Science.gov

Sample records for affect soil carbon

  1. Switchgrass cultivars differentially affect soil carbon stabilization

    NASA Astrophysics Data System (ADS)

    Adkins, J.; Jastrow, J. D.; Wullschleger, S. D.; De Graaff, M.

    2012-12-01

    Soil organic carbon (SOC) storage depends on the amount and quality of plant-derived carbon (C) inputs to soil, which is largely regulated by plant roots via the processes of root turnover and exudation. While we know that plant roots mediate SOC stabilization, we do not fully understand which root characteristics specifically promote soil C storage. With this study we asked whether roots with coarse root systems versus roots with finely branched root systems differentially affect soil C stabilization. In order to answer this question, we collected soil cores (4.8 cm diameter, to a depth of 30 cm) from directly over the crown of six switchgrass (Panicum virgatum L.) cultivars that differed in root architecture. Specifically, three cultivars had fibrous root systems (i.e. high specific root length) and three had coarse root systems (i.e. low specific root length). The cultivars (C4 species) were grown in a C3 grassland for four years, allowing us to use isotopic fractionation techniques to assess differences in soil C input and stabilization. The cores were divided into depth increments of 10 cm and the soils were sieved (2mm). Soil from each depth increment was dispersed by shaking for 16 hours in a NaHMP solution to isolate coarse particulate organic matter (C-POM), fine particulate organic matter (F-POM), silt, and clay-sized fractions. Samples of soil fractions across all depths were analyzed for C and N contents as well as δ13C signature. We found that the relative abundance of the different soil fractions and associated δ13C signatures differed significantly among cultivars. These results indicate that switchgrass cultivars can differentially impact soil carbon inputs and stabilization. We hypothesize that these differences may be driven by variability in root architectures.

  2. How does soil management affect carbon losses from soils?

    NASA Astrophysics Data System (ADS)

    Klik, A.; Trümper, G.

    2009-04-01

    Agricultural soils are a major source as well as a sink of organic carbon (OC). Amount and distribution of OC within the soil and within the landscape are driven by land management but also by erosion and deposition processes. At the other hand the type of soil management influences mineralization and atmospheric carbon dioxide losses by soil respiration. In a long-term field experiment the impacts of soil tillage systems on soil erosion processes were investigated. Following treatments were compared: 1) conventional tillage (CT), 2) conservation tillage with cover crop during the winter period (CS), and 3) no-till with cover crop during winter period (NT). The studies were carried out at three sites in the Eastern part of Austria with annual precipitation amounts from 650 to 900 mm. The soil texture ranged from silt loam to loam. Since 2007 soil CO2 emissions are measured with a portable soil respiration system in intervals of about one week, but also in relation to management events. Concurrent soil temperature and soil water content are measured and soil samples are taken for chemical and microbiological analyses. An overall 14-yr. average soil loss between 1.0 t.ha-1.yr-1 for NT and 6.1 t.ha-1.yr-1 for CT resulted in on-site OC losses from 18 to 79 kg ha-1.yr-1. The measurements of the carbon dioxide emissions from the different treatments indicate a high spatial variation even within one plot. Referred to CT plots calculated carbon losses amounted to 65-94% for NT plots while for the different RT plots they ranged between 84 and 128%. Nevertheless site specific considerations have to be taken into account. Preliminary results show that the adaptation of reduced or no-till management strategies has enormous potential in reducing organic carbon losses from agricultural used soils.

  3. Microbial Carbon Cycling in Permafrost-Affected Soils

    SciTech Connect

    Vishnivetskaya, T.; Liebner, Susanne; Wilhelm, Ronald; Wagner, Dirk

    2011-01-01

    The Arctic plays a key role in Earth s climate system as global warming is predicted to be most pronounced at high latitudes and because one third of the global carbon pool is stored in ecosystems of the northern latitudes. In order to improve our understanding of the present and future carbon dynamics in climate sensitive permafrost ecosystems, present studies concentrate on investigations of microbial controls of greenhouse gas fluxes, on the activity and structure of the involved microbial communities, and on their response to changing environmental conditions. Permafrost-affected soils can function as both a source and a sink for carbon dioxide and methane. Under anaerobic conditions, caused by flooding of the active layer and the effect of backwater above the permafrost table, the mineralization of organic matter can only be realized stepwise by specialized microorganisms. Important intermediates of the organic matter decomposition are hydrogen, carbon dioxide and acetate, which can be further reduced to methane by methanogenic archaea. Evolution of methane fluxes across the subsurface/atmosphere boundary will thereby strongly depend on the activity of anaerobic methanogenic archaea and obligately aerobic methane oxidizing proteobacteria, which are known to be abundant and to significantly reduce methane emissions in permafrost-affected soils. Therefore current studies on methane-cycling microorganisms are the object of particular attention in permafrost studies, because of their key role in the Arctic methane cycle and consequently of their significance for the global methane budget.

  4. Soil Organic Carbon Pools and Stocks in Permafrost-Affected Soils on the Tibetan Plateau

    PubMed Central

    Dörfer, Corina; Kühn, Peter; Baumann, Frank; He, Jin-Sheng; Scholten, Thomas

    2013-01-01

    The Tibetan Plateau reacts particularly sensitively to possible effects of climate change. Approximately two thirds of the total area is affected by permafrost. To get a better understanding of the role of permafrost on soil organic carbon pools and stocks, investigations were carried out including both discontinuous (site Huashixia, HUA) and continuous permafrost (site Wudaoliang, WUD). Three organic carbon fractions were isolated using density separation combined with ultrasonic dispersion: the light fractions (<1.6 g cm−3) of free particulate organic matter (FPOM) and occluded particulate organic matter (OPOM), plus a heavy fraction (>1.6 g cm−3) of mineral associated organic matter (MOM). The fractions were analyzed for C, N, and their portion of organic C. FPOM contained an average SOC content of 252 g kg−1. Higher SOC contents (320 g kg−1) were found in OPOM while MOM had the lowest SOC contents (29 g kg−1). Due to their lower density the easily decomposable fractions FPOM and OPOM contribute 27% (HUA) and 22% (WUD) to the total SOC stocks. In HUA mean SOC stocks (0–30 cm depth) account for 10.4 kg m−2, compared to 3.4 kg m−2 in WUD. 53% of the SOC is stored in the upper 10 cm in WUD, in HUA only 39%. Highest POM values of 36% occurred in profiles with high soil moisture content. SOC stocks, soil moisture and active layer thickness correlated strongly in discontinuous permafrost while no correlation between SOC stocks and active layer thickness and only a weak relation between soil moisture and SOC stocks could be found in continuous permafrost. Consequently, permafrost-affected soils in discontinuous permafrost environments are susceptible to soil moisture changes due to alterations in quantity and seasonal distribution of precipitation, increasing temperature and therefore evaporation. PMID:23468904

  5. Carbon amendment and soil depth affect the distribution and abundance of denitrifiers in agricultural soils.

    PubMed

    Barrett, M; Khalil, M I; Jahangir, M M R; Lee, C; Cardenas, L M; Collins, G; Richards, K G; O'Flaherty, V

    2016-04-01

    The nitrite reductase (nirS and nirK) and nitrous oxide reductase-encoding (nosZ) genes of denitrifying populations present in an agricultural grassland soil were quantified using real-time polymerase chain reaction (PCR) assays. Samples from three separate pedological depths at the chosen site were investigated: horizon A (0-10 cm), horizon B (45-55 cm), and horizon C (120-130 cm). The effect of carbon addition (treatment 1, control; treatment 2, glucose-C; treatment 3, dissolved organic carbon (DOC)) on denitrifier gene abundance and N2O and N2 fluxes was determined. In general, denitrifier abundance correlated well with flux measurements; nirS was positively correlated with N2O, and nosZ was positively correlated with N2 (P < 0.03). Denitrifier gene copy concentrations per gram of soil (GCC) varied in response to carbon type amendment (P < 0.01). Denitrifier GCCs were high (ca. 10(7)) and the bac:nirK, bac:nirS, bac:nir (T) , and bac:nosZ ratios were low (ca. 10(-1)/10) in horizon A in all three respective treatments. Glucose-C amendment favored partial denitrification, resulting in higher nir abundance and higher N2O fluxes compared to the control. DOC amendment, by contrast, resulted in relatively higher nosZ abundance and N2 emissions, thus favoring complete denitrification. We also noted soil depth directly affected bacterial, archaeal, and denitrifier abundance, possibly due to changes in soil carbon availability with depth.

  6. Key biogeochemical factors affecting soil carbon storage in Posidonia meadows

    NASA Astrophysics Data System (ADS)

    Serrano, Oscar; Ricart, Aurora M.; Lavery, Paul S.; Mateo, Miguel Angel; Arias-Ortiz, Ariane; Masque, Pere; Rozaimi, Mohammad; Steven, Andy; Duarte, Carlos M.

    2016-08-01

    Biotic and abiotic factors influence the accumulation of organic carbon (Corg) in seagrass ecosystems. We surveyed Posidonia sinuosa meadows growing in different water depths to assess the variability in the sources, stocks and accumulation rates of Corg. We show that over the last 500 years, P. sinuosa meadows closer to the upper limit of distribution (at 2-4 m depth) accumulated 3- to 4-fold higher Corg stocks (averaging 6.3 kg Corg m-2) at 3- to 4-fold higher rates (12.8 g Corg m-2 yr-1) compared to meadows closer to the deep limits of distribution (at 6-8 m depth; 1.8 kg Corg m-2 and 3.6 g Corg m-2 yr-1). In shallower meadows, Corg stocks were mostly derived from seagrass detritus (88 % in average) compared to meadows closer to the deep limit of distribution (45 % on average). In addition, soil accumulation rates and fine-grained sediment content (< 0.125 mm) in shallower meadows (2.0 mm yr-1 and 9 %, respectively) were approximately 2-fold higher than in deeper meadows (1.2 mm yr-1 and 5 %, respectively). The Corg stocks and accumulation rates accumulated over the last 500 years in bare sediments (0.6 kg Corg m-2 and 1.2 g Corg m-2 yr-1) were 3- to 11-fold lower than in P. sinuosa meadows, while fine-grained sediment content (1 %) and seagrass detritus contribution to the Corg pool (20 %) were 8- and 3-fold lower than in Posidonia meadows, respectively. The patterns found support the hypothesis that Corg storage in seagrass soils is influenced by interactions of biological (e.g., meadow productivity, cover and density), chemical (e.g., recalcitrance of Corg stocks) and physical (e.g., hydrodynamic energy and soil accumulation rates) factors within the meadow. We conclude that there is a need to improve global estimates of seagrass carbon storage accounting for biogeochemical factors driving variability within habitats.

  7. Key biogeochemical factors affecting soil carbon storage in Posidonia meadows

    NASA Astrophysics Data System (ADS)

    Serrano, O.; Ricart, A. M.; Lavery, P. S.; Mateo, M. A.; Arias-Ortiz, A.; Masque, P.; Steven, A.; Duarte, C. M.

    2015-11-01

    Biotic and abiotic factors influence the accumulation of organic carbon (Corg) in seagrass ecosystems. We surveyed Posidonia sinuosa meadows growing in different water depths to assess the variability in the sources, stocks and accumulation rates of Corg. We show that over the last 500 years, P. sinuosa meadows closer to the upper limit of distribution (at 2-4 m depth) accumulated 3 to 4-fold higher Corg stocks (averaging 6.3 kg Corg m-2) at 3 to 4-fold higher rates (12.8 g Corg m-2 yr-1) compared to meadows closer to the deep limits of distribution (at 6-8 m depth; 1.8 kg Corg m-2 and 3.6 g Corg m-2 yr-1). In shallower meadows, Corg stores were mostly derived from seagrass detritus (88 % in average) compared to meadows closer to the deep limit of distribution (45 % on average). Also, sediment accumulation rates and fine-grained sediment content (< 0.125 mm) in shallower meadows (2.0 mm yr-1 and 9 %, respectively) were approximately 2-fold higher than in deeper meadows (1.2 mm yr-1 and 5 %, respectively). The Corg stocks and accumulation rates accumulated over the last 500 years in bare sediments (0.6 kg Corg m-2 and 1.2 g Corg m-2 yr-1) were 3 to 11-fold lower than in P. sinuosa meadows, while fine-grained sediment content (1 %) and seagrass detritus contribution to the Corg pool (20 %) were 8 and 3-fold lower than in Posidonia meadows, respectively. The patterns found support the hypotheses that Corg storage in seagrass soils is influenced by interactions of biological (e.g. meadow productivity, cover and density), chemical (e.g. recalcitrance of Corg stocks) and physical (e.g. hydrodynamic energy and sediment accumulation rates) factors within the meadow. We conclude that there is a need to improve global estimates of seagrass carbon storage accounting for biogeochemical factors driving variability within habitats.

  8. Permafrost-Affected Soils of the Russian Arctic and their Carbon Pools

    NASA Astrophysics Data System (ADS)

    Zubrzycki, S.; Kutzbach, L.; Pfeiffer, E.-M.

    2014-02-01

    Permafrost-affected soils have accumulated enormous pools of organic matter during the Quaternary Period. The area occupied by these soils amounts to more than 8.6 million km2, which is about 27% of all land areas north of 50° N. Therefore, permafrost-affected soils are considered to be one of the most important cryosphere elements within the climate system. Due to the cryopedogenic processes that form these particular soils and the overlying vegetation that is adapted to the arctic climate, organic matter has accumulated to the present extent of up to 1024 Pg (1 Pg = 1015 g = 1 Gt) of soil organic carbon stored within the uppermost three meters of ground. Considering the observed progressive climate change and the projected polar amplification, permafrost-affected soils will undergo fundamental property changes. Higher turnover and mineralization rates of the organic matter are consequences of these changes, which are expected to result in an increased release of climate-relevant trace gases into the atmosphere. As a result, permafrost regions with their distinctive soils are likely to trigger an important tipping point within the global climate system, with additional political and social implications. The controversy of whether permafrost regions continue accumulating carbon or already function as a carbon source remains open until today. An increased focus on this subject matter, especially in underrepresented Siberian regions, could contribute to a more robust estimation of the soil organic carbon pool of permafrost regions and at the same time improve the understanding of the carbon sink and source functions of permafrost-affected soils.

  9. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China.

    PubMed

    Cai, Andong; Feng, Wenting; Zhang, Wenju; Xu, Minggang

    2016-05-01

    Mineral-associated organic carbon (MOC), that is stabilized by fine soil particles (i.e., silt plus clay, <53 μm), is important for soil organic carbon (SOC) persistence and sequestration, due to its large contribution to total SOC (TSOC) and long turnover time. Our objectives were to investigate how climate, soil type, soil texture, and agricultural managements affect MOC contributions to TSOC in China. We created a dataset from 103 published papers, including 1106 data points pairing MOC and TSOC across three major land use types: cropland, grassland, and forest. Overall, the MOC/TSOC ratio ranged from 0.27 to 0.80 and varied significantly among soil groups in cropland, grassland, and forest. Croplands and forest exhibited significantly higher median MOC/TSOC ratios than in grassland. Moreover, forest and grassland soils in temperate regions had higher MOC/TSOC ratios than in subtropical regions. Furthermore, the MOC/TSOC ratio was much higher in ultisol, compared with the other soil types. Both the MOC content and MOC/TSOC ratio were positively correlated with the amount of fine fraction (silt plus clay) in soil, highlighting the importance of soil texture in stabilizing organic carbon across various climate zones. In cropland, different fertilization practices and land uses (e.g., upland, paddy, and upland-paddy rotation) significantly altered MOC/TSOC ratios, but not in cropping systems (e.g., mono- and double-cropping) characterized by climatic differences. This study demonstrates that the MOC/TSOC ratio is mainly driven by soil texture, soil types, and related climate and land uses, and thus the variations in MOC/TSOC ratios should be taken into account when quantitatively estimating soil C sequestration potential of silt plus clay particles on a large scale. PMID:26905446

  10. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China.

    PubMed

    Cai, Andong; Feng, Wenting; Zhang, Wenju; Xu, Minggang

    2016-05-01

    Mineral-associated organic carbon (MOC), that is stabilized by fine soil particles (i.e., silt plus clay, <53 μm), is important for soil organic carbon (SOC) persistence and sequestration, due to its large contribution to total SOC (TSOC) and long turnover time. Our objectives were to investigate how climate, soil type, soil texture, and agricultural managements affect MOC contributions to TSOC in China. We created a dataset from 103 published papers, including 1106 data points pairing MOC and TSOC across three major land use types: cropland, grassland, and forest. Overall, the MOC/TSOC ratio ranged from 0.27 to 0.80 and varied significantly among soil groups in cropland, grassland, and forest. Croplands and forest exhibited significantly higher median MOC/TSOC ratios than in grassland. Moreover, forest and grassland soils in temperate regions had higher MOC/TSOC ratios than in subtropical regions. Furthermore, the MOC/TSOC ratio was much higher in ultisol, compared with the other soil types. Both the MOC content and MOC/TSOC ratio were positively correlated with the amount of fine fraction (silt plus clay) in soil, highlighting the importance of soil texture in stabilizing organic carbon across various climate zones. In cropland, different fertilization practices and land uses (e.g., upland, paddy, and upland-paddy rotation) significantly altered MOC/TSOC ratios, but not in cropping systems (e.g., mono- and double-cropping) characterized by climatic differences. This study demonstrates that the MOC/TSOC ratio is mainly driven by soil texture, soil types, and related climate and land uses, and thus the variations in MOC/TSOC ratios should be taken into account when quantitatively estimating soil C sequestration potential of silt plus clay particles on a large scale.

  11. The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau.

    PubMed

    Zhang, Xinfang; Xu, Shijian; Li, Changming; Zhao, Lin; Feng, Huyuan; Yue, Guangyang; Ren, Zhengwei; Cheng, Guogdong

    2014-01-01

    In the Tibetan permafrost region, vegetation types and soil properties have been affected by permafrost degradation, but little is known about the corresponding patterns of their soil microbial communities. Thus, we analyzed the effects of vegetation types and their covariant soil properties on bacterial and fungal community structure and membership and bacterial community-level physiological patterns. Pyrosequencing and Biolog EcoPlates were used to analyze 19 permafrost-affected soil samples from four principal vegetation types: swamp meadow (SM), meadow (M), steppe (S) and desert steppe (DS). Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria dominated bacterial communities and the main fungal phyla were Ascomycota, Basidiomycota and Mucoromycotina. The ratios of Proteobacteria/Acidobacteria decreased in the order: SM>M>S>DS, whereas the Ascomycota/Basidiomycota ratios increased. The distributions of carbon and nitrogen cycling bacterial genera detected were related to soil properties. The bacterial communities in SM/M soils degraded amines/amino acids very rapidly, while polymers were degraded rapidly by S/DS communities. UniFrac analysis of bacterial communities detected differences among vegetation types. The fungal UniFrac community patterns of SM differed from the others. Redundancy analysis showed that the carbon/nitrogen ratio had the main effect on bacteria community structures and their diversity in alkaline soil, whereas soil moisture was mainly responsible for structuring fungal communities. Thus, microbial communities and their functioning are probably affected by soil environmental change in response to permafrost degradation.

  12. Does deciduous tree species identity affect carbon storage in temperate soils?

    NASA Astrophysics Data System (ADS)

    Jungkunst, Hermann; Schleuß, Per; Heitkamp, Felix

    2015-04-01

    Forest soils contribute roughly 70 % to the global terrestrial soil organic carbon (SOC) pool and thus play a vital role in the global carbon cycle. It is less clear, however, whether temperate tree species identity affects SOC storage beyond the coarse differentiation between coniferous and deciduous trees. The most important driver for soil SOC storage definitely is the fine mineral fraction (clay and fine silt) because of its high sorption ability. It is difficult to disentangle any additional biotic effects since clay and silt vary considerably in nature. For experimental approaches, the process of soil carbon accumulation is too slow and, therefore, sound results cannot be expected for decades. Here we will present our success to distinguish between the effects of fine particle content (abiotic) and tree species composition (biotic) on the SOC pool in an old-growth broad-leaved forest plots along a tree diversity gradient , i.e., 1- (beech), 3- (plus ash and lime tree)- and 5-(plus maple and hornbeam) species. The particle size fractions were separated first and then the carbon concentrations of each fraction was measured. Hence, the carbon content per unit clay was not calculated, as usually done, but directly measured. As expected, the variation in SOC content was mainly explained by the variations in clay content but not entirely. We found that the carbon concentration per unit clay and fine silt in the subsoil was by 30-35% higher in mixed than in monospecific stands indicating a significant species identity or species diversity effect on C stabilization. In contrast to the subsoil, no tree species effects was identified for the topsoil. Indications are given that the mineral phase was already carbon saturated and thus left no more room for a possible biotic effect. Underlying processes must remain speculative, but we will additionally present our latest microcosm results, including isotopic signatures, to underpin the proposed deciduous tree species

  13. Do Forest Age and Soil Depth Affect Carbon and Nitrogen Adsorption in Mineral Horizons?

    NASA Astrophysics Data System (ADS)

    Spina, P. G.; Lovett, G. M.; Fuss, C. B.; Goodale, C. L.; Lang, A.; Fahey, T.

    2015-12-01

    Mineral soils retain large amounts of organic matter through sorption on the surfaces of mineral soils, the largest pools of carbon (C) and nitrogen (N) in the forests of the northeastern U.S. In addition to determining organic matter storage, adsorption and desorption processes are important controllers of runoff chemistry. We are studying adsorption dynamics of mineral soils collected from a chronosequence of hardwood forest sites in the White Mountains, NH to determine how soils vary in their DOM adsorption capacities as a function of effective C and N saturation. We hypothesize that forest age determines proximity to saturation because young forests may need to mine soil organic matter (SOM) in mineral soils to obtain nitrogen to meet growth demands, while the soils of older forests have had time to reaccumulate SOM, eventually reaching C and N saturation. Consequently, we expect adsorption capacities to first increase with forest age in young forests, as the trees mine C and N from mineral surfaces. They will then decrease with forest age in older forests as mining slows and C and N begin to re-accumulate. Batch experiments were conducted with mineral soil samples and dilutions of forest floor leachate. However, preliminary results from a mature forest site (about 100 years old), which we predicted to be a low point of C and N saturation from decades of mining, contradict expectations. Dissolved organic carbon (DOC) adsorption in its shallow mineral soil layers (0-3 cm below E or A horizons) are lower than younger sites ranging from 20 to about 40 years old. In addition to forest age, soil depths also affect N retention dynamics in forest soils. We hypothesized that deeper mineral soils might have greater adsorption capacities due to the fact that they are exposed to less DOC and DON leaching from organic layers and therefore less saturated. Results from the same mature forest site confirm this. Soils from 3-10 cm depth have more potential to adsorb DOC and

  14. The Isiokpo oil-pipeline leakage: total organic carbon/organic matter contents of affected soils.

    PubMed

    Osuji, Leo C; Adesiyan, Samuel O

    2005-08-01

    The environmental impact of the 1997 leakage of the high-pressure crude-oil pipeline at Isiokpo in the Niger Delta in the southeast of Nigeria was evaluated, with particular reference to total-organic-carbon (TOC) and total-organic-matter (TOM) contents of soils within the vicinity of the oil spillage. The soils, taken from depths of 0-15 cm (surface) and 15-30 cm (subsurface), were found to be more acidic (pH 4.2-5.6) than the unpolluted soils, with a high average moisture content of 6.8%. The extractable hydrocarbon content ranged from 2.71-3.48 mg/kg, indicating hydrocarbon contamination. However, contrary to expectation, the TOC and TOM contents of the polluted soils did not show any significant increase in concentration, supposedly due to natural rehabilitation of the affected mat layer of soils. Thus, notwithstanding the possible proliferation of heterotrophic organisms by the presence of the added petroleum hydrocarbons, environmental conditions such as weathering and climatic predispositions, as well as physico-chemical parameters such as pH, moisture content, and temperature must have encumbered the carbon-mineralizing capacity of the heterotrophs, thereby reducing the turnover of carbon and the decomposition of organic matter. The restrictions by high moisture content might not come directly from H(2)O itself, but are probably a consequence of hindered soil ventilation, which reduces O(2) supply and gaseous diffusion, conditions that might have been substantially aggravated by the added petroleum hydrocarbons.

  15. Hydrologic Treatments Affect Gaseous Carbon Loss From Organic Soils, Twitchell Island, California, October 1995-December 1997

    USGS Publications Warehouse

    Miller, Robin L.; Hastings, Lauren; Fujii, Roger

    2000-01-01

    Subsidence of organic soils in the Sacramento-San Joaquin Delta, California, has increased the potential for levee failure and flooding in the region. Because oxidation of the peat soils is a primary cause of subsidence, reversion of affected lands to wetlands has been proposed as a mitigation tool. To test this hypothesis, three 10 x 10 meter enclosures were built on Twitchell Island in the Delta and managed as different wetland habitats. Emissions of carbon dioxide and methane were measured in situ from October 1995 through December 1997, from the systems that developed under the different water-management treatments. Treatments included a seasonal control (SC) under current island management conditions; reverse flooding (RF), where the land is intentionally flooded from early dry season until midsummer; permanent shallow flooding (F); and a more deeply flooded, open-water (OW) treatment. Hydrologic treatments affected microbial processes, plant community and temperature dynamics which, in turn, affected carbon cycling. Water-management treatments with a period of flooding significantly decreased gaseous carbon emissions compared to the seasonal control. Permanent flooding treatments showed significantly higher methane fluxes than treatments with some period of aerobic conditions. Shallow flooding treatments created conditions that support cattail [Typha species (spp.)] marshes, while deep flooding precluded emergent vegetation. Carbon inputs to the permanent shallow flooding treatment tended to be greater than the measured losses. This suggests that permanent shallow flooding has the greatest potential for managing subsidence of these soils by generating organic substrate more rapidly than is lost through decomposition. Carbon input estimates of plant biomass compared to measurements of gaseous carbon losses indicate the potential for mitigation of subsidence through hydrologic management of the organic soils in the area.

  16. How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions?

    NASA Astrophysics Data System (ADS)

    Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.

    2016-06-01

    We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2-53 μm) and sand (53-2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg-1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg-1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation.

  17. How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions?

    PubMed

    Yang, X M; Drury, C F; Reynolds, W D; Yang, J Y

    2016-01-01

    We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2-53 μm) and sand (53-2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg(-1) soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg(-1), but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation.

  18. How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions?

    PubMed Central

    Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.

    2016-01-01

    We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2–53 μm) and sand (53–2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg−1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg−1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation. PMID:27251365

  19. How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions?

    PubMed

    Yang, X M; Drury, C F; Reynolds, W D; Yang, J Y

    2016-01-01

    We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2-53 μm) and sand (53-2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg(-1) soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg(-1), but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation. PMID:27251365

  20. Degradation of flubendiamide as affected by elevated CO2, temperature, and carbon mineralization rate in soil.

    PubMed

    Mukherjee, Irani; Das, Shaon Kumar; Kumar, Aman

    2016-10-01

    An experiment was conducted under three levels of atmospheric CO2 [ambient (398 ± 10 μmol mol(-1)), elevated (570 ± 10 μmol mol(-1)) and open condition], three levels of temperature (4, 25, and 40 °C) to study the degradation pattern of flubendiamide in soil and also carbon mineralization in soil. Results of this study revealed that flubendiamide was found to persist longer under outdoor condition (T1/2, 177.0 and 181.1 days) than ambient (T1/2, 168.4 and 172.3 days) and elevated condition (T1/2, 159.3 and 155.3 days) at 1 and 10 μg g(-1) fortification level, respectively. Results also revealed that flubendiamide dissipated faster at 40 °C (T1/2, 189.4 days) than 25 °C (T1/2, 225.3 days). Slower dissipation was recorded at 4 °C (T1/2, 326.3 days). Thus, increased CO2 levels and temperature following global warming might adversely affect flubendiamide degradation in soil. Laboratory study on microbial biomass carbon (MBC) and carbon mineralization (Cmin) in soil revealed that in des-iodo flubendiamide-treated soils, MBC significantly increased up to 45 days and then decreased. Flubendiamide-treated soil showed a non-significantly decreasing trend of soil MBC with time up to the 15th day of incubation and after 15 days significantly decreased up to 90 days of incubation. In des-iodo flubendiamide-treated soil, the evolution of CO2 decreased up to 45 days, which was increased after 45 days up to 90 days. In flubendiamide-treated soil, CO2 evolution decreased up to 30 days and after 45 days, it increased up to 90 days. PMID:27430656

  1. Carbon dioxide flux as affected by tillage and irrigation in soil converted from perennial forages to annual crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among greenhouse gases, carbon dioxide (CO2) is one of the most significant contributors to regional and global warming as well as climatic change. However, CO2 flux from the soil surface to the atmosphere can be affected by modifications in soil physical properties resulting from changes in land ma...

  2. Burning management in the tallgrass prairie affects root decomposition, soil food web structure and carbon flow

    NASA Astrophysics Data System (ADS)

    Shaw, E. A.; Denef, K.; Milano de Tomasel, C.; Cotrufo, M. F.; Wall, D. H.

    2015-09-01

    Root litter decomposition is a major component of carbon (C) cycling in grasslands, where it provides energy and nutrients for soil microbes and fauna. This is especially important in grasslands where fire is a common management practice and removes aboveground litter accumulation. In this study, we investigated whether fire affects root decomposition and C flow through the belowground food web. In a greenhouse experiment, we applied 13C-enriched big bluestem (Andropogon gerardii) root litter to intact tallgrass prairie soil cores collected from annually burned (AB) and infrequently burned (IB) treatments at the Konza Prairie Long Term Ecological Research (LTER) site. Incorporation of 13C into microbial phospholipid fatty acids and nematode trophic groups was measured on six occasions during a 180-day decomposition study to determine how C was translocated through the soil food web. Results showed significantly different soil communities between treatments and higher microbial abundance for IB. Root decomposition occurred rapidly and was significantly greater for AB. Microbes and their nematode consumers immediately assimilated root litter C in both treatments. Root litter C was preferentially incorporated in a few groups of microbes and nematodes, but depended on burn treatment: fungi, Gram-negative bacteria, Gram-positive bacteria, and fungivore nematodes for AB and only omnivore nematodes for IB. The overall microbial pool of root litter-derived C significantly increased over time but was not significantly different between burn treatments. The nematode pool of root litter-derived C also significantly increased over time, and was significantly higher for the AB treatment at 35 and 90 days after litter addition. In conclusion, the C flow from root litter to microbes to nematodes is not only measurable, but significant, indicating that higher nematode trophic levels are critical components of C flow during root decomposition which, in turn, is significantly

  3. Fire affects root decomposition, soil food web structure, and carbon flow in tallgrass prairie

    NASA Astrophysics Data System (ADS)

    Shaw, E. Ashley; Denef, Karolien; Milano de Tomasel, Cecilia; Cotrufo, M. Francesca; Wall, Diana H.

    2016-05-01

    Root litter decomposition is a major component of carbon (C) cycling in grasslands, where it provides energy and nutrients for soil microbes and fauna. This is especially important in grasslands where fire is common and removes aboveground litter accumulation. In this study, we investigated whether fire affects root decomposition and C flow through the belowground food web. In a greenhouse experiment, we applied 13C-enriched big bluestem (Andropogon gerardii) root litter to intact tallgrass prairie soil cores collected from annually burned (AB) and infrequently burned (IB) treatments at the Konza Prairie Long Term Ecological Research (LTER) site. Incorporation of 13C into microbial phospholipid fatty acids and nematode trophic groups was measured on six occasions during a 180-day decomposition study to determine how C was translocated through the soil food web. Results showed significantly different soil communities between treatments and higher microbial abundance for IB. Root decomposition occurred rapidly and was significantly greater for AB. Microbes and their nematode consumers immediately assimilated root litter C in both treatments. Root litter C was preferentially incorporated in a few groups of microbes and nematodes, but depended on burn treatment: fungi, Gram-negative bacteria, Gram-positive bacteria, and fungivore nematodes for AB and only omnivore nematodes for IB. The overall microbial pool of root-litter-derived C significantly increased over time but was not significantly different between burn treatments. The nematode pool of root-litter-derived C also significantly increased over time, and was significantly higher for the AB treatment at 35 and 90 days after litter addition. In conclusion, the C flow from root litter to microbes to nematodes is not only measurable but also significant, indicating that higher nematode trophic levels are critical components of C flow during root decomposition, which, in turn, is significantly affected by fire. Not

  4. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon

    USGS Publications Warehouse

    Waldrop, M.P.; Zak, D.R.

    2006-01-01

    Recent evidence suggests that atmospheric nitrate (NO3- ) deposition can alter soil carbon (C) storage by directly affecting the activity of lignin-degrading soil fungi. In a laboratory experiment, we studied the direct influence of increasing soil NO 3- concentration on microbial C cycling in three different ecosystems: black oak-white oak (BOWO), sugar maple-red oak (SMRO), and sugar maple-basswood (SMBW). These ecosystems span a broad range of litter biochemistry and recalcitrance; the BOWO ecosystem contains the highest litter lignin content, SMRO had intermediate lignin content, and SMBW leaf litter has the lowest lignin content. We hypothesized that increasing soil solution NO 3- would reduce lignolytic activity in the BOWO ecosystem, due to a high abundance of white-rot fungi and lignin-rich leaf litter. Due to the low lignin content of litter in the SMBW, we further reasoned that the NO3- repression of lignolytic activity would be less dramatic due to a lower relative abundance of white-rot basidiomycetes; the response in the SMRO ecosystem should be intermediate. We increased soil solution NO3- concentrations in a 73-day laboratory incubation and measured microbial respiration and soil solution dissolved organic carbon (DOC) and phenolics concentrations. At the end of the incubation, we measured the activity of ??-glucosidase, N-acetyl-glucosaminidase, phenol oxidase, and peroxidase, which are extracellular enzymes involved with cellulose and lignin degradation. We quantified the fungal biomass, and we also used fungal ribosomal intergenic spacer analysis (RISA) to gain insight into fungal community composition. In the BOWO ecosystem, increasing NO 3- significantly decreased oxidative enzyme activities (-30% to -54%) and increased DOC (+32% upper limit) and phenolic (+77% upper limit) concentrations. In the SMRO ecosystem, we observed a significant decrease in phenol oxidase activity (-73% lower limit) and an increase in soluble phenolic concentrations

  5. Characterizing scale-specific environmental factors affecting soil organic carbon along two landscape transects.

    PubMed

    She, Dongli; Cao, Yutong; Chen, Qian; Yu, Shuang'en

    2016-09-01

    Soil organic carbon (SOC) is one of the most important soil properties affecting many other soil and environmental properties and processes. In order to understand and manage SOC effectively, it is important to identify the scale-specific main factors affecting SOC distributions, which in this study occurred in a watershed on the Loess Plateau. Two transects were selected that passed along the upper slopes on each side of the main gully of the Liudaogou watershed. Transect 1 (3411-m length) had 27 sampling sites at 131-m intervals; transect 2 (3597 m length) had 30 sampling sites at 124-m intervals. The two transects were chosen in order to compare landscape patterns of differing complexity that were in close proximity, which reduced the effects of factors that would be caused by different locations. The landscape of transect 1 was more complex due to the greater diversity in cultivation. Multivariate empirical mode decomposition (MEMD) decomposed the total variation in SOC and five selected environmental factors into four intrinsic mode functions (IMFs) and a residual according to the scale of occurrence. Scale-specific correlation analysis was used to identify significant relationships between SOC and the environmental factors. The dominant scales were those that were the largest contributors to the total SOC variance; for transect 1, this was the IMF 1 (scale of 403 m), whereas for transect 2, it was the medium scale of the IMF 2 (scale of 688 m). For both transects, vegetation properties (vegetation cover and aboveground biomass) were the main factors affecting SOC distributions at their respective dominant scales. At each scale, the main effective factors could be identified although at the larger scales, their contributions to the overall variance were almost negligible. The distributions of SOC and the factors affecting it were found to be scale dependent. The results of this study highlighted the suitability of the MEMD method in revealing the main scale

  6. Sub-surface soil carbon changes affects biofuel greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in direct soil organic carbon (SOC) can have a major impact on overall greenhouse gas (GHG) emissions from biofuels when using life-cycle assessment (LCA). Estimated changes in SOC, when accounted for in an LCA, are typically derived from near-surface soil depths (<30 cm). Changes in subsurf...

  7. Do microorganism stoichiometric alterations affect carbon sequestration in paddy soil subjected to phosphorus input?

    PubMed

    Zhang, ZhiJian; Li, HongYi; Hu, Jiao; Li, Xia; He, Qiang; Tian, GuangMing; Wang, Hang; Wang, ShunYao; Wang, Bei

    2015-04-01

    Ecological stoichiometry provides a powerful tool for integrating microbial biomass stoichiometry with ecosystem processes, opening far-reaching possibilities for linking microbial dynamics to soil carbon (C) metabolism in response to agricultural nutrient management. Despite its importance to crop yield, the role of phosphorus (P) with respect to ecological stoichiometry and soil C sequestration in paddy fields remains poorly understood, which limits our ability to predict nutrient-related soil C cycling. Here, we collected soil samples from a paddy field experiment after seven years of superphosphate application along a gradient of 0, 30, 60, and 90 (P-0 through P-90, respectively) kg.ha-1.yr-1 in order to evaluate the role of exogenous P on soil C sequestration through regulating microbial stoichiometry. P fertilization increased soil total organic C and labile organic C by 1-14% and 4-96%, respectively, while rice yield is a function of the activities of soil β-1,4-glucosidase (BG), acid phosphatase (AP), and the level of available soil P through a stepwise linear regression model. P input induced C limitation, as reflected by decreases in the ratios of C:P in soil and microbial biomass. An eco-enzymatic ratio indicating microbial investment in C vs. P acquisition, i.e., ln(BG): ln(AP), changed the ecological function of microbial C acquisition, and was stoichiometrically related to P input. This mechanism drove a shift in soil resource availability by increasing bacterial community richness and diversity, and stimulated soil C sequestration in the paddy field by enhancing C-degradation-related bacteria for the breakdown of plant-derived carbon sources. Therefore, the decline in the C:P stoichiometric ratio of soil microorganism biomass under P input was beneficial for soil C sequestration, which offered a "win-win" relationship for the maximum balance point between C sequestration and P availability for rice production in the face of climate change. PMID

  8. Do microorganism stoichiometric alterations affect carbon sequestration in paddy soil subjected to phosphorus input?

    PubMed

    Zhang, ZhiJian; Li, HongYi; Hu, Jiao; Li, Xia; He, Qiang; Tian, GuangMing; Wang, Hang; Wang, ShunYao; Wang, Bei

    2015-04-01

    Ecological stoichiometry provides a powerful tool for integrating microbial biomass stoichiometry with ecosystem processes, opening far-reaching possibilities for linking microbial dynamics to soil carbon (C) metabolism in response to agricultural nutrient management. Despite its importance to crop yield, the role of phosphorus (P) with respect to ecological stoichiometry and soil C sequestration in paddy fields remains poorly understood, which limits our ability to predict nutrient-related soil C cycling. Here, we collected soil samples from a paddy field experiment after seven years of superphosphate application along a gradient of 0, 30, 60, and 90 (P-0 through P-90, respectively) kg.ha-1.yr-1 in order to evaluate the role of exogenous P on soil C sequestration through regulating microbial stoichiometry. P fertilization increased soil total organic C and labile organic C by 1-14% and 4-96%, respectively, while rice yield is a function of the activities of soil β-1,4-glucosidase (BG), acid phosphatase (AP), and the level of available soil P through a stepwise linear regression model. P input induced C limitation, as reflected by decreases in the ratios of C:P in soil and microbial biomass. An eco-enzymatic ratio indicating microbial investment in C vs. P acquisition, i.e., ln(BG): ln(AP), changed the ecological function of microbial C acquisition, and was stoichiometrically related to P input. This mechanism drove a shift in soil resource availability by increasing bacterial community richness and diversity, and stimulated soil C sequestration in the paddy field by enhancing C-degradation-related bacteria for the breakdown of plant-derived carbon sources. Therefore, the decline in the C:P stoichiometric ratio of soil microorganism biomass under P input was beneficial for soil C sequestration, which offered a "win-win" relationship for the maximum balance point between C sequestration and P availability for rice production in the face of climate change.

  9. [Carbon source metabolic diversity of soil microbial community under different climate types in the area affected by Wenchuan earthquake].

    PubMed

    Zhang, Guang-Shuai; Lin, Yong-Ming; Ma, Rui-Feng; Deng, Hao-Jun; Du, Kun; Wu, Cheng-Zhen; Hong, Wei

    2015-02-01

    The MS8.0 Wenchuan earthquake in 2008 led to huge damage to land covers in northwest Sichuan, one of the critical fragile eco-regions in China which can be divided into Semi-arid dry hot climate zone (SDHC) and Subtropical humid monsoon climate zone (SHMC). Using the method of Bilog-ECO-microplate technique, this paper aimed to determine the functional diversity of soil microbial community in the earthquake-affected areas which can be divided into undamaged area (U), recover area (R) and damaged area without recovery (D) under different climate types, in order to provide scientific basis for ecological recovery. The results indicated that the average-well-color-development (AWCD) in undamaged area and recovery area showed SDHC > SHMC, which was contrary to the AWCD in the damaged area without recovery. The AWCD of damaged area without recovery was the lowest in both climate zones. The number of carbon source utilization types of soil microbial in SHMC zone was significantly higher than that in SDHC zone. The carbon source utilization types in both climate zones presented a trend of recover area > undamaged area > damaged area without recovery. The carbon source metabolic diversity characteristic of soil microbial community was significantly different in different climate zones. The diversity index and evenness index both showed a ranking of undamaged area > recover area > damaged area without recovery. In addition, the recovery area had the highest richness index. The soil microbial carbon sources metabolism characteristic was affected by soil nutrient, aboveground vegetation biomass and vegetation coverage to some extent. In conclusion, earthquake and its secondary disasters influenced the carbon source metabolic diversity characteristic of soil microbial community mainly through the change of aboveground vegetation and soil environmental factors.

  10. Biochar affects carbon composition and stability in soil: a combined spectroscopy-microscopy study

    NASA Astrophysics Data System (ADS)

    Hernandez-Soriano, Maria C.; Kerré, Bart; Kopittke, Peter M.; Horemans, Benjamin; Smolders, Erik

    2016-04-01

    The use of biochar can contribute to carbon (C) storage in soil. Upon addition of biochar, there is a spatial reorganization of C within soil particles, but the mechanisms remain unclear. Here, we used Fourier transformed infrared-microscopy and confocal laser scanning microscopy to examine this reorganization. A silty-loam soil was amended with three different organic residues and with the biochar produced from these residues and incubated for 237 d. Soil respiration was lower in biochar-amended soils than in residue-amended soils. Fluorescence analysis of the dissolved organic matter revealed that biochar application increased a humic-like fluorescent component, likely associated with biochar-C in solution. The combined spectroscopy-microscopy approach revealed the accumulation of aromatic-C in discrete spots in the solid-phase of microaggregates and its co-localization with clay minerals for soil amended with raw residue or biochar.The co-localization of aromatic-C:polysaccharides-C was consistently reduced upon biochar application. We conclude that reduced C metabolism is an important mechanism for C stabilization in biochar-amended soils.

  11. Biochar affects carbon composition and stability in soil: a combined spectroscopy-microscopy study

    PubMed Central

    Hernandez-Soriano, Maria C.; Kerré, Bart; Kopittke, Peter M.; Horemans, Benjamin; Smolders, Erik

    2016-01-01

    The use of biochar can contribute to carbon (C) storage in soil. Upon addition of biochar, there is a spatial reorganization of C within soil particles, but the mechanisms remain unclear. Here, we used Fourier transformed infrared-microscopy and confocal laser scanning microscopy to examine this reorganization. A silty-loam soil was amended with three different organic residues and with the biochar produced from these residues and incubated for 237 d. Soil respiration was lower in biochar-amended soils than in residue-amended soils. Fluorescence analysis of the dissolved organic matter revealed that biochar application increased a humic-like fluorescent component, likely associated with biochar-C in solution. The combined spectroscopy-microscopy approach revealed the accumulation of aromatic-C in discrete spots in the solid-phase of microaggregates and its co-localization with clay minerals for soil amended with raw residue or biochar.The co-localization of aromatic-C:polysaccharides-C was consistently reduced upon biochar application. We conclude that reduced C metabolism is an important mechanism for C stabilization in biochar-amended soils. PMID:27113269

  12. Decreased summer drought affects plant productivity and soil carbon dynamics in a Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.

    2011-09-01

    Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 58 % and 220 %, respectively, as compared to the control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction in precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodlands. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long-term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long-term soil C stocks.

  13. Decreased summer drought affects plant productivity and soil carbon dynamics in Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.

    2011-06-01

    Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. The throughfall manipulation experiment started in 2004 and we report data up to the 2009 growing season. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 50 % and 220 %, respectively, as compared to control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction of precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodland. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long term soil C stocks.

  14. Soil Fauna Affects Dissolved Carbon and Nitrogen in Foliar Litter in Alpine Forest and Alpine Meadow

    PubMed Central

    Liao, Shu; Yang, Wanqin; Tan, Yu; Peng, Yan; Li, Jun; Tan, Bo; Wu, Fuzhong

    2015-01-01

    Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) are generally considered important active biogeochemical pools of total carbon and nitrogen. Many studies have documented the contributions of soil fauna to litter decomposition, but the effects of the soil fauna on labile substances (i.e., DOC and TDN) in litter during early decomposition are not completely clear. Therefore, a field litterbag experiment was carried out from 13th November 2013 to 23rd October 2014 in an alpine forest and an alpine meadow located on the eastern Tibetan Plateau. Litterbags with different mesh sizes were used to provide access to or prohibit the access of the soil fauna, and the concentrations of DOC and TDN in the foliar litter were measured during the winter (the onset of freezing, deep freezing and thawing stage) and the growing season (early and late). After one year of field incubation, the concentration of DOC in the litter significantly decreased, whereas the TDN concentration in the litter increased. Similar dynamic patterns were detected under the effects of the soil fauna on both DOC and TDN in the litter between the alpine forest and the alpine meadow. The soil fauna showed greater positive effects on decreasing DOC concentration in the litter in the winter than in the growing season. In contrast, the dynamics of TND in the litter were related to seasonal changes in environmental factors, rather than the soil fauna. In addition, the soil fauna promoted a decrease in litter DOC/TDN ratio in both the alpine forest and the alpine meadow throughout the first year of decomposition, except for in the late growing season. These results suggest that the soil fauna can promote decreases in DOC and TDN concentrations in litter, contributing to early litter decomposition in these cold biomes. PMID:26406249

  15. Assessing Soil Organic Carbon Stocks in Fire-Affected Pinus Palustris Forests

    NASA Astrophysics Data System (ADS)

    Butnor, J. R.; Johnsen, K. H.; Jackson, J. A.; Anderson, P. H.; Samuelson, L. J.; Lorenz, K.

