutive stress relaxation cycles of roughly 3% strain. Individual relaxation steps were fit with a three-term linear Prony series. Prony series coefficients and relaxation ratio were assessed for strain dependence using a general linear statistical model. A fully nonlinear constitutive model was employed to capture the strain dependence of both the viscoelastic and instantaneous components. Results Instantaneous modulus (p<0.0005) and mid-range relaxation (p<0.0005) increased significantly with strain level, while relaxation at longer time periods decreased with strain (p<0.0005). Time constants and overall relaxation ratio did not change with strain level (p>0.1). Additionally, the fully nonlinear hyperviscoelastic constitutive model provided an excellent fit to experimental data, while other models which included linear components failed to capture muscle function as accurately. Conclusions Material properties of skeletal muscle are strain-dependent at the tissue level. This strain dependence can be included in computational models of skeletal muscle performance with a fully nonlinear hyperviscoelastic model. PMID:26409235

  15. Skeletal metastasis: treatments, mouse models, and the Wnt signaling

    PubMed Central

    Valkenburg, Kenneth C.; Steensma, Matthew R.; Williams, Bart O.; Zhong, Zhendong

    2013-01-01

    Skeletal metastases result in significant morbidity and mortality. This is particularly true of cancers with a strong predilection for the bone, such as breast, prostate, and lung cancers. There is currently no reliable cure for skeletal metastasis, and palliative therapy options are limited. The Wnt signaling pathway has been found to play an integral role in the process of skeletal metastasis and may be an important clinical target. Several experimental models of skeletal metastasis have been used to find new biomarkers and test new treatments. In this review, we discuss pathologic process of bone metastasis, the roles of the Wnt signaling, and the available experimental models and treatments. PMID:23327798

  16. Expression and functional characterization of Smyd1a in myofibril organization of skeletal muscles.

    PubMed

    Gao, Jie; Li, Junling; Li, Bao-Jun; Yagil, Ezra; Zhang, Jianshe; Du, Shao Jun

    2014-01-01

    Smyd1, the founding member of the Smyd family including Smyd-1, 2, 3, 4 and 5, is a SET and MYND domain containing protein that plays a key role in myofibril assembly in skeletal and cardiac muscles. Bioinformatic analysis revealed that zebrafish genome contains two highly related smyd1 genes, smyd1a and smyd1b. Although Smyd1b function is well characterized in skeletal and cardiac muscles, the function of Smyd1a is, however, unknown. To investigate the function of Smyd1a in muscle development, we isolated smyd1a from zebrafish, and characterized its expression and function during muscle development via gene knockdown and transgenic expression approaches. The results showed that smyd1a was strongly expressed in skeletal muscles of zebrafish embryos. Functional analysis revealed that knockdown of smyd1a alone had no significant effect on myofibril assembly in zebrafish skeletal muscles. However, knockdown of smyd1a and smyd1b together resulted in a complete disruption of myofibril organization in skeletal muscles, a phenotype stronger than knockdown of smyd1a or smyd1b alone. Moreover, ectopic expression of zebrafish smyd1a or mouse Smyd1 transgene could rescue the myofibril defects from the smyd1b knockdown in zebrafish embryos. Collectively, these data indicate that Smyd1a and Smyd1b share similar biological activity in myofibril assembly in zebrafish embryos. However, Smyd1b appears to play a major role in this process.

  17. Tight glycemic control with insulin does not affect skeletal muscle degradation during the early post-operative period following pediatric cardiac surgery

    PubMed Central

    Fisher, Jeremy G.; Sparks, Eric A.; Khan, Faraz A.; Alexander, Jamin L.; Asaro, Lisa A.; Wypij, David; Gaies, Michael; Modi, Biren P.; Duggan, Christopher; Agus, Michael S.D.; Yu, Yong-Ming; Jaksic, Tom

    2015-01-01

    Objective Critical illness is associated with significant catabolism and persistent protein loss correlates with increased morbidity and mortality. Insulin is a potent anti-catabolic hormone; high-dose insulin decreases skeletal muscle protein breakdown in critically ill pediatric surgical patients. However, insulin's effect on protein catabolism when given at clinically utilized doses has not been studied. The objective was to evaluate the effect of post-operative tight glycemic control and clinically-dosed insulin on skeletal muscle degradation in children after cardiac surgery with cardiopulmonary bypass. Design Secondary analysis of a two-center, prospective randomized trial comparing tight glycemic control with standard care. Randomization was stratified by study center. Patients Children 0-36 months who were admitted to the ICU after cardiac surgery requiring cardiopulmonary bypass. Interventions In the tight glycemic control (TGC) arm, insulin was titrated to maintain blood glucose between 80-110 mg/dL. Patients in the control arm received standard care. Skeletal muscle breakdown was quantified by a ratio of urinary 3-methylhistidine to urinary creatinine (3MH:Cr). Main Results A total of 561 patients were included: 281 in the TGC arm and 280 receiving standard care. There was no difference in 3MH:Cr between groups (TGC 249 ± 127 vs. standard care 253 ± 112, mean ± standard deviation in μmol/g, P=0.72). In analyses restricted to the TGC patients, higher 3MH:Cr correlated with younger age as well as lower weight, weight-for-age z-score, length, and body surface area (P<0.005 for each), and lower post-operative day 3 serum creatinine (r=-0.17, P=0.02). Sex, prealbumin, and albumin were not associated with 3MH:Cr. During urine collection, 245 patients (87%) received insulin. However, any insulin exposure did not impact 3MH:Cr (t-test, P=0.45), and there was no dose-dependent effect of insulin on 3MH:Cr (r=-0.03, P=0.60). Conclusion Though high-dose insulin

  18. Systemic bioinformatics analysis of skeletal muscle gene expression profiles of sepsis

    PubMed Central

    Yang, Fang; Wang, Yumei

    2018-01-01

    Sepsis is a type of systemic inflammatory response syndrome with high morbidity and mortality. Skeletal muscle dysfunction is one of the major complications of sepsis that may also influence the outcome of sepsis. The aim of the present study was to explore and identify potential mechanisms and therapeutic targets of sepsis. Systemic bioinformatics analysis of skeletal muscle gene expression profiles from the Gene Expression Omnibus was performed. Differentially expressed genes (DEGs) in samples from patients with sepsis and control samples were screened out using the limma package. Differential co-expression and coregulation (DCE and DCR, respectively) analysis was performed based on the Differential Co-expression Analysis package to identify differences in gene co-expression and coregulation patterns between the control and sepsis groups. Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways of DEGs were identified using the Database for Annotation, Visualization and Integrated Discovery, and inflammatory, cancer and skeletal muscle development-associated biological processes and pathways were identified. DCE and DCR analysis revealed several potential therapeutic targets for sepsis, including genes and transcription factors. The results of the present study may provide a basis for the development of novel therapeutic targets and treatment methods for sepsis. PMID:29805480

  19. Inflicted Skeletal Trauma: The Relationship of Perpetrators to Their Victims

    ERIC Educational Resources Information Center

    Starling, Suzanne P.; Sirotnak, Andrew P.; Heisler, Kurt W.; Barnes-Eley, Myra L.

