Science.gov

Sample records for affect slope stability

  1. How the spatial variation of tree roots affects slope stability

    NASA Astrophysics Data System (ADS)

    Mao, Zhun; Stokes, A.; Jourdan, C.; Rey, H.; Courbaud, B.; Saint-André, L.

    2010-05-01

    It is now widely recognized that plant roots can reinforce soil against shallow mass movement. Although studies on the interactions between vegetation and slope stability have significantly augmented in recent years, a clear understanding of the spatial dynamics of root reinforcement (through additional cohesion by roots) in subalpine forest is still limited, especially with regard to the roles of different forest management strategies or ecological landscapes. The architecture of root systems is important for soil cohesion, but in reality it is not possible to measure the orientation of each root in a system. Therefore, knowledge on the effect of root orientation and anisotropy on root cohesion on the basis of in situ data is scanty. To determine the effect of root orientation in root cohesion models, we investigated root anisotropy in two mixed, mature, naturally regenerated, subalpine forests of Norway spruce (Picea abies), and Silver fir (Abies alba). Trees were clustered into islands, with open spaces between each group, resulting in strong mosaic heterogeneity within the forest stand. Trenches within and between clusters of trees were dug and root distribution was measured in three dimensions. We then simulated the influence of different values for a root anisotropy correction factor in forests with different ecological structures and soil depths. Using these data, we have carried out simulations of slope stability by calculating the slope factor of safety depending on stand structure. Results should enable us to better estimate the risk of shallow slope failure depending on the type of forest and species.

  2. Slope stability and stabilization methods

    SciTech Connect

    Abramson, L.W.; Lee, T.S.; Boyce, G.M.; Sharma, S.S.

    1995-12-01

    Slope stability can be a major problem during the construction of surface facilities. Cutting into existing ground disturbs the mechanics of the surrounding area, which can result in landslides and rock falls. This practical reference gives you the comprehensive information you need for slope stability analysis, suitable methods of analysis with and without the use of computers, and examples of common stability problems and stabilization methods for cuts and fills. It includes detailed discussions of methods used in slope stability analysis, including the Ordinary Method of Slices, Simplified Janbu Method, Simplified Bishop Method, Spencer`s Method, other limit equilibrium methods, numerical methods, total stress analysis, effective stress analysis, and the use of computer programs to solve problems. Chapters include: General Slope Stability Concepts; Engineering Geology Principles; Groundwater Conditions; Geologic Site Exploration; Laboratory Testing Interpretation; Slope Stability Concepts; Slope Stabilization Methods; and Design, Construction and Maintenance.

  3. Arctic Submarine Slope Stability

    NASA Astrophysics Data System (ADS)

    Winkelmann, D.; Geissler, W.

    2010-12-01

    Submarine landsliding represents aside submarine earthquakes major natural hazard to coastal and sea-floor infrastructure as well as to coastal communities due to their ability to generate large-scale tsunamis with their socio-economic consequences. The investigation of submarine landslides, their conditions and trigger mechanisms, recurrence rates and potential impact remains an important task for the evaluation of risks in coastal management and offshore industrial activities. In the light of a changing globe with warming oceans and rising sea-level accompanied by increasing human population along coasts and enhanced near- and offshore activities, slope stability issues gain more importance than ever before. The Arctic exhibits the most rapid and drastic changes and is predicted to change even faster. Aside rising air temperatures, enhanced inflow of less cooled Atlantic water into the Arctic Ocean reduces sea-ice cover and warms the surroundings. Slope stability is challenged considering large areas of permafrost and hydrates. The Hinlopen/Yermak Megaslide (HYM) north of Svalbard is the first and so far only reported large-scale submarine landslide in the Arctic Ocean. The HYM exhibits the highest headwalls that have been found on siliciclastic margins. With more than 10.000 square kilometer areal extent and app. 2.400 cubic kilometer of involved sedimentary material, it is one of the largest exposed submarine slides worldwide. Geometry and age put this slide in a special position in discussing submarine slope stability on glaciated continental margins. The HYM occurred 30 ka ago, when the global sea-level dropped by app. 50 m within less than one millennium due to rapid onset of global glaciation. It probably caused a tsunami with circum-Arctic impact and wave heights exceeding 130 meters. The HYM affected the slope stability field in its neighbourhood by removal of support. Post-megaslide slope instability as expressed in creeping and smaller-scaled slides are

  4. Rock slope stability

    SciTech Connect

    Kliche, C.A.

    1999-07-01

    Whether you're involved in surface mine design, surface mine production, construction, education, or regulation, this is an important new book for your library. It describes the basic rock slope failure modes and methods of analysis--both kinematic and kinetic techniques. Chapters include geotechnical and geomechanical analysis techniques, hydrology, rock slope stabilization techniques, and geotechnical instrumentation and monitoring. Numerous examples, drawings and photos enhance the text.

  5. Slope Stability Analysis of Mountain Pine Beetle Impacted Areas

    NASA Astrophysics Data System (ADS)

    Bogenschuetz, N. M.; Bearup, L. A.; Maxwell, R. M.; Santi, P. M.

    2015-12-01

    The mountain pine beetle (MPB), Dendroctonus ponderosae, has caused significant tree mortality within North America. Specifically, the MPB affects ponderosa pine and lodgepole pine forests within the Rocky Mountains with approximately 3.4 million acres of forest impacted over the past 20 years. The full impacts of such unprecedented tree mortality on hydrology and slope stability is not well understood. This work studies the affects of MPB infestation on slope instability. A large-scale statistical analysis of MPB and slope stability is combined with a more in-depth analysis of the factors that contribute to slope stability. These factors include: slope aspect, slope angle, root decay, regrowth and hydrologic properties, such as water table depth and soil moisture. Preliminary results show that MPB may affect a greater number of north- and east-facing slopes. This is in accordance with more water availability and a higher MPB impacted tree density on north-facing slopes which, in turn, could potentially increase the probability of slope failure. Root strength is predicted to decrease as the roots stop transpiring 3-4 years proceeding infestation. However, this effect on the hillslope is likely being counterbalanced by the regrowth of grasses, forbs, shrubs, and trees. In addition, the increase in water table height from the lack of transpiring trees is adding a driving force to the slopes. The combination of all these factors will be used in order to assess the effects of MPB tree mortality on slope stability.

  6. Slope Stability. CEGS Programs Publication Number 15.

    ERIC Educational Resources Information Center

    Pestrong, Raymond

    Slope Stability is one in a series of single-topic problem modules intended for use in undergraduate and earth science courses. The module, also appropriate for use in undergraduate civil engineering and engineering geology courses, is a self-standing introduction to studies of slope stability. It has been designed to supplement standard…

  7. Numerical Computation of Homogeneous Slope Stability

    PubMed Central

    Xiao, Shuangshuang; Li, Kemin; Ding, Xiaohua; Liu, Tong

    2015-01-01

    To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS) to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM) and particle swarm optimization algorithm (PSO) to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759) were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS). PMID:25784927

  8. Ranking Slope Stability in Frozen Terrain

    NASA Astrophysics Data System (ADS)

    Stothoff, S.; Dinwiddie, C. L.; Walter, G. R.; Necsoiu, M.

    2011-12-01

    Motivated by the need to assess the risk of permafrost thaw to infrastructure, such as roads, bridges, and pipelines, a landscape-scale approach was developed to rank the risk of slope failures and thermokarst development in areas of seasonally frozen soils underlain by permafrost. The approach has two parts: (i) identifying locations where permafrost thaw is likely to occur under future climates, and (ii) identifying areas where thaw would have consequences with respect to a disturbance. The developed screening tool uses (i) land classification maps developed from remotely sensed data and (ii) a thermohydrologic hazard risk assessment to identify areas susceptible to slope instability under current and future climate states. The screening tool combines a numerical ground thawing and freezing dynamics model for calculating the thickness of the active layer and depth of permafrost with a simple slope stability model that is based upon the Level I Stability Analysis (LISA) approach of Harrell et al. (1992). Instead of using the numerical models directly within probabilistic sampling, a response function for the factor of safety in slope stability is developed from numerical simulations that systematically vary input parameters across their range of applicability. The response function is used within Monte Carlo sampling for each grid cell in a landscape model, with a probability distribution for each input parameter assigned to each grid cell based on (i) classes defined for each grid cell; (ii) a digital elevation model; (iii) empirical, mathematical, and numerical interpretive models; and (iv) probabilistic descriptions of the parameters in the interpretive models. For example, the root cohesion distribution is defined by vegetation class, with vegetation spread across the landscape using Landsat-derived vegetation classification maps. The probability of slope failure is the fraction of parameter realizations that result in a factor of safety less than 1. Ranking

  9. Regional method to assess offshore slope stability.

    USGS Publications Warehouse

    Lee, H.J.; Edwards, B.D.

    1986-01-01

    The slope stability of some offshore environments can be evaluated by using only conventional acoustic profiling and short-core sampling, followed by laboratory consolidation and strength testing. The test results are synthesized by using normalized-parameter techniques. The normalized data are then used to calculate the critical earthquake acceleration factors or the wave heights needed to initiate failure. These process-related parameters provide a quantitative measure of the relative stability for locations from which short cores were obtained. The method is most applicable to offshore environments of gentle relief and simple subsurface structure and is not considered a substitute for subsequent site-specific analysis. -from ASCE Publications Information

  10. Robustness for slope stability modelling under deep uncertainty

    NASA Astrophysics Data System (ADS)

    Almeida, Susana; Holcombe, Liz; Pianosi, Francesca; Wagener, Thorsten

    2015-04-01

    Landslides can have large negative societal and economic impacts, such as loss of life and damage to infrastructure. However, the ability of slope stability assessment to guide management is limited by high levels of uncertainty in model predictions. Many of these uncertainties cannot be easily quantified, such as those linked to climate change and other future socio-economic conditions, restricting the usefulness of traditional decision analysis tools. Deep uncertainty can be managed more effectively by developing robust, but not necessarily optimal, policies that are expected to perform adequately under a wide range of future conditions. Robust strategies are particularly valuable when the consequences of taking a wrong decision are high as is often the case of when managing natural hazard risks such as landslides. In our work a physically based numerical model of hydrologically induced slope instability (the Combined Hydrology and Stability Model - CHASM) is applied together with robust decision making to evaluate the most important uncertainties (storm events, groundwater conditions, surface cover, slope geometry, material strata and geotechnical properties) affecting slope stability. Specifically, impacts of climate change on long-term slope stability are incorporated, accounting for the deep uncertainty in future climate projections. Our findings highlight the potential of robust decision making to aid decision support for landslide hazard reduction and risk management under conditions of deep uncertainty.

  11. 30 CFR 56.3130 - Wall, bank, and slope stability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Wall, bank, and slope stability. 56.3130... Mining Methods § 56.3130 Wall, bank, and slope stability. Mining methods shall be used that will maintain wall, bank, and slope stability in places where persons work or travel in performing their...

  12. 30 CFR 56.3130 - Wall, bank, and slope stability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Wall, bank, and slope stability. 56.3130... Mining Methods § 56.3130 Wall, bank, and slope stability. Mining methods shall be used that will maintain wall, bank, and slope stability in places where persons work or travel in performing their...

  13. 30 CFR 56.3130 - Wall, bank, and slope stability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Wall, bank, and slope stability. 56.3130... Mining Methods § 56.3130 Wall, bank, and slope stability. Mining methods shall be used that will maintain wall, bank, and slope stability in places where persons work or travel in performing their...

  14. 30 CFR 56.3130 - Wall, bank, and slope stability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Wall, bank, and slope stability. 56.3130... Mining Methods § 56.3130 Wall, bank, and slope stability. Mining methods shall be used that will maintain wall, bank, and slope stability in places where persons work or travel in performing their...

  15. 30 CFR 56.3130 - Wall, bank, and slope stability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Wall, bank, and slope stability. 56.3130... Mining Methods § 56.3130 Wall, bank, and slope stability. Mining methods shall be used that will maintain wall, bank, and slope stability in places where persons work or travel in performing their...

  16. Rainfall Induced Seepage and Slope Stability Analyses

    NASA Astrophysics Data System (ADS)

    Ko, S. Y.; Juang, S. R.; Chang, K. T.

    2015-12-01

    This study investigates the rainfall induced seepage behaviors and slope stability of an unsaturated natural slope of colluviums along the A-A' profile of Lu-Shan landslide using two-dimensional finite element method. At first, a steady/transient seepage analysis was carried out using 42 days rainfall records from Mat-Sa typhoon in 2005. Through the inspection of the coincidence of the groundwater variation between simulation and measurement, a set of best fit unsaturated hydraulic conductivity function kr(ψ)~(ψ) and horizontal and vertical saturated conductivities kx and ky for colluviums can be determined. Where, the variable ψ denotes the matrix suction of soil stratum. The function, kr(ψ)~(ψ), considers the seepage behaviors of unsaturated colluviums gradual transition from unsaturated to saturated state. For a 48-hrs design rainfall with different return periods 5, 25 and 50 years, the range of the transient saturated zone formed in the slope during rainfall will expand with the increase of rainfall intensity. The self-weight of soil mass increases due to the rainwater absorption and which alternately introduces a higher down sliding force to the slope and leads to a large extent reduction of factor safety FS of the unsaturated natural slope (A-A'profile). When the matrix suction, ψ, in the function kr(ψ)~(ψ) was adjusted to a higher value (ψ→10ψ), physically it represents a soil stratum with finer particle, the infiltration and pore-water pressure variation becomes not observable in the rainfall induced seepage analysis. Conclusively, an unsaturated natural slope with higher matrix suction (ψ→10ψ) always possesses a higher FS value than that with lower matrix suction (ψ→0.10ψ). For the slope with anisotropic hydraulic conductivity ratio (ky/kx =0.01), due to the downward infiltration rate of rainwater is lower than that with isotropic hydraulic conductivity (kx/ky =1), the occurrence time for a FS value starting to downgrade may lag behind

  17. Explicit limit equilibrium solution for slope stability

    NASA Astrophysics Data System (ADS)

    Zhu, D. Y.; Lee, C. F.

    2002-12-01

    Conventional methods of slices used for slope stability analysis satisfying all equilibrium conditions involves generally solving two highly non-linear equations with respect to two unknowns, i.e. the factor of safety and the associated scaling parameter. To solve these two equations, complicated numerical iterations are required with non-convergence occasionally occurring. This paper presents an alternative procedure to derive the three equilibrium equations (horizontal and vertical forces equations and moment equation) based on an assumption regarding the normal stress distribution along the slip surface. Combination of these equations results in a single cubic equation in terms of the factor of safety, which is explicitly solved. Theoretical testing demonstrates that the proposed method yields a factor of safety in reasonable agreement with a closed-form solution based on the theory of plasticity. Example studies show that the difference in values of factor of safety between the proposed method, the Spencer method and the Morgenstern-Price method is within 5%. Application of the proposed method to practical slope engineering problems is rather straightforward, but its solution is of the same precision as those given by the conventional rigorous methods of slices since it is still within the rigorous context.

  18. Slope Stability of Geosynthetic Clay Liner Test Plots

    EPA Science Inventory

    Fourteen full-scale field test plots containing five types of geosynthetic clay liners (GCLs) were constructed on 2H:IV and 3H:IV slopes for the purpose of assessing slope stability. The test plots were designed to simulate typical final cover systems for landfill. Slides occurr...

  19. Stability of sulfur slopes on Io

    NASA Technical Reports Server (NTRS)

    Clow, G. D.; Carr, M. H.

    1980-01-01

    The mechanical properties of elemental sulfur are such that the upper crust of Io cannot be primarily sulfur. For heat flows in the range 100-1000 ergs/sq cm sec sulfur becomes ductile within several hundred meters of the surface and would prevent the formation of calderas with depths greater than this. However, the one caldera for which precise depth data are available is 2 km deep, and this value may be typical. A study of the mechanical equilibrium of simple slopes shows that the depth to the zone of rapid ductile flow strongly controls the maximum heights for sulfur slopes. Sulfur scarps with heights greater than 1 km will fail for all heat flows greater than 180 ergs/sq cm sec and slope angles greater than 22.5 deg. The observed relief on Io is inconsistent with that anticipated for a predominantly sulfur crust. However, a silicate crust with several percent sulfur included satisfies both the mechanical constraints and the observed presence of sulfur on Io.

  20. Geosynthetic clay liners - slope stability field study

    SciTech Connect

    Carson, D.A.; Daniel, D.E.; Koerner, R.M.; Bonaparte, R.

    1997-12-31

    A field research project was developed to examine the internal shear performance of geosynthetic clay liners (GCLs). Several combinations of cross sections were assembled using GCL materials that were available at the time of project initiation. The cross sections utilized were intended to simulate landfill cover applications. Thirteen (13) resulting test plots were constructed on two different slope angles, and each plot is instrumented for physical displacement and soil moisture characteristics. Test plots were constructed in a manner that dictated the shear plane in the clay portion of the GCL product. The project purpose is to assess field performance and to verify design parameters associated with the application of GCLs in waste containment applications. Interim research data shows that test slopes on 2H:1V show global deformation, but little internal shear evidence, and the 3H:1V slopes show little deformation at approximately 650 days. The research is ongoing, and this paper presents the most recent information available from the project.

  1. Linking hydrological, infinite slope stability and land-use change models through GIS for assessing the impact of deforestation on slope stability in high Andean watersheds

    NASA Astrophysics Data System (ADS)

    Vanacker, Veerle; Vanderschaeghe, Michiel; Govers, Gerard; Willems, Edith; Poesen, Jean; Deckers, Jozef; De Bievre, Bert

    2003-06-01

    In the Ecuadorian Andes, episodic slope movements comprising shallow rotational and translational slides and rapid flows of debris and soil material are common. Consequently, not only considerable financial costs are experienced, but also major ecological and environmental problems arise in a larger geographical area. Sediment production by slope movement on hillslopes directly affects sediment transport and deposition in downstream rivers and dams and morphological changes in the stream channels. In developing countries world-wide, slope movement hazards are growing: increasing population pressure and economic development force more people to move to potentially hazardous areas, which are less suitable for agriculture and rangelands. This paper describes the methods used to determine the controlling factors of slope failure and to build upon the results of the statistical analysis a process-based slope stability model, which includes a dynamic soil wetness index using a simple subsurface flow model. The model provides a time-varying estimate of slope movement susceptibility, by linking land-use data with spatially varying hydrologic (soil conductivity, evapotranspiration, soil wetness) and soil strength properties. The slope stability model was applied to a high Andean watershed (Gordeleg Catchment, 250 ha, southern Ecuadorian Andes) and was validated by calculating the association coefficients between the slope movement susceptibility map of 2000 and the spatial pattern of active slope movements, as measured in the field with GPS. The proposed methodology allows assessment of the effects of past and future land-use change on slope stability. A realistic deforestation scenario was presented: past land-use change includes a gradual fragmentation and clear cut of the secondary forests, as observed over the last four decades (1963-2000), future land-use change is simulated based on a binary logistic deforestation model, whereby it was assumed that future land

  2. Geotechnical characteristics and slope stability in the Gulf of Cadiz

    USGS Publications Warehouse

    Lee, H.; Baraza, J.

    1999-01-01

    Sedimentological and geotechnical analyses of thirty-seven core samples from the Gulf of Cadiz continental margin were used to define the regional variability of sediment properties and to assess slope stability. Considering the sediment property data set as a whole, there is an association between grain size, plasticity and water content. Any one of these properties can be mapped regionally to provide an indication of the dominant surface sediment lithology. Based on static sediment strength, a simplified slope stability analysis showed that only steep slopes (> 16??for even the most vulnerable sediment) can fail under static loading conditions. Accordingly, transient loads, such as earthquakes or storms, are needed to cause failure on more moderate slopes. A regional seismic slope stability analysis of the Cadiz margin was performed based on detailed geotechnical testing of four gravity core samples. The results showed that the stability of these slopes under seismic loading conditions depends upon sediment density, the cyclic loading shear strength, the slope steepness, and the regional seismicity. Sediment density and cyclic loading shear strength are dependent upon water content, which can act as a proxy for plasticity and texture effects. Specifically, Sediment in the water content range of 50-56% is most vulnerable to failure under cyclic loading within the Cadiz margin. As a result, for a uniform seismicity over the region, susceptibility to failure during seismic loading conditions increases with increasing slope steepness and is higher if the sediment water content is in the 50-56% range than if it is not. The only sampled zone of failure on the continental slope contains sediment with water content in this critical range. Storm-wave-induced instability was evaluated for the continental shelf. The evaluation showed that a storm having hundreds of waves with a height in the range of 16 m might be capable of causing failure on the shelf. However, no

  3. Relief unity emulator and slope stability simulator applied to mass movement occurrence analysis in slope evolution

    NASA Astrophysics Data System (ADS)

    Colangelo, Antonio C.

    2010-05-01

    This work refers to a part of my "Fellow" thesis "Geomorphosynthesis and Geomorphocinematic applied to slope stability and evolution" (Colangelo, 2007). Relief unity emulator (rue) is a device that permits to synthesize a slope unity by means of a single generatrix profile that determine the initial conditions for application of a set of a geotechnical, hydrological and morphological models. This initial profile is considered in equilibrium with original environmental conditions, and operates in an integrated manner with these models. The aim is to induce a boundary condition on initial profile and produce a new profile: a threshold profile. For this manner and by iterations we generate a set of new profiles that represents, each one, a meta-stable profile, or a descending profile. The evolution of these profiles is in according with the central geomorphologycal concepts of slope retreat, base level change and head retreat. This set of "descending profiles" will be now sliced at topographic equivalent points, that will linked for describe a "topographic equivalence line". The crossing of this kind of isolines with descending profiles composes a 3D slope unity. This descending slope unity is represented by a mesh built for the crossing of these new slope profiles with the topographic equivalence lines and, the result is a four-dimensional meta-stable object integrated to the slope stability simulator (sss). This composite "rue-sss" device operates with 10 main models and 16 variables. The models describe effective stress, shearing resistance, soil saturation level behavior, potential rupture surface depth, critical depth, potential rupture surface critical gradient, critical soil saturation level, top of percolation flow gradient and unit weight of soil. Of this manner, is possible to evaluate effective friction angles and cohesion, critical soil saturation levels, critical gradients for potential rupture surfaces, neutral stress, shear strength, shear stress

  4. Impact of vegetation on stability of slopes subjected to rainfall - numerical aspect

    NASA Astrophysics Data System (ADS)

    Switala, Barbara Maria; Tamagnini, Roberto; Sudan Acharya, Madhu; Wu, Wei

    2015-04-01

    Recent years brought a significant development of soil bioengineering methods, considered as an ecological and economically effective measure for slope stabilization. This work aims to show the advantages of the soil bioengineering solutions for a slope subjected to a heavy rainfall, with the help of a numerical model, which integrates most of the significant plant and slope features. There are basically two different ways in which vegetation can affect stability of a slope: root reinforcement (mechanical impact) and root water uptake (evapotranspiration). In the numerical model, the first factor is modelled using the Cam-Clay model extended for unsaturated conditions by Tamagnini (2004). The original formulation of a constitutive model is modified by introducing an additional constitutive parameter, which causes an expansion of the yield surface as a consequence of an increase in root mass in a representative soil element. The second factor is the root water uptake, which is defined as a volumetric sink term in the continuity equation of groundwater flow. Water removal from the soil mass causes an increase in suction in the vicinity of the root zone, which leads to an increase in the soil cohesion and provides additional strength to the soil-root composite. The developed numerical model takes into account the above mentioned effects of plants and thus considers the multi-phase nature of the soil-plant-water relationship. Using the developed method, stability of some vegetated and non-vegetated slopes subjected to rainfall are investigated. The performance of each slope is evaluated by the time at which slope failure occurs. Different slope geometries and soil mechanical and hydrological properties are considered. Comparison of the results obtained from the analyses of vegetated and non-vegetated slopes leads to the conclusion, that the use of soil bioengineering methods for slope stabilization can be effective and can significantly delay the occurrence of a

  5. Eco-geomorphic controls on slope stability

    NASA Astrophysics Data System (ADS)

    Hales, T.; Ford, C.; Hwang, T.; Vose, J.; Band, L.

    2009-04-01

    Vegetation controls soil-mantled landscape evolution primarily through growth of roots into soil and rock. Root-soil interactions affect the spatial distribution and rate of shallow landsliding and other hillslope processes. Yet the distribution and tensile strength of roots depends on a number of geomorphically-influenced parameters, including soil moisture. Our field-based study investigated the effects of topography on root distributions, tensile strengths, and cohesion. Systematic differences in plant species distribution and soil properties are found in the hollow-nose topography of soil-mantled landscapes; with hollows containing thick colluvial soils and mesic tree species and noses containing thinner, more differentiated soils and more xeric species. We investigated whether these topographic variations in geomorphic and ecologic properties affected the spatial distribution of root cohesion by measuring the distribution and tensile strength of roots from soil pits dug downslope of fifteen individual trees in the Coweeta Hydrologic Laboratory, North Carolina. Our soil pits were located to capture variance in plant species (10 species total), topographic positions (nose, hollow), and sizes (a range of DBH between 5 cm and 60 cm). Root tensile strengths showed little variance with different species, but showed strong differences as a function of topography, with nose roots stronger than hollow roots. Similarly, within species, root cellulose content was systematically greater in trees on nose positions compared to those in hollows. For all species, roots were concentrated close to the soil surface (at least 70% of biomass occurred within 50 cm of the surface) and variations in this pattern were primarily a function of topographic position. Hollow roots were more evenly distributed in the soil column than those on noses, yet trees located on noses had higher mean root cohesion than those in hollows because of a higher root tensile force. These data provide an

  6. Stability Analysis of Nonlinear Systems with Slope Restricted Nonlinearities

    PubMed Central

    Du, Jiajia

    2014-01-01

    The problem of absolute stability of Lur'e systems with sector and slope restricted nonlinearities is revisited. Novel time-domain and frequency-domain criteria are established by using the Lyapunov method and the well-known Kalman-Yakubovich-Popov (KYP) lemma. The criteria strengthen some existing results. Simulations are given to illustrate the efficiency of the results. PMID:24592160

  7. Infinite slope stability under steady unsaturated seepage conditions

    USGS Publications Warehouse

    Lu, N.; Godt, J.

    2008-01-01

    [1] We present a generalized framework for the stability of infinite slopes under steady unsaturated seepage conditions. The analytical framework allows the water table to be located at any depth below the ground surface and variation of soil suction and moisture content above the water table under steady infiltration conditions. The framework also explicitly considers the effect of weathering and porosity increase near the ground surface on changes in the friction angle of the soil. The factor of safety is conceptualized as a function of the depth within the vadose zone and can be reduced to the classical analytical solution for subaerial infinite slopes in the saturated zone. Slope stability analyses with hypothetical sandy and silty soils are conducted to illustrate the effectiveness of the framework. These analyses indicate that for hillslopes of both sandy and silty soils, failure can occur above the water table under steady infiltration conditions, which is consistent with some field observations that cannot be predicted by the classical infinite slope theory. A case study of shallow slope failures of sandy colluvium on steep coastal hillslopes near Seattle, Washington, is presented to examine the predictive utility of the proposed framework. Copyright 2008 by the American Geophysical Union.

  8. Municipal solid waste slope failure. 2: Stability analyses

    SciTech Connect

    Stark, T.D.; Eid, H.T.; Evans, W.D.; Sherry, P.E.

    2000-05-01

    Analyses are presented to investigate the case of a large slope failure in a municipal solid waste (MSW) landfill that developed through the underlying native soil. The engineering properties of the waste and native soil are described in a companion paper by Eid et al. (2000). Some of the conclusions from this case history include (1) native colluvial/residual soils in the Cincinnati area underlying MSW can mobilize a drained shear strength less than the fully softened value without recent evidence of previous sliding; (2) strain incompatibility and progressive failure can occur between MSW and underlying materials and cause a reduction in the mobilized shear strength; (3) a stability evaluation of interim slopes, especially when the slope toe will be excavated, blasting will be occurring, and waste placement continues at the top of slope, should be conducted, even though it may not be required by regulations; and (4) the reappearance of cracking at the top of an MSW landfill slope is probably an indication of slope instability and not settlement.

  9. Postural Stability Margins as a Function of Support Surface Slopes

    PubMed Central

    Slobounov, Seymon M.; Challis, John Henry; Newell, Karl Maxim

    2016-01-01

    This investigation examined the effects of slope of the surface of support (35°, 30°, 20°, 10° Facing(Toe) Down, 0° Flat and 10°, 20°, 25° Facing (Toe) Up) and postural orientation on the margins of postural stability in quiet standing of young adults. The findings showed that the center of pressure—CoP (displacement, area and length) had least motion at the baseline (0° Flat) platform condition that progressively increased as a function of platform angle in both facing up and down directions. The virtual time to collision (VTC) dynamics revealed that the spatio-temporal margins to the functional stability boundary were progressively smaller and the VTC time series also more regular (SampEn–Sample Entropy) as slope angle increased. Surface slope induces a restricted stability region with lower dimension VTC dynamics that is more constrained when postural orientation is facing down the slope. These findings provide further evidence that VTC acts as a control variable in standing posture that is influenced by the emergent dynamics of the individual-environment-task interaction. PMID:27764158

  10. Slope Stability: Factor of Safety along the Seismically Active Continental Slope Offshore Sumatra

    NASA Astrophysics Data System (ADS)

    Patton, J. R.; Goldfinger, C.; Djadjadihardja, Y.; None, U.

    2013-12-01

    Recent papers have documented the probability that turbidites deposited along and downslope of subduction zone accretionary prisms are likely the result of strong ground shaking from great earthquakes. Given the damaging nature of these earthquakes, along with the casualties from the associated tsunamis, the spatial and temporal patterns of these earthquakes can only be evaluated with paleoseismologic coring and seismic reflection methods. We evaluate slope stability for seafloor topography along the Sunda subduction offshore Sumatra, Indonesia. We use sediment material properties, from local (Sumatra) and analogous sites, to constrain our estimates of static slope stability Factor of Safety (FOS) analyses. We then use ground motion prediction equations (GMPE's) to estimate ground motion intensity (Arias Intensity, AI) and acceleration (Peak Ground Acceleration, PGA), as possibly generated by fault rupture, to constrain seismic loads for pseudostatic slope stability FOS analyses. The ground motions taper rapidly with distance from the fault plane, consistent with ground motion - fault distance relations measured during the 2011 Tohoku-Oki subduction zone earthquake. Our FOS analyses include a Morgenstern method of slices probabilistic analysis for 2-D profiles along with Critical Acceleration (Ac) and Newmark Displacement (Dn) analysis of multibeam bathymetry of the seafloor. In addition, we also use estimates of ground motion modeled with a 2004 Sumatra-Andaman subduction zone (SASZ) earthquake fault slip model, to also compare with our static FOS analyses of seafloor topography. All slope and trench sites are statically stable (FOS < 1) and sensitive to ground motions generated by earthquakes of magnitude greater than 7. We conclude that for earthquakes of magnitude 6 to 9, PGA of 0.4-0.6 to 1.4-2.5 g would be expected, respectively, from existing GMPE's. However, saturation of accelerations in the accretionary wedge may limit actual accelerations to less than 1

  11. Stability of vegetated slopes in unsaturated conditions: a numerical study

    NASA Astrophysics Data System (ADS)

    Battista Chirico, Giovanni; Borga, Marco; Tarolli, Paolo; Rigon, Riccardo; Preti, Federico

    2014-05-01

    Extreme rainfall events can trigger shallow landslides with failure planes located in soils far from saturated conditions. The stability of shallow soils on very steep slopes under unsaturated conditions can be highly influenced by the vegetation, according to both geo-mechanical and soil-hydrological factors, particularly in regions characterized by a strong climatic seasonality. The root structure of the vegetation reinforces the shallow soils, by providing additional apparent cohesion to the soil. The root water uptake enhances the stability by increasing the frequency of high suction pressure heads in the soil layers explored by the roots. In water controlled eco-systems, such as Mediterranean areas, these two factors are mutually related. Plants develop their root structure in order to optimize the uptake of the water available in the soil, since water availability is limited during the growing season. In this study we present the results of some numerical experiments with the aim to assess the relative importance of these two factors. We simulated the soil water dynamics within homogeneous loamy-sand soils, assuming climatic conditions and root structures typically observed in a deciduous forest of central and southern Italy. An infinite slope stability model is employed for assessing the temporal evolution of the contribute of the soil suction regime to the slope stability, as compared with the contribute of the soil root reinforcement. The results suggest that, during the wet season, the effect of the soil suction state on slope stability is much smaller than that attributable to the mechanical reinforcement provided by the root structure, at least within soil depths explored by the plant roots. Instead, during the growing and dry summer seasons, the soil suction state is far more relevant than the mechanical reinforcement. Thus, accounting for the antecedent soil suction state can be relevant for an appropriate prediction of shallow landslide hazards in

  12. Slope Stability Analysis Using Limit Equilibrium Method in Nonlinear Criterion

    PubMed Central

    Lin, Hang; Zhong, Wenwen; Xiong, Wei; Tang, Wenyu

    2014-01-01

    In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the friction angle. Moreover, this paper investigates the impact of Hoek-Brown parameters on the safety factor of slope, which reveals that there is linear relation between equivalent cohesive strength and weakening factor D. However, there are nonlinear relations between equivalent cohesive strength and Geological Strength Index (GSI), the uniaxial compressive strength of intact rock σci, and the parameter of intact rock mi. There is nonlinear relation between the friction angle and all Hoek-Brown parameters. With the increase of D, the safety factor of slope F decreases linearly; with the increase of GSI, F increases nonlinearly; when σci is relatively small, the relation between F and σci is nonlinear, but when σci is relatively large, the relation is linear; with the increase of mi, F decreases first and then increases. PMID:25147838

  13. Assessment and mapping of slope stability based on slope units: A case study in Yan'an, China

    NASA Astrophysics Data System (ADS)

    Zhuang, Jianqi; Peng, Jianbing; Xu, Yonglong; Xu, Qiang; Zhu, Xinghua; Li, Wei

    2016-09-01

    Precipitation frequently triggers shallow landslides in the Loess Plateau of Shaanxi, China, resulting in loss of life, damage to gas and oil routes, and destruction of transport infrastructure and farmland. To assess the possibility of shallow landslides at different precipitation levels, a method to draw slope units and steepest slope profiles based on ARCtools and a new method for calculating slope stability are proposed. The methods were implemented in a case study conducted in Yan'an, north-west China. High resolution DEM (Digital Elevation Model) images, soil parameters from in-situ laboratory measurements and maximum depths of precipitation infiltration were used as input parameters in the method. Next, DEM and reverse DEM were employed to map 2146 slope units in the study area, based on which the steepest profiles of the slope units were constructed. Combining analysis of the water content of loess, strength of the sliding surface, its response to precipitation and the infinite slope stability equation, a new equation to calculate infinite slope stability is proposed to assess shallow landslide stability. The slope unit stability was calculated using the equation at 10-, 20-, 50- and 100-year return periods of antecedent effective precipitation. The number of slope units experiencing failure increased in response to increasing effective antecedent rainfall. These results were validated based on the occurrence of landslides in recent decades. Finally, the applicability and limitations of the model are discussed.

  14. Comparison of slope stability in two Brazilian municipal landfills

    SciTech Connect

    Gharabaghi, B. Singh, M.K.; Inkratas, C. Fleming, I.R. McBean, E.

    2008-07-01

    The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use 'generic' published shear strength envelopes for municipal waste. Application of the slope stability

  15. Comparison of slope stability in two Brazilian municipal landfills.

    PubMed

    Gharabaghi, B; Singh, M K; Inkratas, C; Fleming, I R; McBean, E

    2008-01-01

    The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use "generic" published shear strength envelopes for municipal waste. Application of the slope stability

  16. Rock mass characterisation and stability analyses of excavated slopes

    NASA Astrophysics Data System (ADS)

    Zangerl, Christian; Lechner, Heidrun

    2016-04-01

    Excavated slopes in fractured rock masses are frequently designed for open pit mining, quarries, buildings, highways, railway lines, and canals. These slopes can reach heights of several hundreds of metres and in cases concerning open pit mines slopes larger than 1000 m are not uncommon. Given that deep-seated slope failures can cause large damage or even loss of life, the slope design needs to incorporate sufficient stability. Thus, slope design methods based on comprehensive approaches need to be applied. Excavation changes slope angle, groundwater flow, and blasting increases the degree of rock mass fracturing as well as rock mass disturbance. As such, excavation leads to considerable stress changes in the slopes. Generally, slope design rely on the concept of factor of safety (FOS), often a requirement by international or national standards. A limitation of the factor of safety is that time dependent failure processes, stress-strain relationships, and the impact of rock mass strain and displacement are not considered. Usually, there is a difficulty to estimate the strength of the rock mass, which in turn is controlled by an interaction of intact rock and discontinuity strength. In addition, knowledge about in-situ stresses for the failure criterion is essential. Thus, the estimation of the state of stress of the slope and the strength parameters of the rock mass is still challenging. Given that, large-scale in-situ testing is difficult and costly, back-calculations of case studies in similar rock types or rock mass classification systems are usually the methods of choice. Concerning back-calculations, often a detailed and standardised documentation is missing, and a direct applicability to new projects is not always given. Concerning rock mass classification systems, it is difficult to consider rock mass anisotropy and thus the empirical estimation of the strength properties possesses high uncertainty. In the framework of this study an approach based on

  17. The role of Soil Water Retention Curve in slope stability analysis in unsaturated and heterogeneous soils.

    NASA Astrophysics Data System (ADS)

    Antinoro, Chiara; Arnone, Elisa; Noto, Leonardo V.

    2015-04-01

    The mechanisms of rainwater infiltration causing slope instability had been analyzed and reviewed in many scientific works. Rainwater infiltration into unsaturated soil increases the degree of saturation, hence affecting the shear strength properties and thus the probability of slope failure. It has been widely proved that the shear strength properties change with the soil water suction in unsaturated soils; therefore, the accuracy to predict the relationship between soil water content and soil water suction, parameterized by the soil-water characteristic curve, has significant effects on the slope stability analysis. The aim of this study is to investigate how the characterization of SWRC of differently structured unsaturated soils affects the slope stability on a simple infinite slope. In particular, the unimodal and bimodal distributions of the soil pore size were compared. Samples of 40 soils, highly different in terms of structure and texture, were collected and used to calibrate two bimodal SWRCs, i.e. Ross and Smettem (1993) and Dexter et al., (2008). The traditional unimodal van Genuchten (1980) model was also applied for comparison. Slope stability analysis was conducted in terms of Factor of Safety (FS) by applying the infinite slope model for unsaturated soils. In the used formulation, the contribution of the suction effect is tuned by a parameter 'chi' in a rate proportional to the saturation conditions. Different parameterizations of this term were also compared and analyzed. Results indicated that all three SWRC models showed good overall performance in fitting the sperimental SWRCs. Both the RS and DE models described adequately the water retention data for soils with a bimodal behavior confirmed from the analysis of pore size distribution, but the best performance was obtained by DE model confirmed. In terms of FS, the tree models showed very similar results as soil moisture approached to the saturated condition; however, within the residual zone

  18. The effect of plant root system on the stability of road cutting slope in seasonal frozen regions

    NASA Astrophysics Data System (ADS)

    Shan, W.; Guo, Y.

    2009-04-01

    When highway is built in seasonally frozen regions of Northeast China, it is inevitable to excavate the mountain slope in order to meet the route requirement. During highway construction, a mass of extraction damage the surface vegetation and cut off the runoff passage of groundwater, cause the outcrop of underground water on the cutting slope and affect the intrinsic ground stress equilibrium of the slope body, lead to the redistribution of ground stress and the heat balance change in near-surface of the cutting slope. Under influence of rainfall in autumn and the cold climate in winter, the moisture transfer to frozen zone of cutting slope and lead to the frost heave in shallow depth of the slope. During the thawing period in spring, with effect of integrated factors including rainfall and increasing temperature, ice kernels both on the surface and near the surface of cut slope thaw quickly. The water melting from frozen soil, will hampered by frozen layer in process of infiltration. As a result, the water content of the intersection between the freezing and melting layer is high enough to be saturation or even over-saturation, and accordingly cause the intrinsic effective stress on the slope body decreased. Under the function of gravity, near-surface slope collapses partially or entirely. Adopted the method combined field test and lab test, this article analyzed the mechanism of slope landslide, studied quantitatively the effect of root system of slope plant on the slope stability. The results showed that the mechanical indicators of the soil changed obviously after the first freeze-thaw cycle, but changed little in later freeze-thaw cycles. The shear strength of root-soil systems is 2 times of soil system. Compared with masonry body, protecting the slope by the plant, such as Amorpha, Lespedeza could reduce the slope load and was more stability. Key words: road slope, seasonal frozen regions, plant protection, stability, landslide

  19. Slope-stability analysis and creep susceptibility of Quaternary sediments on the northeastern United States continental slope

    USGS Publications Warehouse

    Booth, James S.; Silva, Armand J.; Jordan, Stephen A.

    1984-01-01

    The continental slope off the northeastern United States is a relatively steep, morphologically complex surface which shows abundant evidence of submarine slides and related processes. Because this area may be developed by the petroleum industry, questions arise concerning the potential for further slope failures or unacceptable deformations and the conditions necessary to cause such instabilities. Accordingly, a generalized analysis of slope stability and the stress—strain—time-dependent behavior of the sediments is being conducted.

  20. HDMR methods to assess reliability in slope stability analyses

    NASA Astrophysics Data System (ADS)

    Kozubal, Janusz; Pula, Wojciech; Vessia, Giovanna

    2014-05-01

    Stability analyses of complex rock-soil deposits shall be tackled considering the complex structure of discontinuities within rock mass and embedded soil layers. These materials are characterized by a high variability in physical and mechanical properties. Thus, to calculate the slope safety factor in stability analyses two issues must be taken into account: 1) the uncertainties related to structural setting of the rock-slope mass and 2) the variability in mechanical properties of soils and rocks. High Dimensional Model Representation (HDMR) (Chowdhury et al. 2009; Chowdhury and Rao 2010) can be used to carry out the reliability index within complex rock-soil slopes when numerous random variables with high coefficient of variations are considered. HDMR implements the inverse reliability analysis, meaning that the unknown design parameters are sought provided that prescribed reliability index values are attained. Such approach uses implicit response functions according to the Response Surface Method (RSM). The simple RSM can be efficiently applied when less than four random variables are considered; as the number of variables increases, the efficiency in reliability index estimation decreases due to the great amount of calculations. Therefore, HDMR method is used to improve the computational accuracy. In this study, the sliding mechanism in Polish Flysch Carpathian Mountains have been studied by means of HDMR. The Southern part of Poland where Carpathian Mountains are placed is characterized by a rather complicated sedimentary pattern of flysh rocky-soil deposits that can be simplified into three main categories: (1) normal flysch, consisting of adjacent sandstone and shale beds of approximately equal thickness, (2) shale flysch, where shale beds are thicker than adjacent sandstone beds, and (3) sandstone flysch, where the opposite holds. Landslides occur in all flysch deposit types thus some configurations of possible unstable settings (within fractured rocky

  1. Supersonic Wave Interference Affecting Stability

    NASA Technical Reports Server (NTRS)

    Love, Eugene S.

    1958-01-01

    Some of the significant interference fields that may affect stability of aircraft at supersonic speeds are briefly summarized. Illustrations and calculations are presented to indicate the importance of interference fields created by wings, bodies, wing-body combinations, jets, and nacelles.

  2. Monitoring of a slope affected by shallow landslides: preliminary results

    NASA Astrophysics Data System (ADS)

    Meisina, Claudia; Zizioli, Davide; Bordoni, Massimiliano; Valentino, Roberto; Bittelli, Marco; Chersich, Silvia

    2013-04-01

    Shallow landslides can be defined as slope movements, due to extreme rainfall events, affecting superficial deposits of small thickness; their failure surface is, generally, located within the soil-bedrock interface. Although they involve small volumes of soil, due to their close proximity to urbanized areas, they cause significant damage to structures and infrastructures and, sometimes, human losses. Therefore, identifying at slope scale the soil hydrological and mechanical processes which control the shallow landslide triggering mechanisms is becoming of crucial interest in order to assess the shallow landslide susceptibility using physically based models and to develop early-warning system. For doing this an experimental monitoring station was installed in an area of the North-Eastern Oltrepo Pavese (Northern Apennines, Italy), where several shallow landslide events occurred in the last years. The objectives of the research are: (a) to monitor the saturated and unsaturated zone response to seasonal and extreme rainfall events in order to identify the processes that determine the formation of shallow landslides; (b) to determine how antecedent precipitation could affect pore pressure development. The test site slope is representative of other sites in Northern Apennines subjected to shallow landslides: it is characterized by medium-high gradient (more than 15°), the land use is constituted by trees and shrubs developed on abandoned vineyards, the bedrock is made up of gravel, sand and poorly cemented conglomerates. The geotechnical characterization of superficial deposits was based on soils analysis conducted according to the ASTM standard, including assessment of the physical parameters of materials (grain size distribution, bulk and dry densities and Atterberg Limits), the shear strength parameters (direct shear and triaxial tests). A pedological and mineralogical characterization of the site were also carried out. The experimental station consists in a

  3. Earthquake Stability Analysis of Rock Slopes: a Case Study

    NASA Astrophysics Data System (ADS)

    Pal, Shilpa; Kaynia, Amir M.; Bhasin, Rajinder K.; Paul, D. K.

    2012-03-01

    Stability analysis of Surabhi landslide in the Dehradun and Tehri districts of Uttaranchal located in Mussoorie, India, has been simulated numerically using the distinct element method focusing on the weak zones (fracture). This is an active landslide on the main road toward the town centre, which was triggered after rainfall in July-August 1998. Understanding the behaviour of this landslide will be helpful for planning and implementing mitigation measures. The first stage of the study includes the total area of the landslide. The area identified as the zone of detachment is considered the most vulnerable part of the landslide. Ingress of water and increased pore pressures result in reduced mobilized effective frictional resistance, causing the top layer of the zone of detachment to start moving. The corresponding total volume of rock mass that is potentially unstable is estimated to 11.58 million m3. The second stage of this study includes a 2D model focussing only on the zone of detachment. The result of the analyses including both static and dynamic loading indicates that most of the total displacement observed in the slide model is due to the zone of detachment. The discontinuum modelling in the present study gives reasonable agreement with actual observations and has improved understanding of the stability of the slide slope.

  4. A multidisciplinary methodological approach for slope stability assessment of an area prone to shallow landslides

    NASA Astrophysics Data System (ADS)

    Bordoni, Massimiliano; Meisina, Claudia; Valentino, Roberto; Bittelli, Marco; Battista Bischetti, Gian; Vercesi, Alberto; Chersich, Silvia; Giuseppina Persichillo, Maria

    2016-04-01

    Rainfall-induced shallow landslides are widespread slope instabilities phenomena in several hilly and mountainous contexts all over the world. Due to their high density of diffusion also in small areas, they can provoke important damages to terrains, infrastructures, buildings, and, sometimes, loss of human lives. Shallow landslides affect superficial soils of limited thickness (generally lower than 2 m), located above weathered or not bedrock levels. Their triggering mechanism is strictly linked to the hydrological response of the soils to rainfall events. Thus, it becomes fundamental a comprehensive analysis of the soil properties which can influence the susceptibility of a slope to shallow landslides. In this study, a multidisciplinary approach was followed for the characterization of the soils and the individuation of the triggering conditions in an area particularly prone to shallow failures, for slope stability assessment. This area corresponded to the hilly sector of North-Eastern Oltrepò Pavese (Lombardy Region, Northern Italy), where the density of shallow landslides is really high, reaching more than 36 landslides per km2. The soils of the study area were analyzed through a multidisciplinary characterization, which took into account for the main geotechnical, mechanical and mineralogical parameters and also for the main pedological features of the materials. This approach allowed for identifying the main features and the horizons which could influence the soil behavior in relation to the conditions that are preparatory to shallow landslides development. In a test-site slope, representative of the main geomorphological, geological and landslides distribution characteristics typical of the study area, a continuous in time monitoring of meteorological (rainfall amount, air temperature, air humidity, atmospheric pressure, net solar radiation, wind speed and direction) and hydrological (soil water content, pore water pressure) parameters was implemented. In

  5. The contribution of particle swarm optimization to three-dimensional slope stability analysis.

    PubMed

    Kalatehjari, Roohollah; Rashid, Ahmad Safuan A; Ali, Nazri; Hajihassani, Mohsen

    2014-01-01

    Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes. PMID:24991652

  6. The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis

    PubMed Central

    A Rashid, Ahmad Safuan; Ali, Nazri

    2014-01-01

    Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes. PMID:24991652

  7. The effect of chestnut coppice forests abandon on slope stability: a case study

    NASA Astrophysics Data System (ADS)

    Vergani, Chiara; Bassanelli, Chiara; Rossi, Lorenzo; Chiaradia, Enrico Antonio; Battista Bischetti, Gian

    2013-04-01

    , as expected, show that management didn't affect root mechanical properties, whereas root distribution within the soil profile did. In terms of additional root cohesion, values are higher in the managed stand, and lower in the abandoned one, at least in the first 50 cm of soil. In the abandoned stand, in fact, roots reach deeper layers of soil (100 cm) than the managed one (50 cm), mainly because of an unexpected greater soil depth. To assess the implication of such results in terms of slope stability, a simple infinite slope model was applied to the two conditions. The results showed that the abandoned stand is prone to instability also with a low level of saturation. On the contrary, by applying the additional root cohesion profile obtained in the managed stand to the steeper slopes, stability should be guaranteed, except in the case of total saturation. In conclusion, although more investigations are required especially to extend the number of stands, coppicing practice seem to be fundamental to prevent shallow landsliding in sweet chestnut forests over cohesionless slopes.

  8. Slope stability improvement using low intensity field electrosmosis

    NASA Astrophysics Data System (ADS)

    Armillotta, Pasquale

    2014-05-01

    The electrosmosis technique has been introduced in the past for slope stabilization. However, its application to real cases has been scarce due to several drawbacks mostly related to the high intensity electric field needed (1.0 V/cm or higher): the rapid degradation of the electrodes, the high system management cost, the heating and cracking of the soil and the reduction of its colloidal fraction. Thanks to the introduction of new materials, the technique is currently applied to decrease the consolidation time of saturated clay soils (forcing the elimination of water), consequently improving its mechanical strength. In clay soils, the volume variation is influenced by the presence of smectites. The clay compressibility decreases with the increasing of electrolytes concentration. Soil containing smectites that have interacted with calcium showed a reduction or the absence of swelling during hydration with distilled water and a positive increase of their shear strength. The different values of pH between the anode (acid) and the cathode (basic), induced by the electrosmosis create the conditions for the precipitation of CaCO3 near the cathode. The injection of solutions containing calcium in soils and their diffusion induced by the electrosmosis, lead to calcium precipitation and consequential increase of the shear strength. The material technological advances and the laboratory experiences described in this paper, demonstrate that the use low electric field (0.1 V/cm or lower) intensity electrosmosis (LEFE in acronym) can be effective for soil dewatering and shear strength increase while reducing its adverse effect. The LEFE can be used to: reduce the potential for swelling of active clay minerals through the introduction of ions and the precipitation of hardening substances; induce the "dewatering" in cohesive soils. Several Lab activities were carried out, using custom made electrosmosis equipment. These activities can be divided in two phases: Phase 1

  9. Regional variability of slope stability: Application to the Eel margin, California

    USGS Publications Warehouse

    Lee, H.; Locat, J.; Dartnell, P.; Israel, K.; Florence, Wong

    1999-01-01

    Relative values of downslope driving forces and sediment resisting forces determine the locations of submarine slope failures. Both of these vary regionally, and their impact can be addressed when the data are organized in a Geographic Information System (GIS). The study area on the continental margin near the Eel River provides an excellent opportunity to apply GIS spatial analysis techniques for evaluation of slope stability. In this area, swath bathymetric mapping shows seafloor morphology and distribution of slope steepness in fine detail, and sediment analysis of over 70 box cores delineates the variability of sediment density near the seafloor surface. Based on the results of ten geotechnical studies of submarine study areas, we developed an algorithm that relates surface sediment density to the shear strength appropriate to the type of cyclic loading produced by an earthquake. Strength and stress normalization procedures provide results that are conceptually independent of subbottom depth. Results at depth are rigorously applicable if sediment lithology does not vary significantly and consolidation state can be estimated. Otherwise, the method applies only to shallow-seated slope failure. Regional density, slope, and level of anticipated seismic shaking information were combined in a GIS framework to yield a map that illustrates the relative stability of slopes in the face of seismically induced failure. When a measure of predicted relative slope stability is draped on an oblique view of swath bathymetry, a variation in this slope stability is observed on an otherwise smooth slope along the mid-slope region north of a plunging anticline. The section of slope containing diffuse, pockmarked gullies has a lower measure of stability than a separate section containing gullies that have sharper boundaries and somewhat steeper sides. Such an association suggests that our slope-stability analysis relates to the stability of the gully sides. The remainder of the

  10. Instrumentation for slope stability -- Experience from an urban area

    SciTech Connect

    Flentje, P.; Chowdhury, R.

    1999-07-01

    This paper describes the monitoring of several existing landslides in an urban area near Wollongong in the state of New South Wales, Australia. A brief overview of topography and geology is given and reference is made to the types of slope movement, processes and causal factors. Often the slope movements are extremely slow and imperceptible to the eye, and catastrophic failures are quite infrequent. However, cumulative movements at these slower rates do, over time, cause considerable distress to structures and disrupt residential areas and transport routes. Inclinometers and piezometers have been installed at a number of locations and monitoring of these has been very useful. The performance of instrumentation at different sites is discussed in relation to the monitoring of slope movements and pore pressures. Interval rates of inclinometer shear displacement have been compared with various periods of cumulative rainfall to assess the relationships.

  11. Stability Calculation Method of Slope Reinforced by Prestressed Anchor in Process of Excavation

    PubMed Central

    Li, Zhong; Wei, Jia; Yang, Jun

    2014-01-01

    This paper takes the effect of supporting structure and anchor on the slope stability of the excavation process into consideration; the stability calculation model is presented for the slope reinforced by prestressed anchor and grillage beam, and the dynamic search model of the critical slip surface also is put forward. The calculation model of the optimal stability solution of each anchor tension of the whole process is also given out, through which the real-time analysis and checking of slope stability in the process of excavation can be realized. The calculation examples indicate that the slope stability is changed with the dynamic change of the design parameters of anchor and grillage beam. So it is relatively more accurate and reasonable by using dynamic search model to determine the critical slip surface of the slope reinforced by prestressed anchor and grillage beam. Through the relationships of each anchor layout and the slope height of various stages of excavation, and the optimal stability solution of prestressed bolt tension design value in various excavation stages can be obtained. The arrangement of its prestressed anchor force reflects that the layout of the lower part of bolt and the calculation of slope reinforcement is in line with the actual. These indicate that the method is reasonable and practical. PMID:24683319

  12. Current slope-stability studies in the San Francisco Bay region

    USGS Publications Warehouse

    Nilsen, Tor H.; Brabb, Earl E.

    1973-01-01

    An extensive program of slope-stability studies is presently underway in the San Francisco Bay region, California. Work to date has resulted in the publication of estimates of landslide damage, an estimated-landslide-abundance map of the region, new slope maps prepared by photomechanical processes, photointerpretive maps of landslide, colluvial, and other surficial deposits, and maps of relative slope stability. These studies indicate that landsliding is a major slope-erosion process in the region, that the damage resulting from landsliding is very great, and that additional development in the upland parts of the region should not be undertaken without careful evaluation of slope stability.

  13. How does slope form affect erosion in CATFLOW-SED?

    NASA Astrophysics Data System (ADS)

    Gabelmann, Petra; Wienhöfer, Jan; Zehe, Erwin

    2016-04-01

    Erosion is a severe environmental problem in agro-ecosystems with highly erodible loess soils. It is controlled by various factors, e.g. rainfall intensity, initial wetness conditions, soil type, land use and tillage practice. Furthermore slope form and gradient have been shown to influence erosion amounts to a large extent. Within the last fifty years, various erosion models have been developed to describe the erosion process, estimate erosion amounts and identify erosion-prone areas. These models differ in terms of complexity, the processes which are considered, and the data required for model calibration and they can be categorised into empirical or statistical, conceptual, and physically-based models. CATFLOW-SED is a process-based hydrology and erosion model that can operate on catchment and hillslope scales. Soil water dynamics are described by the Richards equation including effective approaches for preferential flow. Evapotranspiration is simulated using an approach based on the Penman-Monteith equation. The model simulates overland flow using the diffusion wave equation. Soil detachment is related to the attacking forces of rainfall and overland flow, and the erosion resistance of soil. Sediment transport capacity and sediment deposition are related to overland flow velocity using the equation of Engelund and Hansen and the sinking velocity of grain sizes respectively. We performed a study to analyse the erosion process on different virtual hillslopes, with varying slope gradient and slope form, using the CATFLOW-SED model. We explored the role of landform on erosion and sedimentation, particularly we look for forms that either maximise or minimise erosion. Results indicate the importance to performing the process implementation within physically meaningful limits and choose appropriate model parameters respectively.

  14. Role of slope stability in cumulative impact assessment of hydropower development: North Cascades, Washington

    SciTech Connect

    Lee, R.R.; Staub, W.P.

    1993-08-01

    Two environmental assessments considered the potential cumulative environmental impacts resulting from the development of eight proposed hydropower projects in the Nooksack River Basin and 11 proposed projects in the Skagit River Basin, North Cascades, Washington, respectively. While not identified as a target resource, slope stability and the alteration of sediment supply to creeks and river mainstems significantly affect other resources. The slope stability assessment emphasized the potential for cumulative impacts under disturbed conditions (e.g., road construction and timber harvesting) and a landslide-induced pipeline rupture scenario. In the case of small-scale slides, the sluicing action of ruptured pipeline water on the fresh landslide scarp was found to be capable of eroding significantly more material than the original landslide. For large-scale landslides, sluiced material was found to be a small increment of the original landslide. These results predicted that hypothetical accidental pipeline rupture by small-scale landslides may result in potential cumulative impacts for 12 of the 19 projects with pending license applications in both river basins. 5 refs., 2 tabs.

  15. Landslides and slope stability evaluation in the historical town of Kruja, Albania

    NASA Astrophysics Data System (ADS)

    Muceku, Y.; Korini, O.

    2013-07-01

    This paper describes the landslides and slope stability evaluation in the urban area of Kruja town, Albania. Kruja is a~historical and heritage center, due to the existence of many important cultural monuments including Skanderbeg castle and Bazaar square etc. The urban area of Kruja town has been affected from the Landslides effects, in the past and also present. From this phenomenon many engineering objects such as buildings, roads etc. are damaged and demolished. From the engineering geological mapping at scale 1 : 5000 it is observed that many active landslides have dramatically increased in activity after 1980s. The landslide types found in the studied area are earth slides, debris flow, as well as rock fall and rock rolling. Also, from field works and laboratory analysis, the slope stability of whole urban areas has been determined; for this purpose the studied zone is divided into the stable and unstable areas, which helps to better understand the mass movement's activity as one of the most harmful hazards of the geodynamics' phenomena.

  16. Landslide and slope stability evaluation in the historical town of Kruja, Albania

    NASA Astrophysics Data System (ADS)

    Muceku, Y.; Korini, O.

    2014-03-01

    This paper describes landslides and slope stability evaluation in the urban area of Kruja, Albania. Kruja is a historical and heritage center, due to the existence of many important cultural monuments, including "Skanderbeg" castle and Bazaar square, etc. The urban area of Kruja has been affected by landslide effects, in the past and also the present. From this phenomenon many engineering objects such as buildings, roads, etc., are damaged and demolished. From engineering geological mapping at scale 1:5000 it is observed that many active landslides have dramatically increased in activity since the 1980s. The landslide types found in the studied area are earthslides, debris flow, as well as rockfall and rock rolling. Also, from field works and laboratory analysis, the slope stability of the whole urban area has been determined; for this purpose the studied zone is divided into stable and unstable areas, which helps to better understand mass movement activity as one of the most harmful hazards of geodynamic phenomena.

  17. Long term adjustment of canopy root depth and strength: Implications catchment hydrology and slope stability

    NASA Astrophysics Data System (ADS)

    Hales, T. C.; Taehee, H.; Band, L.; Vose, J.

    2007-12-01

    The species composition of southern Appalachian forests is changing rapidly due to fire suppression, residential expansion and introduced parasites, such as the woody adelgid. Changes in the distribution and age of tree and understory species cause changes in rooting characteristics and therefore the stability of slopes. Roots increase soil cohesive strength and fail in tension during debris flows. The amount of root reinforcement to the soil mass is dependent on the number, size and tensile strength of the roots. We have characterized how changes in the composition of southern Appalachian forests, particularly the expansion of Rhododenron maximum due to fire suppression, may affect the potential for slope failure. We measured the vertical distribution and tensile strength of roots for fifteen individual trees and two mixed species locations in the Coweeta Hydrological Laboratory, North Carolina. The individual pits were chosen to capture variations in species (10 species total), topographic position (nose, side slope, hollow), and age (a range of DBH between 5 cm and 60 cm). Root tensile strengths from different hardwood species were very similar, while rhododendron, a woody shrub, has considerably weaker roots. Roots are concentrated close to the soil surface (at least 70% of biomass occurs within 50 cm of the surface) and variations in this pattern occur primarily as a function of age. R. maximum roots are shallower and weaker than tree roots, which when coupled with low transpiration rates, lowers the total cohesive strength and makes them susceptible to high pore pressure events. We have investigated the potential for mapping R. maximum based on the ratio of near-infrared to red within leaf-off color infrared images. When we combine the remotely-sensed distribution of R. maximum with the root cohesion data from individual pits, we can produce a realistic spatial distribution of root cohesion for southern Appalachian forests. The spatial distribution of root

  18. Application of soil nails to the stability of mine waste slopes

    SciTech Connect

    Tant, C.R.; Drumm, E.C.; Mauldon, M.; Berry, R.M.

    1996-12-31

    The traditional soil nailed structure incorporates grouted or driven nails, and a wire mesh reinforced shotcrete facing to increase the stability of a slope or wall. This paper describes the construction and monitoring of a full-scale demonstration of nailing to stabilize coal mine spoil. The purpose of the investigation is to evaluate the performance of nailed slopes in mine spoil using methods proven for the stabilization of soil walls and slopes. The site in eastern Tennessee is a 12 meter high slope of dumped fill, composed of weathered shale chips, sandstone, and coal. The slope was formed by {open_quotes}pre-regulatory{close_quotes} contour surface mining operations and served as a work bench during mining. The material varies in size from silt to boulders, and has a small amount of cohesion. Portions of the mine spoil slope have experienced slope instability and erosion which have hampered subsequent reclamation activities. Three different nail spacings and three different nail lengths were used in the design. The 12 meter high structure is instrumented to permit measurement of nail strain, and vertical inclinometer readings and survey measurements will be used for the detection of ground movement. The results of this study will aid in the development of design recommendations and construction guidelines for the application of soil nailing to stabilize mine spoil.

  19. Geotechnical characteristics and slope stability on the Ebro margin, western Mediterranean

    USGS Publications Warehouse

    Baraza, J.; Lee, H.J.; Kayen, R.E.; Hampton, M.A.

    1990-01-01

    Sedimentological and geotechnical analyses of core samples from the Ebro continental slope define two distinct areas on the basis of sediment type, physical properties and geotechnical behavior. The first area is the upper slope area (water depths of 200-500 m), which consists of upper Pleistocene prodeltaic silty clay with a low water content (34% dry weight average), low plasticity, and high overconsolidation near the seafloor. The second area, the middle and lower slope (water depths greater than 500 m), contains clay- and silt-size hemipelagic deposits with a high water content (90% average), high plasticity, and a low to moderate degree of overconsolidation near the sediment surface. Results from geotechnical tests show that the upper slope has a relatively high degree of stability under relatively rapid (undrained) static loading conditions, compared with the middle and lower slopes, which have a higher degree of stability under long-term (drained) static loading conditions. Under cyclic loading, which occurs during earthquakes, the upper slope has a higher degree of stability than the middle and lower slopes. For the surface of the seafloor, calculated critical earthquake accelerations that can trigger slope failures range from 0.73 g on the upper slope to 0.23 g on the lower slope. Sediment buried well below the seafloor may have a critical acceleration as low as 0.09 g on the upper slope and 0.17 g on the lower slope. Seismically induced instability of most of the Ebro slope seems unlikely given that an earthquake shaking of at least intensity VI would be needed, and such strong intensities have never been recorded in the last 70 years. Other cyclic loading events, such as storms or internal waves, do not appear to be direct causes of instability at present. Infrequent, particularly strong earthquakes could cause landslides on the Ebro margin slope. The Columbretes slide on the southwestern Ebro margin may have been caused by intense earthquake shaking

  20. Application and analysis of anchored geosynthetic systems for stabilization of abandoned mine land slopes

    SciTech Connect

    Vitton, S.J.; Whitman, F.; Liang, R.Y.; Harris, W.W.

    1996-12-31

    An anchored geosynthetic system (AGS) was used in the remediation of a landslide associated with an abandoned coal mine located near Hindman, Kentucky. In concept, AGS is a system that provides in-situ stabilization of soil slopes by combining a surface-deployed geosynthetic with an anchoring system of driven reinforcing rods similar to soil nailing. Installation of the system of driven reinforcing rods similar to soil nailing. Installation of the system involves tensioning a geosynthetic over a slope`s surface by driving anchors through the geosynthetic at a given spacing and distance. By tensioning the geosynthetic over the slope`s surface, a compressive load is applied to the slope. Benefits of AGS are described to include the following: (1) increase soil strength due to soil compression including increased compressive loading on potential failure surfaces, (2) soil reinforcement through soil nailing, (3), halt of soil creep, (4) erosion control, and (5) long term soil consolidation. Following installation of the AGS and one year of monitoring, it was found that the anchored geosynthetic system only provided some of the reported benefits and in general did not function as an active stabilization system. This was due in part to the inability of the system to provide and maintain loading on the geosynthetic. The geosynthetic, however, did tension when slope movement occurred and prevented the slope from failing. Thus, the system functioned more as a passive restraint system and appeared to function well over the monitoring period.

  1. OBSERVED STABILITY OF NATURAL AND REINFORCED SLOPES DURING THE 2008 WENCHUAN EARTHQUAKE

    NASA Astrophysics Data System (ADS)

    Guo, Deping; Hamada, Masanori

    The 2008 Wenchuan earthquake with a surface wave magnitude of 8.0 induced numerous landslides along the Longmen Mt. zone in Sichuan Province of China. The authors investigated into various influential factors on the slope stability of 119 landslides in Wenchuan prefecture, such as horizontal peak ground acceleration, slope angle, slope height, rock materials and geological structures. The authors developed hanging wall and footwall's acceleration attenuation formulae from 115 seismic stations and the formulae confirmed hanging-foot wall effect had notable influence on landslide distribution density and occurrence probability. The results of multivariable analysis clarified that slope height, horizontal peak ground acceleration and geological structures were more influential to sliding area and volume than slope angle and rock materials. Furthermore, the authors discussed the effectiveness of reinforcements on the slope stability and showed that anchor cable, frame beam and soil nailing wall had good anti-seismic property, however, shotcrete with bolts had limited ability to enhance slope stability during the earthquake.

  2. Root profile modeling as a link between ecohydrology and slope stability

    NASA Astrophysics Data System (ADS)

    Tron, S.; Dani, A.; Laio, F.; Preti, F.; Ridolfi, L.

    2012-04-01

    The vertical plant-root distribution within the soil is strongly affected by the hydrological and pedological characteristics of a site. In turn, the root profile influences the stability of a slope through the root anchorage to deeper layers and consequent soil reinforcement. The purpose of this study is to determine an approximated root profile by means of simple ecohydrological model and, hence, to provide a preliminary estimate of the conditions triggering instability in vegetated slopes. We assume that the root density decreases exponentially with parameters depending on climatic and pedologic descriptors. The required variables are the mean rate and the depth of precipitations events, the potential transpiration rate and the hydraulic characteristics of the soil. We use the Curve Number SCS method to account for precipitation losses - or reinfiltration effects - due to surface runoff, which can be relevant over hillslopes. Once obtained the mean root profile over a vegetated area, we use it to estimate the additional cohesion factor given by roots at different soil depths. Then, using an infinite slope model that considers root cohesion, we calculate the safety factor of vegetated slopes as a function of soil depth. This framework allows one to preliminarily assess the landslide risk on vegetated areas according to climatic and pedologic informations which are quite readily available. This framework has been applied to a case study in Tuscany (Italy), where measured root profiles over 18 vegetated slopes are available. The aim of the work is twofold: to compare the root profile obtained with the ecohydrological model with the measured one, and to verify if the slope stability model (with the theoretical root profile as a forcing factor) provides consistent estimates of the soil depth where instability occurs. As mentioned, the model requires climatic and pedologic parameters. The soil parameters have been measured in each landslide site; the climatic

  3. Quantitative correlation of rainfall and earth surface displacements for slope stability studies

    NASA Astrophysics Data System (ADS)

    Steiakakis, Chrysanthos; Agioutantis, Zacharias; Apostolou, Evangelia; Papavgeri, Georgia; Tripolitsiotis, Achilleas

    2015-06-01

    It is common sense that the possibility of a rockfall increases after an intense rainfall and it is well documented that rainfalls accelerate earth surface displacements such as landslides and rockfalls. This qualitative correlation is highly affected by the geology and climate condition of the area under consideration. The research project entitled "Development of an integrated system for rockfall identification in highways", funded by the Operational Program Competitiveness and Entrepreneurship (co-funded by the European Regional Development Fund (ERDF)) aims to develop an operational system for early warning of rockfalls that occur along transportation corridors. To accomplish this goal the influence and the time gap between triggering mechanisms and rockfall incidents is investigated. In this work, previous studies towards quantitative correlation of rainfall magnitude and earth surface displacements are briefly presented. Based on these works, and taking into account that rockfall incidents, in the majority of Mediterranean countries, are not well-documented, data obtained by a slope stability monitoring network are used to quantitatively determine the magnitude of the rainfall that caused the slope's movement.

  4. 75 FR 65366 - Recovery Policy RP9524.2, Landslides and Slope Stability Related to Public Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... SECURITY Federal Emergency Management Agency Recovery Policy RP9524.2, Landslides and Slope Stability... Slope Stability Related to Public Facilities, which is being issued by the Federal Emergency Management... eligibility of emergency work to protect eligible facilities threatened by landslides or slope failures;...

  5. Texas lignite mining: Groundwater and slope stability control in the nineties and beyond

    SciTech Connect

    Lawrence J.

    1997-12-31

    As lignite mining in Texas approaches and exceeds depths of 200 feet below ground level, rising costs demand that innovative mining approaches be used in order to maintain the economic viability of lignite mining. Groundwater and slope stability problems multiply at these depths, resulting in increasing focus on how to control these costs. Dewatering costs are consistently rising for the lignite industry, as deeper mining encounters more and larger saturated sand bodies. These sands require dewatering in order to improve slope stability. Planning and analysis become more important as the number of wells grows beyond what can be managed with a simple {open_quotes}cookie-cutter{close_quotes} approach. Slope stability plays an increasing role in mining concerns as deeper lignite is recovered. Slope stability causes several problems, including loss of lignite, increased rehandle, and hazards to personnel and equipment. Traditional lignite mine planning involved a fairly {open_quotes}generic{close_quotes} pit design with one design highwall angle, one design spoil angle, and little geotechnical evaluation of the deposit. This {open_quotes}one mine-one design{close_quotes} approach, while cost-effective in the past, is now being replaced by a more critical analysis of the design requirements of each area. Geotechnical evaluation plays an increasing role in the planning and operational aspects of lignite mining. Laboratory core sample test results can be used for slope stability modeling, in order to obtain more accurate design and operational information.

  6. [Composition and stability of soil aggregates in hedgerow-crop slope land].

    PubMed

    Pu, Yu-Lin; Lin, Chao-Wen; Xie, De-Ti; Wei, Chao-Fu; Ni, Jiu-Pai

    2013-01-01

    Based on a long-term experiment of using hedgerow to control soil and water loss, this paper studied the composition and stability of soil aggregates in a hedgerow-crop slope land. Compared with those under routine contour cropping, the contents of > 0.25 mm soil mechanical-stable and water-stable aggregates under the complex mode hedgerow-crop increased significantly by 13.3%-16.1% and 37.8% -55.6%, respectively. Under the complex mode, the contents of > 0.25 mm soil water-stable aggregates on each slope position increased obviously, and the status of > 0.25 mm soil water-stable aggregates being relatively rich at low slope and poor at top slope was improved. Planting hedgerow could significantly increase the mean mass diameter and geometric mean diameter of soil aggregates, decrease the fractal dimension of soil aggregates and the destruction rate of > 0.25 mm soil aggregates, and thus, increase the stability and erosion-resistance of soil aggregates in slope cropland. No significant effects of slope and hedgerow types were observed on the composition, stability and distribution of soil aggregates.

  7. The Effects of Differing Sequences of Earthquake Ground-Shaking on Coseismic Slope Stability

    NASA Astrophysics Data System (ADS)

    Brain, M.; Rosser, N. J.; Vann Jones, E. C.; Tunstall, N.

    2015-12-01

    Studies of earthquake-induced landsliding typically consider slope stability during high-magnitude ground shaking events only. During such events, downslope movement of the landslide mass occurs when seismic ground accelerations are sufficient to overcome shear resistance at the landslide shear surface. This approach does not consider the potential effects that sequences of low-magnitude ground shaking events can have on material strength and, hence, coseismic slope stability. Since such events are more common in nature relative to high-magnitude shaking events, it is important to constrain their geomorphic effectiveness. Using an experimental laboratory approach, we present results that address this key issue. We used a bespoke geotechnical testing apparatus, the Dynamic Back-Pressured Shear Box, that permits realistic simulation of earthquake ground-shaking conditions within a hillslope. We tested both cohesive and granular materials that displayed ductile behaviour under standard strain-controlled monotonic shear tests. We applied dynamic stresses of varying amplitude, frequency and sequence, and monitored the resultant strain response to determine which factors, when combined, created notable deviations from standard monotonic shear behaviour. We observed that multiple dynamic stress/shaking events that are largely insufficient to cause large strains (and hence are conventionally deemed geomorphologically ineffective) can affect material stiffness such that the future behaviour of the sediment/landslide differs considerably from that observed in standard monotonic shear tests. In other words, low-magnitude ground shaking events can be effective precursory geomorphic processes. Critically, the sequence of ground-shaking events is an important control; where shaking conditions cause progressive densification of sediment, the frictional strength of the material subsequently increases. In turn, the resultant strain response to high-magnitude ground shaking events

  8. Effect of gas hydrates melting on seafloor slope stability

    NASA Astrophysics Data System (ADS)

    Sultan, N.; Cochonat, P.; Foucher, J. P.; Mienert, J.; Haflidason, H.; Sejrup, H. P.