    2014-12-01

    This study aimed to quantify the vertical distribution of soil organic carbon (SOC) and its biochemically resistant fraction (SOCR; defined as residual SOC following H2O2 treatment and dilute HNO3 digestion) in managed longleaf pine (LLP) stands located at Fort Benning, Georgia, USA (32.38 N., 84.88 W.). Although it is unclear how to increase SOCR via land management, it is a relatively stable carbon (C) pool that is important for terrestrial C sequestration. SOC concentration declines with soil depth on upland soils without a spodic horizon; however, the portion that is SOCR and the residence time of this fraction on LLP stands is unknown. Soils were collected by depth at five sites with common land use history, present use for active military training and a three-year prescribed fire return cycle. Soils were treated with H2O2 and dilute HNO3 to isolate SOCR. In the upper 1-m of soil SOC stocks averaged 72.1 ± 6.6 Mg C ha-1 and SOCR averaged 25.8 ± 3.2 Mg C ha-1. Depending on the site, the ratio of SOCR:SOC ranged from 0.25 to 0.50 in the upper 1-m of soil. On clayey soils the ratio of SOCR:SOC increased with soil depth. One site containing 33% clay at 50 to 100 cm depth had a SOCR:SOC ratio of 0.68. The radiocarbon age of SOCR increased with soil depth, ranging from approximately 2,000 years before present (YBP) at 0 to 10 cm to over 5,500 YBP at 50 to 100 cm depth. Across all sites, SOCR makes up a considerable portion of SOC. What isn't clear is the proportion of SOCR that is of pyrogenic origin (black carbon), versus SOCR that is stabilized by association with the mineral phase. Ongoing analysis with 13C nuclear magnetic resonance spectroscopy will provide data on the degree of aromaticity of the SOCR and some indication of the nature of its biochemical stability.

  16. Bacterial community structure and carbon turnover in permafrost-affected soils of the Lena Delta, northeastern Siberia.

    PubMed

    Wagner, Dirk; Kobabe, Svenja; Liebner, Susanne

    2009-01-01

    Arctic permafrost environments store large amounts of organic carbon. As a result of global warming, intensified permafrost degradation and release of significant quantities of the currently conserved organic matter is predicted for high latitudes. To improve our understanding of the present and future carbon dynamics in climate sensitive permafrost ecosystems, the present study investigates structure and carbon turnover of the bacterial community in a permafrost-affected soil of the Lena Delta (72 degrees 22'N, 126 degrees 28'E) in northeastern Siberia. 16S rRNA gene clone libraries revealed the presence of all major soil bacterial groups and of the canditate divisions OD1 and OP11. A shift within the bacterial community was observed along the soil profile indicated by the absence of Alphaproteobacteria and Betaproteobacteria and a simultaneous increase in abundance and diversity of fermenting bacteria like Firmicutes and Actinobacteria near the permafrost table. BIOLOG EcoPlates were used to describe the spectrum of utilized carbon sources of the bacterial community in different horizons under in situ temperature conditions in the presence and absence of oxygen. The results revealed distinct qualitative differences in the substrates used and the turnover rates under oxic and anoxic conditions. It can be concluded that constantly negative redox potentials as characteristic for the near permafrost table horizons of the investigated soil did effectively shape the structure of the indigenous bacterial community limiting its phylum-level diversity and carbon turnover capacity.

  17. [Profile distribution and storage of soil organic carbon in a black soil as affected by land use types].

    PubMed

    Hao, Xiang-xiang; Han, Xiao-zeng; Li, Lu-jun; Zou, Wen-xiu; Lu, Xin-chun; Qiao, Yun-fa

    2015-04-01

    Taking soils in a long-term experimental field over 29 years with different land uses types, including arable land, bare land, grassland and larch forest land as test materials, the distribution and storage of soil organic carbon (SOC) in the profile (0-200 cm) in typical black soil (Mollisol) region of China were investigated. The results showed that the most significant differences in SOC content occurred in the 0-10 cm surface soil layer among all soils with the order of grassland > arable land > larch forest land > bare land. SOC contents at 10-120 cm depth were lower in arable land as compared with the other land use types. Compared with arable land, grassland could improve SOC content obviously. SOC content down to a depth of 60 cm in grassland was significantly higher than that in arable land. The content of SOC at 0-10 cm in bare land was significantly lower than that in arable land. Although there were no significant differences in SOC content at 0-20 cm depth between larch forestland and arable land, the SOC contents at 20-140 cm depth were generally higher in larch forestland than that in arable land. In general, SOC content showed a significantly negative relationship with soil pH, bulk density, silt and clay content and an even stronger significantly positive relationship with soil total N content and sand content. The SOC storage in arable land at 0-200 cm depth was significantly lower than that in the other three land use types, which was 13.6%, 11.4% and 10.9% lower than in grassland, bare land and larch forest land, respectively. Therefore, the arable land of black soil has a great potential for sequestering C in soil and improving environmental quality.

  18. Factors affecting soil cohesion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erodibility is a measure of a soil’s resistance against erosive forces and is affected by both intrinsic (or inherent) soil property and the extrinsic condition at the time erodibility measurement is made. Since soil erodibility is usually calculated from results obtained from erosion experimen...

  19. Distribution of organic carbon in physical fractions of soils as affected by agricultural management

    SciTech Connect

    Sindhu, Jagadamma; Lal, Dr. Rattan

    2010-08-01

    Soil organic carbon (SOC) is distributed heterogeneously among different-sized primary particles and aggregates. Further, the SOC associated with different physical fractions respond differently to managements. Therefore, this study was conducted with the objective to quantify the SOC associated with all the three structural levels of SOC (particulate organic matter, soil separates and aggregate-size fractions) as influenced by long-term change in management. The study also aims at reevaluating the concept that the SOC sink capacity of individual size-fractions is limited. Long-term tillage and crop rotation effects on distribution of SOC among fractions were compared with soil from adjacent undisturbed area under native vegetation for the mixed, mesic, Typic Fragiudalf of Wooster, OH. Forty five years of no-till (NT) management resulted in more SOC accumulation in soil surface (0 7.5 cm) than in chisel tillage and plow tillage (PT) treatments. However, PT at this site resulted in a redistribution of SOC from surface to deeper soil layers. The soils under continuous corn accumulated significantly more SOC than those under corn soybean rotation at 7.5 45 cm depth. Although soil texture was dominated by the silt-sized particles, most of the SOC pool was associated with the clay fraction. Compared to PT, the NT treatment resulted in (i) significantly higher proportion of large macroaggregates (>2,000 m) and (ii) 1.5 2.8 times higher SOC concentrations in all aggregate-size classes. A comparative evaluation using radar graphs indicated that among the physical fractions, the SOC associated with sand and silt fractions quickly changed with a land use conversion from native vegetation to agricultural crops. A key finding of this study is the assessment of SOC sink capacity of individual fractions, which revealed that the clay fraction of agricultural soils continues to accumulate more SOC, albeit at a slower rate, with progressive increase in total SOC concentration

  20. The Ecohydrological Consequences of Woody Plant Encroachment: How Accessibility to Deep Soil Water Resources Affects Ecosystem Carbon and Water Exchange

    NASA Astrophysics Data System (ADS)

    Scott, R. L.; Huxman, T. E.; Barron-Gafford, G.; Jenerette, D.; Young, J. M.

    2013-12-01

    Woody plant encroachment into grassland systems, a process that has increased rapidly over the last century, has potentially broad ecohydrological consequences by affecting the way ecosystems use water and cycle carbon. This study examines the influence of precipitation- and groundwater-derived water availability by comparing eddy covariance measurements of water vapor and carbon dioxide fluxes over a riparian grassland, shrubland, and woodland, and an upland grassland site in southeastern Arizona USA. Compared to the upland grassland, the riparian sites exhibited greater net carbon uptake (NEP) and higher evapotranspiration (ET) across a longer portion of the year. Among the riparian sites, however, the grassland was less able to take advantage of the stable groundwater supply. Increasing woody plant density facilitated greater water and carbon exchange that became increasingly decoupled from incident precipitation (P). How groundwater accessibility affected NEP was more complex than ET. Respiration (Reco) costs were higher for the riparian grassland so, while it had a similar ET and gross carbon uptake (GEP) to the shrubland, its NEP was substantially less. Also, riparian grassland fluxes were much more variable due to flooding that occurred at the site, which could stimulate or inhibit NEP. Woodland NEP was largest but surprisingly similar to the less mature and dense shrubland even while having much greater GEP. Woodland NEP responded negatively to P, due to the stimulation of Reco likely due to greater amounts of aboveground and soil carbon. With many areas of the world experiencing woody plants encroachment, encroachment into areas where there are additional deep soil water sources, such as in riparian settings or in areas of deep soil moisture recharge, will likely increase carbon sequestration but at the expense of higher water use.

  1. Nutrient omission in Bt cotton affects soil organic carbon and nutrients status

    NASA Astrophysics Data System (ADS)

    Aladakatti, Y. R.; Biradar, D. P.; Satyanarayana, T.; Majumdar, K.; Shivamurthy, D.

    2012-04-01

    Studies carried out at the University of Agricultural Sciences, Dharwad, India, in medium black soils assessed the effect of nutrient omission in Bt cotton and its effect on the soil organic carbon (SOC) and available nutrients at the end of second consecutive year of nutrient omission. The study also assessed the extent of contribution of the macro and micronutrients towards seed cotton yield. The experiment consisting 11 treatments omitting a nutrient in each treatment including an absolute control without any nutrients was conducted in a Randomised Block Design with three replications. Cotton crop sufficiently fertilized with macro and micro nutrients (165 : 75 : 120 NPK kg ha-1 and 20 kg each of CaSO4, and MgSO4, 10 kg of S, 20 kg each of ZnSO4, FeSO4 and 0.1 per cent Boron twice as foliar spray) was taken as a standard check to assess the contribution of each nutrient in various nutrient omission treatments. Soils of each treatment were analysed initially and after each crop of cotton for SOC and available nutrient status. Results indicated that the SOC decreased after each crop of cotton in absolute control where no nutrients were applied (0.50 % to 0.38 %) and also in the N omission treatment (0.50 % to 0.35 %). But there was no significant impact of omission of P, K and other nutrients on soil organic carbon. Soil available N, P and K in the soil were reduced as compared to the initial soil status after first and second crop of cotton in the respective treatment where these nutrients were omitted. The soil available N, P and K were reduced to the extent of 61 kg ha-1, 7.1 kg ha-1 and 161.9 kg ha-1 in the respective nutrient omission treatment at end of second crop of cotton as compared to the initial status of these nutrients in the soil. This might be due to the mining of these nutrients from the soil nutrient pool with out addition of these nutrients extraneously. The nutrient status of N, P and K remained almost similar in omission of other nutrients

  2. Stratification and Storage of Soil Organic Carbon and Nitrogen as Affected by Tillage Practices in the North China Plain.

    PubMed

    Zhao, Xin; Xue, Jian-Fu; Zhang, Xiang-Qian; Kong, Fan-Lei; Chen, Fu; Lal, Rattan; Zhang, Hai-Lin

    2015-01-01

    Tillage practices can redistribute the soil profiles, and thus affects soil organic carbon (SOC), and its storage. The stratification ratio (SR) can be an indicator of soil quality. This study was conducted to determine tillage effects on the profile distribution of certain soil properties in winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) systems in the North China Plain (NCP). Three tillage treatments, including no till (NT), rotary tillage (RT), and plow tillage (PT), were established in 2001 in Luancheng County, Hebei Province. The concentration, storage, and SR of SOC and soil total nitrogen (TN) were assessed in both the wheat and maize seasons. Compared with RT and PT, the mean SRs for all depth ratios of SOC under NT increased by 7.85% and 30.61% during the maize season, and by 14.67% and 30.91% during the wheat season, respectively. The SR of TN for 0-5:30-50 cm increased by 140%, 161%, and 161% in the maize season, and 266%, 154%, and 122% in the wheat season compared to the SR for 0-5:5-10 cm under NT, RT and PT, respectively. The data indicated that SOC and TN were both concentrated in the surface-soil layers (0-10 cm) under NT but were distributed relatively evenly through the soil profile under PT. Meanwhile, the storage of SOC and TN was higher under NT for the surface soil (0-10 cm) but was higher under PT for the deeper soil (30-50 cm). Furthermore, the storage of SOC and TN was significantly related to SR of SOC and TN along the whole soil profile (P<0.0001). Therefore, SR could be used to explain and indicate the changes in the storage of SOC and TN. Further, NT stratifies SOC and TN, enhances the topsoil SOC storage, and helps to improve SOC sequestration and soil quality.

  3. Stratification and Storage of Soil Organic Carbon and Nitrogen as Affected by Tillage Practices in the North China Plain

    PubMed Central

    Zhang, Xiang-Qian; Kong, Fan-Lei; Chen, Fu; Lal, Rattan; Zhang, Hai-Lin

    2015-01-01

    Tillage practices can redistribute the soil profiles, and thus affects soil organic carbon (SOC), and its storage. The stratification ratio (SR) can be an indicator of soil quality. This study was conducted to determine tillage effects on the profile distribution of certain soil properties in winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) systems in the North China Plain (NCP). Three tillage treatments, including no till (NT), rotary tillage (RT), and plow tillage (PT), were established in 2001 in Luancheng County, Hebei Province. The concentration, storage, and SR of SOC and soil total nitrogen (TN) were assessed in both the wheat and maize seasons. Compared with RT and PT, the mean SRs for all depth ratios of SOC under NT increased by 7.85% and 30.61% during the maize season, and by 14.67% and 30.91% during the wheat season, respectively. The SR of TN for 0–5:30–50 cm increased by 140%, 161%, and 161% in the maize season, and 266%, 154%, and 122% in the wheat season compared to the SR for 0–5:5–10 cm under NT, RT and PT, respectively. The data indicated that SOC and TN were both concentrated in the surface-soil layers (0–10 cm) under NT but were distributed relatively evenly through the soil profile under PT. Meanwhile, the storage of SOC and TN was higher under NT for the surface soil (0–10 cm) but was higher under PT for the deeper soil (30–50 cm). Furthermore, the storage of SOC and TN was significantly related to SR of SOC and TN along the whole soil profile (P<0.0001). Therefore, SR could be used to explain and indicate the changes in the storage of SOC and TN. Further, NT stratifies SOC and TN, enhances the topsoil SOC storage, and helps to improve SOC sequestration and soil quality. PMID:26075391

  4. Soluble organic carbon and pH of organic amendments affect metal mobility and chemical speciation in mine soils.

    PubMed

    Pérez-Esteban, Javier; Escolástico, Consuelo; Masaguer, Alberto; Vargas, Carmen; Moliner, Ana

    2014-05-01

    We evaluated the effects of pH and soluble organic carbon affected by organic amendments on metal mobility to find out the optimal conditions for their application in the stabilization of metals in mine soils. Soil samples (pH 5.5-6.2) were mixed with 0, 30 and 60 th a(-1) of sheep-horse manure (pH 9.4) and pine bark compost (pH 5.7). A single-step extraction procedure was performed using 0.005 M CaCl2 adjusted to pH 4.0-7.0 and metal speciation in soil solution was simulated using NICA-Donnan model. Sheep-horse manure reduced exchangeable metal concentrations (up to 71% Cu, 75% Zn) due to its high pH and degree of maturity, whereas pine bark increased them (32% Cu, 33% Zn). However, at increasing dose and hence pH, sheep-horse manure increased soluble Cu because of higher soluble organic carbon, whereas soluble Cu and organic carbon increased at increasing dose and correspondingly decreasing pH in pine bark and non-amended treatments. Near the native pH of these soils (at pH 5.8-6.3), with small doses of amendments, there was minimum soluble Cu and organic carbon. Pine bark also increased Zn solubility, whereas sheep-horse manure reduced it as soluble Zn always decreased with increasing pH. Sheep-horse manure also reduced the proportion of free metals in soil solution (from 41% to 4% Cu, from 97% to 94% Zn), which are considered to be more bioavailable than organic species. Sheep-horse manure amendment could be efficiently used for the stabilization of metals with low risk of leaching to groundwater at low doses and at relatively low pH, such as the native pH of mine soils.

  5. [Vertical distribution patterns of soil organic carbon and total nitrogen and related affecting factors along northern slope of Qilian Mountains].

    PubMed

    Zhang, Peng; Zhang, Tao; Chen, Nian-lai

    2009-03-01

    With the shady and sunny northern slopes of Qilian Mountains along an altitude gradient from 2600 m to 3600 m as test objectives, this paper studied the vertical distribution patterns of surface soil (0-20 cm) organic carbon (SOC) and total nitrogen (TN), and their relations to the altitude, landform, and vegetation. The results indicated that SOC and TN contents were significantly higher on shady than on sunny slope, and all increased with increasing altitude. The SOC and TN contents under different vegetation types were in the order of alpine bush > Picea crassifolia forest > alpine meadow > Sabina przewalskii forest, and alpine bush > alpine meadow > P. crassifolia forest > S. przewalskii forest, respectively. SOC had significant positive correlations with altitude, annual precipitation, soil moisture, and soil TN, and significant negative correlations with soil pH and annual temperature. Soil C/N ratio along the gradient was within the range of 6.7-23.3, being favorable to the nutrient release during organic matter decomposition. Among the factors affecting SOC, the annual temperature, precipitation, and soil moisture content constituted the first principal component, and soil C/N ratio constituted the second principal component. These two principal components accounted for 71% of the variance of SOC content, suggesting that climate factors controlled the vertical distribution patterns of SOC and TN along the altitude gradient.

  6. Does temperature of charcoal creation affect subsequent mineralization of soil carbon and nitrogen?

    NASA Astrophysics Data System (ADS)

    Pelletier-Bergeron, S.; Bradley, R.; Munson, A. D.

    2012-04-01

    Forest fire is the most common form of natural disturbance of boreal forest ecosystems and has primordial influence on successional processes. This may be due in part to the pre-disturbance vegetation development stage and species composition, but these successional pathways could also vary with differences in fire behavior and consequently in fire intensity, defined as the energy released during various phases of a fire. Fire intensity may also affect soil C and N cycling by affecting the quality of the charcoal that is produced. For example, the porosity of coal tends to increase with increasing temperature at which it is produced Higher porosity would logically increase the surface area to which dissolved soil molecules, such as tannins and other phenolics, may be adsorbed. We report on a microcosm study in which mineral and organic soils were jointly incubated for eight weeks with a full factorial array of treatments that included the addition of Kalmia tannins, protein, and wood charcoal produced at five different temperatures. A fourth experimental factor comprised the physical arrangement of the material (stratified vs. mixed), designed to simulate the effect of soil scarification after fire and salvage harvest. We examined the effects of these treatments on soil C and N mineralisation and soil microbial biomass. The furnace temperature at which the charcoal was produced had a significant effect on its physico-chemical properties; increasing furnace temperatures corresponded to a significant increase in % C (P<0.001), and a significant decrease in %O (P<0.001) and %H (P<0.001). Temperature also had significant impacts on microporosity (surface area and volume). Temperature of production had no effect (P=0.1355) on soil microbial biomass. We observed a linear decreasing trend (P<0.001) in qCO2 with increasing temperature of production, which was mainly reflected in a decline in basal respiration. Finally, we found a significant interaction (P=0.010) between

  7. Drought induced changes of plant belowground carbon allocation affect soil microbial community function in a subalpine meadow

    NASA Astrophysics Data System (ADS)

    Fuchslueger, L.; Bahn, M.; Fritz, K.; Hasibeder, R.; Richter, A.

    2012-12-01

    There is growing evidence that climate extremes may affect ecosystem carbon dynamics more strongly than gradual changes in temperatures or precipitation. Climate projections suggest more frequent heat waves accompanied by extreme drought periods in many parts of Europe, including the Alps. Drought is considered to decrease plant C uptake and turnover, which may in turn decrease belowground C allocation and potentially has significant consequences for microbial community composition and functioning. However, information on effects of drought on C dynamics at the plant-soil interface in real ecosystems is still scarce. Our study aimed at understanding how summer drought affects soil microbial community composition and the uptake of recently assimilated plant C by different microbial groups in grassland. We hypothesized that under drought 1) the microbial community shifts, fungi being less affected than bacteria, 2) plants decrease belowground C allocation, which further reduces C transfer to soil microbes and 3) the combined effects of belowground C allocation, reduced soil C transport due to reduced soil moisture and shift in microbial communities cause an accumulation of extractable organic C in the soil. Our study was conducted as part of a rain-exclusion experiment in a subalpine meadow in the Austrian Central Alps. After eight weeks of rain exclusion we pulse labelled drought and control plots with 13CO2 and traced C in plant biomass, extractable organic C (EOC) and soil microbial communities using phospholipid fatty acids (PLFA). Drought induced a shift of the microbial community composition: gram-positive bacteria became more dominant, whereas gram-negative bacteria were not affected by drought. Also the relative abundance of fungal biomass was not affected by drought. While total microbial biomass (as estimated by total microbial PLFA content) increased during drought, less 13C was taken up. This reduction was pronounced for bacterial biomarkers. It reflects

  8. Permafrost soils and carbon cycling

    DOE PAGESBeta

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; Michaelson, G. J.; Shur, Y. L.

    2015-02-05

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region's soil organic carbon (SOC) stocks to changing climatic conditions. Inmore » this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of organic carbon stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this organic carbon to permafrost thaw under a warming climate. Overall, frozen conditions and cryopedogenic processes, such as cryoturbation, have slowed decomposition and enhanced the sequestration of organic carbon in permafrost-affected soils over millennial timescales. Due to the low temperatures, the organic matter in permafrost soils is often less humified than in more temperate soils, making some portion of this stored organic carbon relatively vulnerable to mineralization upon thawing of permafrost.« less

  9. Does photosynthesis affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale?

    PubMed Central

    Bahn, Michael; Schmitt, Michael; Siegwolf, Rolf; Richter, Andreas; Brüggemann, Nicolas

    2010-01-01

    Summary Soil respiration is the largest flux of carbon (C) from terrestrial ecosystems to the atmosphere. Here, we tested the hypothesis that photosynthesis affects the diurnal pattern of grassland soil-respired CO2 and its C isotope composition (δ13CSR). A combined shading and pulse-labelling experiment was carried out in a mountain grassland. δ13CSR was monitored at a high time resolution with a tunable diode laser absorption spectrometer. In unlabelled plots a diurnal pattern of δ13CSR was observed, which was not explained by soil temperature, moisture or flux rates and contained a component that was also independent of assimilate supply. In labelled plots δ13CSR reflected a rapid transfer and respiratory use of freshly plant-assimilated C and a diurnal shift in the predominant respiratory C source from recent (i.e. at least 1 d old) to fresh (i.e. photoassimilates produced on the same day). We conclude that in grasslands the plant-derived substrates used for soil respiratory processes vary during the day, and that photosynthesis provides an important and immediate C source. These findings indicate a tight coupling in the plant–soil system and the importance of plant metabolism for soil CO2 fluxes. PMID:19220762

  10. The Role of Snow Cover in Affecting Pan-Arctic Soil Freeze/Thaw and Carbon Dynamics

    NASA Astrophysics Data System (ADS)

    Yi, Y.; Kimball, J. S.; Rawlins, M. A.; Moghaddam, M.; Euskirchen, E. S.

    2015-12-01

    Satellite data records spanning the past 3 decades indicate widespread reductions (~0.8-1.3 days decade-1) in mean annual snow cover and frozen season duration across the pan-Arctic domain, coincident with regional climate warming. How the northern soil carbon pool responds to these changes will have a large impact on projected regional and global climate trends. The objective of this study was to assess how northern soil thermal and carbon dynamics respond to changes in surface snow cover and freeze/thaw (F/T) cycles indicated from satellite observations. We developed a coupled permafrost, hydrology and carbon model framework to investigate the sensitivity of soil organic carbon stocks and soil decomposition to recent climate variations across the pan-Arctic region from 1982 to 2010. The model simulations were also evaluated against satellite observation records on snow cover and F/T processes. Our results indicate that surface warming promotes wide-spread soil thawing and active layer deepening due to strong control of surface air temperature on upper (<0.5 m) soil temperatures during the warm season. Earlier spring snowmelt and shorter seasonal snow cover duration with regional warming will mostly likely enhance soil warming in warmer climate zones (mean annual Tair>-5°C) and promote permafrost degradation in these areas. Our results also show that seasonal snow cover has a large impact on soil temperatures, whereby increases in snow cover promote deeper (≥0.5 m) soil layer warming and soil respiration, while inhibiting soil decomposition from surface (≤0.2 m) soil layers, especially in colder climate zones (mean annual Tair≤-10 °C). This non-linear relationship between snow cover and soil decomposition is particularly important in permafrost areas, where a large amount of soil carbon is stored in deep perennial frozen soils that are potentially vulnerable to thawing, with resulting mobilization and accelerated carbon losses from near-term climate change.

  11. How surface fire in Siberian Scots pine forests affects soil organic carbon in the forest floor: Stocks, molecular structure, and conversion to black carbon (charcoal)

    NASA Astrophysics Data System (ADS)

    Czimczik, Claudia I.; Preston, Caroline M.; Schmidt, Michael W. I.; Schulze, Ernst-Detlef

    2003-03-01

    In boreal forests, fire is a frequent disturbance and converts soil organic carbon (OC) to more degradation-resistant aromatic carbon, i.e., black carbon (BC) which might act as a long-term atmospheric-carbon sink. Little is known on the effects of fires on boreal soil OC stocks and molecular composition. We studied how a surface fire affected the composition of the forest floor of Siberian Scots pine forests by comparing the bulk elemental composition, molecular structure (13C-MAS NMR), and the aromatic carbon fraction (BC and potentially interfering constituents like tannins) of unburned and burned forest floor. Fire reduced the mass of the forest floor by 60%, stocks of inorganic elements (Si, Al, Fe, K, Ca, Na, Mg, Mn) by 30-50%, and of OC, nitrogen, and sulfur by 40-50%. In contrast to typical findings from temperate forests, unburned OC consisted mainly of (di-)O-alkyl (polysaccharides) and few aromatic structures, probably due to dominant input of lichen biomass. Fire converted OC into alkyl and aromatic structures, the latter consisting of heterocyclic macromolecules and small clusters of condensed carbon. The small cluster size explained the small BC concentrations determined using a degradative molecular marker method. Fire increased BC stocks (16 g kg-1 OC) by 40% which translates into a net-conversion rate of 0.7% (0.35% of net primary production) unburned OC to BC. Here, however, BC was not a major fraction of soil OC pool in unburned or burned forest floor, either due to rapid in situ degradation or relocation.

  12. Soil carbon and crop yields affected by irrigation, tillage, crop rotation, and nitrogen fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information on management practices is needed to increase surface residue and soil C sequestration to obtain farm C credit. The effects of irrigation, tillage, cropping system, and N fertilization were evaluated on the amount of crop biomass (stems and leaves) returned to the soil, surface residue C...

  13. Organic carbon stocks in permafrost-affected soils from Admiralty Bay, Antarctica

    USGS Publications Warehouse

    Simas, F.N.B.; Schaefer, C.E.G.R.; Mendonça, E.S.; Silva, I.R.; Santana, R.M.; Ribeiro, A.S.S.

    2007-01-01

    Recent works show that organic matter accumulation in some soils from coastal Antarctica is higher than previously expected. The objective of the present work was to estimate the organic C stocks for soils from maritime Antarctica. Cryosols from subpolar desert landscapes presented the lowest organic C stocks. Ornithogenic soils are the most important C reservoirs in terrestrial ecosystems in this part of Antarctica. Although these soils correspond to only 2.5 % of the ice-free areas at Admiralty Bay, they contain approximately 20 % of the estimated C stock. Most of the organic C in the studied soils is stored in the active layer but in some cases the C is also stored in the permafrost.

  14. Soil organic carbon sequestration as affected by afforestation: the Darab Kola forest (north of Iran) case study.

    PubMed

    Kooch, Yahya; Hosseini, Seyed Mohsen; Zaccone, Claudio; Jalilvand, Hamid; Hojjati, Seyed Mohammad

    2012-09-01

    Following the ratification of the Kyoto Protocol, afforestation of formerly arable lands and/or degraded areas has been acknowledged as a land-use change contributing to the mitigation of increasing atmospheric CO(2) concentration in the atmosphere. In the present work, we study the soil organic carbon sequestration (SOCS) in 21 year old stands of maple (Acer velutinum Bioss.), oak (Quercus castaneifolia C.A. Mey.), and red pine (Pinus brutia Ten.) in the Darab Kola region, north of Iran. Soil samples were collected at four different depths (0-10, 10-20, 20-30, and 30-40 cm), and characterized with respect to bulk density, water content, electrical conductivity, pH, texture, lime content, total organic C, total N, and earthworm density and biomass. Data showed that afforested stands significantly affected soil characteristics, also raising SOCS phenomena, with values of 163.3, 120.6, and 102.1 Mg C ha(-1) for red pine, oak and maple stands, respectively, vs. 83.0 Mg C ha(-1) for the control region. Even if the dynamics of organic matter (OM) in soil is very complex and affected by several pedo-climatic factors, a stepwise regression method indicates that SOCS values in the studied area could be predicted using the following parameters, i.e., sand, clay, lime, and total N contents, and C/N ratio. In particular, although the chemical and physical stabilization capacity of organic C by soil is believed to be mainly governed by clay content, regression analysis showed a positive correlation between SOCS and sand (R = 0.86(**)), whereas a negative correlation with clay (R = -0.77(**)) was observed, thus suggesting that most of this organic C occurs as particulate OM instead of mineral-associated OM. Although the proposed models do not take into account possible changes due to natural and anthropogenic processes, they represent a simple way that could be used to evaluate and/or monitor the potential of each forest plantation in immobilizing organic C in soil (thus

  15. Soil organic carbon sequestration as affected by afforestation: the Darab Kola forest (north of Iran) case study.

    PubMed

    Kooch, Yahya; Hosseini, Seyed Mohsen; Zaccone, Claudio; Jalilvand, Hamid; Hojjati, Seyed Mohammad

    2012-09-01

    Following the ratification of the Kyoto Protocol, afforestation of formerly arable lands and/or degraded areas has been acknowledged as a land-use change contributing to the mitigation of increasing atmospheric CO(2) concentration in the atmosphere. In the present work, we study the soil organic carbon sequestration (SOCS) in 21 year old stands of maple (Acer velutinum Bioss.), oak (Quercus castaneifolia C.A. Mey.), and red pine (Pinus brutia Ten.) in the Darab Kola region, north of Iran. Soil samples were collected at four different depths (0-10, 10-20, 20-30, and 30-40 cm), and characterized with respect to bulk density, water content, electrical conductivity, pH, texture, lime content, total organic C, total N, and earthworm density and biomass. Data showed that afforested stands significantly affected soil characteristics, also raising SOCS phenomena, with values of 163.3, 120.6, and 102.1 Mg C ha(-1) for red pine, oak and maple stands, respectively, vs. 83.0 Mg C ha(-1) for the control region. Even if the dynamics of organic matter (OM) in soil is very complex and affected by several pedo-climatic factors, a stepwise regression method indicates that SOCS values in the studied area could be predicted using the following parameters, i.e., sand, clay, lime, and total N contents, and C/N ratio. In particular, although the chemical and physical stabilization capacity of organic C by soil is believed to be mainly governed by clay content, regression analysis showed a positive correlation between SOCS and sand (R = 0.86(**)), whereas a negative correlation with clay (R = -0.77(**)) was observed, thus suggesting that most of this organic C occurs as particulate OM instead of mineral-associated OM. Although the proposed models do not take into account possible changes due to natural and anthropogenic processes, they represent a simple way that could be used to evaluate and/or monitor the potential of each forest plantation in immobilizing organic C in soil (thus

  16. Soil-Gas Identification of Environmental Factors Affecting CO2 Concentrations Beneath a Playa Wetland: Implications for Soil-Gas Monitoring at Carbon Storage Sites

    NASA Astrophysics Data System (ADS)

    Romanak, K.; Bennett, P.

    2009-12-01

    support significant carbonate dissolution resulting from reaction of CO2 with infiltrating water and soil carbonate. Results of the study show that the degree of carbon reactivity within a near-surface environment limits the effectiveness of shallow subsurface and surface-flux soil-gas monitoring at engineered carbon repositories. When carbon reactivity is at a maximum, CO2 cycling is complex and input of exogenous CO2 into the system is difficult to constrain and quantify. A summary of the factors that define carbon reactivity and their affects on near-surface soil-gas monitoring at geologic carbon storage sites is presented, along with recommendations for site evaluation with regard to near-surface monitoring.

  17. Soil carbon and nitrogen fractions and crop yields affected by residue placement and crop types.

    PubMed

    Wang, Jun; Sainju, Upendra M

    2014-01-01

    Soil labile C and N fractions can change rapidly in response to management practices compared to non-labile fractions. High variability in soil properties in the field, however, results in nonresponse to management practices on these parameters. We evaluated the effects of residue placement (surface application [or simulated no-tillage] and incorporation into the soil [or simulated conventional tillage]) and crop types (spring wheat [Triticum aestivum L.], pea [Pisum sativum L.], and fallow) on crop yields and soil C and N fractions at the 0-20 cm depth within a crop growing season in the greenhouse and the field. Soil C and N fractions were soil organic C (SOC), total N (STN), particulate organic C and N (POC and PON), microbial biomass C and N (MBC and MBN), potential C and N mineralization (PCM and PNM), NH4-N, and NO3-N concentrations. Yields of both wheat and pea varied with residue placement in the greenhouse as well as in the field. In the greenhouse, SOC, PCM, STN, MBN, and NH4-N concentrations were greater in surface placement than incorporation of residue and greater under wheat than pea or fallow. In the field, MBN and NH4-N concentrations were greater in no-tillage than conventional tillage, but the trend reversed for NO3-N. The PNM was greater under pea or fallow than wheat in the greenhouse and the field. Average SOC, POC, MBC, PON, PNM, MBN, and NO3-N concentrations across treatments were higher, but STN, PCM and NH4-N concentrations were lower in the greenhouse than the field. The coefficient of variation for soil parameters ranged from 2.6 to 15.9% in the greenhouse and 8.0 to 36.7% in the field. Although crop yields varied, most soil C and N fractions were greater in surface placement than incorporation of residue and greater under wheat than pea or fallow in the greenhouse than the field within a crop growing season. Short-term management effect on soil C and N fractions were readily obtained with reduced variability under controlled soil and

  18. Assessment of alternative management practices and policies affecting soil carbon in agroecosystems of the central United States

    SciTech Connect

    Donigian, A.S.; Barnwell, T.O.; Jackson, R.B.; Patwardhan, A.S.; Weinrich, K.B.

    1994-04-01

    The goal of the U.S. EPA BIOME Agroecosystems Assessment Project is to evaluate the degree to which agroecosystems can be technically managed, on a sustainable basis, to conserve and sequester carbon, reduce the accumulation of carbon dioxide in the atmosphere, and provide reference datasets and methodologies for agricultural assessment. The report provides preliminary estimates of carbon sequestration potential for the central United States including the Corn Belt, the Great Lakes, and portions of the Great Plains. This study region comprises 44% of the land area and 60% to 70% of the agricultural cropland of the conterminous United States. The assessment methodology includes the integration of the RAMS economic model, the Century soil carbon model, meteorologic and soils data bases, and GIS display and analysis capabilities in order to assess the impacts on soil carbon of current agricultural trends and conditions, alternative tillage practices, use of cover crops, and Conservation Reserve Program policy.

  19. Five-year changes in soil organic carbon and total nitrogen in coastal wetlands affected by flow-sediment regulation in a Chinese delta.

    PubMed

    Wang, Junjing; Bai, Junhong; Zhao, Qingqing; Lu, Qiongqiong; Xia, Zhijian

    2016-02-16

    Changes in the sources and sinks of soil organic carbon (SOC) and total nitrogen (TN) in wetland soils as indicators of soil quality and climate change have received attention worldwide. Soil samples were collected in 2007 and 2012 in the coastal wetlands of the Yellow River Delta and the SOC and TN were determined to investigate a five-year change in their content and stock in these wetlands as affected by flow-sediment regulation. Our results revealed that the soils in 2007 exhibited greater electrical conductivities, SOC content and density, and ammonium nitrogen (NH4(+)-N) levels in the top 10 cm soils (p < 0.05) compared with the soils in 2012. In general, the SOC and TN contents decreased with increasing soil depth. However, the highest ratios of soil organic carbon and total nitrogen (molar C/N ratios) were observed in the 30-40 cm soil layer. A significant SOC loss occurred (p < 0.05) in top 10 cm soils, but only a small change in SOC in the top 50 cm soils. Comparatively, TN levels did not show significant differences in the study period.

  20. Five-year changes in soil organic carbon and total nitrogen in coastal wetlands affected by flow-sediment regulation in a Chinese delta

    NASA Astrophysics Data System (ADS)

    Wang, Junjing; Bai, Junhong; Zhao, Qingqing; Lu, Qiongqiong; Xia, Zhijian

    2016-02-01

    Changes in the sources and sinks of soil organic carbon (SOC) and total nitrogen (TN) in wetland soils as indicators of soil quality and climate change have received attention worldwide. Soil samples were collected in 2007 and 2012 in the coastal wetlands of the Yellow River Delta and the SOC and TN were determined to investigate a five-year change in their content and stock in these wetlands as affected by flow-sediment regulation. Our results revealed that the soils in 2007 exhibited greater electrical conductivities, SOC content and density, and ammonium nitrogen (NH4+-N) levels in the top 10 cm soils (p < 0.05) compared with the soils in 2012. In general, the SOC and TN contents decreased with increasing soil depth. However, the highest ratios of soil organic carbon and total nitrogen (molar C/N ratios) were observed in the 30-40 cm soil layer. A significant SOC loss occurred (p < 0.05) in top 10 cm soils, but only a small change in SOC in the top 50 cm soils. Comparatively, TN levels did not show significant differences in the study period.

  1. Five-year changes in soil organic carbon and total nitrogen in coastal wetlands affected by flow-sediment regulation in a Chinese delta

    PubMed Central

    Wang, Junjing; Bai, Junhong; Zhao, Qingqing; Lu, Qiongqiong; Xia, Zhijian

    2016-01-01

    Changes in the sources and sinks of soil organic carbon (SOC) and total nitrogen (TN) in wetland soils as indicators of soil quality and climate change have received attention worldwide. Soil samples were collected in 2007 and 2012 in the coastal wetlands of the Yellow River Delta and the SOC and TN were determined to investigate a five-year change in their content and stock in these wetlands as affected by flow-sediment regulation. Our results revealed that the soils in 2007 exhibited greater electrical conductivities, SOC content and density, and ammonium nitrogen (NH4+-N) levels in the top 10 cm soils (p < 0.05) compared with the soils in 2012. In general, the SOC and TN contents decreased with increasing soil depth. However, the highest ratios of soil organic carbon and total nitrogen (molar C/N ratios) were observed in the 30–40 cm soil layer. A significant SOC loss occurred (p < 0.05) in top 10 cm soils, but only a small change in SOC in the top 50 cm soils. Comparatively, TN levels did not show significant differences in the study period. PMID:26879008

  2. Stratification of carbon fractions and carbon management index in deep soil affected by the Grain-to-Green Program in China.

    PubMed

    Zhao, Fazhu; Yang, Gaihe; Han, Xinhui; Feng, Yongzhong; Ren, Guangxin

    2014-01-01

    Conversion of slope cropland to perennial vegetation has a significant impact on soil organic carbon (SOC) stock in A horizon. However, the impact on SOC and its fraction stratification is still poorly understood in deep soil in Loess Hilly Region (LHR) of China. Samples were collected from three typical conversion lands, Robinia psendoacacia (RP), Caragana Korshinskii Kom (CK), and abandoned land (AB), which have been converted from slope croplands (SC) for 30 years in LHR. Contents of SOC, total nitrogen (TN), particulate organic carbon (POC), and labile organic carbon (LOC), and their stratification ratios (SR) and carbon management indexes (CMI) were determined on soil profiles from 0 to 200 cm. Results showed that the SOC, TN, POC and LOC stocks of RP were significantly higher than that of SC in soil layers of 0-10, 10-40, 40-100 and 100-200 cm (P<0.05). Soil layer of 100-200 cm accounted for 27.38-36.62%, 25.10-32.91%, 21.59-31.69% and 21.08-26.83% to SOC, TN, POC and LOC stocks in lands of RP, CK and AB. SR values were >2.0 in most cases of RP, CK and AB. Moreover, CMI values of RP, CK, and AB increased by 11.61-61.53% in soil layer of 100-200 cm compared with SC. Significant positive correlations between SOC stocks and CMI or SR values of both surface soil and deep soil layers indicated that they were suitable indicators for soil quality and carbon changes evaluation. The Grain-to-Green Program (GTGP) had strong influence on improving quantity and activity of SOC pool through all soil layers of converted lands, and deep soil organic carbon should be considered in C cycle induced by GTGP. It was concluded that converting slope croplands to RP forestlands was the most efficient way for sequestering C in LHR soils.

  3. Soil carbon dynamics

    NASA Astrophysics Data System (ADS)

    Trumbore, Susan; Barbosa de Camargo, Plínio

    The amount of organic carbon (C) stored in the upper meter of mineral soils in the Amazon Basin (˜40 Pg C) represents ˜3% of the estimated global store of soil carbon. Adding surface detrital C stocks and soil carbon deeper than 1 m can as much as quadruple this estimate. The potential for Amazon soil carbon to respond to changes in land use, climate, or atmospheric composition depends on the form and dynamics of soil carbon. Much (˜30% in the top ˜10 cm but >85% in soils to 1 m depth) of the carbon in mineral soils of the Oxisols and Ultisols that are the predominant soil types in the Amazon Basin is in forms that are strongly stabilized, with mean ages of centuries to thousands of years. Measurable changes in soil C stocks that accompany land use/land cover change occur in the upper meter of soil, although the presence of deep roots in forests systems drives an active C cycle at depths >1 m. Credible estimates of the potential for changes in Amazon soil C stocks with future land use and climate change are much smaller than predictions of aboveground biomass change. Soil organic matter influences fertility and other key soil properties, and thus is important independent of its role in the global C cycle. Most work on C dynamics is limited to upland soils, and more is needed to investigate C dynamics in poorly drained soils. Work is also needed to relate cycles of C with water, N, P, and other elements.

  4. Soil carbon dioxide emission and carbon content as affected by irrigation, tillage, cropping system, and nitrogen fertilization.

    PubMed

    Sainju, Upendra M; Jabro, Jalal D; Stevens, William B

    2008-01-01

    Management practices can influence soil CO(2) emission and C content in cropland, which can effect global warming. We examined the effects of combinations of irrigation, tillage, cropping systems, and N fertilization on soil CO(2) flux, temperature, water, and C content at the 0- to 20-cm depth from May to November 2005 at two sites in the northern Great Plains. Treatments were two irrigation systems (irrigated vs. non-irrigated) and six management practices that contained tilled and no-tilled malt barley (Hordeum vulgaris L.) with 0 to 134 kg N ha(-1), no-tilled pea (Pisum sativum L.), and a conservation reserve program (CRP) planting applied in Lihen sandy loam (sandy, mixed, frigid, Entic Haplustolls) in western North Dakota. In eastern Montana, treatments were no-tilled malt barley with 78 kg N ha(-1), no-tilled rye (Secale cereale L.), no-tilled Austrian winter pea, no-tilled fallow, and tilled fallow applied in dryland Williams loam (fine-loamy, mixed Typic Argiborolls). Irrigation increased CO(2) flux by 13% compared with non-irrigation by increasing soil water content in North Dakota. Tillage increased CO(2) flux by 62 to 118% compared with no-tillage at both places. The flux was 1.5- to 2.5-fold greater with tilled than with non-tilled treatments following heavy rain or irrigation in North Dakota and 1.5- to 2.0-fold greater with crops than with fallow following substantial rain in Montana. Nitrogen fertilization increased CO(2) flux by 14% compared with no N fertilization in North Dakota and cropping increased the flux by 79% compared with fallow in no-till and 0 kg N ha(-1) in Montana. The CO(2) flux in undisturbed CRP was similar to that in no-tilled crops. Although soil C content was not altered, management practices influenced CO(2) flux within a short period due to changes in soil temperature, water, and nutrient contents. Regardless of irrigation, CO(2) flux can be reduced from croplands to a level similar to that in CRP planting using no

  5. Soil Organic Carbon Input from Urban Turfgrasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Turfgrass is a major vegetation type in the urban and suburban environment. Management practices such as species selection, irrigation, and mowing may affect carbon input and storage in these systems. Research was conducted to determine the rate of soil organic carbon (SOC) changes, soil carbon sequ...

  6. Soil Organic Carbon Input from Urban Turfgrasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Turfgrass is a major vegetation type in the urban and suburban environment. Management practices such as species selection, irrigation, and mowing may affect carbon (C) input and storage in these systems. Research was conducted to determine the rate of soil organic carbon (SOC) changes, soil carbon ...

  7. Ecological controls over global soil carbon storage

    SciTech Connect

    Schimel, D.S.

    1995-09-01

    Globally, soil carbon comprises about 2/3 of terrestrial carbon storage. Soil carbon is thus an important reservoir of carbon, but also influences the responses of ecosystems to change by controlling many aspects of nutrient cycling. While broad-scale patterns of soil carbon accumulation can be explained in terms of climatic and biome distributions, many ecological processes also influence the storage and turnover of carbon in soils. I will present a synthesis of information from field studies, model experiments and global data bases on factors controlling the turnover and storage of soil carbon. First, I will review a series of studies showing links between vegetation change (successional and invasions) and soil carbon. Then I will review model analyses of the sensitivity of soil carbon to climatic and ecological changes. Results show that soil carbon storage is broadly sensitive to climate but greatly influenced by the allocation of detritus between resistant (lignaceous and woody) and more labile forms, and that biotic changes that affect allocation, affect soil carbon substantially at regionally and perhaps global scales.

  8. Permafrost soils and carbon cycling

    DOE PAGESBeta

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; Michaelson, G. J.; Shur, Y. L.