    2007-01-01

    Objective: Although inflicted skeletal trauma is a very common presentation of child abuse, little is known about the perpetrators of inflicted skeletal injuries. Studies exist describing perpetrators of inflicted traumatic brain injury, but no study has examined characteristics of perpetrators of inflicted skeletal trauma. Methods: All cases of…

  20. Skeletal muscle proteomic signature and metabolic impairment in pulmonary hypertension.

    PubMed

    Malenfant, Simon; Potus, François; Fournier, Frédéric; Breuils-Bonnet, Sandra; Pflieger, Aude; Bourassa, Sylvie; Tremblay, Ève; Nehmé, Benjamin; Droit, Arnaud; Bonnet, Sébastien; Provencher, Steeve

    2015-05-01

    Exercise limitation comes from a close interaction between cardiovascular and skeletal muscle impairments. To better understand the implication of possible peripheral oxidative metabolism dysfunction, we studied the proteomic signature of skeletal muscle in pulmonary arterial hypertension (PAH). Eight idiopathic PAH patients and eight matched healthy sedentary subjects were evaluated for exercise capacity, skeletal muscle proteomic profile, metabolism, and mitochondrial function. Skeletal muscle proteins were extracted, and fractioned peptides were tagged using an iTRAQ protocol. Proteomic analyses have documented a total of 9 downregulated proteins in PAH skeletal muscles and 10 upregulated proteins compared to healthy subjects. Most of the downregulated proteins were related to mitochondrial structure and function. Focusing on skeletal muscle metabolism and mitochondrial health, PAH patients presented a decreased expression of oxidative enzymes (pyruvate dehydrogenase, p < 0.01) and an increased expression of glycolytic enzymes (lactate dehydrogenase activity, p < 0.05). These findings were supported by abnormal mitochondrial morphology on electronic microscopy, lower citrate synthase activity (p < 0.01) and lower expression of the transcription factor A of the mitochondria (p < 0.05), confirming a more glycolytic metabolism in PAH skeletal muscles. We provide evidences that impaired mitochondrial and metabolic functions found in the lungs and the right ventricle are also present in skeletal muscles of patients. • Proteomic and metabolic analysis show abnormal oxidative metabolism in PAH skeletal muscle. • EM of PAH patients reveals abnormal mitochondrial structure and distribution. • Abnormal mitochondrial health and function contribute to exercise impairments of PAH. • PAH may be considered a vascular affliction of heart and lungs with major impact on peripheral muscles.

  1. A compact skeletal mechanism for n -dodecane with optimized semi-global low-temperature chemistry for diesel engine simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Tong; Pei, Yuanjiang; Zhong, Bei-Jing

    A skeletal mechanism with 54 species and 269 reactions was developed to predict pyrolysis and oxidation of n-dodecane as a diesel fuel surrogate involving both high-temperature (high-T) and low-temperature (low-T) conditions. The skeletal mechanism was developed from a semi-detailed mechanism developed at the University of Southern California (USC). Species and reactions for high-T pyrolysis and oxidation of C5-C12 were reduced by using reaction flow analysis (RFA), isomer lumping, and then merged into a skeletal C0-C4 core to form a high-T sub-mechanism. Species and lumped semi-global reactions for low-T chemistry were then added to the high-T sub-mechanism and a 54-species skeletalmore » mechanism is obtained. The rate parameters of the low-T reactions were tuned against a detailed mechanism by the Lawrence Livermore National Laboratory (LLNL), as well as the Spray A flame experimental data, to improve the prediction of ignition delay at low-T conditions, while the high-T chemistry remained unchanged. The skeletal mechanism was validated for auto-ignition, perfectly stirred reactors (PSR), flow reactors and laminar premixed flames over a wide range of flame conditions. The skeletal mechanism was then employed to simulate three-dimensional turbulent spray flames at compression ignition engine conditions and validated against experimental data from the Engine Combustion Network (ECN).« less

  2. Naturally derived and synthetic scaffolds for skeletal muscle reconstruction☆

    PubMed Central

    Wolf, Matthew T.; Dearth, Christopher L.; Sonnenberg, Sonya B.; Loboa, Elizabeth G.; Badylak, Stephen F.

    2017-01-01

    Skeletal muscle tissue has an inherent capacity for regeneration following injury. However, severe trauma, such as volumetric muscle loss, overwhelms these natural muscle repair mechanisms prompting the search for a tissue engineering/regenerative medicine approach to promote functional skeletal muscle restoration. A desirable approach involves a bioscaffold that simultaneously acts as an inductive microenvironment and as a cell/drug delivery vehicle to encourage muscle ingrowth. Both biologically active, naturally derived materials (such as extracellular matrix) and carefully engineered synthetic polymers have been developed to provide such a muscle regenerative environment. Next generation naturally derived/synthetic “hybrid materials” would combine the advantageous properties of these materials to create an optimal platform for cell/drug delivery and possess inherent bioactive properties. Advances in scaffolds using muscle tissue engineering are reviewed herein. PMID:25174309

  3. High Sugar Intake and Development of Skeletal Muscle Insulin Resistance and Inflammation in Mice: A Protective Role for PPAR-δ Agonism

    PubMed Central

    Rogazzo, Mara; Chiazza, Fausto; Aragno, Manuela; Collino, Massimo; Minetto, Marco A.

    2013-01-01

    Peroxisome Proliferator Activated Receptor (PPAR)-δ agonists may serve for treating metabolic diseases. However, the effects of PPAR-δ agonism within the skeletal muscle, which plays a key role in whole-body glucose metabolism, remain unclear. This study aimed to investigate the signaling pathways activated in the gastrocnemius muscle by chronic administration of the selective PPAR-δ agonist, GW0742 (1 mg/kg/day for 16 weeks), in male C57Bl6/J mice treated for 30 weeks with high-fructose corn syrup (HFCS), the major sweetener in foods and soft-drinks (15% wt/vol in drinking water). Mice fed with the HFCS diet exhibited hyperlipidemia, hyperinsulinemia, hyperleptinemia, and hypoadiponectinemia. In the gastrocnemius muscle, HFCS impaired insulin and AMP-activated protein kinase signaling pathways and reduced GLUT-4 and GLUT-5 expression and membrane translocation. GW0742 administration induced PPAR-δ upregulation and improvement in glucose and lipid metabolism. Diet-induced activation of nuclear factor-κB and expression of inducible-nitric-oxide-synthase and intercellular-adhesion-molecule-1 were attenuated by drug treatment. These effects were accompanied by reduction in the serum concentration of interleukin-6 and increase in muscular expression of fibroblast growth factor-21. Overall, here we show that PPAR-δ activation protects the skeletal muscle against the metabolic abnormalities caused by chronic HFCS exposure by affecting multiple levels of the insulin and inflammatory cascades. PMID:23861559

  4. Longitudinal study of the effects of chronic hypothyroidism on skeletal muscle in dogs.

    PubMed

    Rossmeisl, John H; Duncan, Robert B; Inzana, Karen D; Panciera, David L; Shelton, G Diane

    2009-07-01

    To study the effects of experimentally induced hypothyroidism on skeletal muscle and characterize any observed myopathic abnormalities in dogs. 9 female, adult mixed-breed dogs; 6 with hypothyroidism induced with irradiation with 131 iodine and 3 untreated control dogs. Clinical examinations were performed monthly. Electromyographic examinations; measurement of plasma creatine kinase, alanine aminotransferase, aspartate aminotransferase, lactate, and lactate dehydrogenase isoenzyme activities; and skeletal muscle morphologic-morphometric examinations were performed prior to and every 6 months for 18 months after induction of hypothyroidism. Baseline, 6-month, and 18-month assessments of plasma, urine, and skeletal muscle carnitine concentrations were also performed. Hypothyroid dogs developed electromyographic and morphologic evidence of myopathy by 6 months after treatment, which persisted throughout the study, although these changes were subclinical at all times. Hypothyroid myopathy was associated with significant increases in plasma creatine kinase, aspartate aminotransferase, and lactate dehydrogenase 5 isoenzyme activities and was characterized by nemaline rod inclusions, substantial and progressive predominance of type I myofibers, decrease in mean type II fiber area, subsarcolemmal accumulations of abnormal mitochondria, and myofiber degeneration. Chronic hypothyroidism was associated with substantial depletion in skeletal muscle free carnitine. Chronic, experimentally induced hypothyroidism resulted in substantial but subclinical phenotypic myopathic changes indicative of altered muscle energy metabolism and depletion of skeletal muscle carnitine. These abnormalities may contribute to nonspecific clinical signs, such as lethargy and exercise intolerance, often reported in hypothyroid dogs.