    2003-04-01

    Henriet, J.-P.; Mienert, J. (Ed.): Gas hydrates: relevance to world margin stability and climate change. Geological Society Special Publication, 137. The Geological Society: London, UK, p. 267-274. Handa,Y.P., 1989. Effect of Hydrostatic Pressure and Salinity on the Stability of Gas Hydrates. J.Phys.Chem., Vol.94, p.2652-2657. Henry, P., Thomas, M.; Clennell, M.B., 1999. Formation of Natural Gas Hydrates in Marine Sediments 2. Thermodynamic Calculations of Stability Conditions in Porous Sediments,” J. Geophys. Res., 104, p. 23005. Sloan, E.D. Jr., 1998. Clathrate hydrates of natural gases. Marcel Dekker Inc., 2nd edition, New York, pp. 705. Soave G, 1972. Equilibrium

  9. Monitoring and stability analysis for characterization of the unsaturated slope at a mine waste dump

    NASA Astrophysics Data System (ADS)

    Cho, Yong-Chan; Song, Young-Suk

    2015-04-01

    In Korea, a shallow slope failure often occurs due to the effect of wetting front to the critical depth by infiltration of rainfall. This failure is mostly triggered by a decrease of shear strength as a process of reducing matric suction induced by the water infiltration after rainfall. To monitor the unsaturated slope at a mine waste dump, a monitoring system for characteristics of the unsaturated slope was installed at a disposal site of mine waste dump in Imgi mine located in Busan, Korea. The tensiometers, piezometrs, and TDR sensors were installed at three different depths under the ground surface. The monitoring was carried out from July 2013 to November 2014 at this site. The maximum daily rainfall during the monitoring period was 234 mm and the maximum hourly rainfall was 87.5 mm/h. The change of volumetric water content of soil showed the tendency to an increase after rainfall by water infiltration and to a gradual decline in the dry season with the most distinguished changes at 0.5 m below the ground surface. The increase of volumetric water content started to increase when the rainfall intensity was 10 mm/h or higher. The matric suction of unsaturated soil increased after rainfall and decreased back in the dry season. The variation of matric suction is the smaller near the surface and a larger variation was observed at the deeper subsurface. For the highest rainfall events, SEEP/W and SLOPE/W simulations were performed and the results showed that the minimum slope stability was calculated as 1.67 and the depth of failure was estimated as 1.5 m after the rainfall event has ended. During the rainy, the slope stability decreased over time until it was reached to 1.59 and the slope stability started to gradually increase when the rainfall has ended. This gradual increase of slope stability seems to be attributed to the increase of effective stress of soil induced by the change of soil from saturated to unsaturated condition, resulting in the increase of

  10. Deciphering large landslides: linking hydrological, groundwater and slope stability models through GIS

    NASA Astrophysics Data System (ADS)

    Miller, Daniel J.; Sias, Joan

    1998-05-01

    Large landslides can deliver substantial volumes of sediment to river channels, with potentially adverse consequences for water quality and fish habitat. When planning land use activities, it is important both to consider the risks posed by landslides and to account for the effects of land use on rates of landslide movement. Of particular interest in the Pacific Northwest are the effects of timber harvest in groundwater recharge areas of landslides. Because of variability between sites, and variability over time in precipitation and other natural environmental factors affecting landslide behaviour, empirical data are usually insufficient for making such determinations. We describe here the use of simple numerical models of site hydrology, groundwater flow and slope stability for estimating the effects of timber harvest on the stability of the Hazel Landslide in northwestern Washington State. These effects are examined relative to those of river bank erosion at the landslide toe. The data used are distributed in time and space, as are the model results. A geographical information system (GIS) provides an efficient framework for data storage, transfer and display. Coupled with process-based numerical models, a GIS provides an effective tool for site-specific analysis of landslide behaviour.

  11. Parameterization experiments performed via synthetic mass movements prototypes generated by 3D slope stability simulator

    NASA Astrophysics Data System (ADS)

    Colangelo, Antonio C.

    2010-05-01

    The central purpose of this work is to perform a reverse procedure in the mass movement conventional parameterization approach. The idea is to generate a number of synthetic mass movements by means of the "slope stability simulator" (Colangelo, 2007), and compeer their morphological and physical properties with "real" conditions of effective mass movements. This device is an integrated part of "relief unity emulator" (rue), that permits generate synthetic mass movements in a synthetic slope environment. The "rue" was build upon fundamental geomorphological concepts. These devices operate with an integrated set of mechanical, geomorphic and hydrological models. The "slope stability simulator" device (sss) permits to perform a detailed slope stability analysis in a theoretical three dimensional space, by means of evaluation the spatial behavior of critical depths, gradients and saturation levels in the "potential rupture surfaces" inferred along a set of slope profiles, that compounds a synthetic slope unity. It's a meta-stable 4-dimensional object generated by means of "rue", that represents a sequence evolution of a generator profile applied here, was adapted the infinite slope model for slope. Any slope profiles were sliced by means of finite element solution like in Bishop method. For the synthetic slope systems generated, we assume that the potential rupture surface occurs at soil-regolith or soil-rock boundary in slope material. Sixteen variables were included in the "rue-sss" device that operates in an integrated manner. For each cell, the factor of safety was calculated considering the value of shear strength (cohesion and friction) of material, soil-regolith boundary depth, soil moisture level content, potential rupture surface gradient, slope surface gradient, top of subsurface flow gradient, apparent soil bulk density and vegetation surcharge. The slope soil was considered as cohesive material. The 16 variables incorporated in the models were analyzed for

  12. Analysis of slope stability, Wilmington to Lindenkohl Canyons, US mid-Atlantic margin

    SciTech Connect

    Almagor, G.; Bennett, R.H.; Lambert, D.N.; Forde, E.B.; Shephard, L.E.

    1984-01-01

    The continental slope gradient in the study area averages 7 to 8/sup 0/. Many valleys, canyons, and occasionally large sediment slumped masses occur. Moderate to steep slopes (19 to 27/sup 0/) as well as very steep to precipitous slopes (> 27/sup 0/) are abundant and occupy about 7% of the investigated area. The surficial sediments are predominantly terrigenous silty clays of medium to high plasticity (I/sub p/ = 10 to 35% w/sub L/ = 30 to 70%), but contain varying quantities of sands. Angles of internal friction are anti phi/sub d/ = 27 to 32/sup 0/, anti phi/sub cu/ = 30 to 33/sup 0/, and phi/sub cu/ = 14 to 17/sup 0/. The sediments are normally to slightly overconsolidated, but some unconsolidated sediments also were identified. c/sub u//anti p/sub 0/ values range from 0.12 to 0.78. An analysis of force equilibrium within the sediments reveals that (a) the gentle slopes in the study area are mostly stable; (b) that the stability of some steep slopes (19 to 27/sup 0/) is marginal; and (c) that on precipitous slopes (> 27/sup 0/) only a thin veneer of sediments can exist. Observations of these slopes during steep dives support these results. The analysis shows that additional accumulation of sediments and small shocks caused by earthquakes or internal waves can cause the slopes to fail. Collapse resulting from liquefaction in the uppermost slope along the canyons and valley axes, where fine sands and silt accumulate, also is likely. 22 references, 9 figures, 2 tables.

  13. Slope stability and landslides in proglacial varved clays of western Estonia

    NASA Astrophysics Data System (ADS)

    Kohv, Marko; Talviste, Peeter; Hang, Tiit; Kalm, Volli; Rosentau, Alar

    2009-05-01

    During the last decade the frequency of landslides at river valley slopes eroding into the glaciolacustrine plain in western Estonia has grown considerably. We studied in detail nine recent landslides out of 25 known and recorded sliding events in the area. All landslides occurred at the river banks in otherwise almost entirely flat areas of proglacial deposits capped with marine sands. Glaciolacustrine varved clay is the weakest soil type in the area and holds the largest landslides. Slope stability modelling shows that critical slope gradient for the clay is ≥ 10° and for the marine sand ≥ 20°. Fluvial erosion is the main process in decreasing slope stability at the outer bends of the river meanders. An extra shear stress generated by groundwater flow following the high stand of the groundwater level or rapid water level drawdown in the river channels are responsible for triggering the landslides. Consecutive occurrence of small-scale slides has a direct effect in triggering the large, retrogressive complexes of slides in the glaciolacustrine clay. A landslide hazard zonation map was composed based on digital elevation model and the data on spatial distribution of glaciolacustrine clays and marine sands, and on existing and critical slope angles of these deposits.

  14. A nomogram for interpreting slope stability of fine-grained deposits in modern and ancient-marine environments.

    USGS Publications Warehouse

    Booth, J.S.; Sangrey, D.A.; Fugate, J.K.

    1985-01-01

    This nomogram was designed to aid in interpreting the causes of mass movement in modern and ancient settings, to provide a basis for evaluating and predicting slope stability under given conditions and to further the understanding of the relationships among the several key factors that control slope stability. Design of the nomogram is based on effective stress and combines consolidation theory as applicable to depositional environments with the infinite-slope model of slope-stability analysis. If infinite-slope conditions are assumed to exist, the effective overburden stress can be used to derive a factor of safety against static slope failure by using the angle of internal friction and the slope angle. -from Authors

  15. Slope Stability Analysis In Seismic Areas Of The Northern Apennines (Italy)

    SciTech Connect

    Lo Presti, D.; Fontana, T.; Marchetti, D.

    2008-07-08

    Several research works have been published on the slope stability in the northern Tuscany (central Italy) and particularly in the seismic areas of Garfagnana and Lunigiana (Lucca and Massa-Carrara districts), aimed at analysing the slope stability under static and dynamic conditions and mapping the landslide hazard. In addition, in situ and laboratory investigations are available for the study area, thanks to the activities undertaken by the Tuscany Seismic Survey. Based on such a huge information the co-seismic stability of few ideal slope profiles have been analysed by means of Limit equilibrium method LEM - (pseudo-static) and Newmark sliding block analysis (pseudo-dynamic). The analysis--results gave indications about the most appropriate seismic coefficient to be used in pseudo-static analysis after establishing allowable permanent displacement. Such indications are commented in the light of the Italian and European prescriptions for seismic stability analysis with pseudo-static approach. The stability conditions, obtained from the previous analyses, could be used to define microzonation criteria for the study area.

  16. Reinforcement of Tree Root and Non-frame Method in Slope Stabilization

    NASA Astrophysics Data System (ADS)

    Naoto, I.; Quang, N. Minh

    2009-04-01

    A root fiber can nail a slipping soil mass into the bedrock and thus can increase slope stability. The reinforcement of root fibers is considered as the resultant of tension and shear reinforces occurred in the cross section of root at slip surface. The shear force and bending moment of a deformed root directly prevent against the displacement of unstable soil mass while the tension force increase the friction force between unstable soil and bed rock. Longer displacement of slope causes larger deformation and thus causes larger reinforcement of tree root. In other side, larger root reinforcement results in more slope stability. The reinforcement of tree root and displacement of slipping soil mass depending on each other is the reinforcement mechanism of tree root in a landslide. The mechanism of tree root reinforcement is considered in developing a new soil nail method named Non-frame. By conducting a number of experiments of soil nail stabilizing slope, the alteration process of root reinforcement was performed in various conditions of rainfall and earthquake.

  17. Experimental test of theory for the stability of partially saturated vertical cut slopes

    USGS Publications Warehouse

    Morse, Michael M.; Lu, N.; Wayllace, Alexandra; Godt, Jonathan W.; Take, W.A.

    2014-01-01

    This paper extends Culmann's vertical-cut analysis to unsaturated soils. To test the extended theory, unsaturated sand was compacted to a uniform porosity and moisture content in a laboratory apparatus. A sliding door that extended the height of the free face of the slope was lowered until the vertical cut failed. Digital images of the slope cross section and upper surface were acquired concurrently. A recently developed particle image velocimetry (PIV) tool was used to quantify soil displacement. The PIV analysis showed strain localization at varying distances from the sliding door prior to failure. The areas of localized strain were coincident with the location of the slope crest after failure. Shear-strength and soil-water-characteristic parameters of the sand were independently tested for use in extended analyses of the vertical-cut stability and of the failure plane angle. Experimental failure heights were within 22.3% of the heights predicted using the extended theory.

  18. The effects of the mineral phase on C stabilization mechanisms and the microbial community along an eroding slope transect

    NASA Astrophysics Data System (ADS)

    Doetterl, S.; Opfergelt, S.; Cornelis, J.; Boeckx, P. F.; van oost, K.; Six, J.

    2013-12-01

    An increasing number of studies show the importance of including soil redistribution processes in understanding carbon (C) dynamics in eroding landscapes. The quality and quantity of soil organic carbon in sloping cropland differs with topographic position. These differences are commonly more visible in the subsoil, while the size and composition of topsoil C pools are similar along the hillslope. The type (plant- or microbial-derived) and quality (level of degradation) of C found in a specific soil fraction depends on the interplay between the temporal dynamic of the specific mechanism and it's strength to protect C from decomposition. Here, we present an analysis that aims to clarify the bio/geo-chemical and mineralogical components involved in stabilizing C at various depths and slope positions and how they affect the microbial community and the degradation of C. For this we analyzed soil samples from different soil depths along a slope transect applying (i) a sequential extraction of the reactive soil phase using pyrophosphate, oxalate and dithionite-citrate-bicarbonate, (ii) a semi-quantitative and qualitative analysis of the clay mineralogy, (iii) an analysis of the microbial community using amino sugars and (iv) an analysis of the level of degradation of C in different soil fractions focusing on the soil Lignin signature. The results show that the pattern of minerals and their relative importance in stabilizing C varies greatly along the transect. In the investigated soils, pyrophosphate extractable Manganese, and not Iron or Aluminum as often observed, is strongly correlated to C in the bulk soil and in the non-aggregated silt and clay fractions. This suggests a certain role of Manganese for C stabilization where physical protection is absent. In contrast, pyrophosphate extractable Iron and Aluminum components are largely abundant in water-stable soil aggregates but not correlated to C, suggesting importance of these extracts to stabilize aggregates and

  19. Evidence for Holocene stability of steep slopes, northern Peruvian Andes, based on soils and radiocarbon dates

    USGS Publications Warehouse

    Miller, D.C.; Birkeland, P.W.; Rodbell, D.T.

    1993-01-01

    Radiocarbon dating and soil relationships indicate that landscapes in highaltitude glaciated valleys of the northern Peruvian Andes have been remarkably stable during the Holocene. Radiocarbon dates show that deglaciation was underway by 12 ka, and that slopes and alluvial fans at the bases of slopes were essentially stabilized by at least 8 ka. The soils consist of fine-grained loessial A horizons overlying Bw horizons in gravelly till or alluvial-fan gravel. Following deglaciation, widespread gullying took place in till on the steep (maximum angle: 37??) sideslopes of most valleys; the eroded material was deposited as fans at the bases of the slopes. Loess was then deposited as a fairly uniform blanket across most elements of the landscape. Soil formation began during or following loess deposition, and because soil-profile morphology is sufficiently similar at most sites, soil formation has been a dominant process during much of the Holocene. This remarkable stability, especially for such steep slopes, is attributed to a combination of tight packing of the till, permeability of the capping loess, rapid revegetation following ice retreat, and roots from the present grassland vegetation and possibly former forests. ?? 1993.

  20. SLOPE STABILITY EVALUATION AND EQUIPMENT SETBACK DISTANCES FOR BURIAL GROUND EXCAVATIONS

    SciTech Connect

    MCSHANE DS

    2010-03-25

    After 1970 Transuranic (TRU) and suspect TRU waste was buried in the ground with the intention that at some later date the waste would be retrieved and processed into a configuration for long term storage. To retrieve this waste the soil must be removed (excavated). Sloping the bank of the excavation is the method used to keep the excavation from collapsing and to provide protection for workers retrieving the waste. The purpose of this paper is to document the minimum distance (setback) that equipment must stay from the edge of the excavation to maintain a stable slope. This evaluation examines the equipment setback distance by dividing the equipment into two categories, (1) equipment used for excavation and (2) equipment used for retrieval. The section on excavation equipment will also discuss techniques used for excavation including the process of benching. Calculations 122633-C-004, 'Slope Stability Analysis' (Attachment A), and 300013-C-001, 'Crane Stability Analysis' (Attachment B), have been prepared to support this evaluation. As shown in the calculations the soil has the following properties: Unit weight 110 pounds per cubic foot; and Friction Angle (natural angle of repose) 38{sup o} or 1.28 horizontal to 1 vertical. Setback distances are measured from the top edge of the slope to the wheels/tracks of the vehicles and heavy equipment being utilized. The computer program utilized in the calculation uses the center of the wheel or track load for the analysis and this difference is accounted for in this evaluation.

  1. A coupled distributed hydrological-stability analysis on a terraced slope of Valtellina (northern Italy)

    NASA Astrophysics Data System (ADS)

    Camera, C.; Apuani, T.; Masetti, M.

    2013-02-01

    The aim of this work was to understand and reproduce the hydrological dynamics of a slope, which was terraced using dry-stone retaining walls and its response to these processes in terms of stability at the slope scale. The slope studied is located in Valtellina (northern Italy), near the village of Tresenda, and in the last 30 yr has experienced several soil slip/debris flow events. In 1983 alone, such events caused the death of 18 people. Direct observation of the events of 1983 enabled the principal triggering cause of these events to be recognized in the formation of an overpressure at the base of a dry-stone wall, which caused its failure. To perform the analyses it is necessary to include the presence of dry-stone walls, considering the importance they have in influencing hydrological and geotechnical processes at the slope scale. This requires a very high resolution DEM (1 m × 1 m because the walls are from 0.60 m to 1.0 m wide) that has been appositely derived. A hydrogeological raster-based model, which takes into account both the unsaturated and saturated flux components, was applied. This was able to identify preferential infiltration zones and was rather precise in the prediction of maximum groundwater levels, providing valid input for the distributed stability analysis. Results of the hydrogeological model were used for the successive stability analysis. Sections of terrace were identified from the downslope base of a retaining wall to the top of the next downslope retaining wall. Within each section a global method of equilibrium was applied to determine its safety factor. The stability model showed a general tendency to overestimate the amount of unstable areas. An investigation of the causes of this unexpected behavior was, therefore, also performed in order to progressively improve the reliability of the model.

  2. Root reinforcement and slope bioengineering stabilization by Spanish Broom (Spartium junceum L.)

    NASA Astrophysics Data System (ADS)

    Preti, F.; Giadrossich, F.

    2009-05-01

    The present paper deals with the characteristics of the root system of Spanish Broom (Spartium junceum L.), a species that is worth taking into consideration for its capacity for adaptation and resistance to drought. In particular, the aims of the study were 1) to investigate the plant's bio-mechanical aspects and 2) to verify whether root reinforcement and the field rooting ability of stem cuttings enhance its potential for use in slope stabilization and soil bio-engineering techniques, particularly in Mediterranean areas. Single root specimens were sampled and tested for tensile strength, obtaining classical tensile strength-diameter relationships. Analyses were performed on the root systems in order to assess root density distribution. The Root Area Ratio (RAR) was analyzed by taking both direct and indirect measurements, the latter relying on image processing. The data obtained were used to analyze the stability of an artificial slope (landfill) and root reinforcement. The measurement and calculation of mean root number, mean root diameter, RAR, root cohesion and Factor of safety are presented in order to distinguish the effect of plant origin and propagation. Furthermore, tests were performed to assess the possibility of agamic propagation (survival rate of root-ball endowed plants, rooting from stem cuttings). These tests confirmed that agamic propagation is difficult, even though roots were produced from some buried stems, and for practical purposes it has to be ruled out. Our results show that Spanish Broom has good bio-mechanical characteristics with regard to slope stabilization, even in critical pedoclimatic conditions and where inclinations are quite steep, and it is effective on soil depths of up to about 50 cm, in agreement with other studies on Mediterranean species. It is effective in slope stabilization, but less suitable for soil bio-engineering or for triggering natural plant succession.

  3. Root reinforcement and slope bioengineering stabilization by Spanish Broom (Spartium junceum L.)

    NASA Astrophysics Data System (ADS)

    Preti, F.; Giadrossich, F.

    2009-09-01

    The present paper deals with the root system's characteristics of Spanish Broom (Spartium junceum L.), a species whose capacity for adaptating and resisting to drought is worth investigating. In particular, the aims of the study were 1) to investigate the plant's bio-mechanical aspects and 2) to verify whether root reinforcement and the field rooting ability of stem cuttings enhance its potential for use in slope stabilization and soil bio-engineering techniques, particularly in the Mediterranean areas. Single root specimens were sampled and tested for tensile strength, obtaining classic tensile strength-diameter relationships. Analysis were performed on the root systems in order to assess root density distribution. The Root Area Ratio (RAR) was analyzed by taking both direct and indirect measurements, the latter relying on image processing. The data obtained were used to analyze the stability of an artificial slope (landfill) and the root reinforcement. The measurement and calculation of mean root number, mean root diameter, RAR, root cohesion and Factor of safety are presented in order to distinguish the effect of plant origin and propagation. Furthermore, tests were performed to assess the possibility of agamic propagation (survival rate of root-ball endowed plants, rooting from stem cuttings). These tests confirmed that agamic propagation is difficult, even though roots were produced from some buried stems, and for practical purposes it has been ruled out. Our results show that Spanish Broom has good bio-mechanical characteristics with regard to slope stabilization, even in critical pedoclimatic conditions and where inclinations are quite steep, and it is effective on soil depths up to about 50 cm, in agreement with other studies on Mediterranean species. It is effective in slope stabilization, but less suitable for soil bio-engineering or for triggering natural plant succession.

  4. The idea of PGA stream computations for soil slope stability evaluation

    NASA Astrophysics Data System (ADS)

    Tran, Chi; Srokosz, Piotr

    2010-09-01

    Designing and constructing of road embankments, deep excavations, landslide and snow avalanche predictions or profiling construction sites in slanting terrain need slope stability evaluations. Determination of a safety factor and the position of a potentially critical slip surface is one of the essential issues in classical and modern soil mechanics, which still remains a very important problem in engineering practice. Most of the stability evaluation methods, i.e. based on limit equilibrium assumptions, need optimization, which can be successfully realized with the assistance of a genetic algorithm. The authors propose a variational approach with a four-step technique to determination of the critical height of a slope, which can be treated as an alternative and variant method to the generally applied limit equilibrium and/or finite element methods. Some common obstacles encountered while adapting classical optimization procedures have been solved by application of a parallel genetic algorithm. Substantial acceleration of computations has been achieved by introducing SIMD stream technology, which generally relies on modern graphics processing units. Examples of the results of a slope stability analysis performed using the fast parallel computation technique are also presented.

  5. Feasibility of biochar application on a landfill final cover-a review on balancing ecology and shallow slope stability.

    PubMed

    Chen, Xun-Wen; Wong, James Tsz-Fung; Ng, Charles Wang-Wai; Wong, Ming-Hung

    2016-04-01

    Due to the increasing concerns on global warming, scarce land for agriculture, and contamination impacts on human health, biochar application is being considered as one of the possible measures for carbon sequestration, promoting higher crop yield and contamination remediation. Significant amount of researches focusing on these three aspects have been conducted during recent years. Biochar as a soil amendment is effective in promoting plant performance and sustainability, by enhancing nutrient bioavailability, contaminants immobilization, and microbial activities. The features of biochar in changing soil physical and biochemical properties are essential in affecting the sustainability of an ecosystem. Most studies showed positive results and considered biochar application as an effective and promising measure for above-mentioned interests. Bio-engineered man-made filled slope and landfill slope increasingly draw the attention of geologists and geotechnical engineers. With increasing number of filled slopes, sustainability, low maintenance, and stability are the major concerns. Biochar as a soil amendment changes the key factors and parameters in ecology (plant development, soil microbial community, nutrient/contaminant cycling, etc.) and slope engineering (soil weight, internal friction angle and cohesion, etc.). This paper reviews the studies on the production, physical and biochemical properties of biochar and suggests the potential areas requiring study in balancing ecology and man-made filled slope and landfill cover engineering. Biochar-amended soil should be considered as a new type of soil in terms of soil mechanics. Biochar performance depends on soil and biochar type which imposes challenges to generalize the research outcomes. Aging process and ecotoxicity studies of biochar are strongly required. PMID:26452652

  6. Probabilistic stability evaluation of submerged slopes in Lake Zurich (Switzerland) and seismic triggering scenarios

    NASA Astrophysics Data System (ADS)

    Strupler, Michael; Hilbe, Michael; Anselmetti, Flavio S.; Kopf, Achim J.; Fleischmann, Timo; Strasser, Michael

    2016-04-01

    The consequences of subaquatic slope failures both in the marine and the lacustrine realm can be very serious. For hazard assessments, stability analyses of submerged slopes are therefore crucial steps, yet very complex ones, as they require knowledge of several geotechnical and morphological factors. Traces of subaquatic mass movements are often used to extract paleoseismological information. For Lake Zurich, a perialpine lake in Northern Switzerland, coeval subaquatic landslide occurrences along distinct time-correlative horizons have been previously interpreted as earthquake-triggered. The 'Oberrieden' study area (˜2 km2) shows three distinct, dated subaquatic landslides with well-defined headscarps, translation areas and mass-transport deposits. The respective failures have been assigned to different trigger mechanisms ranging from human-induced shore loading to earthquake shaking. However, the local shaking intensities leading to slope failures are unknown. A 3.5 kHz pinger seismic reflection dataset and a 300 kHz multibeam bathymetric dataset (1 m grid) were used for the detection of landslide features and for the layout of a coring campaign and in situ geotechnical testing. A total of 8 Kullenberg-system piston cores (4 cores /km2) and 22 short gravity cores (11 cores /km2) were taken and 39 in situ Cone Penetration Tests (CPT) (˜20 CPT /km2) were performed. The high density of sediment cores and CPT sites in a well-known area allows us to include the spatial variability in the slope model. With a probabilistic back analysis of the earthquake-triggered ˜2210 BP subaquatic landslide and an assessment of the actual stability of the neighbouring, unfailed sediment drape, we analyse different scenarios of slope stability under static conditions and under seismic shaking in order to quantitatively constrain failure mechanisms and triggers. We apply a Monte Carlo two-dimensional limit-equilibrium infinite-slope stability model that includes a sediment

  7. Using a Remotely Piloted Aircraft System (RPAS) to analyze the stability of a natural rock slope

    NASA Astrophysics Data System (ADS)

    Salvini, Riccardo; Esposito, Giuseppe; Mastrorocco, Giovanni; Seddaiu, Marcello

    2016-04-01

    This paper describes the application of a rotary wing RPAS for monitoring the stability of a natural rock slope in the municipality of Vecchiano (Pisa, Italy). The slope under investigation is approximately oriented NNW-SSE and has a length of about 320 m; elevation ranges from about 7 to 80 m a.s.l.. The hill consists of stratified limestone, somewhere densely fractured, with dip direction predominantly oriented in a normal way respect to the slope. Fracture traces are present in variable lengths, from decimetre to metre, and penetrate inward the rock versant with thickness difficult to estimate, often exceeding one meter in depth. The intersection between different fracture systems and the slope surface generates rocky blocks and wedges of variable size that may be subject to phenomena of gravitational instability (with reference to the variation of hydraulic and dynamic conditions). Geometrical and structural info about the rock mass, necessary to perform the analysis of the slope stability, were obtained in this work from geo-referenced 3D point clouds acquired using photogrammetric and laser scanning techniques. In particular, a terrestrial laser scanning was carried out from two different point of view using a Leica Scanstation2. The laser survey created many shadows in the data due to the presence of vegetation in the lower parts of the slope and limiting the feasibility of geo-structural survey. To overcome such a limitation, we utilized a rotary wing Aibotix Aibot X6 RPAS geared with a Nikon D3200 camera. The drone flights were executed in manual modality and the images were acquired, according to the characteristics of the outcrops, under different acquisition angles. Furthermore, photos were captured very close to the versant (a few meters), allowing to produce a dense 3D point cloud (about 80 Ma points) by the image processing. A topographic survey was carried out in order to guarantee the necessary spatial accuracy to the process of images exterior

  8. Observations of Radiation Divergence and Stability Driven Slope Flows during the Field Experiment KASCADE

    NASA Astrophysics Data System (ADS)

    Duine, Gert-Jan; Durand, Pierre; Hedde, Thierry; Roubin, Pierre; Augustin, Patrick; Fourmentin, Marc; Lohou, Fabienne; Lothon, Marie

    2014-05-01

    This work is in the frame of the PhD-thesis entitled "Dispersion of pollutants in stable boundary layer conditions in the middle valley of the Durance", financed by the Commissariat à l'Energie Atomique (CEA) and jointly supervised by CEA and Laboratoire d'Aérologie (LA), Toulouse. It takes place in a wider context of R & D work performed at CEA to characterize the site specific atmospheric conditions, with a view to improve the knowledge of the impact of the potential release of pollutants. During the winter of 2013 the intensive field measurement campaign KASCADE (KAtabatic winds and Stability over CAdarache for Dispersion of Effluents) has been carried out at Cadarache, a research centre of CEA, located in South-Eastern France. The stability of the lower atmospheric boundary layer caused by radiative cooling at night, combined with the local orography, strongly affects the conditions for the dispersion of potential pollutants. Understanding the complex patterns of drainage flow and cold pool build up in the smaller valleys confluent to the Durance river is thus a major issue for refining the models used to assess the sanitary and environmental impact of Cadarache. Stability is easily formed in the region and in combination with the orographic complexity, there is a need to study the Stable Boundary Layer (SBL), which potentially can have a large impact on the dispersion of gaseous emissions released by the various facilities of Cadarache. KASCADE was designed to characterize the local SBL in order to feed future planned numerical simulations with WRF and impact studies involving numerical models coping with dispersion. With a focus on night time, a combination of continuous observations (SODAR and a flux-measurement tower of 30 meter [M30]) and 23 Intensive Observational Periods (IOPs) (Tethered Balloon [TB] profiling and radio-soundings) allows to study the relevant phenomena for SBL-formation. M30 was equipped with sonic anemometers at 3 levels for

  9. Stability of submerged slopes on the flanks of the Hawaiian Islands, a simplified approach

    SciTech Connect

    Lee, H.J.; Torresan, M.E.; McArthur, W.

    1994-12-31

    Undersea transmission lines and shoreline AC-DC conversion stations and near-shore transmission lines are being considered as part of a system for transporting energy between the Hawaiian Islands. These facilities will need to be designed so that they will not be damaged or destroyed by coastal or undersea landslides. Advanced site surveys and engineering design of these facilities will require detailed site specific analyses, including sediment sampling and laboratory testing of samples, in situ testing of sediment and rock, detailed charting of bathymetry, and two- or three-dimensional numerical analyses of the factors of safety of the slopes against failure from the various possible loading mechanisms. An intermediate approximate approach can be followed that involves gravity and piston cores, laboratory testing and the application of simplified models to determine a seismic angle of repose for actual sediment in the vicinity of the planned facility. An even simpler and more approximate approach involves predictions of angles of repose using classification of the sediment along a proposed route as either a coarse volcaniclastic sand, a calcareous ooze, or a muddy terrigenous sediment. The steepest slope that such a sediment can maintain is the static angle of repose. Sediment may be found on slopes as steep as these, but it must be considered metastable and liable to fail in the event of any disturbance, storm or earthquake. The seismic angle of repose likely governs most slopes on the Hawaiian Ridge. This declivity corresponds to the response of the slope to a continuing seismic environment. As a long history of earthquakes affects the slopes, they gradually flatten to this level. Slopes that exceed or roughly equal this value can be considered at risk to fail during future earthquakes. Seismic and static angles of repose for three sediment types are tabulated in this report.

  10. Troll oil pipeline: Assessment of slope and gravel sleeper stability in steep fjord areas

    SciTech Connect

    Eide, A.; Gudmestad, O.T.; Nadim, F.

    1996-12-01

    This paper describes the slope stability evaluation in the steep areas of the Fensfjord. The main focus in the study has been to establish appropriate undrained shear strength for static and dynamic stability analyses, make a reasonable prediction of the earthquake induced permanent deformation and evaluate the post-earthquake static stability. The special laboratory testing and analysis conducted showed that the only consequence of earthquake loading is limited permanent deformations. Analysis of gravel supports on soft clay showed that three supports needed counter fills in order to fulfill the design requirements. At the tunnel entrance point of the pipeline at Mongstad, the soft clay at the seabed had to be excavated in order to attain satisfactory stability for the gravel support.

  11. An inverse analysis of unobserved trigger factor for slope stability evaluation

    NASA Astrophysics Data System (ADS)

    Kojima, Hirohito; Obayashi, Shigeyuki

    2006-10-01

    This paper presents an inverse analysis of unobserved trigger factors for slope failures and landslides, based on structural equation modeling (SEM). Quantitative prediction models generally elucidate the relationship between past slope failures and causal factors (e.g. lithology, soil, slope, aspect, etc.), but do not consider trigger factors (e.g. rail fall, earthquake, weathering, etc.), due to difficulties in pixel-by-pixel observation of trigger factors. To overcome these, an inverse analysis algorithm on trigger factors is proposed, according to the following steps: Step 1: The relationship between past slope failures (i.e. the endogenous variables), causal factors and trigger factors (i.e. the exogenous variables) are delineated on the path diagram used in SEM. Step 2: The regression weights in the path diagram are estimated to minimize errors between the observed and reemerged 'variance-covariance matrix' by the model. Step 3: As an inverse estimation, through the measurement equation in SEM between causal and trigger factors, a trigger factor influence (TFI) map is proposed. As an application, TFI maps are produced with respect to 'slope failures' and 'landslides', separately. As a final outcome, the differences in these TFI maps are delineated on a 'difference' (DIF) map. The DIF map and its interpretation are useful, not only for assessing danger areas affected by trigger factors, but also for 'heuristic information' in locating field measuring systems.

  12. Assessing the Stability of a Geologically Complex Slope Where Strong Dykes Locally Act as Reinforcement

    NASA Astrophysics Data System (ADS)

    Lee, S. G.; Hencher, S. R.

    2013-11-01

    This paper presents a case study of aspects of the design of large slope cuttings in complex geological conditions in South Korea. During the original cutting of the slopes to geometries prescribed by Korean standards for rock slopes, several translational slides occurred on daylighting bedding planes. From observation it was evident that away from the areas of distress, some parts of the slopes appeared to be relatively stable, apparently because of the strengthening influence of relatively strong and massive igneous dykes and sills through the sedimentary rock. This paper describes how the geological conditions were assessed and stability analysed, section-by-section, along the road. This was achieved using a form of the method of slices to account for those sections of potential failure surfaces where sliding could occur along bedding and others where failure would necessitate shear through the intrusive igneous rock. Results were checked using UDEC models of critical sections. Following these analyses, recommendations were made for localized additional preventive measures including anchors and drainage.

  13. Methods for assessing the stability of slopes during earthquakes-A retrospective

    USGS Publications Warehouse

    Jibson, R.W.

    2011-01-01

    During the twentieth century, several methods to assess the stability of slopes during earthquakes were developed. Pseudostatic analysis was the earliest method; it involved simply adding a permanent body force representing the earthquake shaking to a static limit-equilibrium analysis. Stress-deformation analysis, a later development, involved much more complex modeling of slopes using a mesh in which the internal stresses and strains within elements are computed based on the applied external loads, including gravity and seismic loads. Stress-deformation analysis provided the most realistic model of slope behavior, but it is very complex and requires a high density of high-quality soil-property data as well as an accurate model of soil behavior. In 1965, Newmark developed a method that effectively bridges the gap between these two types of analysis. His sliding-block model is easy to apply and provides a useful index of co-seismic slope performance. Subsequent modifications to sliding-block analysis have made it applicable to a wider range of landslide types. Sliding-block analysis provides perhaps the greatest utility of all the types of analysis. It is far easier to apply than stress-deformation analysis, and it yields much more useful information than does pseudostatic analysis. ?? 2010.

  14. Stability of saprolitic slopes: nature and role of field scale heterogeneities

    NASA Astrophysics Data System (ADS)

    Aydin, A.

    2006-01-01

    Heterogeneities in various forms and scales often control the mechanisms and locations of failure and deformation, and the factor of safety of saprolitic slopes. This paper presents a critical review of field scale heterogeneities and their roles in controlling the stability of saprolitic slopes. In particular corestones and relict joints are analysed, with emphasis on characterization and possible instability modes. Abnormal flow patterns, fast build-up and/or chaotic distribution of pore water pressure are the most common causative factors of landslides. As heterogeneities are often responsible for the occurrence of such localized abnormalities, realistic models incorporating effects of these features can help predict how and where abnormal flow/pressure patterns may develop. Potential pitfalls during ground investigation in landslide prone slopes are elucidated and effective investigation strategies to avoid these pitfalls are recommended. The uncertainties, for example, in distribution and volumetric percentage of corestones and in delineating zonal boundaries, require continuous upgrading of the engineering geological model during the construction stage of site investigations. Such uncertainties can be reduced in a cost-effective manner by recording drill penetration rates during installation of soil nails and horizontal drains. A better understanding of the interactions among the heterogeneities, the matrix and the engineering geological environment as a whole should enable the significance of discrete features in stability to be more consistently assessed, thereby providing a more rational basis for investigation and design practice in saprolitic profiles.

  15. Logisnet: A tool for multimethod, multiple soil layers slope stability analysis

    NASA Astrophysics Data System (ADS)

    Legorreta Paulin, G.; Bursik, M.

    2009-05-01

    Shallow landslides and slope failures have been studied from several points of view (inventory, heuristic, statistic, and deterministic). In particular, numerous methods embedded in Geographic Information Systems (GIS) applications have been developed to assess slope stability. However, little work has been done on the systematic comparison of different techniques and the incorporation of vertical contrasts of geotechnical properties in multiple soil layers. In this research, stability is modeled by using LOGISNET, an acronym for Multiple Logistic Regression, Geographic Information System, and Neural Network. The main purpose of LOGISNET is to provide government planners and decision makers a tool to assess landslide susceptibility. The system is fully operational for models handling an enhanced cartographic-hydrologic model (SINMAP) and multiple logistic regression. The enhanced implementation of SINMAP was tested at regional scale in the Highway 101 corridor in Del Norte County, California, and its susceptibility map was found to have improved factor of safety estimates based on comparison with landslide inventory maps. The enhanced SINMAP and multiple logistic regression subsystems have functions that allow the user to include vertical variation in geotechnical properties through summation of forces in specific soil layers acting on failure planes for a local or regional-scale mapping. The working group of LOGISNET foresees the development of an integrated tool system to handle and support the prognostic studies of slope instability, and communicate the results to the public through maps.

  16. Slope stability analysis for Valles Marineris, Mars: a numerical analysis of controlling conditions and failure types

    NASA Astrophysics Data System (ADS)

    Crosta, G.; Castellanza, R.; De Blasio, F.; Utili, S.

    2012-04-01

    Valles Marineris (VM hereafter) in the equatorial area of Mars exhibits several gravitative failures often involving the whole 6-8 km thickness of the valley walls. The failures have resulted in a series of long-runout landslides up to several hundred cubic kilometres in volume (Quantin et al., 2004), and the formation of sub-circular alcoves perched on the top. Several questions arise as to forces at play in the stability of the walls of VM, the geometrical shape of the alcoves and the shape and long-runout of the landslides (see for example Lucas et al., 2011). In this work, we concentrate on the stability analysis of the walls of VM with two precise questions in mind starting from past studies (Bigot-Cormier and Montgomery, 2006; Neuffer and Schultz, 2006, Schultz, 2002). The first concerns the properties of the materials that give origin to instability. We performed several finite element and discrete element calculations tailored to slope stability analysis based on the genuine shape of the walls of VM taken from the MOLA topographic data. We considered stratified and differently altered/degraded materials to define the range of physical mechanical properties required for failure to occur and to explain the discrete distribution of failures along the VM valley flanks. A second question addressed in this work is the geometrical shape of the sub-circular alcoves. Normally, these shapes are commonplace for slopes made of uniform and isotropic properties, and are also observed in subaqueous environment. We performed calculations taking into consideration the progressive failure in the slope showing the final results in terms of surface failure geometry. Bigot-Cormier, F., Montgomery, D.R. (2007) Valles Marineris landslides: Evidence for a strength limit to Martian relief? Earth and Planetary Science Letters, 260, 1-2, 15, 179-186 Lucas, A., Mangeney, A., Mège, D., and Bouchut, F., 2011. Influence of the scar geometry on landslide dynamics and deposits

  17. Soil aggregation and slope stability related to soil density, root length, and mycorrhiza

    NASA Astrophysics Data System (ADS)

    Graf, Frank; Frei, Martin

    2013-04-01

    Eco-engineering measures combine the use of living plants and inert mechanical constructions to protect slopes against erosion and shallow mass movement. Whereas in geotechnical engineering several performance standards and guidelines for structural safety and serviceability of construction exist, there is a lack of comparable tools in the field of ecological restoration. Various indicators have been proposed, including the fractal dimension of soil particle size distribution, microbiological parameters, and soil aggregate stability. We present results of an soil aggregate stability investigation and compare them with literature data of the angle of internal friction ?' which is conventionally used in slope stability analysis and soil failure calculation. Aggregate stability tests were performed with samples of differently treated moraine, including soil at low (~15.5 kN/m³) and high (~19.0 kN/m³) dry unit weight, soil planted with Alnus incana (White Alder) as well as the combination of soil planted with alder and inoculated with the mycorrhizal fungus Melanogaster variegatus s.l. After a 20 weeks growth period in a greenhouse, a total of 100 samples was tested and evaluated. Positive correlations were found between the soil aggregate stability and the three variables dry unit weight, root length per soil volume, and degree of mycorrhization. Based on robust statistics it turned out that dry unit weight and mycorrhization degree were strongest correlated with soil aggregate stability. Compared to the non-inoculated control plants, mycorrhized White Alder produced significantly more roots and higher soil aggregate stability. Furthermore, the combined biological effect of plant roots and mycorrhizal mycelia on aggregate stability on soil with low density (~15.5 kN/m³) was comparable to the compaction effect of the pure soil from 15.5 to ~19.0 kN/m³. Literature data on the effect of vegetation on the angle of internal friction ?' of the same moraine showed

  18. An integrated methodology to evaluate the effects of plants for slope stability

    NASA Astrophysics Data System (ADS)

    Dani, A.; Giadrossich, F.; Guastini, E.; Preti, F.; Togni, M.; Vannocci, P.

    2009-04-01

    The topic of eco-hydrological dynamics is fundamental in slope stability analysis on vegetated soils. The understanding of hydrological processes are based on the knowledge of the geotechnical properties of soils, on the pedological, pluviometrical and vegetational features and they are all related to the soil and roots interaction. To quantify the stability slopes effects that the root systems provide to the soil, it is important to know their spatial distribution and their tensile strength. Because of the difficulty to estimate the action of single roots, in the stability evaluation of vegetated hillslopes, only the additional root cohesion is generally taken into account depending on the spatial variability of the root area ratio RAR (the ratio between the area occupied by roots in a unit area of soil) distribution (especially with depth), even if it is not sure that all the roots in the soil actually mobilise their whole tensile strength (e.g. each root could not break at the same time due to different tortuosity and elasticity). In this paper we test some analysis and methodologies: • to value the stress-strain curve and ultimate tensile strength of the roots, we use two different testing machines normally employed for wood rheological behavior studies. • to value the cohesion contribution to rooted soil samples we use a geotechnical apparatus (the Casagrande direct shear test); • an indirect methodology to obtain the measurement of the fundamental parameters of the root apparatus; • an indirect methodology to estimate the analytical descriptors of the root apparatus based on climatic and pedological features; • a GIS survey to estimate the stability factor and its evolution with some models in different vegetation management. Mediterranean environments, particularly, where soils are shallow and water is scarce over the growing season (water controlled ecosystems), it would be more economical for plants to have the roots closer to the soil surface

  19. How Hofmeister ion interactions affect protein stability.

    PubMed Central

    Baldwin, R L

    1996-01-01

    Model compound studies in the literature show how Hofmeister ion interactions affect protein stability. Although model compound results are typically obtained as salting-out constants, they can be used to find out how the interactions affect protein stability. The null point in the Hofmeister series, which divides protein denaturants from stabilizers, arises from opposite interactions with different classes of groups: Hofmeister ions salt out nonpolar groups and salt in the peptide group. Theories of how Hofmeister ion interactions work need to begin by explaining the mechanisms of these two classes of interactions. Salting-out nonpolar groups has been explained by the cavity model, but its use is controversial. When applied to model compound data, the cavity model 1) uses surface tension increments to predict the observed values of the salting-out constants, within a factor of 3, and 2) predicts that the salting-out constant should increase with the number of carbon atoms in the aliphatic side chain of an amino acid, as observed. The mechanism of interaction between Hofmeister ions and the peptide group is not well understood, and it is controversial whether this interaction is ion-specific, or whether it is nonspecific and the apparent specificity resides in interactions with nearby nonpolar groups. A nonspecific salting-in interaction is known to occur between simple ions and dipolar molecules; it depends on ionic strength, not on position in the Hofmeister series. A theory by Kirkwood predicts the strength of this interaction and indicates that it depends on the first power of the ionic strength. Ions interact with proteins in various ways besides the Hofmeister ion interactions discussed here, especially by charge interactions. Much of what is known about these interactions comes from studies by Serge Timasheff and his co-workers. A general model, suitable for analyzing diverse ion-protein interactions, is provided by the two-domain model of Record and co

  20. Switchgrass cultivars differentially affect soil carbon stabilization

    NASA Astrophysics Data System (ADS)

    Adkins, J.; Jastrow, J. D.; Wullschleger, S. D.; De Graaff, M.

    2012-12-01

    Soil organic carbon (SOC) storage depends on the amount and quality of plant-derived carbon (C) inputs to soil, which is largely regulated by plant roots via the processes of root turnover and exudation. While we know that plant roots mediate SOC stabilization, we do not fully understand which root characteristics specifically promote soil C storage. With this study we asked whether roots with coarse root systems versus roots with finely branched root systems differentially affect soil C stabilization. In order to answer this question, we collected soil cores (4.8 cm diameter, to a depth of 30 cm) from directly over the crown of six switchgrass (Panicum virgatum L.) cultivars that differed in root architecture. Specifically, three cultivars had fibrous root systems (i.e. high specific root length) and three had coarse root systems (i.e. low specific root length). The cultivars (C4 species) were grown in a C3 grassland for four years, allowing us to use isotopic fractionation techniques to assess differences in soil C input and stabilization. The cores were divided into depth increments of 10 cm and the soils were sieved (2mm). Soil from each depth increment was dispersed by shaking for 16 hours in a NaHMP solution to isolate coarse particulate organic matter (C-POM), fine particulate organic matter (F-POM), silt, and clay-sized fractions. Samples of soil fractions across all depths were analyzed for C and N contents as well as δ13C signature. We found that the relative abundance of the different soil fractions and associated δ13C signatures differed significantly among cultivars. These results indicate that switchgrass cultivars can differentially impact soil carbon inputs and stabilization. We hypothesize that these differences may be driven by variability in root architectures.

  1. Slope Stability Problems and Back Analysis in Heavily Jointed Rock Mass: A Case Study from Manisa, Turkey

    NASA Astrophysics Data System (ADS)

    Akin, Mutluhan

    2013-03-01

    This paper presents a case study regarding slope stability problems and the remedial slope stabilization work executed during the construction of two reinforced concrete water storage tanks on a steep hill in Manisa, Turkey. Water storage tanks of different capacities were planned to be constructed, one under the other, on closely jointed and deformed shale and sandstone units. The tank on the upper elevation was constructed first and an approximately 20-m cut slope with two benches was excavated in front of this upper tank before the construction of the lower tank. The cut slope failed after a week and the failure threatened the stability of the upper water tank. In addition to re-sloping, a 15.6-m deep contiguous retaining pile wall without anchoring was built to support both the cut slope and the upper tank. Despite the construction of a retaining pile wall, a maximum of 10 mm of displacement was observed by inclinometer measurements due to the re-failure of the slope on the existing slip surface. Permanent stability was achieved after the placement of a granular fill buttress on the slope. Back analysis based on the non-linear (Hoek-Brown) failure criterion indicated that the geological strength index (GSI) value of the slope-forming material is around 21 and is compatible with the in situ-determined GSI value (24). The calculated normal-shear stress plots are also consistent with the Hoek-Brown failure envelope of the rock mass, indicating that the location of the sliding surface, GSI value estimated by back analysis, and the rock mass parameters are well defined. The long-term stability analysis illustrates a safe slope design after the placement of a permanent toe buttress.

  2. Prediction of landslide run-out distance based on slope stability analysis and center of mass approach

    NASA Astrophysics Data System (ADS)

    Firmansyah; Feranie, S.; Tohari, Adrin; Latief, F. D. E.

    2016-01-01

    Mitigation of landslide hazard requires the knowledge of landslide run-out distance. This paper presents the application of slope stability analysis and center of mass approach to predict the run-out distance of a rotational landslide model with different soil types. The Morgenstern-Price method was used to estimate the potential sliding zone and volume of landslide material. The center of mass approach used a simple Coulomb friction model to determine the run-out distance. Results of the slope stability analysis showed that the soil unit weight can influence the depth of sliding zone, and the volume of unstable material. The slope model of silty sand and gravel would have the largest volume of unstable mass. From the Coulomb friction analysis, this slope model has higher run-out distance and velocity than other slope models. Thus, the run-out distance will be influenced by soil type and the dimension of unstable soil mass.

  3. Inclinometer monitoring system for stability analysis: the western slope of the Bełchatów field case study

    NASA Astrophysics Data System (ADS)

    Cała, Marek; Jakóbczyk, Joanna; Cyran, Katarzyna

    2016-06-01

    The geological structure of the Bełchatów area is very complicated as a result of tectonic and sedimentation processes. The long-term exploitation of the Bełchatów field influenced the development of horizontal displacements. The variety of factors that have impact on the Bełchatów western slope stability conditions, forced the necessity of complex geotechnical monitoring. The geotechnical monitoring of the western slope was carried out with the use of slope inclinometers. From 2005 to 2013 fourteen slope inclinometers were installed, however, currently seven of them are in operation. The present analysis depicts inclinometers situated in the north part of the western slope, for which the largest deformations were registered. The results revealed that the horizontal displacements and formation of slip surfaces are related to complicated geological structure and intensive tectonic deformations in the area. Therefore, the influence of exploitation marked by changes in slope geometry was also noticeable.

  4. Numerical stability analysis of submerged slopes subject to rapid sedimentation processes

    NASA Astrophysics Data System (ADS)

    di Prisco, Claudio; Mancinelli, Luca; Zanelotti, Letizia; Pisanò, Federico

    2015-01-01

    In this paper, the stability of infinitely long submerged slopes subject to rapid sedimentation processes is theoretically/numerically investigated. In particular, rapid deposition is considered as a potential triggering factor for static liquefaction in inclined loose sand layers. The corresponding initial boundary value problem is numerically analysed by employing a one-dimensional finite difference scheme in conjunction with two distinct versions of the same constitutive model—elasto-plastic and elasto-viscoplastic (EV). The EV approach is shown to be the most suitable for describing the onset of liquefaction phenomena, since its mathematical well-posedness and numerical stability are never lost. The results of parametric analyses for both homogeneous and inhomogeneous strata are critically discussed in the light of some case history data concerning natural and anthropic sedimentation processes.

  5. Instrumental record of debris flow initiation during natural rainfall: Implications for modeling slope stability

    USGS Publications Warehouse

    Montgomery, D.R.; Schmidt, K.M.; Dietrich, W.E.; McKean, J.

    2009-01-01

    The middle of a hillslope hollow in the Oregon Coast Range failed and mobilized as a debris flow during heavy rainfall in November 1996. Automated pressure transducers recorded high spatial variability of pore water pressure within the area that mobilized as a debris flow, which initiated where local upward flow from bedrock developed into overlying colluvium. Postfailure observations of the bedrock surface exposed in the debris flow scar reveal a strong spatial correspondence between elevated piezometric response and water discharging from bedrock fractures. Measurements of apparent root cohesion on the basal (Cb) and lateral (Cl) scarp demonstrate substantial local variability, with areally weighted values of Cb = 0.1 and Cl = 4.6 kPa. Using measured soil properties and basal root strength, the widely used infinite slope model, employed assuming slope parallel groundwater flow, provides a poor prediction of hydrologie conditions at failure. In contrast, a model including lateral root strength (but neglecting lateral frictional strength) gave a predicted critical value of relative soil saturation that fell within the range defined by the arithmetic and geometric mean values at the time of failure. The 3-D slope stability model CLARA-W, used with locally observed pore water pressure, predicted small areas with lower factors of safety within the overall slide mass at sites consistent with field observations of where the failure initiated. This highly variable and localized nature of small areas of high pore pressure that can trigger slope failure means, however, that substantial uncertainty appears inevitable for estimating hydrologie conditions within incipient debris flows under natural conditions. Copyright 2009 by the American Geophysical Union.

  6. Characterisation of tree root penetration in bedrock and its impact on slope stability

    NASA Astrophysics Data System (ADS)

    Zhun, Mao; Selli, Lavinia; Guastini, Enrico; Preti, Federico

    2014-05-01

    The anchorage effect of tree root penetration in bedrock against shallow landslides has uniquely been discussed in conceptual models, but seldom been measured and characterised in fieldsite. Using both the ARBORADIX™ and the electrical resistivity tomography (ERT) techniques, we aims at (i) mapping the spatial distribution of tree roots penetrating in bedrock in situ, (ii) estimating their contributions to slope stabilization and (iii) comparing the two detection methods. The experimental site is located on Pomezzana (Lu), Tuscany Apennine, Italy, where a great shallow landslide occurred in 1996 following periods of intense precipitation events. On aslope of45°, the studied forest has a density of 1800 trees/ha, mainly composed of black alder Alnus glutinosa L. (95%). Root mapping was conducted in two plots close to each other: one within an intact zone with no landslide damage; the other within a restored zone since the landslide. In each plot, two repetitions were conducted in dense tree clusters and in gaps, respectively. Preliminary results showed that the density and spatial distribution of roots penetrating into bedrock were significantly associated to the site chronology (intact vs restored), stand density and tree positions. Thicker roots had much higher probability of penetrating into rocks. Each of detection methods showed it advantages and drawbacks. This study, highlighting the importance of the mechanical role of thick roots in slope stabilization, may significantly improve our understanding in the use of vegetation in ecological engineering.

  7. [Sizes of soil macropores and related main affecting factors on a vegetated basalt slope].

    PubMed

    Guan, Qi; Xu, Ze-Min; Tian, Lin

    2013-10-01

    The landslide on vegetated slopes caused by extreme weather has being increased steadily, and the preferential flow in soil macropores plays an important role in the landslide. By using water breakthrough curve and Poiseuille equation, this paper estimated the radius range, amount, and average volume of soil macropores on a vegetated basalt slope of Maka Mountain, Southwest China, and analyzed the distribution of the soil macropores and the main affecting factors. In the study area, the radius of soil macropores ranged from 0.3 to 1.8 mm, mainly between 0.5 and 1.2 mm. The large-radius macropores (1.4-1.8 mm) were lesser, while the small-radius macropores (< 1.4 mm) were more. With the development of soil profile, soil macropores were more in upper layers and lesser in deeper layers. The average volume of the macropores contributed 84.7% to the variance of steady effluent rate. Among the factors affecting the average volume of the large macropores, vegetations root mass had a linear relationship, with the correlation coefficient being 0.70, and soil organic matter content also had a linear relationship, with the correlation coefficient being 0.64.

  8. [Sizes of soil macropores and related main affecting factors on a vegetated basalt slope].

    PubMed

    Guan, Qi; Xu, Ze-Min; Tian, Lin

    2013-10-01

    The landslide on vegetated slopes caused by extreme weather has being increased steadily, and the preferential flow in soil macropores plays an important role in the landslide. By using water breakthrough curve and Poiseuille equation, this paper estimated the radius range, amount, and average volume of soil macropores on a vegetated basalt slope of Maka Mountain, Southwest China, and analyzed the distribution of the soil macropores and the main affecting factors. In the study area, the radius of soil macropores ranged from 0.3 to 1.8 mm, mainly between 0.5 and 1.2 mm. The large-radius macropores (1.4-1.8 mm) were lesser, while the small-radius macropores (< 1.4 mm) were more. With the development of soil profile, soil macropores were more in upper layers and lesser in deeper layers. The average volume of the macropores contributed 84.7% to the variance of steady effluent rate. Among the factors affecting the average volume of the large macropores, vegetations root mass had a linear relationship, with the correlation coefficient being 0.70, and soil organic matter content also had a linear relationship, with the correlation coefficient being 0.64. PMID:24483084

  9. Root tensile strength relationships and their slope stability implications of three shrub species in the Northern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Tosi, Matteo

    2007-07-01

    The role of root strength is important in stabilising steep hillslopes which are seasonally affected by storm-induced shallow landslides. In the Italian Apennines, steep (25-40°) slopes underlain by mudstone are generally stable if they are covered by shrubs whose roots anchor into the soil mantle. To quantify the mechanical reinforcement of roots to soil, the root tensile breaking force and the root tensile strength of three autochthonous shrub species commonly growing on stiff clay soils of the Northern Italian Apennines, Rosa canina (L.), Inula viscosa (L.) and Spartium junceum (L.), were measured by means of field and laboratory tests. For each test approximately 150 root specimens were used. The tensile force increases with increasing root diameter following a second-order polynomial regression curve. The tensile strength decreases with increasing root diameter following a power law curve. The field in situ tensile force required to break a root is always smaller than that obtained from laboratory tests for the same root diameter, although their difference becomes negligible if the root diameter is smaller than 5 mm. The influence of root tensile strength on soil shear strength was verified based on the infinite slope stability model. The root reinforcement was calculated using the number and mean diameter of roots. The factor of safety was calculated for three different soil thickness values (0.1, 0.3, and 0.6 m) and topographic slopes between 10° and 45°. The factor of safety for the combination of 0.6 m soil thickness, slopes smaller than 30°, and vegetation of I. viscosa (L.) or S. junceum (L.) is always larger than 1. If a slope is steeper, the factor of safety may be smaller than 1 for I. viscosa (L.), although it is still larger than 1 for S. junceum (L.). In the stiff clayey areas of the Northern Italian Apennines, I. viscosa (L.) mainly colonizes fan/cone/taluses and stabilises these zones up to a topographic gradient < 30° for a soil 0.6 m thick

  10. Design of anti-slide piles for slope stabilization in Wanzhou city, Three Gorges Area, China

    NASA Astrophysics Data System (ADS)

    Zhou, Chunmei; van Westen, Cees

    2013-04-01

    This study is related to the design of anti-slide piles for several landslides in Wanzhou city located in the Three Gorges area. Due to the construction of the Three Gorges Reservoir the hydro-geological conditions in this area have deteriorated significantly, leading to larger instability problems. China has invested a lot of money in slope stabilization measures for the treatment of landslides in the Three Gorges area. One of the methods for the stabilization of large landslides is the design of anti-sliding piles. This paper focuses on extensive slope stability analysis and modeling of the mechanical behavior of the landslide masses, and the parameters required for designing the number, size and dimensions of reinforced concrete stabilization piles. The study focuses on determining the rock parameters, anchor depth, and the pile and soil interaction coefficient. The study aims to provide guidelines for anti-slide pile stabilization works for landslides in the Wanzhou area. The research work contains a number of aspects. First a study is carried out on the distribution of pressures expected on the piles, using two different methods that take into account the expected pore water pressure and seismic acceleration. For the Ercengyan landslide , the Limit Equilibrium Method and Strength Reduction Method of FEM are compared through the results of the landslide pressure distributions on the piles and stress fields in the piles. The second component is the study of the required anchor depth of antislide piles, which is carried out using a statistical analysis with data from 20 landslides that have been controlled with anti-sliding piles. The rock characteristics of the anchor locations were obtained using laboratory tests, and a classification of rock mass quality is made for the anchors of antislide piles. The relationship between the critical anchor height and the angle of the landslide slip surface is determined. Two different methods are presented for the length

  11. Elucidating the mechanical effects of pore water pressure increase on the stability of unsaturated soil slopes

    NASA Astrophysics Data System (ADS)

    Buscarnera, G.

    2012-12-01

    The increase of the pore water pressure due to rain infiltration can be a dominant component in the activation of slope failures. This paper shows an application of the theory of material stability to the triggering analysis of this important class of natural hazards. The goal is to identify the mechanisms through which the process of suction removal promotes the initiation of mechanical instabilities. The interplay between increase in pore water pressure, and failure mechanisms is investigated at material point level. In order to account for multiple failure mechanisms, the second-order work criterion is used and different stability indices are devised. The paper shows that the theory of material stability can assess the risk of shear failure and static liquefaction in both saturated and unsaturated contexts. It is shown that the combined use of an enhanced definition of second-order work for unsaturated porous media and a hydro-mechanical constitutive framework enables to retrieve bifurcation conditions for water-infiltration processes in unsaturated deposits. This finding discloses the importance of the coupling terms that incorporate the interaction between the solid skeleton and the pore fluids. As a consequence, these theoretical results suggest that some material properties that are not directly associated with the shearing resistance (e.g., the potential for wetting compaction) can play an important role in the initiation of slope failures. According to the proposed interpretation, the process of pore pressure increase can be understood as a trigger of uncontrolled strains, which at material point level are reflected by the onset of bifurcation conditions.

  12. Efficiency and limits of Stability Charts in the analysis of limit equilibrium state of slopes of geological interest

    NASA Astrophysics Data System (ADS)

    Ausilia Paparo, Maria; Tinti, Stefano

    2014-05-01

    The stability charts are one of the most common tools used in engineering and applied geology to derive the value of the Safety Factor, say F, of slopes of engineering and geological interest. Its importance is due to the easiness of finding the solution for F without falling into complex numerical calculations. These charts propose a graphical method to derive F=F(Ns), where Ns is the Stability Number, obtained by a combination of geotechnical (cohesion, friction angle, weight) and geometrical parameters (angle of incline and slope height): for each value of Ns it is possible to find one single value of F. Taylor (1948) was the first to introduce the stability charts method and later until recently many others proposed different improved versions of them (Michalowski, 1997; 2002; Baker, 1999; 2003; Baker et al. 2006; Easa and Vatankhah, 2011). The aim of this work is to show that there is no univocal relationship between F and Ns like it is erroneously assumed by the stability charts method. Indeed, the comparison of the stability charts with new charts obtained with the Minimum Lithostatic Deviation (MLD) method (Tinti and Manucci, 2006; 2008) reveals that F depends separately on all the parameters that concur to form the stability number, though the dependence on some of them, especially the soil weight, is more relevant. The work has been conducted not only on soil parameter configurations typical of embankments and dykes, but also on configurations typical of homogeneous slopes of geophysical interest. It is found that the values of F usually fall below the ones predicted by the stability charts though the general trend of the stability curves is confirmed. This discrepancy is particularly crucial when the value of F is close to the critical value of 1, since in this case classical methods could indicate that a slope is stable, even though it is not. One can therefore state that the classical stability single-valued curves F(Ns) can provide an acceptable first

  13. Physically-based slope stability modelling and parameter sensitivity: a case study in the Quitite and Papagaio catchments, Rio de Janeiro, Brazil

    NASA Astrophysics Data System (ADS)

    de Lima Neves Seefelder, Carolina; Mergili, Martin

    2016-04-01

    We use the software tools r.slope.stability and TRIGRS to produce factor of safety and slope failure susceptibility maps for the Quitite and Papagaio catchments, Rio de Janeiro, Brazil. The key objective of the work consists in exploring the sensitivity of the geotechnical (r.slope.stability) and geohydraulic (TRIGRS) parameterization on the model outcomes in order to define suitable parameterization strategies for future slope stability modelling. The two landslide-prone catchments Quitite and Papagaio together cover an area of 4.4 km², extending between 12 and 995 m a.s.l. The study area is dominated by granitic bedrock and soil depths of 1-3 m. Ranges of geotechnical and geohydraulic parameters are derived from literature values. A landslide inventory related to a rainfall event in 1996 (250 mm in 48 hours) is used for model evaluation. We attempt to identify those combinations of effective cohesion and effective internal friction angle yielding the best correspondence with the observed landslide release areas in terms of the area under the ROC Curve (AUCROC), and in terms of the fraction of the area affected by the release of landslides. Thereby we test multiple parameter combinations within defined ranges to derive the slope failure susceptibility (fraction of tested parameter combinations yielding a factor of safety smaller than 1). We use the tool r.slope.stability (comparing the infinite slope stability model and an ellipsoid-based sliding surface model) to test and to optimize the geotechnical parameters, and TRIGRS (a coupled hydraulic-infinite slope stability model) to explore the sensitivity of the model results to the geohydraulic parameters. The model performance in terms of AUCROC is insensitive to the variation of the geotechnical parameterization within much of the tested ranges. Assuming fully saturated soils, r.slope.stability produces rather conservative predictions, whereby the results yielded with the sliding surface model are more

  14. Assessment of Slope Stability and Interference of Structures Considering Seismity in Complex Engineering-Geological Conditions Using the Method of Finite Elements

    SciTech Connect

    Menabdishvili, Papuna; Eremadze, Nelly

    2008-07-08

    There is elaborated the calculation model of slope deformation mode stability and the methodic of calculation considering the interference of structures to be built on it using the method of finite elements. There is examined the task of slope stability using the soil physically nonlinear finite element considering the seismicity 8. The deformation mode and field of coefficients of stability are obtained and slope supposed sliding curve is determined. The elaborated calculation methodic allows to determine the slope deformation mode, stability and select the optimum version of structure foundation at any slant and composition of slope layers.

  15. Scoops3D: software to analyze 3D slope stability throughout a digital landscape

    USGS Publications Warehouse

    Reid, Mark E.; Christian, Sarah B.; Brien, Dianne L.; Henderson, Scott T.

    2015-01-01

    The computer program, Scoops3D, evaluates slope stability throughout a digital landscape represented by a digital elevation model (DEM). The program uses a three-dimensional (3D) method of columns approach to assess the stability of many (typically millions) potential landslides within a user-defined size range. For each potential landslide (or failure), Scoops3D assesses the stability of a rotational, spherical slip surface encompassing many DEM cells using a 3D version of either Bishop’s simplified method or the Ordinary (Fellenius) method of limit-equilibrium analysis. Scoops3D has several options for the user to systematically and efficiently search throughout an entire DEM, thereby incorporating the effects of complex surface topography. In a thorough search, each DEM cell is included in multiple potential failures, and Scoops3D records the lowest stability (factor of safety) for each DEM cell, as well as the size (volume or area) associated with each of these potential landslides. It also determines the least-stable potential failure for the entire DEM. The user has a variety of options for building a 3D domain, including layers or full 3D distributions of strength and pore-water pressures, simplistic earthquake loading, and unsaturated suction conditions. Results from Scoops3D can be readily incorporated into a geographic information system (GIS) or other visualization software. This manual includes information on the theoretical basis for the slope-stability analysis, requirements for constructing and searching a 3D domain, a detailed operational guide (including step-by-step instructions for using the graphical user interface [GUI] software, Scoops3D-i) and input/output file specifications, practical considerations for conducting an analysis, results of verification tests, and multiple examples illustrating the capabilities of Scoops3D. Easy-to-use software installation packages are available for the Windows or Macintosh operating systems; these packages

  16. Actively stabilized silicon microrings with integrated surface-state-absorption photodetectors using a slope-detection method.

    PubMed

    Li, Yu; Poon, Andrew W

    2016-09-19

    We propose and experimentally demonstrate actively stabilized silicon microrings with integrated surface-state-absorption (SSA) photodetectors using a slope-detection method. Our proof-of-concept experiments reveal that the active stabilization using multiple discrete-step slope thresholds can effectively reduce the microring transmitted intensity variations upon various temperature modulation conditions. We demonstrate an actively stabilized microring transmission with intensity modulations within ~2.5 dB upon a 5mHz temperature modulation between 17 °C and 31 °C, which is ~7.5dB improved from without stabilization. The active alignment tolerance between the stabilized microring resonance wavelength and a carrier wavelength is ~0.16 nm over a 14°C temperature modulation. We observe open eye-diagrams at a data transmission rate of up to 30 Gb/s under temperature modulations with actively stabilized silicon microrings. PMID:27661872

  17. Slope and bank erosional stability of the Canonsburg, Pennsylvania, UMTRA disposal site

    SciTech Connect

    Not Available

    1994-12-01

    This report was prepared in response to US Nuclear Regulatory Commission (NRC) comments received in a letter of 8 March 1994. This letter included discussions of the US Department of Energy (DOE) 21 May 1993 geomorphic report for the Canonsburg, Pennsylvania, site. To clarify the NRC`s position, a DOE/NRC conference call was held on 12 April 1994. The NRC clarified that it did not require a preliminary erosion protection design for the Canonsburg site, but directed the DOE to address a ``one-bad-year`` scenario. The NRC wants confirmation that one bad year of stream flooding and landsliding will not release residual radioactive material (RRM) from the Canonsburg site into the creek. The NRC is concerned that a bad year theoretically could occur between postcell-closure inspections. These annual inspections are conducted in September or October. The NRC suggested that the following procedures should be conducted in this analysis: a flooding analysis, including the maximum saturation levels (flood water elevations) anticipated during a 100-year flood; a stream bank erosion analysis to determine how much of the bank adjacent to the site may be removed in a bad year; a slope stability analysis to determine how far back the site would be disturbed by slope instability that could be triggered by a bad year of stream bank erosion; and a ``critical cross section`` study to show the relationship of the RRM located outside the disposal cell to the maximum computer estimated erosion/landslide activity.

  18. A shallow landslide analysis method consisting of contour line based method and slope stability model with critical slip surface

    NASA Astrophysics Data System (ADS)

    Tsutsumi, D.

    2015-12-01

    To mitigate sediment related disaster triggered by rainfall event, it is necessary to predict a landslide occurrence and subsequent debris flow behavior. Many landslide analysis method have been developed and proposed by numerous researchers for several decades. Among them, distributed slope stability models simulating temporal and spatial instability of local slopes are more essential for early warning or evacuation in area of lower part of hill-slopes. In the present study, a distributed, physically based landslide analysis method consisting of contour line-based method that subdivide a watershed area into stream tubes, and a slope stability analysis in which critical slip surface is searched to identify location and shape of the most instable slip surface in each stream tube, is developed. A target watershed area is divided into stream tubes using GIS technique, grand water flow for each stream tubes during a rainfall event is analyzed by a kinematic wave model, and slope stability for each stream tube is calculated by a simplified Janbu method searching for a critical slip surface using a dynamic programming method. Comparing to previous methods that assume infinite slope for slope stability analysis, the proposed method has advantage simulating landslides more accurately in spatially and temporally, and estimating amount of collapsed slope mass, that can be delivered to a debris flow simulation model as a input data. We applied this method to a small watershed in the Izu Oshima, Tokyo, Japan, where shallow and wide landslides triggered by heavy rainfall and subsequent debris flows attacked Oshima Town, in 2013. Figure shows the temporal and spatial change of simulated grand water level and landslides distribution. The simulated landslides are correspond to the uppermost part of actual landslide area, and the timing of the occurrence of landslides agree well with the actual landslides.

  19. A genetic algorithm for slope stability analyses with concave slip surfaces using custom operators

    NASA Astrophysics Data System (ADS)

    Jurado-Piña, Rafael; Jimenez, Rafael

    2015-04-01

    Heuristic methods are popular tools to find critical slip surfaces in slope stability analyses. A new genetic algorithm (GA) is proposed in this work that has a standard structure but a novel encoding and generation of individuals with custom-designed operators for mutation and crossover that produce kinematically feasible slip surfaces with a high probability. In addition, new indices to assess the efficiency of operators in their search for the minimum factor of safety (FS) are proposed. The proposed GA is applied to traditional benchmark examples from the literature, as well as to a new practical example. Results show that the proposed GA is reliable, flexible and robust: it provides good minimum FS estimates that are not very sensitive to the number of nodes and that are very similar for different replications.

  20. Applying Distributed, Coupled Hydrological Slope-Stability Models for Landslide Hazard Assessments

    NASA Astrophysics Data System (ADS)

    Godt, J. W.; Baum, R. L.; Lu, N.; Savage, W. Z.; McKenna, J. P.

    2006-12-01

    Application of distributed, coupled hydrological slope-stability models requires knowledge of hydraulic and material-strength properties at the scale of landslide processes. We describe results from a suite of laboratory and field tests that were used to define the soil-water characteristics of landslide-prone colluvium on the steep coastal bluffs in the Seattle, Washington area and then use these results in a coupled model. Many commonly used tests to determine soil-water characteristics are performed for the drying process. Because most soils display a pronounced hysteresis in the relation between moisture content and matric suction, results from such tests may not accurately describe the soil-water characteristics for the wetting process during rainfall infiltration. Open-tube capillary-rise and constant-flow permeameter tests on bluff colluvium were performed in the laboratory to determine the soil-water characteristic curves (SWCC) and unsaturated hydraulic conductivity functions (HCF) for the wetting process. Field-tests using a borehole permeameter were used to determine the saturated hydraulic conductivity of colluvial materials. Measurements of pore-water response to rainfall were used in an inverse numerical modeling procedure to determine the in-situ hydraulic parameters of hillside colluvium at the scale of the instrument installation. Comparison of laboratory and field results show that although both techniques generally produce SWCCs and HCFs with similar shapes, differences in bulk density among field and lab tests yield differences in saturated moisture content and saturated hydrologic conductivity. We use these material properties in an application of a new version of a distributed transient slope stability model (TRIGRS) that accounts for the effects of the unsaturated zone on the infiltration process. Applied over a LiDAR-based digital landscape of part of the Seattle area for an hourly rainfall history known to trigger shallow landslides, the

  1. Simulation of long-term debris flow sediment transport based on a slope stability and a debris flow routing model

    NASA Astrophysics Data System (ADS)

    Müller, T.; Hoffmann, T.