    2014-10-30

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon (OC) stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous OC stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global C cycle and the potential vulnerability of the region's soil OC stocks to changing climatic conditions. In this review,more » we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of OC stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this OC to permafrost thaw under a warming climate.« less

  9. Soil warming, carbon-nitrogen interactions, and forest carbon budgets.

    PubMed

    Melillo, Jerry M; Butler, Sarah; Johnson, Jennifer; Mohan, Jacqueline; Steudler, Paul; Lux, Heidi; Burrows, Elizabeth; Bowles, Francis; Smith, Rose; Scott, Lindsay; Vario, Chelsea; Hill, Troy; Burton, Andrew; Zhou, Yu-Mei; Tang, Jim

    2011-06-01

    Soil warming has the potential to alter both soil and plant processes that affect carbon storage in forest ecosystems. We have quantified these effects in a large, long-term (7-y) soil-warming study in a deciduous forest in New England. Soil warming has resulted in carbon losses from the soil and stimulated carbon gains in the woody tissue of trees. The warming-enhanced decay of soil organic matter also released enough additional inorganic nitrogen into the soil solution to support the observed increases in plant carbon storage. Although soil warming has resulted in a cumulative net loss of carbon from a New England forest relative to a control area over the 7-y study, the annual net losses generally decreased over time as plant carbon storage increased. In the seventh year, warming-induced soil carbon losses were almost totally compensated for by plant carbon gains in response to warming. We attribute the plant gains primarily to warming-induced increases in nitrogen availability. This study underscores the importance of incorporating carbon-nitrogen interactions in atmosphere-ocean-land earth system models to accurately simulate land feedbacks to the climate system.

  10. A method to detect soil carbon degradation during soil erosion

    NASA Astrophysics Data System (ADS)

    Alewell, Christine; Conen, Franz; Schaub, Monika

    2010-05-01

    Soil erosion has been discussed intensively but controversial both as a significant source or a significant sink of atmospheric carbon possibly explaining the gap in the global carbon budget. One of the major points of discussion has been whether or not carbon is degraded and mineralized to CO2 during detachment, transport and deposition of soil material. By combining the caesium-137 (137Cs) approach (quantification of erosion rates) with stable carbon isotope signatures (process indicator of mixing versus degradation of carbon pools) we were able to show that degradation of carbon occurs during soil erosion processes at the investigated mountain grasslands in the central Swiss Alps (Urseren Valley, Canton Uri). Transects from upland (erosion source) to wetland soils (erosion sinks) of sites affected by sheet and land slide erosion were sampled. Analysis of 137Cs yielded an input of 2 and 4.6 tha-1 yr-1 of soil material into the wetlands sites. Assuming no degradation of soil organic carbon during detachment and transport, carbon isotope signature of soil organic carbon in the wetlands could only be explained with an assumed 500-600 and 350-400 years of erosion input into the wetlands Laui and Spissen, respectively. The latter is highly unlikely with alpine peat growth rates indicating that the upper horizons might have an age between 7 and 200 years. While we do not conclude from our data that eroded soil organic carbon is generally degraded during detachment and transport, we propose this method to gain more information on process dynamics during soil erosion from oxic upland to anoxic wetland soils, sediments or water bodies.

  11. A method to detect soil carbon degradation during soil erosion

    NASA Astrophysics Data System (ADS)

    Alewell, C.; Schaub, M.; Conen, F.

    2009-06-01

    Soil erosion has been discussed intensively but controversial both as a significant source or a significant sink of atmospheric carbon possibly explaining the gap in the global carbon budget. One of the major points of discussion has been whether or not carbon is degraded and mineralized to CO2 during detachment, transport and deposition of soil material. By combining the caesium-137 (137Cs) approach (quantification of erosion rates) with stable carbon isotope signatures (process indicator of mixing versus degradation of carbon pools) we were able to show that degradation of carbon occurs during soil erosion processes at the investigated mountain grasslands in the central Swiss Alps (Urseren Valley, Canton Uri). Transects from upland (erosion source) to wetland soils (erosion sinks) of sites affected by sheet and land slide erosion were sampled. Analysis of 137Cs yielded an input of 2 and 2.6 t ha-1 yr-1 of soil material into the wetlands sites. Assuming no degradation of soil organic carbon during detachment and transport, carbon isotope signature of soil organic carbon in the wetlands could only be explained with an assumed 800 and 400 years of erosion input into the wetlands. The latter is highly unlikely with alpine peat growth rates indicating that the upper horizons might have an age between 7 and 200 years. While we do not conclude from our data that eroded soil organic carbon is generally degraded during detachment and transport, we propose this method to gain more information on process dynamics during soil erosion from oxic upland to anoxic wetland soils, sediments or water bodies.

  12. A method to detect soil carbon degradation during soil erosion

    NASA Astrophysics Data System (ADS)

    Alewell, C.; Schaub, M.; Conen, F.

    2009-11-01

    Soil erosion has been discussed intensively but controversial both as a significant source or a significant sink of atmospheric carbon possibly explaining the gap in the global carbon budget. One of the major points of discussion has been whether or not carbon is degraded and mineralized to CO2 during detachment, transport and deposition of soil material. By combining the caesium-137 (137Cs) approach (quantification of erosion rates) with stable carbon isotope signatures (process indicator of mixing versus degradation of carbon pools) we were able to show that degradation of carbon occurs during soil erosion processes at the investigated mountain grasslands in the central Swiss Alps (Urseren Valley, Canton Uri). Transects from upland (erosion source) to wetland soils (erosion sinks) of sites affected by sheet and land slide erosion were sampled. Analysis of 137Cs yielded an input of 2 and 4.6 tha-1 yr-1 of soil material into the wetlands sites. Assuming no degradation of soil organic carbon during detachment and transport, carbon isotope signature of soil organic carbon in the wetlands could only be explained with an assumed 500-600 and 350-400 years of erosion input into the wetlands Laui and Spissen, respectively. The latter is highly unlikely with alpine peat growth rates indicating that the upper horizons might have an age between 7 and 200 years. While we do not conclude from our data that eroded soil organic carbon is generally degraded during detachment and transport, we propose this method to gain more information on process dynamics during soil erosion from oxic upland to anoxic wetland soils, sediments or water bodies.

  13. Stuffing Carbon Away: Mechanisms of Carbon Sequestration in Soils

    SciTech Connect

    Reimer, P J; Masiello, C A; Southon, J R; Trumbore, S E; Harden, J W; White, A F; Chadwick, O A; Torn, M S

    2003-01-24

    Soils offer the potential to sequester large quantities of carbon from the atmosphere for decades to millennia and so may ameliorate the anthropogenic influence of fossil fuel release. However changes in climate can drastically affect the soil's ability to store carbon through changes mineralogy on time scales of human interest. It is essential to understand the major controls on soil carbon dynamics before we attempt to manage sequestration to control atmospheric CO{sub 2} buildup. Models of the terrestrial carbon cycle often use clay content to parameterize soil carbon turnover. Evidence from volcanic soils suggests that soil mineralogy is a major control on a soil's ability to store carbon, because different types of minerals have widely varying abilities to physically and chemically isolate soil organic matter from decomposition, however volcanic soils represent only a small percentage of the earth's soils. The relationship between precipitation and soil carbon storage is also complex and poorly constrained. Significantly, precipitation changes predicted as a result of atmospheric CO{sub 2} doubling include increased rainfall throughout California. We utilized {sup 14}C, {delta}{sup 13}C, and the total organic carbon, iron, and aluminum contents to address the question of the importance of mineralogy and climate on carbon storage in soils formed on a globally representative parent material. The California coastal terraces, formed over the last 500 thousand years as a result of tectonic uplift and sea level change, provide a natural laboratory to examine the effect of mineralogy and climate on carbon storage. We have focused on two terraces sequences, one near Eureka and one near Santa Cruz. Within each set of terraces only soil mineral development varies; all other variables are constant (rainfall, plant systems, and soil parent material, and land management). Annual precipitation at Eureka is twice that at Santa Cruz, allowing us to examine its role in the

  14. Salinity and nutrient contents of tidal water affects soil respiration and carbon sequestration of high and low tidal flats of Jiuduansha wetlands in different ways.

    PubMed

    Hu, Yu; Wang, Lei; Fu, Xiaohua; Yan, Jianfang; Wu, Jihua; Tsang, Yiufai; Le, Yiquan; Sun, Ying

    2016-09-15

    Soils were collected from low tidal flats and high tidal flats of Shang shoal located upstream and Xia shoal located downstream with different tidal water qualities, in the Jiuduansha wetland of the Yangtze River estuary. Soil respiration (SR) in situ and soil abiotic and microbial characteristics were studied to clarify the respective differences in the effects of tidal water salinity and nutrient levels on SR and soil carbon sequestration in low and high tidal flats. In low tidal flats, higher total nitrogen (TN) and lower salinity in the tidal water of Shang shoal resulted in higher TN and lower salinity in its soils compared with Xia shoal. These would benefit β-Proteobacteria and Anaerolineae in Shang shoal soil, which might have higher heterotrophic microbial activities and thus soil microbial respiration and SR. In low tidal flats, where soil moisture was high and the major carbon input was active organic carbon from tidal water, increasing TN was a more important factor than salinity and obviously enhanced soil microbial heterotrophic activities, soil microbial respiration and SR. While, in high tidal flats, higher salinity in Xia shoal due to higher salinity in tidal water compared with Shang shoal benefited γ-Proteobacteria which might enhance autotrophic microbial activity, and was detrimental to β-Proteobacteria in Xia shoal soil. These might have led to lower soil microbial respiration and thus SR in Xia shoal compared with Shang shoal. In high tidal flats, where soil moisture was relatively lower and the major carbon input was plant biomass that was difficult to degrade, soil salinity was the major factor restraining microbial activities, soil microbial respiration and SR.

  15. Salinity and nutrient contents of tidal water affects soil respiration and carbon sequestration of high and low tidal flats of Jiuduansha wetlands in different ways.

    PubMed

    Hu, Yu; Wang, Lei; Fu, Xiaohua; Yan, Jianfang; Wu, Jihua; Tsang, Yiufai; Le, Yiquan; Sun, Ying

    2016-09-15

    Soils were collected from low tidal flats and high tidal flats of Shang shoal located upstream and Xia shoal located downstream with different tidal water qualities, in the Jiuduansha wetland of the Yangtze River estuary. Soil respiration (SR) in situ and soil abiotic and microbial characteristics were studied to clarify the respective differences in the effects of tidal water salinity and nutrient levels on SR and soil carbon sequestration in low and high tidal flats. In low tidal flats, higher total nitrogen (TN) and lower salinity in the tidal water of Shang shoal resulted in higher TN and lower salinity in its soils compared with Xia shoal. These would benefit β-Proteobacteria and Anaerolineae in Shang shoal soil, which might have higher heterotrophic microbial activities and thus soil microbial respiration and SR. In low tidal flats, where soil moisture was high and the major carbon input was active organic carbon from tidal water, increasing TN was a more important factor than salinity and obviously enhanced soil microbial heterotrophic activities, soil microbial respiration and SR. While, in high tidal flats, higher salinity in Xia shoal due to higher salinity in tidal water compared with Shang shoal benefited γ-Proteobacteria which might enhance autotrophic microbial activity, and was detrimental to β-Proteobacteria in Xia shoal soil. These might have led to lower soil microbial respiration and thus SR in Xia shoal compared with Shang shoal. In high tidal flats, where soil moisture was relatively lower and the major carbon input was plant biomass that was difficult to degrade, soil salinity was the major factor restraining microbial activities, soil microbial respiration and SR. PMID:27208721

  16. The soil microbial community composition and soil microbial carbon uptake are more affected by soil type than by different vegetation types (C3 and C4 plants) and seasonal changes

    NASA Astrophysics Data System (ADS)

    Griselle Mellado Vazquez, Perla; Lange, Markus; Gleixner, Gerd

    2016-04-01

    This study investigates the influence of different vegetation types (C3 and C4 plants), soil type and seasonal changes on the soil microbial biomass, soil microbial community composition and soil microbial carbon (C) uptake. We collected soil samples in winter (non-growing season) and summer (growing season) in 2012 from an experimental site cropping C3 and C4 plants for 6 years on two different soil types (sandy and clayey). The amount of phospholipid fatty acids (PLFAs) and their compound-specific δ13C values were used to determined microbial biomass and the flow of C from plants to soil microorganisms, respectively. Higher microbial biomass was found in the growing season. The microbial community composition was mainly explained by soil type. Higher amounts of SOC were driving the predominance of G+ bacteria, actinobacteria and cyclic G- bacteria in sandy soils, whereas root biomass was significantly related to the increased proportions of G- bacteria in clayey soils. Plant-derived C in G- bacteria increased significantly in clayey soils in the growing season. This increase was positively and significantly driven by root biomass. Moreover, changes in plant-derived C among microbial groups pointed to specific capabilities of different microbial groups to decompose distinct sources of C. We concluded that soil texture and favorable growth conditions driven by rhizosphere interactions are the most important factors controlling the soil microbial community. Our results demonstrate that a change of C3 plants vs. C4 plants has only a minor effect on the soil microbial community. Thus, such experiments are well suited to investigate soil organic matter dynamics as they allow to trace the C flow from plants into the soil microbial community without changing the community abundance and composition.

  17. Climate change interactions affect soil carbon dioxide efflux and microbial functioning in a post-harvest forest.

    PubMed

    McDaniel, M D; Kaye, J P; Kaye, M W; Bruns, M A

    2014-04-01

    Forest disturbances, including whole-tree harvest, will increase with a growing human population and its rising affluence. Following harvest, forests become sources of C to the atmosphere, partly because wetter and warmer soils (relative to pre-harvest) increase soil CO2 efflux. This relationship between soil microclimate and CO2 suggests that climate changes predicted for the northeastern US may exacerbate post-harvest CO2 losses. We tested this hypothesis using a climate-manipulation experiment within a recently harvested northeastern US forest with warmed (H; +2.5 °C), wetted (W; +23% precipitation), warmed + wetted (H+W), and ambient (A) treatments. The cumulative soil CO2 effluxes from H and W were 35% (P = 0.01) and 22% (P = 0.07) greater than A. However, cumulative efflux in H+W was similar to A and W, and 24% lower than in H (P = 0.02). These findings suggest that with higher precipitation soil CO2 efflux attenuates rapidly to warming, perhaps due to changes in substrate availability or microbial communities. Microbial function measured as CO2 response to 15 C substrates in warmed soils was distinct from non-warmed soils (P < 0.001). Furthermore, wetting lowered catabolic evenness (P = 0.04) and fungi-to-bacteria ratios (P = 0.03) relative to non-wetted treatments. A reciprocal transplant incubation showed that H+W microorganisms had lower laboratory respiration on their home soils (i.e., home substrates) than on soils from other treatments (P < 0.01). We inferred that H+W microorganisms may use a constrained suite of C substrates that become depleted in their "home" soils, and that in some disturbed ecosystems, a precipitation-induced attenuation (or suppression) of soil CO2 efflux to warming may result from fine-tuned microbe-substrate linkages.

  18. Residue and soil carbon sequestration in relation to crop yield as affected by irrigation, tillage, cropping system and nitrogen fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information on management practices is needed to increase surface residue and soil C sequestration to obtain farm C credit. The effects of irrigation, tillage, cropping system, and N fertilization were evaluated on the amount of crop biomass (stems and leaves) returned to the soil, surface residue C...

  19. Soil salinity decreases global soil organic carbon stocks.

    PubMed

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas.

  20. Tillage system affects microbiological properties of soil

    NASA Astrophysics Data System (ADS)

    Delgado, A.; de Santiago, A.; Avilés, M.; Perea, F.

    2012-04-01

    Soil tillage significantly affects organic carbon accumulation, microbial biomass, and subsequently enzymatic activity in surface soil. Microbial activity in soil is a crucial parameter contributing to soil functioning, and thus a basic quality factor for soil. Since enzymes remain soil after excretion by living or disintegrating cells, shifts in their activities reflect long-term fluctuations in microbial biomass. In order to study the effects of no-till on biochemical and microbiological properties in comparison to conventional tillage in a representative soil from South Spain, an experiment was conducted since 1982 on the experimental farm of the Institute of Agriculture and Fisheries Research of Andalusia (IFAPA) in Carmona, SW Spain (37o24'07''N, 5o35'10''W). The soil at the experimental site was a very fine, montomorillonitic, thermic Chromic Haploxerert (Soil Survey Staff, 2010). A randomized complete block design involving three replications and the following two tillage treatments was performed: (i) Conventional tillage, which involved mouldboard plowing to a depth of 50 cm in the summer (once every three years), followed by field cultivation to a depth of 15 cm before sowing; crop residues being burnt, (ii) No tillage, which involved controlling weeds before sowing by spraying glyphosate and sowing directly into the crop residue from the previous year by using a planter with double-disk openers. For all tillage treatments, the crop rotation (annual crops) consisted of winter wheat, sunflower, and legumes (pea, chickpea, or faba bean, depending on the year), which were grown under rainfed conditions. Enzymatic activities (ß-glucosidase, dehydrogenase, aryl-sulphatase, acid phosphatase, and urease), soil microbial biomass by total viable cells number by acridine orange direct count, the density of cultivable groups of bacteria and fungi by dilution plating on semi-selective media, the physiological profiles of the microbial communities by BiologR, and the

  1. Nitrogen starvation affects bacterial adhesion to soil

    PubMed Central

    Borges, Maria Tereza; Nascimento, Antônio Galvão; Rocha, Ulisses Nunes; Tótola, Marcos Rogério

    2008-01-01

    One of the main factors limiting the bioremediation of subsoil environments based on bioaugmentation is the transport of selected microorganisms to the contaminated zones. The characterization of the physiological responses of the inoculated microorganisms to starvation, especially the evaluation of characteristics that affect the adhesion of the cells to soil particles, is fundamental to anticipate the success or failure of bioaugmentation. The objective of this study was to investigate the effect of nitrogen starvation on cell surface hydrophobicity and cell adhesion to soil particles by bacterial strains previously characterized as able to use benzene, toluene or xilenes as carbon and energy sources. The strains LBBMA 18-T (non-identified), Arthrobacter aurescens LBBMA 98, Arthrobacter oxydans LBBMA 201, and Klebsiella sp. LBBMA 204–1 were used in the experiments. Cultivation of the cells in nitrogen-deficient medium caused a significant reduction of the adhesion to soil particles by all the four strains. Nitrogen starvation also reduced significantly the strength of cell adhesion to the soil particles, except for Klebsiella sp. LBBMA 204–1. Two of the four strains showed significant reduction in cell surface hydrophobicity. It is inferred that the efficiency of bacterial transport through soils might be potentially increased by nitrogen starvation. PMID:24031246

  2. Sequestration of Soil Carbon as Secondary Carbonates (Invited)

    NASA Astrophysics Data System (ADS)

    Lal, R.

    2013-12-01

    Rattan Lal Carbon Management and Sequestration Center The Ohio State University Columbus, OH 43210 USA Abstract World soils, the major carbon (C) reservoir among the terrestrial pools, contain soil organic C (SOC) and soil inorganic C (SIC). The SIC pool is predominant in soils of arid and semi-arid regions. These regions cover a land area of about 4.9x109 ha. The SIC pool in soils containing calcic and petrocalcic horizons is estimated at about 695-748 Pg (Pg = 1015 g = 1 gigaton) to 1-m depth. There are two types of carbonates. Lithogenic or primary carbonates are formed from weathering of carbonaceous rocks. Pedogenic or secondary carbonates are formed by dissolution of CO2 in the soil air to form carbonic acid and precipitation as carbonates of Ca+2 or Mg+2. It is the availability of Ca+2 or Mg+2 from outside the ecosystem that is essential to sequester atmospheric CO2. Common among outside sources of Ca+2 or Mg+2 are irrigation water, aerial deposition, sea breeze, fertilizers, manure and other amendments. The decomposition of SOC and root respiration may increase the partial pressure of CO2 in the soil air and lead to the formation of HCO_3^- upon dissolution in H20. Precipitation of secondary carbonates may result from decreased partial pressure of CO2 in the sub-soil, increased concentration of Ca+2, Mg+2 and HCO_3^- in soil solution, and decreased soil moisture content by evapotranspiration. Transport of bicarbonates in irrigated soils and subsequent precipitation above the ground water (calcrete), activity of termites and other soil fauna, and management of urban soils lead to formation of secondary carbonates. On a geologic time scale, weathering of silicate minerals and transport of the by-products into the ocean is a geological process of sequestration of atmospheric CO2. Factors affecting formation of secondary carbonates include land use, and soil and crop management including application of biosolids, irrigation and the quality of irrigation water

  3. Clumped isotopes in soil carbonate

    NASA Astrophysics Data System (ADS)

    Quade, J.; Eiler, J. M.; Daeron, M.

    2011-12-01

    We are monitoring soil temperature and measuring clumped isotopes from modern soil carbonate in North and South America, Hawaii, and Tibet. Clumped isotopes from 50-200 cm soil depth show a strong and systematic bias toward formation in the warmest summer months. For example, soil carbonate as these depths exceed local mean annual temperature by 10-15°C in soils from India and Tibet. Clumped isotope temperatures from modern carbonate increase very regularly (r2 = 0.90) with elevation gain from lowland India to Tibet. Here carbonate forms largely in May-June, just prior to the arrival of the soil-cooling monsoon rains. In this regard, clumped isotopes hold great promise as a paleoaltimeter on the plateau. The question is whether these patterns from a monsoonal climate can be generalized (and they probably can't be) to other climate regimes when soil carbonate forms at a different time of year than the pre-monsoon. For example, in winter-dominated rainfall regimes soil carbonate may form as soils dewater in the spring and soil temperature is closer to mean annual temperature. These are open questions. Diurnal temperature information is also archived in the upper 30 cm of soils. Modern carbonate in Tibet appears to form in very late morning through afternoon, when the surface soil is warmest. Shade and aspect also strongly influence measured soil and clumped isotope temperatures. Both variables will have to be controlled for to correctly interpret clumped isotopes from the paleosol record. Clumped isotope values correlate with δ13C values in soil carbonate from shallowly buried (<1 km) paleosols from Nepal and Pakistan. This makes sense since δ13C values in the sub-tropics are determined the fraction of tree (C3) to grass (C4) cover, and soils under tree-covered areas are cooler. Finally, clumped isotopes from carbonates are reset to higher temperatures at burial depths roughly >2-3 km or >50-75°C. This was reproduced from paleosol and lake carbonates from three

  4. Nitrous oxide emissions from yellow brown soil as affected by incorporation of crop residues with different carbon-to-nitrogen ratios: a case study in central China.

    PubMed

    Lin, Shan; Iqbal, Javed; Hu, Ronggui; Shaaban, Muhammad; Cai, Jianbo; Chen, Xi

    2013-08-01

    To investigate the influence of crop residues decomposition on nitrous oxide (N2O) emission, a field study was performed with application of crop residues with different C:N ratios in a bare yellow brown soil at the experimental station of Zhangjiachong at Zigui, China. We set up six experimental treatments: no crop residue (CK), rapeseed cake (RC), potato stalk (PS), rice straw (RS), wheat straw (WS), and corn straw (CS). The carbon (C) to nitrogen (N) ratios of these crop residues were 7.5, 32.9, 40.4, 65.7, and 90.9, respectively. Nitrous oxide fluxes were measured using a static closed chamber method. N2O emissions were significantly enhanced by incorporation of crop residues. Cumulative N2O emissions negatively correlated with C:N ratio (R (2) = 0.9821) of the crop residue, but they were positively correlated with average concentrations of dissolved organic carbon and microbial biomass carbon. Nitrogen emission fraction, calculated as N2O-N emissions originated from the crop residues N, positively correlated with C:N ratio of the residues (P < 0.05). Soil temperature did, whereas soil moisture did not, control the residue's induced N2O emissions because a significant correlation (P < 0.01) existed between soil temperature and N2O emissions in all treatments except the control. In contrast, a significant relationship between soil moisture and N2O emissions was found in the control only. Furthermore, N2O emission significantly correlated (P < 0.05) with NO3 (-)-N, and NH4 (+)-N contents from all residue treatments. These results indicate that (1) crop residues with distinct carbon and nitrogen contents can significantly alter soil N2O flux rates; and (2) soil biotic as well as abiotic variables are critical in determining soil-atmospheric N2O emissions after crop residue incorporation into soil.

  5. Black Carbon Contribution to Organic Carbon Stocks in Urban Soil.

    PubMed

    Edmondson, Jill L; Stott, Iain; Potter, Jonathan; Lopez-Capel, Elisa; Manning, David A C; Gaston, Kevin J; Leake, Jonathan R

    2015-07-21

    Soil holds 75% of the total organic carbon (TOC) stock in terrestrial ecosystems. This comprises ecosystem-derived organic carbon (OC) and black carbon (BC), a recalcitrant product of the incomplete combustion of fossil fuels and biomass. Urban topsoils are often enriched in BC from historical emissions of soot and have high TOC concentrations, but the contribution of BC to TOC throughout the urban soil profile, at a regional scale is unknown. We sampled 55 urban soil profiles across the North East of England, a region with a history of coal burning and heavy industry. Through combined elemental and thermogravimetic analyses, we found very large total soil OC stocks (31-65 kg m(-2) to 1 m), exceeding typical values reported for UK woodland soils. BC contributed 28-39% of the TOC stocks, up to 23 kg C m(-2) to 1 m, and was affected by soil texture. The proportional contribution of the BC-rich fraction to TOC increased with soil depth, and was enriched in topsoil under trees when compared to grassland. Our findings establish the importance of urban ecosystems in storing large amounts of OC in soils and that these soils also capture a large proportion of BC particulates emitted within urban areas.

  6. SOIL ORGANIC AMENDMENT AS AFFECTING HERBICIDE FATE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The addition of organic amendments or organic wastes to soils have been shown to affect the fate of soil applied herbicides, although it is an issue very seldom considered when making the decision of fertilizing soil or disposing organic wastes. The addition of organic wastes to soils is viewed as v...

  7. An invisible soil acidification: Critical role of soil carbonate and its impact on heavy metal bioavailability.

    PubMed

    Wang, Cheng; Li, Wei; Yang, Zhongfang; Chen, Yang; Shao, Wenjing; Ji, Junfeng

    2015-01-01

    It is well known that carbonates inhibit heavy metals transferring from soil to plants, yet the mechanism is poorly understood. Based on the Yangtze River delta area, we investigated bioaccumulation of Ni and Cd in winter wheat as affected by the presence of carbonates in soil. This study aimed to determine the mechanism through which soil carbonates restrict transport and plant uptake of heavy metals in the wheat cropping system. The results indicate that soil carbonates critically influenced heavy metal transfer from soil to plants and presented a tipping point. Wheat grains harvested from carbonates-depleted (due to severe leaching) soils showed Ni and Cd concentrations 2-3 times higher than those of the wheat grains from carbonates-containing soils. Correspondingly, the incidence of Ni or Cd contamination in the wheat grain samples increased by about three times. With the carbonate concentration >1% in soil, uptake and bioaccumulation of Ni and Cd by winter wheat was independent with the soil pH and carbonate content. The findings suggest that soil carbonates play a critical role in heavy metal transfer from soil to plants, implying that monitoring soil carbonate may be necessary in addition to soil pH for the evaluating soil quality and food safety. PMID:26227091

  8. An invisible soil acidification: Critical role of soil carbonate and its impact on heavy metal bioavailability

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Li, Wei; Yang, Zhongfang; Chen, Yang; Shao, Wenjing; Ji, Junfeng

    2015-07-01

    It is well known that carbonates inhibit heavy metals transferring from soil to plants, yet the mechanism is poorly understood. Based on the Yangtze River delta area, we investigated bioaccumulation of Ni and Cd in winter wheat as affected by the presence of carbonates in soil. This study aimed to determine the mechanism through which soil carbonates restrict transport and plant uptake of heavy metals in the wheat cropping system. The results indicate that soil carbonates critically influenced heavy metal transfer from soil to plants and presented a tipping point. Wheat grains harvested from carbonates-depleted (due to severe leaching) soils showed Ni and Cd concentrations 2-3 times higher than those of the wheat grains from carbonates-containing soils. Correspondingly, the incidence of Ni or Cd contamination in the wheat grain samples increased by about three times. With the carbonate concentration >1% in soil, uptake and bioaccumulation of Ni and Cd by winter wheat was independent with the soil pH and carbonate content. The findings suggest that soil carbonates play a critical role in heavy metal transfer from soil to plants, implying that monitoring soil carbonate may be necessary in addition to soil pH for the evaluating soil quality and food safety.

  9. Mechanisms of Soil Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Lal, Rattan

    2015-04-01

    Carbon (C) sequestration in soil is one of the several strategies of reducing the net emission of CO2 into the atmosphere. Of the two components, soil organic C (SOC) and soil inorganic C (SIC), SOC is an important control of edaphic properties and processes. In addition to off-setting part of the anthropogenic emissions, enhancing SOC concentration to above the threshold level (~1.5-2.0%) in the root zone has numerous ancillary benefits including food and nutritional security, biodiversity, water quality, among others. Because of its critical importance in human wellbeing and nature conservancy, scientific processes must be sufficiently understood with regards to: i) the potential attainable, and actual sink capacity of SOC and SIC, ii) permanence of the C sequestered its turnover and mean residence time, iii) the amount of biomass C needed (Mg/ha/yr) to maintain and enhance SOC pool, and to create a positive C budget, iv) factors governing the depth distribution of SOC, v) physical, chemical and biological mechanisms affecting the rate of decomposition by biotic and abiotic processes, vi) role of soil aggregation in sequestration and protection of SOC and SIC pool, vii) the importance of root system and its exudates in transfer of biomass-C into the SOC pools, viii) significance of biogenic processes in formation of secondary carbonates, ix) the role of dissolved organic C (DOC) in sequestration of SOC and SIC, and x) importance of weathering of alumino-silicates (e.g., powered olivine) in SIC sequestration. Lack of understanding of these and other basic processes leads to misunderstanding, inconsistencies in interpretation of empirical data, and futile debates. Identification of site-specific management practices is also facilitated by understanding of the basic processes of sequestration of SOC and SIC. Sustainable intensification of agroecosystems -- producing more from less by enhancing the use efficiency and reducing losses of inputs, necessitates thorough

  10. Key soil functional properties affected by soil organic matter - evidence from published literature

    NASA Astrophysics Data System (ADS)

    Murphy, Brian

    2015-07-01

    The effect of varying the amount of soil organic matter on a range of individual soil properties was investigated using a literature search of published information largely from Australia, but also included relevant information from overseas. Based on published pedotransfer functions, soil organic matter was shown to increase plant available water by 2 to 3 mm per 10 cm for each 1% increase in soil organic carbon, with the largest increases being associated with sandy soils. Aggregate stability increased with increasing soil organic carbon, with aggregate stability decreasing rapidly when soil organic carbon fell below 1.2 to 1.5 5%. Soil compactibility, friability and soil erodibility were favourably improved by increasing the levels of soil organic carbon. Nutrient cycling was a major function of soil organic matter. Substantial amounts of N, P and S become available to plants when the soil organic matter is mineralised. Soil organic matter also provides a food source for the microorganisms involved in the nutrient cycling of N, P, S and K. In soils with lower clay contents, and less active clays such as kaolinites, soil organic matter can supply a significant amount of the cation exchange capacity and buffering capacity against acidification. Soil organic matter can have a cation exchange capacity of 172 to 297 cmol(+)/kg. As the cation exchange capacity of soil organic matter varies with pH, the effectiveness of soil organic matter to contribute to cation exchange capacity below pH 5.5 is often minimal. Overall soil organic matter has the potential to affect a range of functional soil properties.

  11. Turnover of soil carbon pools following addition of switchgrass-derived biochar to four soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The amendment of soils with biochar may improve plant growth and sequester carbon, especially in marginal soils not suitable for the majority of commodity production. While biochar can persist in soils, it is not clear whether its persistence is affected by soil type. Moreover, we know little of how...

  12. Elevated atmospheric carbon dioxide increases soil carbon

    SciTech Connect

    Norby, Richard J; Jastrow, Julie D; Miller, Michael R; Matamala, Roser; Boutton, Thomas W; Rice, Charles W; Owensby, Clenton E

    2005-01-01

    In a study funded by the U.S. Department of Energy's Office of Science, researchers from Argonne and Oak Ridge National Laboratories and Kansas State and Texas A&M Universities evaluated the collective results of earlier studies by using a statistical procedure called meta-analysis. They found that on average elevated CO2 increased soil carbon by 5.6 percent over a two to nine year period. They also measured comparable increases in soil carbon for Tennessee deciduous forest and Kansas grassland after five to eight years of experimental exposure to elevated CO2.

  13. Soil respiration, labile carbon pools, and enzyme activities as affected by tillage practices in a tropical rice-maize-cowpea cropping system.

    PubMed

    Neogi, S; Bhattacharyya, P; Roy, K S; Panda, B B; Nayak, A K; Rao, K S; Manna, M C

    2014-07-01

    In order to identify the viable option of tillage practices in rice-maize-cowpea cropping system that could cut down soil carbon dioxide (CO2) emission, sustain grain yield, and maintain better soil quality in tropical low land rice ecology soil respiration in terms of CO2 emission, labile carbon (C) pools, water-stable aggregate C fractions, and enzymatic activities were investigated in a sandy clay loam soil. Soil respiration is the major pathway of gaseous C efflux from terrestrial systems and acts as an important index of ecosystem functioning. The CO2-C emissions were quantified in between plants and rows throughout the year in rice-maize-cowpea cropping sequence both under conventional tillage (CT) and minimum tillage (MT) practices along with soil moisture and temperature. The CO2-C emissions, as a whole, were 24 % higher in between plants than in rows, and were in the range of 23.4-78.1, 37.1-128.1, and 28.6-101.2 mg m(-2) h(-1) under CT and 10.7-60.3, 17.3-99.1, and 17.2-79.1 mg m(-2) h(-1) under MT in rice, maize, and cowpea, respectively. The CO2-C emission was found highest under maize (44 %) followed by rice (33 %) and cowpea (23 %) irrespective of CT and MT practices. In CT system, the CO2-C emission increased significantly by 37.1 % with respect to MT on cumulative annual basis including fallow. The CO2-C emission per unit yield was at par in rice and cowpea signifying the beneficial effect of MT in maintaining soil quality and reduction of CO2 emission. The microbial biomass C (MBC), readily mineralizable C (RMC), water-soluble C (WSC), and permanganate-oxidizable C (PMOC) were 19.4, 20.4, 39.5, and 15.1 % higher under MT than CT. The C contents in soil aggregate fraction were significantly higher in MT than CT. Soil enzymatic activities like, dehydrogenase, fluorescein diacetate, and β-glucosidase were significantly higher by 13.8, 15.4, and 27.4 % under MT compared to CT. The soil labile C pools, enzymatic activities, and

  14. Soil carbon determination by thermogravimetrics.

    PubMed

    Pallasser, Robert; Minasny, Budiman; McBratney, Alex B

    2013-01-01

    Determination of soil constituents and structure has a vital role in agriculture generally. Methods for the determination of soil carbon have in particular gained greater currency in recent times because of the potential that soils offer in providing offsets for greenhouse gas (CO2-equivalent) emissions. Ideally, soil carbon which can also be quite diverse in its makeup and origin, should be measureable by readily accessible, affordable and reliable means. Loss-on-ignition is still a widely used method being suitably simple and available but may have limitations for soil C monitoring. How can these limitations be better defined and understood where such a method is required to detect relatively small changes during soil-C building? Thermogravimetric (TGA) instrumentation to measure carbonaceous components has become more interesting because of its potential to separate carbon and other components using very precise and variable heating programs. TGA related studies were undertaken to assist our understanding in the quantification of soil carbon when using methods such as loss-on-ignition. Combining instrumentation so that mass changes can be monitored by mass spectrometer ion currents has elucidated otherwise hidden features of thermal methods enabling the interpretation and evaluation of mass-loss patterns. Soil thermogravimetric work has indicated that loss-on-ignition methods are best constrained to temperatures from 200 to 430 °C for reliable determination for soil organic carbon especially where clay content is higher. In the absence of C-specific detection where mass only changes are relied upon, exceeding this temperature incurs increasing contributions from inorganic sources adding to mass losses with diminishing contributions related to organic matter. The smaller amounts of probably more recalcitrant organic matter released at the higher temperatures may represent mineral associated material and/or simply more refractory forms.

  15. Biochar for soil fertility and natural carbon sequestration

    USGS Publications Warehouse

    Rostad, C.E.; Rutherford, D.W.

    2011-01-01

    Biochar is charcoal (similar to chars generated by forest fires) that is made for incorporation into soils to increase soil fertility while providing natural carbon sequestration. The incorporation of biochar into soils can preserve and enrich soils and also slow the rate at which climate change is affecting our planet. Studies on biochar, such as those cited by this report, are applicable to both fire science and soil science.

  16. Microbial Contribution to Organic Carbon Sequestration in Mineral Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil productivity and sustainability are dependent on soil organic matter (SOM). Our understanding on how organic inputs to soil from microbial processes become converted to SOM is still limited. This study aims to understand how microbes affect carbon (C) sequestration and the formation of recalcit...

  17. Capacity of microorganisms to decompose organic carbon affected by an increasing content of reactive mineral phases in a podzolic soil chronosequence

    NASA Astrophysics Data System (ADS)

    Vermeire, Marie-Liesse; Doetterl, Sebastian; Bode, Samuel; Delmelle, Pierre; Van Oost, Kristof; Cornelis, Jean-Thomas

    2014-05-01

    Soil organic matter stabilization has received considerable interest in the last decades due to the importance of the soil organic carbon (SOC) pool in the global C budget. There is increasing evidence that the formation of organo-mineral associations play a major role in the mechanisms of organic carbon stabilization, indicating that the persistence of organic matter in soils relates primarily to soil physico-chemical and biological conditions than to intrinsic recalcitrance. Al and Fe oxy-hydroxides and short-range ordered aluminosilicates are known for their high capacity to sorb organic carbon. However, the impact of the evolution of these reactive mineral phases over short time scale on the distribution of microorganisms and their ability to decompose SOC is still poorly understood. To further study the short-term evolution of organo-mineral associations, we investigated a 500-year podzolic soil chronosequence which is characterized by an increasing amount of secondary reactive mineral phases with pedogenesis and soil age, and thus by increased organo-mineral associations. In order to determine the impact of these secondary mineral phases on the degradation of SOC by microorganisms, an incubation experiment was carried out using soil horizons up to 1m deep from 6 profiles of different ages along the chronosequence. Furthermore, we used amino sugars and phospholipid fatty acids as tracers of dead and living microbial biomass, respectively, in the incubated samples. Our results show that SOC mineralization was significantly lower in the illuvial Bh/Bhs horizons (which contain more reactive mineral phases) compared to the surface E horizons (depleted in reactive mineral phases), although the content in amino sugars is similar in these horizons. In the deeper Bw and BC horizons, as well as in the young profiles (<300 yrs) that have not yet undergone podzolization and related formation of organo-mineral associations, SOC mineralization rates were the highest. These

  18. Austrian Carbon Calculator (ACC) - modelling soil carbon dynamics in Austrian soils

    NASA Astrophysics Data System (ADS)

    Sedy, Katrin; Freudenschuss, Alexandra; Zethner, Gehard; Spiegel, Heide; Franko, Uwe; Gründling, Ralf; Xaver Hölzl, Franz; Preinstorfer, Claudia; Haslmayr, Hans Peter; Formayer, Herbert

    2014-05-01

    Austrian Carbon Calculator (ACC) - modelling soil carbon dynamics in Austrian soils. The project funded by the Klima- und Energiefonds, Austrian Climate Research Programme, 4th call Authors: Katrin Sedy, Alexandra Freudenschuss, Gerhard Zethner (Environment Agency Austria), Heide Spiegel (Austrian Agency for Health and Food Safety), Uwe Franko, Ralf Gründling (Helmholtz Centre for Environmental Research) Climate change will affect plant productivity due to weather extremes. However, adverse effects could be diminished and satisfying production levels may be maintained with proper soil conditions. To sustain and optimize the potential of agricultural land for plant productivity it will be necessary to focus on preserving and increasing soil organic carbon (SOC). Carbon sequestration in agricultural soils is strongly influenced by management practice. The present management is affected by management practices that tend to speed up carbon loss. Crop rotation, soil cultivation and the management of crop residues are very important measures to influence carbon dynamics and soil fertility. For the future it will be crucial to focus on practical measures to optimize SOC and to improve soil structure. To predict SOC turnover the existing humus balance model the application of the "Carbon Candy Balance" was verified by results from Austrian long term field experiments and field data of selected farms. Thus the main aim of the project is to generate a carbon balancing tool box that can be applied in different agricultural production regions to assess humus dynamics due to agricultural management practices. The toolbox will allow the selection of specific regional input parameters for calculating the C-balance at field level. However farmers or other interested user can also apply their own field data to receive the result of C-dynamics under certain management practises within the next 100 years. At regional level the impact of predefined changes in agricultural management

  19. [Organic carbon decomposition rate in different soil types].

    PubMed

    Yin, Yun-Feng; Cai, Zu-Cong

    2007-10-01

    With incubation experiment, this paper studied the decomposition rate of organic carbon in black soil, fluvo-aquic soil, and red soil. It was shown that these three soil types had significantly different decomposition rate constant of organic carbon (P < 0.05 ), with the corresponding value being 2.2 x 10(-4) x d(-1), 6.0 x 10(-4) x d(-1), and 3.4 x 10(-4) x d(-1), respectively. The decomposition rate constant had a significant correlation with soil pH, which was increased greatly when the soil pH was < 5.5 or > 8.0, and a significant negative correlation with the contents of soil clay and silt, indicating that soil clay and silt content was one of the dominant factors affecting the decomposition rate of organic carbon in these soil types.

  20. Effects of Biochar Amendment on Soil Properties and Soil Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Zhu, S.

    2015-12-01

    Biochar addition to soils potentially affects various soil properties and soil carbon sequestration, and these effects are dependent on biochars derived from different feedstock materials and pyrolysis processes. The objective of this study was to investigate the effects of amendment of different biochars on soil physical and biological properties as well as soil carbon sequestration. Biochars were produced with dairy manure and woodchip at temperatures of 300, 500, and 700°C, respectively. Each biochar was mixed at 5% (w/w) with a forest soil and the mixture was incubated for 180 days, during which soil physical and biological properties, and soil respiration rates were measured. Results showed that the biochar addition significantly enhanced the formation of soil macroaggregates at the early incubation time. The biochar application significantly reduced soil bulk density, increased the amount of soil organic matter, and stimulated microbial activity and soil respiration rates at the early incubation stage. Biochar applications improved water retention capacity, with stronger effects by biochars produced at higher pyrolysis temperatures. At the same suction, the soil with woodchip biochars possessed higher water content than with the dairy manure biochars. Biochar addition significantly affected the soil physical and biological properties, which resulted in different soil carbon mineralization rates and the amount of soil carbon storage.

  1. Genetic by environment interactions affect plant–soil linkages

    PubMed Central

    Pregitzer, Clara C; Bailey, Joseph K; Schweitzer, Jennifer A

    2013-01-01

    The role of plant intraspecific variation in plant–soil linkages is poorly understood, especially in the context of natural environmental variation, but has important implications in evolutionary ecology. We utilized three 18- to 21-year-old common gardens across an elevational gradient, planted with replicates of five Populus angustifolia genotypes each, to address the hypothesis that tree genotype (G), environment (E), and G × E interactions would affect soil carbon and nitrogen dynamics beneath individual trees. We found that soil nitrogen and carbon varied by over 50% and 62%, respectively, across all common garden environments. We found that plant leaf litter (but not root) traits vary by genotype and environment while soil nutrient pools demonstrated genotype, environment, and sometimes G × E interactions, while process rates (net N mineralization and net nitrification) demonstrated G × E interactions. Plasticity in tree growth and litter chemistry was significantly related to the variation in soil nutrient pools and processes across environments, reflecting tight plant–soil linkages. These data overall suggest that plant genetic variation can have differential affects on carbon storage and nitrogen cycling, with implications for understanding the role of genetic variation in plant–soil feedback as well as management plans for conservation and restoration of forest habitats with a changing climate. PMID:23919173

  2. Plant functional traits and soil carbon sequestration in contrasting biomes.

    PubMed

    De Deyn, Gerlinde B; Cornelissen, Johannes H C; Bardgett, Richard D

    2008-05-01

    Plant functional traits control a variety of terrestrial ecosystem processes, including soil carbon storage which is a key component of the global carbon cycle. Plant traits regulate net soil carbon storage by controlling carbon assimilation, its transfer and storage in belowground biomass, and its release from soil through respiration, fire and leaching. However, our mechanistic understanding of these processes is incomplete. Here, we present a mechanistic framework, based on the plant traits that drive soil carbon inputs and outputs, for understanding how alteration of vegetation composition will affect soil carbon sequestration under global changes. First, we show direct and indirect plant trait effects on soil carbon input and output through autotrophs and heterotrophs, and through modification of abiotic conditions, which need to be considered to determine the local carbon sequestration potential. Second, we explore how the composition of key plant traits and soil biota related to carbon input, release and storage prevail in different biomes across the globe, and address the biome-specific mechanisms by which plant trait composition may impact on soil carbon sequestration. We propose that a trait-based approach will help to develop strategies to preserve and promote carbon sequestration.

  3. Carbon Sequestration in Forest Soils

    NASA Astrophysics Data System (ADS)

    Lal, R.

    2006-05-01

    Carbon (C) sequestration in soils and forests is an important strategy of reducing the net increase in atmospheric CO2 concentration by fossil fuel combustion, deforestation, biomass burning, soil cultivation and accelerated erosion. Further, the so-called "missing or fugitive CO2" is also probably being absorbed in a terrestrial sink. Three of the 15 strategies proposed to stabilize atmospheric CO2 concentrations by 2054, with each one to sequester 1 Pg Cyr-1, include: (i) biofuel plantations for bioethanol production, (ii) reforestation, afforestation and establishment of new plantations, and (iii) conversion of plow tillage to no-till farming. Enhancing soil organic carbon (SOC) pool is an important component in each of these three options, but especially so in conversion of degraded/marginal agricultural soils to short rotation woody perennials, and establishment of plantations for biofuel, fiber and timber production. Depending upon the prior SOC loss because of the historic land used and management-induced soil degradation, the rate of soil C sequestration in forest soils may be 0 to 3 Mg C ha-1 yr-1. Tropical forest ecosystems cover 1.8 billion hectares and have a SOC sequestration potential of 200 to 500 Tg C yr-1 over 59 years. However, increasing production of forest biomass may not always increase the SOC pool. Factors limiting the rate of SOC sequestration include C: N ratio, soil availability of N and other essential nutrients, concentration of recalcitrant macro-molecules (e.g., lignin, suberin), soil properties (e.g., clay content and mineralogy, aggregation), soil drainage, and climate (mean annual precipitation and temperature). The SOC pool can be enhanced by adopting recommended methods of forest harvesting and site preparation to minimize the "Covington effect," improving soil drainage, alleviating soil compaction, growing species with a high NPP, and improving soil fertility including the availability of micro-nutrients. Soil fertility

  4. Linking soil functions to carbon fluxes and stocks

    NASA Astrophysics Data System (ADS)

    Olesen, Jørgen E.