  5. Skeletal anchorage for intrusion of bimaxillary molars in a patient with skeletal open bite and temporomandibular disorders

    PubMed Central

    Iwasa, Akihiko; Horiuchi, Shinya; Kinouchi, Nao; Izawa, Takashi; Hiasa, Masahiro; Kawai, Nobuhiko; Yasue, Akihiro; Hassan, Ali H.; Tanaka, Eiji

    2017-01-01

    The treatment of severe skeletal anterior open bite is extremely difficult in adults, and orthognathic surgery is generally selected for its treatment. We report the case of an 18-year-old adult patient with skeletal anterior open bite and temporomandibular disorders who was successfully treated using temporary anchorage devices. She had an open bite of −2.0 mm and an increased facial height. Miniplates were implanted in both the maxilla and mandible, and molar intrusion resulted in counterclockwise rotation of the mandible over a period of 12 months. After active treatment, her upper and lower first molars were intruded by approximately 2 mm and her overbite became +2.5 mm. Her retrognathic profile improved with counterclockwise rotation of the mandible. Orthodontic treatment aided with skeletal anchorage is beneficial for intrusion of bimaxillary molars in patients with anterior open bite. PMID:29119097

  6. Orthodontics-surgical combination therapy for Class III skeletal malocclusion

    PubMed Central

    Ravi, M. S.; Shetty, Nillan K.; Prasad, Rajendra B.

    2012-01-01

    The correction of skeletal Class III malocclusion with severe mandibular prognathism in an adult individual requires surgical and Othodontic combination therapy. The inter disciplinary approach is the treatment of choice in most of the skeletal malocclusions. A case report of an adult individual with Class III malocclusion, having mandibular excess in sagittal and vertical plane and treated with orthodontics,, bilateral sagittal split osteotomy and Le – Forte I osteotomy for the correction of skeletal, dental and soft tissue discrepancies is herewith presented. The surgical–orthodontic combination therapy has resulted in near–normal skeletal, dental and soft tissue relationship, with marked improvement in the facial esthetics in turn, has helped the patient to improve the self-confidence level. PMID:22557903

  7. Dental and skeletal maturation in female adolescents with temporomandibular joint osteoarthritis.

    PubMed

    Kang, J-H; Yang, I-H; Hyun, H-K; Lee, J-Y

    2017-11-01

    Occurrence of temporomandibular disorders (TMDs) and temporomandibular joint (TMJ) osteoarthritis (OA) during adolescence may have interactions with mandibular and dental development. The aim of the present study was to investigate relationships between occurrence of TMD and TMJ OA and extents of dental and skeletal development in juvenile female patients. In total, 95 female adolescents (age range, 11-15 years) were selected. Among them, 15 subjects (control) had no signs of TMD, 39 TMD patients did not have OA (TMDnoOA), 17 TMD patients were at initial stage of TMJ OA (TMJOA), and 27 patients showed progressive stage of TMJ OA (TMJOA). Dental age was estimated by Demirjian's stages used in a previous study with Korean adolescents. Craniofacial parameters and cervical vertebrae maturation (CVM) stages, representing skeletal maturity levels, were measured using lateral cephalograms. The estimated dental age was significantly lower than chronological age in all groups, but CVM differences were not statistically significant. Dental age was the lowest, and differences between the chronological age and estimated dental age were the highest among initial stage of TMJOAs followed by progressive stage of TMJOAs, TMDnoOAs and control and were not associated with CVM stages. Cephalometric parameters revealed significant clockwise rotation of the mandible among the TMJOAs compared with controls and TMDnoOAs and were not associated with CVM stages as well. The juvenile female patients with TMD, particularly TMJ OA, showed retarded dental development, mandibular backward positioning and hyperdivergent facial profiles. The TMJ OA may be associated with retarded dental development but not with skeletal maturations. © 2017 John Wiley & Sons Ltd.

  8. Modulation of visceral fat adipokine secretion by dietary fatty acids and ensuing changes in skeletal muscle inflammation.

    PubMed

    Tishinsky, Justine M; De Boer, Anna A; Dyck, David J; Robinson, Lindsay E

    2014-01-01

    Given the link between obesity and insulin resistance, the role of adipose-derived factors in communicating with skeletal muscle to affect its function is important. We sought to determine if high fat diets modulate visceral adipose tissue (VAT) adipokines with subsequent effects on skeletal muscle inflammation and insulin sensitivity. Rats were fed (i) low fat (LF), (ii) high saturated fatty acid (SFA), or (iii) high SFA with n-3 polyunsaturated fatty acid (SFA/n-3 PUFA) diets for 4 weeks. VAT-derived adipokines were measured in adipose conditioned medium (ACM) after 72 h. Next, skeletal muscles from LF-fed rats were incubated for 8 h in (i) control buffer (CON), (ii) CON with 2 mmol·L(-1) palmitate (PALM, positive control), (iii) ACM from LF, (iv) ACM from SFA, or (v) ACM from SFA/n-3 PUFA. ACM from rats fed SFA and SFA/n-3 PUFA had increased (P ≤ 0.05) interleukin-6 (IL-6) (+31%) and monocyte chemoattractant protein-1 (MCP-1) (+30%). Adiponectin was decreased (-29%, P ≤ 0.05) in ACM from SFA, and this was prevented in SFA/n-3 PUFA ACM. Toll-like receptor 4 (TLR4) gene expression was increased (P ≤ 0.05) in PALM soleus muscle (+356%) and all ACM groups (+175%-191%). MCP-1 gene expression was elevated (P ≤ 0.05) in PALM soleus muscle (+163%) and soleus muscle incubated in ACM from animals fed SFA (+159%) and SFA/n-3 PUFA (+151%). Glucose transport was impaired (P ≤ 0.05) in PALM muscles but preserved in ACM groups. Acute exposure of muscle to fatty acid modulated adipokines affects skeletal muscle inflammatory gene expression but not insulin sensitivity.

  9. 3D Cell Printing of Functional Skeletal Muscle Constructs Using Skeletal Muscle-Derived Bioink.

    PubMed

    Choi, Yeong-Jin; Kim, Taek Gyoung; Jeong, Jonghyeon; Yi, Hee-Gyeong; Park, Ji Won; Hwang, Woonbong; Cho, Dong-Woo

    2016-10-01

    Engineered skeletal muscle tissues that mimic the structure and function of native muscle have been considered as an alternative strategy for the treatment of various muscular diseases and injuries. Here, it is demonstrated that 3D cell-printing of decellularized skeletal muscle extracellular matrix (mdECM)-based bioink facilitates the fabrication of functional skeletal muscle constructs. The cellular alignment and the shape of the tissue constructs are controlled by 3D cell-printing technology. mdECM bioink provides the 3D cell-printed muscle constructs with a myogenic environment that supports high viability and contractility as well as myotube formation, differentiation, and maturation. More interestingly, the preservation of agrin is confirmed in the mdECM, and significant increases in the formation of acetylcholine receptor clusters are exhibited in the 3D cell-printed muscle constructs. In conclusion, mdECM bioink and 3D cell-printing technology facilitate the mimicking of both the structural and functional properties of native muscle and hold great promise for producing clinically relevant engineered muscle for the treatment of muscular injuries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Decreased external skeletal robustness in schoolchildren--a global trend? Ten year comparison of Russian and German data.