    2012-04-01

    Debris flows play a crucial role in the coupling of hillslope-sediment sources and channels in mountain environments. In most landscape evolution models (LEMs), the sediment transport by debris flows is (if at all) often represented by simple empirical rules. This generally results from the mismatch of the coarse resolution of the LEMs and the small scale impacts of debris flow processes. To extend the accuracy and predictive power of LEMs, either a higher resolution of LEMs in combination with process-based debris flow models or a better parametrisation of subpixel scale debris flow processes is necessary. Furthermore, the simulation of sediment transport by debris flows is complicated by their episodic nature and unknown factors controlling the frequency and magnitude of events. Here, we present first results using a slope stability model (SINMAP) and an event-based debris flow routing model (SCIDDICA-S4c) to simulate the effects of debris flows in LEMs. The model was implemented in the XULU modelling platform developed by the Department of Computer Science at the University of Bonn. The combination of the slope stability model and the event-based routing and mass balance model enables us to simulate the triggering and routing of debris flow material through the iteration of single events over several thousand years. Although a detailed calibration and validation remains to be done, the resulting debris flow-affected areas in a test elevation model correspond well with data gained from a geomorphological mapping of the corresponding area, justifying our approach. The increased computation speed allows to run high resolution LEM in convenient short time at relatively low cost. This should encourage the development of more detailed LEMs, in which process-based models should be incorporated.

  2. High Performance Computing for probabilistic distributed slope stability analysis, an early example

    NASA Astrophysics Data System (ADS)

    Rossi, Guglielmo; Catani, Filippo

    2010-05-01

    The term shallow landslides is widely used in literature to describe a slope movement of limited size that mainly develops in soils up to a maximum of a few meters thick. Shallow landslides are usually triggered by heavy rainfall because, as the water starts to infiltrate into the soil, the pore-water pressure increases so that the shear strength of the soil is reduced leading to slope failure. We have developed a distributed hydrological-geotechnical model for forecasting the temporal and spatial distribution of shallow landslides to be used as a real time warning system for civil protection purposes. The stability simulator is developed to use High Performance Computing (HPC) resources and in this way can manage large areas, with high spatial and temporal resolution, at useful computational time for a warning system . The output of the model is a probabilistic value of slope instability. In its current stage the model applied for predicting the expected location of shallow landslides involves several stand-alone components. The base solution suggested by Iverson for the Richards equation is adapted to be used in a real time simulator to estimate the probabilistic distribution of the transient groundwater pressure head according to radar detected rainfall intensity. The use of radar detected rainfall intensity as the input for the hydrological simulation of the infiltration allows a more accurate computation of the redistribution of the groundwater pressure associated with transient infiltration of rain. A soil depth prediction scheme and a limit-equilibrium infinite slope stability algorithm are used to calculate the distributed factor of safety (FS) at different depths and to record the probability distribution of slope instability in the final output file. The additional ancillary data required have been collected during fieldwork and with laboratory standard tests. The model deals with both saturated and unsaturated conditions taking into account the effect of

  3. Workflow for the fast evaluation of rock mass properties and stability of rock slopes along trafficways in Lower Austria

    NASA Astrophysics Data System (ADS)

    Straka, Wolfgang; Zangerl, Christian

    2016-04-01

    In Lower Austria there is a total of 17.000 km of provincial and 24.000 km of communal roads, to be maintained by the province and the municipalities. In addition, there are approx. 1.500 km of railroads, and the Danube as a major waterway. A large part of this infrastructure is, or is potentially, affected by various types of instability of adjacent slopes. Due to insufficient knowledge, as well as slope design and management practice in the past, every year, especially in connection to weather extremes, slopes known to be critical become active landslides again, and unexpected new ones arise, causing damage as well as financial stress. Engineering intervention, if possible, should be quick and effective. Geologists and engineers in public service, not having the means for detailed investigation in most cases, are using guidelines to assess the requirements to be met by slope design on traffic ways. But these guidelines don't reflect many of the newer scientific advances. Therefore, scientists at BOKU and backers in the administration want to gain more insight into causative factors, which, if successful, may render maintenance of traffic lines under critical conditions more effective and predictable. The specific project goal is to produce new guidelines to allow quick assessment of the most likely behaviour of rock masses common in the area, especially when cut into shape along infrastructure lines, using readily available information. The scientific investigations include simple and ready tests (like Schmidt hammer), as well as photogrammetry, laserscanning, and other complex geophysical and numerical techniques, but the final product (guidelines) is expected to work without such difficult methods. It is important to note, on the other hand, that the rock mass stability classification inherent in the new guidelines must allow distinction between conclusions which are safe, and conjectures which are in need of validation by contracted experts. It is planned to

  4. The effects of ground water, slope stability, and seismic hazards on the stability of the South Fork Castle Creek blockage in the Mount St. Helens area, Washington

    USGS Publications Warehouse

    Meyer, William; Sabol, M.A.; Glicken, H.X.; Voight, Barry

    1985-01-01

    A slope stability analysis on the South Fork Castle Creek debris avalanche blockage, near Mount St. Helens, Washington, was conducted to determine the likelihood of mass failure of the blockage and resultant breakout of South Fork Castle Creek Lake. On the basis of material properties, groundwater levels, and seismic history of the blockage, slope stability with and without earthquake-induced forces was determined. Results indicated that the blockage will not fail from gravitational forces at September 1983 groundwater levels. An increase of 25 feet or more in water levels could cause local failures, but massive failure of the blockage is improbable. Blockage slopes are potentially unstable for present and higher water levels if an earthquake with magnitude greater than 6.0 should occur. Retrogressive slope failures are possible, but lowering of the blockage crest below lake level and consequent lake breakout are considered remote. Significant earthquake shaking could cause cracks in the blockage that might facilitate piping. (USGS)

  5. Geotechnical properties and preliminary assessment of sediment stability on the continental slope of the northwestern Alboran Sea

    USGS Publications Warehouse

    Baraza, J.; Ercilla, G.; Lee, H.J.

    1992-01-01

    Laboratory analysis of core samples from the western Alboran Sea slope reveal a large variability in texture and geotechnical properties. Stability analysis suggests that the sediment is stable under static gravitational loading but potentially unstable under seismic loading. Slope failures may occur if horizontal ground accelerations greater than 0.16 g are seismically induced. The, Alboran Sea is an active region, on which earthquakes inducing accelerations big enough to exceed the shear strength of the soft soil may occur. Test results contrast with the apparent stability deduced from seismic profiles. ?? 1992 Springer-Verlag New York Inc.

  6. The horizontal transport of pollutants from a slope wind layer into the valley core as a function of atmospheric stability

    NASA Astrophysics Data System (ADS)

    Leukauf, Daniel; Gohm, Alexander; Rotach, Mathias W.; Posch, Christian

    2016-04-01

    Slope winds provide a mechanism for the vertical exchange of air between the valley and the free atmosphere aloft. By this means, heat, moisture and pollutants are exported or imported. However, it the static stability of the valley atmosphere is strong, one part of the up-slope flow is redirected towards the valley center and pollutants are recirculated within the valley. This may limit the venting potential of slope winds severely. The main objective of this study is to quantify the horizontal transport of pollutants from the slope wind layer into the stable valley core and to determine the dependency of this flux as a function of the initial stability of the atmosphere. For this purpose, we conducted large eddy simulations with the Weather Research and Forecasting (WRF) model for a quasi-two-dimensional valley. The valley geometry consists of two slopes with constant slope angle rising to a crest height of 1500 m and a 4 km wide flat valley floor in between. The valley is 20 km long and homogeneous in along-valley direction. Hence, only slope winds but no valley winds can evolve. The surface sensible heat flux is prescribed by a sine function with an amplitude of 125 W m-2. The initial sounding characterized by an atmosphere at rest and by a constant Brunt-Väisälä frequency which is varied between 0.006 s-1 and 0.02 s-1. A passive tracer is released with an arbitrary but constant rate at the valley floor. As expected, the atmospheric stability has a strong impact on the vertical and horizontal transport of tracer mass. A horizontal intrusion forms at the top of the mixed layer due to outflow from the slope wind layer. Tracer mass is transported from the slope towards the center of the valley. The efficiency of this mechanism increases with increasing stability N. For the lowest value of N, about 70% of the tracer mass released at the valley bottom is exported out of the valley. This value drops to about 12% in the case of the strongest stability. Hence, most

  7. Constraints on mechanisms for the growth of gully alcoves in Gasa crater, Mars, from two-dimensional stability assessments of rock slopes

    USGS Publications Warehouse

    Okubo, C.H.; Tornabene, L.L.; Lanza, N.L.

    2011-01-01

    The value of slope stability analyses for gaining insight into the geologic conditions that would facilitate the growth of gully alcoves on Mars is demonstrated in Gasa crater. Two-dimensional limit equilibrium methods are used in conjunction with high-resolution topography derived from stereo High Resolution Imaging Science Experiment (HiRISE) imagery. These analyses reveal three conditions that may produce observed alcove morphologies through slope failure: (1) a ca >10m thick surface layer that is either saturated with H2O ground ice or contains no groundwater/ice at all, above a zone of melting H2O ice or groundwater and under dynamic loading (i.e., seismicity), (2) a 1-10m thick surface layer that is saturated with either melting H2O ice or groundwater and under dynamic loading, or (3) a >100m thick surface layer that is saturated with either melting H2O ice or groundwater and under static loading. This finding of three plausible scenarios for slope failure demonstrates how the triggering mechanisms and characteristics of future alcove growth would be affected by prevailing environmental conditions. HiRISE images also reveal normal faults and other fractures tangential to the crowns of some gully alcoves that are interpreted to be the result of slope instability, which may facilitate future slope movement. Stability analyses show that the most failure-prone slopes in this area are found in alcoves that are adjacent to crown fractures. Accordingly, crown fractures appear to be a useful indicator of those alcoves that should be monitored for future landslide activity. ?? 2010.

  8. A distributed model for slope stability analysis using radar detected rainfall intensity

    NASA Astrophysics Data System (ADS)

    Leoni, L.; Rossi, G.; Catani, F.

    2009-04-01

    The term shallow landslides is widely used in literature to describe a slope movement of limited size that mainly develops in soils up to a maximum of a few meters. Shallow landslides are usually triggered by heavy rainfall because, as the water starts to infiltrate in the soil, the pore-water pressure increases so that the shear strength of the soil is reduced leading to slope failure. We have developed a distributed hydrological-geotechnical model for the forecasting of the temporal and spatial distribution of shallow landslides to be used as a warning system for civil protection purpose. The model uses radar detected rainfall intensity as the input for the hydrological simulation of the infiltration. Using the rainfall pattern detected by the radar is in fact possible to dynamically control the redistribution of groundwater pressure associated with transient infiltration of rain so as to infer the slope stability of the studied area. The model deals with both saturated and unsaturated conditions taking into account the effect of soil suction when the soil is not completely saturated. Two pilot sites have been chosen to develop and test this model: the Armea basin (Liguria, Italy) and the Ischia Island (Campania, Italy). In recent years several severe rainstorms have occurred in both these areas. In at least two cases these have triggered numerous shallow landslides that have caused victims and damaged roads, buildings and agricultural activities. In its current stage, the basic basin-scale model applied for predicting the probable location of shallow landslides involves several stand-alone components. The solution suggested by Iverson for the Richards equation is used to estimate the transient groundwater pressure head distribution according to radar detected rainfall intensity. A soil depth prediction scheme and a limit-equilibrium infinite slope stability algorithm are used to calculate the distributed factor of safety (FS) at different depths and to record

  9. The Vasto Landslide (Adriatic coast, central Italy): geomorphological constraints and numerical modelling to reconstruct the evolution of a large instability affecting a coastal slope

    NASA Astrophysics Data System (ADS)

    Della Seta, M.; Martino, S.; Scarascia Mugnozza, G.

    2012-04-01

    The Vasto town (Abruzzi, central Italy) raises 143 m a.s.l., on the top of an uplifted Quaternary regressive sequence. The coastal slope is affected by large slope instability (Vasto Landslide) with evidence of present activity, as suggested by several geomorphic features. Well documented historical disruptive events affected the town and the coastal slope in 1816, 1942 and 1956, with deformation locally reaching the near offshore. Field morpho-stratigraphic evidences suggest that sea cliff retreat must have removed considerable volumes of rock before the first activation of the large slope instability. Thus, a morpho-evolutive model of the Vasto Landslide is proposed here, which takes into account the present landforms, the field geological evidences as well as borehole stratigraphy and the combined effect of Quaternary uplift and eustatic oscillations on the coastal slope, since the area started emerging (early Middle Pleistocene) and up to present. Some significant steps were identified, given the tectono-eustatic constraints, and slope stability was analysed with the method of slices (Fellenius) for the different steps. The analysis confirms the kinematic consistency of the first activation of two major roto-translational surfaces in the Middle Pleistocene, after considerable sea cliff retreat. Finite difference stress-strain numerical modelling (FDM) of the Vasto Landslide was then performed in order to output: 1) the landslide mechanism; 2) the style of activity of the landslide; 3) the cumulative deformations occurred during the morpho-evolutive steps. The numerical modelling was calibrated by considering the present landforms as well as the effects recorded during the historical events. The results obtained here confirm that the Vasto Lanslide was first activated in the Middle Pleistocene (~200 ka B.P.), as a consequence of wave cut erosion and progressive emersion of the coastal slope. Moreover, the landslide evolved as a retrogressive, single

  10. Assessment of rock mechanical properties and seismic slope stability in variably weathered layered basalts

    NASA Astrophysics Data System (ADS)

    Greenwood, William; Clark, Marin; Zekkos, Dimitrios; Von Voigtlander, Jennifer; Bateman, Julie; Lowe, Katherine; Hirose, Mitsuhito; Anderson, Suzanne; Anderson, Robert; Lynch, Jerome

    2016-04-01

    A field and laboratory experimental study was conducted to assess the influence of weathering on the mechanical properties of basalts in the region of the Kohala volcano on the island of Hawaii. Through the systematic characterization of the weathering profiles developed in different precipitation regimes, we aim to explain the regional pattern of stability of slopes in layered basalts that were observed during the 2006 Mw 6.7 Kiholo Bay earthquake. While deeper weathering profiles on the wet side of the island might be expected to promote more and larger landslides, the distribution of landslides during the Kiholo Bay earthquake did not follow this anticipated trend. Landslide frequency (defined as number of landslides divided by total area) was similar on the steepest slopes (> 50-60) for both the dry and the wet side of the study area suggesting relatively strong ground materials irrespective of weathering. The study location is ideally suited to investigate the role of precipitation, and more broadly of climate, on the mechanical properties of the local rock units because the presence of the Kohala volcano produces a significant precipitation gradient on what are essentially identical basaltic flows. Mean annual precipitation (MAP) varies by more than an order of magnitude, from 200 mm/year on the western side of the volcano to 4000 mm/year in the eastern side. We will present results of measured shear wave velocities using a seismic surface wave methodology. These results were paired with laboratory testing on selected basalt specimens that document the sample-scale shear wave velocity and unconfined compressive strength of the basaltic rocks. Shear wave velocity and unconfined strength of the rocks are correlated and are both significantly lower in weathered rocks near the ground surface than at depth. This weathering-related reduction in shear wave velocity extends to greater depths in areas of high precipitation compared to areas of lower precipitation

  11. Integrating the effects of forest cover on slope stability in a deterministic landslide susceptibility model (TRIGRS 2.0)

    NASA Astrophysics Data System (ADS)

    Zieher, T.; Rutzinger, M.; Bremer, M.; Meissl, G.; Geitner, C.

    2014-12-01

    The potentially stabilizing effects of forest cover in respect of slope stability have been the subject of many studies in the recent past. Hence, the effects of trees are also considered in many deterministic landslide susceptibility models. TRIGRS 2.0 (Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability; USGS) is a dynamic, physically-based model designed to estimate shallow landslide susceptibility in space and time. In the original version the effects of forest cover are not considered. As for further studies in Vorarlberg (Austria) TRIGRS 2.0 is intended to be applied in selected catchments that are densely forested, the effects of trees on slope stability were implemented in the model. Besides hydrological impacts such as interception or transpiration by tree canopies and stems, root cohesion directly influences the stability of slopes especially in case of shallow landslides while the additional weight superimposed by trees is of minor relevance. Detailed data on tree positions and further attributes such as tree height and diameter at breast height were derived throughout the study area (52 km²) from high-resolution airborne laser scanning data. Different scenarios were computed for spruce (Picea abies) in the study area. Root cohesion was estimated area-wide based on published correlations between root reinforcement and distance to tree stems depending on the stem diameter at breast height. In order to account for decreasing root cohesion with depth an exponential distribution was assumed and implemented in the model. Preliminary modelling results show that forest cover can have positive effects on slope stability yet strongly depending on tree age and stand structure. This work has been conducted within C3S-ISLS, which is funded by the Austrian Climate and Energy Fund, 5th ACRP Program.

  12. Regional slope stability of the Truckee River Canyon (drainage system) from Tahoe City, California to Reno, Nevada

    SciTech Connect

    Gates, W.C.B. )

    1993-04-01

    The Truckee River drainage system above Reno, Nevada presents unique examples of complex slope stability problems because of the varied and complex geologic terrane. Several factors control mass wasting and slope stability as the Truckee River flows from the Sierra Nevada to the Basin and Range Physiographic province. A distinct change in climatic conditions occurs. The river passes through Cenozoic jointed and faulted volcanic rocks of various lithologies and competency interspersed with clastics which lend to complex geological problems. The upper canyon is U-shaped and over-steepened by multiple Pleistocene glacial stages. The lower canyon has been incised deeply from periodic outburst flooding originating from glacial dammed lakes in the upper canyon. The area is seismically active which exacerbates the slope instability. These factors together have contributed to approximately five categories of mass wasting.

  13. A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill

    SciTech Connect

    Yu, L.; Batlle, F.

    2011-12-15

    Highlights: > A quasi-three-dimensional slope stability analysis method was proposed. > The proposed method is a good engineering tool for 3D slope stability analysis. > Factor of safety from 3D analysis is higher than from 2D analysis. > 3D analysis results are more sensitive to cohesion than 2D analysis. - Abstract: Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The 'equivalent' three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that Fo

  14. Soil organic matter composition along a slope in an erosion-affected arable landscape in North East Germany

    NASA Astrophysics Data System (ADS)

    Ellerbrock, Ruth, H.; Gerke, Horst, H.; Deumlich, Detlef

    2016-04-01

    In hummocky landscapes, soil erosion is forming truncated profiles at steep slope positions and colluvial soils in topographic depressions thereby affecting soil organic carbon (SOC) storage. However, the knowledge on the spatial distribution and composition of differently stable organic matter (OM) fractions in arable landscapes is still limited. Here, amount and composition of OM from top- and subsoil horizons at eroded, colluvic, and non -eroded slope positions were compared. The horizons were from a Luvisol at plateau (LV), an eroded Luvisol (eLV) at mid slope (6%slope gradient), a calcaric Regosol (caRG) at steep slope (13%), and a colluvic Regosol (coRG) at hollow position. Water soluble (OM-W) and pyrophosphate soluble (OM-PY) fractions were extracted sequentially. Soil samples, OM fractions, and extraction residues were analyzed with transmission Fourier transform infrared (FTIR) spectroscopy. The soluble fractions were 3% of SOC for OM-W and 15% of SOC for OM-PY. For topsoil samples, extract ion rates were independent of slope position. The highest intensities of both, C-H (alkyl groups) and C=O (carboxyl groups) absorption band, were found in FTIR spectra of OM-PY from top and subsoil horizons at the steep slope position (caRG). The C-H/C=O ratio in OM-PY decreased with increasing contents of oxalate soluble Fe and Al oxides from steep slope (0.25 for caRG-Ap) towards plateau, and hollow position (0.09 for coRG-Ap) except for the Bt -horizons. This relation is reflecting that the down slope-deposited Ap material, which is higher in poorly crystalline Fe an d Al oxides, consists of relatively stable OM. This OM is enriched in C=O groups that are known for their interaction with soil minerals. These OM-mineral interactions may help explaining C storage in arable soil landscapes.

  15. Not all ski slopes are created equal: disturbance intensity affects ecosystem properties.

    PubMed

    Burt, Jennifer W; Rice, Kevin J

    2009-12-01

    In mountain regions around the world, downhill ski areas represent a significant source of anthropogenic disturbance while also providing recreation and revenue. Ski-run creation always results in some level of disturbance, but disturbance intensity varies greatly with construction method. Ski runs may be established either by clearing (cutting and removing tall vegetation) or by clearing and then machine-grading (leveling the soil surface with heavy equipment). To quantify how these different intensities of initial disturbance affect ecosystem properties, we extensively surveyed vegetation, soils, and environmental characteristics on cleared ski runs, graded ski runs, and adjacent reference forests across seven large downhill ski resorts in the northern Sierra Nevada, USA. We found that the greater disturbance intensity associated with grading resulted in greater impacts on all ecosystem properties considered, including plant community composition and diversity, soil characteristics relating to processes of nutrient cycling and retention, and measures of erosion potential. We also found that cleared ski runs retained many ecological similarities to reference forests and might even offer some added benefits by possessing greater plant species and functional diversity than either forests or graded runs. Because grading is more damaging to multiple indicators of ecosystem function, clearing rather than grading should be used to create ski slopes wherever practical.

  16. The Theoretical and Experimental Modeling of Seismic Influence On Snow Cover Mechanical Stability On A Slope

    NASA Astrophysics Data System (ADS)

    Chernouss, P.; Mokrov, E.; Fedorenko, Yu.; Husebye, E.; Beketova, E.

    Sometime a direct damage of earthquake can be less than damage that occurs due to triggered phenomena such as landslides, avalanches etc. It is difficult to obtain experimental data for avalanches triggered by natural earthquakes because the lasts are very rare. The main idea of the suggested approach is to study avalanche events induced by artificial seismisity. The Khibini Mountains is a nice place for such type of studies due to large-scale mining activity and plenty of avalanches. This work was begun by the Center of Avalanche Safety of "Apatit" JSC, Kola Science Centre of Russian Academy of Science and the University of Bergen in 1999. A 3-component seismic station with sensors on the rock and in the snow cover was deployed on a top of the mountain. The experimental data on accelerations, velocities and displacements were obtained for different explosions at different distances. This data are correlated with an earthquake intensity scale. A snow slab on a mountain slope is modeled as a thin elastic shell resting on an oscillating hard underlying surface. Estimations of the earthquake intensity on snow slab stability obtained with this model are presented. The estimations are also made for the slab resting on an another snow layer that transforms rock oscillations. Some perspectives of further studies and possibilities of practical application mentioned results are considered.

  17. Evaluating the Effect of Rainfall Infiltration on the Slope Stability of T16 tower of Taipei Mao-kong Gondola by Numerical Methods

    NASA Astrophysics Data System (ADS)

    RUNG, J.

    2013-12-01

    In this study, a series of rainfall-stability analyses were performed to simulate the failure mechanism and the function of remediation works of the down slope of T-16 tower pier, Mao-Kong gondola (or T-16 Slope) at the hillside of Taipei City using two-dimensional finite element method. The failure mechanism of T-16 Slope was simulated using the rainfall hyetograph of Jang-Mi typhoon in 2008 based on the field investigation data, monitoring data, soil/rock mechanical testing data and detail design plots of remediation works. Eventually, the numerical procedures and various input parameters in the analysis were verified by comparing the numerical results with the field observations. In addition, 48 hrs design rainfalls corresponding to 5, 10, 25 and 50 years return periods were prepared using the 20 years rainfall data of Mu-Zha rainfall observation station, Central Weather Bureau for the rainfall-stability analyses of T-16 Slope to inspect the effect of the compound stabilization works on the overall stability of the slope. At T-16 Slope, without considering the longitudinal and transverse drainages on the ground surface, there totally 4 types of stabilization works were installed to stabilize the slope. From the slope top to the slope toe, the stabilization works of T-16 Slope consists of RC-retaining wall with micro-pile foundation at the up-segment, earth anchor at the up-middle-segment, soil nailing at the middle-segment and retaining pile at the down-segment of the slope. The effect of each individual stabilization work on the slope stability under rainfall condition was examined and evaluated by raising field groundwater level.

  18. Coir geotextile for slope stabilization and cultivation - A case study in a highland region of Kerala, South India

    NASA Astrophysics Data System (ADS)

    Vishnudas, Subha; Savenije, Hubert H. G.; Van der Zaag, Pieter; Anil, K. R.

    A sloping field is not only vulnerable to soil erosion it may also suffer from soil moisture deficiency. Farmers that cultivate on slopes everywhere face similar problems. Conservation technologies may reduce soil and nutrient losses, and thus enhance water holding capacity and soil fertility. But although these technologies promote sustainable crop production on steep slopes, the construction of physical structure such as bench terraces are often labour intensive and expensive to the farmers, since construction and maintenance require high investments. Here we studied the efficiency of coir geotextile with and without crop cultivation in reducing soil moisture deficiency on marginal slopes in Kerala, India. From the results it is evident that the slopes treated with geotextile and crops have the highest moisture retention capacity followed by geotextiles alone, and that the control plot has the lowest moisture retention capacity. As the poor and marginal farmers occupy the highland region, this method provides an economically viable option for income generation and food security along with slope stabilization.

  19. Alaskan Beaufort Sea Heat Flow and Ocean Temperature Analysis: Implications for Stability of Climate-Sensitive Continental Slope Gas Hydrates

    NASA Astrophysics Data System (ADS)

    Phrampus, B. J.; Hornbach, M. J.; Ruppel, C. D.; Hart, P. E.

    2013-12-01

    Based on USGS estimates, gas hydrates beneath the continental slope of the US Beaufort Sea sequester several gigatons of methane. Warming of Beaufort Sea intermediate waters has the potential to cause dissociation of upper slope gas hydrates, release of methane to the overlying water column, and the buildup of pore pressure in slope sediments in an area first used by Kayen and Lee (1991) as the archetype for linked gas hydrate dynamics and slope failures. Limited constraints on regional heat flow, ocean temperature variability, and the extent of methane hydrates across the region have made analysis of Beaufort continental slope gas hydrate system difficult. Using legacy USGS seismic data combined with a new 3D thermal refraction model and more than 30 years of ocean temperature measurements, we analyze the stability of Beaufort continental slope methane hydrates. Our analysis provides the first regional heat flow map of the Alaskan shelf and margin, a detailed >30 year assessment of ocean temperature change in this region, and the first map revealing where disequilibrium methane hydrate stability conditions exist in the Western Beaufort Sea. Our results show that heat flow is complex and highly variable across the Beaufort margin, that intermediate ocean temperatures have warmed steadily for more than 30 years, and that the gas hydrates on the upper slope are out of equilibrium with overlying intermediate waters over large parts of the area. The discrepancy between observed and predicted hydrate stability depths is best explained by significant (>1 degC) intermediate ocean warming since the last glacial maximum. Even in the absence of persistent ocean warming conditions in the near future, the results predict destabilization of gas hydrates underlying an area ranging from ~4,750 km2 to ~30,000 km2 on the US Beaufort continental slope over the next 100 years. A fraction of the methane released by these gas hydrates may be emitted at seafloor seeps and contribute to

  20. Snowpack spatial variability: Towards understanding its effect on remote sensing measurements and snow slope stability

    NASA Astrophysics Data System (ADS)

    Marshall, Hans-Peter

    on a slope. The ability to accurately characterize snowpack properties at much higher resolutions and spatial extent than previously possible will hopefully help lead to a more complete understanding of spatial variability, its effect on remote sensing measurements and snow slope stability, and result in improvements in avalanche prediction and accuracy of SWE estimates from space.

  1. Assessing deep-seated landslide susceptibility using 3-D groundwater and slope-stability analyses, southwestern Seattle, Washington

    USGS Publications Warehouse

    Brien, Dianne L.; Reid, Mark E.

    2008-01-01

    In Seattle, Washington, deep-seated landslides on bluffs along Puget Sound have historically caused extensive damage to land and structures. These large failures are controlled by three-dimensional (3-D) variations in strength and pore-water pressures. We assess the slope stability of part of southwestern Seattle using a 3-D limit-equilibrium analysis coupled with a 3-D groundwater flow model. Our analyses use a high-resolution digital elevation model (DEM) combined with assignment of strength and hydraulic properties based on geologic units. The hydrogeology of the Seattle area consists of a layer of permeable glacial outwash sand that overlies less permeable glacial lacustrine silty clay. Using a 3-D groundwater model, MODFLOW-2000, we simulate a water table above the less permeable units and calibrate the model to observed conditions. The simulated pore-pressure distribution is then used in a 3-D slope-stability analysis, SCOOPS, to quantify the stability of the coastal bluffs. For wet winter conditions, our analyses predict that the least stable areas are steep hillslopes above Puget Sound, where pore pressures are elevated in the outwash sand. Groundwater flow converges in coastal reentrants, resulting in elevated pore pressures and destabilization of slopes. Regions predicted to be least stable include the areas in or adjacent to three mapped historically active deep-seated landslides. The results of our 3-D analyses differ significantly from a slope map or results from one-dimensional (1-D) analyses.

  2. Stability and Change in Affect among Centenarians

    ERIC Educational Resources Information Center

    Martin, Peter; da Rosa, Grace; Margrett, Jennifer A.; Garasky, Steven; Franke, Warren

    2012-01-01

    Much information is available about physical and functional health among very old adults, but little knowledge exists about the mental health and mental health changes in very late life. This study reports findings concerning positive and negative affect changes among centenarians. Nineteen centenarians from a Midwestern state participated in four…

  3. Spatial and temporal variations of glacial erosion in the European Alps: numerical models and implications for slope stability (Invited)

    NASA Astrophysics Data System (ADS)

    Sternai, P.; Herman, F.; Willett, S.; Champagnac, J.; Fox, M.; Valla, P.; Salcher, B.

    2013-12-01

    Glacial erosion in alpine landscapes can be highly variable in space and time and lead to significant morphologic modification and mass redistribution at virtually all scales. Because they affect the near-surface stress and strain distribution by producing cyclic variations of the surface load, removing and abrading rocks, storing/releasing sediments and affecting the surface and subsurface hydrology, glaciations have multiple effects on slope stability. Understanding how glacial erosion evolves in space and time is thus important for investigating potential feedbacks between glacial erosion and deep-seated gravitational slope deformation (DSGSD). The present-day topography of the European Alps shows evidence of intense glacial erosion. However, significant questions regarding Alpine landscape evolution during glaciations still persist. For example, large-scale topographic analyses suggest that glacial erosion is maximized at and above the glaciers' long-term Equilibrium Line Altitude. In contrast, measurements of long-term denudation rates from low-temperature thermochronology and reconstructions of the pre-glacial Alpine topography suggest high erosion towards low altitudes and formation of overdeepnenings, in turn indicating an increase of local relief in response to glacial processes. Based on sediment record, low-temperature thermochronology and burial cosmogenic nuclide dating, it has also been proposed that the mid-Pleistocene climatic transition from symmetric, 40kyr to asymmetric, 100kyr glacial/interglacial oscillations sets the onset of intense glacial erosion within the Alps. However, this climate threshold in glacial erosion has not been showed in other orogens, and positive feedbacks between climate periodicity and glacial erosion efficiency still remain to be proven. Numerical modeling provides estimates of the patterns and magnitudes of glacial erosion through time. Modeling results on an advanced reconstruction of the pre-glacial topography and the

  4. Mouthrinses affect color stability of composite

    PubMed Central

    Baig, Arshia Rashid; Shori, Deepa Deepak; Shenoi, Pratima Ramakrishna; Ali, Syed Navid; Shetti, Sanjay; Godhane, Alkesh

    2016-01-01

    Aim: The aim of this study is to evaluate the effect of alcohol and nonalcohol containing mouth rinses on the color stability of a nanofilled resin composite restorative material. Materials and Methods: A total of 120 samples of a nanofilled resin composite material (Tetric N-Ceram, Ivoclar Vivadent AG, FL-9494 Schaan/Liechtenstein) were prepared and immersed in distilled water for 24 h. Baseline color values were recorded using Color Spectrophotometer 3600d (Konica Minolta, Japan). Samples were then randomly distributed into six groups: Group I - distilled water (control group), Group II - Listerine, Group III - Eludril, Group IV - Phosflur, Group V - Amflor, and Group VI - Rexidin. The postimmersion color values of the samples were then recorded, respectively. Results: Significant reduction in the mean color value (before and after immersion) was observed in nonalcohol containing mouth rinses (P < 0.001). Conclusion: All mouthrinses tested in the present in-vitro study caused a color shift in the nanofilled resin composite restorative material, but the color shift was dependent on the material and the mouthrinse used. Group VI (Rexidin) showed maximum color change. PMID:27563186

  5. Evaluating a slope-stability model for shallow rain-induced landslides using gage and satellite data

    USGS Publications Warehouse

    Yatheendradas, S.; Kirschbaum, D.; Baum, Rex L.; Godt, Jonathan W.

    2014-01-01

    Improving prediction of landslide early warning systems requires accurate estimation of the conditions that trigger slope failures. This study tested a slope-stability model for shallow rainfall-induced landslides by utilizing rainfall information from gauge and satellite records. We used the TRIGRS model (Transient Rainfall Infiltration and Grid-based Regional Slope-stability analysis) for simulating the evolution of the factor of safety due to rainfall infiltration. Using a spatial subset of a well-characterized digital landscape from an earlier study, we considered shallow failure on a slope adjoining an urban transportation roadway near the Seattle area in Washington, USA.We ran the TRIGRS model using high-quality rain gage and satellite-based rainfall data from the Tropical Rainfall Measuring Mission (TRMM). Preliminary results with parameterized soil depth values suggest that the steeper slope values in this spatial domain have factor of safety values that are extremely close to the failure limit within an extremely narrow range of values, providing multiple false alarms. When the soil depths were constrained using a back analysis procedure to ensure that slopes were stable under initial condtions, the model accurately predicted the timing and location of the landslide observation without false alarms over time for gage rain data. The TRMM satellite rainfall data did not show adequately retreived rainfall peak magnitudes and accumulation over the study period, and as a result failed to predict the landslide event. These preliminary results indicate that more accurate and higher-resolution rain data (e.g., the upcoming Global Precipitation Measurement (GPM) mission) are required to provide accurate and reliable landslide predictions in ungaged basins.

  6. How do slope and surface roughness affect plot-scale overland flow connectivity?

    NASA Astrophysics Data System (ADS)

    Peñuela, Andrés; Javaux, Mathieu; Bielders, Charles L.

    2015-09-01

    Surface micro-topography and slope drive the hydrological response of plots through the gradual filling of depressions as well as the establishment of hydraulic connections between overflowing depressions. Therefore, quantifying and understanding the effects of surface roughness and slope on plot-scale overland flow connectivity is crucial to improve current hydrological modeling and runoff prediction. This study aimed at establishing predictive equations relating structural and functional connectivity indicators in function of slope and roughness. The Relative Surface Connection function (RSCf) was used as a functional connectivity indicator was applied. Three characteristic parameters were defined to characterize the RSCf: the surface initially connected to the outlet, the connectivity threshold and the maximum depression storage (DSmax). Gaussian surface elevation fields (6 m × 6 m) were generated for a range of slopes and roughnesses (sill σ and range R of the variogram). A full factorial of 6 slopes (0-15%), 6 values of R (50-400 mm) and 6 values of σ (2-40 mm) was considered, and the RSCf calculated for 10 realizations of each combination. Results showed that the characteristic parameters of the RSCf are greatly influenced by R, σ and slope. At low slopes and high ratios of σ/2R, the characteristic parameters of the RSCf appear linked to a single component of the surface roughness (R or σ). On the contrary, both R and σ are needed to predict the RSCf at high slopes and low ratios of σ/2R. A simple conceptualization of surface depressions as rectangles, whose shape was determined by R and σ, allowed deriving simple mathematical expressions to estimate the characteristic parameters of the RSCf in function of R, σ and slope. In the case of DSmax, the proposed equation performed better than previous empirical expressions found in the literature which do not account for the horizontal component of the surface roughness. The proposed expressions allow

  7. Characteristics of low-slope streams that affect O2 transfer rates

    USGS Publications Warehouse

    Parker, Gene W.; DeSimone, Leslie A.

    1991-01-01

    Multiple-regression techniques were used to derive the reaeration coefficients estimating equation for low sloped streams: K2 = 3.83 MBAS-0.41 SL0.20 H-0.76, where K2 is the reaeration coefficient in base e units per day; MBAS is the methylene blue active substances concentration in milligrams per liter; SL is the water-surface slope in foot per foot; and H is the mean-flow depth in feet. Fourteen hydraulic, physical, and water-quality characteristics were regressed against 29 measured-reaeration coefficients for low-sloped (water surface slopes less than 0.002 foot per foot) streams in Massachusetts and New York. Reaeration coefficients measured from May 1985 to October 1988 ranged from 0.2 to 11.0 base e units per day for 29 low-sloped tracer studies. Concentration of methylene blue active substances is significant because it is thought to be an indicator of concentration of surfactants which could change the surface tension at the air-water interface.

  8. Slope aspect affects geomorphic dynamics of coal mining spoil heaps in Belgium

    NASA Astrophysics Data System (ADS)

    Nyssen, Jan; Vermeersch, Dominiek

    2010-11-01

    After the abandonment of coal mining in Belgium in the 1960s-1980s, many coal tips have been left to themselves. Increasingly, these coal tips are regarded as socio-cultural heritage and protected for their environmental value. This research analyses the spatial distribution of the main geomorphic processes (sheet and rill erosion, landsliding, rock fragment movement and root throw) occurring on coal tips in Belgium, through mapping of the processes and their causal factors. Five spoil heaps spread over the major coal basins were studied in detail. The spoil heaps were subdivided in homogeneous land units, especially with regard to slope gradient, vegetation cover and slope aspect. Qualitative and quantitative observations were done on processes and potential causal factors. Regressions showed that generally, the expression of slope processes on the studied coal tips is (1) strongly dependent on westerly aspect of the slopes, (2) independent of slope gradient (which presents a narrow range), (3) impeded by grass cover, and (4) not fully predictable due to variability in type and age of dumped mine spoil.

  9. Interrill erosion, runoff and sediment size distribution as affected by slope steepness and antecedent moisture content

    NASA Astrophysics Data System (ADS)

    Defersha, M. B.; Quraishi, S.; Melesse, A.

    2010-08-01

    Soil erosion is a two-phase process consisting of the detachment of individual particles and their transport by erosive agents such as flowing water. The rate at which erosion occurs depends upon the individual as well as interactive effects of different parameters responsible for soil erosion. The study discusses results of a laboratory analysis and evaluates the effect of slope steepness and antecedent moisture content on sediment yield (wash) and runoff rate. Interrill sediment yield, splash detachment, runoff, and sediment size distribution were measured in laboratory erosion pans under simulated total duration of 90 min. Rainfall intensity at 120 mm/hr, 70 mm/hr, and 55 mm/hr were applied sequentially at 9, 25, and 45% slope steepness for three soils (Alemaya Black soil, Regosols, and Cambisols) varied from clay to sandy clay loam in texture with wet and dry antecedent water contents. As slope steepness increased from 9 to 25% splash increased for five treatments and decreased for the remaining treatment; washed sediment increased for all treatments. As slope increased from 25 to 45% splash decreased for five treatments but increased for one treatment, and washed sediment increased for three treatments but decreased for the other three treatments. Pre-wetting decreased splash detachment for all soil treatments and rate of reduction was high for the highly aggregated soil, Alemaya Black soil and low for the less aggregated soil Regosols. Splash sediment and sediment yield was not correlated. Change in splash with increase in slope steepness was also not correlated with change in sediment yield. Change in runoff rate with increase in slope steepness was correlated (r=0.66) with change in sediment yield. For Alemaya Black soil and Regosols, splashed sediment size distribution was correlated with washed sediment size distribution. Interrill erosion models that include runoff and rainfall intensity parameters were a better fit for these data than the rainfall

  10. The dependence of sea surface slope on atmospheric stability and swell conditions

    NASA Technical Reports Server (NTRS)

    Hwang, Paul A.; Shemdin, Omar H.

    1988-01-01

    A tower-mounted optical device is used to measure the two-orthogonal components of the sea surface slope. The results indicate that an unstable stratification at the air-sea interface tends to enhance the surface roughness. The presence of a long ocean swell system steers the primary direction of shortwave propagation away from wind direction, and may increase or reduce the mean square slope of the sea surface.

  11. A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill.

    PubMed

    Yu, L; Batlle, F

    2011-12-01

    Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The "equivalent" three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that FoS obtained from three-dimensional analysis increases as much as 50% compared to that from two-dimensional analysis implies the significance of the three-dimensional effect for this study-case. Influences of shear parameters, time elapse after landfill closure, leachate level as well as unit weight of waste on FoS were also

  12. Snow cover and ground surface temperature on a talus slope affected by mass movements. Veleta cirque, Sierra Nevada, Spain

    NASA Astrophysics Data System (ADS)

    Tanarro, L. M.; Palacios, D.; Gómez-Ortiz, A.; Salvador-Franch, F.

    2012-04-01

    This paper analyses the thermal ground behaviour on an alpine talus slope located at the foot of the north wall of the glacial cirque on the Pico del Veleta (3398 m, 37°03'21''N, 3°21'57''W, MAAT: -0,4°C) in Sierra Nevada, SE Spain. There are frequent mass movements on this talus slope, particularly in its central section, caused by the abundant presence of fine-grained sediment and by the water from snowmelt and/or ice degradation in the ground or permafrost (Gómez et al., 2003). To determine the snowmelt pattern and ocurrence of permafrost, a continuous ground surface temperature was kept by installing 6 mini-loggers (HOBO Pendant) along the descending profile of the central talus, which is 170 m long with altitudes ranging from 3180 m at the higher end to 3085 m at the lower end. A thermal borehole was also installed at a depth of 2 m at the base of the slope on an active rock glacier. The results obtained for the period October 2008 - September 2009 show that, in contrast to alpine talus slopes (Luetschg et. al., 2004; Lambiel and Pieracci, 2008), the upper part of the slope is characterized by mean annual ground surface temperatures (MAGST) lower than at the base of the talus, possibly due to the effect of the shadow of the cirque wall. The MAGST oscillate between 0.592°C at the station near the slope apex (S2) and 1.836°C at the station near the base (S5). In winter-spring, when the talus slope is covered with snow, the GST are stabilized at all stations between mid-October and early November. The minimum GST, which express the BTS conditions, oscillate between 0.232 and 0.01°C, depending on the month, with lowest values recorded during the month of April. Only one station (S3, mid-slope) recorded negative values (max. value : - 0.549°C in December and - 0.211 in April ). In summer, the snow disappears fairly quickly between mid- and late July on the intermediate stretch of the talus slope (S3, S4, S6), where the majority of the flows detected occur

  13. Spatial patterns and stability of soil water content in forested slope and terraced area on the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Xu, Guoce; Li, Zhanbin; Li, Peng

    2016-04-01

    Soil water content (SWC) plays a vital role in hydrological and vegetation restoration processes. It is the principal limiting factor for vegetation restoration on the Loess Plateau of China. This study aimed to analyze the spatial patterns and stability of SWC in a terraced area containing jujube trees (Ziziphus jujuba Mill.) and a forested slope with Chinese pine (Pinus tabulaeformis Carr.) following rainfall. The SWCs in nine soil layers at intervals of 0.2 m down to a depth of 1.8 m were measured at 21 locations both in the terraces and in the forested slope from July 19 to September 3 in 2014. The results showed that the SWCs at different soil depths were normally distributed. The SWC in terraces and forestland at each soil depth all had strong temporal stability. The temporal stability of SWC was lower in the 0-0.4 m soil layer than at the deeper soil depths. The representative locations for SWC were depth-dependent and the number of representative locations was not constant. The mean SWC was largest in the lower terrace slopes. The lowest mean SWC in the forested slope was at the mid-slope point due to the highest root distribution. The 0.4-0.6 m soil depth was generally the wettest in both terraces and forestland. The driest soil depth in terraces was 1.0-1.2 m while the driest soil depth in forestland was 0.8-1.0 m. The SWC had a significant positive correlation with clay and silt content. Moerover, the SWC had a significant positive correlation with SOC and did not have a significant correlation with root conten in the terraced area. But in the forested slope, the SWC had a significant negative correlation with roots and did not have a significant correlation with SOC. Although it is feasible to use the representative locations of SWC to represent the mean SWC of a hillslope over a period of time, the cumulative absolute error increases with the cumulative number of days. In conclusion, the SWC at different soil depths and locations showed strong spatial

  14. Mountain permafrost, glacier thinning, and slope stability - a perspective from British Columbia (and Alaska)

    NASA Astrophysics Data System (ADS)

    Geertsema, Marten

    2016-04-01

    The association of landslides with thinning glaciers and mapped, or measured, mountain permafrost is increasing. Glacier thinning debuttresses slopes and promotes joint expansion. It is relatively easy to map. Permafrost, a thermal condition, is generally not visually detectible, and is difficult to map. Much mountain permafrost may have been overlooked in hazard analysis. Identifying, and characterizing mountain permafrost, and its influence on slope instability is crucial for hazard and risk analysis in mountainous terrain. Rock falls in mountains can be the initial event in process chains. They can transform into rock avalanches, debris flows or dam burst floods, travelling many kilometres, placing infrastructure and settlements at risk.

  15. Plant ecology. Anthropogenic environmental changes affect ecosystem stability via biodiversity.

    PubMed

    Hautier, Yann; Tilman, David; Isbell, Forest; Seabloom, Eric W; Borer, Elizabeth T; Reich, Peter B

    2015-04-17

    Human-driven environmental changes may simultaneously affect the biodiversity, productivity, and stability of Earth's ecosystems, but there is no consensus on the causal relationships linking these variables. Data from 12 multiyear experiments that manipulate important anthropogenic drivers, including plant diversity, nitrogen, carbon dioxide, fire, herbivory, and water, show that each driver influences ecosystem productivity. However, the stability of ecosystem productivity is only changed by those drivers that alter biodiversity, with a given decrease in plant species numbers leading to a quantitatively similar decrease in ecosystem stability regardless of which driver caused the biodiversity loss. These results suggest that changes in biodiversity caused by drivers of environmental change may be a major factor determining how global environmental changes affect ecosystem stability.

  16. The stability of locus equation slopes across stop consonant voicing/aspiration

    NASA Astrophysics Data System (ADS)

    Sussman, Harvey M.; Modarresi, Golnaz

    2001-05-01

    The consistency of locus equation slopes as phonetic descriptors of stop place in CV sequences across voiced and voiceless aspirated stops was explored in the speech of five male speakers of American English and two male speakers of Persian. Using traditional locus equation measurement sites for F2 onsets, voiceless labial and coronal stops had significantly lower locus equation slopes relative to their voiced counterparts, whereas velars failed to show voicing differences. When locus equations were derived using F2 onsets for voiced stops that were measured closer to the stop release burst, comparable to the protocol for measuring voiceless aspirated stops, no significant effects of voicing/aspiration on locus equation slopes were observed. This methodological factor, rather than an underlying phonetic-based explanation, provides a reasonable account for the observed flatter locus equation slopes of voiceless labial and coronal stops relative to voiced cognates reported in previous studies [Molis et al., J. Acoust. Soc. Am. 95, 2925 (1994); O. Engstrand and B. Lindblom, PHONUM 4, 101-104]. [Work supported by NIH.

  17. Rock Slope Stability Evaluation in a Steep-Walled Canyon: Application to Elevator Construction in the Yunlong River Valley, Enshi, China

    NASA Astrophysics Data System (ADS)

    Xiao, Lili; Chai, Bo; Yin, Kunlong

    2015-09-01

    A passenger elevator is to be built on a nearly vertical slope in the National Geological Park in Enshi, Hubei province, China. Three steps comprise the construction: excavating the slope toe for the elevator platform, building the elevator on the platform, and affixing the elevator to the slope using anchors. To evaluate the rock slope stability in the elevator area and the safety of the elevator construction, we applied three techniques: qualitative analysis, formula calculation, and numerical simulation methods, based on field investigation and parameter selection, and considering both wet and dry conditions, pre- and post-construction. Qualitative stability factors for sliding and falling were calculated using the limit equilibrium method; the results show that the slope as a whole is stable, with a few unstable blocks, notably block BT1. Formula-based stability factors were calculated for four sections on block BT1, revealing the following: anchors will decrease the stability of certain rock pieces; the lowest average stability factor after anchoring will be K f = 1.36 in wet conditions; block BT1 should be reinforced during elevator construction, up to a first-class slope stability factor of K f = 1.40; and the slope as a whole is stable. Numerical simulation using FLAC3D indicated that the stress distribution will reach equilibrium for all steps before and after construction, and that the factor of safety (FOS) is within the general slope safety range (FOS > 1.05). We suggest that unstable pieces in block BT1 be reinforced during construction to a first-class slope safety range (FOS > 1.3), and that deformation monitoring on the slope surface be implemented.

  18. Root reinforcement and its contribution to slope stability in the Western Ghats of Kerala, India

    NASA Astrophysics Data System (ADS)

    Lukose Kuriakose, Sekhar; van Beek, L. P. H.

    2010-05-01

    The Western Ghats of Kerala, India is prone to shallow landslides and consequent debris flows. An earlier study (Kuriakose et al., DOI:10.1002/esp.1794) with limited data had already demonstrated the possible effects of vegetation on slope hydrology and stability. Spatially distributed root cohesion is one of the most important data necessary to assess the effects of anthropogenic disturbances on the probability of shallow landslide initiation, results of which are reported in sessions GM6.1 and HS13.13/NH3.16. Thus it is necessary to the know the upper limits of reinforcement that the roots are able to provide and its spatial and vertical distribution in such an anthropogenically intervened terrain. Root tensile strength and root pull out tests were conducted on nine species of plants that are commonly found in the region. They are 1) Rubber (Hevea Brasiliensis), 2) Coconut Palm (Cocos nucifera), 3) Jackfruit trees (Artocarpus heterophyllus), 4) Teak (Tectona grandis), 5) Mango trees (Mangifera indica), 6) Lemon grass (Cymbopogon citratus), 7) Gambooge (Garcinia gummi-gutta), 8) Coffee (Coffea Arabica) and 9) Tea (Camellia sinensis). About 1500 samples were collected of which only 380 could be tested (in the laboratory) due to breakage of roots during the tests. In the successful tests roots failed in tension. Roots having diameters between 2 mm and 12 mm were tested. Each sample tested had a length of 15 cm. Root pull out tests were conducted in the field. Root tensile strength vs root diameter, root pull out strength vs diameter, root diameter vs root depth and root count vs root depth relationships were derived. Root cohesion was computed for nine most dominant plants in the region using the perpendicular root model of Wu et al. (1979) modified by Schimidt et al. (2001). A soil depth map was derived using regression kriging as suggested by Kuriakose et al., (doi:10.1016/j.catena.2009.05.005) and used along with the land use map of 2008 to distribute the

  19. Factors affecting laser-trim stability of thick film resistors

    NASA Technical Reports Server (NTRS)

    Cote, R. E.; Headley, R. C.

    1977-01-01

    Various factors affecting precision of trim and resistor stability were considered. The influence of machine operating parameters on resistor performance was examined and quantified through statistically designed experiments for a Q switched YAG laser system. Laser kerf quality was studied by scanning electron microscopy and related to kerf isolation resistance measurements. A relatively simple production oriented, quality control test is proposed for rapid determination of kerf electrical stability. In addition, the effect of cut design and extent of trim on precision and stability were discussed.

  20. Remote sensing techniques of geospatial geotechnical site characterization applied to competence studies of mine tailings impoundments and slope stability investigations

    NASA Astrophysics Data System (ADS)

    Greuer, Wilhelm Max-Otto

    2006-04-01

    The research presented in this dissertation suggests methods of deriving critical engineering properties of soils from appropriate high altitude spectral data, or imagery. Soil interaction with ambient or applied electromagnetic radiation results in spatially varying degrees of reflection and absorption of electromagnetic radiation. Soil properties govern the band-specific interaction of the soil with the applied electromagnetic radiation, visually resulting in a soil's colour and brightness. The visual appearance, or cumulative interaction of the soil with each applied band of electromagnetic radiation, is recorded by cameras mounted on a remote sensing platform. From the resulting imagery, representing the soil's reflection/absorption intensity, key dielectric soil properties are calculated. Dielectric properties govern the soil's reflection and absorption intensities. In turn, dielectric properties are governed by the soil's structure and composition and are indicative of the soil's principal geotechnical properties. Dielectric properties of soil are the tie connection between the engineering properties of soil and geospatial data provided as imagery. This provides a fast, simple, inexpensive, and comprehensive geotechnical site assessment, performed by a single user in a GIS system, with soil spectral data as the principal input. Included with the image-extracted soil properties are principal slope engineering parameters. Using GIS and the prescribed series of computations, image-extracted geospatial data sets representing these key properties are applied to an area-wide modification of a common slope stability analysis method, resulting in a map illustrating the risk of slope failures throughout the area encompassed by imagery. This method is the skeleton of a possible automated satellite-based forecasting and warning system against landslides. In addition to the presented slope stability investigation, ground moisture surveys are also applied to competence

  1. An integrated field-numerical approach to assess slope stability hazards at volcanoes: the example of Pacaya, Guatemala

    NASA Astrophysics Data System (ADS)

    Schaefer, Lauren N.; Oommen, Thomas; Corazzato, Claudia; Tibaldi, Alessandro; Escobar-Wolf, Rudiger; Rose, William I.

    2013-06-01

    Pacaya is an active stratovolcano located 30 km south of Guatemala City, Guatemala. A large (0.65 km3) sector collapse of the volcano occurred 0.6-1.6 ka B.P., producing a debris avalanche that traveled 25 km SW of the edifice. The current cone has since rebuilt within the scarp of this ancestral collapse. The structural setting of the volcano, along with two recent smaller-volume collapses in 1962 and 2010, suggests gravitational instability of this volcano. To assess Pacaya's stability and potential for another large lateral collapse of the active cone, standard engineering methodologies for studying non-volcanic slopes were used to examine the SW flank of the edifice. A geomechanical model was developed based on the physical-mechanical material properties of Pacaya's intact rocks and rock mass characteristics found through field observations and laboratory tests. Slope stability was analyzed in several scenarios with the Limit Equilibrium Method (LEM) and Finite Element Method (FEM), including static conditions (i.e., under gravity forces only), and considering the application of magma pressure and seismic force as triggering mechanisms for slope failure. Results show that the edifice remains stable under gravity alone; however, a large-scale collapse could be triggered by reasonable ranges of magma pressure (≥7.7 MPa if constant along a dyke) or peak ground acceleration (≥460 cm/s2). Results also suggest that a layer of pyroclastics beneath the edifice could have controlled the ancestral sector collapse. Structural analysis shows that a transtensional stress regime is causing a NW-SE orientation of aligned features at the surface, and may be a controlling mechanism for the direction of a future collapse. FEM results are concordant with those from LEM and reveal that maximum shear strain patterns within the edifice may account for long lava flows erupted from lower vent elevations.

  2. Assessing slope stability in the Santa Barbara Basin, California, using seafloor geodesy and CHIRP seismic data

    NASA Astrophysics Data System (ADS)

    Blum, J. A.; Chadwell, C. D.; Driscoll, N.; Zumberge, M. A.

    2010-07-01

    Seafloor slope instability in the Santa Barbara Basin, California, poses risk to the region. Two prominent landslides, the Goleta and Gaviota slides, occupy the northern flank, with a scarp-like crack extending east from the headwall of the Gaviota slide towards the Goleta complex. Downslope creep across the crack might indicate an imminent risk of failure. Sub-bottom CHIRP profiles with <1 m accuracy across the crack exhibit no evidence of internal deformation. Daily seafloor acoustic range measurements spanning the crack detected no significant motion above a 99% confidence level of ±7 mm/yr over two years of monitoring. These disparate data over different timescales suggest no active creep and that the crack is likely a relict feature that formed concomitantly with the Gaviota slide.

  3. Slope stability analysis of landslide in Wayang Windu Geothermal Field, Pangalengan, West Java Province, Indonesia

    NASA Astrophysics Data System (ADS)

    Yuhendar, A. H.; Wusqa, U.; Kartiko, R. D.; Raya, N. R.; Misbahudin

    2016-05-01

    Large-scale landslide occurred in Margamukti village, Pangalengan, Bandung Regency, West Java Province, Indonesia. The landslide damaged geothermal gas pipeline along 300 m in Wayang Windu Geothermal Field. Based on field observation, landslide occured in rotational sliding movement. Laboratory analysis were conducted to obtain the characteristics of the soil. Based on the condition of the landslide in this area, the Factor of Safety can be simulated by the soil mechanics approach. Factor of safety analysis based on soil cohesion and internal friction angle was conducted using manual sensitivity analysis for back analysis. The analysis resulted soil cohesion in critical condition (FS<1) is 6.01 kPa. This value is smaller than cohesion of undisturbed slope soil sample. Water from rainfall is the most important instability factors in research area. Because it decreases cohesion in soils and increases weight and pore water pressure in granular media.

  4. Stage structure alters how complexity affects stability of ecological networks

    USGS Publications Warehouse

    Rudolf, V.H.W.; Lafferty, Kevin D.

    2011-01-01

    Resolving how complexity affects stability of natural communities is of key importance for predicting the consequences of biodiversity loss. Central to previous stability analysis has been the assumption that the resources of a consumer are substitutable. However, during their development, most species change diets; for instance, adults often use different resources than larvae or juveniles. Here, we show that such ontogenetic niche shifts are common in real ecological networks and that consideration of these shifts can alter which species are predicted to be at risk of extinction. Furthermore, niche shifts reduce and can even reverse the otherwise stabilizing effect of complexity. This pattern arises because species with several specialized life stages appear to be generalists at the species level but act as sequential specialists that are hypersensitive to resource loss. These results suggest that natural communities are more vulnerable to biodiversity loss than indicated by previous analyses.

  5. The influence of the maintenance of terraced areas on slope stability during the November 2014 flood event in Liguria (northwestern Italy)

    NASA Astrophysics Data System (ADS)

    Giordan, Daniele; Poggi, Flavio; Baldo, Marco; Cignetti, Martina

    2016-04-01

    Terraced environments are a widespread feature of the coastal settlement of eastern Liguria (northwestern Italy) and they constitute a well-known favorable role in slope stability. In this region, starting from the twentieth century, the progressive abandonment of agriculture determines a progressively increasing lack of maintenance of the terraces, consequently raising the level of slope instability. Moreover, it should be taken into account not only the level of terraces maintenance, but also their interaction with several factors as i) geological and geomorphological conditions, ii) soil properties, iii) hydrological and hydrogeological conditions, and iv) land use, causing an increase in landslides occurrence. The definition of managed terraces effects on slope stability and their response to external stress like a flood event is rather complicated; a possible approach is a statistical analysis of the effects of a flood event over a large terraced area, distinguishing the maintained sectors from the abandoned ones. After the November 2014 flood event, which affected several sectors of the Liguria region, where a high number of shallow landslides were triggered, an airborne LiDAR survey of the damaged area was carried out. In particular, a high resolution Digital Terrain Model (DTM) resampled to a lower density (1 square meter grid spacing) and a photogrammetric coverage of the area was performed, in order to create a landslide map of the flood event. The surveyed area covered more than 380 square kilometers, and over 1600 shallow landslides triggered by the flood event were identified and inventoried. The high resolution DTM allowed the identification of terraced areas also in wooded sectors and a sharp mapping of the extension of terraced slopes in this portion of Liguria region. By considering: i) the terraced areas recognized through DTM analysis, ii) the mapped landslides, and iii) the land use classification, a correlation between the presence of terraces

  6. Processes affecting the transport of nitrogen in groundwater and factors related to slope position

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate (NO3-) pollution of water resources has been a major problem for years, causing contaminated water supplies, harmful effects on human health, and widespread eutrophication of fresh water resources. The main objectives of this study were to: 1) understand the processes affecting NO3- transpor...

  7. The Influence of Plant Root Systems on Subsurface Flow: Implications for Slope Stability

    EPA Science Inventory

    Although research has explained how plant roots mechanically stabilize soils, in this article we explore how root systems create networks of preferential flow and thus influence water pressures in soils to trigger landslides. Root systems may alter subsurface flow: Hydrological m...

  8. Radar-derived asteroid shapes point to a 'zone of stability' for topography slopes and surface erosion rates

    NASA Astrophysics Data System (ADS)

    Richardson, J.; Graves, K.; Bowling, T.

    2014-07-01

    Previous studies of the combined effects of asteroid shape, spin, and self-gravity have focused primarily upon the failure limits for bodies with a variety of standard shapes, friction, and cohesion values [1,2,3]. In this study, we look in the opposite direction and utilize 22 asteroid shape-models derived from radar inversion [4] and 7 small body shape-models derived from spacecraft observations [5] to investigate the region in shape/spin space [1,2] wherein self-gravity and rotation combine to produce a stable minimum state with respect to surface potential differences, dynamic topography, slope magnitudes, and erosion rates. This erosional minimum state is self-correcting, such that changes in the body's rotation rate, either up or down, will increase slope magnitudes across the body, thereby driving up erosion rates non-linearly until the body has once again reached a stable, minimized surface state [5]. We investigated this phenomenon in a systematic fashion using a series of synthesized, increasingly prolate spheroid shape models. Adjusting the rotation rate of each synthetic shape to minimize surface potential differences, dynamic topography, and slope magnitudes results in the magenta curve of the figure (right side), defining the zone of maximum surface stability (MSS). This MSS zone is invariant both with respect to body size (gravitational potential and rotational potential scale together with radius), and density when the scaled-spin of [2] is used. Within our sample of observationally derived small-body shape models, slow rotators (Group A: blue points), that are not in the maximum surface stability (MSS) zone and where gravity dominates the slopes, will generally experience moderate erosion rates (left plot) and will tend to move up and to the right in shape/spin space as the body evolves (right plot). Fast rotators (Group C: red points), that are not in the MSS zone and where spin dominates the slopes, will generally experience high erosion rates

  9. Numerical slope stability simulations of chasma walls in Valles Marineris/Mars using a distinct element method (dem).

    NASA Astrophysics Data System (ADS)

    Imre, B.

    2003-04-01

    NUMERICAL SLOPE STABILITY SIMULATIONS OF CHASMA WALLS IN VALLES MARINERIS/MARS USING A DISTINCT ELEMENT METHOD (DEM). B. Imre (1) (1) German Aerospace Center, Berlin Adlershof, bernd.imre@gmx.net The 8- to 10-km depths of Valles Marineris (VM) offer excellent views into the upper Martian crust. Layering, fracturing, lithology, stratigraphy and the content of volatiles have influenced the evolution of the Valles Marineris wallslopes. But these parameters also reflect the development of VM and its wall slopes. The scope of this work is to gain understanding in these parameters by back-simulating the development of wall slopes. For that purpose, the two dimensional Particle Flow Code PFC2D has been chosen (ITASCA, version 2.00-103). PFC2D is a distinct element code for numerical modelling of movements and interactions of assemblies of arbitrarily sized circular particles. Particles may be bonded together to represent a solid material. Movements of particles are unlimited. That is of importance because results of open systems with numerous unknown variables are non-unique and therefore highly path dependent. This DEM allows the simulation of whole development paths of VM walls what makes confirmation of the model more complete (e.g. Oreskes et al., Science 263, 1994). To reduce the number of unknown variables a proper (that means as simple as possible) field-site had to be selected. The northern wall of eastern Candor Chasma has been chosen. This wall is up to 8-km high and represents a significant outcrop of the upper Martian crust. It is quite uncomplex, well-aligned and of simple morphology. Currently the work on the model is at the stage of performing the parameter study. Results will be presented via poster by the EGS-Meeting.

  10. [Vertical distribution patterns of soil organic carbon and total nitrogen and related affecting factors along northern slope of Qilian Mountains].

    PubMed

    Zhang, Peng; Zhang, Tao; Chen, Nian-lai

    2009-03-01

    With the shady and sunny northern slopes of Qilian Mountains along an altitude gradient from 2600 m to 3600 m as test objectives, this paper studied the vertical distribution patterns of surface soil (0-20 cm) organic carbon (SOC) and total nitrogen (TN), and their relations to the altitude, landform, and vegetation. The results indicated that SOC and TN contents were significantly higher on shady than on sunny slope, and all increased with increasing altitude. The SOC and TN contents under different vegetation types were in the order of alpine bush > Picea crassifolia forest > alpine meadow > Sabina przewalskii forest, and alpine bush > alpine meadow > P. crassifolia forest > S. przewalskii forest, respectively. SOC had significant positive correlations with altitude, annual precipitation, soil moisture, and soil TN, and significant negative correlations with soil pH and annual temperature. Soil C/N ratio along the gradient was within the range of 6.7-23.3, being favorable to the nutrient release during organic matter decomposition. Among the factors affecting SOC, the annual temperature, precipitation, and soil moisture content constituted the first principal component, and soil C/N ratio constituted the second principal component. These two principal components accounted for 71% of the variance of SOC content, suggesting that climate factors controlled the vertical distribution patterns of SOC and TN along the altitude gradient.

  11. A Tensile Strength of Bermuda Grass and Vetiver Grass in Terms of Root Reinforcement Ability Toward Soil Slope Stabilization

    NASA Astrophysics Data System (ADS)

    Noorasyikin, M. N.; Zainab, M.

    2016-07-01

    An examination on root characteristics and root properties has been implemented in this study. Two types of bioengineering were chose which are Vetiver grass and Bermuda grass as these grasses were widely applied for slope stabilization. The root samples were taken to the laboratory to investigate its classification, characteristics and strength. The root of both grasses was found grow with fibrous root matrix system. In terms of root anchorage, the root matrix system of Vetiver grass was exhibits more strengthen than the Bermuda grass. However, observation on root image from Scanning Electron Microscope test reveals that the root of Vetiver grass becomes non-porous as the moisture content reduced. Meanwhile, the root tensile strength of Bermuda grass was obtained acquired low value with higher percentage of moisture content, root morphology and bonding strength. The results indicated that the root tensile strength is mainly influence by percentage of moisture content and root morphology.

  12. Rock slope stability analysis along the North Carolina section of the Blue Ridge Parkway: Using a geographic information system (GIS) to integrate site data and digital geologic maps

    USGS Publications Warehouse

    Latham, R.S.; Wooten, R.M.; Cattanach, B.L.; Merschat, C.E.; Bozdog, G.N.

    2009-01-01

    In 2008, the North Carolina Geological Survey (NCGS) completed a five-year geologic and geohazards inventory of the 406-km long North Carolina segment of the Blue Ridge Parkway (BRP). The ArcGIS??? format deliverables for rock slopes include a slope movement and slope movement deposit database and maps and site-specific rock slope stability assessments at 158 locations. Database entries for known and potential rock slope failures include: location data, failure modes and dimensions, activity dates and levels, structural and lithologic data, the occurrence of sulfide minerals and acid-producing potential test results. Rock slope stability assessments include photographs of the rock cuts and show locations and orientations of rock data, seepage zones, and kinematic stability analyses. Assigned preliminary geologic hazard ratings of low, moderate and high indicate the generalized relative probability of rock fall and/or rock slide activity at a given location. Statistics compiled based on the database indicate some general patterns within the data. This information provides the National Park Service with tools that can aid in emergency preparedness, and in budgeting mitigation, maintenance and repair measures. Copyright 2009 ARMA, American Rock Mechanics Association.

  13. Undrained strength anisotropy of Osaka alluvial clay and effect on slope stability

    SciTech Connect

    Shogaki, Takaharu; Kogure, Keiji; Moro, Hayato; Sudho, Takashi

    1994-12-31

    The effects of specimen size on the undrained strength and the strength anisotropy on I{sub p}, q{sub u} and OCR of Osaka alluvial clay are quantitatively discussed. No difference in undrained shear strength was found between the specimens with 15 mm diameter and those with 35 mm diameter for a wide range of q{sub u} and I{sub p}. The undrained strength anisotropy cannot be estimated by parameters such as the I{sub p} values for Osaka clay. The factors influencing undrained strength anisotropy on slop stability under the {phi}{sub u} = 0 condition is illustrated by a case study.

  14. Slope stability of proposed ski facilities at the southeast side of Snodgrass Mountain, Gunnison County, Colorado

    USGS Publications Warehouse

    Baum, Rex L.

    1996-01-01

    Part of the proposed expansion of ski facilities at Crested Butte Mountain Resort, Gunnison County, Colorado, is in an area underlain by landslide deposits that are on the southeast side of Snodgrass Mountain. Except for localized movement, the landslides do not appear to be moving at present or to have moved in the past several decades. Shallow sliding and debris flows have occurred in similar materials nearby and are likely to occur in the landslide deposits during the 50-100 year life of the proposed facilities. Hazards related to debris flow, shallow slumping, and expansive soils in the deposits can be reduced by appropriate engineering and remedial measures but maintenance for the proposed facility may become costly. Snow making is likely to aggravate the hazards of shallow slumping, deep-seated sliding, and debris flow. Reactivation and deep-seated movement of a 1.6-million-m3 slide at the east side of the deposits would damage or destroy a proposed gondola, ski lift N-3, and related facilities. Moving the gondola and lift off the slide and prohibiting snow making on the slide will protect the gondola and lift and reduce the chances of debris-flow damage to a proposed development near the toe of the slide. Insufficient data are available to assess the current or future stability of the landslides or to evaluate possible mitigation strategies; detailed stability analyses are needed before developing any facilities on the landslide deposits.

  15. Development of sensors and techniques to assess earthquake hazards and submarine slope stability

    NASA Astrophysics Data System (ADS)

    Blum, John

    Reducing vulnerability from geohazards such as submarine landslides and earthquakes requires identifying susceptible regions and modeling the consequences. We introduce innovative instruments and techniques that have the potential to advance preparedness and mitigation efforts. We develop optical fiber strainmeters to monitor deformation along unstable slopes and in a vertical borehole at the SAFOD observatory. With this latter strainmeter, we record coseismic strain-steps from local microearthquakes in addition to teleseismic events, which we compare to accelerations from a nearby seismometer to derive local phase velocities. We also study a seafloor crack within the Santa Barbara Basin that might be the beginning of an imminent submarine landslide. We deployed a new seafloor acoustic ranging system which detected no motion across the crack above a 99% confidence level of +/- 7 mm/yr over two years of monitoring. Combined with sub-bottom CHIRP profiles with < 1 m accuracy exhibiting no evidence of internal deformation, we conclude that the elongated scarp-like crack is most likely a relict feature from a previous failure. Probabilistic seismic hazard analysis suggests that an ≈ M ≥ 7 earthquake is required within the basin to explain a previous landslide, arguing against a recent relocation of the 21 Dec. 1812 earthquake (M7.1) to the San Andreas Fault. Finally, we study the anomalous Ms 5.3 earthquake of 10 Feb. 2006 in the Gulf of Mexico. Surface wave full-waveform inversion suggested a source of either a shallow landslide translating on a near sub-horizontal surface, or sub-horizontal or vertical faulting within shallow, low velocity sediments. We integrated the results of two industrial seismic exploration surveys to relocate the epicenter. The geology around the relocation is consistent with the sliding source model, and geotechnical modeling suggests that the sharp relief is capable of producing a large landslide. To test the landslide hypothesis, we

  16. Sensitivity analysis and stability charts for uniform slopes computed via the MLD methods in the frame of the limit equilibrium theory

    NASA Astrophysics Data System (ADS)

    Ausilia Paparo, Maria; Tinti, Stefano

    2013-04-01

    Stability charts represent a graphical solution to derive the safety factor (F) without incurring the difficulties of mathematical and numerical methods for the analysis of slope stability, widely used in the engineering field: employed in a preliminary phase of analysis, the consultation of charts allows one to determine the approximate equilibrium conditions. The first to develop this method is Taylor (1948) who made them of common use: his stability charts are the relationships between the height and the inclination of a schematic slope, for particular types of failure surface (toe circle, circle slope, and midpoint circle) and for different values of friction angle. Thereafter the charts have become more detailed and complete (Janbu, 1968), thanks to the continuous introduction of new methods, like the limit equilibrium method (LEM), the limit analysis method and the finite element method (FEM). The aim of this work is to compare sets of stability charts found in literature (Michalowski, 1997; 2002; Li et alii, 2009; Steward et alii, 2011; Zhang et alii, 2011) with new charts obtained with the results obtained by means of the method of minimum lithostatic deviation (MLD) introduced by Tinti and Manucci (2006 and 2008) for 2D problems: the slope is a homogenous body and we analyze different cases, by varying the geometry (e.g. the slope angle and height), the geotechnical parameters (such as cohesion and angle of friction), the pore pressure and the external loads (as seismic or hydrostatic loadings) treated as quasi-static forcing.

  17. Analysis of microseismic signals and temperature recordings for rock slope stability investigations in high mountain areas

    NASA Astrophysics Data System (ADS)

    Occhiena, C.; Coviello, V.; Arattano, M.; Chiarle, M.; Morra di Cella, U.; Pirulli, M.; Pogliotti, P.; Scavia, C.

    2012-07-01

    The permafrost degradation is a probable cause for the increase of rock instabilities and rock falls observed in recent years in high mountain areas, particularly in the Alpine region. The phenomenon causes the thaw of the ice filling rock discontinuities; the water deriving from it subsequently freezes again inducing stresses in the rock mass that may lead, in the long term, to rock falls. To investigate these processes, a monitoring system composed by geophones and thermometers was installed in 2007 at the Carrel hut (3829 m a.s.l., Matterhorn, NW Alps). In 2010, in the framework of the Interreg 2007-2013 Alcotra project no. 56 MASSA, the monitoring system has been empowered and renovated in order to meet project needs. In this paper, the data recorded by this renewed system between 6 October 2010 and 5 October 2011 are presented and 329 selected microseismic events are analysed. The data processing has concerned the classification of the recorded signals, the analysis of their distribution in time and the identification of the most important trace characteristics in time and frequency domain. The interpretation of the results has evidenced a possible correlation between the temperature trend and the event occurrence. The research is still in progress and the data recording and interpretation are planned for a longer period to better investigate the spatial-temporal distribution of microseismic activity in the rock mass, with specific attention to the relation of microseismic activity with temperatures. The overall goal is to verify the possibility to set up an effective monitoring system for investigating the stability of a rock mass under permafrost conditions, in order to supply the researchers with useful data to better understand the relationship between temperature and rock mass stability and, possibly, the technicians with a valid tool for decision-making.