    2014-05-01

    Farming practices causing declining returns and inputs of carbon (C) to soils pose threats to sustainable soil functioning by reducing availability of organic matter for soil microbial activities and by affecting soil structure, and soil C stocks that contribute to regulating greenhouse gas emissions. Declines in soil C also affect availability and storage capacity of a range of essential plant nutrients thus affecting needs for external inputs. Soil degradation is considered a serious problem in Europe and a large part of the degradation is caused by agricultural activity with intensive cultivation in arable and mixed farming system contributing to several soil threats. About 45% of European soils are estimated to have low SOM content, principally in southern Europe, but also in areas of France, UK and Germany. The European SOC stocks follow a clear north to south gradient with cooler temperatures favouring higher stocks. However, SOC stocks strongly depend on soil and land management, and there is thus a potential to both increase and lose SOC, although the potential to increase SOC strongly depends on incentives and structures for implementing improved management. Understanding the role of soil C may be better conceptualised by using a soil C flow and stocks concept to assess the impact of C management on crop productivity, soil organic C stocks and other ecosystem services. This concept distinguishes C flows and stocks, which may be hypothesized to have distinctly different effects on biological, chemical and physical soil functions. By separating the roles of carbon flows from the role of carbon stocks, it may become possible to better identify critical levels not only of soil carbon stocks, but also critical levels of carbon inputs, which directly relate to needs for crop and soil management measures. Such critical soil carbon stocks may be linked to soil mineralogy through complexed organic carbon on clay and silt surfaces. Critical levels of soil carbon

  5. Worldwide organic soil carbon and nitrogen data

    SciTech Connect

    Zinke, P.J.; Stangenberger, A.G.; Post, W.M.; Emanual, W.R.; Olson, J.S.

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  6. Biogeochemistry: Soil carbon in a beer can

    NASA Astrophysics Data System (ADS)

    Davidson, Eric A.

    2015-10-01

    Decomposition of soil organic matter could be an important positive feedback to climate change. Geochemical properties of soils can help determine what fraction of soil carbon may be protected from climate-induced decomposition.

  7. Reduced soil wettability can affect greenhouse gas fluxes

    NASA Astrophysics Data System (ADS)

    Urbanek, Emilia; Qassem, Khalid

    2015-04-01

    Soil moisture is known to be an important factor affecting the carbon (C) dynamics in soils including decomposition of organic matter and exchange of gases like CO2 and CH4 between the soil and the atmosphere. Most studies and process models looking at the soil C dynamics assume, however, that soils are easily wettable and water is relatively uniformly distributed within the soil pores. Most soils, however, do not wet spontaneously when dry or moderately moist, but instead exhibit some degree of soil water repellency (i.e. hydrophobicity), which can restrict infiltration and conductivity of water for weeks or months. This is world-wide occurring phenomenon which affects all soil textural types but is particularly common under permanent vegetation e.g. forest, grass and shrub vegetation. Soil water repellency is most profound during drier seasons, when the soil moisture content is relatively low. Although prolonged contact with water can gradually decrease water repellency, some soils do not recover to being completely wettable even after very wet winter months or substantial rainfall events. It has been recognized that with the predicted climatic changes the phenomenon of soil water repellency will become even more pronounced and severe, additionally it may occur in the areas and climatic zones where the effect have not been currently recognized. One of the main implications of soil water repellency is restricted water infiltration and reduced conductivity, which results in reduced soil water availability for plants and soil biota, even after prolonged periods of rainfall. As the process of C mineralization and consequently CO2 efflux from soil is driven by the accessibility of organic matter to decomposing organisms, which in turn is directly dependent on (i) soil moisture and (ii) soil temperature it is, therefore hypothesised that carbon decomposition and CO2 efflux in water repellent soils will also be affected when soil in the water repellent state. The CO2

  8. Soil warming, carbon–nitrogen interactions, and forest carbon budgets

    PubMed Central

    Melillo, Jerry M.; Butler, Sarah; Johnson, Jennifer; Mohan, Jacqueline; Steudler, Paul; Lux, Heidi; Burrows, Elizabeth; Bowles, Francis; Smith, Rose; Scott, Lindsay; Vario, Chelsea; Hill, Troy; Burton, Andrew; Zhou, Yu-Mei; Tang, Jim

    2011-01-01

    Soil warming has the potential to alter both soil and plant processes that affect carbon storage in forest ecosystems. We have quantified these effects in a large, long-term (7-y) soil-warming study in a deciduous forest in New England. Soil warming has resulted in carbon losses from the soil and stimulated carbon gains in the woody tissue of trees. The warming-enhanced decay of soil organic matter also released enough additional inorganic nitrogen into the soil solution to support the observed increases in plant carbon storage. Although soil warming has resulted in a cumulative net loss of carbon from a New England forest relative to a control area over the 7-y study, the annual net losses generally decreased over time as plant carbon storage increased. In the seventh year, warming-induced soil carbon losses were almost totally compensated for by plant carbon gains in response to warming. We attribute the plant gains primarily to warming-induced increases in nitrogen availability. This study underscores the importance of incorporating carbon–nitrogen interactions in atmosphere–ocean–land earth system models to accurately simulate land feedbacks to the climate system. PMID:21606374

  9. Physico-chemical change in vertical soil horizon characteristics of distillery affected soil.

    PubMed

    Ansari, Farid; Awasthi, A K; Kumar, P

    2013-10-01

    Effect of treated distillery effluent on the physico-chemical characteristics of vertical soil horizon was studied to observe the impact of effluent on soil of nearby area where distillery canal flows. The studies were also carried out with respect to the unaffected region to compare the soil characteristics. The results showed that in distillery affected soil pH, bulk density and alkalinity increased with depth whereas water holding capacity, chloride, organic carbon, available nitrogen, phosphorus and potassium decreased with depth compared to unaffected soil horizon. Preliminary study revealed that although most of the parameters were high in distillery affected soil horizon which might promote growth of plants but increase in pH and other toxic substances with depth could cause ground water pollution through constant and continuous leaching.

  10. Physico-chemical change in vertical soil horizon characteristics of distillery affected soil.

    PubMed

    Ansari, Farid; Awasthi, A K; Kumar, P

    2013-10-01

    Effect of treated distillery effluent on the physico-chemical characteristics of vertical soil horizon was studied to observe the impact of effluent on soil of nearby area where distillery canal flows. The studies were also carried out with respect to the unaffected region to compare the soil characteristics. The results showed that in distillery affected soil pH, bulk density and alkalinity increased with depth whereas water holding capacity, chloride, organic carbon, available nitrogen, phosphorus and potassium decreased with depth compared to unaffected soil horizon. Preliminary study revealed that although most of the parameters were high in distillery affected soil horizon which might promote growth of plants but increase in pH and other toxic substances with depth could cause ground water pollution through constant and continuous leaching. PMID:25906588

  11. Irrigation Practice Affects Soil Phosphorus Chemistry

    NASA Astrophysics Data System (ADS)

    Ippolito, J.; Bjorneberg, D.

    2011-12-01

    It is expected, given the same water source applied to the same soil, that changes in soil chemistry would be subtle when comparing furrow and sprinkler irrigation practices. From four paired fields, we collected soil (after similar crops were harvested in September) from the 0-5 cm depth. Samples were analyzed for changes in soil P chemistry due to sprinkler or furrow irrigation using: 1) the Olsen soil test P extraction; 2) the alkaline phosphatase enzyme assay; 3) a sequential extraction technique which fractionated inorganic and organic soil P pools; and 4) a measure of the amorphous soil Al and Fe mineral phases. Olsen-extractable soil P was lower under sprinkler irrigation; however, this was not due to a reduction in microbial phosphatase activity. Soils under sprinkler irrigation contained lower inorganic P concentrations in soluble/Al-bound/Fe-bound and in the occluded phases, lesser amounts of organic P present in the moderately labile and non-labile fractions, and contained lower amorphous Fe concentrations. These results indicate that the method of water application affects soil chemistry and nutrient cycling.

  12. Chemistry of organic carbon in soil with relationship to the global carbon cycle

    SciTech Connect

    Post, W.M. III

    1988-01-01

    Various ecosystem disturbances alter the balances between production of organic matter and its decomposition and therefore change the amount of carbon in soil. The most severe perturbation is conversion of natural vegetation to cultivated crops. Conversion of natural vegetation to cultivated crops results in a lowered input of slowly decomposing material which causes a reduction in overall carbon levels. Disruption of soil matrix structure by cultivation leads to lowered physical protection of organic matter resulting in an increased net mineralization rate of soil carbon. Climate change is another perturbation that affects the amount and composition of plant production, litter inputs, and decomposition regimes but does not affect soil structure directly. Nevertheless, large changes in soil carbon storage are probable with anticipated CO2 induced climate change, particularly in northern latitudes where anticipated climate change will be greatest (MacCracken and Luther 1985) and large amounts of soil organic matter are found. It is impossible, given the current state of knowledge of soil organic matter processes and transformations to develop detailed process models of soil carbon dynamics. Largely phenomenological models appear to be developing into predictive tools for understanding the role of soil organic matter in the global carbon cycle. In particular, these models will be useful in quantifying soil carbon changes due to human land-use and to anticipated global climate and vegetation changes. 47 refs., 7 figs., 2 tabs.

  13. Plant-soil interactions and soil carbon dynamics under climate extremes

    NASA Astrophysics Data System (ADS)

    Bahn, Michael

    2016-04-01

    Climate extremes have been suggested to increase significantly in intensity and frequency in the coming decades, and may influence ecosystem processes and the carbon cycle more profoundly than gradual climate warming. While there is a growing understanding of plant-soil interactions in extreme environments and from lab experiments, we still know very little about how such interactions affect soil carbon dynamics in real-world ecosystems exposed to climate extremes. In this talk I will give a brief overview of the topic and will present evidence from in-situ experiments on plant-soil interactions and their consequences for soil carbon dynamics under severe drought.

  14. Microbial Community Composition Affects Soil Fungistasis†

    PubMed Central

    de Boer, Wietse; Verheggen, Patrick; Klein Gunnewiek, Paulien J. A.; Kowalchuk, George A.; van Veen, Johannes A.

    2003-01-01

    Most soils inhibit fungal germination and growth to a certain extent, a phenomenon known as soil fungistasis. Previous observations have implicated microorganisms as the causal agents of fungistasis, with their action mediated either by available carbon limitation (nutrient deprivation hypothesis) or production of antifungal compounds (antibiosis hypothesis). To obtain evidence for either of these hypotheses, we measured soil respiration and microbial numbers (as indicators of nutrient stress) and bacterial community composition (as an indicator of potential differences in the composition of antifungal components) during the development of fungistasis. This was done for two fungistatic dune soils in which fungistasis was initially fully or partly relieved by partial sterilization treatment or nutrient addition. Fungistasis development was measured as restriction of the ability of the fungi Chaetomium globosum, Fusarium culmorum, Fusarium oxysporum, and Trichoderma harzianum to colonize soils. Fungistasis did not always reappear after soil treatments despite intense competition for carbon, suggesting that microbial community composition is important in the development of fungistasis. Both microbial community analysis and in vitro antagonism tests indicated that the presence of pseudomonads might be essential for the development of fungistasis. Overall, the results lend support to the antibiosis hypothesis. PMID:12571002

  15. Soil invertebrate fauna affect N2 O emissions from soil.

    PubMed

    Kuiper, Imke; de Deyn, Gerlinde B; Thakur, Madhav P; van Groenigen, Jan Willem

    2013-09-01

    Nitrous oxide (N2 O) emissions from soils contribute significantly to global warming. Mitigation of N2 O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses - a possible role for soil fauna has until now largely been overlooked. We studied the effect of six groups of soil invertebrate fauna and tested the hypothesis that all of them increase N2 O emissions, although to different extents. We conducted three microcosm experiments with sandy soil and hay residue. Faunal groups included in our experiments were as follows: fungal-feeding nematodes, mites, springtails, potworms, earthworms and isopods. In experiment I, involving all six faunal groups, N2 O emissions declined with earthworms and potworms from 78.4 (control) to 37.0 (earthworms) or 53.5 (potworms) mg N2 O-N m(-2) . In experiment II, with a higher soil-to-hay ratio and mites, springtails and potworms as faunal treatments, N2 O emissions increased with potworms from 51.9 (control) to 123.5 mg N2 O-N m(-2) . Experiment III studied the effect of potworm density; we found that higher densities of potworms accelerated the peak of the N2 O emissions by 5 days (P < 0.001), but the cumulative N2 O emissions remained unaffected. We propose that increased soil aeration by the soil fauna reduced N2 O emissions in experiment I, whereas in experiment II N2 O emissions were driven by increased nitrogen and carbon availability. In experiment III, higher densities of potworms accelerated nitrogen and carbon availability and N2 O emissions, but did not increase them. Overall, our data show that soil fauna can suppress, increase, delay or accelerate N2 O emissions from soil and should therefore be an integral part of future N2 O studies. PMID:23625707

  16. Limits to soil carbon stability; Deep, ancient soil carbon decomposition stimulated by new labile organic inputs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil carbon (C) pools store about one-third of the total terrestrial organic carbon. Deep soil C pools (below 1 m) are thought to be stable due to their low biodegradability, but little is known about soil microbial processes and carbon dynamics below the soil surface, or how global change might aff...

  17. Ectomycorrhizal fungi slow soil carbon cycling.

    PubMed

    Averill, Colin; Hawkes, Christine V

    2016-08-01

    Respiration of soil organic carbon is one of the largest fluxes of CO2 on earth. Understanding the processes that regulate soil respiration is critical for predicting future climate. Recent work has suggested that soil carbon respiration may be reduced by competition for nitrogen between symbiotic ectomycorrhizal fungi that associate with plant roots and free-living microbial decomposers, which is consistent with increased soil carbon storage in ectomycorrhizal ecosystems globally. However, experimental tests of the mycorrhizal competition hypothesis are lacking. Here we show that ectomycorrhizal roots and hyphae decrease soil carbon respiration rates by up to 67% under field conditions in two separate field exclusion experiments, and this likely occurs via competition for soil nitrogen, an effect larger than 2 °C soil warming. These findings support mycorrhizal competition for nitrogen as an independent driver of soil carbon balance and demonstrate the need to understand microbial community interactions to predict ecosystem feedbacks to global climate. PMID:27335203

  18. Ecological value of soil carbon management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of soil carbon is critical to the climate change debate, as well as to the long-term productivity and ecosystem resilience of the biosphere. Soil organic carbon is a key ecosystem property that indicates inherent productivity of land, controls soil biological functioning and diversity, r...

  19. Evolution of black carbon properties in soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Black carbon deposited in soil from natural or deliberate wildfires and engineered black carbon products (biochar) intentionally added to soil are known to have significant effects on soil biogeochemical processes and in many cases to influence the yield and quality of crops and to enhance the abili...

  20. Plant soil interactions alter carbon cycling in an upland grassland soil.

    PubMed

    Thomson, Bruce C; Ostle, Nick J; McNamara, Niall P; Oakley, Simon; Whiteley, Andrew S; Bailey, Mark J; Griffiths, Robert I

    2013-01-01

    Soil carbon (C) storage is dependent upon the complex dynamics of fresh and native organic matter cycling, which are regulated by plant and soil-microbial activities. A fundamental challenge exists to link microbial biodiversity with plant-soil C cycling processes to elucidate the underlying mechanisms regulating soil carbon. To address this, we contrasted vegetated grassland soils with bare soils, which had been plant-free for 3 years, using stable isotope ((13)C) labeled substrate assays and molecular analyses of bacterial communities. Vegetated soils had higher C and N contents, biomass, and substrate-specific respiration rates. Conversely, following substrate addition unlabeled, native soil C cycling was accelerated in bare soil and retarded in vegetated soil; indicative of differential priming effects. Functional differences were reflected in bacterial biodiversity with Alphaproteobacteria and Acidobacteria dominating vegetated and bare soils, respectively. Significant isotopic enrichment of soil RNA was found after substrate addition and rates varied according to substrate type. However, assimilation was independent of plant presence which, in contrast to large differences in (13)CO2 respiration rates, indicated greater substrate C use efficiency in bare, Acidobacteria-dominated soils. Stable isotope probing (SIP) revealed most community members had utilized substrates with little evidence for competitive outgrowth of sub-populations. Our findings support theories on how plant-mediated soil resource availability affects the turnover of different pools of soil carbon, and we further identify a potential role of soil microbial biodiversity. Specifically we conclude that emerging theories on the life histories of dominant soil taxa can be invoked to explain changes in soil carbon cycling linked to resource availability, and that there is a strong case for considering microbial biodiversity in future studies investigating the turnover of different pools of soil

  1. Plant soil interactions alter carbon cycling in an upland grassland soil

    PubMed Central

    Thomson, Bruce C.; Ostle, Nick J.; McNamara, Niall P.; Oakley, Simon; Whiteley, Andrew S.; Bailey, Mark J.; Griffiths, Robert I.

    2013-01-01

    Soil carbon (C) storage is dependent upon the complex dynamics of fresh and native organic matter cycling, which are regulated by plant and soil-microbial activities. A fundamental challenge exists to link microbial biodiversity with plant-soil C cycling processes to elucidate the underlying mechanisms regulating soil carbon. To address this, we contrasted vegetated grassland soils with bare soils, which had been plant-free for 3 years, using stable isotope (13C) labeled substrate assays and molecular analyses of bacterial communities. Vegetated soils had higher C and N contents, biomass, and substrate-specific respiration rates. Conversely, following substrate addition unlabeled, native soil C cycling was accelerated in bare soil and retarded in vegetated soil; indicative of differential priming effects. Functional differences were reflected in bacterial biodiversity with Alphaproteobacteria and Acidobacteria dominating vegetated and bare soils, respectively. Significant isotopic enrichment of soil RNA was found after substrate addition and rates varied according to substrate type. However, assimilation was independent of plant presence which, in contrast to large differences in 13CO2 respiration rates, indicated greater substrate C use efficiency in bare, Acidobacteria-dominated soils. Stable isotope probing (SIP) revealed most community members had utilized substrates with little evidence for competitive outgrowth of sub-populations. Our findings support theories on how plant-mediated soil resource availability affects the turnover of different pools of soil carbon, and we further identify a potential role of soil microbial biodiversity. Specifically we conclude that emerging theories on the life histories of dominant soil taxa can be invoked to explain changes in soil carbon cycling linked to resource availability, and that there is a strong case for considering microbial biodiversity in future studies investigating the turnover of different pools of soil

  2. Erosion of soil organic carbon: implications for carbon sequestration

    USGS Publications Warehouse

    Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.; McPherson, B.J.; Sundquist, E.T.

    2009-01-01

    Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

  3. Soil erosion and the global carbon budget.

    PubMed

    Lal, R

    2003-07-01

    Soil erosion is the most widespread form of soil degradation. Land area globally affected by erosion is 1094 million ha (Mha) by water erosion, of which 751 Mha is severely affected, and 549 Mha by wind erosion, of which 296 Mha is severely affected. Whereas the effects of erosion on productivity and non-point source pollution are widely recognized, those on the C dynamics and attendant emission of greenhouse gases (GHGs) are not. Despite its global significance, erosion-induced carbon (C) emission into the atmosphere remains misunderstood and an unquantified component of the global carbon budget. Soil erosion is a four-stage process involving detachment, breakdown, transport/redistribution and deposition of sediments. The soil organic carbon (SOC) pool is influenced during all four stages. Being a selective process, erosion preferentially removes the light organic fraction of a low density of <1.8 Mg/m(3). A combination of mineralization and C export by erosion causes a severe depletion of the SOC pool on eroded compared with uneroded or slightly eroded soils. In addition, the SOC redistributed over the landscape or deposited in depressional sites may be prone to mineralization because of breakdown of aggregates leading to exposure of hitherto encapsulated C to microbial processes among other reasons. Depending on the delivery ratio or the fraction of the sediment delivered to the river system, gross erosion by water may be 75 billion Mg, of which 15-20 billion Mg are transported by the rivers into the aquatic ecosystems and eventually into the ocean. The amount of total C displaced by erosion on the earth, assuming a delivery ratio of 10% and SOC content of 2-3%, may be 4.0-6.0 Pg/year. With 20% emission due to mineralization of the displaced C, erosion-induced emission may be 0.8-1.2 Pg C/year on the earth. Thus, soil erosion has a strong impact on the global C cycle and this component must be considered while assessing the global C budget. Adoption of

  4. [Relationships between soil organic carbon and environmental factors in gully watershed of the Loess Plateau].

    PubMed

    Wei, Xiao-Rong; Shao, Ming-An; Gao, Jian-Lun

    2008-10-01

    Understanding the distribution of organic carbon fractions in soils and their relationships with environmental factors are very important for appraising soil organic carbon status and assessing carbon cycling in the Loess Plateau. In this research, through field investigation and laboratory analysis, we studied the relationships between soil organic carbon and environmental factors in a gully watershed of the Loess Plateau. The environmental factors are landforms, land use conditions and soil types. The results showed that total soil organic carbon presented less variance, while high labile organic carbon presented greater variance. The variation coefficients of them are 34% and 43%, respectively, indicating that the variability of organic carbon in soils increased with the increasing of their activities. Total soil organic carbon, labile organic carbon, middle and high labile organic carbon were highly interrelated and presented similar distribution trend with environmental factors. Among different landforms, land uses, and soil types, the highest contents of organic carbon in different fractions were observed in plateau land, forest and farm lands, and black loessial soils, while the lowest contents of them were observed in gully bottom, grass land, and rubified soils, respectively. The relationships between organic carbon and environmental factors indicate that environmental factors not only directly influence the distribution of soil organic carbon, but also indirectly influence them through affecting the relationships among organic carbon fractions. The relationship between total organic carbon and labile organic carbon responses rapidly to environmental factors, while that between middle labile organic carbon and high labile organic carbon responses slowly to environmental factors. PMID:19143389

  5. Ranking factors affecting emissions of GHG from incubated agricultural soils

    PubMed Central

    García-Marco, S; Ravella, S R; Chadwick, D; Vallejo, A; Gregory, A S; Cárdenas, L M

    2014-01-01

    Agriculture significantly contributes to global greenhouse gas (GHG) emissions and there is a need to develop effective mitigation strategies. The efficacy of methods to reduce GHG fluxes from agricultural soils can be affected by a range of interacting management and environmental factors. Uniquely, we used the Taguchi experimental design methodology to rank the relative importance of six factors known to affect the emission of GHG from soil: nitrate (NO3−) addition, carbon quality (labile and non-labile C), soil temperature, water-filled pore space (WFPS) and extent of soil compaction. Grassland soil was incubated in jars where selected factors, considered at two or three amounts within the experimental range, were combined in an orthogonal array to determine the importance and interactions between factors with a L16 design, comprising 16 experimental units. Within this L16 design, 216 combinations of the full factorial experimental design were represented. Headspace nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) concentrations were measured and used to calculate fluxes. Results found for the relative influence of factors (WFPS and NO3− addition were the main factors affecting N2O fluxes, whilst glucose, NO3− and soil temperature were the main factors affecting CO2 and CH4 fluxes) were consistent with those already well documented. Interactions between factors were also studied and results showed that factors with little individual influence became more influential in combination. The proposed methodology offers new possibilities for GHG researchers to study interactions between influential factors and address the optimized sets of conditions to reduce GHG emissions in agro-ecosystems, while reducing the number of experimental units required compared with conventional experimental procedures that adjust one variable at a time. PMID:25177207

  6. Ranking factors affecting emissions of GHG from incubated agricultural soils.

    PubMed

    García-Marco, S; Ravella, S R; Chadwick, D; Vallejo, A; Gregory, A S; Cárdenas, L M

    2014-07-01

    Agriculture significantly contributes to global greenhouse gas (GHG) emissions and there is a need to develop effective mitigation strategies. The efficacy of methods to reduce GHG fluxes from agricultural soils can be affected by a range of interacting management and environmental factors. Uniquely, we used the Taguchi experimental design methodology to rank the relative importance of six factors known to affect the emission of GHG from soil: nitrate (NO3 (-)) addition, carbon quality (labile and non-labile C), soil temperature, water-filled pore space (WFPS) and extent of soil compaction. Grassland soil was incubated in jars where selected factors, considered at two or three amounts within the experimental range, were combined in an orthogonal array to determine the importance and interactions between factors with a L16 design, comprising 16 experimental units. Within this L16 design, 216 combinations of the full factorial experimental design were represented. Headspace nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) concentrations were measured and used to calculate fluxes. Results found for the relative influence of factors (WFPS and NO3 (-) addition were the main factors affecting N2O fluxes, whilst glucose, NO3 (-) and soil temperature were the main factors affecting CO2 and CH4 fluxes) were consistent with those already well documented. Interactions between factors were also studied and results showed that factors with little individual influence became more influential in combination. The proposed methodology offers new possibilities for GHG researchers to study interactions between influential factors and address the optimized sets of conditions to reduce GHG emissions in agro-ecosystems, while reducing the number of experimental units required compared with conventional experimental procedures that adjust one variable at a time. PMID:25177207

  7. Soil organic carbon across scales.

    PubMed

    O'Rourke, Sharon M; Angers, Denis A; Holden, Nicholas M; McBratney, Alex B

    2015-10-01

    Mechanistic understanding of scale effects is important for interpreting the processes that control the global carbon cycle. Greater attention should be given to scale in soil organic carbon (SOC) science so that we can devise better policy to protect/enhance existing SOC stocks and ensure sustainable use of soils. Global issues such as climate change require consideration of SOC stock changes at the global and biosphere scale, but human interaction occurs at the landscape scale, with consequences at the pedon, aggregate and particle scales. This review evaluates our understanding of SOC across all these scales in the context of the processes involved in SOC cycling at each scale and with emphasis on stabilizing SOC. Current synergy between science and policy is explored at each scale to determine how well each is represented in the management of SOC. An outline of how SOC might be integrated into a framework of soil security is examined. We conclude that SOC processes at the biosphere to biome scales are not well understood. Instead, SOC has come to be viewed as a large-scale pool subjects to carbon flux. Better understanding exists for SOC processes operating at the scales of the pedon, aggregate and particle. At the landscape scale, the influence of large- and small-scale processes has the greatest interaction and is exposed to the greatest modification through agricultural management. Policy implemented at regional or national scale tends to focus at the landscape scale without due consideration of the larger scale factors controlling SOC or the impacts of policy for SOC at the smaller SOC scales. What is required is a framework that can be integrated across a continuum of scales to optimize SOC management.

  8. Soil organic carbon across scales.

    PubMed

    O'Rourke, Sharon M; Angers, Denis A; Holden, Nicholas M; McBratney, Alex B

    2015-10-01

    Mechanistic understanding of scale effects is important for interpreting the processes that control the global carbon cycle. Greater attention should be given to scale in soil organic carbon (SOC) science so that we can devise better policy to protect/enhance existing SOC stocks and ensure sustainable use of soils. Global issues such as climate change require consideration of SOC stock changes at the global and biosphere scale, but human interaction occurs at the landscape scale, with consequences at the pedon, aggregate and particle scales. This review evaluates our understanding of SOC across all these scales in the context of the processes involved in SOC cycling at each scale and with emphasis on stabilizing SOC. Current synergy between science and policy is explored at each scale to determine how well each is represented in the management of SOC. An outline of how SOC might be integrated into a framework of soil security is examined. We conclude that SOC processes at the biosphere to biome scales are not well understood. Instead, SOC has come to be viewed as a large-scale pool subjects to carbon flux. Better understanding exists for SOC processes operating at the scales of the pedon, aggregate and particle. At the landscape scale, the influence of large- and small-scale processes has the greatest interaction and is exposed to the greatest modification through agricultural management. Policy implemented at regional or national scale tends to focus at the landscape scale without due consideration of the larger scale factors controlling SOC or the impacts of policy for SOC at the smaller SOC scales. What is required is a framework that can be integrated across a continuum of scales to optimize SOC management. PMID:25918852

  9. Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status

    NASA Astrophysics Data System (ADS)

    Ťupek, Boris; Ortiz, Carina A.; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi

    2016-08-01

    Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC) stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystem-atmosphere carbon dioxide exchange by process-based ecosystem and soil carbon models. Although the models need to simplify complex environmental processes of soil carbon sequestration, in a large mosaic of environments a missing key driver could lead to a modeling bias in predictions of SOC stock change.We aimed to evaluate SOC stock estimates of process-based models (Yasso07, Q, and CENTURY soil sub-model v4) against a massive Swedish forest soil inventory data set (3230 samples) organized by a recursive partitioning method into distinct soil groups with underlying SOC stock development linked to physicochemical conditions.For two-thirds of measurements all models predicted accurate SOC stock levels regardless of the detail of input data, e.g., whether they ignored or included soil properties. However, in fertile sites with high N deposition, high cation exchange capacity, or moderately increased soil water content, Yasso07 and Q models underestimated SOC stocks. In comparison to Yasso07 and Q, accounting for the site-specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved SOC stock estimates for sites with high clay content, but not for sites with high N deposition.Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the high nutrient status and well-sorted parent material, indeed have had other predominant drivers of SOC stabilization lacking in the models, presumably the mycorrhizal organic uptake and organo-mineral stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic matter mineralization has to be re-evaluated, since correct SOC stocks are decisive for predicting future SOC change and soil CO2 efflux.

  10. Biofuel intercropping effects on soil carbon and microbial activity.

    PubMed

    Strickland, Michael S; Leggett, Zakiya H; Sucre, Eric B; Bradford, Mark A

    2015-01-01

    Biofuels will help meet rising demands for energy and, ideally, limit climate change associated with carbon losses from the biosphere to atmosphere. Biofuel management must therefore maximize energy production and maintain ecosystem carbon stocks. Increasingly, there is interest in intercropping biofuels with other crops, partly because biofuel production on arable land might reduce availability and increase the price of food. One intercropping approach involves growing biofuel grasses in forest plantations. Grasses differ from trees in both their organic inputs to soils and microbial associations. These differences are associated with losses of soil carbon when grasses become abundant in forests. We investigated how intercropping switchgrass (Panicum virgalum), a major candidate for cellulosic biomass production, in loblolly pine (Pinus taeda) plantations affects soil carbon, nitrogen, and microbial dynamics. Our design involved four treatments: two pine management regimes where harvest residues (i.e., biomass) were left in place or removed, and two switchgrass regimes where the grass was grown with pine under the same two biomass scenarios (left or removed). Soil variables were measured in four 1-ha replicate plots in the first and second year following switchgrass planting. Under switchgrass intercropping, pools of mineralizable and particulate organic matter carbon were 42% and 33% lower, respectively. These declines translated into a 21% decrease in total soil carbon in the upper 15 cm of the soil profile, during early stand development. The switchgrass effect, however, was isolated to the interbed region where switchgrass is planted. In these regions, switchgrass-induced reductions in soil carbon pools with 29%, 43%, and 24% declines in mineralizable, particulate, and total soil carbon, respectively. Our results support the idea that grass inputs to forests can prime the activity of soil organic carbon degrading microbes, leading to net reductions in stocks

  11. Contents and composition of organic matter in subsurface soils affected by land use and soil mineralogy

    NASA Astrophysics Data System (ADS)

    Ellerbrock, Ruth H.; Kaiser, Michael

    2010-05-01

    Land use and mineralogy affect the ability of surface as well as subsurface soils to sequester organic carbon and their contribution to mitigate the greenhouse effect. This study aimed to investigate the long-term impact of land use (i.e., arable and forest) and soil mineralogy on contents and composition of soil organic matter (SOM) from subsurface soils. Seven soils different in mineralogy (Albic and Haplic Luvisol, Colluvic and Haplic Regosol, Haplic and Vertic Cambisol, Haplic Stagnosol) were selected within Germany. Soil samples were taken from forest and adjacent arable sites. First, particulate and water soluble organic matter were separated from the subsurface soil samples. From the remaining solid residues the OM(PY) fractions were separated, analyzed for its OC content (OCPY) and characterized by FTIR spectroscopy. For the arable subsurface soils multiple regression analyses indicate significant positive relationships between the soil organic carbon contents and the contents of i) exchangeable Ca and oxalate soluble Fe, and Alox contents. Further for the neutral arable subsurface soils the contents OCPY weighted by its C=O contents were found to be related to the contents of Ca indicating interactions between OM(PY) and Ca cations. For the forest subsurface soils (pH <5) the OCPY contents were positively related with the contents of Na-pyrophosphate soluble Fe and Al. For the acidic forest subsurface soils such findings indicate interactions between OM(PY) and Fe3+ and Al3+ cations. The effects of land use and soil mineralogy on contents and composition of SOM and OM(PY) will be discussed.

  12. Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics.

    PubMed

    Koven, Charles D; Lawrence, David M; Riley, William J

    2015-03-24

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon-nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost region is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. Although nitrogen dynamics are highly uncertain, the future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw. PMID:25775603

  13. Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics

    NASA Astrophysics Data System (ADS)

    Koven, Charles D.; Lawrence, David M.; Riley, William J.

    2015-03-01

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon-nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost region is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. Although nitrogen dynamics are highly uncertain, the future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw.

  14. Prediction of soil organic carbon concentration and soil bulk density of mineral soils for soil organic carbon stock estimation

    NASA Astrophysics Data System (ADS)

    Putku, Elsa; Astover, Alar; Ritz, Christian

    2016-04-01

    Soil monitoring networks provide a powerful base for estimating and predicting nation's soil status in many aspects. The datasets of soil monitoring are often hierarchically structured demanding sophisticated data analyzing methods. The National Soil Monitoring of Estonia was based on a hierarchical data sampling scheme as each of the monitoring site was divided into four transects with 10 sampling points on each transect. We hypothesized that the hierarchical structure in Estonian Soil Monitoring network data requires a multi-level mixed model approach to achieve good prediction accuracy of soil properties. We used this database to predict soil bulk density and soil organic carbon concentration of mineral soils in arable land using different statistical methods: median approach, linear regression and mixed model; additionally, random forests for SOC concentration. We compared the prediction results and selected the model with the best prediction accuracy to estimate soil organic carbon stock. The mixed model approach achieved the best prediction accuracy in both soil organic carbon (RMSE 0.22%) and bulk density (RMSE 0.09 g cm-3) prediction. Other considered methods under- or overestimated higher and lower values of soil parameters. Thus, using these predictions we calculated the soil organic carbon stock of mineral arable soils and applied the model to a specific case of Tartu County in Estonia. Average estimated SOC stock of Tartu County is 54.8 t C ha-1 and total topsoil SOC stock 1.8 Tg in humus horizon.

  15. Can soil drying affect the sorption of pesticides in soil?

    NASA Astrophysics Data System (ADS)

    Chaplain, Véronique; Saint, Philippe; Mamy, Laure; Barriuso, Enrique

    2010-05-01

    The sorption of pesticides in soils mainly controls their further dispersion into the environment. Sorption is usually related to the physico-chemical properties of molecules but it also depends on the hydrophobic features of soils. However, the hydrophobicity of soils changes with wetting and drying cycles and this can be enhanced with climate change. The objective of this study was to measure by using controlled artificial soils the influence of the hydrophobic characteristic of soils on the retention of a model pesticide. Artificial soils consisted in silica particles covered by synthetic cationic polymers. Polymers were characterized by the molar ratio of monomers bearing an alkyl chain of 12C. Two polymers were used, with 20 and 80 % ratios, and the same degree of polymerization. In addition, porous and non-porous particles were used to study the accessibility notion and to measure the influence of diffusion on pesticide sorption kinetics. Lindane was chosen as model molecule because its adsorption is supposed mainly due to hydrophobic interactions. Results on polymers adsorption on silica showed that it was governed by electrostatic interactions, without any dependency of the hydrophobic ratio. Polymers covered the entire surface of porous particles. Kinetic measurements showed that lindane sorption was slowed in porous particles due to the molecular diffusion inside the microporosity. The adsorption of lindane on covered silica particles corresponded to a partition mechanism described by linear isotherms. The slope was determined by the hydrophobic ratio of polymers: the sorption of lindane was highest in the most hydrophobic artificial soil. As a result, modification in soil hydrophobicity, that can happen with climate change, might affect the sorption and the fate of pesticides. However additional experiments are needed to confirm these first results. Such artificial soils should be used as reference materials to compare the reactivity of pesticides, to

  16. Deep Soil: Quantifying and Modeling Subsurface Carbon

    NASA Astrophysics Data System (ADS)

    James, J. N.; Devine, W.; Harrison, R. B.

    2014-12-01

    Some soil carbon datasets that are spatially rich, such as the USDA Forest Service Inventory and Analysis National Program dataset, sample soil to only 20 cm (8 inches), despite evidence that substantial stores of soil C can be found deeper in the soil profile. The maximum extent of tree rooting is typically many meters deep and provides: direct exchange with the soil solution; redistribution of water from deep horizons toward the surface during times of drought; resources for active microbial communities in deep soil around root channels; and direct carbon inputs through exudates and root turnover. This study examined soil carbon to a depth of 2.5 meters across 22 soils in Pacific Northwest Douglas-fir forests. Excavations at 20 additional sites took place in summer 2014, greatly expanding the spatial coverage and extent of the data set. Forest floor and mineral soil bulk density samples were collected at depths of 0.1, 0.5, 1.0, 1.5, 2.0 and 2.5 meters. Pool estimates from systematic sampling depths shallower than 1.5 m yielded significantly smaller estimates than the total soil stock to 2.5 meters (P<0.01). On average, only 5% of soil C was found in the litter layer, 35% was found below 0.5 meter, and 21% was found below 1.0 meter. Due to the difficulty of excavating and measuring deep soil carbon, a series of nonlinear mixed effect models were fit to the data to predict deep soil carbon stocks given sampling to 1.0 meter. A model using an inverse polynomial function predicted soil carbon to 2.5 meters with -5.6% mean error. The largest errors occurred in Andisols with non-crystalline minerals, which can adsorb large quantities of carbon on mineral surfaces and preserve it from decomposition. An accurate spatial dataset of soil depth to bedrock would be extremely useful to constrain models of the vertical distribution of soil carbon. Efforts to represent carbon in spatial models would benefit from considering the vertical distribution of carbon in soil. Sampling

  17. Can subterranean cave systems affect soil CO2 fluxes?

    NASA Astrophysics Data System (ADS)

    Krajnc, Bor; Ferlan, Mitja; Ogrinc, Nives

    2015-04-01

    Main factors affecting soil CO2 fluxes in most ecosystems are soil temperature and soil moisture. Nevertheless occasionally high soil CO2 fluxes were observed at carst areas, which could result from ventilation of subterranean cavities (Ferlan et al., 2011). The aim of this work was to determine the influence of cave ventilation to soil CO2 fluxes. Research was done in a dead-end passage of Postojna cave (Pisani rov) and on the surface area above the passage (Velika Jeršanova dolina) in south-western Slovenia. Inside the cave we measured CO2 concentrations, its carbon (13C) stable isotope composition, 222Rn activity concentrations, temperatures and air pressure. At the surface we had chosen two sampling plots; test plot above the cave and control. At both plots we measured soil CO2 fluxes with automatic chambers, CO2 concentrations, temperatures and carbon stable isotope composition of soil air at three different depths (0.2 m, 0.5 m and 0.8 m) and different meteorological parameters such as: air temperature, air pressure, wind speed an precipitation. To detect the cave influence, we compared two surface CO2 flux measurements with air temperatures and changes of CO2 concentrations in the cave atmosphere. Our results on CO2 concentrations in the gallery of the cave indicated that the ventilation of this particular gallery also depends on outside air temperatures. Outside temperature increased and corresponded to higher CO2 concentrations, whereas at lower temperatures (T < 9 oC) cave started to ventilate and exhaled CO2 reach air through unknown fissures and cracks. At the control plot the soil CO2 fluxes were in a good correlation with soil temperatures (r = 0.789, p =0.01), where greater soil temperatures correspond to greater soil CO2 fluxes. Soil CO2 fluxes at the plot above the cave did not show statistically significant correlations with soil temperatures or soil moisture indicating that other factors possibly cave ventilation could influence it. References

  18. [Effects of climate change on forest soil organic carbon storage: a review].

    PubMed

    Zhou, Xiao-yu; Zhang, Cheng-yi; Guo, Guang-fen

    2010-07-01

    Forest soil organic carbon is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. Climate change would affect the photosynthesis of forest vegetation and the decomposition and transformation of forest soil organic carbon, and further, affect the storage and dynamics of organic carbon in forest soils. Temperature, precipitation, atmospheric CO2 concentration, and other climatic factors all have important influences on the forest soil organic carbon storage. Understanding the effects of climate change on this storage is helpful to the scientific management of forest carbon sink, and to the feasible options for climate change mitigation. This paper summarized the research progress about the distribution of organic carbon storage in forest soils, and the effects of elevated temperature, precipitation change, and elevated atmospheric CO2 concentration on this storage, with the further research subjects discussed.

  19. Deep Soil Carbon: The Insight into Global Carbon Estimation and Deforestation Impacts

    NASA Astrophysics Data System (ADS)

    Sangmanee, Podjanee; Dell, Bernard; Harper, Richard; Henry, David

    2015-04-01

    World carbon stocks have been dramatically changed by deforestation. The current estimation of carbon loss is based on allometric techniques assisted with satellite imagery and the assumption that, 20% of the total biomass carbon stock is below ground. However, the monitoring of soil carbon is limited to 0.3 m despite many soils being much deeper than this. For example, direct measurement of soil carbon demonstrated the occurrence of two to five times more carbon stored in deep soils of south Western Australia (SWA) compared to what would normally be reported, although the land had been deforested for 80 years. This raises important questions about the dynamics of this deeper carbon and whether it will contribute to global climate change. This paper reports the form and variation of carbon in soil at three adjacent areas at three different depths (0-1, 11-12 and 18-19 m). Techniques were developed to quantitatively and qualitatively determine small concentrations of carbon in deep soils. There were marked differences in carbon compounds with depth. Near the surface these were macromolecular organic compounds derived from lignin, polysaccharides, proteins, terpenes, whereas at depth they were low molecular weight compounds, 13-docosenamide, 13-docosenoate, xanthone, benzophenone. The deeper compounds are likely derived from the roots of the previous forest whereas the surface soils are affected by current land use. The in situ decomposition of deep roots was revealed by the pyridine compound. The variation of compounds and location of carbon in clay could imply the state of decomposition. The result demonstrated that carbon is contained in deep soils and should be considered in global carbon accounting, particularly given ongoing deforestation on deep soils.

  20. Pasture Management Strategies for Sequestering Soil Carbon - Final Report

    SciTech Connect

    Franzluebbers, Alan J.

    2006-03-15

    Pasturelands account for 51 of the 212 Mha of privately held grazing land in the USA. Tall fescue is the most important cool-season perennial forage for many beef cattle producers in the humid region of the USA. A fungal endophyte, Neotyphodium coenophialum, infects the majority of tall fescue stands with a mutualistic association. Ergot alkaloids produced by the endophyte have negative impacts on cattle performance. However, there are indications that endophyte infection of tall fescue is a necessary component of productive and persistent pasture ecology. The objectives of this research were to characterize and quantify changes in soil organic carbon and associated soil properties under tall fescue pastures with and without endophyte infection of grass. Pastures with high endophyte infection had greater concentration of soil organic carbon, but lower concentration of biologically active soil carbon than pastures with low endophyte infection. A controlled experiment suggested that endophyte-infected leaf tissue may directly inhibit the activity of soil microorganisms. Carbon forms of soil organic matter were negatively affected and nitrogen forms were positively affected by endophyte addition to soil. The chemical compounds in endophyte-infected tall fescue (ergot alkaloids) that are responsible for animal health disorders were found in soil, suggesting that these chemicals might be persistent in the environment. Future research is needed to determine whether ergot alkaloids or some other chemicals are responsible for increases in soil organic matter. Scientists will be able to use this information to better understand the ecological impacts of animals grazing tall fescue, and possibly to identify and cultivate other similar associations for improving soil organic matter storage. Another experiment suggested that both dry matter production and soil microbial activity could be affected by the endophyte. Sampling of the cumulative effects of 20 years of tall fescue

  1. Soil and soil organic carbon redistribution on the landscape

    NASA Astrophysics Data System (ADS)

    Ritchie, Jerry C.; McCarty, Gregory W.; Venteris, Erik R.; Kaspar, T. C.

    2007-09-01

    Patterns of soil organic carbon (SOC) vary widely across the landscape leading to large uncertainties in the SOC budget especially for agricultural landscapes where water, tillage and wind erosion redistributes soil and SOC across the landscape. It is often assumed that soil erosion results in a loss of SOC from the agricultural ecosystem but recent studies indicate that soil erosion and its subsequent redistribution within fields can stimulate carbon sequestration in agricultural ecosystems. This study investigates the relationship between SOC and soil redistribution patterns on agricultural landscapes. Soil redistribution (erosion and deposition) patterns were estimated in three tilled agricultural fields using the fallout 137Cesium technique. 137Cs and SOC concentrations of upland soils are significantly correlated in our study areas. Upland areas (eroding) have significantly less SOC than soils in deposition areas. SOC decreased as gradient slope increases and soils on concave slopes had higher SOC than soils on convex slopes. These data suggest that soil redistribution patterns and topographic patterns may be used to help understand SOC dynamics on the landscape. Different productivity and oxidation rates of SOC of eroded versus deposited soils also contribute to SOC spatial patterns. However, the strong significant relationships between soil redistribution and SOC concentrations in the upland soil suggest that they are moving along similar physical pathways in these systems. Our study also indicates that geomorphic position is important for understanding soil movement and redistribution patterns within a field or watershed. Such information can help develop or implement management systems to increase SOC in agricultural ecosystems.

  2. Biochar and biological carbon cycling in temperate soils

    NASA Astrophysics Data System (ADS)

    McCormack, S. A.; Vanbergen, A. J.; Bardgett, R. D.; Hopkins, D. W.; Ostle, N.