    PubMed

    Rietsch, Katrin; Godina, Elena; Scheffler, Christiane

    2013-01-01

    Obesity and a reduced physical activity are global developments. Physical activity affects the external skeletal robustness which decreased in German children. It was assumed that the negative trend of decreased external skeletal robustness can be found in other countries. Therefore anthropometric data of Russian and German children from the years 2000 and 2010 were compared. Russian (2000/2010 n = 1023/268) and German (2000/2010 n = 2103/1750) children aged 6-10 years were investigated. Height, BMI and external skeletal robustness (Frame-Index) were examined and compared for the years and the countries. Statistical analysis was performed by Mann-Whitney-Test. Comparison 2010 and 2000: In Russian children BMI was significantly higher; boys were significantly taller and exhibited a decreased Frame-Index (p = .002) in 2010. German boys showed significantly higher BMI in 2010. In both sexes Frame-Index (p = .001) was reduced in 2010. Comparison Russian and German children in 2000: BMI, height and Frame-Index were different between Russian and German children. German children were significantly taller but exhibited a lower Frame-Index (p<.001). Even German girls showed a significantly higher BMI. Comparison Russian and German children in 2010: BMI and Frame-Index were different. Russian children displayed a higher Frame-Index (p<.001) compared with Germans. In Russian children BMI has increased in recent years. Frame-Index is still higher in Russian children compared with Germans however in Russian boys Frame-Index is reduced. This trend and the physical activity should be observed in the future.

  11. FXIIIA and TGF-beta over-expression produces normal musculo-skeletal phenotype in TG2-/- mice.

    PubMed

    Tarantino, U; Oliva, F; Taurisano, G; Orlandi, A; Pietroni, V; Candi, E; Melino, G; Maffulli, N

    2009-04-01

    Transglutaminase (TGs) enzymes and proteins crosslinking have for long time been implicated in the formation of hard tissue development, matrix maturation and mineralization. Among the TGs family members, in the context of connective tissue formation, TG2 and Factor XIII are expressed in cartilage by hypertrophic chondrocytes. Here, we analyse the morphological consequences of TG2 deficiency, during the development of skeletal elements. When TG2 is absent, there are not gross abnormalities in the development of the skeletal system, probably from compensatory mechanisms resulting in increased expression of FXIIIA and TGF-beta 1. In vivo other TGs may be involved in promoting chondrocytes and osteoblast differentiation and matrix mineralisation.

  12. TAK1 regulates skeletal muscle mass and mitochondrial function

    PubMed Central

    Hindi, Sajedah M.; Sato, Shuichi; Xiong, Guangyan; Bohnert, Kyle R.; Gibb, Andrew A.; Gallot, Yann S.; McMillan, Joseph D.; Hill, Bradford G.

    2018-01-01

    Skeletal muscle mass is regulated by a complex array of signaling pathways. TGF-β–activated kinase 1 (TAK1) is an important signaling protein, which regulates context-dependent activation of multiple intracellular pathways. However, the role of TAK1 in the regulation of skeletal muscle mass remains unknown. Here, we report that inducible inactivation of TAK1 causes severe muscle wasting, leading to kyphosis, in both young and adult mice.. Inactivation of TAK1 inhibits protein synthesis and induces proteolysis, potentially through upregulating the activity of the ubiquitin-proteasome system and autophagy. Phosphorylation and enzymatic activity of AMPK are increased, whereas levels of phosphorylated mTOR and p38 MAPK are diminished upon inducible inactivation of TAK1 in skeletal muscle. In addition, targeted inactivation of TAK1 leads to the accumulation of dysfunctional mitochondria and oxidative stress in skeletal muscle of adult mice. Inhibition of TAK1 does not attenuate denervation-induced muscle wasting in adult mice. Finally, TAK1 activity is highly upregulated during overload-induced skeletal muscle growth, and inactivation of TAK1 prevents myofiber hypertrophy in response to functional overload. Overall, our study demonstrates that TAK1 is a key regulator of skeletal muscle mass and oxidative metabolism. PMID:29415881

  13. Action of Obestatin in Skeletal Muscle Repair: Stem Cell Expansion, Muscle Growth, and Microenvironment Remodeling

    PubMed Central

    Gurriarán-Rodríguez, Uxía; Santos-Zas, Icía; González-Sánchez, Jessica; Beiroa, Daniel; Moresi, Viviana; Mosteiro, Carlos S; Lin, Wei; Viñuela, Juan E; Señarís, José; García-Caballero, Tomás; Casanueva, Felipe F; Nogueiras, Rubén; Gallego, Rosalía; Renaud, Jean-Marc; Adamo, Sergio; Pazos, Yolanda; Camiña, Jesús P

    2015-01-01

    The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Overall, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration. PMID:25762009

  14. Caffeine and length dependence of staircase potentiation in skeletal muscle.

    PubMed

    Rassier, D E; Tubman, L A; MacIntosh, B R

    1998-01-01

    Skeletal muscle sensitivity to Ca2+ is greater at long lengths, and this results in an optimal length for twitch contractions that is longer than optimal length for tetanic contractions. Caffeine abolishes this length dependence of Ca2+ sensitivity. Muscle length (ML) also affects the degree of staircase potentiation. Since staircase potentiation is apparently caused by an increased Ca2+ sensitivity of the myofilaments, we tested the hypothesis that caffeine depresses the length dependence of staircase potentiation. In situ isometric twitch contractions of rat gastrocnemius muscle before and after 10 s of 10-Hz stimulation were analyzed at seven different lengths to evaluate the length dependence of staircase potentiation. In the absence of caffeine, length dependence of Ca2+ sensitivity was observed, and the degree of potentiation after 10-Hz stimulation showed a linear decrease with increased length (DT = 1.47 - 0.05 ML, r2 = 0.95, where DT is developed tension). Length dependence of Ca2+ sensitivity was decreased by caffeine when caffeine was administered in amounts estimated to result in 0.5 and 0.75 mM concentrations. Furthermore, the negative slope of the relationship between staircase potentiation and muscle length was diminished at the lower caffeine dose, and the slope was not different from zero after the higher dose (DT = 1.53 - 0.009 ML, r2 = 0.43). Our study shows that length dependence of Ca2+ sensitivity in intact skeletal muscle is diminished by caffeine. Caffeine also suppressed the length dependence of staircase potentiation, suggesting that the mechanism of this length dependence may be closely related to the mechanism for length dependence of Ca2+ sensitivity.

  15. Application of skeletal age based on x-ray in selecting sports talents

    NASA Astrophysics Data System (ADS)

    Mao, Zongzhen; Xu, Guodong; Song, Tao

    2012-01-01

    Skeletal age has been studied and proved that for most elite athletes, it was coincident with the chronological ages when they were young. In order to explore the application of skeletal age in selecting sports talent, 32 athletes (female, chronological age 5-12 y) were chosen from the Gymnastics Training Base in this study. Their left hand-wrists were photographed with X-rays, and then the skeletal ages were estimated by Chinese version of the Tanner-Whitehouse Skeletal Maturity Assessment System. At the same time, their body shapes, functions, and sports ability were also measured. Results showed that 71.88% of the skeletal age was proportional to their chronological age (+/- 1 y); while 18.75% of the skeletal maturity was retarded by 1- 2 year, 9.37% of those was advanced more than 1 year. On the other hand, the body shape, functions and sports ability of the athletes were positively related with their skeletal maturity. This study proved that the determination of skeletal maturity is a reliable evaluation for selecting sports talent. A further study on the influence of gymnastics on the skeletal age is of great significance.