  18. Dynamic Slope Stability Analysis of Mine Tailing Deposits: the Case of Raibl Mine

    SciTech Connect

    Roberto, Meriggi; Marco, Del Fabbro; Erica, Blasone; Erica, Zilli

    2008-07-08

    Over the last few years, many embankments and levees have collapsed during strong earthquakes or floods. In the Friuli Venezia Giulia Region (North-Eastern Italy), the main source of this type of risk is a slag deposit of about 2x10{sup 6} m{sup 3} deriving from galena and lead mining activity until 1991 in the village of Raibl. For the final remedial action plan, several in situ tests were performed: five boreholes equipped with piezometers, four CPTE and some geophysical tests with different approaches (refraction, ReMi and HVSR). Laboratory tests were conducted on the collected samples: geotechnical classification, triaxial compression tests and constant head permeability tests in triaxial cell. Pressure plate tests were also done on unsaturated slag to evaluate the characteristic soil-water curve useful for transient seepage analysis. A seepage analysis was performed in order to obtain the maximum pore water pressures during the intense rainfall event which hit the area on 29th August 2003. The results highlight that the slag low permeability prevents the infiltration of rainwater, which instead seeps easily through the boundary levees built with coarse materials. For this reason pore water pressures inside the deposits are not particularly influenced by rainfall intensity and frequency. Seismic stability analysis was performed with both the pseudo-static method, coupled with Newmark's method, and dynamic methods, using as design earthquake the one registered in Tolmezzo (Udine) on 6{sup th} May 1976. The low reduction of safety factors and the development of very small cumulative displacements show that the stability of embankments is assured even if an earthquake of magnitude 6.4 and a daily rainfall of 141.6 mm occur at the same time.

  19. Free-surface stability criterion as affected by velocity distribution

    USGS Publications Warehouse

    Cheng-Lung, Chen

    1995-01-01

    This paper examines how the velocity distribution of flow in open channels affects the kinematic and dynamic wave velocities, from which the various forms of the Vedernikov number V can be formulated. When V >1, disturbances created in open-channel flow will amplify in the form of roll waves; when V <1, some (though not all) disturbances will attenuate. A study of the Vedernikov stability criterion reveals that it can be readily deduced within the framework of the kinematic and dynamic wave theories by comparing the kinematic wave velocity to the corresponding dynamic wave velocity. -from Author

  20. Modeling 3-D Slope Stability of Coastal Bluffs Using 3-D Ground-Water Flow, Southwestern Seattle, Washington

    USGS Publications Warehouse

    Brien, Dianne L.; Reid, Mark E.

    2007-01-01

    Landslides are a common problem on coastal bluffs throughout the world. Along the coastal bluffs of the Puget Sound in Seattle, Washington, landslides range from small, shallow failures to large, deep-seated landslides. Landslides of all types can pose hazards to human lives and property, but deep-seated landslides are of significant concern because their large areal extent can cause extensive property damage. Although many geomorphic processes shape the coastal bluffs of Seattle, we focus on large (greater than 3,000 m3), deepseated, rotational landslides that occur on the steep bluffs along Puget Sound. Many of these larger failures occur in advance outwash deposits of the Vashon Drift (Qva); some failures extend into the underlying Lawton Clay Member of the Vashon Drift (Qvlc). The slope stability of coastal bluffs is controlled by the interplay of three-dimensional (3-D) variations in gravitational stress, strength, and pore-water pressure. We assess 3-D slope-stability using SCOOPS (Reid and others, 2000), a computer program that allows us to search a high-resolution digital-elevation model (DEM) to quantify the relative stability of all parts of the landscape by computing the stability and volume of thousands of potential spherical failures. SCOOPS incorporates topography, 3-D strength variations, and 3-D pore pressures. Initially, we use our 3-D analysis methods to examine the effects of topography and geology by using heterogeneous material properties, as defined by stratigraphy, without pore pressures. In this scenario, the least-stable areas are located on the steepest slopes, commonly in Qva or Qvlc. However, these locations do not agree well with observations of deep-seated landslides. Historically, both shallow colluvial landslides and deep-seated landslides have been observed near the contact between Qva and Qvlc, and commonly occur in Qva. The low hydraulic conductivity of Qvlc impedes ground-water flow, resulting in elevated pore pressures at the

  1. Effects of polyacrylamide on soil erosion and nutrient losses from substrate material in steep rocky slope stabilization projects.

    PubMed

    Chen, Zhang; Chen, Wenlu; Li, Chengjun; Pu, Yanpin; Sun, Haifeng

    2016-06-01

    Erosion of denuded steep rocky slopes causes increasing losses of nitrogen and phosphorus, which is a severe problem in rocky slope protection. Thus, it is important to determine the appropriate materials that can reduce the erodibility and losses of nitrogen and phosphorus of the soil. In this paper, twenty-seven simulated rainfall events were carried out in a greenhouse, in which the substrate material was artificial soil; nine types of anionic polyacrylamide (PAM) were studied, which consisted of three molecular weight (6, 12, and 18 Mg mol(-1)) and three charge density (10, 20, and 30%) formulations in a 3 by 3 factorial design. The results showed that: (1) Polyacrylamide application reduced total nitrogen losses by 35.3% to 50.0% and total phosphorus losses by 34.9% to 48.0% relative to the control group. (2) The losses of total nitrogen and total phosphorus had significant correlation with the molecular weight. Besides, the losses of total phosphorus, particulate-bound phosphorus and inorganic nitrogen (NH4-N) were significantly correlated with their molecular weight and charge density. However, the losses of dissolved organic nitrogen, inorganic nitrogen (NO3-N), dissolved organic phosphorus, inorganic phosphorus (PO4-P) were non-significantly correlated with molecular weight and charge density. (3) Particulate-bound nitrogen and phosphorus were responsible for the losses of nitrogen and phosphorus during runoff events, where particulate-bound nitrogen made up 71.7% to 73.2% of total nitrogen losses, and particulate-bound phosphorus made up 82.3% to 85.2% of total phosphorus losses. (4) Polyacrylamide treatments increased water-stable aggregates content by 32.3% to 59.1%, total porosity by 11.3% to 49.0%, final infiltrative rate by 41.3% to 72.5%, and reduced soil erosion by 18.9% to 39.8% compared with the control group. Overall, the results of this study indicated that polyacrylamide application in the steep rocky slope stabilization projects could

  2. Network-scale dynamics of sediment mixtures: how do tectonics affect surface bed texture and channel slope?

    NASA Astrophysics Data System (ADS)

    Gasparini, N. M.; Bras, R. L.; Tucker, G. E.

    2003-04-01

    An alluvial channel's slope and bed texture are intimately linked. Along with fluvial discharge, these variables are the key players in setting alluvial transport rates. We know that both channel slope and mean grain size usually decrease downstream, but how sensitive are these variables to tectonic changes? Are basin concavity and downstream fining drastically disrupted during transitions from one tectonic regime to another? We explore these questions using the CHILD numerical landscape evolution model to generate alluvial networks composed of a sand and gravel mixture. The steady-state and transient patterns of both channel slope and sediment texture are investigated. The steady-state patterns in slope and sediment texture are verified independently by solving the erosion equations under equilibrium conditions, i.e. the case when the erosion rate is equal to the uplift rate across the entire landscape. The inclusion of surface texture as a free parameter (as opposed to just channel slope) leads to some surprising results. In all cases, an increase in uplift rate results in channel beds which are finer at equilibrium (for a given drainage area). Higher uplift rates imply larger equilibrium transport rates; this leads to finer channels that have a smaller critical shear stress to entrain material, and therefore more material can be transported for a given discharge (and channel slope). Changes in equilibrium slopes are less intuitive. An increase in uplift rates can cause channel slopes to increase, remain the same, or decrease, depending on model parameter values. In the surprising case in which equilibrium channel slopes decrease with increasing uplift rates, we suggest that surface texture changes more than compensate for the required increase in transport rates, causing channel slopes to decrease. These results highlight the important role of sediment grain size in determining transport rates and caution us against ignoring this important variable in fluvial

  3. Photogrammetry and laser scanning for analyzing slope stability and rock fall runout along the Domodossola-Iselle railway, the Italian Alps

    NASA Astrophysics Data System (ADS)

    Salvini, R.; Francioni, M.; Riccucci, S.; Bonciani, F.; Callegari, I.

    2013-03-01

    In Italy, railways crossing the alpine valleys are a vital means of civil and commercial communications with the rest of Europe. The geomorphologic configuration and the climatic conditions, especially in winter and spring, can cause rock fall events resulting in railway service interruptions and damage to infrastructure and, in the worst case, to people. There were rock fall events at a slope adjacent to the Domodossola-Iselle railway, most recently in 2004. This paper evaluates the stability of a mountain slope and maps rock fall hazards through the modeling of potential runout trajectories. Traditional geological, geomorphological and geo-engineering surveys were combined with data derived from digital terrestrial photogrammetry. Stereo photographic pairs of rocky outcrops in inaccessible areas were acquired from a helicopter. Data from photogrammetry, topographic measurements and laser scanning were then integrated to build a digital model of the slope, to characterize the rock mass and block geometry, and to define possible runout trajectories. The geomatic methods used have yielded oriented stereo-images, orthophotos and precise digital models of rocky wedges. Geometrical and structural characteristics of slopes, such as joint attitude, spacing and persistence, and block volumes, were also derived. The results were used together with a deterministic limit equilibrium method to evaluate slope stability. We assessed the probabilistic distribution of rock fall end points and kinetic energy along the rock falling paths and existing barriers, and created a hazard map based on the spatial distribution of trajectories, rock fall transit density and kinetic energy.

  4. From mass-wasting to slope stabilization - putting constrains on the transition in slope erosion mode: A case study in the Judea Hills, Israel

    NASA Astrophysics Data System (ADS)

    Ryb, U.; Matmon, A.; Porat, N.; Katz, O.

    2012-04-01

    The geomorphic response of a drainage system to the termination of tectonic uplift includes the stabilization of base level followed by a transition in the mode of hillslope erosion from mass wasting to diffusive processes. We test this transition in the Soreq drainage, Judea Hills, Israel. This study area is characterized by Upper Cretaceous marine carbonate rocks and sub-humid Mediterranean climate, and the drainage hillslopes are typically mantled by thick calcrete crusts. Calcretized remnants of landslide debris and alluvial deposits are evident along the presently stable hillslopes. These remnants indicate that a transition from landslides to dissolution-controlled hillslope erosion had occurred, most likely due to the stabilization of the present base-level which probably followed a significant decrease in tectonic uplift during late Cenozoic. Four deposits were dated using thermally transferred OSL of aeolian quartz grains incorporated in the calcrete which cement the ancient deposits. Three deposits are associated with the present streambed and constrain the hillslope stabilization period; one deposit is associated with a ~100 m higher base-level and puts constrains on the rate of stream incision prior to the stabilization of the current streambed. We conclude that incision of ~100 m occurred between 1056±262 ka to 688±86 ka due to ~0.3° westward tilt of the region; such incision invoked high frequency of landslide activity in the drainage. The ages of a younger landslide remnant, alluvial terrace, and alluvial fan, all situated only a few meters above the present level of the active streambed, range between 688±86 ka and 244±25 ka and indicate that since 688±86 the Soreq base level had stabilized and that landslide activity decreased significantly by the middle Pleistocene. This study demonstrates that colluvial deposits may be used as markers for stream incision and base level stabilization, much like alluvial deposits that are commonly used for

  5. Surface modification of layered silicates. I. Factors affecting thermal stability

    NASA Astrophysics Data System (ADS)

    Mittal, Vikas

    2012-12-01

    The resistance of modification molecules bound to montmorillonite platelet surfaces towards structural damage at high temperature is a major parameter guiding the formation of optimal interface between the filler and polymer phases in a nanocomposite material. As nanocomposites are generated by melt-blending of modified mineral and polymer, it is necessary to quantify the thermal resistance of the filler surface modification at the compounding conditions because different modifications differ in chain length, chemical structure, chain density, and thermal performance. A number of different alkyl ammonium modifications were exchanged on the montmorillonites with cation exchange capacities in the range 680-900 µequiv. g-1 and their thermal behaviour was characterised using high resolution thermogravimetric analysis. Quantitative comparisons between different modified minerals were achieved by comparing temperature at 10% weight loss as well peak degradation temperature. Various factors affecting thermal stability, such as length and density (or number) of alkyl chains in the modification, presence of excess modification molecules on the filler surface, the chemical structure of the surface modifications, etc. were studied. The TGA findings were also correlated with X-ray diffraction of the modified platelets.

  6. Surface modification of layered silicates. II. Factors affecting thermal stability

    NASA Astrophysics Data System (ADS)

    Mittal, Vikas

    2012-12-01

    Different aluminosilicates, such as montmorillonite, vermiculite and mica, were surface-treated with a variety of organic modifiers to quantify factors affecting the thermal stability of the modified fillers. Montmorillonites with different cation exchange capacities were also used. Thermal characterisation was carried out via high resolution thermogravimetric analysis and the results were correlated with X-ray diffraction measurements. Modified substrates, such as montmorillonite, vermiculite and mica, differed in their thermal behaviour even when modified with the same surface modifiers. Phosphonium-based modifiers were the most thermally stable, compared to pyridinium and ammonium ions. Mixed brushes from the modifiers also influenced the thermal behaviour of the modified substrates. When further modified using physical adsorption or chemical reactions on the surface, the modified minerals also displayed alterations in the thermal behaviour of the fillers. The results can be used as a guide for the selection of surface modifiers in the nanocomposite synthesis process where compounding of the filler with the polymer at high temperature and shear is required.

  7. Seasonal Effects on the Relationships Between Soil Water Content, Pore Water Pressure and Shear Strength and Their Implications for Slope Stability

    NASA Astrophysics Data System (ADS)

    Hughes, P. N.

    2015-12-01

    A soil's shear resistance is mainly dependent upon the magnitude of effective stress. For small to medium height slopes (up to 10m) in clay soils the total stress acting along potential failure planes will be low, therefore the magnitude of effective stress (and hence soil shear strength) will be dominated by the pore-water pressure. The stability of slopes on this scale through periods of increased precipitation is improved by the generation of negative pore pressures (soil suctions) during preceding, warmer, drier periods. These negative pore water pressures increase the effective stress within the soil and cause a corresponding increase in shearing resistance. The relationships between soil water content and pore water pressure (soil water retention curves) are known to be hysteretic, but for the purposes of the majority of slope stability assessments in partially saturated clay soils, these are assumed to be consistent with time. Similarly, the relationship between shear strength and water content is assumed to be consistent over time. This research presents a laboratory study in which specimens of compacted Glacial Till (typical of engineered slopes within the UK) were subjected to repeated cycles of wetting and drying to simulate seasonal cycles. At predetermined water contents, measurements of soil suction were made using tensiometer and dewpoint potentiometer methods. The undrained shear strength of the specimens was then measured using triaxial strength testing equipment. Results indicate that repeated wetting and drying cycles caused a change in the soil water retention behaviour. A reduction in undrained shear strength at corresponding water contents along the wetting and drying paths was also observed. The mechanism for the change in the relationship is believed to be a deterioration in the soil physical structure due to shrink/swell induced micro-cracking. The non-stationarity of these relationships has implications for slope stability assessment.

  8. Purpose-Driven Public Sector Reform: The Need for Within-Government Capacity Build for the Management of Slope Stability in Communities in the Caribbean

    NASA Astrophysics Data System (ADS)

    Anderson, Malcolm; Holcombe, Liz

    2006-01-01

    This article stresses the importance of within-government capacity build as the optimal approach to minimizing landslide risk to the most vulnerable communities in the developing world. Landslide risk is an integrated issue that demands strong managerial leadership and multidisciplinary inclusion to develop structures that deliver sustainable improvements in the reduction of risk. The tension between projects demanding international technical and financial intervention and those capable of “within-country” solutions are examined. More particularly, the challenges of developing a management methodology capable of energizing inter-ministry collaboration to achieve community-level action is examined in the context of a recently established program of slope stability management in St. Lucia. The program, Management of Slope Stability in Communities (MoSSaiC), is shown to have successfully fostered not only extensive technical collaboration within government but also to have energized local communities in the shared mission of capacity build through their direct involvement in the management process.

  9. Geomorphology and sediment stability of a segment of the U.S. continental slope off New Jersey

    USGS Publications Warehouse

    Robb, James M.; Hampson, J.C., Jr.; Twichell, D.C.

    1981-01-01

    The morphology of complex deposits of Pleistocene sediments covering the upper continental slope between Lindenkohl Canyon and South Toms Canyon results from both depositional and erosional processes. Small slump or slide features were detected primarily on the flanks of canyons or valleys and were observed to occur only within Pleistocene-aged sediments. Eocene to Miocene sediments are exposed over much of the mid- and lower slope in this area. Copyright ?? 1981 AAAS.

  10. Geomorphology and Sediment Stability of a Segment of the U.S. Continental Slope off New Jersey.

    PubMed

    Robb, J M; Hampson, J C; Twichell, D C

    1981-02-27

    The morphology of complex deposits of Pleistocene sediments covering the upper continental slope between Lindenkohl Canyon and South Toms Canyon results from both depositional and erosional processes. Small slump or slide features were detected primarily on the flanks of canyons or valleys and were observed to occur only within Pleistocene-aged sediments. Eocene to Miocene sediments are exposed over much of the mid- and lower slope in this area.

  11. Aggregate stability, root length and root thickness influenced by a mycorrhizal inoculum? - Results from a three-year eco-engineering field experiment on an alpine slope.

    NASA Astrophysics Data System (ADS)

    Bast, Alexander; Wilcke, Wolfgang; Lüscher, Peter; Graf, Frank; Gärtner, Holger

    2014-05-01

    In mountain environments many slopes are covered by coarse grained, glacial-, periglacial- or/and denudation-derived substrate. These slopes show a high geomorphic activity and are susceptible for erosional processes, shallow landslides or debris flows, which can result in a high socio-economic hazard potential. This is especially true for steep slopes, lacking a protecting vegetation cover. Regarding hazard prevention, eco-engineering gained in importance because related techniques provide a sustainable measure to protect erosion-prone hillslopes. The idea of using plants for sustainable erosion control and protection against shallow landslides, demands some essential requirements, as e.g., a stable seedbed providing appropriate water and nutrient supply. However, degraded alpine slopes are often unstable and the coarse-grained material shows a low retention capacity of water and nutrients. Extreme conditions like this hamper a fast and sustainable development of a protecting vegetation cover even if pioneer plants are used to stabilize the slopes. Thus, the question arises what needs to be done to give planted saplings within eco-engineering projects maximum support developing their above- and belowground structures to promote slope stabilization. Laboratory experiments using potted plants have shown a positive impact of mycorrhizal fungi inoculation plant development and soil structure, i.e. the formation of (stable) aggregates within several months. Soil aggregate stability is an integrating parameter, reflecting several aspects of the plant-soil system and for this also an indicator of soil development and soil stability. Because of this and based on the promising laboratory results, we intended to apply this approach in a field-experiment We established (i) mycorrhizal and (ii) non-mycorrhizal treated eco-engineered research plots on a field experimental scale, covering a total area of approx. 1000 m2 on an ENE exposed slope (coarse morainic and denudation

  12. Geotechnical characteristics and stability analysis of rock-soil aggregate slope at the Gushui Hydropower Station, southwest China.

    PubMed

    Zhou, Jia-wen; Shi, Chong; Xu, Fu-gang

    2013-01-01

    Two important features of the high slopes at Gushui Hydropower Station are layered accumulations (rock-soil aggregate) and multilevel toppling failures of plate rock masses; the Gendakan slope is selected for case study in this paper. Geological processes of the layered accumulation of rock and soil particles are carried out by the movement of water flow; the main reasons for the toppling failure of plate rock masses are the increasing weight of the upper rock-soil aggregate and mountain erosion by river water. Indoor triaxial compression test results show that, the cohesion and friction angle of the rock-soil aggregate decreased with the increasing water content; the cohesion and the friction angle for natural rock-soil aggregate are 57.7 kPa and 31.3° and 26.1 kPa and 29.1° for saturated rock-soil aggregate, respectively. The deformation and failure mechanism of the rock-soil aggregate slope is a progressive process, and local landslides will occur step by step. Three-dimensional limit equilibrium analysis results show that the minimum safety factor of Gendakan slope is 0.953 when the rock-soil aggregate is saturated, and small scale of landslide will happen at the lower slope. PMID:24082854

  13. Geotechnical Characteristics and Stability Analysis of Rock-Soil Aggregate Slope at the Gushui Hydropower Station, Southwest China

    PubMed Central

    Shi, Chong; Xu, Fu-gang

    2013-01-01

    Two important features of the high slopes at Gushui Hydropower Station are layered accumulations (rock-soil aggregate) and multilevel toppling failures of plate rock masses; the Gendakan slope is selected for case study in this paper. Geological processes of the layered accumulation of rock and soil particles are carried out by the movement of water flow; the main reasons for the toppling failure of plate rock masses are the increasing weight of the upper rock-soil aggregate and mountain erosion by river water. Indoor triaxial compression test results show that, the cohesion and friction angle of the rock-soil aggregate decreased with the increasing water content; the cohesion and the friction angle for natural rock-soil aggregate are 57.7 kPa and 31.3° and 26.1 kPa and 29.1° for saturated rock-soil aggregate, respectively. The deformation and failure mechanism of the rock-soil aggregate slope is a progressive process, and local landslides will occur step by step. Three-dimensional limit equilibrium analysis results show that the minimum safety factor of Gendakan slope is 0.953 when the rock-soil aggregate is saturated, and small scale of landslide will happen at the lower slope. PMID:24082854

  14. Geotechnical characteristics and stability analysis of rock-soil aggregate slope at the Gushui Hydropower Station, southwest China.

    PubMed

    Zhou, Jia-wen; Shi, Chong; Xu, Fu-gang

    2013-01-01

    Two important features of the high slopes at Gushui Hydropower Station are layered accumulations (rock-soil aggregate) and multilevel toppling failures of plate rock masses; the Gendakan slope is selected for case study in this paper. Geological processes of the layered accumulation of rock and soil particles are carried out by the movement of water flow; the main reasons for the toppling failure of plate rock masses are the increasing weight of the upper rock-soil aggregate and mountain erosion by river water. Indoor triaxial compression test results show that, the cohesion and friction angle of the rock-soil aggregate decreased with the increasing water content; the cohesion and the friction angle for natural rock-soil aggregate are 57.7 kPa and 31.3° and 26.1 kPa and 29.1° for saturated rock-soil aggregate, respectively. The deformation and failure mechanism of the rock-soil aggregate slope is a progressive process, and local landslides will occur step by step. Three-dimensional limit equilibrium analysis results show that the minimum safety factor of Gendakan slope is 0.953 when the rock-soil aggregate is saturated, and small scale of landslide will happen at the lower slope.

  15. Utilization of the limit equilibrium and finite element methods for the stability analysis of the slope debris: An example of the Kalebasi District (NE Turkey)

    NASA Astrophysics Data System (ADS)

    Alemdag, Selcuk; Kaya, Ayberk; Karadag, Mustafa; Gurocak, Zulfu; Bulut, Fikri

    2015-06-01

    The stability of the slope debris in residential area of the Kalebasi District (Ozkurtun-Gumushane) was investigated using the Limit Equilibrium (LE) and Finite Element Shear-Strength Reduction (FE-SSR) methods. Along the survey lines, four trial pits were dug and fourteen boreholes having a total length of 345 m were drilled. Also, seismic refraction studies were conducted along the five lines. According to the field studies, thickness of the slope debris covering the 98 ha of the study area varies between 1 and 36 m. To determine the physical and shear strength properties of the slope debris, undisturbed samples were taken from the trial pits. As a result of the laboratory tests, soil categories of the debris were found to be as Clayey Sand (SC), Silty Sand (SM) and Low Plasticity Clay (CL). The deformation-controlled shear box tests were carried out to determine the shear strength parameters of the slope debris. According to these tests it was found that the peak cohesion and peak friction angle varies between 2.63-16.35 kN/m2 and 20-27°, respectively. Stability analyses were performed using the obtained data from field and laboratory investigations in the Slide v5.0 and Phase2 v6.0 software programs and results were compared. In LE stability analyses, the factor of safety (FOS) of survey lines were found to be as 1.44, 1.80, 1.96, and 1.72; however for the FE-SSR method they were determined as 1.39, 1.72, 1.59, and 1.58, respectively.

  16. The Effect of Tibial Posterior Slope on Contact Force and Ligaments Stresses in Posterior-Stabilized Total Knee Arthroplasty-Explicit Finite Element Analysis

    PubMed Central

    Lee, Hwa-Yong; Kang, Kyoung-Tak; Kim, Sung-Hwan; Park, Kwan-Kyu

    2012-01-01

    Purpose The purpose of this study is to evaluate the effect of change in tibial posterior slope on contact force and ligament stress using finite element analysis. Materials and Methods A 3-dimensional finite element model for total knee arthroplasty was developed by using a computed tomography scan. For validation, the tibial translations were compared with previous studies. The finite element analysis was conducted under the standard gait cycle, and contact force on ultra-high molecular weight polyethylene (UHMWPE) and stresses on lateral and medial collateral ligaments were evaluated. Results The tibial translations showed similarity with previous studies. As the tibial posterior slope angle increases, the contact stress area increased and was well distributed, and the contact force on UHMWPE decreased overall. However, the maximum contact force in the case for 10° case was greater than those for others. The stresses on ligaments were the greatest and smallest in 0° and 10° cases, respectively. Conclusions The higher tibial posterior slope angle leads to the lower contact stress and more extensive stress distribution overall in posterior-stabilized total knee arthroscopy. However, it does not absolutely mean the smallest contact force. The stresses on ligaments increased with respect to the smaller tibial posterior slope angle. PMID:22708109

  17. Factors that affect Pickering emulsions stabilized by graphene oxide.

    PubMed

    He, Yongqiang; Wu, Fei; Sun, Xiying; Li, Ruqiang; Guo, Yongqin; Li, Chuanbao; Zhang, Lu; Xing, Fubao; Wang, Wei; Gao, Jianping

    2013-06-12

    Stable Pickering emulsions were prepared using only graphene oxide (GO) as a stabilizer, and the effects of the type of oil, the sonication time, the GO concentration, the oil/water ratio, and the pH value on the stability, type, and morphology of these emulsions were investigated. In addition, the effects of salt and the extent of GO reduction on emulsion formation and stability were studied and discussed. The average droplet size decreased with sonication time and with GO concentration, and the emulsions tended to achieve good stability at intermediate oil/water ratios and at low pH values. In all solvents, the emulsions were of the oil-in-water type, but interestingly, some water-in-oil-in-water (w/o/w) multiple emulsion droplets were also observed with low GO concentrations, low pH values, high oil/water ratios, high salt concentrations, or moderately reduced GO in the benzyl chloride-water system. A Pickering emulsion stabilized by Ag/GO was also prepared, and its catalytic performance for the reduction of 4-nitrophenol was investigated. This research paves the way for the fabrication of graphene-based functional materials with novel nanostructures and microstructures.

  18. Development of a GIS-based failure investigation system for highway soil slopes

    NASA Astrophysics Data System (ADS)

    Ramanathan, Raghav; Aydilek, Ahmet H.; Tanyu, Burak F.

    2015-06-01

    A framework for preparation of an early warning system was developed for Maryland, using a GIS database and a collective overlay of maps that highlight highway slopes susceptible to soil slides or slope failures in advance through spatial and statistical analysis. Data for existing soil slope failures was collected from geotechnical reports and field visits. A total of 48 slope failures were recorded and analyzed. Six factors, including event precipitation, geological formation, land cover, slope history, slope angle, and elevation were considered to affect highway soil slope stability. The observed trends indicate that precipitation and poor surface or subsurface drainage conditions are principal factors causing slope failures. 96% of the failed slopes have an open drainage section. A majority of the failed slopes lie in regions with relatively high event precipitation ( P>200 mm). 90% of the existing failures are surficial erosion type failures, and only 1 out of the 42 slope failures is deep rotational type failure. More than half of the analyzed slope failures have occurred in regions having low density land cover. 46% of failures are on slopes with slope angles between 20° and 30°. Influx of more data relating to failed slopes should give rise to more trends, and thus the developed slope management system will aid the state highway engineers in prudential budget allocation and prioritizing different remediation projects based on the literature reviewed on the principles, concepts, techniques, and methodology for slope instability evaluation (Leshchinsky et al., 2015).

  19. Effects of Goal Line Feedback on Level, Slope, and Stability of Performance within Curriculum-Based Measurement.

    ERIC Educational Resources Information Center

    Fuchs, Lynn S.; And Others

    1991-01-01

    Nineteen special educators implemented Curriculum-Based Measurement with a total of 36 learning-disabled math pupils in grades 2-8 to examine the effects of goal line feedback. Results indicated comparable levels and slopes of student performance across treatment conditions, although goal line feedback was associated with greater performance…

  20. Small scale tests on slope failures on different surfaces

    NASA Astrophysics Data System (ADS)

    Voulgari, Chrysoula; Utili, Stefano

    2016-04-01

    This paper reports on laboratory experiments that were designed to investigate the evolution of slopes under rainfall and on different surfaces. Small models are constructed and rainfall is applied to them by wetting the slope crest through a rainfall simulator device that is designed to provide steady and uniform rainfall and is placed directly above the slope. The moisture content and the suction of the soil during the tests are monitored by soil moisture sensors and tensiometers respectively that are buried inside the slope model during the construction phase and the behaviour of the slope is recorded through a high resolution camera. After a short time of rainfall, cracks appear in the slope model with significant vertical deformations developing until failure occurs. Two different surfaces were examined to explore the difference on debris propagation and its effect on the evolution of the slope. The slope model characteristics and the rainfall intensity were kept the same while the surface below the slope was either made of the container material allowing the failed mass to slide away along the bottom of the container or a thin layer of soil particles was glued to the floor of the container to create friction and to inhibit direct sliding of the slope base along the soil - container interface. The experimental results demonstrate different debris propagation and deposition, and how this difference can affect the stability of the remaining slope and thus the evolution of the slope in time.

  1. FACTORS AFFECTING DISINFECTION AND STABILIZATION OF SEWAGE SLUDGE

    EPA Science Inventory

    Effective disinfection and stabilization of sewage sludge prior to land application is essential to not only protect human health, but also to convince the public of its benefits and safety. A basic understanding of the key factors involved in producing a stable biosolid product ...

  2. Deterministic estimation of hydrological thresholds for shallow landslide initiation and slope stability models: case study from the Somma-Vesuvius area of southern Italy

    USGS Publications Warehouse

    Baum, Rex L.; Godt, Jonathan W.; De Vita, P.; Napolitano, E.

    2012-01-01

    Rainfall-induced debris flows involving ash-fall pyroclastic deposits that cover steep mountain slopes surrounding the Somma-Vesuvius volcano are natural events and a source of risk for urban settlements located at footslopes in the area. This paper describes experimental methods and modelling results of shallow landslides that occurred on 5–6 May 1998 in selected areas of the Sarno Mountain Range. Stratigraphical surveys carried out in initiation areas show that ash-fall pyroclastic deposits are discontinuously distributed along slopes, with total thicknesses that vary from a maximum value on slopes inclined less than 30° to near zero thickness on slopes inclined greater than 50°. This distribution of cover thickness influences the stratigraphical setting and leads to downward thinning and the pinching out of pyroclastic horizons. Three engineering geological settings were identified, in which most of the initial landslides that triggered debris flows occurred in May 1998 can be classified as (1) knickpoints, characterised by a downward progressive thinning of the pyroclastic mantle; (2) rocky scarps that abruptly interrupt the pyroclastic mantle; and (3) road cuts in the pyroclastic mantle that occur in a critical range of slope angle. Detailed topographic and stratigraphical surveys coupled with field and laboratory tests were conducted to define geometric, hydraulic and mechanical features of pyroclastic soil horizons in the source areas and to carry out hydrological numerical modelling of hillslopes under different rainfall conditions. The slope stability for three representative cases was calculated considering the real sliding surface of the initial landslides and the pore pressures during the infiltration process. The hydrological modelling of hillslopes demonstrated localised increase of pore pressure, up to saturation, where pyroclastic horizons with higher hydraulic conductivity pinch out and the thickness of pyroclastic mantle reduces or is

  3. Slope stability, triggering factors and threshold conditions. Study of debris flow activity in the Reyðarfjörður fjord, eastern Iceland.

    NASA Astrophysics Data System (ADS)

    Margeirsson, Guðbjörn; Sæmundsson, Þorsteinn; Norðdahl, Hreggviður

    2016-04-01

    Precipitation is one of the main triggering factor for debris flow activity in Eastern Iceland, but the amount needed, duration and the rainfall and its intensity to trigger the flow (e.g. the threshold condition) can vary considerably between areas. There are a few factors that have to be taken into account to determine the threshold condition and slope stability between areas, such as the slope angle and aspect, type and thickness of loose material, vegetation cover and gully distribution. Weather factors such as air and soil temperature, wind speed and wind direction is also crucial. The study area is located in the Reyðarfjörður fjord, one of the longest fjords on the east coast of Iceland. It is a 30 km long glacially eroded fjord, cut into the Tertiary bedrock. The bedrock is mostly made up of jointed basaltic lava flows, individual flows can vary in thickness from 2-30 m and usually separated by lithified sedimentary horizons often red in color. The slopes of the fjord are steep up to 900 m high, often consisting of nearly vertical cliffs, 60°-90°, in the upper parts of the slopes. The lower parts are covered with various glaciogenic landforms and consist of sediments and talus material. Several small hanging valleys and numerous small gullies and streams occur along the both sides of the fjord. The debris flow activity in the Reyðafjörður fjord is mostly constrained to the gullies and streams. Some activity has also been observed on the slopes between the gullies, but such activity is usually connected to extreme conditions, during or following heavy rain storms or a rainfall, especially of long duration. The aim of the study is to map the distribution of loose slope sediments in two areas inside the fjord, collect data about the known debris flow history, analyze various weather patterns which have contributed to these debris flows and understand how variables between the slopes react differently to different factors.

  4. Mechanical Stability of Stratified Sediments along the upper continental Slope off Vesterålen, northern Norway - Insights from in situ CPTU Tests

    NASA Astrophysics Data System (ADS)

    Voelker, D.; Stegmann, S.; Kreiter, S.; L'Heureux, J. S.; Vanneste, M. W. B.; Baeten, N. J.; Knudsen, S.; Rise, L.; Longva, O.; Brendryen, J.; Haflidason, H.; Chand, S.; Mörz, T.; Kopf, A.

    2015-12-01

    High-resolution single channel-seismic data (3.5 kHz) reveal small-scale submarine landslide structures and superficial deformation features (e.g. tension cracks) along the gently dipping (3°) upper continental slope west of the Vesterålen Archipelago off northern Norway. Previous laboratory-based geotechnical studies attest that the slope is per sestable and that seismic events in an order of magnitude M5.7 may have triggered the slope sediments to fail. Here we present geotechnical in situ data (sedimentary strength, pore pressure), which were obtained with RV Poseidon in summer 2014 using the static CPTU system GOST. The CPTU system provided high-resolution geotechnical profiles of the uppermost sediments to a maximum penetration depth of ~ 20 m at six sites within the landslide features and beside them in undisturbed slope sediments as reference. The CPTU data reveal the occurrence of mechanically weaker zones (MWZ) by the drop of sedimentary strength. These zones are interbedded by coarser, more competent layers. The occurrence of sensitive fine-grained material may be responsible for the loss of strength in the deeper portion (appx. 12 to 18 m below seafloor). An 1D infinite pseudo-static stability analysis attests that the mechanically weaker zones (MWZ) correlate well with portions, where the Factor of Safety (FoS) ≤ 1 (meta-stable to unstable) indicates permanent deformation or failure in case additional dynamic load is induced by an earthquake. Thus, the mechanically weak layers can be considered as one important pre-condition for landslide activity. In conclusion, the integration of in situ CPTU data with geophysical data improves soil characterization and hence foster a better understanding of the pre-conditioning factors for slope instability at the upper continental slope off Vesterålen. Risk assessment for the present-day slope off Vesterålen is particularly crucial, because the opening of the region for offshore oil and gas exploration is

  5. Physical and geotechnical properties and assessment of sediment stability on the continental slope and basin of the Bransfield Basin (Antarctica Peninsula)

    USGS Publications Warehouse

    Casas, D.; Ercilla, G.; Estrada, F.; Alonso, B.; Baraza, J.; Lee, H.; Kayen, R.; Chiocci, F.

    2004-01-01

    Our investigation is centred on the continental slope of the Antarctic Peninsula and adjacent basin. Type of sediments, sedimentary stratigraphy, and physical and geotechnical characterization of the sediments have been integrated. Four different types of sediments have been defined: diamictons, silty and muddy turbidites, muddy, silty and muddy matrix embedded clast contourites. There is a close correspondence between the physical properties (density, magnetic susceptibility and p-wave velocity) and the texture and/or fabric as laminations and stratification. From a quantitative point of view, only a few statistical correlations between textural and physical properties have been found. Within the geotechnical properties, only water content is most influenced by texture. This slope, with a maximum gradient observed (20??), is stable, according to the stability under gravitational loading concepts, and the maximum stable slope that would range from 22?? to 29??. Nevertheless, different instability features have been observed. Volcanic activity, bottom currents, glacial loading-unloading or earthquakes can be considered as potential mechanisms to induce instability in this area. Copyright ?? Taylor & Francis Inc.

  6. Deep-water seamounts in the NE Atlantic, sources of landslides-induced tsunamis: Slope stability analysis and tsunami numerical modelling

    NASA Astrophysics Data System (ADS)

    Baptista, M. A.; Omira, R.; Ramalho, I.; Vales, D.; Matias, L. M.; Terrinha, P.

    2015-12-01

    Submarine mass failures (SMFs) present one of the significant marine Geo-hazards. Their importance as contributors to tsunami hazard has been recognized over the last 20-30 years, but they are seldom considered in the evaluation of quantitative tsunami impact or in the design of warning strategies. This study aims to investigate the slope stability of the SMFs in the NE Atlantic, their companion tsunami and the associated hazard at the target coasts. It focuses on two major deep-water seamounts of the NE Atlantic, the Gorringe Bank and the Hirondelle, where evidences of large SMFs have been found. Slope stability analysis is often based on relationships between landslides and earthquakes. Here, within each considered seamount, slope failure potential is investigated through the pseudo-static method. This analysis allows establishing a relationship between the size of the SMF and the critical earthquake peak ground acceleration necessary to initiate it and therefore define the possible SMF scenarios. Numerical modelling of SMF-induced tsunami generation is then employed to test the tsunamigenic potential of each defined scenario. It is performed using a multi-layers viscous shallow-water model, where the lower layer represents the deformable slide that is assumed to be a viscous-incompressible fluid, and bounded by the upper layer of seawater assumed to be inviscid and incompressible. The propagation of tsunami waves is simulated employing non-linear shallow water equations. Results are presented in terms of: 1) slope stability curves that establish the relationship between the probable earthquake magnitudes and the possible sizes of SMFs, 2) possible SMF scenarios within each seamount, 3) potential of tsunami generation for each SMF, 4) tsunami coastal impact at target coasts. Results show that SMFs in the NE Atlantic have the potential of generating large tsunamis with significant impact along the surrounding coasts. Therefore, more attention must be accorded to

  7. Factors affecting postural stability of healthy young adults.

    PubMed

    Angyán, L; Téczely, T; Angyán, Z

    2007-12-01

    The objective of this paper was to examine the relationship between body balancing functions and body characteristics, motor abilities and reaction time. Subjects were 33 university students and 11 professional basketball players sorted into four groups of athletic and non-athletic women and men. Each group consisted of eleven subjects. The body height, weight was measured and the body mass index (BMI) calculated. A bioelectrical device computed the body fat (%). Static and dynamic motor tests, as well as static and dynamic balance tests were used. The reaction time (RT) to sound and light stimuli was measured. The regression analysis of the data revealed significant linear relationship between the amplitude of body sways (BS) and BMI in all groups. Also high correlation was found between back muscle strength and BS in all groups except the non-athletic women. Negative correlation was found between endurance capacity and BS in basketball players, i.e. at higher endurance capacity smaller amplitude BS occurred (r = -0.620, p < 0.04). The RT values showed significant correlations with BS only in the basketball players (r = 0.620, p < 0.04). It is concluded that increase in BMI, back muscle strength and endurance capacity is associated with better postural stability. Some motor abilities (hip flexibility, vertical jumping) show no significant correlations with body balancing, while other motor performances (static hanging) and RT values correlate well with BS only in the well-trained elite basketball players.

  8. Towards electrical resistivity soundings in eco-engineering: A non-invasive and fast method to model the near-subsurface characteristics on stabilized alpine slopes.

    NASA Astrophysics Data System (ADS)

    Bast, Alexander; Meyer, Christine; Meier, Wolfgang; Wilcke, Wolfgang; Lüscher, Peter; Graf, Frank; Gärtner, Holger

    2014-05-01

    The observation and monitoring of the aboveground plant development is a common practice in eco-engineering to estimate the plant's influence on the stabilization process. In contrast to this aboveground "sphere", the near subsurface is invisible and therefore difficult to address. To get an impression of the near subsurface and to model slope stability, (soil)samples are taken or a soil profile is dug and root traits (e.g., tensile strength) are determined. Other parameters as rooting depth, root length density, root clustering or the type of root in general are also of interest. However, soil samples or soil profiles only provide limited point-by-point data, alter parts of the study site, and are often time-consuming and expensive. The development of plants results a complex spatial and temporal distribution of the root network along a slope. This network causes shear strength variations and hydrological heterogeneities in the near subsurface within short distances. In contrast to the common point data, geophysical methods provide minimally-invasive, spatial and, via a time-lapse approach (monitoring), also temporal information of the near subsurface conditions. Hence, by measuring physical properties of the near subsurface, the root system, i.e. root distribution and rooting depth can be modeled. Furthermore, if a correlation between root traits and the measured physical properties is determined, the corresponding root trait can be estimated. To test this approach we applied electrical resistivity tomography (ERT) in a subalpine catchment in the Prättigau valley/Eastern Swiss Alps. Different ERT-soundings were conducted using varying electrode spacings (5cm, 25cm, 50cm and 100cm), electrode arrays (Wenner and Wenner-Schlummberger) and locations (eco-engineered slopes, stabilized two, three and 17 years ago; two forest stands of different stand densities). Furthermore, we took soil samples along the electrical profiles, and dug out several soil profiles to

  9. The Saguenay Fjord, Quebec, Canada: Integrating marine geotechnical and geophysical data for spatial seismic slope stability and hazard assessment

    USGS Publications Warehouse

    Urgeles, R.; Locat, J.; Lee, H.J.; Martin, F.

    2002-01-01

    In 1996 a major flood occurred in the Saguenay region, Quebec, Canada, delivering several km3 of sediment to the Saguenay Fjord. Such sediments covered large areas of the, until then, largely contaminated fjord bottom, thus providing a natural capping layer. Recent swath bathymetry data have also shown that sediment landslides are widely present in the upper section of the Saguenay Fjord, and therefore, should a new event occur, it would probably expose the old contaminated sediments. Landslides in the Upper Saguenay Fjord are most probably due to earthquakes given its proximity to the Charlevoix seismic region and to that of the 1988 Saguenay earthquake. In consequence, this study tries to characterize the permanent ground deformations induced by different earthquake scenarios from which shallow sediment landslides could be triggered. The study follows a Newmark analysis in which, firstly, the seismic slope performance is assessed, secondly, the seismic hazard analyzed, and finally an evaluation of the seismic landslide hazard is made. The study is based on slope gradients obtained from EM1000 multibeam bathymetry data as well as water content and undrained shear strength measurements made in box and gravity cores. Ground motions integrating local site conditions were simulated using synthetic time histories. The study assumes the region of the 1988 Saguenay earthquake as the most likely source area for earthquakes capable of inducing large ground motions in the Upper Saguenay region. Accordingly, we have analyzed several shaking intensities to deduce that generalized sediment displacements will begin to occur when moment magnitudes exceed 6. Major displacements, failure, and subsequent landslides could occur only from earthquake moment magnitudes exceeding 6.75. ?? 2002 Elsevier Science B.V. All rights reserved.

  10. Stability Affects of Artificial Viscosity in Detonation Modeling

    SciTech Connect

    Vitello, P; Souers, P C

    2002-06-03

    Accurate multi-dimensional modeling of detonation waves in solid HE materials is a difficult task. To treat applied problems which contain detonation waves one must consider reacting flow with a wide range of length-scales, non-linear equations of state (EOS), and material interfaces at which the detonation wave interacts with other materials. To be useful numerical models of detonation waves must be accurate, stable, and insensitive to details of the modeling such as the mesh spacing, and mesh aspect ratio for multi-dimensional simulations. Studies we have performed show that numerical simulations of detonation waves can be very sensitive to the form of the artificial viscosity term used. The artificial viscosity term is included in our ALE hydrocode to treat shock discontinuities. We show that a monotonic, second order artificial viscosity model derived from an approximate Riemann solver scheme can strongly damp unphysical oscillations in the detonation wave reaction zone, improving the detonation wave boundary wall interaction. These issues are demonstrated in 2D model simulations presented of the 'Bigplate' test. Results using LX-I 7 explosives are compared with numerical simulation results to demonstrate the affects of the artificial viscosity model.

  11. Accounting for pore water pressure and confined aquifers in assessing the stability of slopes: a Limit Equilibrium analysis carried out through the Minimum Lithostatic Deviation method

    NASA Astrophysics Data System (ADS)

    Ausilia Paparo, Maria; Tinti, Stefano

    2015-04-01

    The model we introduce is an implementation of the Minimum Lithostatic Deviation (MLD) method, developed by Tinti and Manucci (Tinti and Manucci 2006; 2008), that makes use of the limit equilibrium (LE) theory to estimate the stability of a slope. The main purpose here is to analyse the role of a confined aquifer on the value of the Safety Factor (F), the parameter that in the LE is used to determine if a slope is stable or unstable. The classical LE methods treat unconfined aquifers by including the water pore pressure in the Mohr-Coulomb failure formula: since the water decreases the friction shear strength, the soil above the sliding surface turns out to be more prone to instability. In case of a confined aquifer, however, due to a presence of impermeable layers, the water is not free to flow into the matrix of the overlying soil. We consider here the assumption of a permeable soil sliding over an impermeable layer, which is an occurrence that is found in several known landslide cases (e.g. Person, 2008; Strout and Tjeltja, 2008; Morgan et al., 2010 for offshore slides; and Palladino and Peck, 1972; Miller and Sias, 1998; Jiao et al. 2005; Paparo et al., 2013 for slopes in proximity of artificial or natural water basins) where clay beds form the potential sliding surface: the water, confined below, pushes along these layers and acts on the sliding body as an external bottom load. We modify the MLD method equations in order to take into account the load due to a confined aquifer and apply the new model to the Vajont case, where many have hypothesised the contribution of a confined aquifer to the failure. Our calculations show that the rain load i) infiltrating directly into the soil body and ii) penetrating into the confined aquifer below the clay layers, in addition with the lowering of the reservoir level, were key factors of destabilization of the Mt Toc flank and caused the disastrous landslide.

  12. TRIGRS - A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0

    USGS Publications Warehouse

    Baum, Rex L.; Savage, William Z.; Godt, Jonathan W.

    2008-01-01

    The Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Model (TRIGRS) is a Fortran program designed for modeling the timing and distribution of shallow, rainfall-induced landslides. The program computes transient pore-pressure changes, and attendant changes in the factor of safety, due to rainfall infiltration. The program models rainfall infiltration, resulting from storms that have durations ranging from hours to a few days, using analytical solutions for partial differential equations that represent one-dimensional, vertical flow in isotropic, homogeneous materials for either saturated or unsaturated conditions. Use of step-function series allows the program to represent variable rainfall input, and a simple runoff routing model allows the user to divert excess water from impervious areas onto more permeable downslope areas. The TRIGRS program uses a simple infinite-slope model to compute factor of safety on a cell-by-cell basis. An approximate formula for effective stress in unsaturated materials aids computation of the factor of safety in unsaturated soils. Horizontal heterogeneity is accounted for by allowing material properties, rainfall, and other input values to vary from cell to cell. This command-line program is used in conjunction with geographic information system (GIS) software to prepare input grids and visualize model results.

  13. Dermal nanocrystals from medium soluble actives - physical stability and stability affecting parameters.

    PubMed

    Zhai, Xuezhen; Lademann, Jürgen; Keck, Cornelia M; Müller, Rainer H

    2014-09-01

    Nanocrystals are meanwhile applied to increase the dermal penetration of drugs, but were applied by now only to poorly soluble drugs (e.g. 1-10 μg/ml). As a new concept nanocrystals from medium soluble actives were produced, using caffeine as model compound (solubility 16 mg/ml at 20 °C). Penetration should be increased by (a) further increase in solubility and (b) mainly by increased hair follicle targeting of nanocrystals compared to pure solution. Caffeine nanocrystal production in water lead to pronounced crystal growth. Therefore the stability of nanocrystals in water-ethanol (1:9) and ethanol-propylene glycol (3:7) mixtures with lower dielectric constant D was investigated, using various stabilizers. Both mixtures in combination with Carbopol 981 (non-neutralized) yielded stable nanosuspensions over 2 months at 4 °C and room temperature. Storage at 40 °C lead to crystal growth, attributed to too strong solubility increase, supersaturation and Ostwald ripening effects. Stability of caffeine nanocrystals at lower temperatures could not only be attributed to lower solubility, because the solubilities of caffeine in mixtures and in water are not that much different. Other effects such as quantified by reduced dielectric constant D, and specific interactions between dispersion medium and crystal surface seem to play a role. With the 2 mixtures and Carbopol 981, a basic formulation composition for this type of nanocrystals has been established, to be used in the in vivo proof of principle of the new concept.

  14. Dermal nanocrystals from medium soluble actives - physical stability and stability affecting parameters.

    PubMed

    Zhai, Xuezhen; Lademann, Jürgen; Keck, Cornelia M; Müller, Rainer H

    2014-09-01

    Nanocrystals are meanwhile applied to increase the dermal penetration of drugs, but were applied by now only to poorly soluble drugs (e.g. 1-10 μg/ml). As a new concept nanocrystals from medium soluble actives were produced, using caffeine as model compound (solubility 16 mg/ml at 20 °C). Penetration should be increased by (a) further increase in solubility and (b) mainly by increased hair follicle targeting of nanocrystals compared to pure solution. Caffeine nanocrystal production in water lead to pronounced crystal growth. Therefore the stability of nanocrystals in water-ethanol (1:9) and ethanol-propylene glycol (3:7) mixtures with lower dielectric constant D was investigated, using various stabilizers. Both mixtures in combination with Carbopol 981 (non-neutralized) yielded stable nanosuspensions over 2 months at 4 °C and room temperature. Storage at 40 °C lead to crystal growth, attributed to too strong solubility increase, supersaturation and Ostwald ripening effects. Stability of caffeine nanocrystals at lower temperatures could not only be attributed to lower solubility, because the solubilities of caffeine in mixtures and in water are not that much different. Other effects such as quantified by reduced dielectric constant D, and specific interactions between dispersion medium and crystal surface seem to play a role. With the 2 mixtures and Carbopol 981, a basic formulation composition for this type of nanocrystals has been established, to be used in the in vivo proof of principle of the new concept. PMID:25016978

  15. Significance analysis of the leachate level in a solid waste landfill in a coastal zone using total water balance and slope stability alternatives

    SciTech Connect

    Koo, Ja-Kong; Do, Nam-Young

    1996-12-31

    The K site near Seoul began landfilling in 1992. The landfilled wastes include municipal solid waste (66.4%), construction residues (20.4%), water and wastewater sludges (trace levels), and hazardous waste (trace levels). The water content of the municipal solid waste is very high (47.3%); as a result, the leachate level (average E.L.) of the landfill, the design value of which is 7.0 m, was measured at 10.3 m in January 1995 and is increasing. The increase of leachate level in the landfill site causes a problem with slope stability. The leachate level at each disposal stage divided by the intermediate cover layer was calculated with the HELP (Hydrologic Evaluation of Landfill Performance) model and calibrated with the data measured from February 1993 to June 1995. Also, the hydraulic conductivities of the waste layer and the intermediate cover layer in each stage were calibrated continuously with HELP model analysis. To verify these results, the total water balance in the landfill site was calculated using the infiltration rate calculated from HELP modeling. The leachate level was E.L. 10.0 m, which was close to the measured leachate level. To estimate the change of the leachate level in the future, the total water balances with different leachate discharge rates of 3,000, 3,500, and 5,000 m{sup 3}/day were analyzed. When the leachate discharge rate was 5,000 ton/day and the initial water content was decreased below 25%, the average leachate level was 10.8 m. This result satisfies the safety factor requirements (=1.3) for landfill slope stability. 4 refs., 8 figs., 1 tab.

  16. [Theoretical analysis of factors affecting heat exchange stability of human body with environment].

    PubMed

    Wu, Q; Wang, X

    1998-06-01

    Life could not be normal without the heat produced by metabolism of human body being transmitted into environment. This paper discussed the ways of heat exchange of human body with the environment, and analyzed their effects on the stability of heat exchange theoretically. In addition, factors that affects the stability of heat exchange were studied. The results indicate that the environmental temperature is the most important factor.

  17. Studying the Hydrology of Landslides: Pore Water Pressure, Preferential Flow and Feedbacks Between Slope Displacement and Hillslope Hydrology

    NASA Astrophysics Data System (ADS)

    Bogaard, T.; Greco, R.

    2014-12-01

    Hydrology is one of the most important triggering factors for slope destabilization. When a slope becomes unstable, cracks and fissures develop during slope deformation. These discontinuities affect both geotechnical and hydrological conditions of the slope. The crucial role of water flow, and especially the important role of preferential flow in unstable slopes, is generally recognized. However, in hydrological modelling, the unstable slope is characterized using static subsurface properties. The dynamic feedback between slope deformation and slope hydrology, being positive or negative depending on other geotechnical conditions, is not taken into account although it influences the pore pressure distribution and as such the overall stability. This research aims to highlight and quantify the dynamic nature of the subsurface hydrological conditions in unstable slopes. We focus on the role preferential flow has on slope destabilization and more specifically on the feedbacks between differential displacement and hydrological behaviour of the subsurface in natural slopes. We will present examples of field experimental work where we measured the hydrological influence of fissures, theoretical analysis and case study modelling of combined hydrology and slope stability, including feedbacks. The results show the subtle trade-off of increased infiltration and storage capacity in a slope and the increased drainage capacity of well connected preferential flow paths. We will furthermore highlight the current status of our knowledge as well as identify the knowledge gaps we face and the importance of cross- and multidisciplinary approach to better understand the internal dynamics of slope deformation and hillslope hydrology.

  18. Geomorphological and geotechnical issues affecting the seismic slope stability of the Duwamish River Delta, Port of Seattle, Washington

    USGS Publications Warehouse

    Kayen, Robert E.; Barnhardt, Walter A.; Palmer, Stephen P.

    1999-01-01

    Young Holocene deposits of the Duwamish River valley underlie a highly developed transportation-industrial corridor, extending from the City of Kent to the Elliott Bay-Harbor Island marine terminal facilities. The deposits have been shaped by relative sea-level rise, but also by episodic volcanism and seismicity. A geologic and geotechnical investigation of these river-mouth deposits indicates high initial liquefaction susceptibility during earthquakes, and possibly the potential for unlimited-strain disintegrative flow failure of the delta front.

  19. The use of "stabilization exercises" to affect neuromuscular control in the lumbopelvic region: a narrative review.

    PubMed

    Bruno, Paul

    2014-06-01

    It is well-established that the coordination of muscular activity in the lumbopelvic region is vital to the generation of mechanical spinal stability. Several models illustrating mechanisms by which dysfunctional neuromuscular control strategies may serve as a cause and/or effect of low back pain have been described in the literature. The term "core stability" is variously used by clinicians and researchers, and this variety has led to several rehabilitative approaches suggested to affect the neuromuscular control strategies of the lumbopelvic region (e.g. "stabilization exercise", "motor control exercise"). This narrative review will highlight: 1) the ongoing debate in the clinical and research communities regarding the terms "core stability" and "stabilization exercise", 2) the importance of sub-grouping in identifying those patients most likely to benefit from such therapeutic interventions, and 3) two protocols that can assist clinicians in this process.

  20. Atmospheric stability effects on wind fields and scalar mixing within and just above a subalpine forest in sloping terrain

    USGS Publications Warehouse

    Burns, Sean P.; Sun, Jielun; Lenschow, D.H.; Oncley, S.P.; Stephens, B.B.; Yi, C.; Anderson, D.E.; Hu, Jiawen; Monson, Russell K.

    2011-01-01

    Air temperature Ta, specific humidity q, CO2 mole fraction ??c, and three-dimensional winds were measured in mountainous terrain from five tall towers within a 1 km region encompassing a wide range of canopy densities. The measurements were sorted by a bulk Richardson number Rib. For stable conditions, we found vertical scalar differences developed over a "transition" region between 0.05 < Rib < 0.5. For strongly stable conditions (Rib > 1), the vertical scalar differences reached a maximum and remained fairly constant with increasing stability. The relationships q and ??c have with Rib are explained by considering their sources and sinks. For winds, the strong momentum absorption in the upper canopy allows the canopy sublayer to be influenced by pressure gradient forces and terrain effects that lead to complex subcanopy flow patterns. At the dense-canopy sites, soil respiration coupled with wind-sheltering resulted in CO2 near the ground being 5-7 ??mol mol-1 larger than aloft, even with strong above-canopy winds (near-neutral conditions). We found Rib-binning to be a useful tool for evaluating vertical scalar mixing; however, additional information (e.g., pressure gradients, detailed vegetation/topography, etc.) is needed to fully explain the subcanopy wind patterns. Implications of our results for CO2 advection over heterogenous, complex terrain are discussed. ?? 2010 Springer Science+Business Media B.V.

  1. Drainage effects on the transient, near-surface hydrologic response of a steep hillslope to rainfall: Implications for slope stability, Edmonds, Washington, USA

    USGS Publications Warehouse

    Biavati, G.; Godt, J.W.; McKenna, J.P.

    2006-01-01

    Shallow landslides on steep (>25??) hillsides along Puget Sound have resulted in occasional loss of life and costly damage to property during intense or prolonged rainfall. As part of a larger project to assess landslide hazards in the Seattle area, the U.S. Geological Survey instrumented two coastal bluff sites in 2001 to observe the subsurface hydrologic response to rainfall. The instrumentation at one of these sites, near Edmonds, Washington, consists of two rain gauges, two water-content probes that measure volumetric water content at eight depths between 0.2 and 2.0 m, and two tensiometer nests that measure soil-water suction at six depths ranging from 0.2 to 1.5m. Measurements from these instruments are used to test one- and two-dimensional numerical models of infiltration and groundwater flow. Capillary-rise tests, performed in the laboratory on soil sample from the Edmonds site, are used to define the soil hydraulic properties for the wetting process. The field observations of water content and suction show an apparent effect of porosity variation with depth on the hydraulic response to rainfall. Using a range of physical properties consistent with our laboratory and field measurements, we perform sensitivity analyses to investigate the effects of variation in physical and hydraulic properties of the soil on rainfall infiltration, pore-pressure response, and, hence, slope stability. For a two-layer-system in which the hydraulic conductivity of the upper layer is at least 10 times greater than the conductivity of the lower layer, and the infiltration rate is greater than the conductivity of the lower layer, a perched water table forms above the layer boundary potentially destabilizing the upper layer of soil. Two-dimensional modeling results indicate that the addition of a simple trench drain to the same two-layer slope has differing effects on the hydraulic response depending on the initial pressure head conditions. For slope-parallel flow conditions

  2. The Influence of Shales on Slope Instability

    NASA Astrophysics Data System (ADS)

    Stead, Doug

    2016-02-01

    Shales play a major role in the stability of slopes, both natural and engineered. This paper attempts to provide a review of the state-of-the-art in shale slope stability. The complexities of shale terminology and classification are first reviewed followed by a brief discussion of the important physical and mechanical properties of relevance to shale slope stability. The varied mechanisms of shale slope stability are outlined and their importance highlighted by reference to international shale slope failures. Stability analysis and modelling of anisotropic rock slope masses are briefly discussed and the potential role of brittle rock fracture and damage highlighted. A short review of shale slopes in open pits is presented.

  3. Water making hot rocks soft: How hydrothermal alteration affects volcano stability

    NASA Astrophysics Data System (ADS)

    Ball, J. L.

    2015-12-01

    My research involves using numerical models of groundwater flow and slope stability to determine how long-term hydrothermal alteration in stratovolcanoes can cause increases in pore fluid pressure that lead to edifice collapse. Or in simpler terms: We can use computers to figure out how and why water that moves through hot rocks changes them into softer rocks that want to fall down. It's important to pay attention to the soft rocks even if they look safe because this can happen a long time after the stuff that makes them hot goes away or becomes cool. Wet soft rocks can go very far from high places and run over people in their way. I want show where the soft wet rocks are and how they might fall down so people will be safer.

  4. Characterization of hydrocarbon gas within the stratigraphic interval of gas-hydrate stability on the North Slope of Alaska, U.S.A.

    USGS Publications Warehouse

    Collett, T.S.; Kvenvolden, K.A.; Magoon, L.B.

    1990-01-01

    In the Kuparuk River Unit 2D-15 well, on the North Slope of Alaska, a 60 m-thick stratigraphic interval that lies within the theoretical pressure-temperature field of gas-hydrate stability is inferred to contain methane hydrates. This inference is based on interpretations from well logs: (1) release of methane during drilling, as indicated by the mud log, (2) an increase in acoustic velocity on the sonic log, and (3) an increase of electrical resistivity on the electric logs. Our objective was to determine the composition and source of the gas within the shallow gas-hydrate-bearing interval based on analyses of cutting gas. Headspace gas from canned drill cuttings collected from within the gas-hydrate-bearing interval of this well has an average methane to ethane plus propane [C1/(C2 + C3)] ratio of about 7000 and an average methane ??13C value of -46% (relative to the PDB standard). These compositions are compared with those obtained at one well located to the north of 2D-15 along depositional strike and one down-dip well to the northeast. In the well located on depositional strike (Kuparuk River Unit 3K-9), gas compositions are similar to those found at 2D-15. At the down-dip well (Prudhoe Bay Unit R-1), the C1/(C2 + C3) ratios are lower (700) and the methane ??13C is heavier (-33%). We conclude that the methane within the stratigraphic interval of gas hydrate stability comes from two sources-in situ microbial gas and migrated thermogenic gas. The thermal component is greatest at Prudhoe Bay. Up-dip to the west, the thermogenic component decreases, and microbial gas assumes more importance. ?? 1990.

  5. Hillslope stability and land use (1985). Volume II

    SciTech Connect

    Sidle, R.C.; Pearce, A.J.; O'Loughlin, C.L.

    1985-01-01

    This book emphasizes the natural factors affecting slope stability, including soils and geomorphic, hydrologic, vegetative, and seismic factors and provides information on landslide classification, global damage, and analytical methods. The effects of various extensive and intensive land management practices on slope stability are discussed together with methods for prediction, avoidance, and control. Examples of terrain evaluation procedures and land management practices are presented.

  6. A STRIPAK component Strip regulates neuronal morphogenesis by affecting microtubule stability

    PubMed Central

    Sakuma, Chisako; Okumura, Misako; Umehara, Tomoki; Miura, Masayuki; Chihara, Takahiro

    2015-01-01

    During neural development, regulation of microtubule stability is essential for proper morphogenesis of neurons. Recently, the striatin-interacting phosphatase and kinase (STRIPAK) complex was revealed to be involved in diverse cellular processes. However, there is little evidence that STRIPAK components regulate microtubule dynamics, especially in vivo. Here, we show that one of the core STRIPAK components, Strip, is required for microtubule organization during neuronal morphogenesis. Knockdown of Strip causes a decrease in the level of acetylated α-tubulin in Drosophila S2 cells, suggesting that Strip influences the stability of microtubules. We also found that Strip physically and genetically interacts with tubulin folding cofactor D (TBCD), an essential regulator of α- and β-tubulin heterodimers. Furthermore, we demonstrate the genetic interaction between strip and Down syndrome cell adhesion molecule (Dscam), a cell surface molecule that is known to work with TBCD. Thus, we propose that Strip regulates neuronal morphogenesis by affecting microtubule stability. PMID:26644129

  7. Downward Slope

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image from NASA's Mars Exploration Rover Opportunity panoramic camera shows a downward view from the rover as it sits at the edge of 'Endurance' crater. The gradual, 'blueberry'-strewn slope before the rover contains an exposed dark layer of rock that wraps around the upper section of the crater. Scientists suspect that this rock layer will provide clues about Mars' distant past. This mosaic image comprises images taken from 10 rover positions using 750, 530 and 430 nanometer filters, acquired on sol 131 (June 6, 2004).

  8. Gullied Slope

    NASA Technical Reports Server (NTRS)

    2005-01-01

    20 May 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows gullies formed on an equator-facing slope among mounds in Acidalia Planitia. Similar gullies occur in a variety of settings at middle and polar latitudes in both martian hemispheres.

    Location near: 49.8oN, 22.7oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Summer

  9. Laboratory and 3-D-distinct element analysis of failure mechanism of slope under external surcharge

    NASA Astrophysics Data System (ADS)

    Li, N.; Cheng, Y. M.

    2014-09-01

    Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient details. There are however increasing interest on the consequences after the initiation of failure which includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more details and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM) and laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanism and the post-failure mechanism of slope will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure which can give additional information not available from the classical methods of analysis.

  10. Characterization of H/V Spectral Ratios for the Assessment of Slope Stability in the Gas Hydrate-rich Area: an Example from Offshore SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, J. Y.; Tsia, C. H.; Cheng, W. B.; Chin, S. J.; Lin, S. S.; Liang, C. W.

    2015-12-01

    The Nakamura's method, which calculates the ratios between horizontal and vertical component spectra of seismic signals (H/V), is widely used in the inland area. However, few related estimations were performed for the offshore area and little knowledge for the marine sediments were obtained. From 2013 to 2015, three passive ocean bottom seismometer (OBS) experiments were conducted in gas hydrate-rich area offshore SW Taiwan in the aim of acquiring information related to the physical properties of seafloor sediments. The H/V of the seafloor sediments in the three areas were estimated by using the ambient noise and seismic signal recorded by OBSs. The resonance frequency of each site was estimated from the main peak of H/V distribution and a range between 5 and 10 Hz were obtained. Based on the empirical law, this resonance frequency range should correspond to a sediment thickness of approximately several to ten of meters. This estimation is consistent with the thickness of the sedimentary cover imaged by chirp sonar survey, suggesting that the site response of seafloor is dominantly controlled by the unconsolidated sedimentary layer on the top of the sea bed. Remarkably, the H/V ratios obtained in our study area are much larger than that calculated for the inland areas. The magnification can reach as high as 50 to more than 100. This observation infers that the sea water movement might emphasize the horizontal motion of the marine sediments, which is crucial for the slope stability assessment. Moreover, for most stations located in the active margin, no distinct peak is observed for the H/V pattern calculated during earthquakes. However, in the passive margin, the H/V peak calculated from ambient noise and earthquakes is mostly identical. This phenomenon may suggest that relatively unclear sedimentary boundary exist in the active margin environment. Estimating H/V spectral ratios of data recorded by the OBSs deployed in the southwest Taiwan offshore area offers a

  11. Milk protein composition and stability changes affected by iron in water sources.

    PubMed

    Wang, Aili; Duncan, Susan E; Knowlton, Katharine F; Ray, William K; Dietrich, Andrea M

    2016-06-01

    Water makes up more than 80% of the total weight of milk. However, the influence of water chemistry on the milk proteome has not been extensively studied. The objective was to evaluate interaction of water-sourced iron (low, medium, and high levels) on milk proteome and implications on milk oxidative state and mineral content. Protein composition, oxidative stability, and mineral composition of milk were investigated under conditions of iron ingestion through bovine drinking water (infused) as well as direct iron addition to commercial milk in 2 studies. Four ruminally cannulated cows each received aqueous infusions (based on water consumption of 100L) of 0, 2, 5, and 12.5mg/L Fe(2+) as ferrous lactate, resulting in doses of 0, 200, 500 or 1,250mg of Fe/d, in a 4×4Latin square design for a 14-d period. For comparison, ferrous sulfate solution was directly added into commercial retail milk at the same concentrations: control (0mg of Fe/L), low (2mg of Fe/L), medium (5mg of Fe/L), and high (12.5mg of Fe/L). Two-dimensional electrophoresis coupled with matrix-assisted laser desorption/ionization-tandem time-of-flight (MALDI-TOF/TOF) high-resolution tandem mass spectrometry analysis was applied to characterize milk protein composition. Oxidative stability of milk was evaluated by the thiobarbituric acid reactive substances (TBARS) assay for malondialdehyde, and mineral content was measured by inductively coupled plasma mass spectrometry. For milk from both abomasal infusion of ferrous lactate and direct addition of ferrous sulfate, an iron concentration as low as 2mg of Fe/L was able to cause oxidative stress in dairy cattle and infused milk, respectively. Abomasal infusion affected both caseins and whey proteins in the milk, whereas direct addition mainly influenced caseins. Although abomasal iron infusion did not significantly affect oxidation state and mineral balance (except iron), it induced oxidized off-flavor and partial degradation of whey proteins. Direct

  12. Milk protein composition and stability changes affected by iron in water sources.

    PubMed

    Wang, Aili; Duncan, Susan E; Knowlton, Katharine F; Ray, William K; Dietrich, Andrea M

    2016-06-01

    Water makes up more than 80% of the total weight of milk. However, the influence of water chemistry on the milk proteome has not been extensively studied. The objective was to evaluate interaction of water-sourced iron (low, medium, and high levels) on milk proteome and implications on milk oxidative state and mineral content. Protein composition, oxidative stability, and mineral composition of milk were investigated under conditions of iron ingestion through bovine drinking water (infused) as well as direct iron addition to commercial milk in 2 studies. Four ruminally cannulated cows each received aqueous infusions (based on water consumption of 100L) of 0, 2, 5, and 12.5mg/L Fe(2+) as ferrous lactate, resulting in doses of 0, 200, 500 or 1,250mg of Fe/d, in a 4×4Latin square design for a 14-d period. For comparison, ferrous sulfate solution was directly added into commercial retail milk at the same concentrations: control (0mg of Fe/L), low (2mg of Fe/L), medium (5mg of Fe/L), and high (12.5mg of Fe/L). Two-dimensional electrophoresis coupled with matrix-assisted laser desorption/ionization-tandem time-of-flight (MALDI-TOF/TOF) high-resolution tandem mass spectrometry analysis was applied to characterize milk protein composition. Oxidative stability of milk was evaluated by the thiobarbituric acid reactive substances (TBARS) assay for malondialdehyde, and mineral content was measured by inductively coupled plasma mass spectrometry. For milk from both abomasal infusion of ferrous lactate and direct addition of ferrous sulfate, an iron concentration as low as 2mg of Fe/L was able to cause oxidative stress in dairy cattle and infused milk, respectively. Abomasal infusion affected both caseins and whey proteins in the milk, whereas direct addition mainly influenced caseins. Although abomasal iron infusion did not significantly affect oxidation state and mineral balance (except iron), it induced oxidized off-flavor and partial degradation of whey proteins. Direct

  13. Oxidative stability of soybean oil in oleosomes as affected by pH and iron.

    PubMed

    Kapchie, Virginie N; Yao, Linxing; Hauck, Catherine C; Wang, Tong; Murphy, Patricia A

    2013-12-01

    The oxidative stability of oil in soybean oleosomes, isolated using the Enzyme-Assisted Aqueous Extraction Process (EAEP), was evaluated. The effects of ferric chloride, at two concentration levels (100 and 500 μM), on lipid oxidation, was examined under pH 2 and 7. The peroxide value (PV) and thiobarbituric acid-reactive substance (TBARS) value of oil, in oleosome suspensions stored at 60 °C, were measured over a 12 day period. The presence of ferric chloride significantly (P<0.05) affected the oxidative stability of oil in the isolated oleosome, as measured by the PV and TBARS. Greater lipid oxidation occurred under an acidic pH. In the pH 7 samples, the positively charged transition metals were strongly attracted to the negatively charged droplets. However, the low ζ-potential and the high creaming rate at this pH, may have limited the oxidation. Freezing, freeze-drying or heating of oleosomes have an insignificant impact on the oxidative stability of oil in isolated soybean oleosomes. Manufacturers should be cautious when adding oleosomes as ingredients in food systems containing transition metal ions.

  14. Nectar vs. pollen loading affects the tradeoff between flight stability and maneuverability in bumblebees.

    PubMed

    Mountcastle, Andrew M; Ravi, Sridhar; Combes, Stacey A

    2015-08-18

    Bumblebee foragers spend a significant portion of their lives transporting nectar and pollen, often carrying loads equivalent to more than half their body mass. Whereas nectar is stored in the abdomen near the bee's center of mass, pollen is carried on the hind legs, farther from the center of mass. We examine how load position changes the rotational moment of inertia in bumblebees and whether this affects their flight maneuverability and/or stability. We applied simulated pollen or nectar loads of equal mass to Bombus impatiens bumblebees and examined flight performance in a wind tunnel under three conditions: flight in unsteady flow, tracking an oscillating flower in smooth flow, and flower tracking in unsteady flow. Using an inertial model, we estimated that carrying a load on the legs rather than in the abdomen increases a bee's moment of inertia about the roll and yaw axes but not the pitch axis. Consistent with these predictions, we found that bees carrying a load on their legs displayed slower rotations about their roll and yaw axes, regardless of whether these rotations were driven by external perturbations or self-initiated steering maneuvers. This allowed pollen-loaded bees to maintain a more stable body orientation and higher median flight speed in unsteady flow but reduced their performance when tracking a moving flower, supporting the concept of a tradeoff between stability and maneuverability. These results demonstrate that the types of resources collected by bees affect their flight performance and energetics and suggest that wind conditions may influence resource selection.

  15. Dip-slope and Dip-slope Failures in Taiwan - a Review

    NASA Astrophysics Data System (ADS)

    Lee, C.