    2012-04-01

    Production of biochar, the recalcitrant residue formed by pyrolysis of plant matter, is suggested as a means of increasing storage of stable carbon (C) in the soil (1). Biochar has also been shown to act as a soil conditioner, increasing the productivity of certain crops by reducing nutrient leaching and improving soil water-holding capacity. However, the response of soil carbon pools to biochar addition is not yet well understood. Studies have shown that biochar has highly variable effects on microbial C cycling and thus on soil C storage (2,3,4). This discrepancy may be partially explained by the response of soil invertebrates, which occupy higher trophic levels and regulate microbial activity. This research aims to understand the role of soil invertebrates (i.e. Collembola and nematode worms) in biochar-mediated changes to soil C dynamics across a range of plant-soil communities. An open-air, pot-based mesocosm experiment was established in May, 2011 at the Centre for Ecology and Hydrology, Edinburgh. Three treatments were included in a fully-factorial design: biochar (presence [2 % w/w] or absence), soil type (arable sandy, arable sandy loam, grassland sandy loam), and vegetation type (Hordeum vulgare, Lolium perenne, unvegetated). Monitored parameters include: invertebrate and microbial species composition, soil C fluxes (CO2 and trace gas evolution, leachate C content, primary productivity and soil C content), and soil conditions (pH, moisture content and water-holding capacity). Preliminary results indicate that biochar-induced changes to soil invertebrate communities and processes are affected by pre-existing soil characteristics, and that soil texture in particular may be an important determinant of soil response to biochar addition. 1. Lehmann, 2007. A handful of carbon. Nature 447, 143-144. 2. Liang et al., 2010. Black carbon affects the cycling of non-black carbon in soil. Organic Geochemistry 41, 206-213. 3. Van Zwieten et al., 2010. Influence of

  3. Organic carbon in soil and the global carbon cycle

    SciTech Connect

    Post, W.M. III

    1991-12-31

    Soil organic matter is, simultaneously, the most inert carbon cycle component of terrestrial ecosystems, and the most dynamic component of terrestrail geologic systems placing it in a pivotal position in the biogeochemistry of carbon. The large size and potentially long residence time of the soil organic matter pool make it an important component of the global carbon cycle. Net terrestrial primary production of about 60 Pg C{center_dot}yr{sup {minus}1} is, over a several-year period of time, balanced by an equivalent flux of litter production and subsequent decomposition of detritus and soil organic matter. However, the input rates and decomposition rates for different terrestrial ecosystems vary over several orders of magnitude resulting in widely different amounts and turnover rates of soil organic matter. The amounts of carbon stored in soils and the rates of exchange of soil carbon with the atmosphere depend on many factors related to the chemistry, biology, and physics of soil and soil organic matter. This report discusses work on organic carbon in soil and aspects of the carbon cycle.

  4. Microbial carbon recycling: an underestimated process controlling soil carbon dynamics

    NASA Astrophysics Data System (ADS)

    Basler, A.; Dippold, M.; Helfrich, M.; Dyckmans, J.

    2015-07-01

    The mean residence times (MRT) of different compound classes of soil organic matter (SOM) do not match their inherent recalcitrance to decomposition. One reason for this is the stabilisation within the soil matrix, but recycling, i.e. the reuse of "old" organic material to form new biomass may also play a role as it uncouples the residence times of organic matter from the lifetime of discrete molecules in soil. We analysed soil sugar dynamics in a natural 30 years old labelling experiment after a~wheat-maize vegetation change to determine the extent of recycling and stabilisation in plant and microbial derived sugars: while plant derived sugars are only affected by stabilisation processes, microbial sugars may be subject to both, stabilisation and recycling. To disentangle the dynamics of soil sugars, we separated different density fractions (free particulate organic matter (fPOM), light occluded particulate organic matter (≤1.6 g cm-3; oPOM1.6), dense occluded particulate organic matter (≤2 g cm-3; oPOM2) and mineral-associated organic matter (>2 g cm-3; Mineral)) of a~silty loam under long term wheat and maize cultivation. The isotopic signature of sugars was measured by high pressure liquid chromatography coupled to isotope ratio mass spectrometry (HPLC/IRMS), after hydrolysis with 4 M Trifluoroacetic acid (TFA). While apparent mean residence times (MRT) of sugars were comparable to total organic carbon in the bulk soil and mineral fraction, the apparent MRT of sugars in the oPOM fractions were considerably lower than those of the total carbon of these fractions. This indicates that oPOM formation was fuelled by microbial activity feeding on new plant input. In the bulk soil, mean residence times of the mainly plant derived xylose (xyl) were significantly lower than those of mainly microbial derived sugars like galactose (gal), rhamnose (rha), fucose (fuc), indicating that recycling of organic matter is an important factor regulating organic matter dynamics

  5. Soil Carbon Sequestration: Perspectives from Australia

    NASA Astrophysics Data System (ADS)

    Sanderman, J.; Macdonald, L.; Baldock, J.

    2011-12-01

    Australia is currently embarking upon an unparalleled program to mitigate greenhouse gas emissions by engaging farmers and landholders to reduce emissions and store carbon in the soil. Currently, the magnitude of a potential soil carbon sink in Australian agricultural soils is largely unknown. The oft repeated rubric that adoption of recommended management practices (RMP) can raise soil carbon levels to 50-66% of pre-clearing levels has lead many to conclude that soil carbon sequestration can offset a large portion of Australia's current greenhouse gas emissions. Is there evidence in Australia (and abroad) to support these sequestration rates? In this presentation, we will present findings from both a retrospective analysis of existing field trial data and preliminary results from a national scale assessment of current soil carbon stocks under different agricultural management practices. A comprehensive review of field-trial data in Australia suggests that most management shifts within a given agricultural system (i.e. tillage, stubble management, fertilizer application, etc...) result in modest relative gains of 0.1 to 0.3 tC ha-1 yr-1. Importantly, whenever time series data was available, we found that the relative improvement in soil carbon stocks under RMPs was due to a reduction in the rate of loss of soil carbon and not in an actual increase in soil carbon. This finding has important repercussions for both how we think about soil carbon sequestration and how we can account for it in an accounting framework. Current research within the National Soil Carbon Research Program looks to assess the potential for agricultural management to influence soil carbon content and its distribution within various measurable carbon pools (particulate, humus, charcoal-like). For example, 200 randomly selected farms have been sampled in two major agricultural regions in South Australia based on a soil-type by rainfall stratification. In addition to measuring carbon content and

  6. Soil resources area affects herbivore health.

    PubMed

    Garner, James A; Ahmad, H Anwar; Dacus, Chad M

    2011-06-01

    Soil productivity effects nutritive quality of food plants, growth of humans and animals, and reproductive health of domestic animals. Game-range surveys sometimes poorly explained variations in wildlife populations, but classification of survey data by major soil types improved effectiveness. Our study evaluates possible health effects of lower condition and reproductive rates for wild populations of Odocoileus virginianus Zimmerman (white-tailed deer) in some physiographic regions of Mississippi. We analyzed condition and reproductive data for 2400 female deer from the Mississippi Department of Wildlife, Fisheries, and Parks herd health evaluations from 1991-1998. We evaluated age, body mass (Mass), kidney mass, kidney fat mass, number of corpora lutea (CL) and fetuses, as well as fetal ages. Region affected kidney fat index (KFI), which is a body condition index, and numbers of fetuses of adults (P≤0.001). Region affected numbers of CL of adults (P≤0.002). Mass and conception date (CD) were affected (P≤0.001) by region which interacted significantly with age for Mass (P≤0.001) and CD (P<0.04). Soil region appears to be a major factor influencing physical characteristics of female deer.

  7. Ecosystem carbon budgeting and soil carbon sequestration in reclaimed mine soil.

    PubMed

    Shrestha, Raj K; Lal, Rattan

    2006-08-01

    Global warming risks from emissions of green house gases (GHGs) by anthropogenic activities, and possible mitigation strategies of terrestrial carbon (C) sequestration have increased the need for the identification of ecosystems with high C sink capacity. Depleted soil organic C (SOC) pools of reclaimed mine soil (RMS) ecosystems can be restored through conversion to an appropriate land use and adoption of recommended management practices (RMPs). The objectives of this paper are to (1) synthesize available information on carbon dioxide (CO2) emissions from coal mining and combustion activities, (2) understand mechanisms of SOC sequestration and its protection, (3) identify factors affecting C sequestration potential in RMSs, (4) review available methods for the estimation of ecosystem C budget (ECB), and (5) identify knowledge gaps to enhance C sink capacity of RMS ecosystems and prioritize research issues. The drastic perturbations of soil by mining activities can accentuate CO2 emission through mineralization, erosion, leaching, changes in soil moisture and temperature regimes, and reduction in biomass returned to the soil. The reclamation of drastically disturbed soils leads to improvement in soil quality and development of soil pedogenic processes accruing the benefit of SOC sequestration and additional income from trading SOC credits. The SOC sequestration potential in RMS depends on amount of biomass production and return to soil, and mechanisms of C protection. The rate of SOC sequestration ranges from 0.1 to 3.1 Mg ha(-1) yr(-1) and 0.7 to 4 Mg ha(-1) yr(-1) in grass and forest RMS ecosystem, respectively. Proper land restoration alone could off-set 16 Tg CO2 in the U.S. annually. However, the factors affecting C sequestration and protection in RMS leading to increase in microbial activity, nutrient availability, soil aggregation, C build up, and soil profile development must be better understood in order to formulate guidelines for development of an

  8. Ecosystem carbon budgeting and soil carbon sequestration in reclaimed mine soil.

    PubMed

    Shrestha, Raj K; Lal, Rattan

    2006-08-01

    Global warming risks from emissions of green house gases (GHGs) by anthropogenic activities, and possible mitigation strategies of terrestrial carbon (C) sequestration have increased the need for the identification of ecosystems with high C sink capacity. Depleted soil organic C (SOC) pools of reclaimed mine soil (RMS) ecosystems can be restored through conversion to an appropriate land use and adoption of recommended management practices (RMPs). The objectives of this paper are to (1) synthesize available information on carbon dioxide (CO2) emissions from coal mining and combustion activities, (2) understand mechanisms of SOC sequestration and its protection, (3) identify factors affecting C sequestration potential in RMSs, (4) review available methods for the estimation of ecosystem C budget (ECB), and (5) identify knowledge gaps to enhance C sink capacity of RMS ecosystems and prioritize research issues. The drastic perturbations of soil by mining activities can accentuate CO2 emission through mineralization, erosion, leaching, changes in soil moisture and temperature regimes, and reduction in biomass returned to the soil. The reclamation of drastically disturbed soils leads to improvement in soil quality and development of soil pedogenic processes accruing the benefit of SOC sequestration and additional income from trading SOC credits. The SOC sequestration potential in RMS depends on amount of biomass production and return to soil, and mechanisms of C protection. The rate of SOC sequestration ranges from 0.1 to 3.1 Mg ha(-1) yr(-1) and 0.7 to 4 Mg ha(-1) yr(-1) in grass and forest RMS ecosystem, respectively. Proper land restoration alone could off-set 16 Tg CO2 in the U.S. annually. However, the factors affecting C sequestration and protection in RMS leading to increase in microbial activity, nutrient availability, soil aggregation, C build up, and soil profile development must be better understood in order to formulate guidelines for development of an

  9. [Organic carbon and carbon mineralization characteristics in nature forestry soil].

    PubMed

    Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui

    2014-03-01

    Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.

  10. Modeling forest development after fire disturbance: Climate, soil organic layer, and nitrogen jointly affect forest canopy species and long-term ecosystem carbon accumulation in the North American boreal forest

    NASA Astrophysics Data System (ADS)

    Trugman, A. T.; Fenton, N.; Bergeron, Y.; Xu, X.; Welp, L.; Medvigy, D.

    2015-12-01

    Soil organic layer dynamics strongly affect boreal forest development after fire. Field studies show that soil organic layer thickness exerts a species-specific control on propagule establishment in the North American boreal forest. On organic soils thicker than a few centimeters, all propagules are less able to recruit, but broadleaf trees recruit less effectively than needleleaf trees. In turn, forest growth controls organic layer accumulation through modulating litter input and litter quality. These dynamics have not been fully incorporated into models, but may be essential for accurate projections of ecosystem carbon storage. Here, we develop a data-constrained model for understanding boreal forest development after fire. We update the ED2 model to include new aspen and black spruce species-types, species-specific propagule survivorship dependent on soil organic layer depth, species-specific litter decay rates, dynamically accumulating moss and soil organic layers, and nitrogen fixation by cyanobacteria associated with moss. The model is validated against diverse observations ranging from monthly to centennial timescales and spanning a climate gradient in Alaska, central Canada, and Quebec. We then quantify differences in forest development that result from changes in organic layer accumulation, temperature, and nitrogen. We find that (1) the model accurately reproduces a range of observations throughout the North American boreal forest; (2) the presence of a thick organic layer results in decreased decomposition and decreased aboveground productivity, effects that can increase or decrease ecosystem carbon uptake depending on location-specific attributes; (3) with a mean warming of 4°C, some forests switch from undergoing succession to needleleaf forests to recruiting multiple cohorts of broadleaf trees, decreasing ecosystem accumulation by ~30% after 300 years; (4) the availability of nitrogen regulates successional dynamics such than broadleaf species are

  11. Coupling soil Carbon Fluxes, Soil Microbes, and High-Resolution Carbon Profiling in Permafrost Transitions

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Stegen, J.; Bond-Lamberty, B. P.; Tfaily, M. M.; Huang, M.; Liu, Y.

    2015-12-01

    Microbial communities play a central role in the functioning of natural ecosystems by heavily influencing biogeochemical cycles. Understanding how shifts in the environment are tied to shifts in biogeochemical rates via changes in microbial communities is particularly relevant in high latitude terrestrial systems underlain by permafrost due to vast carbon stocks currently stored within thawing permafrost. There is limited understanding, however, of the interplay among soil-atmosphere CO2 fluxes, microbial communities, and SOM chemical composition. To address this knowledge gap, we leverage the distinct spatial transitions in permafrost-affected soils at the Caribou Poker Creek Research Watershed, a 104 km2 boreal watershed ~50 km north of Fairbanks, AK. We integrate a variety of data to gain new knowledge of the factors that govern observed patterns in the rates of soil CO2 fluxes associated with permafrost to non-permafrost transition zones. We show that nonlinearities in fluxes are influenced by depth to permafrost, tree stand structure, and soil C composition. Further, using 16S sequencing methods we explore microbial community assembly processes and their connection to CO2 flux across spatial scales, and suggest a path to more mechanistically link microbes to large-scale biogeochemical cycles. Lastly, we use the Community Land Model (CLM) to compare Earth System Model predictions of soil C cycling with empirical measurements. Deviations between CLM predictions and field observations of CO2 flux and soil C stocks will provide insight for how the model may be improved through inclusion of additional biotic (e.g., microbial community composition) and abiotic (e.g., organic carbon composition) features, which will be critical to improve the predictive power of climate models in permafrost-affected regions.

  12. Transient Dissolved Organic Carbon Through Soils

    NASA Astrophysics Data System (ADS)

    Mei, Y.; Hornberger, G. M.; Kaplan, L. A.; Newbold, J. D.; Aufdenkampe, A. K.; Tsang, Y.

    2009-12-01

    Dissolved organic carbon (DOC) is an important constituent of soil solution that plays a role in many chemical and biological processes in soils; it is also an important energy source for bacteria in the soil ecosystem. Hydrology has a significant control on the transport and fate of dissolved organic carbon in the soil but mechanisms that affect said transport are not well understood. In particular, dynamic information on DOC transport through forest soils on short time scales (one or two precipitation event) is lacking at present. DOC is a very complex mix of organic compounds. A key to quantifying DOC dynamics is to establish useful approximations for behavior of this complex mixture. Biodegradable dissolved organic carbon (BDOC) is an important part of DOC. It is reported that between 12 and 44% of DOC released from the forest floor can be decomposed in solutions by indigenous microbes. In our study, we considered how DOC, BDOC, and flow interact in soil columns. In-situ soil cores with two different lengths were installed under a mixed deciduous canopy. The effects of artificial rain on DOC and BDOC transport were examined by dripping nano pure water amended with bromide on the top of soil cores and sampling the water collected at the bottom of the cores for DOC and BDOC. We used plug-flow biofilm reactors to measure the BDOC concentration. It is likely that reduced rates of decomposition in dry soils will cause microbial products of DOC to accumulate; hence DOC concentration should be high at the first flush of rain and decline as the event proceeds. The experimental results show the expected pattern, that is, the first samples we collected always had the highest DOC and BDOC concentrations. The concentrations tend to decline through the simulated precipitation event. Application of a second “storm” forty minutes after the cessation of the first application of water resulted in effluent DOC concentration increasing a small amount initially and then

  13. Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils

    SciTech Connect

    Waldrop, Mark P.; Wickland, Kimberly P.; White III, R.; Berhe, Asmeret A.; Harden, Jennifer W.; Romanovsky, Vladimir E.

    2010-09-01

    The fate of carbon (C) contained within permafrost in boreal forest environments is an important consideration for the current and future carbon cycle as soils warm in northern latitudes. Currently, little is known about the microbiology or chemistry of permafrost soils that may affect its decomposition once soils thaw. We tested the hypothesis that low microbial abundances and activities in permafrost soils limit decomposition rates compared with active layer soils. We examined active layer and permafrost soils near Fairbanks, AK, the Yukon River, and the Arctic Circle. Soils were incubated in the lab under aerobic and anaerobic conditions. Gas fluxes at -5 and 5ºC were measured to calculate temperature response quotients (Q₁₀). The Q₁₀ was lower in permafrost soils (average 2.7) compared with active layer soils (average 7.5). Soil nutrients, leachable dissolved organic C (DOC) quality and quantity, and nuclear magnetic resonance spectroscopy of the soils revealed that the organic matter within permafrost soils is as labile, or even more so, than surface soils. Microbial abundances (fungi, bacteria, and subgroups: methanogens and Basidiomycetes) and exoenzyme activities involved in decomposition were lower in permafrost soils compared with active layer soils, which, together with the chemical data, supports the reduced Q₁₀ values. CH₄ fluxes were correlated with methanogen abundance and the highest CH₄ production came from active layer soils. These results suggest that permafrost soils have high inherent decomposability, but low microbial abundances and activities reduce the temperature sensitivity of C fluxes. Despite these inherent limitations, however, respiration per unit soil C was higher in permafrost soils compared with active layer soils, suggesting that decomposition and heterotrophic respiration may contribute to a positive feedback to warming of this eco region.

  14. Molecular investigations into a globally important carbon pool: Permafrost-protected carbon in Alaskan soils

    USGS Publications Warehouse

    Waldrop, M.P.; Wickland, K.P.; White, Rickie; Berhe, A.A.; Harden, J.W.; Romanovsky, V.E.

    2010-01-01

    The fate of carbon (C) contained within permafrost in boreal forest environments is an important consideration for the current and future carbon cycle as soils warm in northern latitudes. Currently, little is known about the microbiology or chemistry of permafrost soils that may affect its decomposition once soils thaw. We tested the hypothesis that low microbial abundances and activities in permafrost soils limit decomposition rates compared with active layer soils. We examined active layer and permafrost soils near Fairbanks, AK, the Yukon River, and the Arctic Circle. Soils were incubated in the lab under aerobic and anaerobic conditions. Gas fluxes at -5 and 5 ??C were measured to calculate temperature response quotients (Q10). The Q10 was lower in permafrost soils (average 2.7) compared with active layer soils (average 7.5). Soil nutrients, leachable dissolved organic C (DOC) quality and quantity, and nuclear magnetic resonance spectroscopy of the soils revealed that the organic matter within permafrost soils is as labile, or even more so, than surface soils. Microbial abundances (fungi, bacteria, and subgroups: methanogens and Basidiomycetes) and exoenzyme activities involved in decomposition were lower in permafrost soils compared with active layer soils, which, together with the chemical data, supports the reduced Q10 values. CH4 fluxes were correlated with methanogen abundance and the highest CH4 production came from active layer soils. These results suggest that permafrost soils have high inherent decomposability, but low microbial abundances and activities reduce the temperature sensitivity of C fluxes. Despite these inherent limitations, however, respiration per unit soil C was higher in permafrost soils compared with active layer soils, suggesting that decomposition and heterotrophic respiration may contribute to a positive feedback to warming of this eco region. Published 2010. This article is a US Government work and is in the public domain in the

  15. Soil carbon changes for bioenergy crops.

    SciTech Connect

    Andress, D.

    2004-04-22

    Bioenergy crops, which displace fossil fuels when used to produce ethanol, biobased products, and/or electricity, have the potential to further reduce atmospheric carbon levels by building up soil carbon levels, especially when planted on lands where these levels have been reduced by intensive tillage. The purpose of this study is to improve the characterization of the soil carbon (C) sequestration for bioenergy crops (switchgrass, poplars, and willows) in the Greenhouse gases, Regulated Emissions, and Energy Use in Transportation (GREET) model (Wang 1999) by using the latest results reported in the literature and by Oak Ridge National Laboratory (ORNL). Because soil carbon sequestration for bioenergy crops can play a significant role in reducing greenhouse gas (GHG) emissions for cellulosic ethanol, it is important to periodically update the estimates of soil carbon sequestration from bioenergy crops as new and better data become available. We used the three-step process described below to conduct our study.

  16. [Research methods of carbon sequestration by soil aggregates: a review].

    PubMed

    Chen, Xiao-Xia; Liang, Ai-Zhen; Zhang, Xiao-Ping

    2012-07-01

    To increase soil organic carbon content is critical for maintaining soil fertility and agricultural sustainable development and for mitigating increased greenhouse gases and the effects of global climate change. Soil aggregates are the main components of soil, and have significant effects on soil physical and chemical properties. The physical protection of soil organic carbon by soil aggregates is the important mechanism of soil carbon sequestration. This paper reviewed the organic carbon sequestration by soil aggregates, and introduced the classic and current methods in studying the mechanisms of carbon sequestration by soil aggregates. The main problems and further research trends in this study field were also discussed.

  17. Factors and processes governing the C-14 content of carbonate in desert soils

    NASA Technical Reports Server (NTRS)

    Amundson, Ronald; Wang, Yang; Chadwick, Oliver; Trumbore, Susan; Mcfadden, Leslie; Mcdonald, Eric; Wells, Steven; Deniro, Michael

    1994-01-01

    A model is presented describing the factors and processes which determine the measured C-14 ages of soil calcium carbonate. Pedogenic carbonate forms in isotopic equilium with soil CO2. Carbon dioxide in soils is a mixture of CO2 derived from two biological sources: respiration by living plant roots and respiration of microorganisms decomposing soil humus. The relative proportion of these two CO2 sources can greatly affect the initial C-14 content of pedogenic carbonate: the greater the contribution of humus-derived CO2, the greater the initial C-14 age of the carbonate mineral. For any given mixture of CO2 sources, the steady-state (14)CO2 distribution vs. soil depth can be described by a production/diffusion model. As a soil ages, the C-14 age of soil humus increases, as does the steady-state C-14 age of soil CO2 and the initial C-14 age of any pedogenic carbonate which forms. The mean C-14 age of a complete pedogenic carbonate coating or nodule will underestimate the true age of the soil carbonate. This discrepancy increases the older a soil becomes. Partial removal of outer (and younger) carbonate coatings greatly improves the relationship between measured C-14 age and true age. Although the production/diffusion model qualitatively explains the C-14 age of pedogenic carbonate vs. soil depth in many soils, other factors, such as climate change, may contribute to the observed trends, particularily in soils older than the Holocene.

  18. Evaluating Soil Carbon Sequestration in Central Iowa

    NASA Astrophysics Data System (ADS)

    Doraiswamy, P. C.; Hunt, E. R.; McCarty, G. W.; Daughtry, C. S.; Izaurralde, C.

    2005-12-01

    The potential for reducing atmospheric carbon dioxide (CO2) concentration through landuse and management of agricultural systems is of great interest worldwide. Agricultural soils can be a source of CO2 when not properly managed but can also be a sink for sequestering CO2 through proper soil and crop management. The EPIC-CENTURY biogeochemical model was used to simulate the baseline level of soil carbon from soil survey data and project changes in soil organic carbon (SOC) under different tillage and crop management practices for corn and soybean crops. The study was conducted in central Iowa (50 km x 100 km) to simulate changes in soil carbon over the next 50 years. The simulations were conducted in two phases; initially a 25-year period (1971-1995) was simulated using conventional tillage practices since there was a transition in new management after 1995. In the second 25-year period (1996-2020), four different modeling scenarios were applied namely; conventional tillage, mulch tillage, no-tillage and no-tillage with a rye cover crop over the winter. The model simulation results showed potential gains in soil carbon in the top layers of the soil for conservation tillage. The simulations were made at a spatial resolution of 1.6 km x 1.6 km and mapped for the study area. There was a mean reduction in soil organic carbon of 0.095 T/ha per year over the 25-year period starting with 1996 for the conventional tillage practice. However, for management practices of mulch tillage, no tillage and no tillage with cover crop there was an increase in soil organic carbon of 0.12, 0.202 and 0.263 T/ha respectively over the same 25-year period. These results are in general similar to studies conducted in this region.

  19. Carbon and Nitrogen cycling in a permafrost soil profile

    NASA Astrophysics Data System (ADS)

    Salmon, V. G.; Schaedel, C.; Mack, M. C.; Schuur, E.

    2015-12-01

    In high latitude ecosystems, active layer soils thaw during the growing season and are situated on top of perennially frozen soils (permafrost). Permafrost affected soil profiles currently store a globally important pool of carbon (1330-1580 PgC) due to cold temperatures constraining the decomposition of soil organic matter. With global warming, however, seasonal thaw is expected to increase in speed and extend to deeper portions of the soil profile. As permafrost soils become part of the active layer, carbon (C) and nitrogen (N) previously stored in soil organic matter will be released via decomposition. In this experiment, the dynamic relationship between N mineralization, C mineralization, and C quality was investigated in moist acidic tundra soils. Soils from the active layer surface down through the permafrost (80cm) were incubated aerobically at 15°C for 225 days. Carbon dioxide fluxes were fit with a two pool exponential decay model so that the size and turnover of both the quickly decomposing C pool (Cfast) and the slowly decomposing C pool (Cslow) could be assessed. Soil extractions with 2M KCl were performed at six time points throughout the incubation so that dissolve inorganic N (DIN) and dissolved organic C (DOC) could be measured. DIN was readily extractable from deep permafrost soils throughout the incubation (0.05 mgN/g dry soil) but in active layer soils DIN was only produced after Cfast had been depleted. In contrast, active layer soils had high levels of DOC (0.65 mgC/g dry soil) throughout the incubation but in permafrost soils, DOC became depleted as Cfast reduced in size. The strong contrasts between the C and N cycling in active layer soils versus permafrost soils suggest that the deeper thaw will dramatically increase N availability in these soil profiles. Plants and soil microbes in the tundra are currently N limited so our findings imply that deepening thaw will 1) provide N necessary for increased plant growth and 2) stimulate losses of

  20. Different tree species affect soil respiration spatial distribution in a subtropical forest of southern Taiwan

    NASA Astrophysics Data System (ADS)

    Chiang, Po-Neng; Yu, Jui-Chu; Wang, Ya-nan; Lai, Yen-Jen

    2014-05-01

    Global forests contain 69% of total carbon stored in forest soil and litter. But the carbon storage ability and release rate of warming gases of forest soil also affect global climate change. Soil carbon cycling processes are paid much attention by ecological scientists and policy makers because of the possibility of carbon being stored in soil via land use management. Soil respiration contributed large part of terrestrial carbon flux, but the relationship of soil respiration and climate change was still obscurity. Most of soil respiration researches focus on template and tropical area, little was known that in subtropical area. Afforestation is one of solutions to mitigate CO2 increase and to sequestrate CO2 in tree and soil. Therefore, the objective of this study is to clarify the relationship of tree species and soil respiration distribution in subtropical broad-leaves plantation in southern Taiwan. The research site located on southern Taiwan was sugarcane farm before 2002. The sugarcane was removed and fourteen broadleaved tree species were planted in 2002-2005. Sixteen plots (250m*250m) were set on 1 km2 area, each plot contained 4 subplots (170m2). The forest biomass (i.e. tree height, DBH) understory biomass, litter, and soil C were measured and analyzed at 2011 to 2012. Soil respiration measurement was sampled in each subplot in each month. The soil belongs to Entisol with over 60% of sandstone. The soil pH is 5.5 with low base cations because of high sand percentage. Soil carbon storage showed significantly negative relationship with soil bulk density (p<0.001) in research site. The differences of distribution of live tree C pool among 16 plots were affected by growth characteristic of tree species. Data showed that the accumulation amount of litterfall was highest in December to February and lowest in June. Different tree species planted in 16 plots, resulting in high spatial variation of litterfall amount. It also affected total amount of litterfall

  1. Uncertainty in soil carbon accounting due to unrecognized soil erosion.

    PubMed

    Sanderman, Jonathan; Chappell, Adrian

    2013-01-01

    The movement of soil organic carbon (SOC) during erosion and deposition events represents a major perturbation to the terrestrial carbon cycle. Despite the recognized impact soil redistribution can have on the carbon cycle, few major carbon accounting models currently allow for soil mass flux. Here, we modified a commonly used SOC model to include a soil redistribution term and then applied it to scenarios which explore the implications of unrecognized erosion and deposition for SOC accounting. We show that models that assume a static landscape may be calibrated incorrectly as erosion of SOC is hidden within the decay constants. This implicit inclusion of erosion then limits the predictive capacity of these models when applied to sites with different soil redistribution histories. Decay constants were found to be 15-50% slower when an erosion rate of 15 t soil ha(-1)  yr(-1) was explicitly included in the SOC model calibration. Static models cannot account for SOC change resulting from agricultural management practices focused on reducing erosion rates. Without accounting for soil redistribution, a soil sampling scheme which uses a fixed depth to support model development can create large errors in actual and relative changes in SOC stocks. When modest levels of erosion were ignored, the combined uncertainty in carbon sequestration rates was 0.3-1.0 t CO2  ha(-1)  yr(-1) . This range is similar to expected sequestration rates for many management options aimed at increasing SOC levels. It is evident from these analyses that explicit recognition of soil redistribution is critical to the success of a carbon monitoring or trading scheme which seeks to credit agricultural activities.

  2. NON-DESTRUCTIVE SOIL CARBON ANALYZER.

    SciTech Connect

    Wielopolski, Lucian; Hendrey, G.; Orion, I.; Prior, S.; Rogers, H.; Runion, B.; Torbert, A.

    2004-02-01

    This report describes the feasibility, calibration, and safety considerations of a non-destructive, in situ, quantitative, volumetric soil carbon analytical method based on inelastic neutron scattering (INS). The method can quantify values as low as 0.018 gC/cc, or about 1.2% carbon by weight with high precision under the instrument's configuration and operating conditions reported here. INS is safe and easy to use, residual soil activation declines to background values in under an hour, and no radiological requirements are needed for transporting the instrument. The labor required to obtain soil-carbon data is about 10-fold less than with other methods, and the instrument offers a nearly instantaneous rate of output of carbon-content values. Furthermore, it has the potential to quantify other elements, particularly nitrogen. New instrumentation was developed in response to a research solicitation from the U.S. Department of Energy (DOE LAB 00-09 Carbon Sequestration Research Program) supporting the Terrestrial Carbon Processes (TCP) program of the Office of Science, Biological and Environmental Research (BER). The solicitation called for developing and demonstrating novel techniques for quantitatively measuring changes in soil carbon. The report includes raw data and analyses of a set of proof-of-concept, double-blind studies to evaluate the INS approach in the first phase of developing the instrument. Managing soils so that they sequester massive amounts of carbon was suggested as a means to mitigate the atmospheric buildup of anthropogenic CO{sub 2}. Quantifying changes in the soils' carbon stocks will be essential to evaluating such schemes and documenting their performance. Current methods for quantifying carbon in soil by excavation and core sampling are invasive, slow, labor-intensive and locally destroy the system being observed. Newly emerging technologies, such as Laser Induced Breakdown Spectroscopy and Near-Infrared Spectroscopy, offer soil-carbon

  3. Carbon mineralization in surface and subsurface soils in a subtropical mixed forest in central China

    NASA Astrophysics Data System (ADS)

    Liu, F.; Tian, Q.

    2014-12-01

    About a half of soil carbon is stored in subsurface soil horizons, their dynamics have the potential to significantly affect carbon balancing in terrestrial ecosystems. However, the main factors regulating subsurface soil carbon mineralization are poorly understood. As affected by mountain humid monsoon, the subtropical mountains in central China has an annual precipitation of about 2000 mm, which causes strong leaching of ions and nutrition. The objectives of this study were to monitor subsurface soil carbon mineralization and to determine if it is affected by nutrient limitation. We collected soil samples (up to 1 m deep) at three locations in a small watershed with three soil layers (0-10 cm, 10-30 cm, below 30 cm). For the three layers, soil organic carbon (SOC) ranged from 35.8 to 94.4 mg g-1, total nitrogen ranged from 3.51 to 8.03 mg g-1, microbial biomass carbon (MBC) ranged from 170.6 to 718.4 μg g-1 soil. We measured carbon mineralization with the addition of N (100 μg N/g soil), P (50 μg P/g soil), and liable carbon (glucose labeled by 5 atom% 13C, at five levels: control, 10% MBC, 50% MBC, 100% MBC, 200% MBC). The addition of N and P had negligible effects on CO2 production in surface soil layers; in the deepest soil layer, the addition of N and P decreased CO2 production from 4.32 to 3.20 μg C g-1 soil carbon h-1. Glucose addition stimulated both surface and subsurface microbial mineralization of SOC, causing priming effects. With the increase of glucose addition rate from 10% to 200% MBC, the primed mineralization rate increased from 0.19 to 3.20 μg C g-1 soil carbon h-1 (fifth day of glucose addition). The magnitude of priming effect increased from 28% to 120% as soil layers go deep compare to the basal CO2 production (fifth day of 200% MBC glucose addition, basal CO2 production rate for the surface and the deepest soil was 11.17 and 2.88 μg C g-1 soil carbon h-1). These results suggested that the mineralization of subsurface carbon is more

  4. Soil carbon sequestration: Quantifying this ecosystem service

    EPA Science Inventory

    Soils have a crucial role in supplying many goods and services that society depends upon on a daily basis. These include food and fiber production, water cleansing and supply, nutrient cycling, waste isolation and degradation. Soils also provide a significant amount of carbon s...

  5. The influence of soil crusting on carbon dioxide emissions from soil

    NASA Astrophysics Data System (ADS)

    Armstrong, Elizabeth; Quinton, John; Kuhn, Nikolaus

    2010-05-01

    Global soils contain an estimated 1500GT of carbon, over twice that present in the atmosphere, however the role of soil in the global carbon cycle is highly debated. The influence of soil erosion and deposition in the global carbon cycle has been primarily investigated through the incubation of small volumes of loose sediment. The physical properties of this sediment are likely to differ to those in the environment where in situ soil forms part of an intact unit which can have a cohesive high density crust at the surface. The primary aim of this investigation was to measure carbon dioxide emissions from intact crusted soil samples. Rainfall simulation was used to create areas of soil crusting under high and low rainfall intensity in areas of erosion and deposition. The carbon dioxide emissions were measured over a 58 day period using an Infra Red Gas Analyser (IRGA). Physical properties of the crusts (total C content, C:N ratio, texture, density, degree of aggregation) were also determined. It was found that CO2 emissions were not related to C content alone, with strong correlation found to density (rs - 0.70) and aggregation (rs - 0.67), and texture also being influential although to a lesser extent. It is the effect that these properties have on OM bioavailability and gas diffusivity which affects the emissions of carbon dioxide. The physical properties of a crust are influenced by rainfall intensity, a conceptual diagram explaining this process has been developed. Given the strong correlation that has been found between carbon dioxide emissions and the physical properties of soils to base estimates of emissions on studies of loose samples maybe flawed. Furthermore given that rainfall intensity is predicted to change with global warming so to may soil crusting and emissions of carbon dioxide.

  6. Environmental Controls of Soil Organic Carbon in Soils Across Amazonia

    NASA Astrophysics Data System (ADS)

    Quesada, Carlos Alberto; Paz, Claudia; Phillips, Oliver; Nonato Araujo Filho, Raimundo; Lloyd, Jon

    2015-04-01

    Amazonian forests store and cycle a significant amount of carbon on its soils and vegetation. Yet, Amazonian forests are now subject to strong environmental pressure from both land use and climate change. Some of the more dramatic model projections for the future of the Amazon predict a major change in precipitation followed by savanization of most currently forested areas, resulting in major carbon losses to the atmosphere. However, how soil carbon stocks will respond to climatic and land use changes depend largely on how soil carbon is stabilized. Amazonian soils are highly diverse, being very variable in their weathering levels and chemical and physical properties, and thus it is important to consider how the different soils of the Basin stabilize and store soil organic carbon (SOC). The wide variation in soil weathering levels present in Amazonia, suggests that soil groups with contrasting pedogenetic development should differ in their predominant mechanism of SOC stabilization. In this study we investigated the edaphic, mineralogical and climatic controls of SOC concentration in 147 pristine forest soils across nine different countries in Amazonia, encompassing 14 different WRB soil groups. Soil samples were collected in 1 ha permanent plots used for forest dynamics studies as part of the RAINFOR project. Only 0-30 cm deep averages are reported here. Soil samples were analyzed for carbon and nitrogen and for their chemical (exchangeable bases, phosphorus, pH) and physical properties, (particle size, bulk density) and mineralogy through standard selective dissolution techniques (Fe and Al oxides) and by semi-quantitative X-Ray diffraction. In Addition, selected soils from each soil group had SOC fractionated by physical and chemical techniques. Our results indicate that different stabilization mechanisms are responsible for SOC stabilization in Amazonian soils with contrasting pedogenetic level. Ferralsols and Acrisols were found to have uniform mineralogy

  7. Soil organic matter transformation in cryoturbated horizons of permafrost affected soils

    NASA Astrophysics Data System (ADS)

    Capek, Petr; Diakova, Katerina; Dickopp, Jan-Erik; Barta, Jiri; Santruckova, Hana; Wild, Birgit; Schnecker, Joerg; Guggenberg, Georg; Gentsch, Norman; Hugelius, Gustaf; Kuhry, Peter; Lashchinsky, Nikolaj; Gittel, Antje; Schleper, Christa; Mikutta, Robert; Palmtag, Juri; Shibistova, Olga; Urich, Tim; Zimov, Sergey; Richter, Andreas

    2014-05-01

    Cryoturbated soil horizons are special feature of permafrost affected soils. These soils are known to store great amount of organic carbon and cryoturbation undoubtedly contribute to it to large extent. Despite this fact there is almost no information about soil organic matter (SOM) transformation in cryoturbated horizons. Therefore we carried out long term incubation experiment in which we inspect SOM transformation in cryoturbated as well as in organic and mineral soil horizons under different temperature and redox regimes as potential drivers. We found out that lower SOM transformation in cryoturbated horizons compared to organic horizons was mainly limited by the amount of microbial biomass, which is extremely low in absolute numbers or expressed to SOM concentration. The biochemical transformation ensured by extracellular enzymes is relatively high leading to high concentrations of dissolved organic carbon in cryoturbated horizons. Nevertheless the final step of SOM transformation leading to C mineralization to CO2 or CH4 seems to be restricted by low microbial biomass. Critical step of biochemical transformation of complex SOM is dominated by phenoloxidases, which break down complex organic compounds to simple ones. Their oxygen consumption greatly overwhelms oxygen consumption of the whole microbial community. However the phenoloxidase activity shows strong temperature response with optimum at 13.7° C. Therefore we suggest that apparent SOM stability in cryoturbated horizons, which is expressed in old C14 dated age, is caused by low amount of microbial biomass and restricted diffusion of oxygen to extracellular enzymes in field.

  8. Climate-change effects on soils: Accelerated weathering, soil carbon and elemental cycling

    SciTech Connect

    Qafoku, Nikolla

    2015-04-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (≥400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2, and create organic carbon (C) that is either reprocessed to CO2 or stored in soils are the subject of active current investigations, with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries, identifies key research needs, and highlights opportunities offered by the climate-change effects on soils.

  9. CQESTR Simulations of soil organic carbon dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A processed-based carbon (C) model, CQESTR (sequester), was used to predict soil organic carbon (SOC) dynamics and examine the effect of agricultural management practices on SOC accretion in three diverse regions of the USA. The three regions chosen had long-term experiments (LTEs) ranging from 23 t...

  10. Introducing a decomposition rate modifier in the Rothamsted Carbon Model to predict soil organic carbon stocks in saline soils.

    PubMed

    Setia, Raj; Smith, Pete; Marschner, Petra; Baldock, Jeff; Chittleborough, David; Smith, Jo

    2011-08-01

    Soil organic carbon (SOC) models such as the Rothamsted Carbon Model (RothC) have been used to estimate SOC dynamics in soils over different time scales but, until recently, their ability to accurately predict SOC stocks/carbon dioxide (CO(2)) emissions from salt-affected soils has not been assessed. Given the large extent of salt-affected soils (19% of the 20.8 billion ha of arable land on Earth), this may lead to miss-estimation of CO(2) release. Using soils from two salt-affected regions (one in Punjab, India and one in South Australia), an incubation study was carried out measuring CO(2) release over 120 days. The soils varied both in salinity (measured as electrical conductivity (EC) and calculated as osmotic potential using EC and water content) and sodicity (measured as sodium adsorption ratio, SAR). For soils from both regions, the osmotic potential had a significant positive relationship with CO(2)-C release, but no significant relationship was found between SAR and CO(2)-C release. The monthly cumulative CO(2)-C was simulated using RothC. RothC was modified to take into account reductions in plant inputs due to salinity. A subset of non-salt-affected soils was used to derive an equation for a "lab-effect" modifier to account for changes in decomposition under lab conditions and this modifier was significantly related with pH. Using a subset of salt-affected soils, a decomposition rate modifier (as a function of osmotic potential) was developed to match measured and modelled CO(2)-C release after correcting for the lab effect. Using this decomposition rate modifier, we found an agreement (R(2) = 0.92) between modelled and independently measured data for a set of soils from the incubation experiment. RothC, modified by including reduced plant inputs due to salinity and the salinity decomposition rate modifier, was used to predict SOC stocks of soils in a field in South Australia. The predictions clearly showed that SOC stocks are reduced in saline soils

  11. Introducing a decomposition rate modifier in the Rothamsted Carbon Model to predict soil organic carbon stocks in saline soils.

    PubMed

    Setia, Raj; Smith, Pete; Marschner, Petra; Baldock, Jeff; Chittleborough, David; Smith, Jo

    2011-08-01

    Soil organic carbon (SOC) models such as the Rothamsted Carbon Model (RothC) have been used to estimate SOC dynamics in soils over different time scales but, until recently, their ability to accurately predict SOC stocks/carbon dioxide (CO(2)) emissions from salt-affected soils has not been assessed. Given the large extent of salt-affected soils (19% of the 20.8 billion ha of arable land on Earth), this may lead to miss-estimation of CO(2) release. Using soils from two salt-affected regions (one in Punjab, India and one in South Australia), an incubation study was carried out measuring CO(2) release over 120 days. The soils varied both in salinity (measured as electrical conductivity (EC) and calculated as osmotic potential using EC and water content) and sodicity (measured as sodium adsorption ratio, SAR). For soils from both regions, the osmotic potential had a significant positive relationship with CO(2)-C release, but no significant relationship was found between SAR and CO(2)-C release. The monthly cumulative CO(2)-C was simulated using RothC. RothC was modified to take into account reductions in plant inputs due to salinity. A subset of non-salt-affected soils was used to derive an equation for a "lab-effect" modifier to account for changes in decomposition under lab conditions and this modifier was significantly related with pH. Using a subset of salt-affected soils, a decomposition rate modifier (as a function of osmotic potential) was developed to match measured and modelled CO(2)-C release after correcting for the lab effect. Using this decomposition rate modifier, we found an agreement (R(2) = 0.92) between modelled and independently measured data for a set of soils from the incubation experiment. RothC, modified by including reduced plant inputs due to salinity and the salinity decomposition rate modifier, was used to predict SOC stocks of soils in a field in South Australia. The predictions clearly showed that SOC stocks are reduced in saline soils

  12. Exploring the Role of Plant Genetics to Enhance Soil Carbon Sequestration in Hybrid Poplar Plantations

    NASA Astrophysics Data System (ADS)

    Wullschleger, S. D.; Garten, C. T.; Classen, A. T.

    2008-12-01

    Atmospheric CO2 concentrations have increased in recent decades and are projected to increase even further during the coming century. These projections have prompted scientists and policy-makers to consider how plants and soils can be used to stabilize CO2 concentrations. Although storing carbon in terrestrial ecosystems represents an attractive near-term option for mitigating rising atmospheric CO2 concentrations, enhancing the sequestration potential of managed systems will require advancements in understanding the fundamental mechanisms that control rates of carbon transfer and turnover in plants and soils. To address this challenge, a mathematical model was constructed to evaluate how changes in particular plant traits and management practices could affect soil carbon storage beneath hybrid poplar (Populus) plantations. The model was built from four sub-models that describe aboveground biomass, root biomass, soil carbon dynamics, and soil nitrogen transformations for trees growing throughout a user-defined rotation. Simulations could be run over one or multiple rotations. A sensitivity analysis of the model indicated changes in soil carbon storage were affected by variables that could be linked to hybrid poplar traits like rates of aboveground production, partitioning of carbon to coarse and fine roots, and rates of root decomposition. A higher ratio of belowground to aboveground production was especially important and correlated directly with increased soil carbon storage. Faster decomposition rates for coarse and fine dead roots resulted in a greater loss of carbon to the atmosphere as CO2 and less residual organic carbon for transfer to the fast soil carbon pool. Hence, changes in root chemistry that prolonged dead root decomposition rates, a trait that is under potential genetic control, were predicted to increase soil carbon storage via higher soil carbon inputs. Nitrogen limitation of both aboveground biomass production and soil carbon sequestration was

  13. ESTABLISHING A SOIL CARBON BASELINE FOR CARBON ACCOUNTING THE FORESTED SOILS OF THE UNITED STATES

    EPA Science Inventory

    Soils are an important global reservoir of organic carbon (C). It has been estimated that at 1500 Pg world soils hold approximately three times the amount of C held in vegetation and two times that in the atmosphere. Soils provide a relatively stable reservoir for C. With the int...