  16. Effects of endurance exercise on isomyosin patterns in fast- and slow-twitch skeletal muscles.

    PubMed

    Fitzsimons, D P; Diffee, G M; Herrick, R E; Baldwin, K M

    1990-05-01

    Although endurance training has been shown to profoundly affect the oxidative capacity of skeletal muscle, little information is available concerning the impact of endurance training on skeletal muscle isomyosin expression across a variety of muscle fiber types. Therefore, a 10-wk running program (1 h/day, 5 days/wk, 20% grade, 1 mile/h) was conducted to ascertain the effects of endurance training on isomyosin expression in the soleus, vastus intermedius (VI), plantaris (PLAN), red and white medial gastrocnemius (RMG and WMG), and red and white vastus lateralis muscles (RVL and WVL). Evidences of training were noted by the presence of a resting and a submaximal exercise bradycardia, as well as an enhancement in peak O2 consumption in the trained rodents relative to the nontrained controls. No evidence for skeletal muscle hypertrophy was observed subsequent to training when muscle weight was normalized to body weight. Shifts in the isomyosin profile of the trained VI, RMG, RVL, and PLAN were seen relative to the nontrained controls. Specifically, training affected the slow myosin (SM) composition of the VI by decreasing the relative content of the SM2 isoform by 14% while increasing that of the SM1 isoform (P less than 0.05). In addition, training elicited various degrees of a fast to slower myosin transformation in the RMG, RVL, and PLAN. All three muscles showed a significant reduction in the fast myosin 2 isoform (P less than 0.05), with significant increases in intermediate myosin in the RVL and PLAN along with elevations in SM2 in the RMG and PLAN (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

  17. An extract of Urtica dioica L. mitigates obesity induced insulin resistance in mice skeletal muscle via protein phosphatase 2A (PP2A).

    PubMed

    Obanda, Diana N; Ribnicky, David; Yu, Yongmei; Stephens, Jacqueline; Cefalu, William T

    2016-02-26

    The leaf extract of Urtica dioica L. (UT) has been reported to improve glucose homeostasis in vivo, but definitive studies on efficacy and mechanism of action are lacking. We investigated the effects of UT on obesity- induced insulin resistance in skeletal muscle. Male C57BL/6J mice were divided into three groups: low-fat diet (LFD), high-fat diet (HFD) and HFD supplemented with UT. Body weight, body composition, plasma glucose and plasma insulin were monitored. Skeletal muscle (gastrocnemius) was analyzed for insulin sensitivity, ceramide accumulation and the post translational modification and activity of protein phosphatase 2A (PP2A). PP2A is activated by ceramides and dephosphorylates Akt. C2C12 myotubes exposed to excess free fatty acids with or without UT were also evaluated for insulin signaling and modulation of PP2A. The HFD induced insulin resistance, increased fasting plasma glucose, enhanced ceramide accumulation and PP2A activity in skeletal muscle. Supplementation with UT improved plasma glucose homeostasis and enhanced skeletal muscle insulin sensitivity without affecting body weight and body composition. In myotubes, UT attenuated the ability of FFAs to induce insulin resistance and PP2A hyperactivity without affecting ceramide accumulation and PP2A expression. UT decreased PP2A activity through posttranslational modification that was accompanied by a reduction in Akt dephosphorylation.

  18. An extract of Urtica dioica L. mitigates obesity induced insulin resistance in mice skeletal muscle via protein phosphatase 2A (PP2A)

    PubMed Central

    Obanda, Diana N.; Ribnicky, David; Yu, Yongmei; Stephens, Jacqueline; Cefalu, William T.

    2016-01-01

    The leaf extract of Urtica dioica L. (UT) has been reported to improve glucose homeostasis in vivo, but definitive studies on efficacy and mechanism of action are lacking. We investigated the effects of UT on obesity- induced insulin resistance in skeletal muscle. Male C57BL/6J mice were divided into three groups: low-fat diet (LFD), high-fat diet (HFD) and HFD supplemented with UT. Body weight, body composition, plasma glucose and plasma insulin were monitored. Skeletal muscle (gastrocnemius) was analyzed for insulin sensitivity, ceramide accumulation and the post translational modification and activity of protein phosphatase 2A (PP2A). PP2A is activated by ceramides and dephosphorylates Akt. C2C12 myotubes exposed to excess free fatty acids with or without UT were also evaluated for insulin signaling and modulation of PP2A. The HFD induced insulin resistance, increased fasting plasma glucose, enhanced ceramide accumulation and PP2A activity in skeletal muscle. Supplementation with UT improved plasma glucose homeostasis and enhanced skeletal muscle insulin sensitivity without affecting body weight and body composition. In myotubes, UT attenuated the ability of FFAs to induce insulin resistance and PP2A hyperactivity without affecting ceramide accumulation and PP2A expression. UT decreased PP2A activity through posttranslational modification that was accompanied by a reduction in Akt dephosphorylation. PMID:26916435

  19. Developmental Patterning as a Quantitative Trait: Genetic Modulation of the Hoxb6 Mutant Skeletal Phenotype

    PubMed Central

    Kappen, Claudia

    2016-01-01

    The process of patterning along the anterior-posterior axis in vertebrates is highly conserved. The function of Hox genes in the axis patterning process is particularly well documented for bone development in the vertebral column and the limbs. We here show that Hoxb6, in skeletal elements at the cervico-thoracic junction, controls multiple independent aspects of skeletal pattern, implicating discrete developmental pathways as substrates for this transcription factor. In addition, we demonstrate that Hoxb6 function is subject to modulation by genetic factors. These results establish Hox-controlled skeletal pattern as a quantitative trait modulated by gene-gene interactions, and provide evidence that distinct modifiers influence the function of conserved developmental genes in fundamental patterning processes. PMID:26800342

  20. PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle

    PubMed Central

    Dethlefsen, Maja Munk; Bangsbo, Jens; Pilegaard, Henriette

    2017-01-01

    The aim of the present study was to examine the role of PGC-1α in intensity dependent exercise and exercise training-induced metabolic adaptations in mouse skeletal muscle. Whole body PGC-1α knockout (KO) and littermate wildtype (WT) mice performed a single treadmill running bout at either low intensity (LI) for 40 min or moderate intensity (MI) for 20 min. Blood and quadriceps muscles were removed either immediately after exercise or at 3h or 6h into recovery from exercise and from resting controls. In addition PGC-1α KO and littermate WT mice were exercise trained at either low intensity (LIT) for 40 min or at moderate intensity (MIT) for 20 min 2 times pr. day for 5 weeks. In the first and the last week of the intervention period, mice performed a graded running endurance test. Quadriceps muscles were removed before and after the training period for analyses. The acute exercise bout elicited intensity dependent increases in LC3I and LC3II protein and intensity independent decrease in p62 protein in skeletal muscle late in recovery and increased LC3II with exercise training independent of exercise intensity and volume in WT mice. Furthermore, acute exercise and exercise training did not increase LC3I and LC3II protein in PGC-1α KO. In addition, exercise-induced mRNA responses of PGC-1α isoforms were intensity dependent. In conclusion, these findings indicate that exercise intensity affected autophagy markers differently in skeletal muscle and suggest that PGC-1α regulates both acute and exercise training-induced autophagy in skeletal muscle potentially in a PGC-1α isoform specific manner. PMID:29049322

  1. Skeletal age assessment in children using an open compact MRI system.

    PubMed

    Terada, Yasuhiko; Kono, Saki; Tamada, Daiki; Uchiumi, Tomomi; Kose, Katsumi; Miyagi, Ryo; Yamabe, Eiko; Yoshioka, Hiroshi

    2013-06-01

    MRI may be a noninvasive and alternative tool for skeletal age assessment in children, although few studies have reported on this topic. In this article, skeletal age was assessed over a wide range of ages using an open, compact MRI optimized for the imaging of a child's hand and wrist, and its validity was evaluated. MR images and their three-dimensional segmentation visualized detailed skeletal features of each bone in the hand and wrist. Skeletal age was then independently scored from the MR images by two raters, according to the Tanner-Whitehouse Japan system. The skeletal age assessed by MR rating demonstrated a strong positive correlation with chronological age. The intrarater and inter-rater reproducibilities were significantly high. These results demonstrate the validity and reliability of skeletal age assessment using MRI. Copyright © 2012 Wiley Periodicals, Inc.