    2011-12-01

    Taiwan is famous for dip-slope and dip-slope slides. Dip-slopes exist at many places in the fold-and-thrust belt of Taiwan. Under active cutting of stream channels and man-made excavations, a dip-slope may become unstable and susceptible for mass sliding. Daylight of a bedding parallel clay seam is the most dangerous type for dip-slope sliding. Buckling or shear-off features may also happen at toe of a long dip-slope. Besides, a dip-slope is also dangerous for shallow debris slides, if the slope angle is between 25 to 45 degrees and the debris (colluvium or slope wash) is thick (>1m). These unstable slopes may slide during a triggering event, earthquake or typhoon storm; or even slide without a triggering event, like the 2010 Tapu case. Initial buckling feature had been found in the dip-slope of the Feitsui arch dam abutment after detailed explorations. Shear-off feature have also been found in dip-slope located in right bank of the Nahua reservoir after field investigation and drilling. The Chiufengerhshan slide may also be shear-off type. On the other hand, the Tapu, the Tsaoling slides and others are of direct slide type. The Neihoo Bishan slide is a shallow debris slide on dip-slope. All these cases demonstrate the four different types of dip-slope slide. The hazard of a dip-slope should be investigated to cover these possible types of failure. The existence of bedding parallel clay seams is critical for the stability of a dip-slope, either for direct slide or buckling or shear-off type of failure, and is a hot point during investigation. Because, the stability of a dip-slope is changing with time, therefore, detailed explorations to including weathering and erosion rates are also very necessary to ensure the long-term stability of a dip-slope.

  16. Protection Roles of Tea-Citrus Garden on Slopes (N Iran)

    NASA Astrophysics Data System (ADS)

    Habibi Bibalani, Ghassem; Joodi, Lila; Shibaei, Naeimeh; Bazhrang, Zia

    This study investigates the effects of vegetation on the stability of slopes using the finite element method. Parametric studies were performed to assess the sensitivity of the stability of a slope to the variation in the key vegetation and soil parameters. Results show that vegetation plays an important role in stabilizing shallow-seated failure of slopes and significantly affects stability. As Iran has a long history of landslides, this research deals with the effect of scrubs on slope stability, in particular, the economic interest such as tea and Citrus. It is well understood that vegetation influences slope stability mechanical effects. The shear strength of the soil is increased through the mechanical effects of the plant root matrix system. The density of the roots within the soil mass and the root tensile strength contribute to the ability of the soils to resist shear stress. The effects of soil suction and root reinforcement has been quantified as an increase in apparent soil cohesion. The study was carried out in Roudsar Township in Gilan State of Iran. In this area of 20 ha were considered suitable for the purposes of this study. A large part of the area had slopes of steep gradients on which tea-citrus garden was present. Soil samples were taken from an area of approximately 25 ha large for testing in the laboratory. Direct shear tests were carried out on soil samples and the Factor Of Safety (FOS) calculated. Results showed that the FOS was increased in soils with tea and citrus roots present. The global slope FOS was then determined using Bishop=s method. In this case study minimum FOS assumed 1.3, which corresponds to tea-citrus vegetation with 40-60% crown cover, a soil internal friction angle of 16° and a slope angle of 21 degree.

  17. Radiation Power Affected by Current and Wall Radius in Water Cooled Vortex Wall-stabilized Arc

    NASA Astrophysics Data System (ADS)

    Iwao, Toru; Nakamura, Takaya; Yanagi, Kentaro; Yamamoto, Shinji

    2015-11-01

    The arc lighting to obtain the environment to evacuate, save the life, keep the safety and be comfortable are focus on. The lack of radiation intensity and color rendering is problem because of inappropriate energy balance. Some researchers have researched the arc lamp mixed with metal vapor for improvement of color rendering spectrum. The metal vapor can emit the high intense radiation. In addition, the radiation is derived from the high temperature medium. Because the arc temperature can be controlled by current and arc radius, the radiation can be controlled by the current and arc radius. This research elucidates the radiation power affected by the current and wall radius in wall-stabilized arc of water-cooled vortex type. As a result, the radiation power increases with increasing the square of current / square of wall radius because of the temperature distribution which is derived from the current density at the simulation.

  18. Harvest date affects aronia juice polyphenols, sugars, and antioxidant activity, but not anthocyanin stability.

    PubMed

    Bolling, Bradley W; Taheri, Rod; Pei, Ruisong; Kranz, Sarah; Yu, Mo; Durocher, Shelley N; Brand, Mark H

    2015-11-15

    The goal of this work was to characterize how the date of harvest of 'Viking' aronia berry impacts juice pigmentation, sugars, and antioxidant activity. Aronia juice anthocyanins doubled at the fifth week of the harvest, and then decreased. Juice hydroxycinnamic acids decreased 33% from the first week, while proanthocyanidins increased 64%. Juice fructose and glucose plateaued at the fourth week, but sorbitol increased 40% to the seventh harvest week. Aronia juice pigment density increased due to anthocyanin concentration, and polyphenol copigmentation did not significantly affect juice pigmentation. Anthocyanin stability at pH 4.5 was similar between weeks. However, addition of quercetin, sorbitol, and chlorogenic acid to aronia anthocyanins inhibited pH-induced loss of color. Sorbitol and citric acid may be partially responsible for weekly variation in antioxidant activity, as addition of these agents inhibited DPPH scavenging 13-30%. Thus, aronia polyphenol and non-polyphenol components contribute to its colorant and antioxidant functionality. PMID:25977015

  19. Harvest date affects aronia juice polyphenols, sugars, and antioxidant activity, but not anthocyanin stability.

    PubMed

    Bolling, Bradley W; Taheri, Rod; Pei, Ruisong; Kranz, Sarah; Yu, Mo; Durocher, Shelley N; Brand, Mark H

    2015-11-15

    The goal of this work was to characterize how the date of harvest of 'Viking' aronia berry impacts juice pigmentation, sugars, and antioxidant activity. Aronia juice anthocyanins doubled at the fifth week of the harvest, and then decreased. Juice hydroxycinnamic acids decreased 33% from the first week, while proanthocyanidins increased 64%. Juice fructose and glucose plateaued at the fourth week, but sorbitol increased 40% to the seventh harvest week. Aronia juice pigment density increased due to anthocyanin concentration, and polyphenol copigmentation did not significantly affect juice pigmentation. Anthocyanin stability at pH 4.5 was similar between weeks. However, addition of quercetin, sorbitol, and chlorogenic acid to aronia anthocyanins inhibited pH-induced loss of color. Sorbitol and citric acid may be partially responsible for weekly variation in antioxidant activity, as addition of these agents inhibited DPPH scavenging 13-30%. Thus, aronia polyphenol and non-polyphenol components contribute to its colorant and antioxidant functionality.

  20. Plant species richness and functional traits affect community stability after a flood event.

    PubMed

    Fischer, Felícia M; Wright, Alexandra J; Eisenhauer, Nico; Ebeling, Anne; Roscher, Christiane; Wagg, Cameron; Weigelt, Alexandra; Weisser, Wolfgang W; Pillar, Valério D

    2016-05-19

    Climate change is expected to increase the frequency and magnitude of extreme weather events. It is therefore of major importance to identify the community attributes that confer stability in ecological communities during such events. In June 2013, a flood event affected a plant diversity experiment in Central Europe (Jena, Germany). We assessed the effects of plant species richness, functional diversity, flooding intensity and community means of functional traits on different measures of stability (resistance, resilience and raw biomass changes from pre-flood conditions). Surprisingly, plant species richness reduced community resistance in response to the flood. This was mostly because more diverse communities grew more immediately following the flood. Raw biomass increased over the previous year; this resulted in decreased absolute value measures of resistance. There was no clear response pattern for resilience. We found that functional traits drove these changes in raw biomass: communities with a high proportion of late-season, short-statured plants with dense, shallow roots and small leaves grew more following the flood. Late-growing species probably avoided the flood, whereas greater root length density might have allowed species to better access soil resources brought from the flood, thus growing more in the aftermath. We conclude that resource inputs following mild floods may favour the importance of traits related to resource acquisition and be less associated with flooding tolerance.

  1. Stabilization of actin filaments prevents germinal vesicle breakdown and affects microtubule organization in Xenopus oocytes.

    PubMed

    Okada, Iyo; Fujiki, Saburo; Iwase, Shohei; Abe, Hiroshi

    2012-05-01

    In Xenopus oocytes, extremely giant nuclei, termed germinal vesicles, contain a large amount of actin filaments most likely for mechanical integrity. Here, we show that microinjection of phalloidin, an F-actin-stabilizing drug, prevents the germinal vesicle breakdown (GVBD) in oocytes treated with progesterone. These nuclei remained for more 12 h after control oocytes underwent GVBD. Immunostaining showed significant elevation of actin in the remaining nuclei and many actin filament bundles in the cytoplasm. Furthermore, microtubules formed unusual structures in both nuclei and cytoplasm of phalloidin-injected oocytes stimulated by progesterone. Cytoplasmic microtubule arrays and intranuclear microtubules initially formed in phalloidin-injected oocytes as control oocytes exhibited white maturation spots; these structures gradually disappeared and finally converged upon intranuclear short bundles when control oocytes completed maturation. In contrast, treatment of oocytes with jasplakinolide, a cell membrane-permeable actin filament-stabilizing drug, did not affect GVBD. This drug preferentially induced accumulation of actin filaments at the cortex without any increase in cytoplasmic actin staining. Based on these results, intranuclear and cytoplasmic actin filament dynamics appear to be required for the completion of GVBD and critically involved in the regulation of microtubule assembly during oocyte maturation in Xenopus laevis. PMID:22422719

  2. Plant species richness and functional traits affect community stability after a flood event.

    PubMed

    Fischer, Felícia M; Wright, Alexandra J; Eisenhauer, Nico; Ebeling, Anne; Roscher, Christiane; Wagg, Cameron; Weigelt, Alexandra; Weisser, Wolfgang W; Pillar, Valério D

    2016-05-19

    Climate change is expected to increase the frequency and magnitude of extreme weather events. It is therefore of major importance to identify the community attributes that confer stability in ecological communities during such events. In June 2013, a flood event affected a plant diversity experiment in Central Europe (Jena, Germany). We assessed the effects of plant species richness, functional diversity, flooding intensity and community means of functional traits on different measures of stability (resistance, resilience and raw biomass changes from pre-flood conditions). Surprisingly, plant species richness reduced community resistance in response to the flood. This was mostly because more diverse communities grew more immediately following the flood. Raw biomass increased over the previous year; this resulted in decreased absolute value measures of resistance. There was no clear response pattern for resilience. We found that functional traits drove these changes in raw biomass: communities with a high proportion of late-season, short-statured plants with dense, shallow roots and small leaves grew more following the flood. Late-growing species probably avoided the flood, whereas greater root length density might have allowed species to better access soil resources brought from the flood, thus growing more in the aftermath. We conclude that resource inputs following mild floods may favour the importance of traits related to resource acquisition and be less associated with flooding tolerance. PMID:27114578

  3. Nectar vs. pollen loading affects the tradeoff between flight stability and maneuverability in bumblebees

    PubMed Central

    Mountcastle, Andrew M.; Combes, Stacey A.

    2015-01-01

    Bumblebee foragers spend a significant portion of their lives transporting nectar and pollen, often carrying loads equivalent to more than half their body mass. Whereas nectar is stored in the abdomen near the bee’s center of mass, pollen is carried on the hind legs, farther from the center of mass. We examine how load position changes the rotational moment of inertia in bumblebees and whether this affects their flight maneuverability and/or stability. We applied simulated pollen or nectar loads of equal mass to Bombus impatiens bumblebees and examined flight performance in a wind tunnel under three conditions: flight in unsteady flow, tracking an oscillating flower in smooth flow, and flower tracking in unsteady flow. Using an inertial model, we estimated that carrying a load on the legs rather than in the abdomen increases a bee’s moment of inertia about the roll and yaw axes but not the pitch axis. Consistent with these predictions, we found that bees carrying a load on their legs displayed slower rotations about their roll and yaw axes, regardless of whether these rotations were driven by external perturbations or self-initiated steering maneuvers. This allowed pollen-loaded bees to maintain a more stable body orientation and higher median flight speed in unsteady flow but reduced their performance when tracking a moving flower, supporting the concept of a tradeoff between stability and maneuverability. These results demonstrate that the types of resources collected by bees affect their flight performance and energetics and suggest that wind conditions may influence resource selection. PMID:26240364

  4. Different region climate regimes and topography affect the changes in area and mass balance of glaciers on the north and south slopes of the same glacierized massif (the West Nyainqentanglha Range, Tibetan Plateau)

    NASA Astrophysics Data System (ADS)

    Yu, Wusheng; Yao, Tandong; Kang, Shichang; Pu, Jianchen; Yang, Wei; Gao, Tanguang; Zhao, Huabiao; Zhou, Hang; Li, Shenghai; Wang, Weicai; Ma, Linglong

    2013-07-01

    This project launched a comparative study to investigate the areas of the Zhadang glacier (on the leeward slope/north slope of the West Nyainqentanglha Range, Tibetan Plateau) and the Gurenhekou glacier (on the windward slope/south slope) for nearly 40 years (1970-2007) and measure the mass balance of the two glaciers for three (2005-2008) and four (2004-2008) mass balance years, respectively. Results show that, in 1970-2007, overall annual precipitation decreased slightly caused by the weakening Indian monsoon and strengthened westerlies and annual mean air temperatures increased gradually in the areas to the north and south of the West Nyainqentanglha Range, respectively, resulting in the areas of the two glaciers reduced over the last nearly four decades. The rate of air temperature increase in the north is higher than that in the south. Moreover, mean annual precipitation in the south exceeds that in the north, due to the weakening of the Indian Monsoon activities across the West Nyainqentanglha Range. As a result, the area decrease of Zhadang glacier in the north slope of the West Nyainqentanglha Range is more intensive than that of Gurenhekou glacier in the south slope. Results also show that these two small glaciers experienced gradual reduction of the mass loss during the observation period of 2005-2008 and 2004-2008, and exhibited positive mass balances in 2008, possibly resulting from increases of annual precipitation and decreases in mean annual air temperatures, especially the lowering of air temperatures and the notably increasing of precipitation during the ablation period in 2006-2008. However, the mass balances of the two glaciers differed considerably. The differences in mass balance between the glaciers appear closely related to local climatic factors (different local moisture recycling and different seasonal distributions of precipitation) and glacier topography (the leeward/windward slopes and different elevations of the accumulation and

  5. Investigation of rainfall infiltration and slope failure using numerical model

    NASA Astrophysics Data System (ADS)

    Lin, H.; Chang, K.; Wen, J.

    2012-12-01

    This research simulated the real condition of the rain period at Ping Ding Village, Yunlin, Taiwan using FEMWATER and STABLE PRO in order to investigate the effects of infiltration on landslide behavior. We established a three-dimensional numerical groundwater model (FEMWATER) to simulate water infiltration and flow during the rain period in Ping Ding Village, estimated water content of the soil layer, and used STABLEPRO to analysis the stability of the slope. The aim of the research was to investigate the influence of infiltration on the slope instability. According to the results of sensitivity analysis, we found the pressure head of Layer-2 was affected by every parameter discussed in this research. And the affect from the Layer-1 and the Layer-3 also played an important role on pressure head of the Layer-2. According to the numerical simulation of rainfall infiltration, the simulation result on the borehole BH02 was satisfied (L1=0.013, L2=0.021, COR=0.997). The result of slope stability analysis showed that the B-B' profile had lower safety factor (0.989) which indicated higher potential of slope failure. The history records also sustained the result of our study. However, the A-A' profile had higher safety (1.142) factor than B-B' profile.

  6. Recurring Slope Lineae Formation on Changing Slopes.

    NASA Astrophysics Data System (ADS)

    Heydenreich, J.; Mickol, R. L.; Dixon, J. C.; Chevrier, V.

    2015-12-01

    Recurring Slope Lineae (RSLs) and other associated dark streaks appear in the southern mid-latitudes on the martian surface during the spring to summer months. Gullies commonly emerge from bedrock and form from volatile thawing and associated sediment transportation and deposition. All of these forms involve the movement of fluids and associated sediments on variable slopes. The objective of this research is to generate subsurface flows, resembling those of liquid brines, under regolith at slope angle ranges that represent those on which RSLs and gullies occur on Mars. RSLs are generally found on steeper slopes. The higher slopes ranged from 25°-30° and lower slopes 12°-18°. As the slope increased, the total channel and apron length increased. There was a significant increase from the lower to higher slopes. The maximum width of the channel decreased as the slopes increased. Lower slopes produced a more dendritic channel pattern; an alcove, the main channel and an apron with two diverging branches. However, the higher slopes produced channels with more variability in the fluvial features. Lobes diverged from the main channel at varying distances from the water source. Channel walls were more distinct, along with formation of natural levees. Increases in fluid viscosity, produces a more singular channel. From these observations we conclude that lower slopes are more conducive to RSL formations from their basic geomorphology. Higher slopes produce more distinct morphologies associated with fluvial erosion that are more similar to gullies. The effect of viscosity also appears to alter the morphologies of the flow features. Understanding the origin of these fluvial features can lead to greater understanding of fluids on Mars.

  7. Mycorrhizal aspects in slope stabilisation

    NASA Astrophysics Data System (ADS)

    Graf, Frank

    2016-04-01

    In order to re-colonise and stabilise slopes affected by superficial soil failure with plants essential requirements have to be met: the plants must grow the plants must survive sustainably plant succession must start and continuously develop These requirements, however, are anything but easy given, particularly under the often hostile environmental conditions dominating on bare and steep slopes. Mycorrhizal fungi, the symbiotic partners of almost all plants used in eco-engineering, are said to improve the plants' ability to overcome periods governed by strongly (growth) limiting factors. Subsequently, results of investigations are presented of mycorrhizal effects on different plant and soil functions related to eco-engineering in general and soil and slope stabilisation in particular. Generally, inoculation yielded higher biomass of the host plants above as well as below ground. Furthermore, the survival rate was higher for mycorrhized compared to non-mycorrhized plants, particularly under extreme environmental conditions. However, the scale of the mycorrhizal impact may be species specific of both the plant host as well as the fungal partner(s) and often becomes evident only after a certain time lag. Depending on the plant-fungus combination the root length per soil volume was found to be between 0 and 2.5 times higher for inoculated compared to non-inoculated specimens. On an alpine graded ski slope the survival of inoculated compared to non-treated Salix herbacea cuttings was significant after one vegetation period only for one of the three added mycorrhizal fungus species. However, after three years all of the inoculated plantlets performed significantly better than the non-inoculated controls. The analysis of the potential for producing and stabilising soil aggregates of five different ectomycorrhizal fungi showed high variation and, for the species Inocybe lacera, no significant difference compared to untreated soil. Furthermore, inoculation of Salix

  8. Bioturbation, geochemistry and geotechnics of sediments affected by the oxygen minimum zone on the Oman continental slope and abyssal plain, Arabian Sea

    NASA Astrophysics Data System (ADS)

    Meadows, Azra; Meadows, Peter S.; West, Fraser J. C.; Murray, John M. H.

    2000-01-01

    We investigate the way the oxygen minimum zone (OMZ) alters interactions between bioturbation and sediment geochemistry, and geotechnical properties. Sediments are compared within and below the OMZ on the Oman continental slope and adjacent abyssal plain during the post monsoonal autumn season. Quantitative measurements were made of Eh and pH, of total organic matter (TOM) and carbonate, of water content and shear strength, and of bioturbation structures in vertical profiles of subcores taken from spade-box core samples. The OMZ stations had distinctively low redox conditions and high carbonate content, and different geotechnical properties and different bioturbation structures than stations below the OMZ on the abyssal plain. These differences are related to the degree of anoxia and to water depth. Within the OMZ, Eh, pH and carbonate increased with water depth, and TOM and water content decreased. We also noted the presence of subsurface sediment heterogeneity on the continental slope within the OMZ. In the OMZ, Eh, water content and bioturbation decreased with increasing sediment depth. There was a slight decrease in pH in the top 5 cm at all stations. Shear strength nearly always increased with increasing sediment depth. At each water depth correlations show down-core trends in these parameters, while across all water depths correlations were significant at deeper sediment depths (20-30 cm). An Eh-pH diagram identified two water-depth groupings: 391-1008 and 1265-3396 m. Cluster analysis showed the upper and lower sediment depths form separate clusters, the break occurring at 4-7.5 cm; while there are also distinct clusters related to water depth. We relate our results to bottom-water oxygen concentrations reported by other investigators, and to regional-scale geochemical processes.

  9. Geology and slope stability in selected parts of The Geysers geothermal resources area: a guide to geologic features indicative of stable and unstable terrain in areas underlain by Franciscan and related rocks

    SciTech Connect

    Bedrossian, T.L.

    1980-01-01

    The results of a 4-month study of various geologic and topographic features related to the stability of Franciscan terrain in The Geysers GRA are presented. The study consisted of investigations of geologic and topographic features, throughout The Geysers GRA, and geologic mapping at a scale of 1:12,000 of approximately 1500 acres (600 hectares) of landslide terrain within the canyon of Big Sulphur Creek in the vicinity of the Buckeye mine (see plate 1). The area mapped during this study was selected because: (1) it is an area of potential future geothermal development, and (2) it illustrates that large areas mapped as landslides on regional scales (McLaughlin, 1974, 1975b; McNitt, 1968a) may contain zones of varying slope stability and, therefore, should be mapped in more detail prior to development of the land.

  10. Replacement of Val3 in Human Thymidylate Synthase Affects Its Kinetic Properties and Intracellular Stability

    SciTech Connect

    Huang, Xiao; Gibson, Lydia M.; Bell, Brittnaie J.; Lovelace, Leslie L.; Pea, Maria Marjorette O.; Berger, Franklin G.; Berger, Sondra H.; Lebioda, Lukasz

    2010-11-03

    Human and other mammalian thymidylate synthase (TS) enzymes have an N-terminal extension of {approx}27 amino acids that is not present in bacterial TSs. The extension, which is disordered in all reported crystal structures of TSs, has been considered to play a primary role in protein turnover but not in catalytic activity. In mammalian cells, the variant V3A has a half-life similar to that of wild-type human TS (wt hTS) while V3T is much more stable; V3L, V3F, and V3Y have half-lives approximately half of that for wt hTS. Catalytic turnover rates for most Val3 mutants are only slightly diminished, as expected. However, two mutants, V3L and V3F, have strongly compromised dUMP binding, with K{sub m,app} values increased by factors of 47 and 58, respectively. For V3L, this observation can be explained by stabilization of the inactive conformation of the loop of residues 181-197, which prevents substrate binding. In the crystal structure of V3L, electron density corresponding to a leucine residue is present in a position that stabilizes the loop of residues 181-197 in the inactive conformation. Since this density is not observed in other mutants and all other leucine residues are ordered in this structure, it is likely that this density represents Leu3. In the crystal structure of a V3F {center_dot} FdUMP binary complex, the nucleotide is bound in an alternative mode to that proposed for the catalytic complex, indicating that the high K{sub m,app} value is caused not by stabilization of the inactive conformer but by substrate binding in a nonproductive, inhibitory site. These observations show that the N-terminal extension affects the conformational state of the hTS catalytic region. Each of the mechanisms leading to the high K{sub m,app} values can be exploited to facilitate design of compounds acting as allosteric inhibitors of hTS.

  11. Replacement of Val3 in human thymidylate synthase affects its kinetic properties and intracellular stability .

    PubMed

    Huang, Xiao; Gibson, Lydia M; Bell, Brittnaie J; Lovelace, Leslie L; Peña, Maria Marjorette O; Berger, Franklin G; Berger, Sondra H; Lebioda, Lukasz

    2010-03-23

    Human and other mammalian thymidylate synthase (TS) enzymes have an N-terminal extension of approximately 27 amino acids that is not present in bacterial TSs. The extension, which is disordered in all reported crystal structures of TSs, has been considered to play a primary role in protein turnover but not in catalytic activity. In mammalian cells, the variant V3A has a half-life similar to that of wild-type human TS (wt hTS) while V3T is much more stable; V3L, V3F, and V3Y have half-lives approximately half of that for wt hTS. Catalytic turnover rates for most Val3 mutants are only slightly diminished, as expected. However, two mutants, V3L and V3F, have strongly compromised dUMP binding, with K(m,app) values increased by factors of 47 and 58, respectively. For V3L, this observation can be explained by stabilization of the inactive conformation of the loop of residues 181-197, which prevents substrate binding. In the crystal structure of V3L, electron density corresponding to a leucine residue is present in a position that stabilizes the loop of residues 181-197 in the inactive conformation. Since this density is not observed in other mutants and all other leucine residues are ordered in this structure, it is likely that this density represents Leu3. In the crystal structure of a V3F.FdUMP binary complex, the nucleotide is bound in an alternative mode to that proposed for the catalytic complex, indicating that the high K(m,app) value is caused not by stabilization of the inactive conformer but by substrate binding in a nonproductive, inhibitory site. These observations show that the N-terminal extension affects the conformational state of the hTS catalytic region. Each of the mechanisms leading to the high K(m,app) values can be exploited to facilitate design of compounds acting as allosteric inhibitors of hTS.

  12. Laboratory and 3-D distinct element analysis of the failure mechanism of a slope under external surcharge

    NASA Astrophysics Data System (ADS)

    Li, N.; Cheng, Y. M.

    2015-01-01

    Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient detail. There is however increasing interest in the consequences after the initiation of failure that includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more detail and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM) and a laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanisms and the post-failure mechanisms of slopes will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure, which can give additional information not available from the classical methods of analysis.

  13. Quantitative analysis of factors affecting intraoperative precision and stability of optoelectronic and electromagnetic tracking systems.

    PubMed

    Wagner, A; Schicho, K; Birkfellner, W; Figl, M; Seemann, R; König, F; Kainberger, Franz; Ewers, R

    2002-05-01

    This study aims to provide a quantitative analysis of the factors affecting the actual precision and stability of optoelectronic and electromagnetic tracking systems in computer-aided surgery under real clinical/intraoperative conditions. A "phantom-skull" with five precisely determined reference distances between marker spheres is used for all measurements. Three optoelectronic and one electromagnetic tracking systems are included in this study. The experimental design is divided into three parts: (1) evaluation of serial- and multislice-CT (computed tomography) images of the phantom-skull for the precision of distance measurements by means of navigation software without a digitizer, (2) digitizer measurements under realistic intraoperative conditions with the factors OR-lamp (radiating into the field of view of the digitizer) or/and "handling with ferromagnetic surgical instruments" (in the field of view of the digitizer) and (3) "point-measurements" to analyze the influence of changes in the angle of inclination of the stylus axis. Deviations between reference distances and measured values are statistically investigated by means of analysis of variance. Computerized measurements of distances based on serial-CT data were more precise than based on multislice-CT data. All tracking systems included in this study proved to be considerably less precise under realistic OR conditions when compared to the technical specifications in the manuals of the systems. Changes in the angle of inclination of the stylus axis resulted in deviations of up to 3.40 mm (mean deviations for all systems ranging from 0.49 to 1.42 mm, variances ranging from 0.09 to 1.44 mm), indicating a strong need for improvements of stylus design. The electromagnetic tracking system investigated in this study was not significantly affected by small ferromagnetic surgical instruments.

  14. Factors affecting the stability and performance of ipratropium bromide; fenoterol hydrobromide pressurized-metered dose inhalers.

    PubMed

    Ninbovorl, Jenjira; Sawatdee, Somchai; Srichana, Teerapol

    2013-12-01

    The aim of the study was to investigate the factors affecting the stability and performance of ipratropium bromide and fenoterol hydrobromide in a pressurized-metered dose inhaler (pMDI). A factorial design was applied to investigate the effects of three parameters (propellant, water, and ethanol) on the performance of 27 designed formulations of a solution-based pMDI. The formulations that contained a hydrofluoroalkane (HFA) propellant lower than 72% v/v and an ethanol concentration higher than 27% v/v remained as clear solutions. Nine formulations that contained the HFA propellant higher than 74% v/v precipitated. The results indicated that it was not only the HFA propellant content of the formulations that was related to the formulation instability but also ethanol content. Only six formulations from the 18 formulations, that did not precipitate, produced drug contents that were within the acceptable range (80-120%). These six formulations generated aerosols with mass median aerodynamic diameters (MMAD) of approximately 2 μm with a fine particle fraction (FPF; particle size, <6.4 μm) between 45% and 52%. The MMAD and FPF did not change significantly after 6 months of storage (P > 0.05). PMID:23975571

  15. The Stability of G6PD Is Affected by Mutations with Different Clinical Phenotypes

    PubMed Central

    Gómez-Manzo, Saúl; Terrón-Hernández, Jessica; De la Mora-De la Mora, Ignacio; González-Valdez, Abigail; Marcial-Quino, Jaime; García-Torres, Itzhel; Vanoye-Carlo, America; López-Velázquez, Gabriel; Hernández-Alcántara, Gloria; Oria-Hernández, Jesús; Reyes-Vivas, Horacio; Enríquez-Flores, Sergio

    2014-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency worldwide, causing a wide spectrum of conditions with severity classified from the mildest (Class IV) to the most severe (Class I). To correlate mutation sites in the G6PD with the resulting phenotypes, we studied four naturally occurring G6PD variants: Yucatan, Nashville, Valladolid and Mexico City. For this purpose, we developed a successful over-expression method that constitutes an easier and more precise method for obtaining and characterizing these enzymes. The kcat (catalytic constant) of all the studied variants was lower than in the wild-type. The structural rigidity might be the cause and the most evident consequence of the mutations is their impact on protein stability and folding, as can be observed from the protein yield, the T50 (temperature where 50% of its original activity is retained) values, and differences on hydrophobic regions. The mutations corresponding to more severe phenotypes are related to the structural NADP+ region. This was clearly observed for the Classes III and II variants, which became more thermostable with increasing NADP+, whereas the Class I variants remained thermolabile. The mutations produce repulsive electric charges that, in the case of the Yucatan variant, promote increased disorder of the C-terminus and consequently affect the binding of NADP+, leading to enzyme instability. PMID:25407525

  16. Use of Structure-from-Motion Photogrammetry Technique to model Danxia red bed landform slope stability by discrete element modeling - case study at Mt. Langshan, Hunan Province, China

    NASA Astrophysics Data System (ADS)

    Simonson, Scott; Hua, Peng; Luobin, Yan; Zhi, Chen

    2016-04-01

    Important to the evolution of Danxia landforms is how the rock cliffs are in large part shaped by rock collapse events, ranging from small break offs to large collapses. Quantitative research of Danxia landform evolution is still relatively young. In 2013-2014, Chinese and Slovak researchers conducted joint research to measure deformation of two large rock walls. In situ measurements of one rock wall found it to be stable, and Ps-InSAR measurements of the other were too few to be validated. Research conducted this year by Chinese researchers modeled the stress states of a stone pillar at Mt. Langshan, in Hunan Province, that toppled over in 2009. The model was able to demonstrate how stress states within the pillar changed as the soft basal layer retreated, but was not able to show the stress states at the point of complete collapse. According to field observations, the back side of the pillar fell away from the entire cliff mass before the complete collapse, and no models have been able to demonstrate the mechanisms behind this behavior. A further understanding of the mechanisms controlling rockfall events in Danxia landforms is extremely important because these stunning sceneries draw millions of tourists each year. Protecting the tourists and the infrastructure constructed to accommodate tourism is of utmost concern. This research will employ a UAV to as universally as possible photograph a stone pillar at Mt. Langshan that stands next to where the stone pillar collapsed in 2009. Using the recently developed structure-from-motion technique, a 3D model of the pillar will be constructed in order to extract geometrical data of the entire slope and its structural fabric. Also in situ measurements will be taken of the slope's toe during the field work exercises. These data are essential to constructing a realistic discrete element model using the 3DEC code and perform a kinematic analysis of the rock mass. Intact rock behavior will be based on the Mohr Coulomb

  17. Variation in Biofilm Stability with Decreasing pH Affects Porous Medium Hydraulic Properties

    NASA Astrophysics Data System (ADS)

    Kirk, M. F.; Santillan, E. F.; McGrath, L. K.; Altman, S. J.

    2010-12-01

    Changes to microbial communities caused by subsurface CO2 injection may have many consequences, including possible impacts to CO2 transport. We used column experiments to examine how decreasing pH, a geochemical change associated with CO2 injection, will affect biofilm stability and ultimately the hydraulic properties of porous media. Columns consisted of 1 mm2 square capillary tubes filled with 105-150 µm diameter glass beads. Artificial groundwater medium containing 1 mM glucose was pumped through the columns at a rate of 0.01 mL/min (q = 14.4 m/day; Re = 0.03). Columns were inoculated with 3 × 10^8 CFU (avg.) of Pseudomonas fluorescens, a model biofilm former, transformed with a green fluorescent protein. Biomass distribution and transport was examined using scanning laser confocal microscopy and effluent plating. Variation in the bulk hydraulic properties of the columns was measured using manometers. In an initial experiment, biofilm growth was allowed to occur for seven days in medium with pH 7.3. Within this period, cells uniformly coated bead surfaces, effluent cell numbers stabilized at 1 × 10^9 CFU/mL, and hydraulic conductivity (K) decreased 77%. Next, medium with pH 4 was introduced. As a result, biomass within the reactor redistributed from bead surfaces to pores, effluent cell numbers decreased to 3 × 10^5 CFU/mL, and K decreased even further (>94% reduction). This decreased K was maintained until the experiment was terminated, seven days after introducing low pH medium. These results suggest that changes in biomass distribution as a result of decreased pH may initially limit transport of solubility-trapped CO2 following CO2 injection. Experiments in progress and planned will test this result in more detail and over longer periods of time. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office

  18. Metabolic rate, latitude and thermal stability of roosts, but not phylogeny, affect rewarming rates of bats.

    PubMed

    Menzies, Allyson K; Webber, Quinn M R; Baloun, Dylan E; McGuire, Liam P; Muise, Kristina A; Coté, Damien; Tinkler, Samantha; Willis, Craig K R

    2016-10-01

    Torpor is an adaptation that allows many endotherms to save energy by abandoning the energetic cost of maintaining elevated body temperatures. Although torpor reduces energy consumption, the metabolic heat production required to arouse from torpor is energetically expensive and can impact the overall cost of torpor. The rate at which rewarming occurs can impact the cost of arousal, therefore, factors influencing rewarming rates of heterothermic endotherms could have influenced the evolution of rewarming rates and overall energetic costs of arousal from torpor. Bats are a useful taxon for studies of ecological and behavioral correlates of rewarming rate because of the widespread expression of heterothermy and ecological diversity across the >1200 known species. We used a comparative analysis of 45 bat species to test the hypothesis that ecological, behavioral, and physiological factors affect rewarming rates. We used basal metabolic rate (BMR) as an index of thermogenic capacity, and local climate (i.e., latitude of geographic range), roost stability and maximum colony size as ecological and behavioral predictors of rewarming rate. After controlling for phylogeny, high BMR was associated with rapid rewarming while species that live at higher absolute latitudes and in less thermally stable roosts also rewarmed most rapidly. These patterns suggests that some bat species rely on passive rewarming and social thermoregulation to reduce costs of rewarming, while others might rely on thermogenic capacity to maintain rapid rewarming rates in order to reduce energetic costs of arousal. Our results highlight species-specific traits associated with maintaining positive energy balance in a wide range of climates, while also providing insight into possible mechanisms underlying the evolution of heterothermy in endotherms.

  19. Metabolic rate, latitude and thermal stability of roosts, but not phylogeny, affect rewarming rates of bats.

    PubMed

    Menzies, Allyson K; Webber, Quinn M R; Baloun, Dylan E; McGuire, Liam P; Muise, Kristina A; Coté, Damien; Tinkler, Samantha; Willis, Craig K R

    2016-10-01

    Torpor is an adaptation that allows many endotherms to save energy by abandoning the energetic cost of maintaining elevated body temperatures. Although torpor reduces energy consumption, the metabolic heat production required to arouse from torpor is energetically expensive and can impact the overall cost of torpor. The rate at which rewarming occurs can impact the cost of arousal, therefore, factors influencing rewarming rates of heterothermic endotherms could have influenced the evolution of rewarming rates and overall energetic costs of arousal from torpor. Bats are a useful taxon for studies of ecological and behavioral correlates of rewarming rate because of the widespread expression of heterothermy and ecological diversity across the >1200 known species. We used a comparative analysis of 45 bat species to test the hypothesis that ecological, behavioral, and physiological factors affect rewarming rates. We used basal metabolic rate (BMR) as an index of thermogenic capacity, and local climate (i.e., latitude of geographic range), roost stability and maximum colony size as ecological and behavioral predictors of rewarming rate. After controlling for phylogeny, high BMR was associated with rapid rewarming while species that live at higher absolute latitudes and in less thermally stable roosts also rewarmed most rapidly. These patterns suggests that some bat species rely on passive rewarming and social thermoregulation to reduce costs of rewarming, while others might rely on thermogenic capacity to maintain rapid rewarming rates in order to reduce energetic costs of arousal. Our results highlight species-specific traits associated with maintaining positive energy balance in a wide range of climates, while also providing insight into possible mechanisms underlying the evolution of heterothermy in endotherms. PMID:27317837

  20. Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)'s predictive skill for hurricane-triggered landslides: A case study in Macon County, North Carolina

    USGS Publications Warehouse

    Liao, Z.; Hong, Y.; Kirschbaum, D.; Adler, R.F.; Gourley, J.J.; Wooten, R.

    2011-01-01

    The key to advancing the predictability of rainfall-triggered landslides is to use physically based slope-stability models that simulate the transient dynamical response of the subsurface moisture to spatiotemporal variability of rainfall in complex terrains. TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis) is a USGS landslide prediction model, coded in Fortran, that accounts for the influences of hydrology, topography, and soil physics on slope stability. In this study, we quantitatively evaluate the spatiotemporal predictability of a Matlab version of TRIGRS (MaTRIGRS) in the Blue Ridge Mountains of Macon County, North Carolina where Hurricanes Ivan triggered widespread landslides in the 2004 hurricane season. High resolution digital elevation model (DEM) data (6-m LiDAR), USGS STATSGO soil database, and NOAA/NWS combined radar and gauge precipitation are used as inputs to the model. A local landslide inventory database from North Carolina Geological Survey is used to evaluate the MaTRIGRS' predictive skill for the landslide locations and timing, identifying predictions within a 120-m radius of observed landslides over the 30-h period of Hurricane Ivan's passage in September 2004. Results show that within a radius of 24 m from the landslide location about 67% of the landslide, observations could be successfully predicted but with a high false alarm ratio (90%). If the radius of observation is extended to 120 m, 98% of the landslides are detected with an 18% false alarm ratio. This study shows that MaTRIGRS demonstrates acceptable spatiotemporal predictive skill for landslide occurrences within a 120-m radius in space and a hurricane-event-duration (h) in time, offering the potential to serve as a landslide warning system in areas where accurate rainfall forecasts and detailed field data are available. The validation can be further improved with additional landslide information including the exact time of failure for each

  1. Are herbage yield and yield stability affected by plant species diversity in sown pasture mixtures?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A tenet of plant biodiversity theory in grasslands is that increased diversity contributes to the stability of ecosystems. In managed grasslands, such as pastures, greater stability of herbage production as a result of increased plant species diversity would be beneficial. In this study, I combined ...

  2. Soil aggregate stability as affected by clay mineralogy and polyacrylamide addition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The addition of polyacrylamide (PAM) to soil leads to stabilization of existing aggregates and improved bonding between, and aggregation of adjacent soil particles However, the dependence of PAM efficacy as an aggregate stabilizing agent on soil-clay mineralogy has not been studied. Sixteen soil sam...

  3. SOIL AGGREGATE STABILITY AS AFFECTED BY LONG-TERM TILLAGE AND CLAY TYPE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil aggregate stability and dispersivity depend on clay mineralogy. However, little is known about the effect of soil mineralogy on soil crustability for long-term cultivated soil. The effect of long-term tillage on aggregate stability was the objective of our study. More than 20 soil samples chara...

  4. Soil-Structural Stability as Affected by Clay Mineralogy, Soil Texture and Polyacrylamide Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil-structural stability (expressed in terms of aggregate stability and pore size distribution) depends on (i) soil inherent properties, (ii) extrinsic condition prevailing in the soil that may vary temporally and spatially, and (iii) addition of soil amendments. Different soil management practices...

  5. Stochastic-deterministic modeling of bed load transport in shallow water flow over erodible slope: Linear stability analysis and numerical simulation

    NASA Astrophysics Data System (ADS)

    Bohorquez, Patricio; Ancey, Christophe

    2015-09-01

    In this article we propose a stochastic bed load transport formulation within the framework of the frictional shallow-water equations in which the sediment transport rate results from the difference between the entrainment and deposition of particles. First we show that the Saint-Venant-Exner equations are linearly unstable in most cases for a uniform base flow down an inclined erodible bed for Shields numbers in excess of the threshold for incipient sediment motion allowing us to compute noise-induced pattern formation for Froude numbers below 2. The wavelength of the bed forms are selected naturally due to the absolute character of the bed instability and the existence of a maximum growth rate at a finite wavelength when the particle diffusivity coefficient and the water eddy viscosity are present as for Turing-like instability. A numerical method is subsequently developed to analyze the performance of the model and theoretical results through three examples: the simulation of the fluctuations of the particle concentration using a stochastic Langevin equation, the deterministic simulation of anti-dunes formation over an erodible slope in full sediment-mobility conditions, and the computation of noise-induced pattern formation in hybrid stochastic-deterministic flows down a periodic flume. The full non-linear numerical simulations are in excellent agreement with the theoretical solutions. We conclude highlighting that the proposed depth-averaged formulation explains the developments of upstream migrating anti-dunes in straight flumes since the seminar experiments by Gilbert (1914).

  6. A flexible system of remediation to stabilize a road affected by landslide in the area of Val di Maso (North-Eastern Italian Apls)

    NASA Astrophysics Data System (ADS)

    Tessari, G.; Cioli, C.; Floris, M.; Stevan, G.; Genevois, R.

    2012-04-01

    Slope stabilization follows different design procedures and approaches finalized to reduce the driving forces or increase resisting forces or avoid the problem at all by completely or partially remove unstable materials. But often the cost of stabilization works is very high. Therefore it is necessary to find new effective solutions with low or moderate costs. In this frame, this work reports the case study of a road in the area of Val di Maso, located in the North-Eastern Italian Alps. The road is threatened by the evolution of a mass movement occurred on November 2010 due to an extreme rainfall event that hit the entire North-Eastern sector of Italy. The complex landslide consists of a debris flow involving eluvial/colluvial deposits and past landslide debris. In the upper part, clear morphological evidences indicate that the instability is rapidly retrogressing by multiple rotational slides involving volcanic deposits that can be referred to a paleo-landslide. In the crown area, unstable materials have a thickness of around 20 m. For this reason, a stabilization system using rigid structures anchored to the stable bedrock for an appropriate length would be burdensome and costly. Starting from the geological model of the unstable slope, an innovative stabilization solution is proposed, a numerical simulation to analyze the effects of the stabilization is performed and an integrated monitoring system to control and verify the slope behaviour is planned. The proposed remediation works consist of a "floating belt", placed close to the edge of the road, and some "floating anchors" some meters further down behind the main scarp of the landslide. The system allows small displacements to induce a stress re-distribution favourable to the stability of the slope. The main advantages of the proposed solution are the adaptability to different geo-environmental situations and the low cost compared to other alternatives. On the basis of field data collected, a geological

  7. Slope sensitivities for optical surfaces

    NASA Astrophysics Data System (ADS)

    Rogers, John R.

    2015-09-01

    Setting a tolerance for the slope errors of an optical surface (e.g., surface form errors of the "mid-spatial-frequencies") requires some knowledge of how those surface errors affect the final image of the system. While excellent tools exist for simulating those effects on a surface-by-surface basis, considerable insight may be gained by examining, for each surface, a simple sensitivity parameter that relates the slope error on the surface to the ray displacement at the final image plane. Snell's law gives a relationship between the slope errors of a surface and the angular deviations of the rays emerging from the surface. For a singlet or thin doublet acting by itself, these angular deviations are related to ray deviations at the image plane by the focal length of the lens. However, for optical surfaces inside an optical system having a substantial axial extent, the focal length of the system is not the correct multiplier, as the sensitivity is influenced by the optical surfaces that follow. In this paper, a simple expression is derived that relates the slope errors at an arbitrary optical surface to the ray deviation at the image plane. This expression is experimentally verified by comparison to a real-ray perturbation analysis. The sensitivity parameter relates the RMS slope errors to the RMS spot radius, and also relates the peak slope error to the 100% spot radius, and may be used to create an RSS error budget for slope error. Application to various types of system are shown and discussed.

  8. Murine startle mutant Nmf11 affects the structural stability of the glycine receptor and increases deactivation

    PubMed Central

    Wilkins, Megan E.; Caley, Alex; Gielen, Marc C.; Harvey, Robert J.

    2016-01-01

    Key points Hyperekplexia or startle disease is a serious neurological condition affecting newborn children and usually involves dysfunctional glycinergic neurotransmission.Glycine receptors (GlyRs) are major mediators of inhibition in the spinal cord and brainstem.A missense mutation, replacing asparagine (N) with lysine (K), at position 46 in the GlyR α1 subunit induced hyperekplexia following a reduction in the potency of the transmitter glycine; this resulted from a rapid deactivation of the agonist current at mutant GlyRs.These effects of N46K were rescued by mutating a juxtaposed residue, N61 on binding Loop D, suggesting these two asparagines may interact.Asparagine 46 is considered to be important for the structural stability of the subunit interface and glycine binding site, and its mutation represents a new mechanism by which GlyR dysfunction induces startle disease. Abstract Dysfunctional glycinergic inhibitory transmission underlies the debilitating neurological condition, hyperekplexia, which is characterised by exaggerated startle reflexes, muscle hypertonia and apnoea. Here we investigated the N46K missense mutation in the GlyR α1 subunit gene found in the ethylnitrosourea (ENU) murine mutant, Nmf11, which causes reduced body size, evoked tremor, seizures, muscle stiffness, and morbidity by postnatal day 21. Introducing the N46K mutation into recombinant GlyR α1 homomeric receptors, expressed in HEK cells, reduced the potencies of glycine, β‐alanine and taurine by 9‐, 6‐ and 3‐fold respectively, and that of the competitive antagonist strychnine by 15‐fold. Replacing N46 with hydrophobic, charged or polar residues revealed that the amide moiety of asparagine was crucial for GlyR activation. Co‐mutating N61, located on a neighbouring β loop to N46, rescued the wild‐type phenotype depending on the amino acid charge. Single‐channel recording identified that burst length for the N46K mutant was reduced and fast agonist application

  9. Emotional modulation of control dilemmas: the role of positive affect, reward, and dopamine in cognitive stability and flexibility.

    PubMed

    Goschke, Thomas; Bolte, Annette

    2014-09-01

    Goal-directed action in changing environments requires a dynamic balance between complementary control modes, which serve antagonistic adaptive functions (e.g., to shield goals from competing responses and distracting information vs. to flexibly switch between goals and behavioral dispositions in response to significant changes). Too rigid goal shielding promotes stability but incurs a cost in terms of perseveration and reduced flexibility, whereas too weak goal shielding promotes flexibility but incurs a cost in terms of increased distractibility. While research on cognitive control has long been conducted relatively independently from the study of emotion and motivation, it is becoming increasingly clear that positive affect and reward play a central role in modulating cognitive control. In particular, evidence from the past decade suggests that positive affect not only influences the contents of cognitive processes, but also modulates the balance between complementary modes of cognitive control. In this article we review studies from the past decade that examined effects of induced positive affect on the balance between cognitive stability and flexibility with a focus on set switching and working memory maintenance and updating. Moreover, we review recent evidence indicating that task-irrelevant positive affect and performance-contingent rewards exert different and sometimes opposite effects on cognitive control modes, suggesting dissociations between emotional and motivational effects of positive affect. Finally, we critically review evidence for the popular hypothesis that effects of positive affect may be mediated by dopaminergic modulations of neural processing in prefrontal and striatal brain circuits, and we refine this "dopamine hypothesis of positive affect" by specifying distinct mechanisms by which dopamine may mediate effects of positive affect and reward on cognitive control. We conclude with a discussion of limitations of current research, point to

  10. Emotional modulation of control dilemmas: the role of positive affect, reward, and dopamine in cognitive stability and flexibility.

    PubMed

    Goschke, Thomas; Bolte, Annette

    2014-09-01

    Goal-directed action in changing environments requires a dynamic balance between complementary control modes, which serve antagonistic adaptive functions (e.g., to shield goals from competing responses and distracting information vs. to flexibly switch between goals and behavioral dispositions in response to significant changes). Too rigid goal shielding promotes stability but incurs a cost in terms of perseveration and reduced flexibility, whereas too weak goal shielding promotes flexibility but incurs a cost in terms of increased distractibility. While research on cognitive control has long been conducted relatively independently from the study of emotion and motivation, it is becoming increasingly clear that positive affect and reward play a central role in modulating cognitive control. In particular, evidence from the past decade suggests that positive affect not only influences the contents of cognitive processes, but also modulates the balance between complementary modes of cognitive control. In this article we review studies from the past decade that examined effects of induced positive affect on the balance between cognitive stability and flexibility with a focus on set switching and working memory maintenance and updating. Moreover, we review recent evidence indicating that task-irrelevant positive affect and performance-contingent rewards exert different and sometimes opposite effects on cognitive control modes, suggesting dissociations between emotional and motivational effects of positive affect. Finally, we critically review evidence for the popular hypothesis that effects of positive affect may be mediated by dopaminergic modulations of neural processing in prefrontal and striatal brain circuits, and we refine this "dopamine hypothesis of positive affect" by specifying distinct mechanisms by which dopamine may mediate effects of positive affect and reward on cognitive control. We conclude with a discussion of limitations of current research, point to

  11. The use of “stabilization exercises” to affect neuromuscular control in the lumbopelvic region: a narrative review

    PubMed Central

    Bruno, Paul

    2014-01-01

    It is well-established that the coordination of muscular activity in the lumbopelvic region is vital to the generation of mechanical spinal stability. Several models illustrating mechanisms by which dysfunctional neuromuscular control strategies may serve as a cause and/or effect of low back pain have been described in the literature. The term “core stability” is variously used by clinicians and researchers, and this variety has led to several rehabilitative approaches suggested to affect the neuromuscular control strategies of the lumbopelvic region (e.g. “stabilization exercise”, “motor control exercise”). This narrative review will highlight: 1) the ongoing debate in the clinical and research communities regarding the terms “core stability” and “stabilization exercise”, 2) the importance of sub-grouping in identifying those patients most likely to benefit from such therapeutic interventions, and 3) two protocols that can assist clinicians in this process. PMID:24932016

  12. Denaturation and Oxidative Stability of Hemp Seed (Cannabis sativa L.) Protein Isolate as Affected by Heat Treatment.

    PubMed

    Raikos, Vassilios; Duthie, Garry; Ranawana, Viren

    2015-09-01

    The present study investigated the impact of heat treatments on the denaturation and oxidative stability of hemp seed protein during simulated gastrointestinal digestion (GID). Heat-denatured hemp protein isolate (HPI) solutions were prepared by heating HPI (2 mg/ml, pH 6.8) to 40, 60, 80 and 100 °C for 10 min. Heat-induced denaturation of the protein isolates was monitored by polyacrylamide gel electrophoresis. Heating HPI at temperatures above 80 °C significantly reduced solubility and led to the formation of large protein aggregates. The isolates were then subjected to in vitro GID and the oxidative stability of the generated peptides was investigated. Heating did not significantly affect the formation of oxidation products during GID. The results suggest that heat treatments should ideally remain below 80 °C if heat stability and solubility of HPI are to be preserved. PMID:26142888

  13. Denaturation and Oxidative Stability of Hemp Seed (Cannabis sativa L.) Protein Isolate as Affected by Heat Treatment.

    PubMed

    Raikos, Vassilios; Duthie, Garry; Ranawana, Viren

    2015-09-01

    The present study investigated the impact of heat treatments on the denaturation and oxidative stability of hemp seed protein during simulated gastrointestinal digestion (GID). Heat-denatured hemp protein isolate (HPI) solutions were prepared by heating HPI (2 mg/ml, pH 6.8) to 40, 60, 80 and 100 °C for 10 min. Heat-induced denaturation of the protein isolates was monitored by polyacrylamide gel electrophoresis. Heating HPI at temperatures above 80 °C significantly reduced solubility and led to the formation of large protein aggregates. The isolates were then subjected to in vitro GID and the oxidative stability of the generated peptides was investigated. Heating did not significantly affect the formation of oxidation products during GID. The results suggest that heat treatments should ideally remain below 80 °C if heat stability and solubility of HPI are to be preserved.

  14. Comparison of Temperature and Additives Affecting the Stability of the Probiotic Weissella cibaria

    PubMed Central

    Kang, Mi-Sun; Kim, Youn-Shin; Lee, Hyun-Chul; Lim, Hoi-Soon

    2012-01-01

    Daily use of probiotic chewing gum might have a beneficial effect on oral health, and it is important that the viability of the probiotics be maintained in this food product. In this study, we examined the stability of probiotic chewing gum containing Weissella cibaria. We evaluated the effects of various factors, including temperature and additives, on the survival of freeze-dried probiotic W. cibaria powder. No changes in viability were detected during storage at 4℃ for 5 months, whereas the viability of bacteria stored at 20℃ decreased. The stability of probiotic chewing gum decreased steadily during storage at 20℃ for 4 weeks. The viability of the freeze-dried W. cibaria mixed with various additives, such as xylitol, sorbitol, menthol, sugar ester, magnesium stearate, and vitamin C, was determined over a 4-week storage period at 20℃. Most of the freeze-dried bacteria except for those mixed with menthol and vitamin C were generally stable during a 3-week storage period. Overall, our study showed that W. cibaria was more stable at 4℃ than that at 20℃. In addition, menthol and vitamin C had a detrimental effect on the storage stability of W. cibaria. This is the first study to examine the effects of various chewing gum additives on the stability of W. cibaria. Further studies will be needed to improve the stability of probiotic bacteria for developing a novel probiotic W. cibaria gum. PMID:23323221

  15. Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations

    DOE PAGES

    Aidhy, Dilpuneet S.; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2015-01-21

    We study the chemical expansion for neutral and charged oxygen vacancies in fluorite, rocksalt, perovskite and pyrochlores materials using first principles calculations. We show that the neutral oxygen vacancy leads to lattice expansion whereas the charged vacancy leads to lattice contraction. In addition, we show that there is a window of strain within which an oxygen vacancy is stable; beyond that range, the vacancy can become unstable. Using CeO2|ZrO2 interface structure as an example, we show that the concentration of oxygen vacancies can be manipulated via strain, and the vacancies can be preferentially stabilized. Furthermore, these results could serve asmore » guiding principles in predicting oxygen vacancy stability in strained systems and in the design of vacancy stabilized materials.« less

  16. Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations

    SciTech Connect

    Aidhy, Dilpuneet S.; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2015-01-21

    We study the chemical expansion for neutral and charged oxygen vacancies in fluorite, rocksalt, perovskite and pyrochlores materials using first principles calculations. We show that the neutral oxygen vacancy leads to lattice expansion whereas the charged vacancy leads to lattice contraction. In addition, we show that there is a window of strain within which an oxygen vacancy is stable; beyond that range, the vacancy can become unstable. Using CeO2|ZrO2 interface structure as an example, we show that the concentration of oxygen vacancies can be manipulated via strain, and the vacancies can be preferentially stabilized. Furthermore, these results could serve as guiding principles in predicting oxygen vacancy stability in strained systems and in the design of vacancy stabilized materials.

  17. Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations

    SciTech Connect

    Aidhy, Dilpuneet S.; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2015-03-01

    We study the chemical expansion for neutral and charged oxygen vacancies in fluorite, rocksalt, perovskite and pyrochlores materials using first principles calculations. We show that the neutral oxygen vacancy leads to lattice expansion whereas the charged vacancy leads to lattice contraction. In addition, we show that there is a window of strain within which an oxygen vacancy is stable; beyond that range, the vacancy can become unstable. Using CeO2|ZrO2 interface structure as an example, we show that the concentration of oxygen vacancies can be manipulated via strain, and the vacancies can be preferentially stabilized. These results could serve as guiding principles in predicting oxygen vacancy stability in strained systems and in the design of vacancy stabilized materials.

  18. Stability of Intercellular Exchange of Biochemical Substances Affected by Variability of Environmental Parameters

    NASA Astrophysics Data System (ADS)

    Mihailović, Dragutin T.; Budinčević, Mirko; Balaž, Igor; Mihailović, Anja

    Communication between cells is realized by exchange of biochemical substances. Due to internal organization of living systems and variability of external parameters, the exchange is heavily influenced by perturbations of various parameters at almost all stages of the process. Since communication is one of essential processes for functioning of living systems it is of interest to investigate conditions for its stability. Using previously developed simplified model of bacterial communication in a form of coupled difference logistic equations we investigate stability of exchange of signaling molecules under variability of internal and external parameters.

  19. Quality of casein based Mozzarella cheese analogue as affected by stabilizer blends.

    PubMed

    Jana, A H; Patel, H G; Suneeta, Pinto; Prajapati, J P

    2010-03-01

    Suitability of xanthan gum (XG)-locust bean gum (LBG), carrageenan (CAR)-LBG, and XG-CAR in 1:1 proportion at 0.42% in the formulation was assessed in the manufacture of Mozzarella cheese analogue. The stabilizer blends did not significantly influence the composition, texture profile, organoleptic, baking qualities and pizza-related characteristics of cheese analogues. Considering the influence of stabilizer blend on the sensory quality of analogue and sensory rating of pizza pie, XG-LBG blend (1:1) was preferred over XG-CAR and CAR-LBG.

  20. Geotechnical Characterization and Stability of a Slope in the Marnoso-Arenacea Formation for the Realization of an Underground Car Park in Urbino (Italy)

    NASA Astrophysics Data System (ADS)

    Gori, Umberto; Polidori, Ennio; Tonelli, Gianluigi; Veneri, Francesco

    The plan of an underground car park located near the historical centre of Urbino town, has required characterizing the Marnoso-Arenacea Formation (Tortonian), from a geomechanical point of view. The project implies that the intervention will be insert inside the flank of the hill, in order to mitigate the effect of the environmental impact. It also involves an excavation front 42 m high and 100 m large. To analyze the mechanical behaviour of the soils, many samples both from the Marnoso-Arenacea Formation and from the cover, have been tested in laboratory. The anisotropy index evaluated by point load test in natural water conditions shows a higher value of the arenitic levels in comparison with the marls. On the contrary, the marls level tested in dry condition provides greater anisotropy index data. In the mono-axial compression test the arenaceous sediments show higher results. The stability analysis carried out with distinct element method shows the opportunity to retain the upper part of the cut with anchored bulkhead.

  1. Alterations of Nonconserved Residues Affect Protein Stability and Folding Dynamics through Charge-Charge Interactions.

    PubMed

    Tripathi, Swarnendu; Garcìa, Angel E; Makhatadze, George I

    2015-10-15

    Charge-charge interactions play an important role in thermal stability of proteins. We employed an all-atom, native-topology-based model with non-native electrostatics to explore the interplay between folding dynamics and stability of TNfn3 (the third fibronectin type III domain from tenascin-C). Our study elucidates the role of charge-charge interactions in modulating the folding energy landscape. In particular, we found that incorporation of explicit charge-charge interactions in the WT TNfn3 induces energetic frustration due to the presence of residual structure in the unfolded state. Moreover, optimization of the surface charge-charge interactions by altering the evolutionarily nonconserved residues not only increases the thermal stability (in agreement with previous experimental study) but also reduces the formation of residual structure and hence minimizes the energetic frustration along the folding route. We concluded that charge-charge interaction in the rationally designed TNfn3 plays an important role not only in enhancing the stability but also in assisting folding. PMID:26413861

  2. Nitrogen transformation and nitrous oxide emissions affected by biochar amendment and fertilizer stabilizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar as a soil amendment and the use of fertilizer stabilizers (N transformation inhibitors) have been shown to reduce N2O emissions, but the mechanisms or processes involved are not well understood. The objective of this research was to investigate N transformation processes and the relationship...

  3. AN EVALUATION OF FACTORS AFFECTING THE SOLIDIFICATION/STABILIZATION OF HEAVY METAL SLUDGE

    EPA Science Inventory

    Solidification/stabilization (SIS) of hazardous waste involves mixing the waste with a binder material to enhance the physical properties of the waste and to immobilize contaminants that may be detrimental to the environment. Many hazardous wastes contain materials that are know...

  4. Balancing Protein Stability and Activity in Cancer: A New Approach for Identifying Driver Mutations Affecting CBL Ubiquitin Ligase Activation.

    PubMed

    Li, Minghui; Kales, Stephen C; Ma, Ke; Shoemaker, Benjamin A; Crespo-Barreto, Juan; Cangelosi, Andrew L; Lipkowitz, Stanley; Panchenko, Anna R

    2016-02-01

    Oncogenic mutations in the monomeric Casitas B-lineage lymphoma (Cbl) gene have been found in many tumors, but their significance remains largely unknown. Several human c-Cbl (CBL) structures have recently been solved, depicting the protein at different stages of its activation cycle and thus providing mechanistic insight underlying how stability-activity tradeoffs in cancer-related proteins-may influence disease onset and progression. In this study, we computationally modeled the effects of missense cancer mutations on structures representing four stages of the CBL activation cycle to identify driver mutations that affect CBL stability, binding, and activity. We found that recurrent, homozygous, and leukemia-specific mutations had greater destabilizing effects on CBL states than random noncancer mutations. We further tested the ability of these computational models, assessing the changes in CBL stability and its binding to ubiquitin-conjugating enzyme E2, by performing blind CBL-mediated EGFR ubiquitination assays in cells. Experimental CBL ubiquitin ligase activity was in agreement with the predicted changes in CBL stability and, to a lesser extent, with CBL-E2 binding affinity. Two thirds of all experimentally tested mutations affected the ubiquitin ligase activity by either destabilizing CBL or disrupting CBL-E2 binding, whereas about one-third of tested mutations were found to be neutral. Collectively, our findings demonstrate that computational methods incorporating multiple protein conformations and stability and binding affinity evaluations can successfully predict the functional consequences of cancer mutations on protein activity, and provide a proof of concept for mutations in CBL. PMID:26676746

  5. Landfast ice affects the stability of the Arctic halocline: Evidence from a numerical model

    NASA Astrophysics Data System (ADS)

    Itkin, Polona; Losch, Martin; Gerdes, Rüdiger

    2015-04-01

    Landfast ice covers large surface areas of the winter Siberian Seas. The immobile landfast ice cover inhibits divergent and convergent motion, hence dynamical sea ice growth and redistribution, decouples winter river plumes in coastal seas from the atmosphere, and positions polynyas at the landfast ice edge offshore. In spite of the potentially large effects, state-of-the-art numerical models usually do not represent landfast ice in its correct extent. A simple parametrization of landfast ice based on bathymetry and internal sea ice strength is introduced and its effects on the simulated Arctic Ocean are demonstrated. The simulations suggest that the Siberian landfast ice impacts the Arctic halocline stability through enhanced brine production in polynyas located closer to the shelf break and by redirecting river water to the Canadian Basin. These processes strengthen the halocline in the Canadian Basin, but erode its stability in the Makarov and Eurasian Basins.

  6. Stability of the octameric structure affects plasminogen-binding capacity of streptococcal enolase.

    PubMed

    Cork, Amanda J; Ericsson, Daniel J; Law, Ruby H P; Casey, Lachlan W; Valkov, Eugene; Bertozzi, Carlo; Stamp, Anna; Jovcevski, Blagojce; Aquilina, J Andrew; Whisstock, James C; Walker, Mark J; Kobe, Bostjan

    2015-01-01

    Group A Streptococcus (GAS) is a human pathogen that has the potential to cause invasive disease by binding and activating human plasmin(ogen). Streptococcal surface enolase (SEN) is an octameric α-enolase that is localized at the GAS cell surface. In addition to its glycolytic role inside the cell, SEN functions as a receptor for plasmin(ogen) on the bacterial surface, but the understanding of the molecular basis of plasmin(ogen) binding is limited. In this study, we determined the crystal and solution structures of GAS SEN and characterized the increased plasminogen binding by two SEN mutants. The plasminogen binding ability of SENK312A and SENK362A is ~2- and ~3.4-fold greater than for the wild-type protein. A combination of thermal stability assays, native mass spectrometry and X-ray crystallography approaches shows that increased plasminogen binding ability correlates with decreased stability of the octamer. We propose that decreased stability of the octameric structure facilitates the access of plasmin(ogen) to its binding sites, leading to more efficient plasmin(ogen) binding and activation.

  7. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil

    PubMed Central

    Wu, Mengxiong; Feng, Qibo; Sun, Xue; Wang, Hailong; Gielen, Gerty; Wu, Weixiang

    2015-01-01

    Conversion of rice straw into biochar for soil amendment appears to be a promising method to increase long-term carbon sequestration and reduce greenhouse gas (GHG) emissions. The stability of biochar in paddy soil, which is the major determining factor of carbon sequestration effect, depends mainly on soil properties and plant functions. However, the influence of plants on biochar stability in paddy soil remains unclear. In this study, bulk and surface characteristics of the biochars incubated without rice plants were compared with those incubated with rice plants using a suite of analytical techniques. Results showed that although rice plants had no significant influence on the bulk characteristics and decomposition rates of the biochar, the surface oxidation of biochar particles was enhanced by rice plants. Using 13C labeling we observed that rice plants could significantly increase carbon incorporation from biochar into soil microbial biomass. About 0.047% of the carbon in biochar was incorporated into the rice plants during the whole rice growing cycle. These results inferred that root exudates and transportation of biochar particles into rice plants might decrease the stability of biochar in paddy soil. Impact of plants should be considered when predicting carbon sequestration potential of biochar in soil systems. PMID:25944542

  8. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil.

    PubMed

    Wu, Mengxiong; Feng, Qibo; Sun, Xue; Wang, Hailong; Gielen, Gerty; Wu, Weixiang

    2015-05-05

    Conversion of rice straw into biochar for soil amendment appears to be a promising method to increase long-term carbon sequestration and reduce greenhouse gas (GHG) emissions. The stability of biochar in paddy soil, which is the major determining factor of carbon sequestration effect, depends mainly on soil properties and plant functions. However, the influence of plants on biochar stability in paddy soil remains unclear. In this study, bulk and surface characteristics of the biochars incubated without rice plants were compared with those incubated with rice plants using a suite of analytical techniques. Results showed that although rice plants had no significant influence on the bulk characteristics and decomposition rates of the biochar, the surface oxidation of biochar particles was enhanced by rice plants. Using (13)C labeling we observed that rice plants could significantly increase carbon incorporation from biochar into soil microbial biomass. About 0.047% of the carbon in biochar was incorporated into the rice plants during the whole rice growing cycle. These results inferred that root exudates and transportation of biochar particles into rice plants might decrease the stability of biochar in paddy soil. Impact of plants should be considered when predicting carbon sequestration potential of biochar in soil systems.

  9. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil.

    PubMed

    Wu, Mengxiong; Feng, Qibo; Sun, Xue; Wang, Hailong; Gielen, Gerty; Wu, Weixiang

    2015-01-01

    Conversion of rice straw into biochar for soil amendment appears to be a promising method to increase long-term carbon sequestration and reduce greenhouse gas (GHG) emissions. The stability of biochar in paddy soil, which is the major determining factor of carbon sequestration effect, depends mainly on soil properties and plant functions. However, the influence of plants on biochar stability in paddy soil remains unclear. In this study, bulk and surface characteristics of the biochars incubated without rice plants were compared with those incubated with rice plants using a suite of analytical techniques. Results showed that although rice plants had no significant influence on the bulk characteristics and decomposition rates of the biochar, the surface oxidation of biochar particles was enhanced by rice plants. Using (13)C labeling we observed that rice plants could significantly increase carbon incorporation from biochar into soil microbial biomass. About 0.047% of the carbon in biochar was incorporated into the rice plants during the whole rice growing cycle. These results inferred that root exudates and transportation of biochar particles into rice plants might decrease the stability of biochar in paddy soil. Impact of plants should be considered when predicting carbon sequestration potential of biochar in soil systems. PMID:25944542

  10. Factors affecting stepladder stability during a lateral weight transfer: a study in healthy young adults.

    PubMed

    Yang, Bing-Shiang; Ashton-Miller, James A

    2005-09-01

    A fall from a stepladder is often initiated by a loss of lateral stability. An inverted pendulum model of the human, validated by experiment, was used to determine the feasible range of whole-body center of mass (COM) states for which weight can be transferred laterally on a ladder tread without a ladder rail losing contact with the ground ("no lift-off" stability region). The results show that the size of the feasible no lift-off region was inversely proportional to the height of the tread above the ground, the distance of the stance foot from the ipsilateral rail, and lateral ground inclination angle. For given initial COM kinematics on a tread height equal to 40% human body height, a stance-foot location equal to one-eighth tread width and a 3.5 degrees ground inclination had approximately equivalent effects on the no lift-off region size. Ladder stability was three times more sensitive to tread height than to foot location. Laterally-exerted impulsive hand-tool forces should generally be limited to 8% body weight. These findings can lead to improved ladder designs and safety instructions for stepladder users.

  11. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil

    NASA Astrophysics Data System (ADS)

    Wu, Mengxiong; Feng, Qibo; Sun, Xue; Wang, Hailong; Gielen, Gerty; Wu, Weixiang

    2015-05-01

    Conversion of rice straw into biochar for soil amendment appears to be a promising method to increase long-term carbon sequestration and reduce greenhouse gas (GHG) emissions. The stability of biochar in paddy soil, which is the major determining factor of carbon sequestration effect, depends mainly on soil properties and plant functions. However, the influence of plants on biochar stability in paddy soil remains unclear. In this study, bulk and surface characteristics of the biochars incubated without rice plants were compared with those incubated with rice plants using a suite of analytical techniques. Results showed that although rice plants had no significant influence on the bulk characteristics and decomposition rates of the biochar, the surface oxidation of biochar particles was enhanced by rice plants. Using 13C labeling we observed that rice plants could significantly increase carbon incorporation from biochar into soil microbial biomass. About 0.047% of the carbon in biochar was incorporated into the rice plants during the whole rice growing cycle. These results inferred that root exudates and transportation of biochar particles into rice plants might decrease the stability of biochar in paddy soil. Impact of plants should be considered when predicting carbon sequestration potential of biochar in soil systems.

  12. Intermonomer Interactions in Hemagglutinin Subunits HA1 and HA2 Affecting Hemagglutinin Stability and Influenza Virus Infectivity

    PubMed Central

    DeFeo, Christopher J.; Alvarado-Facundo, Esmeralda; Vassell, Russell

    2015-01-01

    ABSTRACT Influenza virus hemagglutinin (HA) mediates virus entry by binding to cell surface receptors and fusing the viral and endosomal membranes following uptake by endocytosis. The acidic environment of endosomes triggers a large-scale conformational change in the transmembrane subunit of HA (HA2) involving a loop (B loop)-to-helix transition, which releases the fusion peptide at the HA2 N terminus from an interior pocket within the HA trimer. Subsequent insertion of the fusion peptide into the endosomal membrane initiates fusion. The acid stability of HA is influenced by residues in the fusion peptide, fusion peptide pocket, coiled-coil regions of HA2, and interactions between the surface (HA1) and HA2 subunits, but details are not fully understood and vary among strains. Current evidence suggests that the HA from the circulating pandemic 2009 H1N1 influenza A virus [A(H1N1)pdm09] is less stable than the HAs from other seasonal influenza virus strains. Here we show that residue 205 in HA1 and residue 399 in the B loop of HA2 (residue 72, HA2 numbering) in different monomers of the trimeric A(H1N1)pdm09 HA are involved in functionally important intermolecular interactions and that a conserved histidine in this pair helps regulate HA stability. An arginine-lysine pair at this location destabilizes HA at acidic pH and mediates fusion at a higher pH, while a glutamate-lysine pair enhances HA stability and requires a lower pH to induce fusion. Our findings identify key residues in HA1 and HA2 that interact to help regulate H1N1 HA stability and virus infectivity. IMPORTANCE Influenza virus hemagglutinin (HA) is the principal antigen in inactivated influenza vaccines and the target of protective antibodies. However, the influenza A virus HA is highly variable, necessitating frequent vaccine changes to match circulating strains. Sequence changes in HA affect not only antigenicity but also HA stability, which has important implications for vaccine production, as well

  13. Finite Element analyses of soil bioengineered slopes

    NASA Astrophysics Data System (ADS)

    Tamagnini, Roberto; Switala, Barbara Maria; Sudan Acharya, Madhu; Wu, Wei; Graf, Frank; Auer, Michael; te Kamp, Lothar

    2014-05-01

    Soil Bioengineering methods are not only effective from an economical point of view, but they are also interesting as fully ecological solutions. The presented project is aimed to define a numerical model which includes the impact of vegetation on slope stability, considering both mechanical and hydrological effects. In this project, a constitutive model has been developed that accounts for the multi-phase nature of the soil, namely the partly saturated condition and it also includes the effects of a biological component. The constitutive equation is implemented in the Finite Element (FE) software Comes-Geo with an implicit integration scheme that accounts for the collapse of the soils structure due to wetting. The mathematical formulation of the constitutive equations is introduced by means of thermodynamics and it simulates the growth of the biological system during the time. The numerical code is then applied in the analysis of an ideal rainfall induced landslide. The slope is analyzed for vegetated and non-vegetated conditions. The final results allow to quantitatively assessing the impact of vegetation on slope stability. This allows drawing conclusions and choosing whenever it is worthful to use soil bioengineering methods in slope stabilization instead of traditional approaches. The application of the FE methods show some advantages with respect to the commonly used limit equilibrium analyses, because it can account for the real coupled strain-diffusion nature of the problem. The mechanical strength of roots is in fact influenced by the stress evolution into the slope. Moreover, FE method does not need a pre-definition of any failure surface. FE method can also be used in monitoring the progressive failure of the soil bio-engineered system as it calculates the amount of displacements and strains of the model slope. The preliminary study results show that the formulated equations can be useful for analysis and evaluation of different soil bio

  14. Factors Affecting the Stability of Matrix Materials for Actinides Transmutation and Conditioning

    SciTech Connect

    Rondinella, Vincenzo V.; Wiss, Thierry A.; Hiernaut, J-P; Lutique, Stphanie; Raison, P.; Staicu, D.; Weber, William J.; Fanghanel, T.

    2008-12-01

    The minimization of the long-term radiotoxicity of high level nuclear waste is an important criterion adopted for the development of advanced fuel cycles for the new generations of nuclear reactors. Pu recycling as fuel, and transmutation of Minor Actinides (MA: Np, Am, and in some concepts also Cm) in reactors and/or MA burners are the steps considered to achieve this goal. U-free compounds are considered as matrices for Pu, MA burning. In some cases, these matrices are envisaged also for the conditioning and immobilization of radionuclides in final disposal concepts. The list of properties of a good inert matrix includes good chemical compatibility with the actinides, easy and economical processes of fabrication and, if required, reprocessing, and good thermo-mechanical performance in-pile, in terms of thermal transport, swelling and high temperature stability. In addition, the material must retain the good properties under the cumulative effect of radiation damage, and fission product accumulation. Since good radiation resistance materials usually exhibit poor thermal transport, in some concepts the actinides are stabilized in a host phase (e.g. zirconia) dispersed in a high thermal conductivity matrix (either ceramic or metallic).