  14. Impact of rapeseed cropping on the soil carbon balance

    NASA Astrophysics Data System (ADS)

    Moffat, Antje Maria; Herbst, Mathias; Huth, Vytas; Andres, Monique; Augustin, Jürgen

    2015-04-01

    Winter oilseed rape is the dominant biofuel crop in the young moraine landscape in Northern Germany. Since the cultivation of biofuel crops requires sustainability compared to fossil fuels by law, detailed knowledge about their green house gas (GHG) balance is necessary. The soil carbon balance is one of the key contributors to the total GHG balance and also very important for the assessment of soil fertility. However, the knowledge about the impact of different management practices on the soil carbon balance is very limited up to now. Therefore, we investigated the carbon fluxes of winter oilseed rape at field plots near Dedelow/Uckermark in NE Germany with different treatments of fertilization (mineral versus organic) and tillage (no-till and mulch-till versus ploughing). The dynamics of the carbon fluxes are mainly driven by the current climatic conditions but the overall response depends strongly on the ecosystem state (with its physiological and microbiological properties) which is affected by management. To get the full carbon flux dynamics but also the impact of the different management practices, two different approaches were used: The eddy covariance technique to get continuous fluxes throughout the year and the manual chamber technique to detect flux differences between specific management practices. The manual chamber measurements were conducted four-weekly as all-day campaigns using a flow-through non-steady-state closed chamber system. The fluxes in-between campaigns were gap-filled based on functional relationships with soil and air temperature (for the ecosystem respiration) and photosynthetic active radiation (for the gross primary production). All results presented refer to the cropping season 2012-2013. The combination of the two measurement techniques allows the evaluation of chamber fluxes including an independent estimate of the error on the overall balances. Despite the considerable errors, there are significant differences in the soil carbon

  15. Effects of Tillage Practices on Soil Organic Carbon and Soil Respiration

    NASA Astrophysics Data System (ADS)

    Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian

    2016-04-01

    Soil tillage system and its intensity modify by direct and indirect action soil temperature, moisture, bulk density, porosity, penetration resistance and soil structural condition. Minimum tillage and no-tillage application reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first years of application. The degree of compaction is directly related to soil type and its state of degradation. All this physicochemical changes affect soil biology and soil respiration. Soil respiration leads to CO2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil respiration is one measure of biological activity and decomposition. Soil capacity to produce CO2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant and fertilizer. Our research follows the effects of the three tillage systems: conventional system, minimum tillage and no-tillage on soil respiration and finally on soil organic carbon on rotation soybean - wheat - maize, obtained on an Argic Faeoziom from the Somes Plateau, Romania. To quantify the change in soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest). Soil monitoring system of CO2 and O2 included gradient method, made by using a new generation of sensors capable of measuring CO2 concentration in-situ and quasi-instantaneous in gaseous phase. At surface soil respiration is made by using ACE Automated Soil CO2 Exchange System. These areas were was our research presents a medium multi annual temperature of 8.20C medium of multi annual rain drowns: 613 mm. The experimental variants chosen were: i). Conventional system: reversible plough (22-25 cm) + rotary grape (8-10 cm); ii). Minimum tillage system: paraplow (18-22 cm) + rotary grape (8-10 cm); iii). No-tillage. The experimental design was a split-plot design with three

  16. Deep soil carbon dynamics are driven more by soil type than by climate: a worldwide meta-analysis of radiocarbon profiles.

    PubMed

    Mathieu, Jordane A; Hatté, Christine; Balesdent, Jérôme; Parent, Éric

    2015-11-01

    The response of soil carbon dynamics to climate and land-use change will affect both the future climate and the quality of ecosystems. Deep soil carbon (>20 cm) is the primary component of the soil carbon pool, but the dynamics of deep soil carbon remain poorly understood. Therefore, radiocarbon activity (Δ14C), which is a function of the age of carbon, may help to understand the rates of soil carbon biodegradation and stabilization. We analyzed the published 14C contents in 122 profiles of mineral soil that were well distributed in most of the large world biomes, except for the boreal zone. With a multivariate extension of a linear mixed-effects model whose inference was based on the parallel combination of two algorithms, the expectation-maximization (EM) and the Metropolis-Hasting algorithms, we expressed soil Δ14C profiles as a four-parameter function of depth. The four-parameter model produced insightful predictions of soil Δ14C as dependent on depth, soil type, climate, vegetation, land-use and date of sampling (R2=0.68). Further analysis with the model showed that the age of topsoil carbon was primarily affected by climate and cultivation. By contrast, the age of deep soil carbon was affected more by soil taxa than by climate and thus illustrated the strong dependence of soil carbon dynamics on other pedologic traits such as clay content and mineralogy.

  17. Intercropping enhances soil carbon and nitrogen.

    PubMed

    Cong, Wen-Feng; Hoffland, Ellis; Li, Long; Six, Johan; Sun, Jian-Hao; Bao, Xing-Guo; Zhang, Fu-Suo; Van Der Werf, Wopke

    2015-04-01

    Intercropping, the simultaneous cultivation of multiple crop species in a single field, increases aboveground productivity due to species complementarity. We hypothesized that intercrops may have greater belowground productivity than sole crops, and sequester more soil carbon over time due to greater input of root litter. Here, we demonstrate a divergence in soil organic carbon (C) and nitrogen (N) content over 7 years in a field experiment that compared rotational strip intercrop systems and ordinary crop rotations. Soil organic C content in the top 20 cm was 4% ± 1% greater in intercrops than in sole crops, indicating a difference in C sequestration rate between intercrop and sole crop systems of 184 ± 86 kg C ha(-1) yr(-1). Soil organic N content in the top 20 cm was 11% ± 1% greater in intercrops than in sole crops, indicating a difference in N sequestration rate between intercrop and sole crop systems of 45 ± 10 kg N ha(-1) yr(-1). Total root biomass in intercrops was on average 23% greater than the average root biomass in sole crops, providing a possible mechanism for the observed divergence in soil C sequestration between sole crop and intercrop systems. A lowering of the soil δ(15) N signature suggested that increased biological N fixation and/or reduced gaseous N losses contributed to the increases in soil N in intercrop rotations with faba bean. Increases in soil N in wheat/maize intercrop pointed to contributions from a broader suite of mechanisms for N retention, e.g., complementary N uptake strategies of the intercropped plant species. Our results indicate that soil C sequestration potential of strip intercropping is similar in magnitude to that of currently recommended management practises to conserve organic matter in soil. Intercropping can contribute to multiple agroecosystem services by increased yield, better soil quality and soil C sequestration.

  18. Intercropping enhances soil carbon and nitrogen.

    PubMed

    Cong, Wen-Feng; Hoffland, Ellis; Li, Long; Six, Johan; Sun, Jian-Hao; Bao, Xing-Guo; Zhang, Fu-Suo; Van Der Werf, Wopke

    2015-04-01

    Intercropping, the simultaneous cultivation of multiple crop species in a single field, increases aboveground productivity due to species complementarity. We hypothesized that intercrops may have greater belowground productivity than sole crops, and sequester more soil carbon over time due to greater input of root litter. Here, we demonstrate a divergence in soil organic carbon (C) and nitrogen (N) content over 7 years in a field experiment that compared rotational strip intercrop systems and ordinary crop rotations. Soil organic C content in the top 20 cm was 4% ± 1% greater in intercrops than in sole crops, indicating a difference in C sequestration rate between intercrop and sole crop systems of 184 ± 86 kg C ha(-1) yr(-1). Soil organic N content in the top 20 cm was 11% ± 1% greater in intercrops than in sole crops, indicating a difference in N sequestration rate between intercrop and sole crop systems of 45 ± 10 kg N ha(-1) yr(-1). Total root biomass in intercrops was on average 23% greater than the average root biomass in sole crops, providing a possible mechanism for the observed divergence in soil C sequestration between sole crop and intercrop systems. A lowering of the soil δ(15) N signature suggested that increased biological N fixation and/or reduced gaseous N losses contributed to the increases in soil N in intercrop rotations with faba bean. Increases in soil N in wheat/maize intercrop pointed to contributions from a broader suite of mechanisms for N retention, e.g., complementary N uptake strategies of the intercropped plant species. Our results indicate that soil C sequestration potential of strip intercropping is similar in magnitude to that of currently recommended management practises to conserve organic matter in soil. Intercropping can contribute to multiple agroecosystem services by increased yield, better soil quality and soil C sequestration. PMID:25216023

  19. Variable carbon contents of lunar soil 74220

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Moore, C. B.

    1973-01-01

    Total carbon, sulfur, and inorganic gas release studies have been carried out on an additional split of orange soil 74220. The total carbon content was found to be 4 plus or minus 3 ppm C for this sample as compared to an earlier reported value of 100 plus or minus 10 ppm C. Gas release studies on the two splits of 74220 indicate that the carbon may be present as a surface condensate on the sample showing the higher carbon content. The 'surface condensate' evolves CO2 upon heating to temperatures below 400 C.

  20. Dynamics of maize carbon contribution to soil organic carbon in association with soil type and fertility level.

    PubMed

    Pei, Jiubo; Li, Hui; Li, Shuangyi; An, Tingting; Farmer, John; Fu, Shifeng; Wang, Jingkuan

    2015-01-01

    Soil type and fertility level influence straw carbon dynamics in the agroecosystems. However, there is a limited understanding of the dynamic processes of straw-derived and soil-derived carbon and the influence of the addition of straw carbon on soil-derived organic carbon in different soils associated with different fertility levels. In this study, we applied the in-situ carborundum tube method and 13C-labeled maize straw (with and without maize straw) at two cropland (Phaeozem and Luvisol soils) experimental sites in northeast China to quantify the dynamics of maize-derived and soil-derived carbon in soils associated with high and low fertility, and to examine how the addition of maize carbon influences soil-derived organic carbon and the interactions of soil type and fertility level with maize-derived and soil-derived carbon. We found that, on average, the contributions of maize-derived carbon to total organic carbon in maize-soil systems during the experimental period were differentiated among low fertility Luvisol (from 62.82% to 42.90), high fertility Luvisol (from 53.15% to 30.00%), low fertility Phaeozem (from 58.69% to 36.29%) and high fertility Phaeozem (from 41.06% to 16.60%). Furthermore, the addition of maize carbon significantly decreased the remaining soil-derived organic carbon in low and high fertility Luvisols and low fertility Phaeozem before two months. However, the increasing differences in soil-derived organic carbon between both soils with and without maize straw after two months suggested that maize-derived carbon was incorporated into soil-derived organic carbon, thereby potentially offsetting the loss of soil-derived organic carbon. These results suggested that Phaeozem and high fertility level soils would fix more maize carbon over time and thus were more beneficial for protecting soil-derived organic carbon from maize carbon decomposition.

  1. Dynamics of Maize Carbon Contribution to Soil Organic Carbon in Association with Soil Type and Fertility Level

    PubMed Central

    Pei, Jiubo; Li, Hui; Li, Shuangyi; An, Tingting; Farmer, John; Fu, Shifeng; Wang, Jingkuan

    2015-01-01

    Soil type and fertility level influence straw carbon dynamics in the agroecosystems. However, there is a limited understanding of the dynamic processes of straw-derived and soil-derived carbon and the influence of the addition of straw carbon on soil-derived organic carbon in different soils associated with different fertility levels. In this study, we applied the in-situ carborundum tube method and 13C-labeled maize straw (with and without maize straw) at two cropland (Phaeozem and Luvisol soils) experimental sites in northeast China to quantify the dynamics of maize-derived and soil-derived carbon in soils associated with high and low fertility, and to examine how the addition of maize carbon influences soil-derived organic carbon and the interactions of soil type and fertility level with maize-derived and soil-derived carbon. We found that, on average, the contributions of maize-derived carbon to total organic carbon in maize-soil systems during the experimental period were differentiated among low fertility Luvisol (from 62.82% to 42.90), high fertility Luvisol (from 53.15% to 30.00%), low fertility Phaeozem (from 58.69% to 36.29%) and high fertility Phaeozem (from 41.06% to 16.60%). Furthermore, the addition of maize carbon significantly decreased the remaining soil-derived organic carbon in low and high fertility Luvisols and low fertility Phaeozem before two months. However, the increasing differences in soil-derived organic carbon between both soils with and without maize straw after two months suggested that maize-derived carbon was incorporated into soil-derived organic carbon, thereby potentially offsetting the loss of soil-derived organic carbon. These results suggested that Phaeozem and high fertility level soils would fix more maize carbon over time and thus were more beneficial for protecting soil-derived organic carbon from maize carbon decomposition. PMID:25774529

  2. Biomass burning in boreal forests and peatlands: Effects on ecosystem carbon losses and soil carbon stabilization as black carbon

    NASA Astrophysics Data System (ADS)

    Turetsky, M. R.; Kane, E. S.; Benscoter, B.

    2011-12-01

    Climate change has increased both annual area burned and the severity of biomass combustion in some boreal regions. For example, there has been a four-fold increase in late season fires in boreal Alaska over the last decade relative to the previous 50 years. Such changes in the fire regime are expected to stimulate ecosystem carbon losses through fuel combustion, reduced primary production, and increased decomposition. However, biomass burning also will influence the accumulation of black carbon in soils, which could promote long-term soil carbon sequestration. Variations in slope and aspect regulate soil temperatures and drainage conditions, and affect the development of permafrost and thick peat layers. Wet soil conditions in peatlands and permafrost forests often inhibit combustion during wildfires, leading to strong positive correlations between pre- and post- fire organic soil thickness that persist through multiple fire cycles. However, burning can occur in poorly drained ecosystems through smouldering combustion, which has implications for emission ratios of CO2:CH4:CO as well as black carbon formation. Our studies of combustion severity and black carbon concentrations in boreal soils show a negative relationship between concentrations of black carbon and organic carbon in soils post-fire. Relative to well drained stands, poorly drained sites with thick peat layers (such as north-facing stands) had less severe burning and low concentrations of black carbon in mineral soils post-fire. Conversely, drier forests lost a greater proportion of their organic soils during combustion but retained larger black carbon stocks following burning. Overall, we have quantified greater black carbon concentrations in surface mineral soil horizons than in organic soil horizons. This is surprising given that wildfires typically do not consume the entire organic soil layer in boreal forests, and could be indicative of the vulnerability of black carbon formed in organic horizons

  3. Urban Tree Effects on Soil Organic Carbon

    PubMed Central

    Edmondson, Jill L.; O'Sullivan, Odhran S.; Inger, Richard; Potter, Jonathan; McHugh, Nicola; Gaston, Kevin J.; Leake, Jonathan R.

    2014-01-01

    Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to worldwide tree planting schemes. Since soils hold ∼75% of ecosystem organic carbon, understanding the effect of urban trees on soil organic carbon (SOC) and soil properties that underpin belowground ecosystem services is vital. We use an observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties (to 1 m depth) compared to adjacent urban grasslands. Aboveground biomass and belowground ecosystem service provision by urban trees are found not to be directly coupled. Indeed, SOC enhancement relative to urban grasslands is genus-specific being highest under Fraxinus excelsior and Acer spp., but similar to grasslands under Quercus robur and mixed woodland. Tree cover type does not influence soil bulk density or C∶N ratio, properties which indicate the ability of soils to provide regulating ecosystem services such as nutrient cycling and flood mitigation. The trends observed in this study suggest that genus selection is important to maximise long-term SOC storage under urban trees, but emerging threats from genus-specific pathogens must also be considered. PMID:25003872

  4. Urban tree effects on soil organic carbon.

    PubMed

    Edmondson, Jill L; O'Sullivan, Odhran S; Inger, Richard; Potter, Jonathan; McHugh, Nicola; Gaston, Kevin J; Leake, Jonathan R

    2014-01-01

    Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to worldwide tree planting schemes. Since soils hold ∼75% of ecosystem organic carbon, understanding the effect of urban trees on soil organic carbon (SOC) and soil properties that underpin belowground ecosystem services is vital. We use an observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties (to 1 m depth) compared to adjacent urban grasslands. Aboveground biomass and belowground ecosystem service provision by urban trees are found not to be directly coupled. Indeed, SOC enhancement relative to urban grasslands is genus-specific being highest under Fraxinus excelsior and Acer spp., but similar to grasslands under Quercus robur and mixed woodland. Tree cover type does not influence soil bulk density or C∶N ratio, properties which indicate the ability of soils to provide regulating ecosystem services such as nutrient cycling and flood mitigation. The trends observed in this study suggest that genus selection is important to maximise long-term SOC storage under urban trees, but emerging threats from genus-specific pathogens must also be considered.

  5. Urban tree effects on soil organic carbon.

    PubMed

    Edmondson, Jill L; O'Sullivan, Odhran S; Inger, Richard; Potter, Jonathan; McHugh, Nicola; Gaston, Kevin J; Leake, Jonathan R

    2014-01-01

    Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to worldwide tree planting schemes. Since soils hold ∼75% of ecosystem organic carbon, understanding the effect of urban trees on soil organic carbon (SOC) and soil properties that underpin belowground ecosystem services is vital. We use an observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties (to 1 m depth) compared to adjacent urban grasslands. Aboveground biomass and belowground ecosystem service provision by urban trees are found not to be directly coupled. Indeed, SOC enhancement relative to urban grasslands is genus-specific being highest under Fraxinus excelsior and Acer spp., but similar to grasslands under Quercus robur and mixed woodland. Tree cover type does not influence soil bulk density or C∶N ratio, properties which indicate the ability of soils to provide regulating ecosystem services such as nutrient cycling and flood mitigation. The trends observed in this study suggest that genus selection is important to maximise long-term SOC storage under urban trees, but emerging threats from genus-specific pathogens must also be considered. PMID:25003872

  6. Soil Carbon Transformation in Heterogeneous Landscapes

    NASA Astrophysics Data System (ADS)

    Riveros-Iregui, D.; Liang, L.; Emanuel, R. E.; McGlynn, B. L.; Dore, J. E.; Kaiser, K.; Seybold, E. C.; Covino, T. P.

    2012-12-01

    Understanding critical belowground carbon processes (e.g., soil carbon turnover, root and microbial dynamics, and greenhouse gas generation and flux) requires examination of coupled physical and biological processes. The spatial patterns of first-order controls such as soil water content, soil temperature, substrate, and vegetation cover has been shown to impose spatial and temporal organization of soil CO2 efflux to the atmosphere. We examined the spatial and temporal variability of soil CO2 ([CO2]) and soil CH4 ([CH4]) concentrations and flux, and the stable isotope composition of CO2 (δ13CCO2) across two watersheds of differing topographic complexity and vegetation cover, including both forested and harvested areas. Samples were collected at 5cm, 20cm, and 50cm at multiple sites (6-10) along seven transects in the Tenderfoot Creek Experimental Forest (TCEF), central Montana. Our results show that [CO2] increases with depth while [CH4] decreases with depth in all dry sites, meaning that dry sites simultaneously act as a source for CO2 and a sink for CH4. Wet sites, however, had pronounced differences in their [CO2] and [CH4] profiles, depending on soil water content and water table depth. Isotopically, deep soil layers had systematically more negative δ13CCO2 values, but the difference between shallow and deep δ13CCO2 values varied as a function of landscape position and vegetation cover. Our results suggest that belowground processes and rates of soil carbon transformation vary across the landscape as a function of environmental gradients.

  7. Influence of soil moisture-carbon cycle interactions on the terrestrial carbon cycle over Europe

    NASA Astrophysics Data System (ADS)

    Mystakidis, Stefanos; Davin, Edouard L.; Gruber, Nicolas; Seneviratne, Sonia I.

    2016-04-01

    Water availability is a crucial limiting factor for terrestrial ecosystems, but relatively few studies have quantitatively assessed the influence of soil moisture variability on the terrestrial carbon cycle. Here, we investigate the role of soil moisture variability and state in the contemporary terrestrial carbon cycle over Europe. For this we use a Regional Earth System Model (RESM) based on the COSMO-CLM Regional Climate Model, coupled to the Community Land Model version 4.0 (CLM4.0) and its carbon-nitrogen module. The simulation setup consists of a control simulation over the period 1979-2010 in which soil moisture is interactive and three sensitivity simulations in which soil moisture is prescribed to a mean, a very dry or a very wet seasonal cycle without inter-annual variability. The cumulative net biome productivity varies markedly between the different experiments ranging from a strong sink of up to 6PgC in the wet experiment to a source of up to 1.2PgC in the dry experiment. Changes in the land carbon uptake are driven by a combination of two factors: the direct impact of soil moisture on plant's carbon uptake (essentially in southern Europe) and an indirect effect through changes in temperature affecting ecosystem respiration (mainly in central and northern Europe). We find that removing temporal variations in soil moisture dampens interannual variations in terrestrial carbon fluxes (Gross Primary Productivity, respiration, Net Biome Productivity) by more than 50% over most of Europe. Moreover, the analysis reveals that on annual scale about two-thirds of central Europe and about 70% of southern Europe display statistically significant effect of drying and/or wetting on the terrestrial carbon budget and its components. Our findings confirm the crucial role of soil moisture in determining the magnitude and the inter-annual variability in land CO2 uptake which is a key contributor to the year-to-year variations in atmospheric CO2 concentration.

  8. Does unsaturated flow drive soil carbon residence times?

    NASA Astrophysics Data System (ADS)

    Lawrence, C. R.; Mnich, M.; Druhan, J. L.; Schulz, M. S.; Stonestrom, D. A.; Maher, K.; Harden, J. W.

    2015-12-01

    Soil moisture is widely recognized as a driver of many important biogeochemical processes. For example, ecosystem productivity, microbial lifecycles, soil organic matter decomposition, soil secondary mineralogy, the development and persistence of redox gradients, and the export of dissolved carbon are all sensitive to soil-water content and potential. In turn, each of these processes is recognized as an important control on the turnover of soil organic carbon. These dependencies raise a key question: Is the flux of water through unsaturated soils the dominant driver of soil organic carbon turnover across broad spatial scales? To better characterize the importance of soil moisture fluxes, we synthesize data from a number of soil studies to evaluate how total soil carbon storage, carbon residence time, and depth dependent gradients vary in relation to soil hydrologic fluxes. Specifically, we compare soil carbon storage and stability to measured and/or modeled infiltration ([precipitation + condensation] - [evapotranspiration + runoff]) and long-term soil water flux estimates from chloride mass balance, or other techniques. Additionally, we consider the interaction of soil age and hydrology, as the development of secondary mineral horizons during pedogenesis represents a critical threshold in both soil water flux and soil organic carbon turnover. We focus on data from 3 previously descried soil chronosequences, including the Santa Cruz, Mattole, and Merced terraces, which together span a wide range of age and soil moisture conditions. Across these sites, organic carbon accumulates to greater depths in the soils with highest infiltration but the relationship between turnover and soil moisture is not as straightforward. To help interpret these results, we compare field data against simulations of biogeochemical reactions involving soil carbon and the resulting isotopic gradients using the reactive transport model CrunchTope. Overall, this effort provides for an improved

  9. Urban soil moisture affecting local air temperature

    NASA Astrophysics Data System (ADS)

    Wiesner, Sarah; Ament, Felix; Eschenbach, Annette

    2015-04-01

    The climate in cities differs from that in the surrounding area due to modified surfaces. Parameters like surface sealing ratio, vegetation and building material are known to be relevant for the intensity of the microclimatic modification. But what about the influence of soil moisture content and availability at the soil surface? Soil acts as a storage and transmitter for water. In doing so, it may have a differently pronounced impact on local climate through distinct evapotranspiration. The actual evapotranspiration rates are determined by water availability at the surface - dependant from soil physical properties and water refill from above or below - and the presence of evapotranspirators, i.e. plants that transpire water from deeper soil areas. The issue of soil hydrological characteristics and water replenishment limiting the local cooling effect of soils is the topic of this contribution. A long-term record (2010-2014) of ongoing measurements in the city of Hamburg, Germany, is evaluated. The data is provided by atmospheric and pedologic measurement sites of the HUSCO network (Hamburg Urban Soil Climate Observatory). They are located within six urban districts: the city core, four suburban districts, featuring different mean groundwater table depths (> 5 m below surface / < 2.5 m below surface), and one industrial area. The temporal evolutions of water content and soil water tension of the suburban soil profiles are found to be very diverse, related to soil substrate, organic matter content and groundwater table depth. Most distinct variations are observed within the upper horizons of suburban soil. Soil hydrological processes show characteristic patterns at each measurement site, including topsoil water content (Θ) variability. Yet, differences between distinct urban land use types are visible only according to differences in the prevailing soil texture. Impacts of different vegetation types on the soil water dynamics can be identified, while the influence

  10. Impacts of crop rotations on soil organic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Gobin, Anne; Vos, Johan; Joris, Ingeborg; Van De Vreken, Philippe

    2013-04-01

    Agricultural land use and crop rotations can greatly affect the amount of carbon sequestered in the soil. We developed a framework for modelling the impacts of crop rotations on soil carbon sequestration at the field scale with test case Flanders. A crop rotation geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System) to elicit the most common crop rotation on major soil types in Flanders. In order to simulate the impact of crop cover on carbon sequestration, the Roth-C model was adapted to Flanders' environment and coupled to common crop rotations extracted from the IACS geodatabases and statistical databases on crop yield. Crop allometric models were used to calculate crop residues from common crops in Flanders and subsequently derive stable organic matter fluxes to the soil (REGSOM). The REGSOM model was coupled to Roth-C model was run for 30 years and for all combinations of seven main arable crops, two common catch crops and two common dosages of organic manure. The common crops are winter wheat, winter barley, sugar beet, potato, grain maize, silage maize and winter rapeseed; the catch crops are yellow mustard and Italian ryegrass; the manure dosages are 35 ton/ha cattle slurry and 22 ton/ha pig slurry. Four common soils were simulated: sand, loam, sandy loam and clay. In total more than 2.4 million simulations were made with monthly output of carbon content for 30 years. Results demonstrate that crop cover dynamics influence carbon sequestration for a very large percentage. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. Crop residues of grain maize and winter wheat followed by catch crops contribute largely to the total carbon sequestered. This implies that agricultural policies that impact on agricultural land management influence soil carbon sequestration for a large percentage. The framework is therefore

  11. Can transgenic maize affect soil microbial communities?

    PubMed

    Mulder, Christian; Wouterse, Marja; Raubuch, Markus; Roelofs, Willem; Rutgers, Michiel

    2006-09-29

    The aim of the experiment was to determine if temporal variations of belowground activity reflect the influence of the Cry1Ab protein from transgenic maize on soil bacteria and, hence, on a regulatory change of the microbial community (ability to metabolize sources belonging to different chemical guilds) and/or a change in numerical abundance of their cells. Litter placement is known for its strong influence on the soil decomposer communities. The effects of the addition of crop residues on respiration and catabolic activities of the bacterial community were examined in microcosm experiments. Four cultivars of Zea mays L. of two different isolines (each one including the conventional crop and its Bacillus thuringiensis cultivar) and one control of bulk soil were included in the experimental design. The growth models suggest a dichotomy between soils amended with either conventional or transgenic maize residues. The Cry1Ab protein appeared to influence the composition of the microbial community. The highly enhanced soil respiration observed during the first 72 h after the addition of Bt-maize residues can be interpreted as being related to the presence of the transgenic crop residues. This result was confirmed by agar plate counting, as the averages of the colony-forming units of soils in conventional treatments were about one-third of those treated with transgenic straw. Furthermore, the addition of Bt-maize appeared to induce increased microbial consumption of carbohydrates in BIOLOG EcoPlates. Three weeks after the addition of maize residues to the soils, no differences between the consumption rate of specific chemical guilds by bacteria in soils amended with transgenic maize and bacteria in soils amended with conventional maize were detectable. Reaped crop residues, comparable to post-harvest maize straw (a common practice in current agriculture), rapidly influence the soil bacterial cells at a functional level. Overall, these data support the existence of short

  12. Surface-applied biosolids enhance soil organic carbon and nitrogen stocks but have contrasting effects on soil physical quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beneficial reuse of biosolids through land application can increase soil organic carbon (SOC) storage while also improving soil physical properties that affect fertility. The effects of continuous biosolids applications in the mid- to long-term, however, are likely to depend on application rate, me...

  13. Human induced impacts on soil organic carbon in southwest Iceland

    NASA Astrophysics Data System (ADS)

    Gísladóttir, Guðrún; Erlendsson, Egill; Lal, Rattan

    2013-04-01

    The Icelandic environment has been strongly influenced by natural processes during the Holocene. Since settlement in AD 874, the introduction of grazing animals and other land use has drastically affected the natural environment. This includes the diminishing of vegetative cover, which has led to soil exposure and accelerated erosion over large areas, especially when in conjunction with harsh climate. This has specifically impacted processes and properties of volcanic soils (Andosols), which are subject to accelerated erosion by wind and water. While approximately 46% of the land surface in Iceland has sustained continuous vegetation cover, large areas have lost some or all of their soil cover formed during the postglacial era. Elsewhere, remaining soils have sparse or no vegetation cover, thus impairing soil carbon (C) sequestration. Among their multifunctional roles, soils support plant growth, increase soil biotic activity, enhance nutrient storage and strengthen the cycling of water and nutrients. In contrast, soil degradation by accelerated erosion and other processes impairs soil quality, reduces soil structure and depletes the soil organic matter (SOM) pool. Depletion of the SOM pool has also global implications because the terrestrial C pool is the third largest pool and strongly impacts the global C cycle. Erosional-depositional processes may deplete soil organic C (SOC) by erosion and increase by deposition. Some SOC-enriched sediments are redistributed over the landscape, while others are deposited in depression sites and transported into aquatic ecosystems. SOC decomposition processes are severely constrained in some environmental settings and any SOC buried under anaerobic conditions is protected against decomposition. Yet, the impact of the SOC transported by erosional processes and redistributed over the landscape is not fully understood because the variability in its turnover characteristics has not been widely studied. Thus, the fate of C

  14. Soil Organic Carbon dynamics in agricultural soils of Veneto Region

    NASA Astrophysics Data System (ADS)

    Bampa, F. B.; Morari, F. M.; Hiederer, R. H.; Toth, G. T.; Giandon, P. G.; Vinci, I. V.; Montanarella, L. M.; Nocita, M.

    2012-04-01

    One of the eight soil threats expressed in the European Commission's Thematic Strategy for Soil Protection (COM (2006)231 final) it's the decline in Soil Organic Matter (SOM). His preservation is recognized as with the objective to ensure that the soils of Europe remain healthy and capable of supporting human activities and ecosystems. One of the key goals of the strategy is to maintain and improve Soil Organic Carbon (SOC) levels. As climate change is identified as a common element in many of the soil threats, the European Commission (EC) intends to assess the actual contribution of the soil protection to climate change mitigation and the effects of climate change on the possible depletion of SOM. A substantial proportion of European land is occupied by agriculture, and consequently plays a crucial role in maintaining natural resources. Organic carbon preservation and sequestration in the EU's agricultural soils could have some potential to mitigate the effects of climate change, particularly linked to preventing certain land use changes and maintaining SOC stocks. The objective of this study is to assess the SOC dynamics in agricultural soils (cropland and grassland) at regional scale, focusing on changes due to land use. A sub-objective would be the evaluation of the most used land management practices and their effect on SOC content. This assessment aims to determine the geographical distribution of the potential GHG mitigation options, focusing on hot spots in the EU, where mitigation actions would be particularly efficient and is linked with the on-going work in the JRC SOIL Action. The pilot area is Veneto Region. The data available are coming from different sources, timing and involve different variables as: soil texture, climate, soil disturbance, managements and nutrients. The first source of data is the LUCAS project (Land Use/Land Cover Area Frame statistical Survey). Started in 2001, the LUCAS project aims to monitor changes in land cover/use and

  15. Tracing the source of Beijing soil organic carbon: a carbon isotope approach.

    PubMed

    Guo, Qingjun; Strauss, Harald; Chen, Tong-Bin; Zhu, Guangxu; Yang, Jun; Yang, Junxing; Lei, Mei; Zhou, Xiaoyong; Peters, Marc; Xie, Yunfeng; Zhang, Hanzhi; Wei, Rongfei; Wang, Chunyu

    2013-05-01

    Bulk soil organic carbon concentration and isotopic composition characterize its sources and fate, identify the anthropogenic input of organic carbon into the soil, and trace soil carbon turnover. Coal and/or coal combustion products represent the prime anthropogenic input of organic carbon into three soil profiles located in the vicinity of a steel company. Three profiles positioned away from any direct industrial contribution display vertical pattern in soil organic carbon concentration and isotopic composition that resemble more commonly observed downward gradients in soil carbon chemistry and indicate microbial soil carbon turnover. Two additional profiles located outside of the immediate industrial area display vertical carbon isotope profiles between typical of those from industrial and non-industrial areas. Eight soil profiles and their vertical distribution of bulk organic carbon isotopic composition and concentration collected in the Beijing area reveal and distinguish both anthropogenic and natural contributions of carbon to these soils.

  16. Can surfactants affect management of non-water repellent soils?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surfactants affect the water relations of water repellent soils but may or may not affect those of wettable soils. We studied the effects of three surfactants, Aquatrols IrrigAid Gold®, an ethylene oxide/propylene oxide block copolymer, and an alkyl polyglycoside, along with untreated tap water as ...

  17. Soil Carbon Cycling - More than Changes in Soil Organic Carbon Stocks

    NASA Astrophysics Data System (ADS)

    Lorenz, K.

    2015-12-01

    Discussions about soil carbon (C) sequestration generally focus on changes in soil organic carbon (SOC) stocks. Global SOC mass in the top 1 m was estimated at about 1325 Pg C, and at about 3000 Pg C when deeper soil layers were included. However, both inorganically and organically bound carbon forms are found in soil but estimates on global soil inorganic carbon (SIC) mass are even more uncertain than those for SOC. Globally, about 947 Pg SIC may be stored in the top 1 m, and especially in arid and semi-arid regions SIC stocks can be many times great than SOC stocks. Both SIC and SOC stocks are vulnerable to management practices, and stocks may be enhanced, for example, by optimizing net primary production (NPP) by fertilization and irrigation (especially optimizing belowground NPP for enhancing SOC stocks), adding organic matter (including black C for enhancing SOC stocks), and reducing soil disturbance. Thus, studies on soil C stocks, fluxes, and vulnerability must look at both SIC and SOC stocks in soil profiles to address large scale soil C cycling.

  18. Investigation of factors affecting gaseous mercury concentrations in soils.

    PubMed

    Moore, Christopher W; Castro, Mark S

    2012-03-01

    The purpose of this study was to determine the effects of soil temperature, soil moisture, redox potential (Eh) and soil organic matter (SOM) on the total gaseous mercury (TGM) concentrations in background soils. Our measurements were made in a grass field and deciduous forest at the Piney Reservoir Ambient Air Monitoring Station (PRAAMS) in Garrett County, Maryland. Three plots in each area were sampled every third week from July 2009 to June 2010 at the Oe-A soil horizon interface, the A-E soil horizon interface, and 5 and 10 cm into the E soil horizon. The mean soil TGM concentration for all depths in the forest (2.3 ± 2.2 ng m(-3)) was significantly higher than the mean soil TGM concentration in the grass field (1.5 ± 1.9 ng m(-3)). Soil TGM at all depths was most strongly and consistently correlated to soil temperature. The soil TGM concentrations were highest and most variable at the forest Oe-A soil horizon interface (4.1 ± 2.0 ng m(-3)), ranging from 1.5 to 8.4 ng m(-3). This soil horizon interface had 11 to 26% more SOM and the soil Eh was 100 to 400 mV lower than the other soil depths. Our results suggest that soil temperature, soil Eh and SOM are significant factors affecting TGM concentrations in forest soils. Future studies of TGM dynamics in background soils may benefit from closely monitoring the organic soil horizon.

  19. Fertilization increases paddy soil organic carbon density*

    PubMed Central

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-01-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC. PMID:22467369

  20. Fertilization increases paddy soil organic carbon density.

    PubMed

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-04-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC.

  1. Improved grazing management may increase soil carbon sequestration in temperate steppe.

    PubMed

    Chen, Wenqing; Huang, Ding; Liu, Nan; Zhang, Yingjun; Badgery, Warwick B; Wang, Xiaoya; Shen, Yue

    2015-07-03

    Different grazing strategies impact grassland plant production and may also regulate the soil carbon formation. For a site in semiarid temperate steppe, we studied the effect of combinations of rest, high and moderate grazing pressure over three stages of the growing season, on the process involved in soil carbon sequestration. Results show that constant moderate grazing (MMM) exhibited the highest root production and turnover accumulating the most soil carbon. While deferred grazing (RHM and RMH) sequestered less soil carbon compared to MMM, they showed higher standing root mass, maintained a more desirable pasture composition, and had better ability to retain soil N. Constant high grazing pressure (HHH) caused diminished above- and belowground plant production, more soil N losses and an unfavorable microbial environment and had reduced carbon input. Reducing grazing pressure in the last grazing stage (HHM) still had a negative impact on soil carbon. Regression analyses show that adjusting stocking rate to ~5SE/ha with ~40% vegetation utilization rate can get the most carbon accrual. Overall, the soil carbon sequestration in the temperate grassland is affected by the grazing regime that is applied, and grazing can be altered to improve soil carbon sequestration in the temperate steppe.

  2. Improved grazing management may increase soil carbon sequestration in temperate steppe

    NASA Astrophysics Data System (ADS)

    Chen, Wenqing; Huang, Ding; Liu, Nan; Zhang, Yingjun; Badgery, Warwick B.; Wang, Xiaoya; Shen, Yue

    2015-07-01

    Different grazing strategies impact grassland plant production and may also regulate the soil carbon formation. For a site in semiarid temperate steppe, we studied the effect of combinations of rest, high and moderate grazing pressure over three stages of the growing season, on the process involved in soil carbon sequestration. Results show that constant moderate grazing (MMM) exhibited the highest root production and turnover accumulating the most soil carbon. While deferred grazing (RHM and RMH) sequestered less soil carbon compared to MMM, they showed higher standing root mass, maintained a more desirable pasture composition, and had better ability to retain soil N. Constant high grazing pressure (HHH) caused diminished above- and belowground plant production, more soil N losses and an unfavorable microbial environment and had reduced carbon input. Reducing grazing pressure in the last grazing stage (HHM) still had a negative impact on soil carbon. Regression analyses show that adjusting stocking rate to ~5SE/ha with ~40% vegetation utilization rate can get the most carbon accrual. Overall, the soil carbon sequestration in the temperate grassland is affected by the grazing regime that is applied, and grazing can be altered to improve soil carbon sequestration in the temperate steppe.

  3. Improved grazing management may increase soil carbon sequestration in temperate steppe

    PubMed Central

    Chen, Wenqing; Huang, Ding; Liu, Nan; Zhang, Yingjun; Badgery, Warwick B.; Wang, Xiaoya; Shen, Yue

    2015-01-01

    Different grazing strategies impact grassland plant production and may also regulate the soil carbon formation. For a site in semiarid temperate steppe, we studied the effect of combinations of rest, high and moderate grazing pressure over three stages of the growing season, on the process involved in soil carbon sequestration. Results show that constant moderate grazing (MMM) exhibited the highest root production and turnover accumulating the most soil carbon. While deferred grazing (RHM and RMH) sequestered less soil carbon compared to MMM, they showed higher standing root mass, maintained a more desirable pasture composition, and had better ability to retain soil N. Constant high grazing pressure (HHH) caused diminished above- and belowground plant production, more soil N losses and an unfavorable microbial environment and had reduced carbon input. Reducing grazing pressure in the last grazing stage (HHM) still had a negative impact on soil carbon. Regression analyses show that adjusting stocking rate to ~5SE/ha with ~40% vegetation utilization rate can get the most carbon accrual. Overall, the soil carbon sequestration in the temperate grassland is affected by the grazing regime that is applied, and grazing can be altered to improve soil carbon sequestration in the temperate steppe. PMID:26137980

  4. Improved grazing management may increase soil carbon sequestration in temperate steppe.

    PubMed

    Chen, Wenqing; Huang, Ding; Liu, Nan; Zhang, Yingjun; Badgery, Warwick B; Wang, Xiaoya; Shen, Yue

    2015-01-01

    Different grazing strategies impact grassland plant production and may also regulate the soil carbon formation. For a site in semiarid temperate steppe, we studied the effect of combinations of rest, high and moderate grazing pressure over three stages of the growing season, on the process involved in soil carbon sequestration. Results show that constant moderate grazing (MMM) exhibited the highest root production and turnover accumulating the most soil carbon. While deferred grazing (RHM and RMH) sequestered less soil carbon compared to MMM, they showed higher standing root mass, maintained a more desirable pasture composition, and had better ability to retain soil N. Constant high grazing pressure (HHH) caused diminished above- and belowground plant production, more soil N losses and an unfavorable microbial environment and had reduced carbon input. Reducing grazing pressure in the last grazing stage (HHM) still had a negative impact on soil carbon. Regression analyses show that adjusting stocking rate to ~5SE/ha with ~40% vegetation utilization rate can get the most carbon accrual. Overall, the soil carbon sequestration in the temperate grassland is affected by the grazing regime that is applied, and grazing can be altered to improve soil carbon sequestration in the temperate steppe. PMID:26137980

  5. Soil carbon dynamics in cropland and rangeland.

    PubMed

    Lal, R

    2002-01-01

    Most soils in the Midwestern USA have lost 30 to 50% of their original pool, or 25 to 40 Mg C/ha, upon conversion from natural to agricultural ecosystems. About 60 to 70% of the C thus depleted can be resequestered through adoption of recommended soil and crop management practices. These practices include conversion from plow till to no till, frequent use of winter cover crops in the rotation cycle, elimination of summer fallow, integrated nutrient management along with liberal use of biosolids and biological nitrogen fixation, precision farming to minimize losses and enhance fertilizer use efficiency, and use of improved varieties with ability to produce large root biomass with high content of lignin and suberin. The gross rate of soil organic carbon (SOC) sequestration ranges from 500 to 800 kg/ha/year in cold and humid regions and 100 to 300 kg/ha/year in dry and warm regions. The rate of SOC sequestration can be measured with procedures that are cost effective and credible at soil pedon level, landscape level, regional or national scale. In addition to SOC, there is also a large potential to sequester soil inorganic carbon (SIC) in arid and semi-arid regions. Soil C sequestration has numerous ancillary benefits. It is truly a win-win situation: extremely cost-effective, and a bridge to the future until alternative energy options take effect.

  6. Green Carbon, Black Carbon, White Carbon: Simultaneous Differentiation Between Soil Organic Matter, Pyrogenic Carbon and Carbonates Using Thermal Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Plante, A. F.; Peltre, C.; Chan, J.; Baumgartl, T.; Erskine, P.; Apesteguía, M.; Virto, I.

    2014-12-01

    Quantification of soil carbon stocks and fluxes continues to be an important endeavor in assessments of soil quality, and more broadly in assessments of ecosystem functioning. The quantification of soil carbon in alkaline, carbonate-containing soils, such as those found in Mediterranean areas, is complicated by the need to differentiate between organic carbon (OC) and inorganic carbon (IC), which continues to present methodological challenges. Acidification is frequently used to eliminate carbonates prior to soil OC quantification, but when performed in the liquid phase, can promote the dissolution and loss of a portion of the OC. Acid fumigation (AF) is increasingly preferred for carbonate removal, but its effectiveness is difficult to assess using conventional elemental and isotopic analyses. The two-step approach is time, labor and cost intensive, and generates additional uncertainties from the calculations. Quantification of the actively cycling pool of soil organic C (SOC) in many soils is further complicated by the potential presence of more recalcitrant/stable forms such as pyrogenic or black carbon (BC) derived from incomplete combustion of vegetation, or even geogenic carbon such as coal. The wide spectrum of materials currently considered BC makes its quantification challenging. The chemical method using benzene polycarboxylic acids (BPCAs) as markers of condensed aromatic structures indicative of pyrogenic C is highly time, labor and cost intensive, and can generate artifacts. Several research groups are now developing method for the simultaneous identification and quantification of these various forms of soil carbon using thermal analysis techniques such as thermogravimetry, differential scanning calorimetry and evolved gas analysis. The objective of this presentation is to provide a general overview and specific examples of the current progress and technical challenges in this evolving methodology.

  7. Soil organic carbon mining versus priming - controls of soil organic carbon stocks along a management gradient

    NASA Astrophysics Data System (ADS)

    Blanes, M. Carmen; Reinsch, Sabine; Glanville, Helen C.; Jones, Davey L.; Carreira, José A.; Pastrana, David N.; Emmett, Bridget A.

    2015-04-01

    Soil carbon (C), nitrogen (N) and phosphorous (P) are assumed to be connected stoichiometrically and C:N(:P) ratios are frequently used to interpret the soils nutrient status. However, plants are capable of initiating the supply of nutrients by releasing rhizodeposits into the soil, thereby stimulating soil organic matter decomposition mediated by the rhizosphere microbial community. To test the relative importance of the two mechanisms across a fertility gradient in the UK we carried out a laboratory experiment. Intact soil cores from two depths (0-15 cm and 85-100 cm) were incubated and C, N and P were added in all possible combinations resulting in a total of 216 soil cores. Soil respiration was measured (1 h incubation, 10 oC) nine times over a 2 week period. Preliminary results indicate that all soils were C limited at the surface as measured as increased soil CO2 efflux. N additions increased soil respiration only marginally, whereas C+N stimulated microbial activity on the surface, and was even more pronounced in the deeper soil layer. Belowground responses to C+P were small and even smaller for N+P but similar for both soil depths. Our results indicate nutrient controls on soil organic matter turnover differ not only across a management/fertility gradient but also vertically down the soil profile.

  8. In-situ soil carbon analysis using inelastic neutron scattering

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In situ soil carbon analysis using inelastic neutron scattering (INS) is based on the emission of 4.43 MeV gamma rays from carbon nuclei excited by fast neutrons. This in-situ method has excellent potential for easily measuring soil carbon since it does not require soil core sampling and processing ...