  2. MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolch, Wesley

    The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2’s Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2’s revision of the target tissues of relevance for radiogenicmore » bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-μm cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-μm layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external dosimetry studies of the ICRP reference workers and members of the general public« less

  3. Syntheses and evaluation of 68 Ga- and 153 Sm-labeled DOTA-conjugated bisphosphonate ligand for potential use in detection of skeletal metastases and management of pain arising from skeletal metastases.

    PubMed

    Chakraborty, Sudipta; Goswami, Dibakar; Chakravarty, Rubel; Mohammed, Sahiralam Khan; Sarma, Haladhar Deb; Dash, Ashutosh

    2018-05-05

    This article reports the syntheses and evaluation of 68 Ga- and 153 Sm-complexes of a new DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid)-conjugated geminal bisphosphonate, DOTA-Bn-SCN-BP, for their potential uses in the early detection of skeletal metastases by imaging and palliation of pain arising from skeletal metastases, respectively. The conjugate was synthesized in high purity following an easily adaptable three-step reaction scheme. Gallium-68- and 153 Sm-complexes were prepared in high yield (>98%) and showed excellent in vitro stability in phosphate-buffered saline (PBS) and human serum. Both the complexes showed high affinity for hydroxyapatite particles in in vitro binding study. In biodistribution studies carried out in normal Wistar rats, both the complexes exhibited rapid skeletal accumulation with almost no retention in any other major organ. The newly synthesized molecule DOTA-Bn-SCN-BP would therefore be a promising targeting ligand for the development of radiopharmaceuticals for both imaging skeletal metastases and palliation of pain arising out of it in patients with cancer when radiolabeled with 68 Ga and 153 Sm, respectively. A systematic comparative evaluation, however, showed that there was no significant improvement of skeletal accumulation of the 153 Sm-DOTA-Bn-SCN-BP complex over 153 Sm-DOTMP (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylenephosphonic acid) as the later itself demonstrated optimal properties required for an agent for bone pain palliation. © 2018 John Wiley & Sons A/S.

  4. Perm1 enhances mitochondrial biogenesis, oxidative capacity, and fatigue resistance in adult skeletal muscle

    PubMed Central

    Cho, Yoshitake; Hazen, Bethany C.; Gandra, Paulo G.; Ward, Samuel R.; Schenk, Simon; Russell, Aaron P.; Kralli, Anastasia

    2016-01-01

    Skeletal muscle mitochondrial content and oxidative capacity are important determinants of muscle function and whole-body health. Mitochondrial content and function are enhanced by endurance exercise and impaired in states or diseases where muscle function is compromised, such as myopathies, muscular dystrophies, neuromuscular diseases, and age-related muscle atrophy. Hence, elucidating the mechanisms that control muscle mitochondrial content and oxidative function can provide new insights into states and diseases that affect muscle health. In past studies, we identified Perm1 (PPARGC1- and ESRR-induced regulator, muscle 1) as a gene induced by endurance exercise in skeletal muscle, and regulating mitochondrial oxidative function in cultured myotubes. The capacity of Perm1 to regulate muscle mitochondrial content and function in vivo is not yet known. In this study, we use adeno-associated viral (AAV) vectors to increase Perm1 expression in skeletal muscles of 4-wk-old mice. Compared to control vector, AAV1-Perm1 leads to significant increases in mitochondrial content and oxidative capacity (by 40–80%). Moreover, AAV1-Perm1–transduced muscles show increased capillary density and resistance to fatigue (by 33 and 31%, respectively), without prominent changes in fiber-type composition. These findings suggest that Perm1 selectively regulates mitochondrial biogenesis and oxidative function, and implicate Perm1 in muscle adaptations that also occur in response to endurance exercise.—Cho, Y., Hazen, B. C., Gandra, P. G., Ward, S. R., Schenk, S., Russell, A. P., Kralli, A. Perm1 enhances mitochondrial biogenesis, oxidative capacity, and fatigue resistance in adult skeletal muscle. PMID:26481306

  5. PAX3/7 EXPRESSION COINCIDES WITH MYOD DURING CHRONIC SKELETAL MUSCLE OVERLOAD

    PubMed Central

    Hyatt, Jon-Philippe K.; McCall, Gary E.; Kander, Elizabeth M.; Zhong, Hui; Roy, Roland R.; Huey, Kimberly A.

    2009-01-01

    Paired box (Pax) proteins 3 and 7 are key determinants for embryonic skeletal muscle development by initiating myogenic regulatory factor (MRF) gene expression. We show that Pax3 and 7 participate in adult skeletal muscle plasticity during the initial responses to chronic overload (≤7 days) and appear to coordinate MyoD expression, a member of the MRF family of genes. Pax3 and 7 mRNA were higher than control within 12 h after initiation of overload, preceded the increase in MyoD mRNA on day 1, and peaked on day 2. On days 3 and 7, Pax7 mRNA remained higher than control, suggesting that satellite cell self-renewal was occurring. Pax3 and 7 and MyoD protein levels were higher than control on days 2 and 3. These data indicate that Pax3 and 7 coordinate the recapitulation of developmental-like regulatory mechanisms in response to growth-inducing stimuli in adult skeletal muscle, presumably through activation of satellite cells. PMID:18508329

  6. The Dynamic Behaviour and Shock Recovery of a Porcine Skeletal Muscle Tissue

    NASA Astrophysics Data System (ADS)

    Wilgeroth, James; Hazell, Paul; Appleby-Thomas, Gareth

    2011-06-01

    Modern-day ballistic armours provide a high degree of protection to the individual. However, the effects of non-penetrating projectiles, blast, and high-energy blunt impact events may still cause severe tissue trauma/remote injury. The energies corresponding to such events allow for the formation and transmission of shock waves within body tissues. Consequently, the nature of trauma inflicted upon such soft tissues is likely to be intimately linked to their interaction with the shock waves that propagate through them. Notably, relatively little is known about the effect of shock upon the structure of biological materials, such as skeletal muscle tissue. In this study plate-impact experiments have been used to interrogate the dynamic response of a porcine skeletal muscle tissue under one-dimensional shock loading conditions. Additionally, development of a soft-capture system that has allowed recovery of shocked skeletal muscle tissue specimens is discussed and comparison made between experimental diagnostics and hydrocode simulations of the experiment.