  15. Redefining a Bizarre Situation: Relative Concept Stability in Affect Control Theory

    ERIC Educational Resources Information Center

    Nelson, Steven M.

    2006-01-01

    I analyze the process by which we react cognitively to information that contradicts our culturally held sentiments in the context of affect control theory. When bizarre, unanticipated events come to our attention and we have no opportunity to act so as to alter them, we must reidentify at least one event component: the actor, the behavior, or the…

  16. Fiber Bragg grating-based performance monitoring of a slope model subjected to seepage

    NASA Astrophysics Data System (ADS)

    Zhu, Hong-Hu; Shi, Bin; Yan, Jun-Fan; Zhang, Jie; Zhang, Cheng-Cheng; Wang, Bao-Jun

    2014-09-01

    In the past few years, fiber optic sensing technologies have played an increasingly important role in the health monitoring of civil infrastructures. These innovative sensing technologies have recently been successfully applied to the performance monitoring of a series of geotechnical structures. Fiber optic sensors have shown many unique advantages in comparison with conventional sensors, including immunity to electrical noise, higher precision and improved durability and embedding capabilities; fiber optic sensors are also smaller in size and lighter in weight. In order to explore the mechanism of seepage-induced slope instability, a small-scale 1 g model test of the soil slope has been performed in the laboratory. During the model’s construction, specially fabricated sensing fibers containing nine fiber Bragg grating (FBG) strain sensors connected in a series were horizontally and vertically embedded into the soil mass. The surcharge load was applied on the slope crest, and the groundwater level inside of the slope was subsequently varied using two water chambers installed besides the slope model. The fiber optic sensing data of the vertical and horizontal strains within the slope model were automatically recorded by an FBG interrogator and a computer during the test. The test results are presented and interpreted in detail. It is found that the gradually accumulated deformation of the slope model subjected to seepage can be accurately captured by the quasi-distributed FBG strain sensors. The test results also demonstrate that the slope stability is significantly affected by ground water seepage, which fits well with the results that were calculated using finite element and limit equilibrium methods. The relationship between the strain measurements and the safety factors is further analyzed, together with a discussion on the residual strains. The performance evaluation of a soil slope using fiber optic strain sensors is proved to be a potentially effective

  17. Electricity and colloidal stability: how charge distribution in the tissue can affects wound healing.

    PubMed

    Farber, Paulo Luiz; Hochman, Bernardo; Furtado, Fabianne; Ferreira, Lydia Masako

    2014-02-01

    The role of endogenous electric fields in wound healing is still not fully understood. Electric fields are of fundamental importance in various biological processes, ranging from embryonic development to disease progression, as described by many investigators in the last century. This hypothesis brings together some relevant literature on the importance of electric fields in physiology and pathology, the theory of biologically closed electric circuits, skin battery (a phenomenon that occurs after skin injury and seems to be involved in tissue repair), the relationship between electric charge and interstitial exclusion, and how skin tissues can be regarded as colloidal systems. The importance of electric charges, as established in the early works on the subject and the relevance of zeta potential and colloid stability are also analyzed, and together bring a new light for the physics involved in the wound repair of all the body tissues.

  18. Factors affecting the microstructural stability and durability of thermal barrier coatings fabricated by air plasma spraying

    SciTech Connect

    Helminiak, M A; Yanar, N M; Pettit, F S; Taylor, T A; Meier, G H

    2012-10-01

    The high-temperature behavior of high-purity, low-density (HP-LD) air plasma sprayed (APS) thermal barrier coatings (TBCs) with NiCoCrAlY bond coats deposited by argon-shrouded plasma spraying is described. The high purity yttria-stabilized zirconia resulted in top coats which are highly resistant to sintering and transformation from the metastable tetragonal phase to the equilibrium mixture of monoclinic and cubic phases. The thermal conductivity of the as-processed TBC is low but increases during high temperature exposure even before densification occurs. The porous topcoat microstructure also resulted in good spallation resistance during thermal cycling. The actual failure mechanisms of the APS coatings were found to depend on topcoat thickness, topcoat density, and the thermal cycle frequency. The failure mechanisms are described and the durability of the HP-LD coatings is compared with that of state-of-the-art electron beam physical vapor deposition TBCs.

  19. A CSTR-hollow-fiber system for continuous hydrolysis of proteins. Factors affecting long-term stability of the reactor.

    PubMed

    Deeslie, W D; Cheryan, M

    1982-01-01

    Factors affecting the long-term operational stability of a CSTR-hollow-fiber reactor for continuous hydrolysis of proteins were studied. The activity declined in a stepwise manner during a run. Declining from 92% conversion to 60% conversion in about ten hours at a space time of four minutes. Initial decay appears to be due to leakage of small active fragments of the enzyme mixture (Pronase) through the membrane, and later decay due to thermal degradation and loss of activators such as calcium through the membrane. The rate of buildup of unconverted substrate in the reaction vessel was controlled by operational variables, but did not appear to affect the reactor output or the operation of the reactor. The decay of the reactor could be partially compensated for by appropriate manipulation of the space-time variables.

  20. To what extent clay mineralogy affects soil aggregation? Consequences for soil organic matter stabilization

    NASA Astrophysics Data System (ADS)

    Fernandez-Ugalde, O.; Barré, P.; Hubert, F.; Virto, I.; Chenu, C.; Ferrage, E.; Caner, L.

    2012-12-01

    Aggregation is a key process for soil functioning as it influences C storage, vulnerability to erosion and water holding capacity. While the influence of soil organic C on aggregation has been documented, much less is known about the role of soil mineralogy. Soils usually contain a mixture of clay minerals with contrasted surface properties, which should result on different abilities of clay minerals to aggregation. We took advantage of the intrinsic mineral heterogeneity of a temperate Luvisol to compare the role of clay minerals (illite, smectite, kaolinite, and mixed-layer illite-smectite) in aggregation. In a first step, grassland and tilled soil samples were fractionated in water in aggregate-size classes according to the hierarchical model of aggregation (Tisdall and Oades, 1982). Clay mineralogy and organic C in the aggregate-size classes were analyzed. The results showed that interstratified minerals containing swelling phases accumulated in aggregated fractions (>2 μm) compared to free clay fractions (<2 μm) in the two land-uses. The accumulation increased from large macro-aggregates (>500 μm) to micro-aggregates (50-250 μm). C concentration and C/N ratio followed the opposite trend. These results constitute a clay mineral-based evidence for the hierarchical model of aggregation, which postulates an increasing importance of the reactivity of clay minerals in the formation of micro-aggregates compared to larger aggregates. In the latter aggregates, formation relies on the physical enmeshment of particles by fungal hyphae, and root and microbial exudates. In a second step, micro-aggregates from the tilled soil samples were submitted to increasingly disaggregating treatments by sonication to evaluate the link between their water stability and clay mineralogy. Micro-aggregates with increasing stability showed an increase of interstratified minerals containing swelling phases and C concentration for low intensities of disaggregation (from 0 to 5 J mL-1

  1. SUMOylation affects the interferon blocking activity of the influenza A nonstructural protein NS1 without affecting its stability or cellular localization.

    PubMed

    Santos, Andres; Pal, Sangita; Chacón, Jason; Meraz, Katherine; Gonzalez, Jeanette; Prieto, Karla; Rosas-Acosta, Germán

    2013-05-01

    Our pioneering studies on the interplay between the small ubiquitin-like modifier (SUMO) and influenza A virus identified the nonstructural protein NS1 as the first known SUMO target of influenza virus and one of the most abundantly SUMOylated influenza virus proteins. Here, we further characterize the role of SUMOylation for the A/Puerto Rico/8/1934 (PR8) NS1 protein, demonstrating that NS1 is SUMOylated not only by SUMO1 but also by SUMO2/3 and mapping the main SUMOylation sites in NS1 to residues K219 and K70. Furthermore, by using SUMOylatable and non-SUMOylatable forms of NS1 and an NS1-specific artificial SUMO ligase (ASL) that increases NS1 SUMOylation ~4-fold, we demonstrate that SUMOylation does not affect the stability or cellular localization of PR8 NS1. However, NS1's ability to be SUMOylated appears to affect virus multiplication, as indicated by the delayed growth of a virus expressing the non-SUMOylatable form of NS1 in the interferon (IFN)-competent MDCK cell line. Remarkably, while a non-SUMOylatable form of NS1 exhibited a substantially diminished ability to neutralize IFN production, increasing NS1 SUMOylation beyond its normal levels also exerted a negative effect on its IFN-blocking function. This observation indicates the existence of an optimal level of NS1 SUMOylation that allows NS1 to achieve maximal activity and suggests that the limited amount of SUMOylation normally observed for most SUMO targets may correspond to an optimal level that maximizes the contribution of SUMOylation to protein function. Finally, protein cross-linking data suggest that SUMOylation may affect NS1 function by regulating the abundance of NS1 dimers and trimers in the cell.

  2. SUMOylation Affects the Interferon Blocking Activity of the Influenza A Nonstructural Protein NS1 without Affecting Its Stability or Cellular Localization

    PubMed Central

    Santos, Andres; Pal, Sangita; Chacón, Jason; Meraz, Katherine; Gonzalez, Jeanette; Prieto, Karla

    2013-01-01

    Our pioneering studies on the interplay between the small ubiquitin-like modifier (SUMO) and influenza A virus identified the nonstructural protein NS1 as the first known SUMO target of influenza virus and one of the most abundantly SUMOylated influenza virus proteins. Here, we further characterize the role of SUMOylation for the A/Puerto Rico/8/1934 (PR8) NS1 protein, demonstrating that NS1 is SUMOylated not only by SUMO1 but also by SUMO2/3 and mapping the main SUMOylation sites in NS1 to residues K219 and K70. Furthermore, by using SUMOylatable and non-SUMOylatable forms of NS1 and an NS1-specific artificial SUMO ligase (ASL) that increases NS1 SUMOylation ∼4-fold, we demonstrate that SUMOylation does not affect the stability or cellular localization of PR8 NS1. However, NS1's ability to be SUMOylated appears to affect virus multiplication, as indicated by the delayed growth of a virus expressing the non-SUMOylatable form of NS1 in the interferon (IFN)-competent MDCK cell line. Remarkably, while a non-SUMOylatable form of NS1 exhibited a substantially diminished ability to neutralize IFN production, increasing NS1 SUMOylation beyond its normal levels also exerted a negative effect on its IFN-blocking function. This observation indicates the existence of an optimal level of NS1 SUMOylation that allows NS1 to achieve maximal activity and suggests that the limited amount of SUMOylation normally observed for most SUMO targets may correspond to an optimal level that maximizes the contribution of SUMOylation to protein function. Finally, protein cross-linking data suggest that SUMOylation may affect NS1 function by regulating the abundance of NS1 dimers and trimers in the cell. PMID:23468495

  3. Mars Exploration Rover Landing Site Hectometer Slopes

    NASA Astrophysics Data System (ADS)

    Haldemann, A. F.; Anderson, F. S.

    2002-12-01

    The Mars Exploration Rover (MER) airbag landing system imposes a maximum slope of 5 degrees over 100 m length-scales. This limit avoids dangerous changes in elevation over the horizontal travel distance of the lander on its parachute between the time of the last radar altimeter detection of the surface and the time the retro-rockets fire and the bridle to the airbags is cut. Stereo imagery from the MGS MOC can provide information at this length scale, but MOC stereo coverage is sparse, even when targeted to MER landing sites. Additionally, MGS spacecraft stability issues affect the DEMs at precisely the hectometric length-scale1. The MOLA instrument provides global coverage pulse-width measurements2 over a single MOLA-pulse footprint, which is about 100 m in diameter. However, the pulse spread only provides an upper bound on the 100 m slope. We chose another approach. We sample the inter-pulse root-mean-square (RMS) height deviations for MOLA track segments restricted to pixels of 0.1 deg latitude by 0.1 deg longitude. Then, under the assumption of self-affine topography, we determine the scale-dependence of the RMS deviations and extrapolate that behavior over the range of 300 m to 1.2 km downward to the 100 m scale. Shepard et al.3 clearly summarize the statistical properties of the RMS deviation (noting that it also goes by the name structure function, variogram or Allan deviation), and we follow their nomenclature. The RMS deviation is a useful measure in that it can be directly converted to RMS-slope for a given length-scale. We map the results of this self-affine extrapolation method for each of the proposed MER landing sites as well as Viking Lander 1 (VL1) and Pathfiner (MPF). In order of decreasing average hectometer RMS-slopes, Melas (about 4.5 degrees) > Elysium EP80 > Gusev > MPF > Elysium EP78 > VL1 > Athabasca > Isidis > Hematite (about 1 degree). We also map the scaling parameter (Hurst exponent); its behavior in the MER landing site regions is

  4. Unified formulation for analysis of slopes with general slip surface

    SciTech Connect

    Espinoza, R.D.; Bourdeau, P.L. . School of Civil Engineering); Muhunthan, B. . Dept. of Civil and Environmental Engineering)

    1994-07-01

    The general availability of computers has provided efficient means of assessing the stability of slopes using several analytical methods. However, the increased use of computers coupled with a lack of unified presentation of the various methods sometimes leads to conflicting results. It is shown that the current analytical methods can be grouped into three categories based on the hypotheses used to describe the internal forces, namely: (1) the direction of the internal forces; (2) the height of the line of thrust; and (3) the shape of the distribution function of the internal shear forces. An analytical framework incorporating this idea is presented to facilitate and unify slope stability analysis with general slip surfaces. The study is a generalization of earlier work performed by Espinoza et al. for circular slip surfaces. The framework incorporates most current methods of analysis. The analytical model is implemented in a computer program. The program was used to study several case examples. On this basis, key issues associated with the influence of the internal shear forces on the factor of safety, for both circular and general slip failure surfaces, are discussed. It appears that for circular failure surfaces, even with heterogeneous soil stratigraphy the factor of safety is not affected by the choice of a particular hypothesis. On the contrary, for general slip surfaces this choice may significantly affect the results.

  5. Oxidative stability of virgin olive oil as affected by the bene unsaponifiable matters and tertiary-butylhydroquinone.

    PubMed

    Farhoosh, Reza; Haddad Khodaparast, Mohammad Hossein; Sharif, Ali; Zamani-Ghalehshahi, Atefeh; Hoseini-Yazdi, Seyedeh-Zohreh

    2012-06-01

    During 16 h heating at 180 °C, the oxidative stability (OS) of virgin olive oil (VOO) as affected by the same concentrations (200 ppm) of tertiary-butylhydroquinone (TBHQ) and unsaponifiable matters of bene kernel (UKO) and hull (UHO) oils in terms of the inhibitory effect on the formation of conjugated diene hydroperoxides (OS(CDV)) and off-flavor carbonyl compounds (OS(CV)) was investigated. TBHQ was not able to considerably increase the OS(CDV) (7.51) of the VOO (7.2) and showed no synergistic effect with indigenous antioxidative compounds of the VOO (IOV) in this respect. However, it could significantly improve the OS(CV) (from 2.49 to 4.52), which was mainly due to its synergism with the IOV. The UKO increased considerably the OS(CDV) (to 11.8), and its OS(CV) (4.22) was nearly the same as that of TBHQ. The IOV still had marked contributions to the prevention of VOO oxidation but the majority of stabilizing effect was related to the UKO and its synergism with the IOV. The OS(CDV) in presence of the UHO was less than that of the VOO (5.96), although it significantly increased the OS(CV) (to 5.2), mainly due to the stabilizing effect of UHO and its synergism with the IOV.

  6. Physico-chemical factors affecting the in vitro stability of phycobiliproteins from Phormidium rubidum A09DM.

    PubMed

    Rastogi, Rajesh Prasad; Sonani, Ravi Raghav; Madamwar, Datta

    2015-08-01

    The functionality and stability of phycobiliproteins (PBPs) phycoerythrin (PE), phycocyanin (PC) and allophycocyanin (APC) were investigated under various temperatures, pHs and oxidative stressors. All PBPs were thermostable up to 4-40°C; however, their concentration decreased rapidly at 60-80°C. The maximum stability of all PBPs was in the pH range 6.0-7.0. Decrease in PBPs content was found under high acidic (pH 2-4) and alkaline conditions (pH 8-12). The oxidizing agent (0.1-0.6%) showed the least effect on the stability of PBPs; however, 0.8-1.0% H2O2 caused significant loss of PBPs. Contrary to PE, PC and APC was more susceptible to an oxidizing agent. The chromophore associated with α- and β-subunit of PBPs and thus, their functionality (fluorescence) was severely affected under high temperature (60-80°C), and oxidizing agent, as well as low (2-4) and high (8-12) pH. Contrary to PC and APC, functionality of PE was surprisingly maintained even at pHs 6-12 and under oxidative stress.

  7. Physico-chemical factors affecting the in vitro stability of phycobiliproteins from Phormidium rubidum A09DM.

    PubMed

    Rastogi, Rajesh Prasad; Sonani, Ravi Raghav; Madamwar, Datta

    2015-08-01

    The functionality and stability of phycobiliproteins (PBPs) phycoerythrin (PE), phycocyanin (PC) and allophycocyanin (APC) were investigated under various temperatures, pHs and oxidative stressors. All PBPs were thermostable up to 4-40°C; however, their concentration decreased rapidly at 60-80°C. The maximum stability of all PBPs was in the pH range 6.0-7.0. Decrease in PBPs content was found under high acidic (pH 2-4) and alkaline conditions (pH 8-12). The oxidizing agent (0.1-0.6%) showed the least effect on the stability of PBPs; however, 0.8-1.0% H2O2 caused significant loss of PBPs. Contrary to PE, PC and APC was more susceptible to an oxidizing agent. The chromophore associated with α- and β-subunit of PBPs and thus, their functionality (fluorescence) was severely affected under high temperature (60-80°C), and oxidizing agent, as well as low (2-4) and high (8-12) pH. Contrary to PC and APC, functionality of PE was surprisingly maintained even at pHs 6-12 and under oxidative stress. PMID:25958145

  8. Biochar affects carbon composition and stability in soil: a combined spectroscopy-microscopy study

    NASA Astrophysics Data System (ADS)

    Hernandez-Soriano, Maria C.; Kerré, Bart; Kopittke, Peter M.; Horemans, Benjamin; Smolders, Erik

    2016-04-01

    The use of biochar can contribute to carbon (C) storage in soil. Upon addition of biochar, there is a spatial reorganization of C within soil particles, but the mechanisms remain unclear. Here, we used Fourier transformed infrared-microscopy and confocal laser scanning microscopy to examine this reorganization. A silty-loam soil was amended with three different organic residues and with the biochar produced from these residues and incubated for 237 d. Soil respiration was lower in biochar-amended soils than in residue-amended soils. Fluorescence analysis of the dissolved organic matter revealed that biochar application increased a humic-like fluorescent component, likely associated with biochar-C in solution. The combined spectroscopy-microscopy approach revealed the accumulation of aromatic-C in discrete spots in the solid-phase of microaggregates and its co-localization with clay minerals for soil amended with raw residue or biochar.The co-localization of aromatic-C:polysaccharides-C was consistently reduced upon biochar application. We conclude that reduced C metabolism is an important mechanism for C stabilization in biochar-amended soils.

  9. Biochar affects carbon composition and stability in soil: a combined spectroscopy-microscopy study

    PubMed Central

    Hernandez-Soriano, Maria C.; Kerré, Bart; Kopittke, Peter M.; Horemans, Benjamin; Smolders, Erik

    2016-01-01

    The use of biochar can contribute to carbon (C) storage in soil. Upon addition of biochar, there is a spatial reorganization of C within soil particles, but the mechanisms remain unclear. Here, we used Fourier transformed infrared-microscopy and confocal laser scanning microscopy to examine this reorganization. A silty-loam soil was amended with three different organic residues and with the biochar produced from these residues and incubated for 237 d. Soil respiration was lower in biochar-amended soils than in residue-amended soils. Fluorescence analysis of the dissolved organic matter revealed that biochar application increased a humic-like fluorescent component, likely associated with biochar-C in solution. The combined spectroscopy-microscopy approach revealed the accumulation of aromatic-C in discrete spots in the solid-phase of microaggregates and its co-localization with clay minerals for soil amended with raw residue or biochar.The co-localization of aromatic-C:polysaccharides-C was consistently reduced upon biochar application. We conclude that reduced C metabolism is an important mechanism for C stabilization in biochar-amended soils. PMID:27113269

  10. Enzyme bread improvers affect the stability of deoxynivalenol and deoxynivalenol-3-glucoside during breadmaking.

    PubMed

    Vidal, Arnau; Ambrosio, Asier; Sanchis, Vicente; Ramos, Antonio J; Marín, Sonia

    2016-10-01

    The stability of deoxynivalenol (DON) and deoxynivalenol-3-glucoside (DON-3-glucoside) during the breadmaking process was studied. Some enzymes used in the bakery industry were examined to evaluate their effects on DON and DON-3-glucoside. The level of DON in breads without added enzymes was reduced (17-21%). Similarly, the addition of cellulase, protease, lipase and glucose-oxidase did not modify this decreasing trend. The effect of xylanase and α-amylase on DON content depended on the fermentation temperature. These enzymes reduced the DON content by 10-14% at 45°C. In contrast, at 30°C, these enzymes increased the DON content by 13-23%. DON-3-glucoside levels decreased at the end of fermentation, with a final reduction of 19-48% when no enzymes were used. However, the presence of xylanase, α-amylase, cellulase and lipase resulted in bread with greater quantities of DON-3-glucoside when fermentation occurred at 30°C. The results showed that wheat bran and flour may contain hidden DON that may be enzymatically released during the breadmaking process when the fermentation temperature is close to 30°C. PMID:27132852

  11. Influenza A viruses suppress cyclooxygenase-2 expression by affecting its mRNA stability

    PubMed Central

    Dudek, Sabine Eva; Nitzsche, Katja; Ludwig, Stephan; Ehrhardt, Christina

    2016-01-01

    Infection with influenza A viruses (IAV) provokes activation of cellular defence mechanisms contributing to the innate immune and inflammatory response. In this process the cyclooxygenase-2 (COX-2) plays an important role in the induction of prostaglandin-dependent inflammation. While it has been reported that COX-2 is induced upon IAV infection, in the present study we observed a down-regulation at later stages of infection suggesting a tight regulation of COX-2 by IAV. Our data indicate the pattern-recognition receptor RIG-I as mediator of the initial IAV-induced COX-2 synthesis. Nonetheless, during on-going IAV replication substantial suppression of COX-2 mRNA and protein synthesis could be detected, accompanied by a decrease in mRNA half-life. Interestingly, COX-2 mRNA stability was not only imbalanced by IAV replication but also by stimulation of cells with viral RNA. Our results reveal tristetraprolin (TTP), which is known to bind COX-2 mRNA and promote its rapid degradation, as regulator of COX-2 expression in IAV infection. During IAV replication and viral RNA accumulation TTP mRNA synthesis was induced, resulting in reduced COX-2 levels. Accordingly, the down-regulation of TTP resulted in increased COX-2 protein expression after IAV infection. These findings indicate a novel IAV-regulated cellular mechanism, contributing to the repression of host defence and therefore facilitating viral replication. PMID:27265729

  12. Enzyme bread improvers affect the stability of deoxynivalenol and deoxynivalenol-3-glucoside during breadmaking.

    PubMed

    Vidal, Arnau; Ambrosio, Asier; Sanchis, Vicente; Ramos, Antonio J; Marín, Sonia

    2016-10-01

    The stability of deoxynivalenol (DON) and deoxynivalenol-3-glucoside (DON-3-glucoside) during the breadmaking process was studied. Some enzymes used in the bakery industry were examined to evaluate their effects on DON and DON-3-glucoside. The level of DON in breads without added enzymes was reduced (17-21%). Similarly, the addition of cellulase, protease, lipase and glucose-oxidase did not modify this decreasing trend. The effect of xylanase and α-amylase on DON content depended on the fermentation temperature. These enzymes reduced the DON content by 10-14% at 45°C. In contrast, at 30°C, these enzymes increased the DON content by 13-23%. DON-3-glucoside levels decreased at the end of fermentation, with a final reduction of 19-48% when no enzymes were used. However, the presence of xylanase, α-amylase, cellulase and lipase resulted in bread with greater quantities of DON-3-glucoside when fermentation occurred at 30°C. The results showed that wheat bran and flour may contain hidden DON that may be enzymatically released during the breadmaking process when the fermentation temperature is close to 30°C.

  13. Polymer incorporation method affects the physical stability of amorphous indomethacin in aqueous suspension.

    PubMed

    Surwase, S A; Itkonen, L; Aaltonen, J; Saville, D; Rades, T; Peltonen, L; Strachan, C J

    2015-10-01

    This study reports the potential of different polymers and polymer incorporation methods to inhibit crystallisation and maintain supersaturation of amorphous indomethacin (IND) in aqueous suspensions during storage. Three different polymers (poly(vinyl pyrrolidone) (PVP), hydroxypropyl methylcellulose (HPMC) and Soluplus® (SP)) were used and included in the suspensions either as a solid dispersion (SD) with IND or dissolved in the suspension medium prior to the addition of amorphous IND. The total concentrations of both IND and the polymer in the suspensions were kept the same for both methods of polymer incorporation. All the polymers (with both incorporation methods) inhibited crystallisation of the amorphous IND. The SDs were better than the predissolved polymer solutions at inhibiting crystallisation. The SDs were also better at maintaining drug supersaturation. SP showed a higher IND crystallisation inhibition and supersaturation potential than the other polymers. However, this depended on the method of addition. IND in SD with SP did not crystallise, nor did the SD generate any drug supersaturation, whereas IND in the corresponding predissolved SP solution crystallised (into the recently characterised η polymorphic form of the drug) but also led to a more than 20-fold higher IND solution concentration than that observed for crystalline IND. The ranking of the polymers with respect to crystallisation inhibition potential in SDs was SP≫PVP>HPMC. Overall, this study showed that both polymer type and polymer incorporation method strongly impact amorphous form stability and drug supersaturation in aqueous suspensions. PMID:26092472

  14. Negative energy balance affects imprint stability in oocytes recovered from postpartum dairy cows.

    PubMed

    O'Doherty, Alan M; O'Gorman, Aoife; al Naib, Abdullah; Brennan, Lorraine; Daly, Edward; Duffy, Pat; Fair, Trudee

    2014-09-01

    Ovarian follicle development in post-partum, high-producing dairy cows, occurs in a compromised endogenous metabolic environment (referred to as negative energy balance, NEB). Key events that occur during oocyte/follicle growth, such as the vital process of genomic imprinting, may be detrimentally affected by this altered ovarian environment. Imprinting is crucial for placental function and regulation of fetal growth, therefore failure to establish and maintain imprints during oocyte growth may contribute to early embryonic loss. Using ovum pick-up (OPU), oocytes and follicular fluid samples were recovered from cows between days 20 and 115 post-calving, encompassing the NEB period. In a complimentary study, cumulus oocyte complexes were in vitro matured under high non-esterified fatty acid (NEFA) concentrations and in the presence of the methyl-donor S-adenosylmethionine (SAM). Pyrosequencing revealed the loss of methylation at several imprinted loci in the OPU derived oocytes. The loss of DNA methylation was observed at the PLAGL1 locus in oocytes, following in vitro maturation (IVM) in the presence of elevated NEFAs and SAM. Finally, metabolomic analysis of postpartum follicular fluid samples revealed significant differences in several branched chain amino acids, with fatty acid profiles bearing similarities to those characteristic of lactating dairy cows. These results provide the first evidence that (1) the postpartum ovarian environment may affect maternal imprint acquisition and (2) elevated NEFAs during IVM can lead to the loss of imprinted gene methylation in bovine oocytes.

  15. DHHC2 Affects Palmitoylation, Stability, and Functions of Tetraspanins CD9 and CD151

    PubMed Central

    Sharma, Chandan; Yang, Xiuwei H.

    2008-01-01

    Although palmitoylation markedly affects tetraspanin protein biochemistry and functions, relevant palmitoylating enzymes were not known. There are 23 mammalian “DHHC” (Asp-His-His-Cys) proteins, which presumably palmitoylate different sets of protein substrates. Among DHHC proteins tested, DHHC2 best stimulated palmitoylation of tetraspanins CD9 and CD151, whereas inactive DHHC2 (containing DH→AA or C→S mutations within the DHHC motif) failed to promote palmitoylation. Furthermore, DHHC2 associated with CD9 and CD151, but not other cell surface proteins, and DHHC2 knockdown diminished CD9 and CD151 palmitoylation. Knockdown of six other Golgi-resident DHHC proteins (DHHC3, -4, -8, -17, -18, and -21) had no effect on CD9 or CD151. DHHC2 selectively affected tetraspanin palmitoylation, but not the palmitoylations of integrin β4 subunit and bulk proteins visible in [3H]palmitate-labeled whole cell lysates. DHHC2-dependent palmitoylation also had multiple functional effects. First, it promoted physical associations between CD9 and CD151, and between α3 integrin and other proteins. Second, it protected CD151 and CD9 from lysosomal degradation. Third, the presence of DHHC2, but not other DHHC proteins, shifted cells away from a dispersed state and toward increased cell–cell contacts. PMID:18508921

  16. NASA Now: SLOPE

    NASA Video Gallery

    Welcome to the SLOPE facility at NASA’s Glenn Research Center in Cleveland, Ohio. In this building, NASA engineers experiment with different wheel designs for lunar rovers. They use a simulated c...

  17. Dispersal, environmental forcing, and parasites combine to affect metapopulation synehrony and stability.

    PubMed

    Duncan, Alison B; Gonzalez, Andrew; Kaltz, Oliver

    2015-01-01

    Dispersal can have positive and negative effects on metapopulation stability and persistence. One prediction is that high levels of dispersal synchronize density fluctuations between subpopulations. However, little is still known about how biotic and abiotic factors combine to modify the effects of dispersal rate on synchrony and metapopulation dynamics. In a fully factorial experimental design, we investigated the combined effects of (1) dispersal, (2) parasite infection, and (3) synchrony in temperature fluctuations on subpopulation synchrony, metapopulation instability, and minimum population size, in laboratory metapopulations of the ciliate Paramecium caudatum. Metapopulations, comprising two subpopulations linked by high or low levels of dispersal, were exposed to daily fluctuations in temperature between permissive (23 degrees C) and restrictive (5 degrees C) conditions. Infected metapopulations started the experiment with one subpopulation uninfected, while the other was infected at a prevalence of 5% with the bacterial parasite Holospora undulata. The temperature synchrony treatment involved subpopulations within a metapopulation following the same (synchronous temperatures) or different (asynchronous temperatures) temporal sequences. Population size was tracked over the 56-day experiment. We found that subpopulation density fluctuations were synchronized by high dispersal in infected metapopulations, and by synchronous temperatures in all metapopulations. Subpopulation synchrony was positively correlated with metapopulation instability and minimum metapopulation size, highlighting the multiple consequences of our treatments for metapopulation dynamics. Our results illustrate how parasites can generate dispersal-driven synchrony in non-cycling, declining populations. This "biotic forcing" via a natural enemy added to the temperature-dependent environmental forcing. We therefore conclude that predictions of metapopulation persistence in natural populations

  18. Dispersal, environmental forcing, and parasites combine to affect metapopulation synehrony and stability.

    PubMed

    Duncan, Alison B; Gonzalez, Andrew; Kaltz, Oliver

    2015-01-01

    Dispersal can have positive and negative effects on metapopulation stability and persistence. One prediction is that high levels of dispersal synchronize density fluctuations between subpopulations. However, little is still known about how biotic and abiotic factors combine to modify the effects of dispersal rate on synchrony and metapopulation dynamics. In a fully factorial experimental design, we investigated the combined effects of (1) dispersal, (2) parasite infection, and (3) synchrony in temperature fluctuations on subpopulation synchrony, metapopulation instability, and minimum population size, in laboratory metapopulations of the ciliate Paramecium caudatum. Metapopulations, comprising two subpopulations linked by high or low levels of dispersal, were exposed to daily fluctuations in temperature between permissive (23 degrees C) and restrictive (5 degrees C) conditions. Infected metapopulations started the experiment with one subpopulation uninfected, while the other was infected at a prevalence of 5% with the bacterial parasite Holospora undulata. The temperature synchrony treatment involved subpopulations within a metapopulation following the same (synchronous temperatures) or different (asynchronous temperatures) temporal sequences. Population size was tracked over the 56-day experiment. We found that subpopulation density fluctuations were synchronized by high dispersal in infected metapopulations, and by synchronous temperatures in all metapopulations. Subpopulation synchrony was positively correlated with metapopulation instability and minimum metapopulation size, highlighting the multiple consequences of our treatments for metapopulation dynamics. Our results illustrate how parasites can generate dispersal-driven synchrony in non-cycling, declining populations. This "biotic forcing" via a natural enemy added to the temperature-dependent environmental forcing. We therefore conclude that predictions of metapopulation persistence in natural populations

  19. Zinc affects the proteolytic stability of Apolipoprotein E in an isoform-dependent way.

    PubMed

    Xu, He; Gupta, Veer B; Martins, Ian J; Martins, Ralph N; Fowler, Christopher J; Bush, Ashley I; Finkelstein, David I; Adlard, Paul A

    2015-09-01

    The pathological role of zinc in Alzheimer's disease (AD) is not yet fully elucidated, but there is strong evidence that zinc homeostasis is impaired in the AD brain and that this contributes to disease pathogenesis. In this study we examined the effects of zinc on the proteolysis of synthetic Apolipoprotein E (ApoE), a protein whose allelic variants differentially contribute to the onset/progression of disease. We have demonstrated that zinc promotes the proteolysis (using plasma kallikrein, thrombin and chymotrypsin) of synthetic ApoE in an isoform-specific way (E4>E2 and E3), resulting in more ApoE fragments, particularly for ApoE4. In the absence of exogenous proteases there was no effect of metal modulation on either lipidated or non-lipidated ApoE isoforms. Thus, increased zinc in the complex milieu of the ageing and AD brain could reduce the level of normal full-length ApoE and increase other forms that are involved in neurodegeneration. We further examined human plasma samples from people with different ApoE genotypes. Consistent with previous studies, plasma ApoE levels varied according to different genotypes, with ApoE2 carriers showing the highest total ApoE levels and ApoE4 carriers the lowest. The levels of plasma ApoE were not affected by either the addition of exogenous metals (copper, zinc or iron) or by chelation. Taken together, our study reveals that zinc may contribute to the pathogenesis of AD by affecting the proteolysis of ApoE, which to some extent explains why APOE4 carriers are more susceptible to AD.

  20. Desirable plant root traits for protecting unstable slopes against landslides

    NASA Astrophysics Data System (ADS)

    Stokes, A.; Atger, C.; Bengough, G.; Fourcaud, T.; Sidle, R. C.

    2009-04-01

    determine slope stability. Rooting depth is species dependent when soil conditions are not limiting and the number of horizontal lateral roots borne on the vertical roots usually changes with depth. Therefore, the number and orientation of roots that the shear surface intersects will change significantly with rooting depth for the same plant, even for magnitudes of only several cm. Similarly, depending on the geometry of the root system, the angle at which a root crosses the shear surface can also have an influence on its resistance to pullout and breakage. The angle at which a root emerges from the parent root is dependent on root type, depth and species (when soil conditions are not limiting). Due to the physiology of roots, a root branch can be initiated at any point along a parent root, but not necessarily emerge fully from the parent root. These traits, along with others including size, relative growth rate, regeneration strategies, wood structure and strength will be discussed with regard to their influence on slope stability. How each of these traits is influenced by soil conditions and plantation techniques is also of extreme importance to the landslide engineer. The presence of obstacles in the soil, as well as compaction, affects root length and branching pattern. Roots of many species of woody plants on shallow soils also tend to grow along fractures deep into the underlying bedrock which allows roots to locate supplies of nutrient and water rich pockets. Rooting depths of herbaceous species in water-limited environments are highly correlated with infiltration depth, but waterlogged soils can asphyxiate tree roots, resulting in shallow root systems. The need to understand and integrate each of these traits for a species is not easy. Therefore, we suggest a hierarchy whereby traits are considered in order of importance, along with how external factors influence their expression over time.

  1. Chemolithoautotrophy supports macroinvertebrate food webs and affects diversity and stability in groundwater communities.

    PubMed

    Hutchins, Benjamin T; Engel, Annette Summers; Nowlin, Weston H; Schwartz, Benjamin F

    2016-06-01

    compared to the other two sites. Our results suggest that diverse OM sources and in situ, chemolithoautotrophic OM production can support complex groundwater food webs and increase species richness. Chemolithoautotrophy has been fundamental for the long-term maintenance of species diversity, trophic complexity, and community stability in this subterranean ecosystem, especially during periods of decreased photosynthetic production and groundwater recharge that have occurred over geologic time scales.

  2. Engineering of formate dehydrogenase: synergistic effect of mutations affecting cofactor specificity and chemical stability.

    PubMed

    Hoelsch, Kathrin; Sührer, Ilka; Heusel, Moritz; Weuster-Botz, Dirk

    2013-03-01

    Formate dehydrogenases (FDHs) are frequently used for the regeneration of cofactors in biotransformations employing NAD(P)H-dependent oxidoreductases. Major drawbacks of most native FDHs are their strong preference for NAD(+) and their low operational stability in the presence of reactive organic compounds such as α-haloketones. In this study, the FDH from Mycobacterium vaccae N10 (MycFDH) was engineered in order to obtain an enzyme that is not only capable of regenerating NADPH but also stable toward the α-haloketone ethyl 4-chloroacetoacetate (ECAA). To change the cofactor specificity, amino acids in the conserved NAD(+) binding motif were mutated. Among these mutants, MycFDH A198G/D221Q had the highest catalytic efficiency (k cat/K m) with NADP(+). The additional replacement of two cysteines (C145S/C255V) not only conferred a high resistance to ECAA but also enhanced the catalytic efficiency 6-fold. The resulting quadruple mutant MycFDH C145S/A198G/D221Q/C255V had a specific activity of 4.00 ± 0.13 U mg(-1) and a K m, NADP(+) of 0.147 ± 0.020 mM at 30 °C, pH 7. The A198G replacement had a major impact on the kinetic constants of the enzyme. The corresponding triple mutant, MycFDH C145S/D221Q/C255V, showed the highest specific activity reported to date for a NADP(+)-accepting FDH (v max, 10.25 ± 1.63 U mg(-1)). However, the half-saturation constant for NADP(+) (K m, NADP(+) , 0.92 ± 0.10 mM) was about one order of magnitude higher than the one of the quadruple mutant. Depending on the reaction setup, both novel MycFDH variants could be useful for the production of the chiral synthon ethyl (S)-4-chloro-3-hydroxybutyrate [(S)-ECHB] by asymmetric reduction of ECAA with NADPH-dependent ketoreductases.

  3. Feeding dried distillers grains with solubles affects composition but not oxidative stability of milk.

    PubMed

    Testroet, E D; Li, G; Beitz, D C; Clark, S

    2015-05-01

    detected off-flavor scores were less than 1.5cm on a 15-cm line scale, indicating that the differences are not practically significant. Peroxide values support the findings by the sensory panel that both feeding DDGS at 10 and 25% and vitamin E and C fortification did not practically change the oxidative stability of milk. These results, taken together, indicate that feeding DDGS under our experimental conditions modified milk composition, but did not contribute to the development of off-flavors in milk.

  4. Chemolithoautotrophy supports macroinvertebrate food webs and affects diversity and stability in groundwater communities.

    PubMed

    Hutchins, Benjamin T; Engel, Annette Summers; Nowlin, Weston H; Schwartz, Benjamin F

    2016-06-01

    compared to the other two sites. Our results suggest that diverse OM sources and in situ, chemolithoautotrophic OM production can support complex groundwater food webs and increase species richness. Chemolithoautotrophy has been fundamental for the long-term maintenance of species diversity, trophic complexity, and community stability in this subterranean ecosystem, especially during periods of decreased photosynthetic production and groundwater recharge that have occurred over geologic time scales. PMID:27459783

  5. Dynamics of aggregate stability and soil organic C distribution as affected by climatic aggressiveness: a mesocosm approach

    NASA Astrophysics Data System (ADS)

    Pellegrini, Sergio; Elio Agnelli, Alessandro; Costanza Andrenelli, Maria; Barbetti, Roberto; Castelli, Fabio; Costantini, Edoardo A. C.; Lagomarsino, Alessandra; Pasqui, Massimiliano; Tomozeiu, Rodica; Razzaghi, Somayyeh; Vignozzi, Nadia

    2014-05-01

    In the framework of a research project aimed at evaluating the adaptation scenarios of the Italian agriculture to the current climate change, a mesocosm experiment under controlled conditions was set up for studying the dynamics of soil aggregate stability and organic C in different size fractions. Three alluvial loamy soils (BOV - Typic Haplustalfs coarse-loamy; CAS - Typic Haplustalfs fine-loamy; MED - Typic Hapludalfs fine-loamy) along a climatic gradient (from dryer to moister pedoclimatic conditions) in the river Po valley (northern Italy), under crop rotation for animal husbandry from more than 40 years, were selected. The Ap horizons (0-30cm) were taken and placed in 9 climatic chambers under controlled temperature and rainfall. Each soil was subjected to three different climate scenarios in terms of erosivity index obtained by combining Modified Fournier and Bagnouls-Gaussen indexes: i) typical (TYP), the median year of each site related to the 1961-1990 reference period; ii) maximum aggressive year (MAX) observed in the same period, and iii) the simulated climate (SIM), obtained by projections of climate change precipitation and temperature for the period 2021-2050 as provided by the IPCC-A1B emission scenario. In the climatic chambers the year climate was reduced to six months. The soils were analyzed for particle size distribution, aggregate stability by wet and dry sieving, and organic C content at the beginning and at the end of the trial. The soils showed different behaviour in terms of aggregate stability and dynamics of organic C in the diverse size fractions. The soils significantly differed in terms of initial mean weight diameter (MWD) (CAS>MED>BOV). A general reduction of MWD in all sites was observed at the end of the experiment, with the increase of the smallest aggregate fractions (0.250-0.05 mm). In particular, BOV showed the maximum decrease of the aggregate stability and MED the lowest. C distribution in aggregate fractions significantly

  6. How can climate, soil, and monitoring schedule affect temporal stability of soil water contents?

    NASA Astrophysics Data System (ADS)

    Martinez, G.; Pachepsky, Y. A.; Vereecken, H.

    2012-12-01

    Temporal stability (TS) of soil water content (SWC) reflects the spatio-temporal organization of soil water. The TS SWC was originally recognized as a phenomenon that can be used to provide temporal average SWC of an area of interest from observations at a representative location(s). Currently application fields of TS SWC are numerous, e.g. up- and downscaling SWC, SWC monitoring and data assimilation, precision farming, and sensor network design and optimization. However, the factors that control the SWC organization and TS SWC are not completely understood. Among these factors are soil hydraulic properties that are considered as local controls, weather patterns, and the monitoring schedule. The objective of this work was to use modeling to assess the effect of these factors on the spatio-temporal patterns of SWC. We ran the HYDRUS6 code to simulate four years of SWC in 4-m long soil columns. The columns were assumed homogeneous, soil hydraulic conductivity was drawn from lognormal distributions. Sets of columns were generated separately for sandy loam and loamy soils, soil water retention was set to typical values for those soil textures. Simulations were carried out for four climates present at the continental US. The climate-specific weather patterns were obtained with the CLIGEN code using climate-specific weather observation locations that were humid subtropical from College Station (TX), humid continental from Indianapolis (IN), cold semiarid from Moscow (ID) and hot semiarid from Tucson (AZ). We evaluated the TS and representative location (RL) selections by comparing i) different climates; ii) for the same climates different years; iii) different time intervals between samplings; iv) one year duration surveys vs. one month summer campaigns; and v) different seasons of the same year. Spatial variability of the mean relative differences (MRD) differed among climates for both soils, as the probability of observing the same variance in the MRD was lower than

  7. The susceptibility of rock slopes to earthquake-induced failure

    USGS Publications Warehouse

    Keefer, D.K.

    1993-01-01

    Faulure of rock slopes is a major cause of damage and casualties during moderate and strong earthquakes. This article presents a method for assessing the seismic stability of rock slopes, which can be applied on a regional scale, using data from existing maps, reports, aerial photographs, and reconnaissance-level field observations. The method is based on observed associations between landslide concentrations and slope characteristics in 24 earthquakes that occurred in various parts of the world. -from Author

  8. Deep soil compaction as a method of ground improvement and to stabilization of wastes and slopes with danger of liquefaction, determining the modulus of deformation and shear strength parameters of loose rock.

    PubMed

    Lersow, M

    2001-01-01

    For the stabilization of dumps with the construction of hidden dams and for building ground improvement, for instance for traffic lines over dumps, nearly all applied compaction methods have the aim to reduce the pore volume in the loose rock. With these methods, a homogenization of the compacted loose rock will be obtained too. The compaction methods of weight compaction by falling weight, compaction by vibration and compaction by blasting have been introduced, and their applications and efficiencies have been shown. For the estimation of the effective depth of the compaction and for a safe planning of the bearing layer, respectively, the necessary material parameters have to be determined for each deep compaction method. Proposals for the determination of these parameters have been made within this paper. In connection with the stabilization of flow-slide-prone dump slopes, as well as for the improvement of dump areas for the use as building ground, it is necessary to assess the deformation behavior and the bearing capacity. To assess the resulting building ground improvement, deformation indexes (assessment of the flow-prone layer) and strength indexes (assessment of the bearing capacity) have to be determined with soil mechanical tests. Förster and Lersow, [Patentschrift DE 197 17 988. Verfahren, auf der Grundlage last- und/oder weggesteuerter Plattendruckversuche auf der Bohrlochsohle, zur Ermittlung des Spannungs-Verformungs-Verhaltens und/oder von Deformationsmoduln und/oder von Festigkeitseigenschaften in verschiedenen Tiefen insbesondere von Lockergesteinen und von Deponiekörpern in situ; Förster W, Lersow M. Plattendruckversuch auf der Bohrlochsohle, Ermittlung des Spannungs-Verformungs-Verhaltens von Lockergestein und Deponiematerial Braunkohle--Surface Mining, 1998;50(4): 369-77; Lersow M. Verfahren zur Ermittlung von Scherfestigkeitsparametern von Lockergestein und Deponiematerial aus Plattendruckversuchen auf der Bohrlochsohle. Braunkohle

  9. How Does the Gibbs Inequality Condition Affect the Stability and Detachment of Floating Spheres from the Free Surface of Water?

    PubMed

    Feng, Dong-xia; Nguyen, Anh V

    2016-03-01

    Floating objects on the air-water interfaces are central to a number of everyday activities, from walking on water by insects to flotation separation of valuable minerals using air bubbles. The available theories show that a fine sphere can float if the force of surface tension and buoyancies can support the sphere at the interface with an apical angle subtended by the circle of contact being larger than the contact angle. Here we show that the pinning of the contact line at the sharp edge, known as the Gibbs inequality condition, also plays a significant role in controlling the stability and detachment of floating spheres. Specifically, we truncated the spheres with different angles and used a force sensor device to measure the force of pushing the truncated spheres from the interface into water. We also developed a theoretical modeling to calculate the pushing force that in combination with experimental results shows different effects of the Gibbs inequality condition on the stability and detachment of the spheres from the water surface. For small angles of truncation, the Gibbs inequality condition does not affect the sphere detachment, and hence the classical theories on the floatability of spheres are valid. For large truncated angles, the Gibbs inequality condition determines the tenacity of the particle-meniscus contact and the stability and detachment of floating spheres. In this case, the classical theories on the floatability of spheres are no longer valid. A critical truncated angle for the transition from the classical to the Gibbs inequality regimes of detachment was also established. The outcomes of this research advance our understanding of the behavior of floating objects, in particular, the flotation separation of valuable minerals, which often contain various sharp edges of their crystal faces. PMID:26837262

  10. How Does the Gibbs Inequality Condition Affect the Stability and Detachment of Floating Spheres from the Free Surface of Water?

    PubMed

    Feng, Dong-xia; Nguyen, Anh V

    2016-03-01

    Floating objects on the air-water interfaces are central to a number of everyday activities, from walking on water by insects to flotation separation of valuable minerals using air bubbles. The available theories show that a fine sphere can float if the force of surface tension and buoyancies can support the sphere at the interface with an apical angle subtended by the circle of contact being larger than the contact angle. Here we show that the pinning of the contact line at the sharp edge, known as the Gibbs inequality condition, also plays a significant role in controlling the stability and detachment of floating spheres. Specifically, we truncated the spheres with different angles and used a force sensor device to measure the force of pushing the truncated spheres from the interface into water. We also developed a theoretical modeling to calculate the pushing force that in combination with experimental results shows different effects of the Gibbs inequality condition on the stability and detachment of the spheres from the water surface. For small angles of truncation, the Gibbs inequality condition does not affect the sphere detachment, and hence the classical theories on the floatability of spheres are valid. For large truncated angles, the Gibbs inequality condition determines the tenacity of the particle-meniscus contact and the stability and detachment of floating spheres. In this case, the classical theories on the floatability of spheres are no longer valid. A critical truncated angle for the transition from the classical to the Gibbs inequality regimes of detachment was also established. The outcomes of this research advance our understanding of the behavior of floating objects, in particular, the flotation separation of valuable minerals, which often contain various sharp edges of their crystal faces.

  11. Seismically induced rock slope failures resulting from topographic amplification of strong ground motions: The case of Pacoima Canyon, California

    USGS Publications Warehouse

    Sepulveda, S.A.; Murphy, W.; Jibson, R.W.; Petley, D.N.

    2005-01-01

    The 1994 Northridge earthquake (Mw = 6.7) triggered extensive rock slope failures in Pacoima Canyon, immediately north of Los Angeles, California. Pacoima Canyon is a narrow and steep canyon incised in gneissic and granitic rocks. Peak accelerations of nearly 1.6 g were recorded at a ridge that forms the left abutment of Pacoima Dam; peak accelerations at the bottom of the canyon were less than 0.5 g, suggesting the occurrence of topographic amplification. Topographic effects have been previously suggested to explain similarly high ground motions at the site during the 1971 (Mw = 6.7) San Fernando earthquake. Furthermore, high landslide concentrations observed in the area have been attributed to unusually strong ground motions rather than higher susceptibility to sliding compared with nearby zones. We conducted field investigations and slope stability back-analyses to confirm the impact of topographic amplification on the triggering of landslides during the 1994 earthquake. Our results suggest that the observed extensive rock sliding and falling would have not been possible under unamplified seismic conditions, which would have generated a significantly lower number of areas affected by landslides. In contrast, modelling slope stability using amplified ground shaking predicts slope failure distributions matching what occurred in 1994. This observation confirms a significant role for topographic amplification on the triggering of landslides at the site, and emphasises the need to select carefully the inputs for seismic slope stability analyses. ?? 2005 Elsevier B.V. All rights reserved.

  12. Slope evolution at the Calvert Cliffs, Maryland -- measuring the change from eroding bluffs to stable slopes

    USGS Publications Warehouse

    Herzog, Martha; Larsen, Curtis E.; McRae, Michele

    2002-01-01

    Despite a long history of geomorphic studies, it is difficult to ascertain the time required for slopes to change from near vertical exposures to relatively stable slopes due to inadequate age control. Actively eroding coastal bluffs along the western shore of the Chesapeake Bay provide a key for understanding the centennial-scale development of stable slopes from eroding bluff faces. The Calvert Cliffs are composed of sandy silts, silty sands, and clayey silts of Miocene-age. Active wave erosion at the bluff toes encourages rapid sloughing from bluff faces and maintains slope angles of 70-80 degrees and relatively constant bluff-retreat rates. Naturally stabilized slopes are preserved as a fossil bluff line inland from a prograding cuspate foreland at Cove Point. The foreland is migrating southward at a rate of ca. 1.5 m/yr. As it moves south, it progressively protects bluffs from wave action as new beaches are deposited at their toes. Wave erosion is reinitiated at the northern end of the complex as the landform passes. An incremental record of slope change is preserved along the fossil bluff line. 14C dating of swales between beach ridges shows the complex to span 1700 years of progressive migration history. We hypothesized that slopes would change from steep, eroding faces to low-angle slopes covered with vegetation and sought to document the rate of change. Our team measured slope angles at intervals along the fossil bluff line and dated profiles by interpolating 14C ages of adjacent beach ridges. There was no progressive decrease in slope with age. All slopes along the fossil bluff line were 30-40 degrees with a mean of 35 degrees. Constancy in slope angle suggests that steep, actively eroding bluffs were quickly changed to stable slopes by landslides and slumping once they were protected. Given the accuracy of our age control, we conclude that the time required to attain a stable slope under natural processes is less than one century. This indicates that

  13. Rapid Evaluation of Water-in-Oil (w/o) Emulsion Stability by Turbidity Ratio Measurements.

    PubMed

    Song; Jho; Kim; Kim

    2000-10-01

    In this Note, we investigated the turbidity ratio method for the evaluation of water-in-oil emulsion stability. The slope of turbidity ratio of water-in-oil emulsions with time was taken as an index of stability; the higher the slope, the less stable the system. Various factors affecting the stability of emulsion such as HLB of emulsifier, amount of emulsifiers, and water were tested using this technique. The results of the turbidity ratio technique for the evaluation of emulsion stability were well consistent with those obtained by the measurement of phase separation when incubated for 30 days at room temperature. Copyright 2000 Academic Press.

  14. Insight into Factors Affecting the Presence, Degree, and Temporal Stability of Fluorescence Intensification on ZnO Nanorod Ends

    NASA Astrophysics Data System (ADS)

    Singh, Manpreet; Jiang, Ruibin; Choi, Daniel S.; Wang, Jianfang; Hahm, Jong-In; GU Team; CUHK Team

    We present a combined experimental and simulation study identifying the key physical and optical parameters affecting the presence and degree of fluorescence intensification measured on zinc oxide nanorod (ZnO NR) ends. We aim to provide an insight into the unique optical phenomenon of fluorescence intensification on NR ends (FINE) through experimental and simulation approaches and to elucidate the key factors affecting the occurrence, degree, and temporal stability of FINE. Specifically, we examined the effect of the length, width, and growth orientation of single ZnO NRs on the NR-enhanced biomolecular emission profile after decorating the NR surfaces with different amounts and types of fluorophore-coupled protein molecules. We quantitatively and qualitatively profiled the biomolecular fluorescence signal from individual ZnO NRs as a function of both position along the NR long axis and time. Additionally, we employed finite-difference time-domain methods to examine both near- and far-field emission characteristics when considering various scenarios of fluorophore locations, polarizations, spectroscopic characteristics, and NR dimensions. Our efforts may provide a deeper insight into the unique optical phenomenon of FINE and further be beneficial to highly miniaturized biodetection favoring the use of single ZnO NRs.

  15. Design of Rock Slope Reinforcement: An Himalayan Case Study

    NASA Astrophysics Data System (ADS)

    Tiwari, Gaurav; Latha, Gali Madhavi

    2016-06-01

    The stability analysis of the two abutment slopes of a railway bridge proposed at about 359 m above the ground level, crossing a river and connecting two hill faces in the Himalayas, India, is presented. The bridge is located in a zone of high seismic activity. The rock slopes are composed of a heavily jointed rock mass and the spacing, dip and dip direction of joint sets are varying at different locations. Geological mapping was carried out to characterize all discontinuities present along the slopes. Laboratory and field investigations were conducted to assess the geotechnical properties of the intact rock, rock mass and joint infill. Stability analyses of these rock slopes were carried out using numerical programmes. Loads from the foundations resting on the slopes and seismic accelerations estimated from site-specific ground response analysis were considered. The proposed slope profile with several berms between successive foundations was simulated in the numerical model. An equivalent continuum approach with Hoek and Brown failure criterion was initially used in a finite element model to assess the global stability of the slope abutments. In the second stage, finite element analysis of rock slopes with all joint sets with their orientations, spacing and properties explicitly incorporated into the numerical model was taken up using continuum with joints approach. It was observed that the continuum with joints approach was able to capture the local failures in some of the slope sections, which were verified using wedge failure analysis and stereographic projections. Based on the slope deformations and failure patterns observed from the numerical analyses, rock anchors were designed to achieve the target factors of safety against failure while keeping the deformations within the permissible limits. Detailed design of rock anchors and comparison of the stability of slopes with and without reinforcement are presented.

  16. Database on unstable rock slopes in Norway

    NASA Astrophysics Data System (ADS)

    Oppikofer, Thierry; Nordahl, Bo; Bunkholt, Halvor; Nicolaisen, Magnus; Hermanns, Reginald L.; Böhme, Martina; Yugsi Molina, Freddy X.

    2014-05-01

    Several large rockslides have occurred in historic times in Norway causing many casualties. Most of these casualties are due to displacement waves triggered by a rock avalanche and affecting coast lines of entire lakes and fjords. The Geological Survey of Norway performs systematic mapping of unstable rock slopes in Norway and has detected up to now more than 230 unstable slopes with significant postglacial deformation. This systematic mapping aims to detect future rock avalanches before they occur. The registered unstable rock slopes are stored in a database on unstable rock slopes developed and maintained by the Geological Survey of Norway. The main aims of this database are (1) to serve as a national archive for unstable rock slopes in Norway; (2) to serve for data collection and storage during field mapping; (3) to provide decision-makers with hazard zones and other necessary information on unstable rock slopes for land-use planning and mitigation; and (4) to inform the public through an online map service. The database is organized hierarchically with a main point for each unstable rock slope to which several feature classes and tables are linked. This main point feature class includes several general attributes of the unstable rock slopes, such as site name, general and geological descriptions, executed works, recommendations, technical parameters (volume, lithology, mechanism and others), displacement rates, possible consequences, hazard and risk classification and so on. Feature classes and tables linked to the main feature class include the run-out area, the area effected by secondary effects, the hazard and risk classification, subareas and scenarios of an unstable rock slope, field observation points, displacement measurement stations, URL links for further documentation and references. The database on unstable rock slopes in Norway will be publicly consultable through the online map service on www.skrednett.no in 2014. Only publicly relevant parts of

  17. Damage-based long-term modelling of a large alpine rock slope

    NASA Astrophysics Data System (ADS)

    Riva, Federico; Agliardi, Federico; Amitrano, David; Crosta, Giovanni B.

    2016-04-01

    The morphology and stability of large alpine rock slopes result from the long-term interplay of different factors, following a complex history spanning several glacial cycles over thousands of years in changing morpho-climatic settings. Large rock slopes often experience slow long-term, creep-like movements interpreted as the macroscopic evidence of progressive failure in subcritically stressed rock masses. Slope damage and rock mass weakening associated to deglaciation are considered major triggers of these processes in alpine environments. Depending on rock mass properties, slope topography and removed ice thickness, valley flanks can progressively evolve over time into rockslides showing seasonal displacement trends, interpreted as evidence of hydro-mechanically coupled responses to hydrologic perturbations. The processes linking the long-term evolution of deglaciated rock slopes and their changing sensitivity to hydrologic triggers until rockslide failure, with significant implications in risk management and Early Warning, are not fully understood. We suggest that modelling long-term rock mass damage under changing conditions may provide such a link. We simulated the evolution of the Spriana rock slope (Italian Central Alps). This is affected by a 50 Mm3 rockslide, significantly active since the late 19th century and characterized by massive geological and geotechnical investigations and monitoring during the last decades. Using an improved version of the 2D Finite-Element, damage-based brittle creep model proposed by Amitrano and Helmstetter (2006) and Lacroix and Amitrano (2013), we combined damage and time-to-failure laws to reproduce diffused damage, strain localization and the long-term creep deformation of the slope. The model was implemented for application to real slopes, by accounting for: 1) fractured rock mass properties upscaling based on site characterization data; 2) fluid pressures in a progressive failure context, relating fluid occurrence to

  18. “DNA Binding Region” of BRCA1 Affects Genetic Stability through modulating the Intra-S-Phase Checkpoint

    PubMed Central

    Masuda, Takaaki; Xu, Xiaoling; Dimitriadis, Emilios K.; Lahusen, Tyler; Deng, Chu-Xia

    2016-01-01

    The breast cancer associated gene 1 (BRCA1) contains 3 domains: an N-terminal RING domain with ubiquitin E3 ligase activity, C-terminal BRCT protein interaction domain and a central region. RING and BRCT domains are well characterized, yet the function of the central region remains unclear. In this study, we identified an essential DNA binding region (DBR: 421-701 amino acids) within the central region of human BRCA1, and found that BRCA1 brings DNA together and preferably binds to splayed-arm DNA in a sequence-independent manner. To investigate the biological role of the DBR, we generated mouse ES cells, which lack the DBR (ΔDBR) by using the TALEN method. The ΔDBR cells exhibited decreased survival as compared to the wild type (WT) cells treated with a PARP inhibitor, however they have an intact ability to conduct DNA repair mediated by homologous recombination (HR). The ΔDBR cells continued to incorporate more EdU in the presence of hydroxyurea (HU), which causes replication stress and exhibited reduced viability than the WT cells. Moreover, phosphorylation of CHK1, which regulates the intra-S phase checkpoint, was moderately decreased in ΔDBR cells. These data suggest that DNA binding by BRCA1 affects the stability of DNA replication folks, resulting in weakened intra-S-phase checkpoint control in the ΔDBR cells. The ΔDBR cells also exhibited an increased number of abnormal chromosome structures as compared with WT cells, indicating that the ΔDBR cells have increased genetic instability. Thus, we demonstrated that the DBR of BRCA1 modulates genetic stability through the intra-S-phase checkpoint activated by replication stress. PMID:26884712

  19. Agricultural terraces and slope instability at Cinque Terre (NW Italy)

    NASA Astrophysics Data System (ADS)

    Brandolini, Pierluigi; Cevasco, Andrea

    2015-04-01

    Cinque Terre, located in the eastern Liguria, are one of the most representative examples of terraced coastal landscape within the Mediterranean region. They are the result of a century-old agricultural practice and constitute an outstanding example of human integration with the natural landscape. For this highly unusual man-made coastal landscape, the Cinque Terre have been recognized as a World Heritage Site by UNESCO since 1997 and became National Park in 1999. The complex network of retaining dry stone walls and drainage networks ensured through times the control of shallow water erosion and therefore, indirectly, favoured debris cover stability. The lack of maintenance of terracing due to farmer abandonment since the 1950s led to widespread slope erosion phenomena. The effects of such phenomena culminated during the 25 October 2011 storm rainfall event, when slope debris materials charged by streams gave rise to debris floods affecting both Monterosso and Vernazza villages. As the analysis of the relationships between geo-hydrological processes and land use in the Vernazza catchment highlighted, abandoned and not well maintained terraces were the most susceptible areas to shallow landsliding and erosion triggered by intense rainfall. As a consequence, the thousands of kilometres of dry stone walls retaining millions of cubic metres of debris cover at Cinque Terre currently constitute a potential menace for both villages, that are mainly located at the floor of deep cut valleys, and tourists. Given the increasing human pressure due to tourist activities, geo-hydrological risk mitigation measures are urgently needed. At the same time, restoration policies are necessary to preserve this extraordinary example of terraced coastal landscape. In this framework, the detailed knowledge of the response of terraced areas to intense rainfall in terms of slope instability is a topic issue in order to identify adequate land planning strategies as well as the areas where

  20. [Responses of plant functional traits and soil factors to slope aspect in alpine meadow of South Gansu, Northwest China].

    PubMed

    Min-Xi, Liu; Jian-Zu, Ma

    2012-12-01

    This paper studied the plant functional traits, soil factors, and their relationships at different slope aspects in the alpine meadow of South Gansu. On the sunny slope, grasses were the dominant functional groups; while on the shady slope, forbs and shrubs dominated. The plant community biomass was significantly higher on shady slope than on sunny slope, while the leaf N/P ratio was in adverse. The leaf phosphorus content, specific leaf area, and plant average height at different slope aspects were in the order of shady slope > partial shady slope > sunny slope, whereas the leaf nitrogen content on different slopes had less difference. The survival strategies of the vegetations on sunny and shady slopes had great changes, reflecting in the differences in the plant leaf traits and dominant functional groups. Soil temperature was in the order of sunny slope > partial shady slope > shady slope, while soil water content was in the order of shady slope > partial shady slope > sunny slope. Soil total phosphorus content increased from the sunny slope to the shady slope, while the other soil nutrients contents showed the sequence of shady slope > sunny slope > partial shady slope. The specific leaf area and plant average height were significantly positively correlated to the soil organic carbon, total phosphorous, and water contents, and significantly negatively correlated to soil pH. Soil water content and soil pH co-affected the distribution patterns of plant functional traits and soil nutrients at different slope aspects of alpine meadow.

  1. Analysis and stability of carotenoids in the flowers of daylily (Hemerocallis disticha) as affected by various treatments.

    PubMed

    Tai, C Y; Chen, B H

    2000-12-01

    The analysis and stability of carotenoids in the flowers of daylily (Hemerocallis disticha) as affected by soaking and drying treatments were studied. The various carotenoids in the flowers of daylily were analyzed using a reversed-phase C(30) HPLC column and a mobile phase of methanol/methylene chloride/2-propanol (89:1:10, v/v/v) with methanol/methylene chloride (45:55, v/v) as sample solvent. Twenty-one pigments were resolved, of which 14 carotenoids were identified, including neoxanthin, violaxanthin, violeoxanthin, lutein-5,6-epoxide, lutein, zeaxanthin, beta-cryptoxanthin, all-trans-beta-carotene, and their cis isomers, based on spectral characteristics and Q ratios. Prior to hot-air-drying (50 degrees C) or freeze-drying, some of the daylily flowers were subjected to soaking in a sodium sulfite solution (1%) for 4 h. Under either the hot-air- or the freeze-drying treatment, the amounts of most carotenoids were higher in the soaked daylily flowers than in those that were not soaked. With hot-air-drying, the amount of cis carotenoids showed a higher yield in soaked samples than in nonsoaked samples. However, with freeze-drying, only a minor change of each carotenoid was observed for both soaked and nonsoaked samples. Also, air-drying resulted in a higher loss of carotenoids than freeze-drying. PMID:11312769

  2. Genetic stability of murine pluripotent and somatic hybrid cells may be affected by conditions of their cultivation.

    PubMed

    Ivanovna, Shramova Elena; Alekseevich, Larionov Oleg; Mikhailovich, Khodarovich Yurii; Vladimirovna, Zatsepina Olga

    2011-01-01

    Using mouse pluripotent teratocarcinoma PCC4azal cells and proliferating spleen lymphocytes we obtained a new type of hybrids, in which marker lymphocyte genes were suppressed, but expression the Oct-4 gene was not effected; the hybrid cells were able to differentiate to cardiomyocytes. In order to specify the environmental factors which may affect the genetic stability and other hybrid properties, we analyzed the total chromosome number and differentiation potencies of hybrids respectively to conditions of their cultivation. Particular attention was paid to the number and transcription activity of chromosomal nucleolus organizing regions (NORs), which harbor the most actively transcribed - ribosomal - genes. The results showed that the hybrids obtained are characterized by a relatively stable chromosome number which diminished less than in 5% during 27 passages. However, a long-term cultivation of hybrid cells in non-selective conditions resulted in preferential elimination of some NO- chromosomes, whereas the number of active NORs per cell was increased due to activation of latent NORs. On the contrary, in selective conditions, i.e. in the presence of hypoxantine, aminopterin and thymidine, the total number of NOR-bearing chromosomes was not changed, but a partial inactivation of remaining NORs was observed. The higher number of active NORs directly correlated with the capability of hybrid cells for differentiation to cardiomyocytes.

  3. The FlgT Protein Is Involved in Aeromonas hydrophila Polar Flagella Stability and Not Affects Anchorage of Lateral Flagella

    PubMed Central

    Merino, Susana; Tomás, Juan M.

    2016-01-01

    Aeromonas hydrophila sodium-driven polar flagellum has a complex stator-motor. Consist of two sets of redundant and non-exchangeable proteins (PomA/PomB and PomA2/PomB2), which are homologs to other sodium-conducting polar flagellum stator motors; and also two essential proteins (MotX and MotY), that they interact with one of those two redundant pairs of proteins and form the T-ring. In this work, we described an essential protein for polar flagellum stability and rotation which is orthologs to Vibrio spp. FlgT and it is encoded outside of the A. hydrophila polar flagellum regions. The flgT was present in all mesophilic Aeromonas strains tested and also in the non-motile Aeromonas salmonicida. The A. hydrophila ΔflgT mutant is able to assemble the polar flagellum but is more unstable and released into the culture supernatant from the cell upon completion assembly. Presence of FlgT in purified polar hook-basal bodies (HBB) of wild-type strain was confirmed by Western blotting and electron microscopy observations showed an outer ring of the T-ring (H-ring) which is not present in the ΔflgT mutant. Anchoring and motility of proton-driven lateral flagella was not affected in the ΔflgT mutant and specific antibodies did not detect FlgT in purified lateral HBB of wild type strain. PMID:27507965

  4. Does the temperature of beverages affect the surface roughness, hardness, and color stability of a composite resin?

    PubMed Central

    Tuncer, Duygu; Karaman, Emel; Firat, Esra

    2013-01-01

    Objective: To investigate the effect of beverages’ temperature on the surface roughness, hardness, and color stability of a composite resin. Materials and Methods: Fifty specimens of the Filtek Z250 composite (3M ESPE, Dental Products, St.Paul, MN, USA) were prepared and initial roughness, microhardness, and color were measured. Then the specimens were randomly divided into five groups of 10 specimens each: Coffee at 70°C, coffee at 37°C, cola at 10°C, cola at 37°C, and artificial saliva (control). After the samples were subjected to 15 min × 3 cycles per day of exposure to the solutions for 30 days, the final measurements were recorded. Results: After immersion in beverages, the artificial saliva group showed hardness values higher than those of the other groups (P < 0.001) and the microhardness values were significantly different from the initial values in all groups except for the control group. Both cola groups showed roughness values higher than the baseline values (P < 0.05), while the other groups showed values similar to the baseline measurements. When ΔE measurements were examined, the 70°C coffee group showed the highest color change among all the groups (P < 0.05). Conclusion: High-temperature solutions caused alterations in certain properties of composites, such as increased color change, although they did not affect the hardness or roughness of the composite resin material tested. PMID:24883021

  5. Transformation of upland wash slope - a case study from the Lublin Upland (SE Poland)

    NASA Astrophysics Data System (ADS)

    Janicki, Grzegorz

    2014-06-01

    Slopes do not constitute independent geomorphological systems. Due to their relation and belonging to specific groups of relief macroforms, they are subject to the same development patterns in a long timescale (geological time) as the superior form in a specific morphogenetic zone. Therefore, they are usually polygenetic, and seldom, only within “young” forms, homogenous. The slope relief includes a record of their geological past, individual development stages, and processes shaping slopes. The record constitutes a response of the system to changing environmental conditions, and particularly a manifestation of their adjustment to tectonic, climatic or land cover changes (Davis 1899; Dylik 1969). In short periods of time (geomorphological time), slopes can be recognized as relatively autonomous (independent), natural environmental systems, distinguished by their own development patterns, different than those of e.g. river valleys or gullies. Their development is determined by local factors, e.g. lithology of the bedrock underlying slopes, or degree of their fragmentation. Those factors, related to the state of evolution of the environment, can be treated as independent in the discussed timescale. The second factor, indirectly related to “geology, is land cover and land use, determined in the Neoholocene by human activity. It seems that especially currently, the anthropogenic factor determines the condi tions and rate, as well as directions of relief development, at least for settled areas. In the modern times, in the intermediate climate conditions of temperate zone, forested slopes are distinguished by high stability and very low intensity of modern morphogenetic processes, where decalcification dominates (Maruszczak 1986; Starkel 1986; Rodzik et al. 2008). Slopes with no forest cover, and those occupied by agricultural fields behave differently. In areas subject to agricultural use, slope development conditions become similar to those occurring in the semi

  6. Effects of grapevine root density and reinforcement on slopes prone to shallow slope instability

    NASA Astrophysics Data System (ADS)

    Meisina, Claudia; Bordoni, Massimiliano; Bischetti, Gianbattista; Vercesi, Alberto; Chiaradia, Enrico; Cislaghi, Alessio; Valentino, Roberto; Bittelli, Marco; Vergani, Chiara; Chersich, Silvia; Giuseppina Persichillo, Maria; Comolli, Roberto

    2016-04-01

    density and root strength have been combined in a physical model (Fiber Bundle Model), for the assessment of the trends of the root reinforcement in soil. The results of this study have contributed to identify root distribution behaviours, in different agricultural and environmental conditions, that have not been enough to guarantee slope stability or that can promote an increase of it. This can furnish important indications for a better identification of slopes more susceptible to slope instabilities and for improving land planning.

  7. Model slope infiltration experiments for shallow landslides early warning

    NASA Astrophysics Data System (ADS)

    Damiano, E.; Greco, R.; Guida, A.; Olivares, L.; Picarelli, L.