  9. Age of respired carbon in differently managed grassland and forest soils

    NASA Astrophysics Data System (ADS)

    Schoening, Ingo; Trumbore, Susan; Solly, Emily; Muhr, Jan; Schrumpf, Marion

    2013-04-01

    Grassland management (fertilization, grazing, mowing) and forest management (harvesting, thinning) directly affect biomass production and related leaf and root litter input to the soil. Understanding effects of land management on soil carbon fluxes is therefore critical. We examined the effect of land use and management on soil respiration and the age of respired soil carbon. Soil samples originated from grassland and forest plots in three different German regions. Sieved surface soil samples (0-10 cm) were incubated (20°C, 60% WHC) for 14 days. The respired CO2 was collected and 14C contents in the CO2 of 150 incubated samples were determined with accelerator mass spectrometry (AMS). Large changes recorded in 14C in the atmosphere since atmospheric weapons testing in the 1960s allow precise determination of the mean age of emitted soil carbon. In our study, the rate of respiration was higher in grassland soils (33 ± 10 µg C-CO2 per g dry soil per day) compared to forest soils (14 ± 7 µg C-CO2 per g dry soil per day). Results indicate a strong relation between respiration rates and grassland management with lower soil respiration in more fertilized plots. This relation was not found at sites where degraded peatlands were used as grasslands. At those sites, respiration rates were mainly driven by the soil organic carbon concentration. In forest soils, we did not find any relation between soil respiration and forest management. The 14C contents of the respired CO2 were lower in grassland soils (Percentage Modern carbon content: 104±2%) compared to forest soils (Percentage Modern Carbon content: 108±5%). This indicates that the carbon respired in forests is generally several years to more than a decade older than the carbon respired in grasslands. In grasslands, the 14C is positively related to the respiration rate and negatively related to fertilization. Again, degraded peat soils, where old carbon is released during incubation, were the exception to this

  10. Fractal Scaling of Particle Size Distribution and Relationships with Topsoil Properties Affected by Biological Soil Crusts

    PubMed Central

    Gao, Guang-Lei; Ding, Guo-Dong; Wu, Bin; Zhang, Yu-Qing; Qin, Shu-Gao; Zhao, Yuan-Yuan; Bao, Yan-Feng; Liu, Yun-Dong; Wan, Li; Deng, Ji-Feng

    2014-01-01

    Background Biological soil crusts are common components of desert ecosystem; they cover ground surface and interact with topsoil that contribute to desertification control and degraded land restoration in arid and semiarid regions. Methodology/Principal Findings To distinguish the changes in topsoil affected by biological soil crusts, we compared topsoil properties across three types of successional biological soil crusts (algae, lichens, and mosses crust), as well as the referenced sandland in the Mu Us Desert, Northern China. Relationships between fractal dimensions of soil particle size distribution and selected soil properties were discussed as well. The results indicated that biological soil crusts had significant positive effects on soil physical structure (P<0.05); and soil organic carbon and nutrients showed an upward trend across the successional stages of biological soil crusts. Fractal dimensions ranged from 2.1477 to 2.3032, and significantly linear correlated with selected soil properties (R2 = 0.494∼0.955, P<0.01). Conclusions/Significance Biological soil crusts cause an important increase in soil fertility, and are beneficial to sand fixation, although the process is rather slow. Fractal dimension proves to be a sensitive and useful index for quantifying changes in soil properties that additionally implies desertification. This study will be essential to provide a firm basis for future policy-making on optimal solutions regarding desertification control and assessment, as well as degraded ecosystem restoration in arid and semiarid regions. PMID:24516668

  11. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China.

    PubMed

    Deng, Qi; Cheng, Xiaoli; Hui, Dafeng; Zhang, Qian; Li, Ming; Zhang, Quanfa

    2016-01-15

    Afforestation may alter soil microbial community structure and function, and further affect soil carbon (C) and nitrogen (N) dynamics. Here we investigated soil microbial carbon and nitrogen (MBC and MBN) and microbial community [e.g. bacteria (B), fungi (F)] derived from phospholipid fatty acids (PLFAs) analysis in afforested (implementing woodland and shrubland plantations) and adjacent croplands in central China. Relationships of microbial properties with biotic factors [litter, fine root, soil organic carbon (SOC), total nitrogen (TN) and inorganic N], abiotic factors (soil temperature, moisture and pH), and major biological processes [basal microbial respiration, microbial metabolic quotient (qCO2), net N mineralization and nitrification] were developed. Afforested soils had higher mean MBC, MBN and MBN:TN ratios than the croplands due to an increase in litter input, but had lower MBC:SOC ratio resulting from low-quality (higher C:N ratio) litter. Afforested soils also had higher F:B ratio, which was probably attributed to higher C:N ratios in litter and soil, and shifts of soil inorganic N forms, water, pH and disturbance. Alterations in soil microbial biomass and community structure following afforestation were associated with declines in basal microbial respiration, qCO2, net N mineralization and nitrification, which likely maintained higher soil carbon and nitrogen storage and stability. PMID:26410698

  12. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China.

    PubMed

    Deng, Qi; Cheng, Xiaoli; Hui, Dafeng; Zhang, Qian; Li, Ming; Zhang, Quanfa

    2016-01-15

    Afforestation may alter soil microbial community structure and function, and further affect soil carbon (C) and nitrogen (N) dynamics. Here we investigated soil microbial carbon and nitrogen (MBC and MBN) and microbial community [e.g. bacteria (B), fungi (F)] derived from phospholipid fatty acids (PLFAs) analysis in afforested (implementing woodland and shrubland plantations) and adjacent croplands in central China. Relationships of microbial properties with biotic factors [litter, fine root, soil organic carbon (SOC), total nitrogen (TN) and inorganic N], abiotic factors (soil temperature, moisture and pH), and major biological processes [basal microbial respiration, microbial metabolic quotient (qCO2), net N mineralization and nitrification] were developed. Afforested soils had higher mean MBC, MBN and MBN:TN ratios than the croplands due to an increase in litter input, but had lower MBC:SOC ratio resulting from low-quality (higher C:N ratio) litter. Afforested soils also had higher F:B ratio, which was probably attributed to higher C:N ratios in litter and soil, and shifts of soil inorganic N forms, water, pH and disturbance. Alterations in soil microbial biomass and community structure following afforestation were associated with declines in basal microbial respiration, qCO2, net N mineralization and nitrification, which likely maintained higher soil carbon and nitrogen storage and stability.

  13. [Seasonal dynamics of soil active carbon pool in a purple paddy soil in southwest China].

    PubMed

    Wu, Yan; Jiang, Chang-sheng; Hao, Qing-ju

    2012-08-01

    The seasonal dynamics of soil organic carbon (SOC), readily oxidized carbon (ROC), dissolved organic carbon (DOC) and microbial biomass carbon (MBC) in a purple paddy soil were studied in a long-term field experimental station in Chongqing, China. The results showed that the seasonal variations of the contents of SOC, ROC and MBC had similar trends in the rape growing season. The contents were much higher in the early and late stages than in the middle stage of the rape growth. SOC, ROC and MBC all achieved the highest values of 16.20 g x kg(-1), 3.58 g x kg(-1) and 309.70 mg x kg(-1) at the end of the growing period, respectively. The seasonal change of DOC content presented as a single peak and reached to the highest value of 37.64 mg x kg(-1) at the middle stage of the rape growth. The temporal dynamics of the allocation ratios of ROC, MBC and DOC were similar to that of their contents. The allocation ratios of ROC, MBC and DOC were 15.49%-23.93%, 1.44%-2.06% and 0.11%-0.32% during the rape growing season, respectively. The influencing factors of SOC and ROC contents were the soil temperature at 5 cm soil depth, soil total nitrogen content and pH. MBC content was jointly impacted by the soil temperature at 5 cm soil depth, root biomass and its C and N contents. DOC content was mainly affected by soil moisture. PMID:23213908

  14. Soil management and carbon calculation methods influence changes in soil carbon estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Throughout the years, many studies have evaluated changes in soil organic carbon (SOC) mass on a fixed-depth (FD) basis without considering changes in soil mass caused by changing in bulk density. In two study sites, we investigated the effect of different management practices on SOC changes calcul...

  15. Evaluation of Different Soil Carbon Determination Methods

    SciTech Connect

    Chatterjee, Dr Amitava; Lal, Dr R; Wielopolski, Dr L; Martin, Madhavi Z; Ebinger, Dr Michael H

    2009-01-01

    Determining soil carbon (C) with high precision is an essential requisite for the success of the terrestrial C sequestration program. The informed choice of management practices for different terrestrial ecosystems rests upon accurately measuring the potential for C sequestration. Numerous methods are available for assessing soil C. Chemical analysis of field-collected samples using a dry combustion method is regarded as the standard method. However, conventional sampling of soil and their subsequent chemical analysis is expensive and time consuming. Furthermore, these methods are not sufficiently sensitive to identify small changes over time in response to alterations inmanagement practices or changes in land use. Presently, several different in situ analytic methods are being developed purportedly offering increased accuracy, precision and cost-effectiveness over traditional ex situ methods. We consider that, at this stage, a comparative discussion of different soil C determination methods will improve the understanding needed to develop a standard protocol.

  16. Drainage and leaching dynamics in a cropped hummocky soil landscape with erosion-affected pedogenesis

    NASA Astrophysics Data System (ADS)

    Gerke, Horst H.; Rieckh, Helene; Sommer, Michael

    2016-04-01

    Hummocky soil landscapes are characterized by 3D spatial patterns of soil types that result from erosion-affected pedogenesis. Due to tillage and water erosion, truncated profiles have been formed at steep and mid slopes and colluvial soils at hollows. Pedogenetic variations in soil horizons at the different hillslope positions suggested feedback effects between erosion affected soil properties, the water balances, and the crop growth and leaching rates. Water balance simulations compared uniform with hillslope position-specific crop and root growths for soils at plateau, flat mid slope, steep slope, and hollow using the Hydrus-1D program. The boundary condition data were monitored at the CarboZALF-D experimental field site, which was cropped with perennial lucerne (Medicago sativa L.) in 2013 and 2014. Crop and root growth was assumed proportional to observed leaf area index (LAI). Fluxes of dissolved organic and inorganic carbon (DOC, DIC) were obtained from simulated water fluxes and measured DOC and DIC concentrations. For the colluvic soil, the predominately upward flow led to a net input in DIC and DOC. For the truncated soils at steep slopes, a reduced crop growth caused an relative increase in drainage, suggesting an accelerated leaching, which in the long term could accelerate the soil development and more soil variations along eroding hillslopes in arable soil landscapes.

  17. Soil warming affects soil organic matter chemistry of all density fractions of a mountain forest soil

    NASA Astrophysics Data System (ADS)

    Schnecker, Jörg; Wanek, Wolfgang; Borken, Werner; Schindlbacher, Andreas

    2016-04-01

    Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and increase thereby the soil CO2 efflux. Elevated microbial activity might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. We here investigated the chemical and isotopic composition of bulk soil and three different density fractions of forest soils from a long term warming experiment in the Austrian Alps. At the time of sampling the soils in this experiment had been warmed during the snow-free period for 8 consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO2 release from the soil continued to be elevated by the warming treatment. Our results which included organic C content, total N content, δ13C, δ 14C, δ 15N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. The differences in the three individual fractions (free particulate organic matter, occluded particulate organic matter and mineral associated organic matter) were mostly small and the direction of warming induced change was variable with fraction and sampling depth. We did however find statistically significant effects of warming in all density fractions from 0-10 cm depth, 10-20 cm depth or both. Our results also including significant changes in the supposedly more stable mineral associated organic matter fraction where δ 13C values decreased at both sampling depths and the relative proportion of N-bearing compounds decreased at a sampling depth of 10-20 cm. All the observed changes can be attributed to an interplay of enhanced microbial decomposition of SOM and increased root litter input. This study suggests that soil warming destabilizes all density fractions of

  18. Distribution of calcium carbonate in desert soils: A model

    SciTech Connect

    Mayer, L.; McFadden, L.D.; Harden, J.W.

    1988-04-01

    A model that describes the distribution of calcium carbonate in desert soils as a function of dust flux, time, climate, and other soil-forming factors shows which factors most strongly influence the accumulation of carbonate and can be used to evaluate carbonate-based soil age estimates or paleoclimatic reconstructions. Models for late Holocene soils have produced carbonate distributions that are very similar to those of well-dated soils in New Mexico and southern California. These results suggest that (1) present climate is a fair representation of late Holocene climate, (2) carbonate dust flux can be approximated by its Holocene rate, and (3) changes in climate and/or dust flux at the end of the Pleistocene effected profound and complex changes in soil carbonate distributions. Both higher carbonate dust flux and greater effective precipitation are required during the latest Pleistocene-early Holocene to explain carbonate distributions in latest Pleistocene soils. 21 refs., 4 figs., 1 tab.

  19. Recent advances in modeling depth distribution of soil carbon storage

    NASA Astrophysics Data System (ADS)

    Mishra, U.; Shu, S.

    2015-12-01

    Depth distribution of soil carbon storage determines the sensitivity of soil carbon to environmental change. We present different approaches that have been used to represent the vertical heterogeneity of soil carbon both in mapping and modeling studies. In digital soil mapping, many studies applied exponential decay functions in soils where carbon concentration has been observed to decline with depth. Recent studies used various forms of spline functions to better represent the vertical distribution of soil carbon along with soil horizons. These studies fitted mathematical functions that described the observations and then interpolated the model coefficients using soil-forming factors and used maps of model coefficients with depth to predict the SOC storage at desired depth intervals. In general, the prediction accuracy decreased with depth and the challenge remains to find appropriate soil-forming factors that determine/explain subsurface soil variation. Models such as Century, RothC, and Terrestrial Ecosystem Model use the exponential depth distribution functions of soil carbon in their model structures. In CLM 4.5 the soil profile is partitioned into 10 layers down to 3.8 m depth and the carbon input from plant roots is assumed to decrease following an exponential function. Not accounting for soil horizons in representing biogeochemistry and the assumption of globally uniform soil depth remain major sources of uncertainty in these models. In this presentation, we will discuss the merits and demerits of using various profile depth distribution functions to represent the vertical heterogeneity of soil carbon storage.

  20. [Characteristics of soil organic carbon mineralization at different temperatures in paddy soils under long-term fertilization].

    PubMed

    Lin, Shan; Chen, Tao; Zhao, Jin-Song; Xiang, Rong-Biao; Hu, Rong-Gui; Zhang, Shui-Qing; Wang, Mi-Lan; Lu, Zhao-Qi

    2014-05-01

    Dynamics of soil organic carbon mineralization affected by long-term fertilizations and temperature in relation to different soil carbon fractions were investigated in paddy soils. Soil samples were collected from the plough layer of 3 long-term national experimental sites in Xinhua, Ningxiang and Taojiang counties of Hunan Province. Mineralization of soil organic C was estimated by 33-day aerobic incubation at different temperatures of 10, 20 and 30 degrees C. The results showed that the rates of CO2 production were higher during the earlier phase (0-13 d) in all treatments, and then decreased according to a logarithm function. Higher incubation temperature strengthened C mineralization in the different treatments. The quantities of cumulative CO2 production in NPK with manure or straw treatments were greater than in inorganic fertilizers treatments. The Q10 values in the different soil treatments ranged from 1.01-1.53. There were significantly positive correlations between the Q10 values and soil total organic carbon (TOC), easy oxidation organic carbon (EOOC), humic acid carbon (C(HA)), fulvic acid carbon (CFA). The cumulative amount of mineralized C was significantly positively correlated with microbial biomass carbon (MBC) at 10 and 20 degrees C, but not significantly at 30 degrees C. Significant correlations were found between the cumulative amount of mineralized C and different soil carbon fractions and C(HA)/C(FA). The correlations of differ- ent soil carbon fractions with the ratio of cumulative mineralized C to TOC were negatively correlated at 10 degrees C, but not significantly at 20 and 30 degrees C. These results suggested that the application of NPK with manure or straw would be helpful to increase the sequestration of C in paddy soils and reduce its contribution of CO2 release in the atmosphere. PMID:25129934

  1. [Characteristics of soil organic carbon mineralization at different temperatures in paddy soils under long-term fertilization].

    PubMed

    Lin, Shan; Chen, Tao; Zhao, Jin-Song; Xiang, Rong-Biao; Hu, Rong-Gui; Zhang, Shui-Qing; Wang, Mi-Lan; Lu, Zhao-Qi

    2014-05-01

    Dynamics of soil organic carbon mineralization affected by long-term fertilizations and temperature in relation to different soil carbon fractions were investigated in paddy soils. Soil samples were collected from the plough layer of 3 long-term national experimental sites in Xinhua, Ningxiang and Taojiang counties of Hunan Province. Mineralization of soil organic C was estimated by 33-day aerobic incubation at different temperatures of 10, 20 and 30 degrees C. The results showed that the rates of CO2 production were higher during the earlier phase (0-13 d) in all treatments, and then decreased according to a logarithm function. Higher incubation temperature strengthened C mineralization in the different treatments. The quantities of cumulative CO2 production in NPK with manure or straw treatments were greater than in inorganic fertilizers treatments. The Q10 values in the different soil treatments ranged from 1.01-1.53. There were significantly positive correlations between the Q10 values and soil total organic carbon (TOC), easy oxidation organic carbon (EOOC), humic acid carbon (C(HA)), fulvic acid carbon (CFA). The cumulative amount of mineralized C was significantly positively correlated with microbial biomass carbon (MBC) at 10 and 20 degrees C, but not significantly at 30 degrees C. Significant correlations were found between the cumulative amount of mineralized C and different soil carbon fractions and C(HA)/C(FA). The correlations of differ- ent soil carbon fractions with the ratio of cumulative mineralized C to TOC were negatively correlated at 10 degrees C, but not significantly at 20 and 30 degrees C. These results suggested that the application of NPK with manure or straw would be helpful to increase the sequestration of C in paddy soils and reduce its contribution of CO2 release in the atmosphere.

  2. Topographically-determined soil thickening explained spatial variability of soil carbon and nitrogen in Southern California grasslands

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Prentice, S., III; Tran, T.; Bingham, N.; King, J. Y.; Chadwick, O.

    2015-12-01

    At the scale of hillslopes, topography strongly regulates soil formation, affecting hillslope hydrology and biological activities. Topographic control of soil formation is particularly strong for semi-arid landscapes where soil thickening is induced by pedoturbation and soil creep. Thus, terrain attributes hold great potential for modeling full profile soil C and N stocks at the hillslope scale in these landscapes. In this study, we developed predictions of grassland soil C and N stocks using digital terrain attributes scaled to the signal of site-specific hillslope geomorphic processes. We found that soil thickness was the major control of soil organic C and N stocks and was best predicted by mean curvature. This curvature dependency of soil thickness affected prediction of organic C and N stocks because of the C and N added by taking subsoil into account. We also found that curvature was positively correlated with depth to carbonate reflecting drier soil conditions in convex hillslope positions and wetter soil conditions in concave areas. Slope aspect also had a marginal effect on soil C and N stocks; soil organic C and N stocks on the north-facing slope tended to be higher than those on the south-facing slope. We found that terrain attributes at medium resolutions (8 to 16 m) were most effective in modeling soil C and N stocks. Overall, terrain attributes explained 61% of the variation in soil thickness and 49% of the variation in soil organic C stock. Our results suggest that curvature-induced soil thickening, coupled with aspect, likely exerts a first-order control on soil organic C and N accumulation rates, and these changes occur predominantly in subsoil. Thus our data highlight the importance of subsoil in mapping soil C and N stocks and other soil properties. Our model also demonstrates how scale-driven analysis may guide soil C and N prediction in other hillslope dominated regions.

  3. Mechanisms of soil carbon storage in experimental grasslands

    NASA Astrophysics Data System (ADS)

    Steinbeiss, S.; Temperton, V. M.; Gleixner, G.

    2007-10-01

    We investigated the fate of root and litter derived carbon into soil organic matter and dissolved organic matter in soil profiles, in order to explain unexpected positive effects of plant diversity on carbon storage. A time series of soil and soil solution samples was investigated at the field site of The Jena Experiment. In addition to the main biodiversity experiment with C3 plants, a C4 species (Amaranthus retroflexus L.) naturally labeled with 13C was grown on an extra plot. Changes in organic carbon concentration in soil and soil solution were combined with stable isotope measurements to follow the fate of plant carbon into the soil and soil solution. A split plot design with plant litter removal versus double litter input simulated differences in biomass input. After 2 years, the no litter and double litter treatment, respectively, showed an increase of 381 g C m-2 and 263 g C m-2 to 20 cm depth, while 71 g C m-2 and 393 g C m-2 were lost between 20 and 30 cm depth. The isotopic label in the top 5 cm indicated that 11 and 15% of soil organic carbon were derived from plant material on the no litter and the double litter treatment, respectively. Without litter, this equals the total amount of carbon newly stored in soil, whereas with double litter this corresponds to twice the amount of stored carbon. Our results indicate that litter input resulted in lower carbon storage and larger carbon losses and consequently accelerated turnover of soil organic carbon. Isotopic evidence showed that inherited soil organic carbon was replaced by fresh plant carbon near the soil surface. Our results suggest that primarily carbon released from soil organic matter, not newly introduced plant organic matter, was transported in the soil solution and contributed to the observed carbon storage in deeper horizons.

  4. Soil water repellency affects production and transport of CO2 and CH4 in soil

    NASA Astrophysics Data System (ADS)

    Urbanek, Emilia; Qassem, Khalid

    2016-04-01

    Soil moisture is known to be vital in controlling both the production and transport of C gases in soil. Water availability regulates the decomposition rates of soil organic matter by the microorganisms, while the proportion of water/air filled pores controls the transport of gases within the soil and at the soil-atmosphere interface. Many experimental studies and process models looking at soil C gas fluxes assume that soil water is uniformly distributed and soil is easily wettable. Most soils, however, exhibit some degree of soil water repellency (i.e. hydrophobicity) and do not wet spontaneously when dry or moderately moist. They have restricted infiltration and conductivity of water, which also results in extremely heterogeneous soil water distribution. This is a world-wide occurring phenomenon which is particularly common under permanent vegetation e.g. forest, grass and shrub vegetation. This study investigates the effect of soil water repellency on microbial respiration, CO2 transport within the soil and C gas fluxes between the soil and the atmosphere. The results from the field monitoring and laboratory experiments show that soil water repellency results in non-uniform water distribution in the soil which affects the CO2 and CH4 gas fluxes. The main conclusion from the study is that water repellency not only affects the water relations in the soil, but has also a great impact on greenhouse gas production and transport and therefore should be included as an important parameter during the sites monitoring and modelling of gas fluxes.

  5. Colluvial soils as a carbon pool in different soil regions

    NASA Astrophysics Data System (ADS)

    Zádorová, Tereza; Penížek, Vít; Žížala, Daniel

    2014-05-01

    Distribution and storage of soil organic matter are controlled by various environmental factors. In areas influenced by soil erosion, the soil organic carbon (SOC) pattern is characterized by both its removal in some parts and its storage in other parts of the landscape. Colluvial soils formed by accumulation of soil sediments represent such a carbon pool. SOC stock in colluvial soils was determined and related to terrain attributes on three agricultural plots (from 7 to 30 hectares) with different soil and geologic (Cambisol, Luvisol and Chernozem) character. The analysis was also focused on differences in SOC distribution in topsoil and subsoil. The study was based on a detailed network of soil borings and deep cores. SOC content was determined in each 25 cm in entire A horizon up to the depth of 5 m. SOC density determined in each point using SOC concentration, bulk density and A horizon thickness was statistically related to various terrain attributes derived from a detailed digital elevation model. Grid of SOC density was obtained by interpolating point measurements using the terrain attributes as accessory variables; the total SOC stock was then calculated by summing the grid cells. In Chernozem and Luvisol regions, SOC stock is strongly related to the terrain character when topographic wetness index and plan curvature were the most significantly related to the distribution of SOC density. In Cambisol region, low relationship between SOC distribution and terrain attributes was observed. Thickness of A horizon is variable in the three plots: its depth reaches up to 5 meters in Chernozem region while in Luvisol and Cambisol the maximum observed thickness was 1 meter. SOC density averages from the three plots are 7.63 kg.m-2 (Cambisol), 12.06 kg.m-2 (Luvisol) and 32.28 kg.m-2 (Chernozem). SOC stock in the topsoil (0-30 cm) represents 54.5 % in Cambisol region, 43.6 % in Luvisol region and only 19.3 % in Chernozem region from the total SOC stock. This finding

  6. Accessibility, searchability, transparency and engagement of soil carbon data: The International Soil Carbon Network

    NASA Astrophysics Data System (ADS)

    Harden, Jennifer W.; Hugelius, Gustaf; Koven, Charlie; Sulman, Ben; O'Donnell, Jon; He, Yujie

    2016-04-01

    Soils are capacitors for carbon and water entering and exiting through land-atmosphere exchange. Capturing the spatiotemporal variations in soil C exchange through monitoring and modeling is difficult in part because data are reported unevenly across spatial, temporal, and management scales and in part because the unit of measure generally involves destructive harvest or non-recurrent measurements. In order to improve our fundamental basis for understanding soil C exchange, a multi-user, open source, searchable database and network of scientists has been formed. The International Soil Carbon Network (ISCN) is a self-chartered, member-based and member-owned network of scientists dedicated to soil carbon science. Attributes of the ISCN include 1) Targeted ISCN Action Groups which represent teams of motivated researchers that propose and pursue specific soil C research questions with the aim of synthesizing seminal articles regarding soil C fate. 2) Datasets to date contributed by institutions and individuals to a comprehensive, searchable open-access database that currently includes over 70,000 geolocated profiles for which soil C and other soil properties. 3) Derivative products resulting from the database, including depth attenuation attributes for C concentration and storage; C storage maps; and model-based assessments of emission/sequestration for future climate scenarios. Several examples illustrate the power of such a database and its engagement with the science community. First, a simplified, data-constrained global ecosystem model estimated a global sensitivity of permafrost soil carbon to climate change (g sensitivity) of -14 to -19 Pg C °C-1 of warming on a 100 years time scale. Second, using mathematical characterizations of depth profiles for organic carbon storage, C at the soil surface reflects Net Primary Production (NPP) and its allotment as moss or litter, while e-folding depths are correlated to rooting depth. Third, storage of deep C is highly

  7. [Responses of forest soil carbon pool and carbon cycle to the changes of carbon input].

    PubMed

    Wang, Qing-kui

    2011-04-01

    Litters and plant roots are the main sources of forest soil organic carbon (C). This paper summarized the effects of the changes in C input on the forest soil C pool and C cycle, and analyzed the effects of these changes on the total soil C, microbial biomass C, dissoluble organic C, and soil respiration. Different forests in different regions had inconsistent responses to C input change, and the effects of litter removal or addition and of root exclusion or not differed with tree species and regions. Current researches mainly focused on soil respiration and C pool fractions, and scarce were about the effects of C input change on the changes of soil carbon structure and stability as well as the response mechanisms of soil organisms especially soil fauna, which should be strengthened in the future. PMID:21774335

  8. [Responses of forest soil carbon pool and carbon cycle to the changes of carbon input].

    PubMed

    Wang, Qing-kui

    2011-04-01

    Litters and plant roots are the main sources of forest soil organic carbon (C). This paper summarized the effects of the changes in C input on the forest soil C pool and C cycle, and analyzed the effects of these changes on the total soil C, microbial biomass C, dissoluble organic C, and soil respiration. Different forests in different regions had inconsistent responses to C input change, and the effects of litter removal or addition and of root exclusion or not differed with tree species and regions. Current researches mainly focused on soil respiration and C pool fractions, and scarce were about the effects of C input change on the changes of soil carbon structure and stability as well as the response mechanisms of soil organisms especially soil fauna, which should be strengthened in the future.

  9. Permafrost carbon—climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics

    SciTech Connect

    Koven, Charles D.; Lawrence, David M.; Riley, William J.

    2015-03-09

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon–nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost region is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. The future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw.

  10. Permafrost carbon—climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics

    DOE PAGESBeta

    Koven, Charles D.; Lawrence, David M.; Riley, William J.

    2015-03-09

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon–nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost regionmore » is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. The future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw.« less

  11. Biochemical resistance of pyrogenic organic matter in fire-affected mineral soils of Southern Europe

    NASA Astrophysics Data System (ADS)

    Knicker, H.; González Vila, F. J.; Clemente Salas, L.

    2012-04-01

    Incorporated into the soil, naturally formed pyrogenic organic matter (PyOM) is considered as highly recalcitrant, but direct estimation of PyOM decomposition rates are scarce. With this aim in mind, we subjected organic matter (OM) of fire-affected and unaffected soils to biochemical degradation under laboratory conditions and monitored CO2 production over a period of seven months. The soils derived from fire affected and unaffected areas of the Sierra de Aznalcóllar and the Doñana National Park, Southern Spain. Virtual fractionation of the solid-state 13C nuclear magnetic resonance (NMR) spectra of the fire affected soils into fire-unaffected soil organic matter (SOM) and PyOM yielded charcoal C contributions of 30 to 50% to the total organic C (Corg) of the sample derived from the Aznalcóllar region. Fitting the respiration data with a double exponential decay model revealed a fast carbon flush during the first three weeks of the experiment. Solid-state 13C NMR spectroscopy evidenced the contribution of aromatic moieties of the PyOM to this initial carbon release and to the biosynthesis of new microbial biomass. The input of PyOM resulted in an increase of the mean residence time (MRT) of the slow OM pool of the soil by a factor of 3 to 4 to approximately 40 years which rises doubts rises doubts about the presumed big influence of PyOM as an additional C-sink in soils. On the other hand, although being small the difference in turnover rates is evident and has some major implication with respect to long-term alteration of the chemical composition of OM in fire-affected soils. Based on the obtained results and the analysis of PyOM in other soil systems, a conceptual model is presented which can explain the different behavior of PyOM under different soil conditions.

  12. Soil solid materials affect the kinetics of extracellular enzymatic reactions

    NASA Astrophysics Data System (ADS)

    Lammirato, C.; Miltner, A.; Kästner, M.

    2009-04-01

    INTRODUCTION Soil solid materials affect the degradation processes of many organic compounds by decreasing the bioavailability of substrates and by interacting with degraders. The magnitude of this effect in the environment is shown by the fact that xenobiotics which are readily metabolized in aquatic environments can have long residence times in soil. Extracellular enzymatic hydrolysis of cellobiose (enzyme: beta-glucosidase from Aspergillus niger) was chosen as model degradation process since it is easier to control and more reproducible than a whole cell processes. Furthermore extracellular enzymes play an important role in the environment since they are responsible for the first steps in the degradation of organic macromolecules; beta-glucosidase is key enzyme in the degradation of cellulose and therefore it is fundamental in the carbon cycle and for soil in general. The aims of the project are: 1) quantification of solid material effect on degradation, 2) separation of the effects of minerals on enzyme (adsorption →change in activity) and substrate (adsorption →change in bioavailability). Our hypothesis is that a rate reduction in the enzymatic reaction in the presence of a solid phase results from the sum of decreased bioavailability of the substrate and decreased activity of enzyme molecules. The relative contribution of the two terms to the overall effect can vary widely depending on the chemical nature of the substrate, the properties of the enzyme and on the surface properties of the solid materials. Furthermore we hypothesize that by immobilizing the enzyme in an appropriate carrier the adsorption of enzymes to soil materials can be eliminated and that therefore immobilization can increase the overall reaction rate (activity loss caused by immobilization < activity loss caused by adsorption to soil minerals). MATERIALS AND METHODS Enzymatic kinetic experiments are carried out in homogeneous liquid systems and in heterogeneous systems where solid

  13. Soil Organic Carbon Degradation, Barrow, 2013-2014

    DOE Data Explorer

    Gu, Baohua; Yang, Ziming

    2015-03-30

    This dataset provides information about soil organic carbon decomposition in Barrow soil incubation studies. The soil cores were collected from low-center polygon (Area A) and were incubated in the laboratory at different temperatures for up to 60 days. Transformations of soil organic carbon were characterized by UV and FT-IR, and small organic acids in water-soluble carbons were quantified by ion chromatography during the incubation

  14. Existing Soil Carbon Models Do Not Apply to Forested Wetlands.

    SciTech Connect

    Trettin, C C; Song, B; Jurgensen, M F; Li, C

    2001-09-14

    Evaluation of 12 widely used soil carbon models to determine applicability to wetland ecosystems. For any land area that includes wetlands, none of the individual models would produce reasonable simulations based on soil processes. Study presents a wetland soil carbon model framework based on desired attributes, the DNDC model and components of the CENTURY and WMEM models. Proposed synthesis would be appropriate when considering soil carbon dynamics at multiple spatial scales and where the land area considered includes both wetland and upland ecosystems.

  15. Importance of Iron and Soil Physicochemical Properties to Stabilize Organic Carbon in Soils

    NASA Astrophysics Data System (ADS)

    Zhao, Q.; Yang, Y.; Obrist, D.; Poulson, S.

    2015-12-01

    Global warming can potentially accelerate the decomposition of forest soil organic matter (SOM), as a source of greenhouse gas emissions. Understanding the fate of forest SOM is important for evaluating and managing the global carbon cycle during climate change. Iron minerals play an important role in stabilizing organic carbon (OC) and regulating the biogeochemical cycle in the soil environment, but there is only limited information available concerning how iron-mediated OC stabilization is affected by physicochemical properties of soil. This study investigated the behavior of iron-bound OC in soils collected from 14 forests across the United States, and the impact of soil physicochemical properties on the stabilization of OC by iron minerals. The bicarbonate-citrate-dithionite (BCD) method was used to reduce iron in soil samples, and OC content was characterized prior and after reduction to quantify iron-bound OC. We found that iron-bound OC contributed 1.2 - 57.7 weight % of total OC in forest soils. Atomic ratios of iron-bound OC:Fe ranged from 0.006 to 0.178, indicating the importance of sorptive interactions. The fraction of iron-bound OC was more closely correlated to the molar ratio of iron-bound OC:Fe than the absolute concentration of reactive iron, which is ranged from 0.08 to 19.31 mg/g. Iron-bound OC was enriched in 13C compared to the non-iron-bound SOM. There were significant correlations between the total N concentration and total or non-iron bound OC, but not with iron-bound OC. Overall, iron minerals mainly stabilize 13C-enriched non-nitrogenous OC, which was almost regulated by the sorptive association between iron and OC. Our results illustrate the importance of understanding the stabilization of OC in soil, and the coupled biogeochemical processes of carbon and iron.

  16. [Effects of different fertilizer application on soil active organic carbon].

    PubMed

    Zhang, Rui; Zhang, Gui-Long; Ji, Yan-Yan; Li, Gang; Chang, Hong; Yang, Dian-Lin

    2013-01-01

    The variation characteristics of the content and components of soil active organic carbon under different fertilizer application were investigated in samples of calcareous fluvo-aquic soil from a field experiment growing winter wheat and summer maize in rotation in the North China Plain. The results showed that RF (recommended fertilization), CF (conventional fertilization) and NPK (mineral fertilizer alone) significantly increased the content of soil dissolved organic carbon and easily oxidized organic carbon by 24.92-38.63 mg x kg(-1) and 0.94-0.58 mg x kg(-1) respectively compared to CK (unfertilized control). The soil dissolved organic carbon content under OM (organic manure) increased greater than those under NPK and single fertilization, soil easily oxidized organic carbon content under OM and NPK increased greater than that under single chemical fertilization. OM and NPK showed no significant role in promoting the soil microbial biomass carbon, but combined application of OM and NPK significantly increased the soil microbial biomass carbon content by 36.06% and 20.69%, respectively. Soil easily oxidized organic carbon, dissolved organic carbon and microbial biomass carbon accounted for 8.41% - 14.83%, 0.47% - 0.70% and 0.89% - 1.20% of the total organic carbon (TOC), respectively. According to the results, the fertilizer application significantly increased the proportion of soil dissolved organic carbon and easily oxidized organic carbon, but there was no significant difference in the increasing extent of dissolved organic carbon. The RF and CF increased the proportion of soil easily oxidized organic carbon greater than OM or NPK, and significantly increased the proportion of microbial biomass carbon. OM or RF had no significant effect on the proportion of microbial biomass carbon. Therefore, in the field experiment, appropriate application of organic manure and chemical fertilizers played an important role for the increase of soil active organic carbon

  17. [Effects of different fertilizer application on soil active organic carbon].

    PubMed

    Zhang, Rui; Zhang, Gui-Long; Ji, Yan-Yan; Li, Gang; Chang, Hong; Yang, Dian-Lin

    2013-01-01

    The variation characteristics of the content and components of soil active organic carbon under different fertilizer application were investigated in samples of calcareous fluvo-aquic soil from a field experiment growing winter wheat and summer maize in rotation in the North China Plain. The results showed that RF (recommended fertilization), CF (conventional fertilization) and NPK (mineral fertilizer alone) significantly increased the content of soil dissolved organic carbon and easily oxidized organic carbon by 24.92-38.63 mg x kg(-1) and 0.94-0.58 mg x kg(-1) respectively compared to CK (unfertilized control). The soil dissolved organic carbon content under OM (organic manure) increased greater than those under NPK and single fertilization, soil easily oxidized organic carbon content under OM and NPK increased greater than that under single chemical fertilization. OM and NPK showed no significant role in promoting the soil microbial biomass carbon, but combined application of OM and NPK significantly increased the soil microbial biomass carbon content by 36.06% and 20.69%, respectively. Soil easily oxidized organic carbon, dissolved organic carbon and microbial biomass carbon accounted for 8.41% - 14.83%, 0.47% - 0.70% and 0.89% - 1.20% of the total organic carbon (TOC), respectively. According to the results, the fertilizer application significantly increased the proportion of soil dissolved organic carbon and easily oxidized organic carbon, but there was no significant difference in the increasing extent of dissolved organic carbon. The RF and CF increased the proportion of soil easily oxidized organic carbon greater than OM or NPK, and significantly increased the proportion of microbial biomass carbon. OM or RF had no significant effect on the proportion of microbial biomass carbon. Therefore, in the field experiment, appropriate application of organic manure and chemical fertilizers played an important role for the increase of soil active organic carbon

  18. Carbon black retention in saturated natural soils: Effects of flow conditions, soil surface roughness and soil organic matter.

    PubMed

    Lohwacharin, J; Takizawa, S; Punyapalakul, P

    2015-10-01

    We evaluated factors affecting the transport, retention, and re-entrainment of carbon black nanoparticles (nCBs) in two saturated natural soils under different flow conditions and input concentrations using the two-site transport model and Kelvin probe force microscopy (KPFM). Soil organic matter (SOM) was found to create unfavorable conditions for the retention. Despite an increased flow velocity, the relative stability of the estimated maximum retention capacity in soils may suggest that flow-induced shear stress forces were insufficient to detach nCB. The KPFM observation revealed that nCBs were retained at the grain boundary and on surface roughness, which brought about substantial discrepancy between theoretically-derived attachment efficiency factors and the ones obtained by the experiments using the two-site transport model. Thus, decreasing ionic strength and increasing solution pH caused re-entrainment of only a small fraction of retained nCB in the soil columns.

  19. Simulation of salinity effects on past, present, and future soil organic carbon stocks.

    PubMed

    Setia, Raj; Smith, Pete; Marschner, Petra; Gottschalk, Pia; Baldock, Jeff; Verma, Vipan; Setia, Deepika; Smith, Jo

    2012-02-01

    Soil organic carbon (SOC) models are used to predict changes in SOC stocks and carbon dioxide (CO(2)) emissions from soils, and have been successfully validated for non-saline soils. However, SOC models have not been developed to simulate SOC turnover in saline soils. Due to the large extent of salt-affected areas in the world, it is important to correctly predict SOC dynamics in salt-affected soils. To close this knowledge gap, we modified the Rothamsted Carbon Model (RothC) to simulate SOC turnover in salt-affected soils, using data from non-salt-affected and salt-affected soils in two agricultural regions in India (120 soils) and in Australia (160 soils). Recently we developed a decomposition rate modifier based on an incubation study of a subset of these soils. In the present study, we introduce a new method to estimate the past losses of SOC due to salinity and show how salinity affects future SOC stocks on a regional scale. Because salinity decreases decomposition rates, simulations using the decomposition rate modifier for salinity suggest an accumulation of SOC. However, if the plant inputs are also adjusted to reflect reduced plant growth under saline conditions, the simulations show a significant loss of soil carbon in the past due to salinization, with a higher average loss of SOC in Australian soils (55 t C ha(-1)) than in Indian soils (31 t C ha(-1)). There was a significant negative correlation (p < 0.05) between SOC loss and osmotic potential. Simulations of future SOC stocks with the decomposition rate modifier and the plant input modifier indicate a greater decrease in SOC in saline than in non-saline soils under future climate. The simulations of past losses of SOC due to salinity were repeated using either measured charcoal-C or the inert organic matter predicted by the Falloon et al. equation to determine how much deviation from the Falloon et al. equation affects the amount of plant inputs generated by the model for the soils used in this study

  20. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation.

    PubMed

    Wiesmeier, Martin; Hübner, Rico; Spörlein, Peter; Geuß, Uwe; Hangen, Edzard; Reischl, Arthur; Schilling, Bernd; von Lützow, Margit; Kögel-Knabner, Ingrid

    2014-02-01

    Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long-term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse-textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2 -equivalents could theoretically be stored in A horizons of cultivated soils - four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity.

  1. The chemistry of salt-affected soils and waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the chemistry of salt affected soils and waters is necessary for management of irrigation in arid and semi-arid regions. In this chapter we review the origin of salts in the landscape, the major chemical reactions necessary for prediction of the soil solution composition, and the use of...

  2. Litter contribution to soil organic carbon in the agriculture abandons processes

    NASA Astrophysics Data System (ADS)

    Novara, Agata; Francaviglia, Dario; La Mantia, tommaso; Gristina, Luciano; La Bella, Salvatore; Tuttolomondo, Teresa

    2015-04-01

    Mechanisms of litter decomposition, translocation and stabilization into soil layers are fundamental processes in ecosystem functioning as it regulates the cycle of soil organic matter (SOM), CO2 emission into the atmosphere, carbon sequestration into the soil. In this study, it was investigated the contribution of litters of different stages of Mediterranean secondary succession on Carbon sequestration, analyzing the role of earthworms on translocation of SOM into soil profile. For this purpose δ13C difference between meadow C4-C soil and C3-C litter were used in a field experiment. Four undisturbed litters of different stages of succession were collected (45, 70, 100 and 120 since agriculture abandon) and placed on the top of isolated soil cores. The litter contribution to C stock was affected by plant species and increased with the age of the stage of secondary succession. The soil organic carbon after 1 year since litter position increased up to 40% in comparison to no litter treatment in soil with litter of 120 years since abandon. The new carbon derived from C3-litter was decomposed and transferred into soil profile thanks to earthworms and dissolved organic carbon leaching. After 1 years the carbon increase attributed to earthworm activity ranged from 6% to 13% in soil under litter in field abandoned since 120 and 45 years, respectively.

  3. [Diversity of carbon source metabolism of microbial community in farmland soils in an arsenic mining area].

    PubMed

    Hua, Jian-Feng; Lin, Xiang-Gui; Jiang, Qian; Zhang, Hua-Yong; Chen, Qian; Yin, Yun-Long

    2013-02-01

    By using Biolog technique, this paper studied the diversity of carbon source metabolism of microbial community in three farmland soils with different levels of arsenic (As) in an As mining area, and the relationships between the diversity of the carbon source metabolism and the main soil chemical properties. The total N (TN), total P (TP), total K (TK), organic matter (OM), total Cu, and total Zn contents in the three soils were in the order of medium level As > high level As > low level As. The average well color development (AWCD), Shannon index (H'), Simpson index (D), and McIntosh index (U) of soil microbes were significantly higher in the soils with medium and high levels As than in the soil with low level As. The principal component analysis and the fingerprints of the physiological carbon metabolism of the microbial community in the three soils demonstrated that the microbes in the soils with medium and high levels As had a significantly higher (P<0. 05) utilization rate in carbohydrates and amino acids than the microbes in the soil with low level As. The correlation analysis showed that the AWCD, H', D, and U were significantly positively correlated with the contents of soil TN, TP, OM, total As, total Cu, total Pb, and total Zn (P<0.05), and the canonical correspondence analysis revealed that soil TP, OM, total Pb, total Zn, TN, and pH rather than soil total As were the main soil chemical properties affecting the carbon source metabolism of soil microbial community. It was considered that soil nutrients could be the main factors affecting the community structure and functions of soil microbes in long-term contaminated soils.

  4. How does hillslope position control carbon fluxes from peat soils?

    NASA Astrophysics Data System (ADS)

    Boothroyd, I.; Worrall, F.; Allott, T.

    2012-04-01

    Peatlands represent a significant terrestrial carbon stock, with an estimated 445.69 Gtonnes of carbon stored globally (Joosten 2009). In the UK, peatlands are estimated to store 1.75 Gtonnes of carbon (Joosten 2009), yet most of the upland blanket bogs that dominate peatland forms in the UK are in a damaged condition from erosion or land management practices. As such they could be releasing carbon and their restoration could be of benefit to the UK government in terms of climate change mitigation targets through the benefits of avoided carbon losses. In order to realise any possible benefit of management intervention upon peatlands accurate carbon budget models are required to assess the carbon balance of peatlands. To reduce uncertainty in model output a greater understanding of peatland function is required (Ostle et al., 2009). As part of this, topographical and hydrological controls need to be characterised in more detail. Landscape scale features such as gullies (McNamara et al., 2008) and drainage ditches (Wallage et al., 2006; Gibson et al., 2009) have been shown to affect carbon fluxes from peatlands, but slope position and its role on carbon fluxes has not yet been considered. A 12 month field study was carried out from June 2010 - June 2011 in the Peak District, UK, to assess the role that hillslope position has upon carbon flux from peat soils. Changes in hydrology, carbon dioxide flux and dissolved organic carbon (DOC) concentration across four hillslope positions: topslope, upper midslope, lower midslope and bottomslope were observed. Results showed that there was a significant slope effect for both DOC and CO2 effluxes but that the effect upon CO2 was explained by changes in the depth to the water table across the slope.

  5. Biophysical properties as determinants for soil organic carbon and total nitrogen in grassland salinization.

    PubMed

    Pan, Chengchen; Zhao, Halin; Zhao, Xueyong; Han, Huibang; Wang, Yan; Li, Jin

    2013-01-01

    Grassland salinization causes considerable changes to soil and vegetation, which can lead to changes in soil organic carbon (C) and total nitrogen (N). These changes have complex causal relationships. A significant correlation between soil organic C and total N and any soil or vegetation property does not necessarily imply a significant direct effect of the property on soil organic C and total N. In this study, a field survey was conducted to investigate the changes in soil organic C and total N in grassland along a salinity gradient in Hexi corridor, China, and the direct and indirect effects of soil and vegetation properties on both stocks were quantified using a path analysis approach. Significant decrease in soil organic C and total N contents were observed with increasing salinity. Both had significant positive correlations with the Normalized Difference Vegetation Index (NDVI), soil water, and fine particles (silt+clay) content (p<0.01) and significant negative correlations with soil EC, and sand content (p<0.01). NDVI, fine particles content and soil water content had positive direct effects on soil organic C and total N stocks. Soil EC affected soil organic C and total N stocks mainly through its indirect negative effect on NDVI, soil texture, and water content. NDVI, soil texture, and moisture also indirectly affected soil organic C and total N stocks via changes in each other. These indirect effects augmented each other, although in some cases indirect effects worked in opposing directions.