  7. Androgen effects on skeletal muscle: implications for the development and management of frailty

    PubMed Central

    O’Connell, Matthew DL; Wu, Frederick CW

    2014-01-01

    Androgens have potent anabolic effects on skeletal muscle and decline with age in parallel to losses in muscle mass and strength. This loss of muscle mass and function, known as sarcopenia, is the central event in development of frailty, the vulnerable health status that presages adverse outcomes and rapid functional decline in older adults. The potential role of falling androgen levels in the development of frailty and their utility as function promoting therapies in older men has therefore attracted considerable attention. This review summarizes current concepts and definitions in muscle ageing, sarcopenia and frailty, and evaluates recent developments in the study of androgens and frailty. Current evidence from observational and interventional studies strongly supports an effect of androgens on muscle mass in ageing men, but effects on muscle strength and particularly physical function have been less clear. Androgen treatment has been generally well–tolerated in studies of older men, but concerns remain over higher dose treatments and use in populations with high cardiovascular risk. The first trials of selective androgen receptor modulators (SARMs) suggest similar effects on muscle mass and function to traditional androgen therapies in older adults. Important future directions include the use of these agents in combination with exercise training to promote functional ability across different populations of older adults, as well as more focus on the relationships between concurrent changes in hormone levels, body composition and physical function in observational studies. PMID:24457838

  8. A focus on extracellular Ca2+ entry into skeletal muscle

    PubMed Central

    Cho, Chung-Hyun; Woo, Jin Seok; Perez, Claudio F; Lee, Eun Hui

    2017-01-01

    The main task of skeletal muscle is contraction and relaxation for body movement and posture maintenance. During contraction and relaxation, Ca2+ in the cytosol has a critical role in activating and deactivating a series of contractile proteins. In skeletal muscle, the cytosolic Ca2+ level is mainly determined by Ca2+ movements between the cytosol and the sarcoplasmic reticulum. The importance of Ca2+ entry from extracellular spaces to the cytosol has gained significant attention over the past decade. Store-operated Ca2+ entry with a low amplitude and relatively slow kinetics is a main extracellular Ca2+ entryway into skeletal muscle. Herein, recent studies on extracellular Ca2+ entry into skeletal muscle are reviewed along with descriptions of the proteins that are related to extracellular Ca2+ entry and their influences on skeletal muscle function and disease. PMID:28912570

  9. Skeletal muscle is a biological example of a linear electroactive actuator

    NASA Astrophysics Data System (ADS)

    Lieber, Richard L.

    1999-05-01

    Skeletal muscle represents a classic biological example of a structure-function relationship. This paper reviews basic muscle anatomy and demonstrates how molecular motion on the order of nm distances is converted into the macroscopic movements that are possible with skeletal muscle. Muscle anatomy provides a structural basis for understanding the basic mechanical properties of skeletal muscle -- namely, the length-tension relationship and the force-velocity relationships. The length-tension relationship illustrates that muscle force generation is extremely length dependent due to the interdigitation of the contractile filaments. The force-velocity relationship is characterized by a rapid force drop in muscle with increasing shortening velocity and a rapid rise in force when muscles are forced to lengthen. Finally, muscle architecture -- the number and arrangement of muscle fibers -- has a profound effect on the magnitude of muscle force generated and the magnitude of muscle excursion. These concepts demonstrate the elegant manner in which muscle acts as a biologically regenerating linear motor. These concepts can be used in developing artificial muscles as well as in performing surgical reconstructive procedures with various donor muscles.

  10. Thyroid hormones regulate skeletal muscle regeneration after acute injury.

    PubMed

    Leal, Anna Lúcia R C; Albuquerque, João Paulo C; Matos, Marina S; Fortunato, Rodrigo S; Carvalho, Denise P; Rosenthal, Doris; da Costa, Vânia Maria Corrêa

    2015-02-01

    We evaluated the effects of hypo- and hyperthyroid statuses during the initial phase of skeletal muscle regeneration in rats. To induce hypo- or hyperthyroidism, adult male Wistar rats were treated with methimazole (0.03%) or T4 (10 μg/100 g), respectively, for 10 days. Three days before sacrifice, a crush injury was produced in the solear muscles of one half of the animals, while the other half remained intact. T3, T4, TSH, and leptin serum levels were not affected by the injury. Serum T3 and T4 levels were significantly increased in hyperthyroid and hyper-injury animals. Hypothyroidism was confirmed by the significant increase in serum TSH levels in hypothyroid and hypo-injury animals. Injury increased cell infiltration and macrophage accumulation especially in hyperthyroid animals. Both type 2 and type 3 deiodinases were induced by lesion, and the opposite occurred with the type 1 isoform, at least in the control and hyperthyroid groups. Injury increased both MyoD and myogenin expression in all the studied groups, but only MyoD expression was increased by thyroidal status only at the protein level. We conclude that thyroid hormones modulate skeletal muscle regeneration possibly by regulating the inflammatory process, as well as MyoD and myogenin expression in the injured tissue.

  11. Skeletal injuries in small mammals: a multispecies assessment of prevalence and location

    USGS Publications Warehouse

    Stephens, Ryan B.; Burke, Christopher B.; Woodman, Neal; Poland, Lily B.; Rowe, Rebecca J.

    2018-01-01

    Wild mammals are known to survive injuries that result in skeletal abnormalities. Quantifying and comparing skeletal injuries among species can provide insight into the factors that cause skeletal injuries and enable survival following an injury. We documented the prevalence and location of structural bone abnormalities in a community of 7 small mammal species inhabiting the White Mountains of New Hampshire. These species differ in locomotion type and levels of intraspecific aggression. Overall, the majority of injuries were to the ribs or caudal vertebrae. Incidence of skeletal injuries was highest in older animals, indicating that injuries accumulate over a lifetime. Compared to species with ambulatory locomotion, those with more specialized (semi-fossorial, saltatorial, and scansorial) locomotion exhibited fewer skeletal abnormalities in the arms and legs, which we hypothesize is a result of a lesser ability to survive limb injuries. Patterns of skeletal injuries in shrews (Soricidae) were consistent with intraspecific aggression, particularly in males, whereas skeletal injuries in rodents (Rodentia) were more likely accidental or resulting from interactions with predators. Our results demonstrate that both the incidence and pattern of skeletal injuries vary by species and suggest that the ability of an individual to survive a specific skeletal injury depends on its severity and location as well as the locomotor mode of the species involved.

  12. Correlation between chronological age, cervical vertebral maturation and Fishman's skeletal maturity indicators in southern Chinese.

    PubMed

    Alkhal, Hessa Abdulla; Wong, Ricky W K; Rabie, A Bakr M

    2008-07-01

    To investigate the correlation between chronological age, cervical vertebral maturation (CVM), and Fishman's hand-wrist skeletal maturity indicators in southern Chinese. Four hundred contemporary hand-wrist and lateral cephalometric radiographs of southern Chinese subjects were randomly selected and analyzed. The female subjects were between 10 and 15 years of age, and the male subjects were between 12 and 17 years of age; all subjects were within the circumpubertal period. The CVM was assessed using the method developed by Baccetti and coworkers, but the hand-wrist maturation was assessed using the method developed by Fishman. These two methods and the chronological age were correlated using the Spearman rank correlation analysis. The CVM was significantly correlated with the hand-wrist skeletal age (Spearman r male = 0.9206, female = 0.9363). All patients in the cervical maturation stage (CS3) of CVM were discovered to be in the skeletal maturational indicator (SMI2 or SMI3) stages of hand-wrist maturation (HWM), which was around the peak of the growth spurt. Low correlations were found between the CVM and chronological age (male r = 0.7577; female r = 0.7877) and between the HWM and chronological age (male r = 0.7492; female r = 0.7758). CVM is a valid indicator of skeletal growth during the circumpubertal and has a high correlation with the HWM for the southern Chinese population. However, the low correlations found between the chronological age and both CVM and HWM showed that the chronological age was not suitable to measure skeletal maturity.