    2009-04-01

    Occurrence of fast landslides has become more and more dangerous during the last decades, due to the increased density of settlements, industrial plants and infrastructures. Such problem is particularly worrying in Campania (Southern Italy), where the fast population growth led a diffuse building activity without planning: indeed, recent flowslides caused hundreds of victims and heavy damages to buildings, roads and other infrastructures. Large mountainous areas in Campania are mantled by loose pyroclastic granular soils up to a depth of a few meters from top soil surface. These soils have usually a grain size that falls in the domain of silty sands, including pumice interbeds (gravelly sands), with saturated hydraulic conductivities up to the order of 10-1 cm/min. Such deposits often cover steep slopes, which stability is guaranteed by the apparent cohesion due to suction under unsaturated conditions, that are the most common conditions for these slopes [Olivares and Picarelli, 2001]. Whereas rainfall infiltration causes soil to approach saturation, suction vanishes and slope failure may occur. Besides soil physical properties, landslide triggering is influenced by several factors, such as rainfall intensity, soil initial moisture and suction, slope inclination, boundary conditions. Whereas slope failure occurs with soil close to being saturated, landslide may develop in form of fast and destructive flowslide. Calibration of reliable mathematical models of such a complex phenomenon requires availability of experimental observations of the major variables of interest, such as soil moisture and suction, soil deformation and displacements, pore water pressure, during the entire process of infiltration until slope failure. Due to the sudden trigger and extremely rapid propagation of such type of landslides, such data sets are rarely available for natural slopes where flowslides occurred. As a consequence landslide risk assessment and early warning in Campania rely on

  8. Insight into factors affecting the presence, degree, and temporal stability of fluorescence intensification on ZnO nanorod ends

    NASA Astrophysics Data System (ADS)

    Singh, Manpreet; Jiang, Ruibin; Coia, Heidi; Choi, Daniel S.; Alabanza, Anginelle; Chang, Jae Young; Wang, Jianfang; Hahm, Jong-In

    2015-01-01

    We have carried out a combined experimental and simulation study identifying the key physical and optical parameters affecting the presence and degree of fluorescence intensification measured on zinc oxide nanorod (ZnO NR) ends. Previously, we reported on the highly localized, intensified, and prolonged fluorescence signal measured on the NR ends, termed fluorescence intensification on NR ends (FINE). As a step towards understanding the mechanism of FINE, the present study aims to provide insight into the unique optical phenomenon of FINE through experimental and simulation approaches and to elucidate the key factors affecting the occurrence, degree, and temporal stability of FINE. Specifically, we examined the effect of the length, width, and growth orientation of single ZnO NRs on the NR-enhanced biomolecular emission profile after decorating the NR surfaces with different amounts and types of fluorophore-coupled protein molecules. We quantitatively and qualitatively profiled the biomolecular fluorescence signal from individual ZnO NRs as a function of both position along the NR long axis and time. Regardless of the physical dimensions and growth orientations of the NRs, we confirmed the presence of FINE in all ZnO NRs tested by using a range of protein concentrations. We also showed that the manifestation of FINE is not dependent on the spectroscopic signatures of the fluorophores employed. We further observed that the degree of FINE is dependent on the length of the NR with longer NRs showing increased levels of FINE. We also demonstrated that vertically oriented NRs exhibit much stronger fluorescence intensity at the NR ends and a higher level of FINE than the laterally oriented NRs. Additionally, we employed finite-difference time-domain (FDTD) methods to understand the experimental outcomes and to promote our understanding of the mechanism of FINE. Particularly, we utilized the electrodynamic simulations to examine both near-field and far-field emission

  9. Examining Agreement and Longitudinal Stability among Traditional and RTI-Based Definitions of Reading Disability Using the Affected-Status Agreement Statistic

    ERIC Educational Resources Information Center

    Waesche, Jessica S. Brown; Schatschneider, Christopher; Maner, Jon K.; Ahmed, Yusra; Wagner, Richard K.

    2011-01-01

    Rates of agreement among alternative definitions of reading disability and their 1- and 2-year stabilities were examined using a new measure of agreement, the affected-status agreement statistic. Participants were 288,114 first through third grade students. Reading measures were "Dynamic Indicators of Basic Early Literacy Skills" Oral Reading…

  10. A Hybrid FEM-ANN Approach for Slope Instability Prediction

    NASA Astrophysics Data System (ADS)

    Verma, A. K.; Singh, T. N.; Chauhan, Nikhil Kumar; Sarkar, K.

    2016-08-01

    Assessment of slope stability is one of the most critical aspects for the life of a slope. In any slope vulnerability appraisal, Factor Of Safety (FOS) is the widely accepted index to understand, how close or far a slope from the failure. In this work, an attempt has been made to simulate a road cut slope in a landslide prone area in Rudrapryag, Uttarakhand, India which lies near Himalayan geodynamic mountain belt. A combination of Finite Element Method (FEM) and Artificial Neural Network (ANN) has been adopted to predict FOS of the slope. In ANN, a three layer, feed- forward back-propagation neural network with one input layer and one hidden layer with three neurons and one output layer has been considered and trained using datasets generated from numerical analysis of the slope and validated with new set of field slope data. Mean absolute percentage error estimated as 1.04 with coefficient of correlation between the FOS of FEM and ANN as 0.973, which indicates that the system is very vigorous and fast to predict FOS for any slope.

  11. A Hybrid FEM-ANN Approach for Slope Instability Prediction

    NASA Astrophysics Data System (ADS)

    Verma, A. K.; Singh, T. N.; Chauhan, Nikhil Kumar; Sarkar, K.

    2016-09-01

    Assessment of slope stability is one of the most critical aspects for the life of a slope. In any slope vulnerability appraisal, Factor Of Safety (FOS) is the widely accepted index to understand, how close or far a slope from the failure. In this work, an attempt has been made to simulate a road cut slope in a landslide prone area in Rudrapryag, Uttarakhand, India which lies near Himalayan geodynamic mountain belt. A combination of Finite Element Method (FEM) and Artificial Neural Network (ANN) has been adopted to predict FOS of the slope. In ANN, a three layer, feed- forward back-propagation neural network with one input layer and one hidden layer with three neurons and one output layer has been considered and trained using datasets generated from numerical analysis of the slope and validated with new set of field slope data. Mean absolute percentage error estimated as 1.04 with coefficient of correlation between the FOS of FEM and ANN as 0.973, which indicates that the system is very vigorous and fast to predict FOS for any slope.

  12. How do how internal and external processes affect the behaviors of coupled marsh mudflat systems; infill, stabilize, retreat, or drown?

    NASA Astrophysics Data System (ADS)

    Carr, J. A.; Mariotti, G.; Wiberg, P.; Fagherazzi, S.; McGlathery, K.

    2013-12-01

    an eventual lateral equilibrium are possible only with large allochthonous sediment supply. Once marshes expanded, marsh retreat can be prevented by a sediment supply smaller than the one that filled the basin. At the GCE, the Altamaha River allows for enhanced allochthonous supply directly to the salt marsh platform, reducing the importance of waves on the tidal flat. As a result, infilling or retreat become the prevalent behaviors. For the VCR, the presence of seagrass decreases near bed shear stresses and sediment flux to the salt marsh platform, however, seagrass also reduces the wave energy acting on the boundary of the marsh reducing boundary erosion. Results indicate that the reduction in wave power allows for seagrass to provide a strong stabilizing affect on the coupled salt marsh tidal flat system, but as external sediment supply increases and light conditions decline the system reverts to that of a bare tidal flat. Across all systems and with current rates of sea level rise, retreat is a more likely marsh loss modality than drowning.

  13. Dendrogeomorphic approach to estimating slope retreat, Maxey Flats, Kentucky

    NASA Astrophysics Data System (ADS)

    Hupp, Cliff R.; Carey, William P.

    1990-07-01

    A dendrogeomorphic study of slope retreat was conducted at the Maxey Flats nuclear-waste disposal site in northeastern Kentucky. Tree roots exposed by surface lowering were used as an indicator of ground surface at the time of germination. The amount of lowering was measured and divided by tree-ring-determined tree age. Surface lowering and slope degradation rates were estimated for three slopes below waste-burial trenches and compared with data obtained from sediment troughs and erosion frames at the site. Mean rates of slope retreat ranged from 1.92 to 3.16 mm/yr. Sediment-trough results are two to three orders of magnitude less than dendrogeomorphic and erosion-frame estimates of slope degradation, which suggests that piping and solution-weathering processes may be important in slope degradation. Slope aspect and declivity may be important factors affecting retreat of slopes with a uniform lithology. Dendrogeomorphic techniques provide results comparable to those in the literature and offer a rapid method for estimating slope retreat that integrates slope processes over many years.

  14. Soil erosion-vegetation interactions in Mediterranean-dry reclaimed mining slopes

    NASA Astrophysics Data System (ADS)

    Moreno de las Heras, Mariano; Merino-Martín, Luis; Espigares, Tíscar; Nicolau, José M.

    2014-05-01

    Mining reclamation in Mediterranean-dry environments represents a complex task. Reclaimed mining slopes are particularly vulnerable to the effects of accelerated soil erosion processes, especially when these processes lead to the formation of rill networks. On the other hand, encouraging early vegetation establishment is perceived as indispensable to reduce the risk of degradation in these man-made ecosystems. This study shows a synthesis of soil erosion-vegetation research conducted in reclaimed mining slopes at El Moral field site (Teruel coalfield, central-east Spain). Our results highlight the role of rill erosion processes in the development of reclaimed ecosystems. Runoff routing is conditioned by the development of rill networks, maximizing the loss of water resources at the slope scale by surface runoff and altering the spatial distribution of soil moisture. As a result, the availability of water resources for plant growth is drastically reduced, affecting vegetation development. Conversely, vegetation exerts a strong effect on soil erosion: erosion rates rapidly decrease with vegetation cover and no significant rill erosion is usually observed after a particular cover threshold is reached. These interactive two-way vegetation-soil erosion relationships are further studied using a novel modeling approach that focuses on stability analysis of water-limited reclaimed slopes. Our framework reproduces two main groups of trends along the temporal evolution of reclaimed slopes: successful trends, characterized by widespread vegetation development and the effective control of rill erosion processes; and gullying trends, characterized by the progressive loss of vegetation and a sharp logistic increase in erosion rates. This stability-analysis also facilitates the determination of threshold values for both vegetation cover and rill erosion that drive the long-term reclamation results, assisting the identification of critical situations that require specific human

  15. Recent slope failures in the Dolomites (Northeastern Italian Alps) in a context of climate change

    NASA Astrophysics Data System (ADS)

    Chiarle, Marta; Paranunzio, Roberta; Laio, Francesco; Nigrelli, Guido; Guzzetti, Fausto

    2014-05-01

    Climate change in the Greater Alpine Region is seriously affecting permafrost distribution, with relevant consequences on slope stability. In the Italian Alps, the number of failures from rockwalls at high elevation markedly increased in the last 20-30 years: the consistent temperature increase, which warmed twice than the global average, may have seriously influenced slope stability, in terms of glaciers retreat and permafrost degradation. Moreover, the growing number of tourists and activities in alpine regions (in particular in the Dolomites) made these areas particularly critical in relation to natural hazards. In this light, an integrated short-term geomorphological and climatic analysis was performed, in order to better comprehend the impact of main climate elements (especially temperature and precipitation) on slope failures in high mountain areas. In this contribution, we focus on three recent slope failures occurred at high elevation sites in the Dolomites (Northeastern Italian Alps), declared a UNESCO World Heritage Site in August 2009. We describe here three important rock falls occurred in the autumn 2013: 1) the Sorapiss rock fall, on 30 September 2013; 2) the Monte Civetta rock fall, on 16 November 2013; 3) the Monte Antelao rock fall, on 22 November 2013. The Monte Civetta rock fall damaged some climbing routes, while the other two landslides did not cause any damage or injury. Despite the limited volume involved, these three events represent an important warning sign in the context of ongoing climate change. Geomorphological information about the rock fall sites were combined with the climatic data acquired from the meteorological stations surrounding the slope failure areas. A short-term climatic analysis was performed, with the aim of understanding the role of the main climatic elements in the triggering of natural instability events in this area and in the Alps in general.

  16. Measuring acoustic emissions in an avalanche slope

    NASA Astrophysics Data System (ADS)

    Reiweger, Ingrid; Schweizer, Jürg

    2014-05-01

    Measurements of acoustic emissions are a common technique for monitoring damage and predicting imminent failure of a material. Within natural hazards it has already been used to successfully predict the break-off of a hanging glacier. To explore the applicability of the acoustic emission (AE) technique for avalanche prediction, we installed two acoustic sensors (with 30 kHz and 60 kHz resonance frequency) in an avalanche prone slope at the Mittelgrat in the Parsenn ski area above Davos, Switzerland. The slope is north-east facing, frequently wind loaded, and approximately 35° steep. The AE signals - in particular the event energy and waiting time distributions - were compared with slope stability. The latter was determined by observing avalanche activity. The results of two winter's measurements yielded that the exponent β of the inverse cumulative distribution of event energy showed a significant drop (from a value of 3.5 to roughly 2.5) at very unstable conditions, i.e. on the three days during our measurement periods when spontaneous avalanches released on our study slope.

  17. How much does a very active rock slope contribute to the sediment budget of an alpine glacier?

    NASA Astrophysics Data System (ADS)

    Baewert, Henning; Vehling, Lucas; Glira, Philipp; Stocker-Waldhuber, Martin; Morche, David

    2014-05-01

    The ongoing glacier retreat since the mid of the 19th century has significant influence on rock slope stability in alpine high mountain areas. Due to oversteepening by glacial erosion, cold climate weathering processes and debuttressing as a consequence of stress redistribution, rock slopes adjacent to shrinking glaciers generally show an enhanced geotechnical activity. Regarding the glacier sediment budget, the rockfall material deposited on a glacier is particular important, because the debris material can be transported directly and without any intermediate storage. Therefore, gravitational mass movements contribute in a substantial way to the sediment budget of a glacier, especially as rockfall material can easily reach en- or subglacial areas through crevasses and thus affect the subglacial sediment transport and glacial erosion. Here we present the first results regarding the geotechnical rock slope activity of "Schwarze Wand". The "Schwarze Wand" is located at 2400 - 2800 m.a.s.l., right above the tongue of the Gepatschferner, which is one of the largest glaciers in Tyrol (Austria) and contemporarily affected by a high retreat rate. The rock mass consists of strong foliated paragneisses which are dissected by large joint sets. These joint sets provide sliding planes, which favor slope failures. To monitor the rock slope activity at the "Schwarze Wand", multitemporal terrestrial laser scans were carried out in 2012 and 2013 to detect and quantify mass movements. Additional, high resoluted multitemporal airborne laser scan data (10 points/m²) are available to trace larger scale rock slope deformations. The investigations are conducted by the DFG- joint research project PROSA (High-resolution measurements of morphodynamics in rapidly changing PROglacial Systems of the Alps). Our LiDAR data as well as field observations are showing enhanced rock fall activity at the scarp in the last years which is assumed to be the consequence of an activation of a larger deep

  18. Small scale tests on the progressive retreat of soil slopes

    NASA Astrophysics Data System (ADS)

    Voulgari, Chrysoula; Utili, Stefano; Castellanza, Riccardo

    2015-04-01

    In this paper, the influence due to the presence of cracks on the morphologic evolution of natural cliffs subject to progressive retreat induced by weathering is investigated through small scale laboratory tests. Weathering turns hard rocks into soft rocks that maintain the structure of the intact rocks, but are characterised by higher void ratios and reduced bond strengths; soft rocks are transformed into granular soils generally called residual soils. A number of landslides develop in slopes due to weathering which results in the progressive retrogression of the slope face and the further degradation within the weathering zone. Cracks, that are widely present, can be a result of weathering and they can cause a significant decrease in their stability, as they provide preferential flow channels which increase the soil permeability and decrease the soil strength. The geological models employed until now are mainly empirical. Several researchers have tried to study the stability of slopes through experimental procedures. Centrifuge modelling is widely used to investigate the failure of slopes. Small scale tests are also an important approach, in order to study the behaviour of a slope under certain conditions, such as the existence of water, as they allow the observation of the infiltration processes, the movement of the weathering front, deformation and failure. However, the deformation response of a slope subject to weathering is not yet thoroughly clarified. In this work, a set of experiments were conducted to investigate weathering induced successive landslides. Weathering was applied to the slope model by wetting the slope crest through a rainfall simulator device. The moisture content of the soil during the tests was monitored by soil moisture sensors that were buried inside the slope model. High resolution cameras were recording the behaviour of the slope model. GeoPIV was used to analyse the frames and obtain the deformations of the slope model during the

  19. Geotechnical properties of Kentucky`s AML landslides and slope failure evaluation

    SciTech Connect

    Iannacchione, A.T.; Bhatt, S.K.; Sefton, J.

    1995-12-31

    A large body of geotechnical data, obtained from the U.S. Office of Surface Mining Reclamation and Enforcement (OSM) and the Kentucky Division of Abandoned Lands, is analyzed in this paper. The analysis includes causes of subsurface failures, phreatic levels, soil profiles, and soil composition data. Soil properties calculated from laboratory procedures and stability analysis techniques were also reviewed. Employing prudent engineering practices and parameters, seven failed slopes were subjected to back analysis for estimating realistic factors of safety. Important factors affecting landslides in eastern Kentucky are presented with appropriate examples.

  20. How hydrophobicity and the glycosylation site of glycans affect protein folding and stability: a molecular dynamics simulation.

    PubMed

    Lu, Diannan; Yang, Cheng; Liu, Zheng

    2012-01-12

    Glycosylation is one of the most common post-translational modifications in the biosynthesis of protein, but its effect on the protein conformational transitions underpinning folding and stabilization is poorly understood. In this study, we present a coarse-grained off-lattice 46-β barrel model protein glycosylated by glycans with different hydrophobicity and glycosylation sites to examine the effect of glycans on protein folding and stabilization using a Langevin dynamics simulation, in which an H term was proposed as the index of the hydrophobicity of glycan. Compared with its native counterpart, introducing glycans of suitable hydrophobicity (0.1 < H < 0.4) at flexible peptide residues of this model protein not only facilitated folding of the protein but also increased its conformation stability significantly. On the contrary, when glycans were introduced at the restricted peptide residues of the protein, only those hydrophilic (H = 0) or very weak hydrophobic (H < 0.2) ones contributed slightly to protein stability but hindered protein folding due to increased free energy barriers. The glycosylated protein retained the two-step folding mechanism in terms of hydrophobic collapse and structural rearrangement. Glycan chains located in a suitable site with an appropriate hydrophobicity facilitated both collapse and rearrangement, whereas others, though accelerating collapse, hindered rearrangement. In addition to entropy effects, that is, narrowing the space of the conformations of the unfolded state, the presence of glycans with suitable hydrophobicity at suitable glycosylation site strengthened the folded state via hydrophobic interaction, that is, the enthalpy effect. The simulations have shown both the stabilization and the destabilization effects of glycosylation, as experimentally reported in the literature, and provided molecular insight into glycosylated proteins. The understanding of the effects of glycans with different hydrophobicities on the folding

  1. Integrating Near-Real Time Hydrologic-Response Monitoring and Modeling for Improved Assessments of Slope Stability Along the Coastal Bluffs of the Puget Sound Rail Corridor, Washington State

    NASA Astrophysics Data System (ADS)

    Mirus, B. B.; Baum, R. L.; Stark, B.; Smith, J. B.; Michel, A.

    2015-12-01

    Previous USGS research on landslide potential in hillside areas and coastal bluffs around Puget Sound, WA, has identified rainfall thresholds and antecedent moisture conditions that correlate with heightened probability of shallow landslides. However, physically based assessments of temporal and spatial variability in landslide potential require improved quantitative characterization of the hydrologic controls on landslide initiation in heterogeneous geologic materials. Here we present preliminary steps towards integrating monitoring of hydrologic response with physically based numerical modeling to inform the development of a landslide warning system for a railway corridor along the eastern shore of Puget Sound. We instrumented two sites along the steep coastal bluffs - one active landslide and one currently stable slope with the potential for failure - to monitor rainfall, soil-moisture, and pore-pressure dynamics in near-real time. We applied a distributed model of variably saturated subsurface flow for each site, with heterogeneous hydraulic-property distributions based on our detailed site characterization of the surficial colluvium and the underlying glacial-lacustrine deposits that form the bluffs. We calibrated the model with observed volumetric water content and matric potential time series, then used simulated pore pressures from the calibrated model to calculate the suction stress and the corresponding distribution of the factor of safety against landsliding with the infinite slope approximation. Although the utility of the model is limited by uncertainty in the deeper groundwater flow system, the continuous simulation of near-surface hydrologic response can help to quantify the temporal variations in the potential for shallow slope failures at the two sites. Thus the integration of near-real time monitoring and physically based modeling contributes a useful tool towards mitigating hazards along the Puget Sound railway corridor.

  2. Impact of large slope movements on the construction of a major highway in the Constantine Province, North-East Algeria

    NASA Astrophysics Data System (ADS)

    Havenith, H.-B.; Draidia, S.; Benabbas, C.

    2012-04-01

    All over northern Algeria, mass movements represent a major hazard and frequently impact on infrastructure, causing significant losses. This paper presents first results of the analysis of slope instabilities along a highway under construction in the Tafrent Region, Constantine Province. They show that many different types of failures characterized by a high degree of heterogeneity affect the road works. Some appear as clear landslides, others develop as diffuse movements in zones previously classified as stable areas. Most of the recent slope movements were triggered during the road works involving extensive removal of rock and soil masses. Some instabilities initiated within paleo-landslides and now affect entire mountain slopes larger than 50 ha. Due their large size (with a volume reaching more than 106 m3) it is likely that remediation measures will be very costly. Therefore, it is necessary to assess the full impact potential of these slope instabilities. First, we started to make the inventory of all slope instabilities within a large corridor along the highway. Second, detailed geomorphologic and structural geology analyses using remote sensing (based on aerial photographs and SPOT imagery) and field observations are performed. Third, many geotechnical tests complemented by sedimentological analyses provide valuable data on the geomechanic behaviour of the soils that are mainly made of weathered marls and often exhibit viscous types of movements that affect the entire unstable mass. The specific target of our work is to answer the following questions: how much did the road works modify the natural state of stability, could the reactivation of paleo-landslides be predicted, might it have been prevented and, finally, can further slope movements be predicted - and, thus, their impacts prevented? The development of a robust methodology based on remote sensing, field observations and geotechnical-geophysical investigations is the general goal of our research

  3. Does the Implant Surgical Technique Affect the Primary and/or Secondary Stability of Dental Implants? A Systematic Review

    PubMed Central

    Shadid, Rola Muhammed; Sadaqah, Nasrin Rushdi; Othman, Sahar Abdo

    2014-01-01

    Background. A number of surgical techniques for implant site preparation have been advocated to enhance the implant of primary and secondary stability. However, there is insufficient scientific evidence to support the association between the surgical technique and implant stability. Purpose. This review aimed to investigate the influence of different surgical techniques including the undersized drilling, the osteotome, the piezosurgery, the flapless procedure, and the bone stimulation by low-level laser therapy on the primary and/or secondary stability of dental implants. Materials and methods. A search of PubMed, Cochrane Library, and grey literature was performed. The inclusion criteria comprised observational clinical studies and randomized controlled trials (RCTs) conducted in patients who received dental implants for rehabilitation, studies that evaluated the association between the surgical technique and the implant primary and/or secondary stability. The articles selected were carefully read and classified as low, moderate, and high methodological quality and data of interest were tabulated. Results. Eight clinical studies were included then they were classified as moderate or high methodological quality and control of bias. Conclusions. There is a weak evidence suggesting that any of previously mentioned surgical techniques could influence the primary and/or secondary implant stability. PMID:25126094

  4. [Analysis of related factors of slope plant hyperspectral remote sensing].

    PubMed

    Sun, Wei-Qi; Zhao, Yun-Sheng; Tu, Lin-Ling

    2014-09-01

    In the present paper, the slope gradient, aspect, detection zenith angle and plant types were analyzed. In order to strengthen the theoretical discussion, the research was under laboratory condition, and modeled uniform slope for slope plant. Through experiments we found that these factors indeed have influence on plant hyperspectral remote sensing. When choosing slope gradient as the variate, the blade reflection first increases and then decreases as the slope gradient changes from 0° to 36°; When keeping other factors constant, and only detection zenith angle increasing from 0° to 60°, the spectral characteristic of slope plants do not change significantly in visible light band, but decreases gradually in near infrared band; With only slope aspect changing, when the dome meets the light direction, the blade reflectance gets maximum, and when the dome meets the backlit direction, the blade reflectance gets minimum, furthermore, setting the line of vertical intersection of incidence plane and the dome as an axis, the reflectance on the axis's both sides shows symmetric distribution; In addition, spectral curves of different plant types have a lot differences between each other, which means that the plant types also affect hyperspectral remote sensing results of slope plants. This research breaks through the limitations of the traditional vertical remote sensing data collection and uses the multi-angle and hyperspectral information to analyze spectral characteristics of slope plants. So this research has theoretical significance to the development of quantitative remote sensing, and has application value to the plant remote sensing monitoring.

  5. COX7A2L Is a Mitochondrial Complex III Binding Protein that Stabilizes the III2+IV Supercomplex without Affecting Respirasome Formation.

    PubMed

    Pérez-Pérez, Rafael; Lobo-Jarne, Teresa; Milenkovic, Dusanka; Mourier, Arnaud; Bratic, Ana; García-Bartolomé, Alberto; Fernández-Vizarra, Erika; Cadenas, Susana; Delmiro, Aitor; García-Consuegra, Inés; Arenas, Joaquín; Martín, Miguel A; Larsson, Nils-Göran; Ugalde, Cristina

    2016-08-30

    Mitochondrial respiratory chain (MRC) complexes I, III, and IV associate into a variety of supramolecular structures known as supercomplexes and respirasomes. While COX7A2L was originally described as a supercomplex-specific factor responsible for the dynamic association of complex IV into these structures to adapt MRC function to metabolic variations, this role has been disputed. Here, we further examine the functional significance of COX7A2L in the structural organization of the mammalian respiratory chain. As in the mouse, human COX7A2L binds primarily to free mitochondrial complex III and, to a minor extent, to complex IV to specifically promote the stabilization of the III2+IV supercomplex without affecting respirasome formation. Furthermore, COX7A2L does not affect the biogenesis, stabilization, and function of the individual oxidative phosphorylation complexes. These data show that independent regulatory mechanisms for the biogenesis and turnover of different MRC supercomplex structures co-exist.

  6. COX7A2L Is a Mitochondrial Complex III Binding Protein that Stabilizes the III2+IV Supercomplex without Affecting Respirasome Formation.

    PubMed

    Pérez-Pérez, Rafael; Lobo-Jarne, Teresa; Milenkovic, Dusanka; Mourier, Arnaud; Bratic, Ana; García-Bartolomé, Alberto; Fernández-Vizarra, Erika; Cadenas, Susana; Delmiro, Aitor; García-Consuegra, Inés; Arenas, Joaquín; Martín, Miguel A; Larsson, Nils-Göran; Ugalde, Cristina

    2016-08-30

    Mitochondrial respiratory chain (MRC) complexes I, III, and IV associate into a variety of supramolecular structures known as supercomplexes and respirasomes. While COX7A2L was originally described as a supercomplex-specific factor responsible for the dynamic association of complex IV into these structures to adapt MRC function to metabolic variations, this role has been disputed. Here, we further examine the functional significance of COX7A2L in the structural organization of the mammalian respiratory chain. As in the mouse, human COX7A2L binds primarily to free mitochondrial complex III and, to a minor extent, to complex IV to specifically promote the stabilization of the III2+IV supercomplex without affecting respirasome formation. Furthermore, COX7A2L does not affect the biogenesis, stabilization, and function of the individual oxidative phosphorylation complexes. These data show that independent regulatory mechanisms for the biogenesis and turnover of different MRC supercomplex structures co-exist. PMID:27545886

  7. Anaerobic and aerobic transformations affecting stability of dewatered sludge during long-term storage in a lagoon.

    PubMed

    Lukicheva, Irina; Tian, Guanglong; Cox, Albert; Granato, Thomas; Pagilla, Krishna

    2012-01-01

    The goal of this work was to study long-term behavior of anaerobically digested and dewatered sludge (biosolids) in a lagoon under anaerobic and aerobic conditions to determine the stability of the final product as an indicator of its odor potential. Field lagoons were sampled to estimate spatial and temporal variations in the physical-chemical properties and biological stability characteristics such as volatile solids content, accumulated oxygen uptake, and soluble protein content and odorous compound assessment. The analyses of collected data suggest that the surface layer of the lagoon (depth of above 0.15 m) undergoes long-term aerobic oxidation resulting in a higher degree of stabilization in the final product. The subsurface layers (depth 0.15 m below the surface and deeper) are subjected to an anaerobic environment where the conditions favor the initial rapid organic matter degradation within approximately the first year, followed by slow degradation. PMID:22368823

  8. Shallow normal fault slopes on Saturnian icy satellites

    NASA Astrophysics Data System (ADS)

    Beddingfield, Chloe B.; Burr, Devon M.; Dunne, William M.

    2015-12-01

    Fault dips are a function of the coefficient of internal friction, μi, of the lithospheric material. Laboratory deformation experiments of H2O ice at conditions applicable to icy bodies yield 0 ≤ μi ≤ 0.55 such that normal faults dip between 45° and 59°. We tested the hypothesis that normal faults on icy bodies reflect these values by using digital elevation models to examine geometries of large extensional systems on three Saturnian satellites. Analyzed faults within Ithaca Chasma on Tethys and Avaiki Chasmata on Rhea all exhibit shallower-than-predicted topographic slopes across the fault scarp, which we term "fault slopes." A scarp of Padua Chasmata within Dione's Wispy Terrain also has a shallow fault slope, although three others that make up Palatine Chasmata exhibit steeper slopes as predicted. We infer that viscous relaxation is the most viable explanation for these shallow fault slopes, and we model the potential role of viscous relaxation in creating shallow slopes. Our modeling results support formation of these normal faults with steep dips consistent with deformation experiments, followed by their relaxation due to lithospheric heating events related to radionuclide decay. The steepest fault slopes in this terrain yield 0 ≤ μi ≤ 0.73 for Dione's lithospheric ice, which overlaps the dip range predicted from experiments. Results of this work suggest that viscous relaxation substantially affected fault slopes on Tethys, Rhea, and Dione. By implication, these processes may have also affected fault geometries on other icy satellites.

  9. Restricted Arm Swing Affects Gait Stability and Increased Walking Speed Alters Trunk Movements in Children with Cerebral Palsy

    PubMed Central

    Delabastita, Tijs; Desloovere, Kaat; Meyns, Pieter

    2016-01-01

    Observational research suggests that in children with cerebral palsy, the altered arm swing is linked to instability during walking. Therefore, the current study investigates whether children with cerebral palsy use their arms more than typically developing children, to enhance gait stability. Evidence also suggests an influence of walking speed on gait stability. Moreover, previous research highlighted a link between walking speed and arm swing. Hence, the experiment aimed to explore differences between typically developing children and children with cerebral palsy taking into account the combined influence of restricting arm swing and increasing walking speed on gait stability. Spatiotemporal gait characteristics, trunk movement parameters and margins of stability were obtained using three dimensional gait analysis to assess gait stability of 26 children with cerebral palsy and 24 typically developing children. Four walking conditions were evaluated: (i) free arm swing and preferred walking speed; (ii) restricted arm swing and preferred walking speed; (iii) free arm swing and high walking speed; and (iv) restricted arm swing and high walking speed. Double support time and trunk acceleration variability increased more when arm swing was restricted in children with bilateral cerebral palsy compared to typically developing children and children with unilateral cerebral palsy. Trunk sway velocity increased more when walking speed was increased in children with unilateral cerebral palsy compared to children with bilateral cerebral palsy and typically developing children and in children with bilateral cerebral palsy compared to typically developing children. Trunk sway velocity increased more when both arm swing was restricted and walking speed was increased in children with bilateral cerebral palsy compared to typically developing children. It is proposed that facilitating arm swing during gait rehabilitation can improve gait stability and decrease trunk movements in

  10. Restricted Arm Swing Affects Gait Stability and Increased Walking Speed Alters Trunk Movements in Children with Cerebral Palsy.

    PubMed

    Delabastita, Tijs; Desloovere, Kaat; Meyns, Pieter

    2016-01-01

    Observational research suggests that in children with cerebral palsy, the altered arm swing is linked to instability during walking. Therefore, the current study investigates whether children with cerebral palsy use their arms more than typically developing children, to enhance gait stability. Evidence also suggests an influence of walking speed on gait stability. Moreover, previous research highlighted a link between walking speed and arm swing. Hence, the experiment aimed to explore differences between typically developing children and children with cerebral palsy taking into account the combined influence of restricting arm swing and increasing walking speed on gait stability. Spatiotemporal gait characteristics, trunk movement parameters and margins of stability were obtained using three dimensional gait analysis to assess gait stability of 26 children with cerebral palsy and 24 typically developing children. Four walking conditions were evaluated: (i) free arm swing and preferred walking speed; (ii) restricted arm swing and preferred walking speed; (iii) free arm swing and high walking speed; and (iv) restricted arm swing and high walking speed. Double support time and trunk acceleration variability increased more when arm swing was restricted in children with bilateral cerebral palsy compared to typically developing children and children with unilateral cerebral palsy. Trunk sway velocity increased more when walking speed was increased in children with unilateral cerebral palsy compared to children with bilateral cerebral palsy and typically developing children and in children with bilateral cerebral palsy compared to typically developing children. Trunk sway velocity increased more when both arm swing was restricted and walking speed was increased in children with bilateral cerebral palsy compared to typically developing children. It is proposed that facilitating arm swing during gait rehabilitation can improve gait stability and decrease trunk movements in

  11. Respiratory and TCA cycle activities affect S. cerevisiae lifespan, response to caloric restriction and mtDNA stability.

    PubMed

    Tahara, Erich B; Cezário, Kizzy; Souza-Pinto, Nadja C; Barros, Mario H; Kowaltowski, Alicia J

    2011-10-01

    We studied the importance of respiratory fitness in S. cerevisiae lifespan, response to caloric restriction (CR) and mtDNA stability. Mutants harboring mtDNA instability and electron transport defects do not respond to CR, while tricarboxylic acid cycle mutants presented extended lifespans due to CR. Interestingly, mtDNA is unstable in cells lacking dihydrolipoyl dehydrogenase under CR conditions, and cells lacking aconitase under standard conditions (both enzymes are components of the TCA and mitochondrial nucleoid). Altogether, our data indicate that respiratory integrity is required for lifespan extension by CR and that mtDNA stability is regulated by nucleoid proteins in a glucose-sensitive manner.

  12. Affective response to exercise as a component of exercise motivation: Attitudes, norms, self-efficacy, and temporal stability of intentions

    PubMed Central

    Kwan, Bethany M.; Bryan, Angela D.

    2009-01-01

    Problem: A positive affective response is associated with increased participation in voluntary exercise, but the mechanisms by which this occurs are not well known. Consistent with a Theory of Planned Behaviour perspective, we tested whether affective response to exercise leads to greater motivation in terms of attitudes, subjective norms, self-efficacy and intentions to exercise. We were also specifically interested in whether a positive affective response leads to more temporally stable intentions. Method: Participants (N = 127) self-reported Theory of Planned Behaviour constructs and exercise behavior at baseline and three months later, and provided reports of exercise-related affect during a 30-minute bout of moderate intensity treadmill exercise at baseline. Results: We show that participants who experience greater improvements in positive affect, negative affect and fatigue during exercise tended to report more positive attitudes, exercise self-efficacy and intentions to exercise three months later. Affective response was not predictive of subjective norms. As hypothesized, positive affective response was associated with more stable intentions over time. Conclusions: We conclude that a positive affective response to acute bouts of exercise can aid in building and sustaining exercise motivation over time. PMID:20161385

  13. Susceptibility towards intramolecular disulphide-bond formation affects conformational stability and folding of human basic fibroblast growth factor.

    PubMed Central

    Estapé, D; van den Heuvel, J; Rinas, U

    1998-01-01

    The conformational stability and the folding properties of the all-beta-type protein human basic fibroblast growth factor (hFGF-2) were studied by means of fluorescence spectroscopy. The results show that the instability of the biological activity of hFGF-2 is also reflected in a low conformational stability of the molecule. The reversibility of the unfolding and refolding process was established under reducing conditions. Determination of the free-energy of unfolding in the presence of reducing agents revealed that the conformational stability of hFGF-2 (DeltaGH2Oapp congruent with21 kJ. mol-1, 25 degreesC) is low compared with other globular proteins under physiological conditions (20-60 kJ.mol-1). However, the conformational stability of hFGF-2 is particularly low under non-reducing conditions. This instability is attributed to intramolecular disulphide-bond formation, rendering the molecule more susceptible to denaturant-induced unfolding. In addition, denaturant-induced unfolding of hFGF-2 renders the protein more susceptible to irreversible oxidative denaturation. Experimental evidence is provided that the irreversibility of the unfolding and refolding process in the absence of reducing agents is linked to the formation of an intramolecular disulphide bond involving cysteines 96 and 101. PMID:9761733

  14. Disruption of a hydrogen bond network in human versus spider monkey cytochrome c affects heme crevice stability.

    PubMed

    Goldes, Matthew E; Jeakins-Cooley, Margaret E; McClelland, Levi J; Mou, Tung-Chung; Bowler, Bruce E

    2016-05-01

    The hypothesis that the recent rapid evolution of primate cytochromes c, which primarily involves residues in the least stable Ω-loop (Ω-loop C, residues 40-57), stabilizes the heme crevice of cytochrome c relative to other mammals, is tested. To accomplish this goal, we have compared the properties of human and spider monkey cytochrome c and a set of four variants produced in the process of converting human cytochrome c into spider monkey cytochrome c. The global stability of all variants has been measured by guanidine hydrochloride denaturation. The stability of the heme crevice has been assessed with the alkaline conformational transition. Structural insight into the effects of the five amino acid substitutions needed to convert human cytochrome c into spider monkey cytochrome c is provided by a 1.15Å resolution structure of spider monkey cytochrome c. The global stability for all variants is near 9.0kcal/mol at 25°C and pH7, which is higher than that observed for other mammalian cytochromes c. The heme crevice stability is more sensitive to the substitutions required to produce spider monkey cytochrome c with decreases of up to 0.5 units in the apparent pKa of the alkaline conformational transition relative to human cytochrome c. The structure of spider monkey cytochrome c indicates that the Y46F substitution destabilizes the heme crevice by disrupting an extensive hydrogen bond network that connects three surface loops including Ω-loop D (residues 70-85), which contains the Met80 heme ligand.

  15. Landslide boost from entrainment of erodible material along the slope

    NASA Astrophysics Data System (ADS)

    Farin, M.; Mangeney, A.; Roche, O.; Ionescu, I.; Hungr, O.

    2011-12-01

    . Entrainment begins to affect the flow at inclination angles exceeding a critical angle, almost equal to half of the repose angle. Triangular shaped frontal surges are observed at high inclination angles over both rigid or erodible beds. Erosion effects are smaller as the compaction of the erodible granular bed increases and larger as the initial height-to-length ratio and volume of the released mass increase. The avalanche excavates the erodible layer immediately at the flow front, behind which waves travelling downstream that help removing grains from the erodible bed are observed. When increasing the depth of the erodible bed, the excavation depth first increases and then stabilizes to a critical value, and then decreases. Finally, numerical simulations using a 3D visco-plastic model are performed to obtain insight into the physical processes at work during entrainment processes.

  16. Stability of Chloropyromorphite in Ryegrass Rhizosphere as Affected by Root-Secreted Low Molecular Weight Organic Acids

    PubMed Central

    Wei, Wei; Wang, Yu; Wang, Zheng; Han, Ruiming; Li, Shiyin; Wei, Zhenggui; Zhang, Yong

    2016-01-01

    Understanding the stability of chloropyromorphite (CPY) is of considerable benefit for improving risk assessment and remediation strategies in contaminated water and soil. The stability of CPY in the rhizosphere of phosphorus-deficient ryegrass was evaluated to elucidate the role of root-secreted low molecular weight organic acids (LMWOAs) on the dissolution of CPY. Results showed that CPY treatments significantly reduced the ryegrass biomass and rhizosphere pH. The presence of calcium nitrate extractable lead (Pb) and phosphorus (P) suggested that CPY in the rhizosphere could be bioavailable, because P and Pb uptake by ryegrass potentially provided a significant concentration gradient that would promote CPY dissolution. Pb accumulation and translocation in ryegrass was found to be significantly higher in P-sufficient conditions than in P-deficient conditions. CPY treatments significantly enhanced root exudation of LMWOAs irrigated with P-nutrient solution or P-free nutrient solution. Oxalic acid was the dominant species in root-secreted LMWOAs of ryegrass under P-free nutrient solution treatments, suggesting that root-secreted oxalic acid may be the driving force of root-induced dissolution of CPY. Hence, our work, provides clarifying hints on the role of LMWOAs in controlling the stability of CPY in the rhizosphere. PMID:27494023

  17. Stability of Chloropyromorphite in Ryegrass Rhizosphere as Affected by Root-Secreted Low Molecular Weight Organic Acids.

    PubMed

    Wei, Wei; Wang, Yu; Wang, Zheng; Han, Ruiming; Li, Shiyin; Wei, Zhenggui; Zhang, Yong

    2016-01-01

    Understanding the stability of chloropyromorphite (CPY) is of considerable benefit for improving risk assessment and remediation strategies in contaminated water and soil. The stability of CPY in the rhizosphere of phosphorus-deficient ryegrass was evaluated to elucidate the role of root-secreted low molecular weight organic acids (LMWOAs) on the dissolution of CPY. Results showed that CPY treatments significantly reduced the ryegrass biomass and rhizosphere pH. The presence of calcium nitrate extractable lead (Pb) and phosphorus (P) suggested that CPY in the rhizosphere could be bioavailable, because P and Pb uptake by ryegrass potentially provided a significant concentration gradient that would promote CPY dissolution. Pb accumulation and translocation in ryegrass was found to be significantly higher in P-sufficient conditions than in P-deficient conditions. CPY treatments significantly enhanced root exudation of LMWOAs irrigated with P-nutrient solution or P-free nutrient solution. Oxalic acid was the dominant species in root-secreted LMWOAs of ryegrass under P-free nutrient solution treatments, suggesting that root-secreted oxalic acid may be the driving force of root-induced dissolution of CPY. Hence, our work, provides clarifying hints on the role of LMWOAs in controlling the stability of CPY in the rhizosphere. PMID:27494023

  18. Time shift in slope failure prediction between unimodal and bimodal modeling approaches

    NASA Astrophysics Data System (ADS)

    Ciervo, Fabio; Casini, Francesca; Nicolina Papa, Maria; Medina, Vicente

    2016-04-01

    Together with the need to use more appropriate mathematical expressions for describing hydro-mechanical soil processes, a challenge issue relates to the need of considering the effects induced by terrain heterogeneities on the physical mechanisms, taking into account the implications of the heterogeneities in affecting time-dependent hydro-mechanical variables, would improve the prediction capacities of models, such as the ones used in early warning systems. The presence of the heterogeneities in partially-saturated slopes results in irregular propagation of the moisture and suction front. To mathematically represent the "dual-implication" generally induced by the heterogeneities in describing the hydraulic terrain behavior, several bimodal hydraulic models have been presented in literature and replaced the conventional sigmoidal/unimodal functions; this presupposes that the scale of the macrostructure is comparable with the local scale (Darcy scale), thus the Richards' model can be assumed adequate to mathematically reproduce the processes. The purpose of this work is to focus on the differences in simulating flow infiltration processes and slope stability conditions originated from preliminary choices of hydraulic models and contextually between different approaches to evaluate the factor of safety (FoS). In particular, the results of two approaches are compared. The first one includes the conventional expression of the FoS under saturated conditions and the widespread used hydraulic model of van Genuchten-Mualem. The second approach includes a generalized FoS equation for infinite-slope model under variably saturated soil conditions (Lu and Godt, 2008) and the bimodal Romano et al.'s (2011) functions to describe the hydraulic response. The extension of the above mentioned approach to the bimodal context is based on an analytical method to assess the effects of the hydraulic properties on soil shear developed integrating a bimodal lognormal hydraulic function

  19. Influence of ground parameters on the dynamic responses of anchored bedding rock slope

    NASA Astrophysics Data System (ADS)

    Yan, Zhi-xin; Gao, Le; Peng, Ningbo; Gao, Gang

    2013-10-01

    To research the influence of ground parameters on the dynamic responses of anchored bedding rock slope, a dynamic numerical simulation model of bedding rock slope with bolts was established using FLAC3D. The alteration of dynamic response with displacements and accelerations at monitoring points along the slope surface was set as analysis basis. The effects on dynamic responses of slope with different ground parameters, such as waves, frequencies and amplitudes were analyzed. It demonstrated great help for the dynamic stability analysis and slope design when it is supported with anchor under earthquake.

  20. Using IKONOS imagery for mapping instability factors and slope failures along a county road (Daunia, Italy)

    NASA Astrophysics Data System (ADS)

    Lamanna, C.; Casarano, D.; Wasowski, J.

    2009-04-01

    We report on the exploitation of high resolution optical imagery for the detection of slope conditions leading to instability and for mapping of active landslides along a road located in the Daunia Apennines (Southern Italy). The study area belongs to the municipal territory of Rocchetta Sant'Antonio and is known for recurrent landslide problems. We focus on 11 km long portion of SP99bis road, which has been damaged by many landslides and is currently closed to the traffic. This study is a part of an ongoing engineering geology investigation whose outcomes will be used to design future slope stabilization works. In order to obtain good quality data the IKONOS imagery was first orthorectified and pan-sharped. To overcome the lack of stereoscopic capability and to aid landslide identification, the imagery was draped over a detailed DEM (5 m grid). The image interpretation resulted in the recognition of 48 active landslides (some of small dimensions), which affect about 15% of the road length. Furthermore, thanks to the high resolution of the imagery it was possible to obtain very detailed information on water runoff in the areas upslope, downslope, as well as along the road track. Particular attention was paid to features indicative of the drainage conditions negative for the slope (and the road) stability, such as disordered surface drainage, water ponding, undrained depressions, anomalous wet areas. Poor drainage conditions (detected from satellite imagery) were found to coincide with 30 landslides. Further, in situ inspections conducted shortly after periods of intense rainfall confirmed that the hillslope areas in the vicinity the road landslides, as well as the road itself, are characterized by inadequate drainage. A comparison of field observations and remotely sensed data revealed that over 80% of the anomalous wet sites identified in situ was also detected from the satellite imagery. In conclusion, this case study demonstrates the practical applicability of

  1. The influence of somatosensory and muscular deficits on postural stabilization: Insights from an instrumented analysis of subjects affected by different types of Charcot-Marie-Tooth disease.

    PubMed

    Lencioni, Tiziana; Piscosquito, Giuseppe; Rabuffetti, Marco; Bovi, Gabriele; Calabrese, Daniela; Aiello, Alessia; Di Sipio, Enrica; Padua, Luca; Diverio, Manuela; Pareyson, Davide; Ferrarin, Maurizio

    2015-08-01

    Charcot-Marie-Tooth (CMT) disease is the most common hereditary neuromuscular disorder. CMT1 is primarily demyelinating, CMT2 is primarily axonal, and CMTX1 is characterized by both axonal and demyelinating abnormalities. We investigated the role of somatosensory and muscular deficits on quiet standing and postural stabilization in patients affected by different forms of CMT, comparing their performances with those of healthy subjects. Seventy-six CMT subjects (CMT1A, CMT2 and CMTX1) and 41 healthy controls were evaluated during a sit-to-stand transition and the subsequent quiet upright posture by means of a dynamometric platform. All CMT patients showed altered balance and postural stabilization compared to controls. Multivariate analysis showed that in CMT patients worsening of postural stabilization was related to vibration sense deficit and to dorsi-flexor's weakness, while quiet standing instability was related to the reduction of pinprick sensibility and to plantar-flexor's weakness. Our results show that specific sensory and muscular deficits play different roles in balance impairment of CMT patients, both during postural stabilization and in static posture. An accurate evaluation of residual sensory and muscular functions is therefore necessary to plan for the appropriate balance rehabilitation treatment for each patient, besides the CMT type.

  2. Rock slope instabilities in Norway: First systematic hazard and risk classification of 22 unstable rock slopes

    NASA Astrophysics Data System (ADS)

    Böhme, Martina; Hermanns, Reginald L.; Oppikofer, Thierry; Penna, Ivanna

    2016-04-01

    average displacement rates of up to 6 cm are measured with differential GNSS and InSAR. Cosmogenic nuclide dating suggests an acceleration of the present displacement compared to the average displacement since the initiation of the gravitational movement approximately 7000 years ago. Furthermore, there exists a pre-historic rock avalanche 3 km north along the same slope. These characteristics result in a very high hazard for the Gamanjunni unstable rock slope. The consequence analyses focus on the possibility of life loss only. For this the number of persons in the area that can be affected by either the rock slope failure itself and/or its secondary consequence of a displacement wave in case that a rock slope failure would hit a water body is estimated. For Gamanjunni the direct consequences are approximately 40 casualties, representing medium consequences. A total of 48 scenarios were finally analyzed for hazard, consequences and risk. The results are plotted in a risk matrix with 5 hazard and 5 consequence classes, leading to 4 risk classes. One unstable rock slope was classified as very high hazard, 9 scenarios as high hazard, 25 as medium hazard and 13 as low hazard, while none were classified as very low hazard. The consequence analyses for those scenarios resulted in 5 scenarios with very high consequences (>1000 potential casualties), 13 scenarios with high consequences (100-1000 casualties), 9 scenarios with medium consequences (10-100 casualties), 6 scenarios with low consequences (1-10 casualties) and 15 scenarios with very low consequences (0-1 casualties). This resulted in a high risk for 6 scenarios, medium to high risk for 16 scenarios, medium risk for 7 scenarios and low risk for 19 scenarios. These results allow determining which unstable rock slopes do not require further follow-up and on which further investigations and/or mitigation measures should be considered.

  3. Open pit slope deformation monitoring by fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Xu, Guoquan; Xiong, Daiyu; Duan, Yun; Cao, Xiaoshuang

    2015-01-01

    With microstrain resolution and the capability to sample at rates of 2000 Hz or higher, fiber Bragg grating (FBG) strain sensor offers exciting new possibilities for in situ deformation monitoring induced by blasting load in an open pit slope. Here, we are developing a new technology for measuring deformation in real time on the microstrain in an open pit slope during the blasting. A fiber optically instrumented rock mass strain sensor measured strain at 100-cm intervals along a two anchor rock bolt grouted in the slope intact rock mass. In field testing, a number of transient signals have been observed, which in some cases were large enough to trigger rapid sampling. The combination of short- and long-term observation offers new insight into the slope stability and blasting cumulative effects. Therefore, FBG sensors are a useful tool for measuring in situ strain in intact rock masses.

  4. Performance of the APS optical slope measuring system

    NASA Astrophysics Data System (ADS)

    Qian, Jun; Sullivan, Joe; Erdmann, Mark; Khounsary, Ali; Assoufid, Lahsen

    2013-05-01

    An optical slope measuring system (OSMS) was recently brought into operation at the Advanced Photon Source of the Argonne National Laboratory. This system is equipped with a precision autocollimator and a very accurate mirror-based pentaprism on a scanning stage and kept in an environment-controlled enclosure. This system has the capability to measure precision optics with sub-microradian rms slope errors as documented with a series of tests demonstrating accuracy, stability, reliability and repeatability. Measurements of a flat mirror with 0.2 μrad rms slope error are presented which show that the variation of the slope profile measurements with the mirror setting at different locations along the scanning direction is only 60 nrad and the corresponding height error profile has 2 nm rms.

  5. The shaping of continental slopes by internal tides

    USGS Publications Warehouse

    Cacchione, D.A.; Pratson, Lincoln F.; Ogston, A.S.

    2002-01-01

    The angles of energy propagation of semidiurnal internal tides may determine the average gradient of continental slopes in ocean basins (???2 to 4 degrees). Intensification of near-bottom water velocities and bottom shear stresses caused by reflection of semi-diurnal internal tides affects sedimentation patterns and bottom gradients, as indicated by recent studies of continental slopes off northern California and New Jersey. Estimates of bottom shear velocities caused by semi-diurnal internal tides are high enough to inhibit deposition of fine-grained sediment onto the slopes.

  6. The shaping of continental slopes by internal tides.

    PubMed

    Cacchione, D A; Pratson, L F; Ogston, A S

    2002-04-26

    The angles of energy propagation of semidiurnal internal tides may determine the average gradient of continental slopes in ocean basins (approximately 2 to 4 degrees). Intensification of near-bottom water velocities and bottom shear stresses caused by reflection of semi-diurnal internal tides affects sedimentation patterns and bottom gradients, as indicated by recent studies of continental slopes off northern California and New Jersey. Estimates of bottom shear velocities caused by semi-diurnal internal tides are high enough to inhibit deposition of fine-grained sediment onto the slopes. PMID:11976451

  7. [The absence of cyclin-dependent protein kinase Pho85 affects stability of mitochondrial DNA in yeast Saccharomyces cerevisiae].

    PubMed

    Fizikova, A Iu; Padkina, M V; Sambuk, E V

    2009-06-01

    The cyclin-dependent protein kinase Pho85 is involved in the regulation of phosphate metabolism in yeast Saccharomyces cerevisiae. Mutations in the PH085 gene lead to constitutive synthesis of Pho5 acidic phosphatase, a delay in cell growth on media containing nonfermentable carbon sources, and other pleiotropic effects. In this work, it was shown that the accumulation of respiratory incompetent cells occurs with high frequency in strains carrying pho85 mutations as early as during the first cell divisions, and the number of these cells at the early logarithmic growth phase of the culture promptly reaches virtually 100%. Cytological analysis revealed a high accumulation rate of [rho(0)] cells the background of gene pho85 that may be related to disturbances in the distribution of mitochondrial nucleoids rather than to changes in morphology of mitochondria and a delay in their transport into the bud. Genetic analysis revealed that the appearing secondary mutations pho4, pho81, pho84, and pho87 stabilize nucleoids and hamper the loss of mitochondrial DNA caused by pho85. These results provide evidence for the influence of intracellular phosphate concentration on the inheritance of mitochondrial nucleoids, but it is fully probable that the occurrence of mutation pho4 in the background of gene pho85 may change the expression level of other genes required for the stabilization of mitochondrial functions.

  8. Longevity and Developmental Stability in the Dung Fly Sepsis cynipsea, as Affected by the Ectoparasitic Mite, Pediculoides mesembrinae

    PubMed Central

    Martin, Oliver Y.; Hosken, David J.

    2009-01-01

    Fluctuating asymmetry (FA) is a widely employed measure of developmental stability. It has been found to increase with many stressors including parasite infection. Associations between parasites and FA may exist for several reasons in addition to parasites being the direct cause of increased FA. Developmentally stable individuals may have superior immune systems, and be less susceptible to parasite infection, and/or may be less exposed to parasites than developmentally unstable ones. Mites negatively impact host fitness in a number of insects, and if FA is a reflection of general genetic quality, as has been proposed, associations between mite number and FA are predicted. Potential relationships were investigated between an ectoparasitic mite, Pediculoides mesembrinae (Canestrini) (Phthiraptera: Menoponidae) and FA in the common dung fly Sepsis cynipsea (L.) (Diptera: Sepsidae). While it was found that mite infested flies died much faster than flies without mites, indicating that mites indeed stress their hosts, counter to expectations, no associations between mites and FA were found in any analyses. Additionally, FA in mite-infected flies generally did not differ from previously published FA data from uninfected S. cynipsea. Nevertheless, parasitized males tended to be somewhat less asymmetrical than non-parasitized males, but based on our data, it does not appear that mite infestation is generally associated with developmental stability in S. cynipsea. PMID:20053121

  9. North Slope (Wahluke Slope) expedited response action cleanup plan

    SciTech Connect

    Not Available

    1994-02-01

    The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi{sup 2} (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part of the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives.

  10. How do changes in the Diurnal Cycle affect Bi-stability and Climate Sensitivity in the Habitable Zone?

    NASA Astrophysics Data System (ADS)

    Boschi, R.; Valerio, L.

    2013-09-01

    In this study we deal with the effect of varying the length of the diurnal cycle on its bi-stability properties. By using a general circulation model, PlaSim, we consider several values for the diurnal cycle, from tidally locked, to that of 1 Earth day. For each value of the diurnal cycle, we slowly modulate the solar constant between 1510 and 1000 Wm-2 and perform a hysteresis experiment. It is found that the width of the bi-stable region, i.e. the range of climate states - determined here by changes in S* - which support two climatic attractors, reduces when the diurnal cycle is increased in length and disappears - signifying the merging of both attractors - for climates with a diurnal cycle greater than 180 days. Crucial to the loss of bi-stability is the longitudinally asymmetric distribution of solar radiation, incident on the planet's surface, leading to the development of equatorial sea-ice. For diurnal cycles where bi-stability is found, the longitudinally asymmetric heating is sufficiently compensated for by the strength of the zonal winds and the rate of solar distribution, which redistribute heat and maintain the meridional temperature gradient across all longitudes. Conversely, for mono-stable regimes, the energy transport associated with zonal winds becomes insufficient to compensate for the increase in the length of the diurnal cycle, resulting in large zonal temperature gradients along the equatorial band. Furthermore, the results found here confirm and reenforce the robustness of those found in Boschi et al (2013), showing that, for climates which support bistability, it may be possible to parameterise variables such as the material entropy production and the meridional heat transport in terms of the surface and emission temperatures, within reasonably well defined upper and lower bounds, even when considering a wide range of planetary rotation speeds and changes to the infrared opacity. This paves the way for the possibility of practically deducing

  11. Deciphering the Dynamics of Non-Covalent Interactions Affecting Thermal Stability of a Protein: Molecular Dynamics Study on Point Mutant of Thermus thermophilus Isopropylmalate Dehydrogenase.

    PubMed

    Sharma, Reetu; Sastry, G Narahari

    2015-01-01

    Thermus thermophilius isopropylmalate dehydrogenase catalyzes oxidative decarboxylation and dehydrogenation of isopropylmalate. Substitution of leucine to alanine at position 172 enhances the thermal stability among the known point mutants. Exploring the dynamic properties of non-covalent interactions such as saltbridges, hydrogen bonds and hydrophobic interactions to explain thermal stability of a protein is interesting in its own right. In this study dynamic changes in the non-covalent interactions are studied to decipher the deterministic features of thermal stability of a protein considering a case study of a point mutant in Thermus thermophilus isopropylmalate dehydrogenase. A total of four molecular dynamic simulations of 0.2 μs were carried out on wild type and mutant's functional dimers at 300 K and 337 K. Higher thermal stability of the mutant as compared to wild type is revealed by root mean square deviation, root mean square fluctuations and Cα-Cα distance with an increase in temperature from 300 K to 337 K. Most of the regions of wild type fluctuate higher than the corresponding regions of mutant with an increase in temperature. Cα-Cα distance analysis suggests that long distance networks are significantly affected in wild type as compared to the mutant. Short lived contacts are higher in wild type, while long lived contacts are lost at 337 K. The mutant forms less hydrogen bonds with water as compared to wild type at 337 K. In contrast to wild type, the mutant shows significant increase in unique saltbridges, hydrogen bonds and hydrophobic contacts at 337 K. The current study indicates that there is a strong inter-dependence of thermal stability on the way in which non-covalent interactions reorganize, and it is rewarding to explore this connection in single mutant studies. PMID:26657745

  12. Deciphering the Dynamics of Non-Covalent Interactions Affecting Thermal Stability of a Protein: Molecular Dynamics Study on Point Mutant of Thermus thermophilus Isopropylmalate Dehydrogenase.

    PubMed

    Sharma, Reetu; Sastry, G Narahari

    2015-01-01

    Thermus thermophilius isopropylmalate dehydrogenase catalyzes oxidative decarboxylation and dehydrogenation of isopropylmalate. Substitution of leucine to alanine at position 172 enhances the thermal stability among the known point mutants. Exploring the dynamic properties of non-covalent interactions such as saltbridges, hydrogen bonds and hydrophobic interactions to explain thermal stability of a protein is interesting in its own right. In this study dynamic changes in the non-covalent interactions are studied to decipher the deterministic features of thermal stability of a protein considering a case study of a point mutant in Thermus thermophilus isopropylmalate dehydrogenase. A total of four molecular dynamic simulations of 0.2 μs were carried out on wild type and mutant's functional dimers at 300 K and 337 K. Higher thermal stability of the mutant as compared to wild type is revealed by root mean square deviation, root mean square fluctuations and Cα-Cα distance with an increase in temperature from 300 K to 337 K. Most of the regions of wild type fluctuate higher than the corresponding regions of mutant with an increase in temperature. Cα-Cα distance analysis suggests that long distance networks are significantly affected in wild type as compared to the mutant. Short lived contacts are higher in wild type, while long lived contacts are lost at 337 K. The mutant forms less hydrogen bonds with water as compared to wild type at 337 K. In contrast to wild type, the mutant shows significant increase in unique saltbridges, hydrogen bonds and hydrophobic contacts at 337 K. The current study indicates that there is a strong inter-dependence of thermal stability on the way in which non-covalent interactions reorganize, and it is rewarding to explore this connection in single mutant studies.

  13. Deciphering the Dynamics of Non-Covalent Interactions Affecting Thermal Stability of a Protein: Molecular Dynamics Study on Point Mutant of Thermus thermophilus Isopropylmalate Dehydrogenase

    PubMed Central

    Sharma, Reetu; Sastry, G. Narahari

    2015-01-01

    Thermus thermophilius isopropylmalate dehydrogenase catalyzes oxidative decarboxylation and dehydrogenation of isopropylmalate. Substitution of leucine to alanine at position 172 enhances the thermal stability among the known point mutants. Exploring the dynamic properties of non-covalent interactions such as saltbridges, hydrogen bonds and hydrophobic interactions to explain thermal stability of a protein is interesting in its own right. In this study dynamic changes in the non-covalent interactions are studied to decipher the deterministic features of thermal stability of a protein considering a case study of a point mutant in Thermus thermophilus isopropylmalate dehydrogenase. A total of four molecular dynamic simulations of 0.2 μs were carried out on wild type and mutant’s functional dimers at 300 K and 337 K. Higher thermal stability of the mutant as compared to wild type is revealed by root mean square deviation, root mean square fluctuations and Cα-Cα distance with an increase in temperature from 300 K to 337 K. Most of the regions of wild type fluctuate higher than the corresponding regions of mutant with an increase in temperature. Cα-Cα distance analysis suggests that long distance networks are significantly affected in wild type as compared to the mutant. Short lived contacts are higher in wild type, while long lived contacts are lost at 337 K. The mutant forms less hydrogen bonds with water as compared to wild type at 337 K. In contrast to wild type, the mutant shows significant increase in unique saltbridges, hydrogen bonds and hydrophobic contacts at 337 K. The current study indicates that there is a strong inter-dependence of thermal stability on the way in which non-covalent interactions reorganize, and it is rewarding to explore this connection in single mutant studies. PMID:26657745

  14. The forkhead transcription factor Foxl2 is sumoylated in both human and mouse: sumoylation affects its stability, localization, and activity.

    PubMed

    Marongiu, Mara; Deiana, Manila; Meloni, Alessandra; Marcia, Loredana; Puddu, Alessandro; Cao, Antonio; Schlessinger, David; Crisponi, Laura

    2010-01-01

    The FOXL2 forkhead transcription factor is expressed in ovarian granulosa cells, and mutated FOXL2 causes the blepharophimosis, ptosis and epicanthus inversus syndrome (BPES) and predisposes to premature ovarian failure. Inactivation of Foxl2 in mice demonstrated its indispensability for female gonadal sex determination and ovary development and revealed its antagonism of Sox9, the effector of male testis development. To help to define the regulatory activities of FOXL2, we looked for interacting proteins. Based on yeast two-hybrid screening, we found that FOXL2 interacts with PIAS1 and UBC9, both parts of the sumoylation machinery. We showed that human FOXL2 is sumoylated in transfected cell lines, and that endogenous mouse Foxl2 is comparably sumoylated. This modification changes its cellular localization, stability and transcriptional activity. It is intriguing that similar sumoylation and regulatory consequences have also been reported for SOX9, the male counterpart of FOXL2 in somatic gonadal tissues. PMID:20209145

  15. How dangerous are slope failures offshore western Thailand (Andaman Sea, Indian Ocean)?

    NASA Astrophysics Data System (ADS)

    Schwab, J.; Krastel, S.; Grün, M.; Gross, F.; Pananont, P.; Jintasaeranee, P.; Bunsomboonsakul, S.; Weinrebe, W.; Winkelmann, D.

    2012-12-01

    The Thai west coast is well known for being hit by tsunami waves triggered by earthquakes arising from the nearby Sunda Trench. However, so far little has been known about additional factors that may trigger tsunamis in the area, such as submarine landslides at the shelf slope area. In order to assess the stability of the slope and evaluate the tsunamigenic potential of submarine landslides off western Thailand, 2D seismic data from the top and the western slope of a bathymetric high (Mergui Ridge about 200 km off the Thai west coast) have been investigated. These data were the basis for mapping locations and approximate volumes of mass transport deposits (MTDs). In total, 17 mass transport deposits were found. The estimated minimum volumes of individual MTDs range between 0.3 cbkm and 14 cbkm. MTDs have been identified in three different settings: i) stacked MTDs within disturbed and faulted basin sediments at the transition of the Mergui Ridge to the adjacent East Andaman Basin, ii) MTDs within a pile of drift sediments at the basin-ridge transition, and iii) MTDs near the edge of/on top of Mergui Ridge in relatively shallow water depths (<1000m). Our data indicate that the Mergui Ridge-slope area seems to have been generally unstable. Slide events occurred repeatedly and slope failures may occur again in the future. We find that the most likely causes for slope instabilities are the presence of unstable drift sediments, excess pore pressure in the sediments, and active tectonics. Most MTDs are located in large water depths (> 1000 m) and/or comprise small volumes; hence it is very unlikely that they triggered significant tsunamis in the past. Moreover, the recurrence rates of failure events seem to be low. Some MTDs with tsunami potential, however, have been identified on top of Mergui Ridge in water depths below 1000 m. Mass-wasting events that may occur in the future at similar locations do have a tsunami potential if they comprise sufficient volumes

  16. Risk assessment and management of unstable slopes on the national forest estate in Scotland

    NASA Astrophysics Data System (ADS)

    Humphreys, M.; Nettelton, I.; Leech, K.

    2015-09-01

    The National Forest Estate in Scotland has a wide range of geotechnical hazards present, primarily landslides, which may cause a significant risk to people and key infrastructure. UK land owners are increasingly required to understand the risks associated with their land and how their activities may affect landsliding and, in particular, where landslides originating from their land may impact third party assets. A Geographic Information System (GIS) based landslide susceptibility assessment by the British Geological Survey (BGS) identified a number of sites in the National Forest Estate as being susceptible to landslide hazards. Coffey Geotechnics Ltd and the BGS are currently undertaking “ground- truthing” of selected sites to identify and characterise the hazards, pathways and elements at risk. A “Slope Stability Appraisal of Risk” system was used to assign a risk category to areas identified during the “ground-truthing” phase which need to be managed. This system is based on the combination of hazards, receptor type, vulnerability and pathway in a similar manner to that of the Australian Geomechanics Society. A long term strategy for risk management of unstable slopes is under development by Forestry Commission Scotland to provide strategic guidance on future land management and guidance for existing felled sites. Options for risk management include: maintenance of existing systems i.e. drainage; silviculture where establishment of woodland can assist in slope stabilisation; and engineering works such as barrier systems, retaining structures and rock remedial works.

  17. Design modifications of the uncemented Furlong hip stem result in minor early subsidence but do not affect further stability

    PubMed Central

    Weber, Erik; Sundberg, Martin; Flivik, Gunnar

    2014-01-01

    Background and purpose — Even small design modifications of uncemented hip stems may alter the postoperative 3-D migration pattern. The Furlong Active is an uncemented femoral stem which, in terms of design, is based on its precursor—the well-proven Furlong HAC—but has undergone several design changes. The collar has been removed on the Active stem along with the lateral fin; it is shorter and has more rounded edges in the proximal part. We compared the migration patterns of the uncemented Furlong HAC stem and the modified Furlong Active stem in a randomized, controlled trial over 5 years using radiostereometry (RSA). Patients and methods — 50 patients with primary osteoarthritis were randomized to receive either the HAC stem or the Active stem. The patients underwent repeated RSA examinations (postoperatively, at 3 months, and after 1, 2, and 5 years) and conventional radiography, and they also filled out hip-specific questionnaires. Results — During the first 3 months, the collarless Active stem subsided to a greater extent than the collar-fitted HAC stem (0.99 mm vs. 0.31 mm, p = 0.05). There were, however, no other differences in movement measured by RSA or in clinical outcome between the 2 stems. After 3 months, both stem types had stabilized and almost no further migration was seen. Interpretation — The Active stem showed no signs of unfavorable migration. Our results suggest that the osseointegration is not compromised by the new design features. PMID:25175668

  18. ALS as a distal axonopathy: molecular mechanisms affecting neuromuscular junction stability in the presymptomatic stages of the disease

    PubMed Central

    Moloney, Elizabeth B.; de Winter, Fred; Verhaagen, Joost

    2014-01-01

    Amyotrophic Lateral Sclerosis (ALS) is being redefined as a distal axonopathy, in that many molecular changes influencing motor neuron degeneration occur at the neuromuscular junction (NMJ) at very early stages of the disease prior to symptom onset. A huge variety of genetic and environmental causes have been associated with ALS, and interestingly, although the cause of the disease can differ, both sporadic and familial forms of ALS show a remarkable similarity in terms of disease progression and clinical manifestation. The NMJ is a highly specialized synapse, allowing for controlled signaling between muscle and nerve necessary for skeletal muscle function. In this review we will evaluate the clinical, animal experimental and cellular/molecular evidence that supports the idea of ALS as a distal axonopathy. We will discuss the early molecular mechanisms that occur at the NMJ, which alter the functional abilities of the NMJ. Specifically, we focus on the role of axon guidance molecules on the stability of the cytoskeleton and how these molecules may directly influence the cells of the NMJ in a way that may initiate or facilitate the dismantling of the neuromuscular synapse in the presymptomatic stages of ALS. PMID:25177267

  19. Binding stoichiometry and affinity of the manganese-stabilizing protein affects redox reactions on the oxidizing side of photosystem II.

    PubMed

    Roose, Johnna L; Yocum, Charles F; Popelkova, Hana

    2011-07-12

    It has been reported previously that the two subunits of PsbO, the photosystem II (PSII) manganese stabilizing protein, have unique functions in relation to the Mn, Ca(2+), and Cl(-) cofactors in eukaryotic PSII [Popelkova; (2008) Biochemistry 47, 12593]. The experiments reported here utilize a set of N-terminal truncation mutants of PsbO, which exhibit altered subunit binding to PSII, to further characterize its role in establishing efficient O(2) evolution activity. The effects of PsbO binding stoichiometry, affinity, and specificity on Q(A)(-) reoxidation kinetics after a single turnover flash, S-state transitions, and O(2) release time have been examined. The data presented here show that weak rebinding of a single PsbO subunit to PsbO-depleted PSII repairs many of the defects in PSII resulting from the removal of the protein, but many of these are not sustainable, as indicated by low steady-state activities of the reconstituted samples [Popelkova; (2003) Biochemistry 42 , 6193]. High affinity binding of PsbO to PSII is required to produce more stable and efficient cycling of the water oxidation reaction. Reconstitution of the second PsbO subunit is needed to further optimize redox reactions on the PSII oxidizing side. Native PsbO and recombinant wild-type PsbO from spinach facilitate PSII redox reactions in a very similar manner, and nonspecific binding of PsbO to PSII has no significance in these reactions.

  20. Storage Stability of Kinnow Fruit (Citrus reticulata) as Affected by CMC and Guar Gum-Based Silver Nanoparticle Coatings.

    PubMed

    Shah, Syed Wasim Ahmad; Jahangir, Muhammad; Qaisar, Muhammad; Khan, Sher Aslam; Mahmood, Talat; Saeed, Muhammad; Farid, Abid; Liaquat, Muhammad

    2015-01-01

    The influence of carboxy methyl cellulose (CMC) and guargum-based coatings containing silver nanoparticles was studied on the postharvest storage stability of the kinnow mandarin (Citrus reticulata cv. Blanco) for a period of 120 days (85%-90% relative humidity) at 4 °C and 10 °C. Physicochemical and microbiological qualities were monitored after every 15 days of storage. Overall results revealed an increase in total soluble solid (TSS), total sugars, reducing sugars and weight loss but this increase was comparatively less significant in coated fruits stored at 4 °C. Ascorbic acid, total phenolics, and antioxidant activity was significantly enhanced in coated fruits stored at 4 °C. Titratable acidity significantly decreased during storage except for coated kinnow stored at 4 °C. In control samples stored at 10 °C, high intensity of fruit rotting and no chilling injury was observed. Total aerobic psychrotrophic bacteria and yeast and molds were noticed in all treatments during storage but the growth was not significant in coated fruits at 4 °C. Kinnow fruit can be kept in good quality after coating for four months at 4 °C and for 2 months at 10 °C. PMID:26694344

  1. Frying stability of high oleic sunflower oils as affected by composition of tocopherol isomers and linoleic acid content.

    PubMed

    Aladedunye, Felix; Przybylski, Roman

    2013-12-01

    The influence of linoleic acid content and tocopherol isomeric composition on the frying performance of high oleic sunflower oil was evaluated during a 14-day restaurant style frying operation. At equal linoleic acid content, no significant difference was observed between high oleic sunflower oil containing only α-tocopherol and the sample containing a mixture of α-, γ-, and δ-isomers as measured by the amount of total polar components, oligomers, anisidine value, and free fatty acids. On the contrary, at similar tocopherol isomeric composition, high oleic sunflower oil containing lower amount of linoleic acid showed superior frying stability compared to the sample with a higher content of linoleic acid, suggesting that the frying performance of high oleic sunflower oil is dictated primarily by the level of linoleic acid, with the tocopherol isomeric composition of the oil having no significant influence. In all oil samples, the loss of γ-tocopherol was higher than the corresponding loss of α-tocopherol. PMID:23870970

  2. Cytoplasmic factors that affect the intensity and stability of bioluminescence from firefly luciferase in living mammalian cells.

    PubMed

    Gandelman, O; Allue, I; Bowers, K; Cobbold, P

    1994-01-01

    In order to improve calibration of firefly luciferase signals obtained by injecting the enzyme into single, isolated heart and liver cells we have investigated why the luminescence from cells is greatly depressed compared with in vitro (in mammalian ionic milieu) and why the decay of the intracellular signal is remarkably slow. We have shown that inorganic pyrophosphatase greatly depresses the signal in vitro and that micromolar concentrations of inorganic pyrophosphate, comparable with that in cytoplasm, reverse this inhibition and stabilize the signal, eliminating its decay. Higher concentrations of pyrophosphate depress the signal by inhibiting ATP-binding to luciferase. Luciferase-injected cells exposed to extracellular luciferin concentrations above about 100 mumol/l (corresponding to a cytoplasmic level of c. 5-10 mumol/l because of a transplasmalemmal gradient) show a gradual, irreversible loss of signal. We attribute this phenomenon (which is not seen in vitro) to the gradual accumulation of a luminescently inactive, irreversible, luciferase-oxyluciferin complex. At low luciferin levels this complex is prevented from forming by cytoplasmic pyrophosphate. Above c. 100 mumol/l extracellular luciferin, the pyrophosphate level in the cytoplasm fails to fully prevent the complex forming. In vitro this phenomenon does not occur because the luciferase concentrations and hence oxyluciferin levels are orders of magnitude lower than in cells injected with concentrated luciferase solutions, which have a cytoplasmic luciferase concentration of approximately 2-4 mumol/l.