  13. Positive and negative skeletal adaptation in young gymnasts.

    PubMed

    Knorr, Alexa

    2014-05-12

    This article discusses how participation in recreational gymnastics can improve the skeletal health of young girls in terms of gaining bone mass, strength, and density. Additionally, the article investigates negative skeletal adaptations, such as overuse injuries and the effects of rigorous training on growth and maturity.

  14. Discontinuous Skeletal Gradient Discretisation methods on polytopal meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Pietro, Daniele A.; Droniou, Jérôme; Manzini, Gianmarco

    Here, in this work we develop arbitrary-order Discontinuous Skeletal Gradient Discretisations (DSGD) on general polytopal meshes. Discontinuous Skeletal refers to the fact that the globally coupled unknowns are broken polynomials on the mesh skeleton. The key ingredient is a high-order gradient reconstruction composed of two terms: (i) a consistent contribution obtained mimicking an integration by parts formula inside each element and (ii) a stabilising term for which sufficient design conditions are provided. An example of stabilisation that satisfies the design conditions is proposed based on a local lifting of high-order residuals on a Raviart–Thomas–Nédélec subspace. We prove that the novelmore » DSGDs satisfy coercivity, consistency, limit-conformity, and compactness requirements that ensure convergence for a variety of elliptic and parabolic problems. Lastly, links with Hybrid High-Order, non-conforming Mimetic Finite Difference and non-conforming Virtual Element methods are also studied. Numerical examples complete the exposition.« less

  15. Discontinuous Skeletal Gradient Discretisation methods on polytopal meshes

    DOE PAGES

    Di Pietro, Daniele A.; Droniou, Jérôme; Manzini, Gianmarco

    2017-11-21

    Here, in this work we develop arbitrary-order Discontinuous Skeletal Gradient Discretisations (DSGD) on general polytopal meshes. Discontinuous Skeletal refers to the fact that the globally coupled unknowns are broken polynomials on the mesh skeleton. The key ingredient is a high-order gradient reconstruction composed of two terms: (i) a consistent contribution obtained mimicking an integration by parts formula inside each element and (ii) a stabilising term for which sufficient design conditions are provided. An example of stabilisation that satisfies the design conditions is proposed based on a local lifting of high-order residuals on a Raviart–Thomas–Nédélec subspace. We prove that the novelmore » DSGDs satisfy coercivity, consistency, limit-conformity, and compactness requirements that ensure convergence for a variety of elliptic and parabolic problems. Lastly, links with Hybrid High-Order, non-conforming Mimetic Finite Difference and non-conforming Virtual Element methods are also studied. Numerical examples complete the exposition.« less

  16. Chapter 2. Calcineurin signaling and the slow oxidative skeletal muscle fiber type.

    PubMed

    Mallinson, Joanne; Meissner, Joachim; Chang, Kin-Chow

    2009-01-01

    Calcineurin, also known as protein phosphatase 2B (PP2B), is a calcium-calmodulin-dependent phosphatase. It couples intracellular calcium to dephosphorylate selected substrates resulting in diverse biological consequences depending on cell type. In mammals, calcineurin's functions include neuronal growth, development of cardiac valves and hypertrophy, activation of lymphocytes, and the regulation of ion channels and enzymes. This chapter focuses on the key roles of calcineurin in skeletal muscle differentiation, regeneration, and fiber type conversion to an oxidative state, all of which are crucial to muscle development, metabolism, and functional adaptations. It seeks to integrate the current knowledge of calcineurin signaling in skeletal muscle and its interactions with other prominent regulatory pathways and their signaling intermediates to form a molecular overview that could provide directions for possible future exploitations in human metabolic health.

  17. Lowered extracellular pH is involved in the pathogenesis of skeletal muscle insulin resistance.

    PubMed

    Hayata, Hiroki; Miyazaki, Hiroaki; Niisato, Naomi; Yokoyama, Noriko; Marunaka, Yoshinori

    2014-02-28

    Insulin resistance in the skeletal muscle is manifested by diminished insulin-stimulated glucose uptake and is a core factor in the pathogenesis of type 2 diabetes mellitus (DM), but the mechanism causing insulin resistance is still unknown. Our recent study has shown that pH of interstitial fluids was lowered in early developmental stage of insulin resistance in OLETF rats, a model of type 2 DM. Therefore, in the present study, we confirmed effects of the extracellular pH on the insulin signaling pathway in a rat skeletal muscle-derived cell line, L6 cell. The phosphorylation level (activation) of the insulin receptor was significantly diminished in low pH media. The phosphorylation level of Akt, which is a downstream target of the insulin signaling pathway, also decreased in low pH media. Moreover, the insulin binding to its receptor was reduced by lowering extracellular pH, while the expression of insulin receptors on the plasma membrane was not affected by the extracellular pH. Finally, insulin-stimulated 2-deoxyglucose uptake in L6 cells was diminished in low pH media. Our present study suggests that lowered extracellular pH conditions may produce the pathogenesis of insulin resistance in skeletal muscle cells. Copyright © 2014. Published by Elsevier Inc.

  18. Modeling of skeletal members using polyurethane foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sena, J.M.F.; Weaver, R.W.

    1983-11-01

    At the request of the University of New Mexico's Maxwell Museum of Anthropology, members of the Plastic Section in the Process Development Division at SNLA undertook the special project of the Chaco Lady. The project consisted of polyurethane foam casting of a disinterred female skull considered to be approximately 1000 years old. Rubber latex molds, supplied by the UNM Anthropology Department, were used to produce the polymeric skull requested. The authors developed for the project a modified foaming process which will be used in future polyurethane castings of archaeological artifacts and contemporary skeletal members at the University.

  19. Environmental Factors Affecting Preschoolers' Motor Development

    ERIC Educational Resources Information Center

    Venetsanou, Fotini; Kambas, Antonis

    2010-01-01

    The process of development occurs according to the pattern established by the genetic potential and also by the influence of environmental factors. The aim of the present study was to focus on the main environmental factors affecting motor development. The review of the literature revealed that family features, such as socioeconomic status,…

  20. Type 1 Inositol (1,4,5)-Trisphosphate Receptor Activates Ryanodine Receptor 1 to Mediate Calcium Spark Signaling in Adult Mammalian Skeletal Muscle*♦

    PubMed Central

    Tjondrokoesoemo, Andoria; Li, Na; Lin, Pei-Hui; Pan, Zui; Ferrante, Christopher J.; Shirokova, Natalia; Brotto, Marco; Weisleder, Noah; Ma, Jianjie

    2013-01-01

    Functional coupling between inositol (1,4,5)-trisphosphate receptor (IP3R) and ryanodine receptor (RyR) represents a critical component of intracellular Ca2+ signaling in many excitable cells; however, the role of this mechanism in skeletal muscle remains elusive. In skeletal muscle, RyR-mediated Ca2+ sparks are suppressed in resting conditions, whereas application of transient osmotic stress can trigger activation of Ca2+ sparks that are restricted to the periphery of the fiber. Here we show that onset of these spatially confined Ca2+ sparks involves interaction between activation of IP3R and RyR near the sarcolemmal membrane. Pharmacological prevention of IP3 production or inhibition of IP3R channel activity abolishes stress-induced Ca2+ sparks in skeletal muscle. Although genetic ablation of the type 2 IP3R does not appear to affect Ca2+ sparks in skeletal muscle, specific silencing of the type 1 IP3R leads to ablation of stress-induced Ca2+ sparks. Our data indicate that membrane-delimited signaling involving cross-talk between IP3R1 and RyR1 contributes to Ca2+ spark activation in skeletal muscle. PMID:23223241