  3. Buoyant Turbulent Kinetic Energy Production in Steep-Slope Katabatic Flow

    NASA Astrophysics Data System (ADS)

    Oldroyd, Holly J.; Pardyjak, Eric R.; Higgins, Chad W.; Parlange, Marc B.

    2016-07-01

    We develop several critical concepts that should be considered when interpreting, modelling and designing future experiments for flows over sloping terrain. Vertical buoyancy fluxes in katabatic flows can be positive and a source of turbulent kinetic energy (TKE) despite the statically stable, thermal stratification that drives these flows. This phenomenon occurs when the ratio of along-slope to slope-normal kinematic heat fluxes is greater than the cotangent of the slope angle, suggesting a critical value of slope-angle steepness found in earlier studies. We provide field-data-based evidence that the along-slope heat flux may dominate the variables in this inequality, and therefore in generating buoyant TKE production or suppression over a steep slope. These data show the along-slope heat flux can be more variable and significantly larger in magnitude than the slope-normal component. The gradient Richardson number does not include the effects of the along-slope buoyancy; furthermore, none of the canonical stability parameters can properly reflect the TKE redistribution from turbulent transport divergence and the sink of TKE in cases of counter-gradient momentum fluxes, which we frequently observe near the peak of the katabatic jet. In such cases, canonical stability parameters inadequately represent the physical mechanisms associated with stability. These results have broad implications related to accurately modelling turbulence and surface exchanges over sloping terrain and illustrate the need to more thoroughly investigate the along-slope heat flux and its drivers, the meaning and definitions of stability, and the effects of non-local turbulent transport.

  4. Anatomy of gravitationally deformed slopes

    NASA Astrophysics Data System (ADS)

    Chigira, Masahiro; Yamasaki, Shintaro; Hariyama, Takehiro

    2010-05-01

    Deep-seated gravitational slope deformation is the deformation of rocks as well as slope surfaces, but the internal structures have not been well observed and described before. This is mainly due to the difficulty in obtaining undisturbed samples from underground. We analyzed the internal deformational structures of gravitationally deformed slopes by using high quality drilled cores obtained by hybrid drilling technique, which has been recently developed and can recover very fragile materials that could not be taken by the conventional drilling techniques. Investigated slopes were gravitationally deformed out-facing slopes of pelitic schist and shale. The slope surfaces showed deformational features of small steps, depressions, knobs, and linear depressions, but had no major main scarp and landslide body with well-defined outline. This is indicative of slow, deep-seated gravitational deformation. Most of these small deformational features are hidden by vegetations, but they are detected by using airborne laser scanner. Drilled cores showed that the internal deformation is dominated by the slip and tearing off along foliations. Slippage along foliations is conspicuous in pelitic schist: Pelitic schist is sheared, particularly along black layers, which are rich in graphite and pyrite. Graphite is known to be a solid lubricant in material sciences, which seems to be why shearing occurs along the black layers. Rock mass between two slip layers is sheared, rotated, fractured, and pulverized; undulation of bedding or schistosity could be the nucleation points of fracturing. Tearing off along foliations is also the major deformation mode, which forms jagged morphology of rock fragments within shear zones. Rock fragments with jagged surface are commonly observed in "gouge", which is very different from tectonic gouge. This probably reflects the low confining pressures during their formation. Microscopic to mesoscopic openings along fractures are commonly observed with

  5. LogN-logS slope determination in imaging X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Maccacaro, Tommaso; Romaine, Suzanne; Schmitt, H. M. M.

    1987-01-01

    The problem of estimating the slope of the number-counts relations for the specific case of imaging X-ray surveys is briefly discussed. Results have been obtained from extensive simulations of Einstein Observatory imaging X-ray data. It is concluded that the bias which affects the X-ray number-counts slope determination is much smaller than that which affects the radio number-counts slope.

  6. Evaluating factors affecting the permeability of emulsions used to stabilize radioactive contamination from a radiological dispersal device.

    PubMed

    Fox, Garey A; Medina, Victor F

    2005-05-15

    Present strategies for alleviating radioactive contamination from a radiological dispersal device (RDD) or dirty bomb involve either demolishing and removing radioactive surfaces or abandoning portions of the area near the release point. In both cases, it is imperative to eliminate or reduce migration of the radioisotopes until the cleanup is complete or until the radiation has decayed back to acceptable levels. This research investigated an alternative strategy of using emulsions to stabilize radioactive particulate contamination. Emergency response personnel would coat surfaces with emulsions consisting of asphalt or tall oil pitch to prevent migration of contamination. The site can then be evaluated and cleaned up as needed. In order for this approach to be effective, the treatment must eliminate migration of the radioactive agents in the terror device. Water application is an environmental condition that could promote migration into the external environment. This research investigated the potential for water, and correspondingly contaminant, migration through two emulsions consisting of Topein, a resinous byproduct during paper manufacture. Topein C is an asphaltic-based emulsion and Topein S is a tall oil pitch, nonionic emulsion. Experiments included water adsorption/ mobilization studies, filtration tests, and image analysis of photomicrographs from an environmental scanning electron microscope (ESEM) and a stereomicroscope. Both emulsions were effective at reducing water migration. Conductivity estimates were on the order of 10(-80) cm s(-1) for Topein C and 10(-7) cm s(-1) for Topein S. Water mobility depended on emulsion flocculation and coalescence time. Photomicrographs indicate that Topein S consisted of greater and more interconnected porosity. Dilute foams of isolated spherical gas cells formed when emulsions were applied to basic surfaces. Gas cells rose to the surface and ruptured, leaving void spaces that penetrated throughout the emulsion. These

  7. Experimentally increased temperature and hypoxia affect stability of social hierarchy and metabolism of the Amazonian cichlid Apistogramma agassizii.

    PubMed

    Kochhann, Daiani; Campos, Derek Felipe; Val, Adalberto Luis

    2015-12-01

    The primary goal of this study was to understand how changes in temperature and oxygen could influence social behaviour and aerobic metabolism of the Amazonian dwarf cichlid Apistogramma agassizii. Social hierarchies were established over a period of 96h by observing the social interactions, feeding behaviour and shelter use in groups of four males. In the experimental environment, temperature was increased to 29°C in the high-temperature treatment, and oxygen lowered to 1.0mg·L(-1)O2 in the hypoxia treatment. Fish were maintained at this condition for 96h. The control was maintained at 26°C and 6.6mg·L(-1)O2. After the experimental exposure, metabolism was measured as routine metabolic rate (RMR) and electron transport system (ETS) activity. There was a reduction in hierarchy stability at high-temperature. Aggression changed after environmental changes. Dominant and subdominant fish at high temperatures increased their biting, compared with control-dominant. In contrast, hypoxia-dominant fish decreased their aggressive acts compared with all other fish. Shelter use decreased in control and hypoxic dominant fish. Dominant fish from undisturbed environments eat more than their subordinates. There was a decrease of RMR in fish exposed to the hypoxic environment when compared with control or high-temperature fish, independent of social position. Control-dominant fish had higher RMR than their subordinates. ETS activity increased in fish exposed to high temperatures; however, there was no effect on social rank. Our study reinforces the importance of environmental changes for the maintenance of hierarchies and their characteristics and highlights that most of the changes occur in the dominant position. PMID:26387464

  8. Public transit bus ramp slopes measured in situ.

    PubMed

    Bertocci, Gina; Frost, Karen; Smalley, Craig

    2014-05-01

    Abstract Purpose: The slopes of fixed-route bus ramps deployed for wheeled mobility device (WhMD) users during boarding and alighting were assessed. Measured slopes were compared to the proposed Americans with Disabilities Act (ADA) maximum allowable ramp slope. Methods: A ramp-embedded inclinometer measured ramp slope during WhMD user boarding and alighting on a fixed-route transit bus. The extent of bus kneeling was determined for each ramp deployment. In-vehicle video surveillance cameras captured ramp deployment level (street versus sidewalk) and WhMD type. Results: Ramp slopes ranged from -4° to 15.5° with means of 4.3° during boarding (n = 406) and 4.2° during alighting (n = 405). Ramp slope was significantly greater when deployed to street level. During boarding, the proposed ADA maximum allowable ramp slope (9.5°) was exceeded in 66.7% of instances when the ramp was deployed to street level, and in 1.9% of instances when the ramp was deployed to sidewalk level. During alighting, the proposed ADA maximum allowable slope was exceeded in 56.8% of instances when the ramp was deployed to street level and in 1.4% of instances when the ramp was deployed to sidewalk level. Conclusions: Deployment level, built environment and extent of bus kneeling can affect slope of ramps ascended/descended by WhMD users when accessing transit buses. Implications for Rehabilitation Since public transportation services are critical for integration of wheeled mobility device (WhMD) users into the community and society, it is important that they, as well as their therapists, are aware of conditions that may be encountered when accessing transit buses. Knowledge of real world ramp slope conditions that may be encountered when accessing transit buses will allow therapists to better access capabilities of WhMD users in a controlled clinical setting. Real world ramp slope conditions can be recreated in a clinical setting to allow WhMD users to develop and practice necessary

  9. A GLE multi-block model for the evaluation of seismic displacements of slopes

    SciTech Connect

    Bandini, V.; Cascone, E.; Biondi, G.

    2008-07-08

    The paper describes a multi-block displacement model for the evaluation of seismic permanent displacements of natural slopes with slip surface of general shape. A rigorous limit equilibrium method of stability analysis is considered and an application to an ideal clay slope is presented including the effect of excess pore pressure build-up on the displacement response.

  10. Western Slope of Andes, Peru

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Along the western flank of the Andes, 400 km SE of Lima Peru, erosion has carved the mountain slopes into long, narrow serpentine ridges. The gently-sloping sediments have been turned into a plate of worms wiggling their way downhill to the ocean.

    The image was acquired September 28, 2004, covers an area of 38 x 31.6 km, and is located near 14.7 degrees south latitude, 74.5 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  11. A rill erosion-vegetation modeling approach for the evaluation of slope reclamation success in water-limited environments

    NASA Astrophysics Data System (ADS)

    Moreno de las Heras, Mariano; Diaz Sierra, Ruben; Nicolau, Jose M.; Zavala, Miguel A.

    2013-04-01

    Slope reclamation from surface mining and road construction usually shows important constraints in water-limited environments. Soil erosion is perceived as a critical process, especially when rill formation occurs, as rills can condition the spatial distribution and availability of soil moisture for plant growth, hence affecting vegetation development. On the other hand, encouraging early vegetation establishment is essential to reduce the risk of degradation in these man-made systems. This work describes a modeling approach focused on stability analysis of water-limited reclaimed slopes, where interactive relationships between rill erosion and vegetation regulate ecosystem stability. Our framework reproduces two main groups of trends along the temporal evolution of reclaimed slopes: successful trends, characterized by widespread vegetation development and the effective control of rill erosion processes; and gullying trends, characterized by the progressive loss of vegetation and a sharp logistic increase in erosion rates. Furthermore, this analytical approach allows the determination of threshold values for both vegetation cover and rill erosion that drive the system's stability, facilitating the identification of critical situations that require specific human intervention (e.g. revegetation or, in very problematic cases, revegetation combined with rill network destruction) to ensure the long-term sustainability of the restored ecosystem. We apply our threshold analysis framework in Mediterranean-dry reclaimed slopes derived form surface coal mining (the Teruel coalfield in central-east Spain), obtaining a good field-based performance. Therefore, we believe that this model is a valuable contribution for the management of water-limited reclaimed systems, as it can play an important role in decision-making during ecosystem restoration and provides a tool for the assessment of restoration success in severely disturbed landscapes.

  12. Performance of rabbits and oxidative stability of muscle tissues as affected by dietary supplementation with oregano essential oil.

    PubMed

    Botsoglou, N A; Florou-Paneri, P; Christaki, E; Giannenas, I; Spais, A B

    2004-06-01

    The effect of dietary supplementation with oregano essential oil on the performance of rabbits, and the susceptibility of the produced raw and thermally treated muscle tissue to lipid oxidation during refrigerated storage, were investigated. A total of 96 weaned rabbits were separated into four equal groups with three subgroups each. One group was given the basal diet and served as control, two groups were administered diets supplemented with oregano essential oil at levels of 100 and 200 mg/kg diet, whereas the remaining group was given a diet supplemented with alpha-tocopheryl acetate at 200 mg/kg. During the 42-day experimental period, body weight and feed intake were recorded weekly and the feed conversion ratio was calculated. Feeding the experimental diets to rabbits, performance parameters were not affected. Therefore, dietary oregano essential oil exerted no growth-promoting effect on rabbits. With increased supplementation of oregano essential oil, malondialdehyde values decreased in both raw and thermally treated muscles during refrigerated storage. This finding suggests that dietary oregano essential oil exerted a significant antioxidant effect. Dietary supplementation of oregano essential oil at the level of 200 mg/kg was more effective in delaying lipid oxidation compared with the level of 100 mg/kg, but inferior to dietary supplementation of 200 mg alpha-tocopheryl acetate per kg. This study indirectly provides evidence that antioxidant compounds occurring in oregano essential oil were absorbed by the rabbit and increased the antioxidative capacity of tissues. PMID:15264670

  13. Factors affecting individual foraging specialization and temporal diet stability across the range of a large “generalist” apex predator

    USGS Publications Warehouse

    Rosenblatt, Adam E.; Nifong, James C.; Heithaus, Michael R.; Mazzotti, Frank J.; Cherkiss, Michael S.; Jeffery, Brian M.; Elsey, Ruth M.; Decker, Rachel A.; Silliman, Brian R.; Guillette, Louis J.; Lowers, Russell H.; Larson, Justin C.

    2015-01-01

    Individual niche specialization (INS) is increasingly recognized as an important component of ecological and evolutionary dynamics. However, most studies that have investigated INS have focused on the effects of niche width and inter- and intraspecific competition on INS in small-bodied species for short time periods, with less attention paid to INS in large-bodied reptilian predators and the effects of available prey types on INS. We investigated the prevalence, causes, and consequences of INS in foraging behaviors across different populations of American alligators (Alligator mississippiensis), the dominant aquatic apex predator across the southeast US, using stomach contents and stable isotopes. Gut contents revealed that, over the short term, although alligator populations occupied wide ranges of the INS spectrum, general patterns were apparent. Alligator populations inhabiting lakes exhibited lower INS than coastal populations, likely driven by variation in habitat type and available prey types. Stable isotopes revealed that over longer time spans alligators exhibited remarkably consistent use of variable mixtures of carbon pools (e.g., marine and freshwater food webs). We conclude that INS in large-bodied reptilian predator populations is likely affected by variation in available prey types and habitat heterogeneity, and that INS should be incorporated into management strategies to efficiently meet intended goals. Also, ecological models, which typically do not consider behavioral variability, should include INS to increase model realism and applicability.

  14. Shaking and Sliding: Timing, Magnitudes and Locations of Paleoearthquakes Revealed by Slope Instabilities in Lakes.

    NASA Astrophysics Data System (ADS)

    Strasser, M.; Anselmetti, F. S.; Bussmann, F.; Faeh, D.; Giardini, D.; Rick, B.; Stegmann, S.

    2006-12-01

    Quantitatively reconstructing the stability of submerged slopes that failed or resisted during earthquake shaking provides critical maximal and minimal seismic ground accelerations that affected the slopes at the time of failure. Furthermore, regional, temporal and spatial correlations of precisely-dated multiple subaquatic landslide deposits allow for reconstruction of chronology, magnitudes and epicenters of past earthquakes. Here we present results from two case studies assessing the stability of subaquatic slopes in Lake Lucerne (Central Switzerland) that failed during a historic (1601 AD) and during a prehistoric Late Holocene earthquake (~2250 cal yr. BP), respectively. The historically well-documented 1601 AD (M=6.2) earthquake triggered 13 synchronous subaquatic landslides in Lake Lucerne that generated a tsunami wave of up to 4 m height. The head areas of two landslides, one of 1601 AD and one of 2250 BP, were investigated using seismic subsurface imaging, in situ vane shear- and cone penetration testing, and sedimentological/petrophysical core analyses. Absolute in situ measured strength characteristics, implemented into numerical limit equilibrium slope stability models reveal that both slopes at the time were stable under static loading conditions with factors of safety between 1.5 and 2. An additional seismic acceleration of ~0.8 g and ~1.4 g for the historic and the prehistoric event, respectively, is required to trigger slope failure at the two studied sites. In order to reconstruct the magitudes and source locations of past earthquakes on a regional scale, the subsurface of Lake Zurich, which is at ~40 km distance from Lake Lucerne, was investigated. The goal was to find characteristic earthquake-triggered multiple landslide patterns that potentially could coincide with events recorded in Lake Lucerne. The results indicate that the historic 1601 AD event was not recorded in Lake Zurich (i.e. the earthquake was either not strong enough or to far away

  15. Operational slope-limiting circuit

    NASA Technical Reports Server (NTRS)

    Engel, A.

    1973-01-01

    Circuit limits slope of arbitrary waveform to avoid exceeding rate limit of subsequent amplifier, or to form trapezoidal wave with adjustable rise and fall rates from square wave of arbitrary frequency. Integrator provides delay needed to develop output waveform. DC coupling is used to preserve original dc offset.

  16. Exploring Slope with Stairs & Steps

    ERIC Educational Resources Information Center

    Smith, Toni M.; Seshaiyer, Padmanabhan; Peixoto, Nathalia; Suh, Jennifer M.; Bagshaw, Graham; Collins, Laurena K.

    2013-01-01

    As much as ever before, mathematics teachers are searching for ways to connect mathematics to real-life scenarios within STEM contexts. As students develop skill in proportional reasoning, they examine graphical representations of linear functions, learn to associate "slope" with "steepness" and rate of change, and develop…

  17. Seismic response of rock slopes: Numerical investigations on the role of internal structure

    NASA Astrophysics Data System (ADS)

    Arnold, L.; Applegate, K.; Gibson, M.; Wartman, J.; Adams, S.; Maclaughlin, M.; Smith, S.; Keefer, D. K.

    2013-12-01

    The stability of rock slopes is significantly influenced and often controlled by the internal structure of the slope created by such discontinuities as joints, shear zones, and faults. Under seismic conditions, these discontinuities influence both the resistance of a slope to failure and its response to dynamic loading. The dynamic response, which can be characterized by the slope's natural frequency and amplification of ground motion, governs the loading experienced by the slope in a seismic event and, therefore, influences the slope's stability. In support of the Network for Earthquake Engineering Simulation (NEES) project Seismically-Induced Rock Slope Failure: Mechanisms and Prediction (NEESROCK), we conducted a 2D numerical investigation using the discrete element method (DEM) coupled with simple discrete fracture networks (DFNs). The intact rock mass is simulated with a bonded assembly of discrete particles, commonly referred to as the bonded-particle model (BPM) for rock. Discontinuities in the BPM are formed by the insertion of smooth, unbonded contacts along specified planes. The influence of discontinuity spacing, orientation, and stiffness on slope natural frequency and amplification was investigated with the commercially available Particle Flow Code (PFC2D). Numerical results indicate that increased discontinuity spacing has a non-linear effect in decreasing the amplification and increasing the natural frequency of the slope. As discontinuity dip changes from sub-horizontal to sub-vertical, the slope's level of amplification increases while the natural frequency of the slope decreases. Increased joint stiffness decreases amplification and increases natural frequency. The results reveal that internal structure has a strong influence on rock slope dynamics that can significantly change the system's dynamic response and stability during seismic loading. Financial support for this research was provided by the United States National Science Foundation (NSF

  18. Host and φx 174 Mutations Affecting the Morphogenesis or Stabilization of the 50s Complex, a Single-Stranded DNA Synthesizing Intermediate

    PubMed Central

    Ekechukwu, M. C.; Oberste, D. J.; Fane, B. A.

    1995-01-01

    The morphogenetic pathway of bacteriophage φX 174 was investigated in rep mutant hosts that specifically block stage III single-stranded DNA synthesis. The defects conferred by the mutant rep protein most likely affect the formation or stabilization of the 50S complex, a single-stranded DNA synthesizing intermediate, which consists of a viral prohead and a DNA replicating intermediate (preinitiation complex). φX 174 mutants, ogr(rep), which restore the ability to propagate in the mutant rep hosts, were isolated. The ogr(rep) mutations confer amino acid substitutions in the viral coat protein, a constituent of the prohead, and the viral A protein, a constituent of the preinitiation complex. Four of the six coat protein substitutions are localized on or near the twofold axis of symmetry in the atomic structure of the mature virion. PMID:7498760

  19. Multiple slope failures shaped the lower continental slope offshore NW Svalbard in the Fram Strait

    NASA Astrophysics Data System (ADS)

    Osti, Giacomo; Mienert, Jürgen; Forwick, Matthias; Sverre Laberg, Jan

    2016-04-01

    Bathymetry data show that the lower slope (between 1300 m and 3000 m water depth) of the NW-Svalbard passive margin has been affected by multiple slope failure events. The single events differ in terms of extension, volume of mobilized sediments, morphology of the slide scar, run-out distance and age. As for several mega-scale and minor Arctic slides, the trigger mechanism is still speculative and may include high sedimentation rates, dissociation of gas hydrates, excess pore pressure, or earthquakes caused by isostatic rebound. In this study, we discuss the potential trigger mechanisms that have led to the multiple slope failure events within what we suggest to be named the Fram Strait Slide Complex. The slide complex lies in proximity to the tectonically active Spitsbergen Fracture Zone where earthquakes events, occurrences of potential weak layers in the sediment column, low sedimentation rates, and extended gas hydrate-bearing sediments may all have contributed to the causes leading to multiple slope failures. Preliminary results obtained from 14C dating on N. pachyderma sin. from sediment cores from the Spitsbergen Fracture Zone slides (SFZS 1 and 2), coupled with sub-bottom profiler data (frequency 9 to 15 KHz) show that the two shallowest glide planes within one of the observed slide scars failed ~100,000 and ~115,000 yr BP. Whilst SFZS 1 affected an area of 750 km2 mobilizing a total sediment volume of 40 km3, SFZS 2 moved an area of 230 km2 with a sediment volume of 4.5 km3.

  20. Slope Failure Prediction and Early Warning Awareness Education for Reducing Landslides Casualty in Malaysia

    NASA Astrophysics Data System (ADS)

    Koay, S. P.; Tay, L. T.; Fukuoka, H.; Koyama, T.; Sakai, N.; Jamaludin, S. B.; Lateh, H.

    2015-12-01

    Northeast monsoon causes heavy rain in east coast of Peninsular Malaysia from November to March, every year. During this monsoon period, besides the happening of flood along east coast, landslides also causes millions of Malaysian Ringgit economical losses. Hence, it is essential to study the prediction of slope failure to prevent the casualty of landslides happening. In our study, we introduce prediction method of the accumulated rainfall affecting the stability of the slope. If the curve, in the graph, which is presented by rainfall intensity versus accumulated rainfall, crosses over the critical line, the condition of the slope is considered in high risk where the data are calculated and sent from rain gauge in the site via internet. If the possibility of slope failure is going high, the alert message will be sent out to the authorities for decision making on road block or setting the warning light at the road side. Besides road block and warning light, we propose to disseminate short message, to pre-registered mobile phone user, to notify the public for easing the traffic jam and avoiding unnecessary public panic. Prediction is not enough to prevent the casualty. Early warning awareness of the public is very important to reduce the casualty of landslides happening. IT technology does not only play a main role in disseminating information, early warning awareness education, by using IT technology, should be conducted, in schools, to give early warning awareness on natural hazard since childhood. Knowing the pass history on landslides occurrence will gain experience on the landslides happening. Landslides historical events with coordinate information are stored in database. The public can browse these historical events via internet. By referring to such historical landslides events, the public may know where did landslides happen before and the possibility of slope failure occurrence again is considered high. Simulation of rainfall induced slope failure mechanism

  1. Ancient and modern slopes in the Tharsis region of Mars

    NASA Astrophysics Data System (ADS)

    Mouginis-Mark, P. J.; Zisk, S. H.; Downs, G. S.

    1982-06-01

    Ancient slope directions in the Martian Tharsis region are compared with new earth-based radar observations in an effort to detect tectonic deformations. Data were taken from 20-150 pixel/m Viking Orbiter images and from 200 m orthophotomosaics prepared by the U.S. Geological Survey. The positions of 475 lava flows were determined, covering widths between 5-10 km on higher slopes and 15-35 km on lower slopes. Most of the flows originated from four volcanos, although none issued from Olympus Mons, which makes up the central portion of the Plateau. Further radar-derived topography was made of, Arsia Mons and Syria Planum in latitudes 14-21 deg S to find differences in regional gradients and the lava flow directions, to determine if deformations occurred after the lava flows. A lithospheric stability is concluded, indicating no tectonic upheavals since the days of Tharsis Plateau volcanic activity.

  2. Mutation of light-dependent phosphorylation sites of the Drosophila transient receptor potential-like (TRPL) ion channel affects its subcellular localization and stability.

    PubMed

    Cerny, Alexander C; Oberacker, Tina; Pfannstiel, Jens; Weigold, Sebastian; Will, Carina; Huber, Armin

    2013-05-31

    The Drosophila phototransduction cascade terminates in the opening of the ion channel transient receptor potential (TRP) and TRP-like (TRPL). Contrary to TRP, TRPL undergoes light-dependent subcellular trafficking between rhabdomeric photoreceptor membranes and an intracellular storage compartment, resulting in long term light adaptation. Here, we identified in vivo phosphorylation sites of TRPL that affect TRPL stability and localization. Quantitative mass spectrometry revealed a light-dependent change in the TRPL phosphorylation pattern. Mutation of eight C-terminal phosphorylation sites neither affected multimerization of the channels nor the electrophysiological response of flies expressing the mutated channels. However, these mutations resulted in mislocalization and enhanced degradation of TRPL after prolonged dark-adaptation. Mutation of subsets of the eight C-terminal phosphorylation sites also led to a reduction of TRPL content and partial mislocalization in the dark. This suggests that a light-dependent switch in the phosphorylation pattern of the TRPL channel mediates stable expression of TRPL in the rhabdomeres upon prolonged dark-adaptation.

  3. Characterization of Unstable Rock Slopes Through Passive Seismic Measurements

    NASA Astrophysics Data System (ADS)

    Kleinbrod, U.; Burjanek, J.; Fäh, D.

    2014-12-01

    Catastrophic rock slope failures have high social impact, causing significant damage to infrastructure and many casualties throughout the world each year. Both detection and characterization of rock instabilities are therefore of key importance. An analysis of ambient vibrations of unstable rock slopes might be a new alternative to the already existing methods, e.g. geotechnical displacement measurements. Systematic measurements have been performed recently in Switzerland to study the seismic response of potential rockslides concerning a broad class of slope failure mechanisms and material conditions. Small aperture seismic arrays were deployed at sites of interest for a short period of time (several hours) in order to record ambient vibrations. Each measurement setup included a reference station, which was installed on a stable part close to the instability. Recorded ground motion is highly directional in the unstable parts of the rock slope, and significantly amplified with respect to stable areas. These effects are strongest at certain frequencies, which were identified as eigenfrequencies of the unstable rock mass. In most cases the directions of maximum amplification are perpendicular to open cracks and in good agreement with the deformation directions obtained by geodetic measurements. Such unique signatures might improve our understanding of slope structure and stability. Thus we link observed vibration characteristics with available results of detailed geological characterization. This is supported by numerical modeling of seismic wave propagation in fractured media with complex topography.For example, a potential relation between eigenfrequencies and unstable rock mass volume is investigated.

  4. 30 CFR 716.2 - Steep-slope mining.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... original contour restoration requirements. (1) This section applies to surface coal mining operations on... variance from the approximate original contour restoration requirements on steep slopes to— (i) Improve... from the requirement for restoration of the affected lands to their approximate original contour...

  5. 30 CFR 716.2 - Steep-slope mining.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... original contour restoration requirements. (1) This section applies to surface coal mining operations on... variance from the approximate original contour restoration requirements on steep slopes to— (i) Improve... from the requirement for restoration of the affected lands to their approximate original contour...

  6. Slope Streaks in Terra Sabaea

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1 Click on image for larger version

    This HiRISE image shows the rim of a crater in the region of Terra Sabaea in the northern hemisphere of Mars.

    The subimage (figure 1) is a close-up view of the crater rim revealing dark and light-toned slope streaks. Slope streak formation is among the few known processes currently active on Mars. While their mechanism of formation and triggering is debated, they are most commonly believed to form by downslope movement of extremely dry sand or very fine-grained dust in an almost fluidlike manner (analogous to a terrestrial snow avalanche) exposing darker underlying material.

    Other ideas include the triggering of slope streak formation by possible concentrations of near-surface ice or scouring of the surface by running water from aquifers intercepting slope faces, spring discharge (perhaps brines), and/or hydrothermal activity.

    Several of the slope streaks in the subimage, particularly the three longest darker streaks, show evidence that downslope movement is being diverted around obstacles such as large boulders. Several streaks also appear to originate at boulders or clumps of rocky material.

    In general, the slope streaks do not have large deposits of displaced material at their downslope ends and do not run out onto the crater floor suggesting that they have little reserve kinetic energy. The darkest slope streaks are youngest and can be seen to cross cut and superpose older and lighter-toned streaks. The lighter-toned streaks are believed to be dark streaks that have lightened with time as new dust is deposited on their surface.

    Observation Geometry Image PSP_001808_1875 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 15-Dec-2006. The complete image is centered at 7.4 degrees latitude, 47.0 degrees East longitude. The range to the target site was 272.1 km

  7. Targeting Tryptophan Decarboxylase to Selected Subcellular Compartments of Tobacco Plants Affects Enzyme Stability and in Vivo Function and Leads to a Lesion-Mimic Phenotype1

    PubMed Central

    Di Fiore, Stefano; Li, Qiurong; Leech, Mark James; Schuster, Flora; Emans, Neil; Fischer, Rainer; Schillberg, Stefan

    2002-01-01

    Tryptophan decarboxylase (TDC) is a cytosolic enzyme that catalyzes an early step of the terpenoid indole alkaloid biosynthetic pathway by decarboxylation of l-tryptophan to produce the protoalkaloid tryptamine. In the present study, recombinant TDC was targeted to the chloroplast, cytosol, and endoplasmic reticulum (ER) of tobacco (Nicotiana tabacum) plants to evaluate the effects of subcellular compartmentation on the accumulation of functional enzyme and its corresponding enzymatic product. TDC accumulation and in vivo function was significantly affected by the subcellular localization. Immunoblot analysis demonstrated that chloroplast-targeted TDC had improved accumulation and/or stability when compared with the cytosolic enzyme. Because ER-targeted TDC was not detectable by immunoblot analysis and tryptamine levels found in transient expression studies and in transgenic plants were low, it was concluded that the recombinant TDC was most likely unstable if ER retained. Targeting TDC to the chloroplast stroma resulted in the highest accumulation level of tryptamine so far reported in the literature for studies on heterologous TDC expression in tobacco. However, plants accumulating high levels of functional TDC in the chloroplast developed a lesion-mimic phenotype that was probably triggered by the relatively high accumulation of tryptamine in this compartment. We demonstrate that subcellular targeting may provide a useful strategy for enhancing accumulation and/or stability of enzymes involved in secondary metabolism and to divert metabolic flux toward desired end products. However, metabolic engineering of plants is a very demanding task because unexpected, and possibly unwanted, effects may be observed on plant metabolism and/or phenotype. PMID:12114570

  8. Host-feeding sources and habitats jointly affect wing developmental stability depending on sex in the major Chagas disease vector Triatoma infestans.

    PubMed

    Nattero, Julieta; Dujardin, Jean-Pierre; del Pilar Fernández, María; Gürtler, Ricardo E

    2015-12-01

    Fluctuating asymmetry (FA), a slight and random departure from bilateral symmetry that is normally distributed around a 0 mean, has been widely used to infer developmental instability. We investigated whether habitats (ecotopes) and host-feeding sources influenced wing FA of the hematophagous bug Triatoma infestans. Because bug populations occupying distinct habitats differed substantially and consistently in various aspects such as feeding rates, engorgement status and the proportion of gravid females, we predicted that bugs from more open peridomestic habitats (i.e., goat corrals) were more likely to exhibit higher FA than bugs from domiciles. We examined patterns of asymmetry and the amount of wing size and shape FA in 196 adult T. infestans collected across a gradient of habitat suitability and stability that decreased from domiciles, storerooms, kitchens, chicken coops, pig corrals, to goat corrals in a well-defined area of Figueroa, northwestern Argentina. The bugs had unmixed blood meals on human, chicken, pig and goat depending on the bug collection ecotope. We documented the occurrence of FA in wing shape for bugs fed on all host-feeding sources and in all ecotopes except for females from domiciles or fed on humans. FA indices for wing shape differed significantly among host-feeding sources, ecotopes and sexes. The patterns of wing asymmetry in females from domiciles and from goat corrals were significantly different; differences in male FA were congruent with evidence showing that they had higher mobility than females across habitats. The host-feeding sources and habitats of T. infestans affected wing developmental stability depending on sex.

  9. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China.

    PubMed

    Cai, Andong; Feng, Wenting; Zhang, Wenju; Xu, Minggang

    2016-05-01

    Mineral-associated organic carbon (MOC), that is stabilized by fine soil particles (i.e., silt plus clay, <53 μm), is important for soil organic carbon (SOC) persistence and sequestration, due to its large contribution to total SOC (TSOC) and long turnover time. Our objectives were to investigate how climate, soil type, soil texture, and agricultural managements affect MOC contributions to TSOC in China. We created a dataset from 103 published papers, including 1106 data points pairing MOC and TSOC across three major land use types: cropland, grassland, and forest. Overall, the MOC/TSOC ratio ranged from 0.27 to 0.80 and varied significantly among soil groups in cropland, grassland, and forest. Croplands and forest exhibited significantly higher median MOC/TSOC ratios than in grassland. Moreover, forest and grassland soils in temperate regions had higher MOC/TSOC ratios than in subtropical regions. Furthermore, the MOC/TSOC ratio was much higher in ultisol, compared with the other soil types. Both the MOC content and MOC/TSOC ratio were positively correlated with the amount of fine fraction (silt plus clay) in soil, highlighting the importance of soil texture in stabilizing organic carbon across various climate zones. In cropland, different fertilization practices and land uses (e.g., upland, paddy, and upland-paddy rotation) significantly altered MOC/TSOC ratios, but not in cropping systems (e.g., mono- and double-cropping) characterized by climatic differences. This study demonstrates that the MOC/TSOC ratio is mainly driven by soil texture, soil types, and related climate and land uses, and thus the variations in MOC/TSOC ratios should be taken into account when quantitatively estimating soil C sequestration potential of silt plus clay particles on a large scale. PMID:26905446

  10. The p90 ribosomal S6 kinase 2 specifically affects mitotic progression by regulating the basal level, distribution and stability of mitotic spindles

    PubMed Central

    Park, Yun Yeon; Nam, Hyun-Ja; Do, Mihyang; Lee, Jae-Ho

    2016-01-01

    RSK2, also known as RPS6KA3 (ribosomal protein S6 kinase, 90 kDa, polypeptide 3), is a downstream kinase of the mitogen-activated protein kinase (MAPK) pathway, which is important in regulating survival, transcription, growth and proliferation. However, its biological role in mitotic progression is not well understood. In this study, we examined the potential involvement of RSK2 in the regulation of mitotic progression. Interestingly, depletion of RSK2, but not RSK1, caused the accumulation of mitotic cells. Time-lapse analysis revealed that mitotic duration, particularly the duration for metaphase-to-anaphase transition was prolonged in RSK2-depleted cells, suggesting activation of spindle assembly checkpoint (SAC). Indeed, more BubR1 (Bub1-related kinase) was present on metaphase plate kinetochores in RSK2-depleted cells, and depletion of BubR1 abolished the mitotic accumulation caused by RSK2 depletion, confirming BubR1-dependent SAC activation. Along with the shortening of inter-kinetochore distance, these data suggested that weakening of the tension across sister kinetochores by RSK2 depletion led to the activation of SAC. To test this, we analyzed the RSK2 effects on the stability of kinetochore–microtubule interactions, and found that RSK2-depleted cells formed less kinetochore–microtubule fibers. Moreover, RSK2 depletion resulted in the decrease of basal level of microtubule as well as an irregular distribution of mitotic spindles, which might lead to observed several mitotic progression defects such as increase in unaligned chromosomes, defects in chromosome congression and a decrease in pole-to-pole distance in these cells. Taken together, our data reveal that RSK2 affects mitotic progression by regulating the distribution, basal level and the stability of mitotic spindles. PMID:27491410

  11. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China.

    PubMed

    Cai, Andong; Feng, Wenting; Zhang, Wenju; Xu, Minggang

    2016-05-01

    Mineral-associated organic carbon (MOC), that is stabilized by fine soil particles (i.e., silt plus clay, <53 μm), is important for soil organic carbon (SOC) persistence and sequestration, due to its large contribution to total SOC (TSOC) and long turnover time. Our objectives were to investigate how climate, soil type, soil texture, and agricultural managements affect MOC contributions to TSOC in China. We created a dataset from 103 published papers, including 1106 data points pairing MOC and TSOC across three major land use types: cropland, grassland, and forest. Overall, the MOC/TSOC ratio ranged from 0.27 to 0.80 and varied significantly among soil groups in cropland, grassland, and forest. Croplands and forest exhibited significantly higher median MOC/TSOC ratios than in grassland. Moreover, forest and grassland soils in temperate regions had higher MOC/TSOC ratios than in subtropical regions. Furthermore, the MOC/TSOC ratio was much higher in ultisol, compared with the other soil types. Both the MOC content and MOC/TSOC ratio were positively correlated with the amount of fine fraction (silt plus clay) in soil, highlighting the importance of soil texture in stabilizing organic carbon across various climate zones. In cropland, different fertilization practices and land uses (e.g., upland, paddy, and upland-paddy rotation) significantly altered MOC/TSOC ratios, but not in cropping systems (e.g., mono- and double-cropping) characterized by climatic differences. This study demonstrates that the MOC/TSOC ratio is mainly driven by soil texture, soil types, and related climate and land uses, and thus the variations in MOC/TSOC ratios should be taken into account when quantitatively estimating soil C sequestration potential of silt plus clay particles on a large scale.

  12. Properties of martian slope streak populations

    NASA Astrophysics Data System (ADS)

    Bergonio, Justin R.; Rottas, Kimberly M.; Schorghofer, Norbert

    2013-07-01

    Slope streaks are down-slope mass movements on the surface of Mars that are among the few known examples of contemporary geologic activity on Mars. Here we study slope streak activity over three decades, based on overlapping images in the Lycus Sulci region taken by the Context Camera (CTX) 2007-2010 and the Viking Orbiter Camera in 1977. The number of disappeared slope streaks is nearly equal the number of newly formed slope streaks, suggesting the streak population is balanced. The turnover time of the population is estimated to be four decades. Slope streaks fade gradually over time, with islands of persistence. We also determine the number of observable slope streaks as a function of image resolution based on images by the High Resolution Imaging Science Experiment (HiRISE) camera, and find that the number of discernible slope streaks can increase rapidly with spatial resolution.

  13. Gravity-induced stresses in finite slopes

    USGS Publications Warehouse

    Savage, W.Z.

    1994-01-01

    An exact solution for gravity-induced stresses in finite elastic slopes is presented. This solution, which is applied for gravity-induced stresses in 15, 30, 45 and 90?? finite slopes, has application in pit-slope design, compares favorably with published finite element results for this problem and satisfies the conditions that shear and normal stresses vanish on the ground surface. The solution predicts that horizontal stresses are compressive along the top of the slopes (zero in the case of the 90?? slope) and tensile away from the bottom of the slopes, effects which are caused by downward movement and near-surface horizontal extension in front of the slope in response to gravity loading caused by the additional material associated with the finite slope. ?? 1994.

  14. Overland flow resistances on varying slope gradients and partitioning on grassed slopes under simulated rainfall

    NASA Astrophysics Data System (ADS)

    Pan, Chengzhong; Ma, Lan; Wainwright, John; Shangguan, Zhouping

    2016-04-01

    It is still unclear how slope steepness (S) and revegetation affect resistance (f) to overland flow. A series of experiments on runoff hydraulics was conducted on granular surfaces (bare soil and sandpaper) and grassed surfaces, including grass plots (GP), GP with litter (GL), and GP without leaves (GS) under simulated rainfall and inflow (30slopes ranging from 2.6% to 50%. The results show that the observed f based on a small-size runoff plot under rainfall conditions tends to be overestimated due to the increase in flow rate, or Re (Reynolds number), with downward cross sections and a good f-Re relation (f = KRe-1). There exists a good f-Re relation for granular surfaces and a good f-Fr relation (Fr, Froude number) for grass plots. A greater f occurred at the gentle and steep slopes for the granular surfaces, while f decreased with increasing slopes for the grass treatments. The different f-S relations suggest that f is not a simple function of S. When Re≈1000, the sowing rye grass with level lines increased f by approximately 100 times and decreased bed shear stress to approximately 5%. The contribution of grass leaves, stems, litter, and grain surface to total resistance in the grass plots were averagely 52%, 32%, 16%, and 1%. The greater resistance from leaves may result from the leaves lying at the plot surface impacted by raindrop impact. These results are beneficial to understand the dynamics of runoff and erosion on hillslopes impacted by vegetation restoration.

  15. Cross-slope Movement Patterns in Landslides

    NASA Astrophysics Data System (ADS)

    Petley, D.; Murphy, W.; Bulmer, M. H.; Keefer, D.

    2002-12-01

    There is growing evidence that there is a significant element of cross-slope movement in many large landslide systems. These movements may result in changing states of stress between landslide blocks that can establish complex displacement patterns. Such motions, which are not considered in traditional two-dimensional limit-equilibrium analyses, are important in the investigation of a variety of landslide types, such as those triggered by earthquakes. In addition, these movements may introduce considerable errors into the interpretation of strain patterns as derived from InSAR studies. Finally, even traditional interpretation techniques may lead to the amount of total displacement being underestimated. These observations suggest that a three dimensional form of analysis may be more appropriate for large landslide complexes. The significance of such cross-slope movements are being investigated using a detailed investigation of the Lishan landslide complex in Central Taiwan. This landslide system, which was reactivated in 1990 related to the construction of a hotel. The total recorded movements have been approximately 1.5 m over an area of sliding that is estimated to be 450 m wide and 200 m long. Extensive damage has been caused to roads and buildings within the town. Remediation work has resulted largely in the stabilization of the landslide complex. Detailed geomorphological mapping has revealed that the landslide complex is composed of two main components. The first, immediately upslope of the hotel construction site, is a relatively shallow earthflow. The second, which has formed a large headscarp upslope from the main road in the centre of the town, is a deeper translational slide. Both appear to have been reactivations of previous failures. While the displacement patterns of the earthflow indicate a relatively simple downslope movement, the vectors derived from kinematic analysis of surface features have indicated that the movement of the deeper

  16. Interesting insights into instability of slopes and rock fall in the morphodynamic Himalayan terrane

    NASA Astrophysics Data System (ADS)

    Singh, T. N.; Vishal, V.; Pradhan, S. P.

    2015-12-01

    Himalayan mountain ranges are tectonically and seismically very active and experience many disastrous events with time due to slope failure. Frequent failures of rock cut slopes cause obstruction in traffic and often lead to fatalities. In recent years, the number of tragedies has increased when associated with regional phenomena such at the Kedarnath tragedy of 2013 and the Gorkha earthquake of 2015. The influence of such phenomena on the stability of slopes along important national highways and key settlement areas only raise the risk to lives and property. We conducted a multi-approach investigation for some key slopes along the National Highway 58 in Uttarakhand Himalaya, India. A very detailed field work was conducted to identify the unstable slopes and those with some history of failure. The pertinent geomechanical characteristics of the representative rock samples were determined in the laboratory. Based on the structural data, kinematic analysis was carried out. Finally the slopes were simulated using FDM based simulator, Flac/Slope for analysing the health of the slopes and Rockfall 4.0 to investigate the phenomenon of rockfall along the Highway. It was found that few slopes were weak due to the inherent weak rock materials while few slopes made up of high strength rocks were effectively weak due to prone-to-failure orientation of the joints. Quantification of bounce-height of rock blocks during fall, their energy, velocity and displacement along the slope was also done. Using 3-D simulations, few critically-stable slopes that appear to be stable, were identified. Little ground movement could be capable of triggering a large scale failure in the area. Slopes in the studied region are under threat to failure and need immediate proper planning using the suggested remedial measures.

  17. Karstic slope "breathing": morpho-structural influence and hazard implications

    NASA Astrophysics Data System (ADS)

    Devoti, Roberto; Falcucci, Emanuela; Gori, Stefano; Eliana Poli, Maria; Zanferrari, Adriano; Braitenberg, Carla; Fabris, Paolo; Grillo, Barbara; Zuliani, David

    2016-04-01

    The study refers to the active slope deformation detected by GPS and tiltmeter stations in the Cansiglio karstic plateau located in the western Carnic Prealps (NE Italy). The observed transient deformation clearly correlates with the rainfall, so that the southernmost border of the Plateau reacts instantly to heavy rains displaying a "back and forth" deformation up to a few centimeters wide, with different time constants, demonstrating a response to different catchment volumes. We carried out a field survey along the southern Cansiglio slope, to achieve structural characterization of the relief and to verify the possible relation between structural features and the peculiar geomorphological setting dominated by widespread karstic features. The Cansiglio plateau develops on the frontal ramp anticline of the Cansiglio thrust, an about ENE-WSW trending, SSE-verging, low angle thrust, belonging to the Neogene-Quaternary front of the eastern Southern Alps. The Cansiglio thrust outcrops at the base of the Cansiglio plateau, where it overlaps the Mesozoic carbonates on the Miocene-Quaternary terrigenous succession. All along its length cataclastic limestone largely outcrop. The Cansiglio thrust is bordered by two transfer zones probably inherited from the Mesozoic paleogeography: the Caneva fault in the west and the Col Longone fault in the east. The carbonatic massif is also characterized by a series of about northward steeply dipping reverse minor faults and a set of subvertical joints parallel to the axes of the Cansiglio anticline. Other NNW-SSE and NNE-SSW conjugate faults and fractures perpendicular to the Cansiglio southern slope are also identified. This structural setting affect pervasively the whole slope and may determine centimetre- to metre-scale rock prisms. Interestingly, along the topmost portion of the slope, some dolines and swallow holes show an incipient coalescence, that trends parallel to the massif front and to the deformation zones related to the

  18. Posterior stabilized versus cruciate retaining total knee arthroplasty designs: conformity affects the performance reliability of the design over the patient population.

    PubMed

    Ardestani, Marzieh M; Moazen, Mehran; Maniei, Ehsan; Jin, Zhongmin

    2015-04-01

    Commercially available fixed bearing knee prostheses are mainly divided into two groups: posterior stabilized (PS) versus cruciate retaining (CR). Despite the widespread comparative studies, the debate continues regarding the superiority of one type over the other. This study used a combined finite element (FE) simulation and principal component analysis (PCA) to evaluate "reliability" and "sensitivity" of two PS designs versus two CR designs over a patient population. Four fixed bearing implants were chosen: PFC (DePuy), PFC Sigma (DePuy), NexGen (Zimmer) and Genesis II (Smith & Nephew). Using PCA, a large probabilistic knee joint motion and loading database was generated based on the available experimental data from literature. The probabilistic knee joint data were applied to each implant in a FE simulation to calculate the potential envelopes of kinematics (i.e. anterior-posterior [AP] displacement and internal-external [IE] rotation) and contact mechanics. The performance envelopes were considered as an indicator of performance reliability. For each implant, PCA was used to highlight how much the implant performance was influenced by changes in each input parameter (sensitivity). Results showed that (1) conformity directly affected the reliability of the knee implant over a patient population such that lesser conformity designs (PS or CR), had higher kinematic variability and were more influenced by AP force and IE torque, (2) contact reliability did not differ noticeably among different designs and (3) CR or PS designs affected the relative rank of critical factors that influenced the reliability of each design. Such investigations enlighten the underlying biomechanics of various implant designs and can be utilized to estimate the potential performance of an implant design over a patient population.

  19. Transverse bed slope effects in an annular flume

    NASA Astrophysics Data System (ADS)

    Baar, Anne; Kleinhans, Maarten; de Smit, Jaco; Uijttewaal, Wim

    2016-04-01

    Large scale morphology, in particular bar dimensions and bifurcation dynamics, are greatly affected by the deflection of sediment transport on transverse bed slopes due to gravity and by helical flows. However, existing transverse bed slope predictors are based on a small set of experiments with a minor range of flow conditions and sediment sizes, and do not account for the presence of bedforms. In morphological modelling the deflection angle is therefore often calibrated on measured morphology. Our objective is to experimentally quantify the transverse slope effect for a large range of near-bed flow conditions and sediment sizes (0.17 - 4 mm) to test existing predictors, in order to improve morphological modelling of rivers and estuaries. We have conducted about 400 experiments in an annular flume, which functions as an infinitely long bended flume and therefore avoids boundary effects. Flow is generated by rotating the lid of the flume, while the intensity of the helical flow can be decreased by counterrotating the bottom of the flume. The equilibrium transverse slope that develops during the experiments is a balance between the transverse bed slope effect and the bed shear stress caused by the helical flow. We obtained sediment mobilities from no motion to sheet flow, ranging across bedload and suspended load. Resulting equilibrium transverse slopes show a clear trend with varying sediment mobilities and helical flow intensities that deviate from typical power relations with Shields number. As an end member we found transversely horizontal beds by counterrotation that partially cancelled the helical flow near the bed, which allows us to quantify helical flow. The large range in sediment mobilities caused different bed states from ripples and dunes to sheet flow that affect near-bed flow, which cause novel nonlinear relations between transverse slope and Shields number. In conclusion, our results show for a wide range of conditions and sediments that transverse

  20. North Atlantic slope and canyon study. Volume 2. Final report

    SciTech Connect

    Butman, B.

    1986-12-01

    A field program to investigate the currents and sediment transport along the outershelf and upper slope along the southern flank of Georges Bank was conducted between 1980 and 1984. A major part of the field experiment was conducted in Lydonia Canyon, a large submarine canyon which cuts northward about 20 km into the continental shelf from the shelfbreak. A smaller experiment was conducted in Oceanographer Canyon to compare the currents in these two major canyons. Long-term current observations were made at 20 locations in or adjacent to Lydonia Canyon, and at 9 stations on the continental slope. Detailed semi-synoptic hydrographic observations were made on 9 cruises. The currents associated with Gulf Stream warm core rings (WCR's) strongly affect the flow along the outer shelf and upper slope; eastward currents in excess of 75cm/s were associated with WCR's.

  1. A hazard and risk classification system for catastrophic rock slope failures in Norway

    NASA Astrophysics Data System (ADS)

    Hermanns, R.; Oppikofer, T.; Anda, E.; Blikra, L. H.; Böhme, M.; Bunkholt, H.; Dahle, H.; Devoli, G.; Eikenæs, O.; Fischer, L.; Harbitz, C. B.; Jaboyedoff, M.; Loew, S.; Yugsi Molina, F. X.

    2012-04-01

    outburst floods. It became obvious that large rock slope failures cannot be evaluated on a slope scale with frequency analyses of historical and prehistorical events only, as multiple rockslides have occurred within one century on a single slope that prior to the recent failures had been inactive for several thousand years. In addition, a systematic analysis on temporal distribution indicates that rockslide activity following deglaciation after the Last Glacial Maximum has been much higher than throughout the Holocene. Therefore the classification system has to be based primarily on the geological conditions on the deforming slope and on the deformation rates and only to a lesser weight on a frequency analyses. Our hazard classification therefore is primarily based on several criteria: 1) Development of the back-scarp, 2) development of the lateral release surfaces, 3) development of the potential basal sliding surface, 4) morphologic expression of the basal sliding surface, 5) kinematic feasibility tests for different displacement mechanisms, 6) landslide displacement rates, 7) change of displacement rates (acceleration), 8) increase of rockfall activity on the unstable rock slope, 9) Presence post-glacial events of similar size along the affected slope and its vicinity. For each of these criteria several conditions are possible to choose from (e.g. different velocity classes for the displacement rate criterion). A score is assigned to each condition and the sum of all scores gives the total susceptibility score. Since many of these observations are somewhat uncertain, the classification system is organized in a decision tree where probabilities can be assigned to each condition. All possibilities in the decision tree are computed and the individual probabilities giving the same total score are summed. Basic statistics show the minimum and maximum total scores of a scenario, as well as the mean and modal value. The final output is a cumulative frequency distribution of

  2. Item Strength Influences Source Confidence and Alters Source Memory zROC Slopes

    ERIC Educational Resources Information Center

    Starns, Jeffrey J.; Ksander, John C.

    2016-01-01

    Increasing the number of study trials creates a crossover pattern in source memory zROC slopes; that is, the slope is either below or above 1 depending on which source receives stronger learning. This pattern can be produced if additional learning affects memory processes such as the relative contribution of recollection and familiarity to source…

  3. Continuum modeling and limit equilibrium analysis of slope movement due to rainfall infiltration

    NASA Astrophysics Data System (ADS)

    Borja, Ronaldo; White, Joshua; Wu, Wei

    2010-05-01

    Hydrologically-driven landslides and debris flows are highly destructive events that threaten lives and critical infrastructure worldwide. Despite decades of extensive slope stability model development, the fundamental controls connecting the hydrologic and geotechnical processes that trigger slope failure are not well quantified. We use a fully coupled, physics-based finite element model to address this shortcoming. We develop and test a 3D continuum slope-deformation model that couples solid-deformation with fluid-flow processes in variably saturated soils, and assess the capability of the coupled model to predict stresses and deformation necessary to trigger slope failure. We then compare the continuum model with traditional limit equilibrium solutions based on the modified Bishop method of slices to assess the stability of the slope as a function of rainfall infiltration using a scalar stability indicator called factor of safety. For this assessment, we use extensive measurements from a densely instrumented mountain slope (The Coos Bay Experimental Catchment) where a large, rainfall-triggered slope failure occurred. The use of sophisticated, fully coupled numerical simulations combined with comprehensive field-measurements provides an unprecedented opportunity to advance the state of understanding of landslide failure processes and effective mitigation measures.

  4. Langley Full-scale-tunnel Investigation of the Factors Affecting the Static Lateral-stability Characteristics of a Typical Fighter-type Airplane

    NASA Technical Reports Server (NTRS)

    Lange, Roy H

    1947-01-01

    The factors that affect the rate of change of rolling moment with yaw of a typical fighter-type airplane were investigated in the Langley full-scale tunnel on a typical fighter-type airplane.Eight representative flight conditions were investigated in detail. The separate effects of propeller operation, of the wing-fuselage combination, and of the vertical tail to the effective dihedral of the airplane in each condition were determined. The results of the tests showed that for the airplane with the propeller removed, the wing-fuselage combination had positive dihedral effect which increased considerably with increasing angle of attack for all conditions. Flap deflection decreased the dihedral effect of the wing-fuselage combination slightly as compared with that with the flaps retracted. Flap deflection resulted in negative dihedral effect due to the vertical tail. Propeller operation decreased the lateral stability parameter of the airplane for all the conditions investigated with larger decreases being measured for the flaps deflected conditions.

  5. Mutations of two transmembrane cysteines of hemagglutinin (HA) from influenza A H3N2 virus affect HA thermal stability and fusion activity.

    PubMed

    Xu, Shun; Zhou, Jianqiang; Liu, Kang; Liu, Qiliang; Xue, Chunyi; Li, Xiaoming; Zheng, Jing; Luo, Dongyu; Cao, Yongchang

    2013-08-01

    Influenza A H3N2 virus caused 1968 Hong Kong influenza pandemic, and has since been one of the most prevalent seasonal influenza viruses in global populations, representing a credible pandemic candidate in future. Previous studies have established that the hemagglutinin (HA) protein is the predominant antigen and executes receptor binding and membrane fusion. Homologous sequence analysis of all HA subtypes of influenza viruses revealed that two cysteine residues (540 and 544) are uniquely present in the transmembrane domain (TM) of HA proteins from all influenza A H3N2 viruses. However, the functions of these two cysteines have not been fully studied. Here, we generated three mutants (C540S, C544L, and 2C/SL) to investigate the effects of the two TM cysteines on the biological functions of H3 HA. We herein presented evidences that the mutations of one or two of the cysteines did not affect the proper expressions of HA proteins in cells, and more importantly all mutant H3 HAs showed decreased thermal stability but increased fusion activity in comparison with wildtype HA. Our results taken together demonstrated that the two TM cysteines are important for the biological functions of H3 HA proteins.

  6. The genetic background affects composition, oxidative stability and quality traits of Iberian dry-cured hams: purebred Iberian versus reciprocal Iberian × Duroc crossbred pigs.

    PubMed

    Fuentes, Verónica; Ventanas, Sonia; Ventanas, Jesús; Estévez, Mario

    2014-02-01

    This study examined the physico-chemical characteristics, oxidative stability and sensory properties of Iberian cry-cured hams as affected by the genetic background of the pigs: purebred Iberian (PBI) pigs vs reciprocal cross-bred Iberian × Duroc pigs (IB × D pigs: Iberian dams × Duroc sires; D × IB pigs: Duroc dams × Iberian sires). Samples from PBI pigs contained significantly higher amounts of IMF, monounsaturated fatty acids, heme pigments and iron than those from crossbred pigs. The extent of lipid and protein oxidation was significantly larger in dry-cured hams of crossbred pigs than in those from PBI pigs. Dry-cured hams from PBI pigs were defined by positive sensory properties (i.e. redness, brightness and juiciness) while hams from crossbred pigs were ascribed to negative ones (i.e. hardness, bitterness and sourness). Hams from PBI pigs displayed a superior quality than those from crossbred pigs. The position of the dam or the sire in reciprocal Iberian × Duroc crosses had no effect on the quality of Iberian hams.

  7. Mutations affecting the stability of the haemagglutinin molecule impair the immunogenicity of live attenuated H3N2 intranasal influenza vaccine candidates lacking NS1.

    PubMed

    Nakowitsch, Sabine; Wolschek, Markus; Morokutti, Alexander; Ruthsatz, Tanja; Krenn, Brigitte M; Ferko, Boris; Ferstl, Nicole; Triendl, Andrea; Muster, Thomas; Egorov, Andrej; Romanova, Julia

    2011-04-27

    The isolation and cultivation of human influenza viruses in embryonated hen eggs or cell lines often leads to amino acid substitutions in the haemagglutinin (HA) molecule. We found that the propagation of influenza A H3N2 viruses on Vero cells may trigger the appearance of HA destabilising mutations, affecting viral resistance to low pH or high temperature treatment. Two ΔNS1 reassortants, containing the HA sequences identical to the original human H3N2 influenza virus isolates were constructed. Passages of these viruses on Vero cells led to the appearance of single mutations in the HA(1) L194P or HA(2) G75R subunits that impaired virus stability. The original HA sequences and the stable phenotypes of the primary isolates were preserved if reassortants were passaged by infection at pH 5.6 and cultivation in medium at pH 6.5. Corresponding ΔNS1 reassortants were compared for their immunogenicity in ferrets upon intranasal immunisation. Vaccine candidates containing HA mutations demonstrated significantly lower immunogenicity compared to those without mutations. Thus, the retaining of the original HA sequences of human viruses during vaccine production might be crucial for the efficacy of live attenuated influenza vaccines.

  8. A model for predicting embankment slope failures in clay-rich soils; A Louisiana example

    NASA Astrophysics Data System (ADS)

    Burns, S. F.

    2015-12-01

    A model for predicting embankment slope failures in clay-rich soils; A Louisiana example It is well known that smectite-rich soils significantly reduce the stability of slopes. The question is how much smectite in the soil causes slope failures. A study of over 100 sites in north and south Louisiana, USA, compared slopes that failed during a major El Nino winter (heavy rainfall) in 1982-1983 to similar slopes that did not fail. Soils in the slopes were tested for per cent clay, liquid limits, plasticity indices and semi-quantitative clay mineralogy. Slopes with the High Risk for failure (85-90% chance of failure in 8-15 years after construction) contained soils with a liquid limit > 54%, a plasticity index over 29%, and clay contents > 47%. Slopes with an Intermediate Risk (55-50% chance of failure in 8-15 years) contained soils with a liquid limit between 36-54%, plasticity index between 16-19%, and clay content between 32-47%. Slopes with a Low Risk chance of failure (< 5% chance of failure in 8-15 years after construction) contained soils with a liquid limit < 36%, a plasticity index < 16%, and a clay content < 32%. These data show that if one is constructing embankments and one wants to prevent slope failure of the 3:1 slopes, check the above soil characteristics before construction. If the soils fall into the Low Risk classification, construct the embankment normally. If the soils fall into the High Risk classification, one will need to use lime stabilization or heat treatments to prevent failures. Soils in the Intermediate Risk class will have to be evaluated on a case by case basis.

  9. Evidence of slope instability in the Southwestern Adriatic Margin

    NASA Astrophysics Data System (ADS)

    Minisini, D.; Trincardi, F.; Asioli, A.

    2006-01-01

    The Southwestern Adriatic Margin (SAM) shows evidence of widespread failure events that generated slide scars up to 10 km wide and extensive slide deposits with run out distances greater than 50 km. Chirp-sonar profiles, side-scan sonar mosaics, multibeam bathymetry and sediment cores document that the entire slope area underwent repeated failures along a stretch of 150 km and that mass-transport deposits, covering an area of 3320 km2, are highly variable ranging from blocky slides to turbidites, and lay on the lower slope and in the basin. The SAM slope between 300-700 m is impacted by southward bottom currents shaping sediment drifts (partly affected by failure) and areas of dominant erosion of the seafloor. When slide deposits occur in areas swept by bottom currents their fresh appearence and their location at seafloor may give the misleading impression of a very young age. Seismic-stratigraphic correlation of these deposits to the basin floor, however, allow a more reliable age estimate through sediment coring of the post-slide unit. Multiple buried failed masses overlap each other in the lower slope and below the basin floor; the most widespread of these mass-transport deposits occurred during the MIS 2-glacial interval on a combined area of 2670 km2. Displacements affecting Holocene deposits suggest recent failure events during or after the last phases of the last post-glacial eustatic rise. Differences in sediment accumulation rates at the base or within the sediment drifts and presence of downlap surfaces along the slope and further in the basin may provide one or multiple potential weak layers above which widespread collapses take place. Neotectonic activity and seismicity, together with the presence of a steep slope, represent additional elements conducive to sediment instability and failure along the SAM. Evidence of large areas still prone to failure provides elements of tsunamogenic hazard.

  10. The stability and the hydrological behavior of biological soil crusts is significantly affected by the complex nature of their polysaccharidic matrix

    NASA Astrophysics Data System (ADS)

    De Philippis, Roberto

    2015-04-01

    colloidal fraction of the EPSs, which is more dispersed in the soil, is more easily degradable by the microflora residing in the crusts, while the EPS fraction tightly bound to the soil particles, which is characterized by a high molecular weight, plays a key role in giving a structural stability to the BSCs and in affecting the hydrological behavior of the soil covered by the crusts.

  11. Effects of basin bottom slope on jet hydrodynamics and river mouth bar formation

    NASA Astrophysics Data System (ADS)

    Jiménez-Robles, A. M.; Ortega-Sánchez, M.; Losada, M. A.

    2016-06-01

    River mouth bars are strategic morphological units primarily responsible for the development of entire deltaic systems. This paper addresses the role of receiving basin slope in the hydrodynamics of an exiting sediment-laden turbulent jet and in resulting mouth bar morphodynamics. We use Delft3D, a coupled hydrodynamic and morphodynamic numerical model, along with a theoretical formulation to reproduce the physics of the problem, characterized by a fluvially dominated inlet free of waves and tides. We propose an updated theoretical model with a slope-dependent entrainment coefficient, showing that the rate at which ambient fluid is incorporated into a jet increases with higher basin slopes. Transient results reveal that the magnitude of a basin slope can alter the stability of a jet, favoring the formation of an unstable meandering jet. While a stable jet gives rise to "middle-ground" bars accompanied by diverging channels, a "lunate" mouth bar results from unstable jets. Additional morphodynamic simulations demonstrate that the time required for mouth bar stagnation in its final position increases linearly with the basin slope. In contrast, the distance at which the mouth bar eventually forms decreases until reaching an asymptotic value for slopes higher than 2%. Moreover, the basin slope highly influences sedimentary processes responsible for bar formation: for milder slopes, progradation processes prevail, while in steeper basins aggradation is more relevant. Finally, the minimum relative water depth over a bar crest that forces the flow to bifurcate around a fully developed bar decreases with the basin slope.

  12. Geomorphological control on variably saturated hillslope hydrology and slope instability

    USGS Publications Warehouse

    Giuseppe, Formetta; Simoni, Silvia; Godt, Jonathan W.; Lu, Ning; Rigon, Riccardo

    2016-01-01

    In steep topography, the processes governing variably saturated subsurface hydrologic response and the interparticle stresses leading to shallow landslide initiation are physically linked. However, these processes are usually analyzed separately. Here, we take a combined approach, simultaneously analyzing the influence of topography on both hillslope hydrology and the effective stress fields within the hillslope itself. Clearly, runoff and saturated groundwater flow are dominated by gravity and, ultimately, by topography. Less clear is how landscape morphology influences flows in the vadose zone, where transient fluxes are usually taken to be vertical. We aim to assess and quantify the impact of topography on both saturated and unsaturated hillslope hydrology and its effects on shallow slope stability. Three real hillslope morphologies (concave, convex, and planar) are analyzed using a 3-D, physically based, distributed model coupled with a module for computation of the probability of failure, based on the infinite slope assumption. The results of the analyses, which included parameter uncertainty analysis of the results themselves, show that convex and planar slopes are more stable than concave slopes. Specifically, under the same initial, boundary, and infiltration conditions, the percentage of unstable areas ranges from 1.3% for the planar hillslope, 21% for convex, to a maximum value of 33% for the concave morphology. The results are supported by a sensitivity analysis carried out to examine the effect of initial conditions and rainfall intensity.

  13. Geomorphological control on variably saturated hillslope hydrology and slope instability

    NASA Astrophysics Data System (ADS)

    Giuseppe, Formetta; Simoni, Silvia; Godt, Jonathan W.; Lu, Ning; Rigon, Riccardo

    2016-06-01

    In steep topography, the processes governing variably saturated subsurface hydrologic response and the interparticle stresses leading to shallow landslide initiation are physically linked. However, these processes are usually analyzed separately. Here, we take a combined approach, simultaneously analyzing the influence of topography on both hillslope hydrology and the effective stress fields within the hillslope itself. Clearly, runoff and saturated groundwater flow are dominated by gravity and, ultimately, by topography. Less clear is how landscape morphology influences flows in the vadose zone, where transient fluxes are usually taken to be vertical. We aim to assess and quantify the impact of topography on both saturated and unsaturated hillslope hydrology and its effects on shallow slope stability. Three real hillslope morphologies (concave, convex, and planar) are analyzed using a 3-D, physically based, distributed model coupled with a module for computation of the probability of failure, based on the infinite slope assumption. The results of the analyses, which included parameter uncertainty analysis of the results themselves, show that convex and planar slopes are more stable than concave slopes. Specifically, under the same initial, boundary, and infiltration conditions, the percentage of unstable areas ranges from 1.3% for the planar hillslope, 21% for convex, to a maximum value of 33% for the concave morphology. The results are supported by a sensitivity analysis carried out to examine the effect of initial conditions and rainfall intensity.

  14. Parameters affecting the stability of the digestate from a two-stage anaerobic process treating the organic fraction of municipal solid waste

    SciTech Connect

    Trzcinski, Antoine P.; Stuckey, David C.

    2011-07-15

    This paper focused on the factors affecting the respiration rate of the digestate taken from a continuous anaerobic two-stage process treating the organic fraction of municipal solid waste (OFMSW). The process involved a hydrolytic reactor (HR) that produced a leachate fed to a submerged anaerobic membrane bioreactor (SAMBR). It was found that a volatile solids (VS) removal in the range 40-75% and an operating temperature in the HR between 21 and 35 {sup o}C resulted in digestates with similar respiration rates, with all digestates requiring 17 days of aeration before satisfying the British Standard Institution stability threshold of 16 mg CO{sub 2} g VS{sup -1} day{sup -1}. Sanitization of the digestate at 65 {sup o}C for 7 days allowed a mature digestate to be obtained. At 4 g VS L{sup -1} d{sup -1} and Solid Retention Times (SRT) greater than 70 days, all the digestates emitted CO{sub 2} at a rate lower than 25 mg CO{sub 2} g VS{sup -1} d{sup -1} after 3 days of aeration, while at SRT lower than 20 days all the digestates displayed a respiration rate greater than 25 mg CO{sub 2} g VS{sup -1} d{sup -1}. The compliance criteria for Class I digestate set by the European Commission (EC) and British Standard Institution (BSI) could not be met because of nickel and chromium contamination, which was probably due to attrition of the stainless steel stirrer in the HR.

  15. A comparative analysis of terrain stability models for predicting shallow landslides in colluvial soils

    NASA Astrophysics Data System (ADS)

    Meisina, C.; Scarabelli, S.

    2007-06-01

    Most of the slopes of the hilly areas of the Apennines are composed of colluvial soils originating from the weathering of the bedrock and down slope transportation. Shallow slides affect this superficial cover, depend largely on the surface topography and are a recurrent problem. SINMAP and SHALSTAB are terrain stability models that combine steady state hydrology assumptions with the infinite slope stability model to quantify shallow slope stability. They have a similar physical basis but they use different indices to quantify instability. The purposes of this study are to test and compare the approaches of SINMAP and SHALSTAB models for slope stability analysis and to compare the results of these analyses with the locations of the shallow landslides that occurred on November 2002 in an area of the Oltrepo Pavese (Northern Apennines). The territory of S. Giuletta, characterized by clayey-silty colluvial soils, represents the test site. The Digital Elevation Model was constructed from a 1:5000 scale contour map and was used to estimate the slope of the terrain as well as the potential soil moisture conditions. In situ and laboratory tests provided the basis for measuring values for soil hydraulic and geotechnical parameters (moisture content, soil suction, Atterberg limits, methylene blue dye adsorption, hydraulic conductivity). Soil thickness was extracted from a soil database. An inventory of landslide from interpretation of aerial photographs and field surveys was used to document sites of instability (mostly soil slips) and to provide a test of model performance by comparing observed landslide locations with model predictions. The study discusses the practical advantages and limitations of the two models in connection with the geological characteristics of the studied area, which could be representative of similar geological contexts in the Apennines.

  16. Model slope infiltration experiments for shallow landslides early warning

    NASA Astrophysics Data System (ADS)

    Damiano, E.; Greco, R.; Guida, A.; Olivares, L.; Picarelli, L.

    2009-04-01

    Occurrence of fast landslides has become more and more dangerous during the last decades, due to the increased density of settlements, industrial plants and infrastructures. Such problem is particularly worrying in Campania (Southern Italy), where the fast population growth led a diffuse building activity without planning: indeed, recent flowslides caused hundreds of victims and heavy damages to buildings, roads and other infrastructures. Large mountainous areas in Campania are mantled by loose pyroclastic granular soils up to a depth of a few meters from top soil surface. These soils have usually a grain size that falls in the domain of silty sands, including pumice interbeds (gravelly sands), with saturated hydraulic conductivities up to the order of 10-1 cm/min. Such deposits often cover steep slopes, which stability is guaranteed by the apparent cohesion due to suction under unsaturated conditions, that are the most common conditions for these slopes [Olivares and Picarelli, 2001]. Whereas rainfall infiltration causes soil to approach saturation, suction vanishes and slope failure may occur. Besides soil physical properties, landslide triggering is influenced by several factors, such as rainfall intensity, soil initial moisture and suction, slope inclination, boundary conditions. Whereas slope failure occurs with soil close to being saturated, landslide may develop in form of fast and destructive flowslide. Calibration of reliable mathematical models of such a complex phenomenon requires availability of experimental observations of the major variables of interest, such as soil moisture and suction, soil deformation and displacements, pore water pressure, during the entire process of infiltration until slope failure. Due to the sudden trigger and extremely rapid propagation of such type of landslides, such data sets are rarely available for natural slopes where flowslides occurred. As a consequence landslide risk assessment and early warning in Campania rely on

  17. Case study of slope failures at Spilmans Island

    SciTech Connect

    Kayyal, M.K.; Hasen, M.

    1998-11-01

    This paper presents a case study for a dredge disposal site called Spilmans Island, located along the Houston-Galveston Ship Channel, east of Houston. Initially classified as a sand bar in the San Jacinto River, Spilmans Island evolved in recent years with the construction of perimeter levees to contain the flow of materials produced from dredging operations. These levees were often constructed on soft dredged sediments, and as the levees were raised, occasionally slope failures occurred. The objectives of this paper are to illustrate the importance of reconstructing the history of a site as a basis for geotechnical analyses, and to demonstrate the significance of keeping accurate records of past investigations, construction activities, slope failures and subsequent remedial measures. The results of the geotechnical investigation described in this paper offer a clear example of how such data can be used to provide reliable predictions on the stability conditions of raised levees.

  18. Unsteady Katabatic Winds on Mountain Slopes

    NASA Astrophysics Data System (ADS)

    Fernando, H. J. S.; Princevac, M.; Hunt, J. C. R.

    2003-04-01

    UNSTEADY KATABATIC WINDS ON MOUNTAIN SLOPES H.J.S. Fernando (1), M. Princevac (1) and J.C.R. Hunt (2) (1) Arizona State University, Tempe, (2) University College, London j.fernando@asu.edu Theoretical and field studies were carried out on velocity and temperature fields of an unsteady nighttime atmospheric boundary layer on sloping surfaces. Field data were collected during the Vertical Transport and Mixing Experiment (VTMX) conducted in the Salt Lake basin, Utah. Nighttime data from two slope sites, with measurements taken using six tethersonde systems and three sonic anemometers placed at a various representative locations along the slope, were used in the analysis. This analysis concerned simple katabatic flows as well as the interaction between (evening) down-slope flows on lower (elevation) gentle slopes and those originating at adjoining higher (elevation) steep mountain slopes. Katabatic winds that form on the steep slope overrun those on the lower slope, thus dominating the micrometeorology at the bottom of the valley. Yet, the flow and temperature on higher slopes are independent of those in the lower valley, given that katabatic flows on steeper slopes are generally supercritical and do not transmit flow information upstream. By empl