  6. Biophysical Properties as Determinants for Soil Organic Carbon and Total Nitrogen in Grassland Salinization

    PubMed Central

    Pan, Chengchen; Zhao, Halin; Zhao, Xueyong; Han, Huibang; Wang, Yan; Li, Jin

    2013-01-01

    Grassland salinization causes considerable changes to soil and vegetation, which can lead to changes in soil organic carbon (C) and total nitrogen (N). These changes have complex causal relationships. A significant correlation between soil organic C and total N and any soil or vegetation property does not necessarily imply a significant direct effect of the property on soil organic C and total N. In this study, a field survey was conducted to investigate the changes in soil organic C and total N in grassland along a salinity gradient in Hexi corridor, China, and the direct and indirect effects of soil and vegetation properties on both stocks were quantified using a path analysis approach. Significant decrease in soil organic C and total N contents were observed with increasing salinity. Both had significant positive correlations with the Normalized Difference Vegetation Index (NDVI), soil water, and fine particles (silt+clay) content (p<0.01) and significant negative correlations with soil EC, and sand content (p<0.01). NDVI, fine particles content and soil water content had positive direct effects on soil organic C and total N stocks. Soil EC affected soil organic C and total N stocks mainly through its indirect negative effect on NDVI, soil texture, and water content. NDVI, soil texture, and moisture also indirectly affected soil organic C and total N stocks via changes in each other. These indirect effects augmented each other, although in some cases indirect effects worked in opposing directions. PMID:23372776

  7. Elevated carbon dioxide does not offset loss of soil carbon from a corn-soybean agroecosystem.

    SciTech Connect

    Moran, K. K.; Jastrow, J. D.; Biosciences Division

    2010-04-01

    The potential for storing additional C in U.S. Corn Belt soils - to offset rising atmospheric [CO{sub 2}] - is large. Long-term cultivation has depleted substantial soil organic matter (SOM) stocks that once existed in the region's native ecosystems. In central Illinois, free-air CO{sub 2} enrichment technology was used to investigate the effects of elevated [CO{sub 2}] on SOM pools in a conservation tilled corn-soybean rotation. After 5 and 6 y of CO{sub 2} enrichment, we investigated the distribution of C and N among soil fractions with varying ability to protect SOM from rapid decomposition. None of the isolated C or N pools, or bulk-soil C or N, was affected by CO{sub 2} treatment. However, the site has lost soil C and N, largely from unprotected pools, regardless of CO{sub 2} treatment since the experiment began. These findings suggest management practices have affected soil C and N stocks and dynamics more than the increased inputs from CO{sub 2}-stimulated photosynthesis. Soil carbon from microaggregate-protected and unprotected fractions decreased in a conservation tilled corn-soybean rotation despite increases in primary production from exposure to atmospheric CO{sub 2} enrichment.

  8. Analyzing carbon losses from dry soils after precipitation pulses by stable carbon isotopes

    NASA Astrophysics Data System (ADS)

    Unger, Stephan; Máguas, Cristina; Santos-Pereira, João.; Werner, Christiane

    2010-05-01

    Rain events after drought periods strongly increase soil respiration (Birch effect) and affect plant activity, and thus, may influence the isotopic signal of ecosystem respiration. These CO2-pulses may largely affect the C-balance of arid and semi-arid systems. Here, we evaluate the origins of the Birch effect in a Mediterranean forest and its influence on the isotopic signal of ecosystem (δ13CR) and soil respiration (δ13CSoil). We conducted artificial rain pulses in May and August 2005 and estimated δ13CSoil on intact vegetation, bare and root-free soil in response to watering. After watering in May δ13CSoil showed strong enrichment (-18) and a rapid return to initial values (-27). This transient enrichment was smaller in August than in May (ca. -22). Further, we compared δ13CR and δ13CSoil after first natural rains in October 2005, where both revealed a good relationship over the diurnal and the fortnight cycle. We hypothesize that the 'Birch effect' immediately after irrigation is the result of a hypo-osmotic stress response of the soil microbial community: during sudden moisture changes enriched osmoregulants are rapidly released and mineralized by the soil microbes to avoid cell lysis. After the pulse soil respiration followed a common moisture response. The overall impact of the Birch effect on C-sequestration will depend on both timing and frequency of the rains and thus, on whether the respired CO2 source is microbial or soil organic matter carbon.

  9. Ecological soil quality affected by land use and management on semi-arid Crete

    NASA Astrophysics Data System (ADS)

    van Leeuwen, J. P.; Moraetis, D.; Lair, G. J.; Bloem, J.; Nikolaidis, N. P.; Hemerik, L.; de Ruiter, P. C.

    2015-03-01

    Land use and soil management practice can have strong effects on soil quality, defined in terms of soil fertility, carbon sequestration and conservation of biodiversity. In this study, we investigate whether ecological soil quality parameters are adequate to assess soil quality under harsh conditions, and are able to reflect different land uses and intensities of soil management practices. We selected three sites as main representatives for the dominant types of land use in the region: an intensively cultivated olive orchard (annually tilled), an extensively used olive orchard (not tilled) and a heavily grazed pasture site in the Koiliaris catchment (Crete/Greece). Soil quality was analysed using an ecosystem approach, studying soil biological properties such as soil organism biomass and activity, and taxonomic diversity of soil microarthropods, in connection to abiotic soil parameters, including soil organic matter contents, and soil aggregate stability. The intensively cultivated olive orchard had a much lower aggregate water stability than the extensive olive orchard and the pasture. Contents of soil organic C and N were higher in the extensively used olive orchard than in the intensively cultivated orchard, with intermediate concentrations in the pasture. This was mainly caused by the highest input of organic matter, combined with the lowest organic matter decomposition rate. Soil organism biomasses in all sites were relatively low compared to values reported from less harsh systems, while microarthropod richness was highest in the pasture compared to both the intensive and extensive olive orchards. From the present results we conclude that microarthropod taxonomic richness is a very useful indicator for ecological soil quality, because it is not only able to separate harsh sites from other systems, but it is also sensitive enough to show differences between land management practices under harsh conditions. Microbial biomass and especially microarthropod

  10. Soil-carbon response to warming dependent on microbial physiology

    NASA Astrophysics Data System (ADS)

    Allison, Steven D.; Wallenstein, Matthew D.; Bradford, Mark A.

    2010-05-01

    Most ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon, producing a positive feedback to rising global temperatures. Although field experiments document an initial increase in the loss of CO2 from soils in response to warming, in line with these predictions, the carbon dioxide loss from soils tends to decline to control levels within a few years. This attenuation response could result from changes in microbial physiological properties with increasing temperature, such as a decline in the fraction of assimilated carbon that is allocated to growth, termed carbon-use efficiency. Here we explore these mechanisms using a microbial-enzyme model to simulate the responses of soil carbon to warming by 5∘C. We find that declines in microbial biomass and degradative enzymes can explain the observed attenuation of soil-carbon emissions in response to warming. Specifically, reduced carbon-use efficiency limits the biomass of microbial decomposers and mitigates the loss of soil carbon. However, microbial adaptation or a change in microbial communities could lead to an upward adjustment of the efficiency of carbon use, counteracting the decline in microbial biomass and accelerating soil-carbon loss. We conclude that the soil-carbon response to climate warming depends on the efficiency of soil microbes in using carbon.

  11. Review and model-based analysis of factors influencing soil carbon sequestration beneath switchgrass (Panicum virgatum)

    SciTech Connect

    Garten Jr, Charles T

    2012-01-01

    Abstract. A simple, multi-compartment model was developed to predict soil carbon sequestration beneath switchgrass (Panicum virgatum) plantations in the southeastern United States. Soil carbon sequestration is an important component of sustainable switchgrass production for bioenergy because soil organic matter promotes water retention, nutrient supply, and soil properties that minimize erosion. A literature review was included for the purpose of model parameterization and five model-based experiments were conducted to predict how changes in environment (temperature) or crop management (cultivar, fertilization, and harvest efficiency) might affect soil carbon storage and nitrogen losses. Predictions of soil carbon sequestration were most sensitive to changes in annual biomass production, the ratio of belowground to aboveground biomass production, and temperature. Predictions of ecosystem nitrogen loss were most sensitive to changes in annual biomass production, the soil C/N ratio, and nitrogen remobilization efficiency (i.e., nitrogen cycling within the plant). Model-based experiments indicated that 1) soil carbon sequestration can be highly site specific depending on initial soil carbon stocks, temperature, and the amount of annual nitrogen fertilization, 2) response curves describing switchgrass yield as a function of annual nitrogen fertilization were important to model predictions, 3) plant improvements leading to greater belowground partitioning of biomass could increase soil carbon sequestration, 4) improvements in harvest efficiency have no indicated effects on soil carbon and nitrogen, but improve cumulative biomass yield, and 5) plant improvements that reduce organic matter decomposition rates could also increase soil carbon sequestration, even though the latter may not be consistent with desired improvements in plant tissue chemistry to maximize yields of cellulosic ethanol.

  12. Fresh carbon input differentially impacts soil carbon decomposition across natural and managed systems.

    PubMed

    Luo, Zhongkui; Wang, Enli; Smith, Chris

    2015-10-01

    The amount of fresh carbon input into soil is experiencing substantial changes under global change. It is unclear what will be the consequences of such input changes on native soil carbon decomposition across ecosystems. By synthesizing data from 143 experimental comparisons, we show that, on average, fresh carbon input stimulates soil carbon decomposition by 14%. The response was lower in forest soils (1%) compared with soils from other ecosystems (> 24%), and higher following inputs of plant residue-like substrates (31%) compared to root exudate-like substrates (9%). The responses decrease with the baseline soil carbon decomposition rate under no additional carbon input, but increase with the fresh carbon input rate. The rates of these changes vary significantly across ecosystems and with the carbon substrates being added. These findings can be applied to provide robust estimates of soil carbon balance across ecosystems under changing aboveground and belowground inputs as consequence of climate and land management changes.

  13. Methane and carbon dioxide dynamics in wetland mesocosms: effects of hydrology and soils.

    PubMed

    Altor, Anne E; Mitsch, William J

    2008-07-01

    Methane and carbon dioxide fluxes in created and restored wetlands, and the influence of hydrology and soils on these fluxes, have not been extensively documented. Minimizing methane fluxes while maximizing productivity is a relevant goal for wetland restoration and creation projects. In this study we used replicated wetland mesocosms to investigate relationships between contrasting hydrologic and soil conditions, and methane and carbon dioxide fluxes in emergent marsh systems. Hydrologic treatments consisted of an intermittent flooding regime vs. continuously inundated conditions, and soil treatments utilized hydric vs. non-hydric soils. Diurnal patterns of methane flux were examined to shed light on the relationship between emergent macrophytes and methane emissions for comparison with vegetation-methane relationships reported from natural wetlands. Microbially available organic carbon content was significantly greater in hydric soils than nonhydric soils, despite similar organic matter contents in the contrasting soil types. Mesocosms with hydric soils exhibited the greatest rates of methane flux regardless of hydrology, but intermittent inundation of hydric soils produced significantly lower methane fluxes than continuous inundatation of hydric soils. Methane fluxes were not affected significantly by hydrologic regime in mesocosms containing non-hydric soils. There were no diurnal differences in methane flux, and carbon dioxide and methane fluxes were not significantly correlated. The highest rates of CO2 uptake occurred in the continuously inundated treatment with non-hydric soils, and there were no significant differences in nighttime respiration rates between the treatments. Implications for hydrologic design of created and restored wetlands are discussed.

  14. Digital map of salt-affected soils of Khakassia

    NASA Astrophysics Data System (ADS)

    Chernousenko, G. I.; Kalinina, N. V.; Rukhovich, D. I.; Koroleva, P. V.

    2012-11-01

    A new methodological approach aimed at the creation and correction of digital soil maps on the basis of systematized and georeferenced available cartographic and attribute information arranged into a GIS project has been tested. The particular stages and methods of the creation of a digital map of salt-affected soils of Khakassia with the use of GIS technologies in the ArcInfo format are described. All the available cartographic materials, including the Soils of Russia GIS project, digital elevation models, remote sensing data, and analytical data on 82 soil pits (including the authors' materials and previously published data), have been used for the creation of this new map.

  15. Biochar pyrolyzed at two temperatures affects Escherichia coli transport through a sandy soil.

    PubMed

    Bolster, Carl H; Abit, Sergio M

    2012-01-01

    The incorporation of biochar into soils has been proposed as a means to sequester carbon from the atmosphere. An added environmental benefit is that biochar has also been shown to increase soil retention of nutrients, heavy metals, and pesticides. The goal of this study was to evaluate whether biochar amendments affect the transport of Escherichia coli through a water-saturated soil. We looked at the transport of three E. coli isolates through 10-cm columns packed with a fine sandy soil amended with 2 or 10% (w/w) poultry litter biochar pyrolyzed at 350 or 700°C. For all three isolates, mixing the high-temperature biochar at a rate of 2% into the soil had no impact on transport behavior. When added at a rate of 10%, a reduction of five orders of magnitude in the amount of E. coli transported through the soil was observed for two of the isolates, and a 60% reduction was observed for the third isolate. Mixing the low-temperature biochar into the soil resulted in enhanced transport through the soil for two of the isolates, whereas no significant differences in transport behavior were observed between the low-temperature and high-temperature biochar amendments for one isolate. Our results show that the addition of biochar can affect the retention and transport behavior of E. coli and that biochar application rate, biochar pyrolysis temperature, and bacterial surface characteristics were important factors determining the transport of E. coli through our test soil. PMID:22218181

  16. Nanoscale Interactions between Engineered Nanomaterials and Black Carbon (Biochar) in Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An understanding of the interactions between engineered nanomaterials (NMs) and soil constituents, and a comprehension of how these interactions may affect biological uptake and toxicity are currently lacking. Charcoal black carbon is a normal constituent of soils due to fire history, and can be pre...

  17. Soil carbon dioxide fluxes in relation to physical properties as influenced by management practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among greenhouse gases, carbon dioxide (CO2) is one of the most significant contributors to regional and global warming as well as climatic change. However, CO2 flux from the soil surface to the atmosphere can be affected by modifications in soil physical properties resulting from changes in land ma...

  18. Modelling carbon and nitrogen turnover in variably saturated soils

    NASA Astrophysics Data System (ADS)

    Batlle-Aguilar, J.; Brovelli, A.; Porporato, A.; Barry, D. A.

    2009-04-01

    Natural ecosystems provide services such as ameliorating the impacts of deleterious human activities on both surface and groundwater. For example, several studies have shown that a healthy riparian ecosystem can reduce the nutrient loading of agricultural wastewater, thus protecting the receiving surface water body. As a result, in order to develop better protection strategies and/or restore natural conditions, there is a growing interest in understanding ecosystem functioning, including feedbacks and nonlinearities. Biogeochemical transformations in soils are heavily influenced by microbial decomposition of soil organic matter. Carbon and nutrient cycles are in turn strongly sensitive to environmental conditions, and primarily to soil moisture and temperature. These two physical variables affect the reaction rates of almost all soil biogeochemical transformations, including microbial and fungal activity, nutrient uptake and release from plants, etc. Soil water saturation and temperature are not constants, but vary both in space and time, thus further complicating the picture. In order to interpret field experiments and elucidate the different mechanisms taking place, numerical tools are beneficial. In this work we developed a 3D numerical reactive-transport model as an aid in the investigation the complex physical, chemical and biological interactions occurring in soils. The new code couples the USGS models (MODFLOW 2000-VSF, MT3DMS and PHREEQC) using an operator-splitting algorithm, and is a further development an existing reactive/density-dependent flow model PHWAT. The model was tested using simplified test cases. Following verification, a process-based biogeochemical reaction network describing the turnover of carbon and nitrogen in soils was implemented. Using this tool, we investigated the coupled effect of moisture content and temperature fluctuations on nitrogen and organic matter cycling in the riparian zone, in order to help understand the relative

  19. Soil carbon sequestration in semi-arid soil through the addition of fuel gas desulfurization gypsum (FGDG)

    NASA Astrophysics Data System (ADS)

    Han, Young-Soo; Tokunaga, Tetsu; Oh, Chamteut

    2014-05-01

    This study investigated a new strategy for increasing carbon retention in slightly alkaline soils through addition of fuel gas desulfurization gypsum (FGDG, CaSO4•2H2O). FGDG is moderately soluble and thus the FGDG amendment may be effective to reduce microbial respiration, to accelerate calcite (CaCO3) precipitation, and to promote soil organic carbon (SOC) complexation on mineral surfaces, but rates of these processes need to be understood. The effects of FGDG addition were tested in laboratory soil columns with and without FGDG-amended layers, and in greenhouse soil columns planted with switchgrass, a biofuel crop. The results of laboratory column experiments demonstrated that additions of FGDG promote soil carbon sequestration through suppressing microbial respiration to the extent of ~200 g per m2 soil per m of supplied water, and promoting calcite precipitation at similar rates. The greenhouse experiments showed that the FGDG treatments did not adversely affect biomass yield (~600 g dry biomass/m2/harvest) at the higher irrigation rate (50 cm/year), but substantially reduced recoverable biomass under the more water-limited conditions (irrigation rate = 20 cm/year). The main achievements of this study are (1) the identification of conditions in which inorganic and organic carbon sequestration is practical in semi-arid and arid soils, (2) development of a method for measuring the total carbon balance in unsaturated soil columns, and (3) the quantification of different pathways for soil carbon sequestration in response to FGDG amendments. These findings provide information for evaluating land use practices for increased soil carbon sequestration under semi-arid region biofuel crop production.

  20. Evaluation of a model framework to estimate soil and soil organic carbon redistribution by water and tillage using 137Cs in two U.S Midwest agricultural fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated lands in the U.S. Midwest have been affected by soil erosion causing environmental and agricultural problems, including the redistribution of soil organic carbon (SOC) in the landscape. However, the importance of SOC redistribution on soil productivity and crop yield is still uncertain. I...

  1. [Vertical distribution of soil active carbon and soil organic carbon storage under different forest types in the Qinling Mountains].

    PubMed

    Wang, Di; Geng, Zeng-Chao; She, Diao; He, Wen-Xiang; Hou, Lin

    2014-06-01

    Adopting field investigation and indoor analysis methods, the distribution patterns of soil active carbon and soil carbon storage in the soil profiles of Quercus aliena var. acuteserrata (Matoutan Forest, I), Pinus tabuliformis (II), Pinus armandii (III), pine-oak mixed forest (IV), Picea asperata (V), and Quercus aliena var. acuteserrata (Xinjiashan Forest, VI) of Qinling Mountains were studied in August 2013. The results showed that soil organic carbon (SOC), microbial biomass carbon (MBC), dissolved organic carbon (DOC), and easily oxidizable carbon (EOC) decreased with the increase of soil depth along the different forest soil profiles. The SOC and DOC contents of different depths along the soil profiles of P. asperata and pine-oak mixed forest were higher than in the other studied forest soils, and the order of the mean SOC and DOC along the different soil profiles was V > IV > I > II > III > VI. The contents of soil MBC of the different forest soil profiles were 71.25-710.05 mg x kg(-1), with a content sequence of I > V > N > III > II > VI. The content of EOC along the whole soil profile of pine-oak mixed forest had a largest decline, and the order of the mean EOC was IV > V> I > II > III > VI. The sequence of soil organic carbon storage of the 0-60 cm soil layer was V > I >IV > III > VI > II. The MBC, DOC and EOC contents of the different forest soils were significanty correlated to each other. There was significant positive correlation among soil active carbon and TOC, TN. Meanwhile, there was no significant correlation between soil active carbon and other soil basic physicochemical properties.

  2. Carbon Dynamics in Vegetation and Soils

    NASA Technical Reports Server (NTRS)

    Trumbore, Susan; Chambers, Jeffrey Q.; Camargo, Plinio; Martinelli, Luiz; Santos, Joaquim

    2005-01-01

    The overall goals of CD-08 team in Phase I were to quantify the contributions of different components of the carbon cycle to overall ecosystem carbon balance in Amazonian tropical forests and to undertake process studies at a number of sites along the eastern LBA transect to understand how and why these fluxes vary with site, season, and year. We divided this work into a number of specific tasks: (1) determining the average rate (and variability) of tree growth over the past 3 decades; (2) determining age demographics of tree populations, using radiocarbon to determine tree age; (3) assessing the rate of production and decomposition of dead wood debris; (4) determining turnover rates for organic matter in soils and the mean age of C respired from soil using radiocarbon measurements; and (5) comparing our results with models and constructing models to predict the potential of tropical forests to function as sources or sinks of C. This report summarizes the considerable progress made towards our original goals, which have led to increased understanding of the potential for central Amazon forests to act as sources or sinks of carbon with altered productivity. The overall picture of tropical forest C dynamics emerging from our Phase I studies suggests that the fraction of gross primary production allocated to growth in these forests is only 25-30%, as opposed to the 50% assumed by many ecosystem models. Consequent slow tree growth rates mean greater mean tree age for a given diameter, as reflected in our measurements and models of tree age. Radiocarbon measurements in leaf and root litter suggest that carbon stays in living tree biomass for several years up to a decade before being added to soils, where decomposition is rapid. The time lags predicted from 14C, when coupled with climate variation on similar time scales, can lead to significant interannual variation in net ecosystem C exchange.

  3. Effectiveness of compost use in salt-affected soil.

    PubMed

    Lakhdar, Abdelbasset; Rabhi, Mokded; Ghnaya, Tahar; Montemurro, Francesco; Jedidi, Naceur; Abdelly, Chedly

    2009-11-15

    Soil degradation and salinization are two of the utmost threat affecting agricultural areas, derived from the increasing use of low quality water and inappropriate cultural practices. The problem of low productivity of saline soils may be ascribed not only to their salt toxicity or damage caused by excess amounts of soluble salts but also arising from the lack of organic matter and available mineral nutrients especially N, P, and K. Concerns about salinization risk and environmental quality and productivity of agro-ecosystems have emphasized the need to develop management practices that maintain soil resources. Composted municipal solid waste (MSW) was commonly used to enhance soil productivity in the agricultural lands and rebuild fertility. However, their application could be also a promising alternative to alleviate the adverse effects caused by soil salinization. MSW compost, with high organic matter content and low concentrations of inorganic and organic pollutants allow an improvement of physical, chemical and biochemical characteristics and constitute low cost soil recovery.

  4. Benchmarking the inelastic neutron scattering soil carbon method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The herein described inelastic neutron scattering (INS) method of measuring soil carbon was based on a new procedure for extracting the net carbon signal (NCS) from the measured gamma spectra and determination of the average carbon weight percent (AvgCw%) in the upper soil layer (~8 cm). The NCS ext...

  5. Combining Soil Databases for Topsoil Organic Carbon Mapping in Europe.

    PubMed

    Aksoy, Ece; Yigini, Yusuf; Montanarella, Luca

    2016-01-01

    Accuracy in assessing the distribution of soil organic carbon (SOC) is an important issue because of playing key roles in the functions of both natural ecosystems and agricultural systems. There are several studies in the literature with the aim of finding the best method to assess and map the distribution of SOC content for Europe. Therefore this study aims searching for another aspect of this issue by looking to the performances of using aggregated soil samples coming from different studies and land-uses. The total number of the soil samples in this study was 23,835 and they're collected from the "Land Use/Cover Area frame Statistical Survey" (LUCAS) Project (samples from agricultural soil), BioSoil Project (samples from forest soil), and "Soil Transformations in European Catchments" (SoilTrEC) Project (samples from local soil data coming from six different critical zone observatories (CZOs) in Europe). Moreover, 15 spatial indicators (slope, aspect, elevation, compound topographic index (CTI), CORINE land-cover classification, parent material, texture, world reference base (WRB) soil classification, geological formations, annual average temperature, min-max temperature, total precipitation and average precipitation (for years 1960-1990 and 2000-2010)) were used as auxiliary variables in this prediction. One of the most popular geostatistical techniques, Regression-Kriging (RK), was applied to build the model and assess the distribution of SOC. This study showed that, even though RK method was appropriate for successful SOC mapping, using combined databases was not helpful to increase the statistical significance of the method results for assessing the SOC distribution. According to our results; SOC variation was mainly affected by elevation, slope, CTI, average temperature, average and total precipitation, texture, WRB and CORINE variables for Europe scale in our model. Moreover, the highest average SOC contents were found in the wetland areas; agricultural

  6. Combining Soil Databases for Topsoil Organic Carbon Mapping in Europe.

    PubMed

    Aksoy, Ece; Yigini, Yusuf; Montanarella, Luca

    2016-01-01

    Accuracy in assessing the distribution of soil organic carbon (SOC) is an important issue because of playing key roles in the functions of both natural ecosystems and agricultural systems. There are several studies in the literature with the aim of finding the best method to assess and map the distribution of SOC content for Europe. Therefore this study aims searching for another aspect of this issue by looking to the performances of using aggregated soil samples coming from different studies and land-uses. The total number of the soil samples in this study was 23,835 and they're collected from the "Land Use/Cover Area frame Statistical Survey" (LUCAS) Project (samples from agricultural soil), BioSoil Project (samples from forest soil), and "Soil Transformations in European Catchments" (SoilTrEC) Project (samples from local soil data coming from six different critical zone observatories (CZOs) in Europe). Moreover, 15 spatial indicators (slope, aspect, elevation, compound topographic index (CTI), CORINE land-cover classification, parent material, texture, world reference base (WRB) soil classification, geological formations, annual average temperature, min-max temperature, total precipitation and average precipitation (for years 1960-1990 and 2000-2010)) were used as auxiliary variables in this prediction. One of the most popular geostatistical techniques, Regression-Kriging (RK), was applied to build the model and assess the distribution of SOC. This study showed that, even though RK method was appropriate for successful SOC mapping, using combined databases was not helpful to increase the statistical significance of the method results for assessing the SOC distribution. According to our results; SOC variation was mainly affected by elevation, slope, CTI, average temperature, average and total precipitation, texture, WRB and CORINE variables for Europe scale in our model. Moreover, the highest average SOC contents were found in the wetland areas; agricultural

  7. Combining Soil Databases for Topsoil Organic Carbon Mapping in Europe

    PubMed Central

    Aksoy, Ece

    2016-01-01

    Accuracy in assessing the distribution of soil organic carbon (SOC) is an important issue because of playing key roles in the functions of both natural ecosystems and agricultural systems. There are several studies in the literature with the aim of finding the best method to assess and map the distribution of SOC content for Europe. Therefore this study aims searching for another aspect of this issue by looking to the performances of using aggregated soil samples coming from different studies and land-uses. The total number of the soil samples in this study was 23,835 and they’re collected from the “Land Use/Cover Area frame Statistical Survey” (LUCAS) Project (samples from agricultural soil), BioSoil Project (samples from forest soil), and “Soil Transformations in European Catchments” (SoilTrEC) Project (samples from local soil data coming from six different critical zone observatories (CZOs) in Europe). Moreover, 15 spatial indicators (slope, aspect, elevation, compound topographic index (CTI), CORINE land-cover classification, parent material, texture, world reference base (WRB) soil classification, geological formations, annual average temperature, min-max temperature, total precipitation and average precipitation (for years 1960–1990 and 2000–2010)) were used as auxiliary variables in this prediction. One of the most popular geostatistical techniques, Regression-Kriging (RK), was applied to build the model and assess the distribution of SOC. This study showed that, even though RK method was appropriate for successful SOC mapping, using combined databases was not helpful to increase the statistical significance of the method results for assessing the SOC distribution. According to our results; SOC variation was mainly affected by elevation, slope, CTI, average temperature, average and total precipitation, texture, WRB and CORINE variables for Europe scale in our model. Moreover, the highest average SOC contents were found in the wetland areas

  8. [Dynamics of active organic carbon in a paddy soil under different rice farming modes].

    PubMed

    Zhan, Ming; Cao, Cou-Gui; Jiang, Yang; Wang, Jin-Ping; Yue, Li-Xin; Cai, Ming-Li

    2010-08-01

    A field experiment was conducted to study the dynamics of dissolved organic carbon (DOC), readily oxidizable organic carbon (ROC), and microbial biomass carbon (MBC) in a paddy soil under integrated rice-duck farming (RD), intermittent irrigation (RW), and conventional flooded irrigation (CK), the three rice farming modes typical in southern China. Under these three farming modes, the soil DOC and MBC contents reached the highest during the period from rice booting to heading, while the soil ROC content had less change during the whole rice growth period. Two-factor variance analysis showed that soil MBC was greatly affected by rice growth stage, soil DOC was greatly affected by rice growth stage and farming mode, and soil ROC was mainly affected by farming mode. Comparing with CK, RD significantly increased the soil DOC and ROC contents and their availability, while RW significantly decreased the soil DOC content and its availability but increased the soil ROC content and its availability. No significant differences were observed in the soil MBC and microbial quotient among RD, RW, and CK.

  9. Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater.

    PubMed

    Keren, Yonatan; Borisover, Mikhail; Bukhanovsky, Nadezhda

    2015-11-01

    The organic compound-soil interactions may be strongly influenced by changes in soil organic matter (OM) which affects the environmental fate of multiple organic pollutants. The soil OM changes may be caused by land disposal of various OM-containing wastes. One unique type of OM-rich waste is olive mill-related wastewater (OMW) characterized by high levels of OM, the presence of fatty aliphatics and polyphenolic aromatics. The systematic data on effects of the land-applied OMW on organic compound-soil interactions is lacking. Therefore, aqueous sorption of simazine and diuron, two herbicides, was examined in batch experiments onto three soils, including untreated and OMW-affected samples. Typically, the organic compound-soil interactions increased following the prior land application of OMW. This increase is associated with the changes in sorption mechanisms and cannot be attributed solely to the increase in soil organic carbon content. A novel observation is that the OMW application changes the soil-sorbent matrix in such a way that the solute uptake may become cooperative or the existing ability of a soil sorbent to cooperatively sorb organic molecules from water may become characterized by a larger affinity. The remarkable finding of this study was that in some cases a cooperative uptake of organic molecules by soils makes itself evident in distinct sigmoidal sorption isotherms rarely observed in soil sorption of non-ionized organic compounds; the cooperative herbicide-soil interactions may be characterized by the Hill model coefficients. However, no single trend was found for the effect of applied OMW on the mechanisms of organic compound-soil interactions.

  10. Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater.

    PubMed

    Keren, Yonatan; Borisover, Mikhail; Bukhanovsky, Nadezhda

    2015-11-01

    The organic compound-soil interactions may be strongly influenced by changes in soil organic matter (OM) which affects the environmental fate of multiple organic pollutants. The soil OM changes may be caused by land disposal of various OM-containing wastes. One unique type of OM-rich waste is olive mill-related wastewater (OMW) characterized by high levels of OM, the presence of fatty aliphatics and polyphenolic aromatics. The systematic data on effects of the land-applied OMW on organic compound-soil interactions is lacking. Therefore, aqueous sorption of simazine and diuron, two herbicides, was examined in batch experiments onto three soils, including untreated and OMW-affected samples. Typically, the organic compound-soil interactions increased following the prior land application of OMW. This increase is associated with the changes in sorption mechanisms and cannot be attributed solely to the increase in soil organic carbon content. A novel observation is that the OMW application changes the soil-sorbent matrix in such a way that the solute uptake may become cooperative or the existing ability of a soil sorbent to cooperatively sorb organic molecules from water may become characterized by a larger affinity. The remarkable finding of this study was that in some cases a cooperative uptake of organic molecules by soils makes itself evident in distinct sigmoidal sorption isotherms rarely observed in soil sorption of non-ionized organic compounds; the cooperative herbicide-soil interactions may be characterized by the Hill model coefficients. However, no single trend was found for the effect of applied OMW on the mechanisms of organic compound-soil interactions. PMID:26183941

  11. Litter contribution to soil organic carbon in the agriculture abandons processes

    NASA Astrophysics Data System (ADS)

    Novara, A.; Rühl, J.; La Mantia, T.; Gristina, L.; La Bella, S.; Tuttolomondo, T.

    2015-02-01

    Mechanisms of litter decomposition, translocation and stabilization into soil layers are fundamental processes in ecosystem functioning as it regulates the cycle of soil organic matter (SOM), CO2 emission into the atmosphere, carbon sequestration into the soil. In this study, it was investigated the contribution of litters of different stages of Mediterranean secondary succession on Carbon sequestration, analyzing the role of earthworms on translocation of SOM into soil profile. For this purpose δ13C difference between meadow C4-Csoil and C3-Clitter were used in a field experiment. Four undisturbed litters of different stages of succession were collected (45, 70, 100 and 120 since agriculture abandon) and placed on the top of isolated soil cores. The litter contribution to C stock was affected by plant species and increased with the age of the stage of secondary succession. The soil organic carbon after 1 year since litter position increased up to 40% in comparison to no litter treatment in soil with litter of 120 years since abandon. The new carbon derived from C3-litter was decomposed and transferred into soil profile thanks to earthworms and dissolved organic carbon leaching. After 1 years the carbon increase attributed to earthworm activity ranged from 6 to 13% in soil under litter in field abandoned since 120 and 45 years, respectively.

  12. Soil carbon storage and N{sub 2}O emissions from wheat agroecosystems as affected by free-air CO{sub 2} enrichment (FACE) and nitrogen treatments. Final Report - February 12, 1999

    SciTech Connect

    S. W. Leavitt; A. D. Matthias; T. L. Thompson; R. A. Rauschkolb

    1999-02-17

    Rising atmospheric CO{sub 2} concentrations have prompted concern about response of plants and crops to future elevated CO{sub 2} levels, and particularly the extent to which ecosystems will sequester carbon and thus impact the rate of rise of CO{sub 2} concentrations. Free-air CO{sub 2} enrichment (FACE) experimentation was used with wheat agroecosystems for two growing seasons to assess effects of CO{sub 2} and soil nitrogen. Over 20 researchers on this experiment variously examined plant production and grain yield, phenology, length of growing season, water-use efficiency ecosystem production, below ground processes (eg, root and microbial activity, carbon and nitrogen cycling), etc.

  13. Effect of activated carbon on microbial bioavailability of phenanthrene in soils

    SciTech Connect

    Yang, Y.; Hunter, W.; Tao, S.; Crowley, D.; Gan, J.

    2009-11-15

    Bioavailability is a governing factor that controls the rate of biological degradation of hydrophobic organic contaminants in soil. Among the solid phases that can adsorb hydrophobic organic contaminants in soil, black carbon (BC) exerts a particularly significant effect on phase distribution. However, knowledge on the effect of BC on the microbial availability of polycyclic aromatic hydrocarbons in soil is still limited. In the present study, the effect of a coal-derived activated carbon on the bioavailability of phenanthrene (PHE) during its degradation by Mycobacterium vanbaalenii PYR-1 was measured in three soils. The freely dissolved concentration of PHE was concurrently determined in soil solutions using disposable polydimethylsiloxane fibers. The results showed that PHE mineralization was significantly inhibited after addition of activated carbon in all test soils. After 216 h, only 5.20, 5.83, and 6.85% of PHE was degraded in the 0.5% BC-amended soils initially containing organic carbon at 0.23, 2.1, and 7.1%, respectively. Significant correlation was found between PHE degradability and freely dissolved concentration, suggesting that BC affected PHE bioavailability by decreasing chemical activity. The effect of activated carbon in the amended soils was attributed to its enhancement of soil surface areas and pore volumes. Results from the present study clearly highlighted the importance of BC for influencing the microbial availability of polycyclic aromatic hydrocarbons in soils.

  14. Microbial removal of atmospheric carbon tetrachloride in bulk aerobic soils.

    PubMed

    Mendoza, Y; Goodwin, K D; Happell, J D

    2011-09-01

    Atmospheric concentrations of carbon tetrachloride (CCl(4)) were removed by bulk aerobic soils from tropical, subtropical, and boreal environments. Removal was observed in all tested soil types, indicating that the process was widespread. The flux measured in field chamber experiments was 0.24 ± 0.10 nmol CCl(4) (m(2) day)(-1) (average ± standard deviation [SD]; n = 282). Removal of CCl(4) and removal of methane (CH(4)) were compared to explore whether the two processes were linked. Removal of both gases was halted in laboratory samples that were autoclaved, dry heated, or incubated in the presence of mercuric chloride (HgCl(2)). In marl soils, treatment with antibiotics such as tetracycline and streptomycin caused partial inhibition of CCl(4) (50%) and CH(4) (76%) removal, but removal was not affected in soils treated with nystatin or myxothiazol. These data indicated that bacteria contributed to the soil removal of CCl(4) and that microeukaryotes may not have played a significant role. Amendments of methanol, acetate, and succinate to soil samples enhanced CCl(4) removal by 59%, 293%, and 72%, respectively. Additions of a variety of inhibitors and substrates indicated that nitrification, methanogenesis, or biological reduction of nitrate, nitrous oxide, or sulfate (e.g., occurring in possible anoxic microzones) did not play a significant role in the removal of CCl(4). Methyl fluoride inhibited removal of CH(4) but not CCl(4), indicating that CH(4) and CCl(4) removals were not directly linked. Furthermore, CCl(4) removal was not affected in soils amended with copper sulfate or methane, supporting the results with MeF and suggesting that the observed CCl(4) removal was not significantly mediated by methanotrophs.

  15. [Environmental behavior and effect of biomass-derived black carbon in soil: a review].

    PubMed

    Liu, Yu-Xue; Liu, Wei; Wu, Wei-Xiang; Zhong, Zhe-Ke; Chen, Ying-Xu

    2009-04-01

    Biomass-derived black carbon, also named biochar, has the characteristics of high stability against decay and high capability of adsorption, and can affect the environment through its interactions with climate and geology, playing a significant role in global climate change, carbon biogeochemical cycle, and environmental system. In recent years, more and more researchers in the fields of atmospheric sciences, geology, and environmental science focused on the environmental behavior and effect of biochar. As one possible source of the components with high aromatic structure in soil humus, biochar is of great importance in increasing soil carbon storage and improving soil fertility, and in maintaining the balance of soil ecosystem. This paper offered the latest information regarding the characteristics and biotic and abiotic oxidation mechanisms of biochar, its effects on global climate change, and the environmental effect of biochar in soil. Research prospects were briefly discussed on the environmental behavior and effect of biochar in soil ecosystem.

  16. Threshold Dynamics in Soil Carbon Storage for Bioenergy Crops

    NASA Astrophysics Data System (ADS)

    Woo, D.; Quijano, J.; Kumar, P.; Chaoka, S.; Bernacchi, C.

    2014-12-01

    Due to increasing demands for bioenergy, a considerable amount of land in the Midwestern United States could be devoted to the cultivation of second-generation bioenergy crops, such as switchgrass and miscanthus. In this study, we attempt to explore and analyze how different amounts of above-ground biomass returned to the soil at harvest affect the below-ground dynamics of carbon and nitrogen as a comparative study between miscanthus, swichgrass, and corn-corn-soybean rotation. The simulation results show that there is a threshold effect in the amount of above-ground litter input in the soil after harvest that will reach a critical organic matter C:N ratio in the soil, triggering a reduction of the soil microbial population, with significant consequences in other microbe-related processes such as decomposition and mineralization. These thresholds are approximately 25% and 15% of above-ground biomass for switchgrass and miscanthus, respectively. However, we do not observe such threshold effects for corn-corn-soybean rotation. These results suggest that values above these thresholds could result in a significant reduction of decomposition and mineralization, which in turn would enhance the sequestration of atmospheric carbon dioxide in the topsoil and reduce inorganic nitrogen losses when compared with a corn-corn-soybean rotation.

  17. Soil organic matter and land use change: the effect of soil carbon saturation

    NASA Astrophysics Data System (ADS)

    Six, J. W.; Carrington, E. M.

    2011-12-01

    Land management affects soil organic carbon (SOC) storage through the balance between inputs and outputs, the structural and functional complexity of plant and microbial communities, alterations to microbial processes and activity, and changes to edaphic soil conditions. An ultimate determinant on the rate of accumulation and total C storage potential of a soil, however, is its inherent capacity to protect organic matter within the soil matrix, i.e. soil C saturation. As a soil approaches its soil C saturation level, i.e. finite aggregate and mineral protective capacity, limits the C sequestration potential of a soil. For this reason, the preexisting amount and distribution of soil C in protected soil C pools, in addition to the soil's capacity for stabilization, must be considered when predicting effects of land management change on SOC stocks. Evidence points to the amount, type, and location of silt and clay-sized particles, as well as the soil's inherent potential for aggregate formation, as the main controlling factors of soil C saturation. The innate biochemistry of uncomplexed soil organic matter does not appear to affect soil C saturation, nor does it interact with protective mechanisms at high SOC loadings. This confirms that C saturation level cannot be modified though management of C input quality. Land use induced changes to a soil's physical matrix, such as preferential erosion of smaller particles or soil compaction, could, however, have irreversible threshold effects on a soil's potential for organic matter stabilization. Experiments in agricultural and grassland systems have determined saturating responses of soils and functional soil fractions (i.e. chemical-protection by associations with silt and clay, physical-protection by occlusion in aggregates, and a combination of physical and chemical protection in aggregated silt and clay) to equilibrium C inputs, or C input proxies, such as CO2 or total SOC. Estimates of C saturation parameters for

  18. Defaunation affects carbon storage in tropical forests

    PubMed Central

    Bello, Carolina; Galetti, Mauro; Pizo, Marco A.; Magnago, Luiz Fernando S.; Rocha, Mariana F.; Lima, Renato A. F.; Peres, Carlos A.; Ovaskainen, Otso; Jordano, Pedro

    2015-01-01

    Carbon storage is widely acknowledged as one of the most valuable forest ecosystem services. Deforestation, logging, fragmentation, fire, and climate change have significant effects on tropical carbon stocks; however, an elusive and yet undetected decrease in carbon storage may be due to defaunation of large seed dispersers. Many large tropical trees with sizeable contributions to carbon stock rely on large vertebrates for seed dispersal and regeneration, however many of these frugivores are threatened by hunting, illegal trade, and habitat loss. We used a large data set on tree species composition and abundance, seed, fruit, and carbon-related traits, and plant-animal interactions to estimate the loss of carbon storage capacity of tropical forests in defaunated scenarios. By simulating the local extinction of trees that depend on large frugivores in 31 Atlantic Forest communities, we found that defaunation has the potential to significantly erode carbon storage even when only a small proportion of large-seeded trees are extirpated. Although intergovernmental policies to reduce carbon emissions and reforestation programs have been mostly focused on deforestation, our results demonstrate that defaunation, and the loss of key ecological interactions, also poses a serious risk for the maintenance of tropical forest carbon storage. PMID:26824067

  19. Defaunation affects carbon storage in tropical forests.

    PubMed

    Bello, Carolina; Galetti, Mauro; Pizo, Marco A; Magnago, Luiz Fernando S; Rocha, Mariana F; Lima, Renato A F; Peres, Carlos A; Ovaskainen, Otso; Jordano, Pedro

    2015-12-01

    Carbon storage is widely acknowledged as one of the most valuable forest ecosystem services. Deforestation, logging, fragmentation, fire, and climate change have significant effects on tropical carbon stocks; however, an elusive and yet undetected decrease in carbon storage may be due to defaunation of large seed dispersers. Many large tropical trees with sizeable contributions to carbon stock rely on large vertebrates for seed dispersal and regeneration, however many of these frugivores are threatened by hunting, illegal trade, and habitat loss. We used a large data set on tree species composition and abundance, seed, fruit, and carbon-related traits, and plant-animal interactions to estimate the loss of carbon storage capacity of tropical forests in defaunated scenarios. By simulating the local extinction of trees that depend on large frugivores in 31 Atlantic Forest communities, we found that defaunation has the potential to significantly erode carbon storage even when only a small proportion of large-seeded trees are extirpated. Although intergovernmental policies to reduce carbon emissions and reforestation programs have been mostly focused on deforestation, our results demonstrate that defaunation, and the loss of key ecological interactions, also poses a serious risk for the maintenance of tropical forest carbon storage.

  20. Defaunation affects carbon storage in tropical forests.

    PubMed

    Bello, Carolina; Galetti, Mauro; Pizo, Marco A; Magnago, Luiz Fernando S; Rocha, Mariana F; Lima, Renato A F; Peres, Carlos A; Ovaskainen, Otso; Jordano, Pedro

    2015-12-01

    Carbon storage is widely acknowledged as one of the most valuable forest ecosystem services. Deforestation, logging, fragmentation, fire, and climate change have significant effects on tropical carbon stocks; however, an elusive and yet undetected decrease in carbon storage may be due to defaunation of large seed dispersers. Many large tropical trees with sizeable contributions to carbon stock rely on large vertebrates for seed dispersal and regeneration, however many of these frugivores are threatened by hunting, illegal trade, and habitat loss. We used a large data set on tree species composition and abundance, seed, fruit, and carbon-related traits, and plant-animal interactions to estimate the loss of carbon storage capacity of tropical forests in defaunated scenarios. By simulating the local extinction of trees that depend on large frugivores in 31 Atlantic Forest communities, we found that defaunation has the potential to significantly erode carbon storage even when only a small proportion of large-seeded trees are extirpated. Although intergovernmental policies to reduce carbon emissions and reforestation programs have been mostly focused on deforestation, our results demonstrate that defaunation, and the loss of key ecological interactions, also poses a serious risk for the maintenance of tropical forest carbon storage. PMID:26824067

  1. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  2. Stability of organic carbon in deep soil layers controlled by fresh carbon supply.

    PubMed

    Fontaine, Sébastien; Barot, Sébastien; Barré, Pierre; Bdioui, Nadia; Mary, Bruno; Rumpel, Cornelia

    2007-11-01

    The world's soils store more carbon than is present in biomass and in the atmosphere. Little is known, however, about the factors controlling the stability of soil organic carbon stocks and the response of the soil carbon pool to climate change remains uncertain. We investigated the stability of carbon in deep soil layers in one soil profile by combining physical and chemical characterization of organic carbon, soil incubations and radiocarbon dating. Here we show that the supply of fresh plant-derived carbon to the subsoil (0.6-0.8 m depth) stimulated the microbial mineralization of 2,567 +/- 226-year-old carbon. Our results support the previously suggested idea that in the absence of fresh organic carbon, an essential source of energy for soil microbes, the stability of organic carbon in deep soil layers is maintained. We propose that a lack of supply of fresh carbon may prevent the decomposition of the organic carbon pool in deep soil layers in response to future changes in temperature. Any change in land use and agricultural practice that increases the distribution of fresh carbon along the soil profile could however stimulate the loss of ancient buried carbon.

  3. Factors affecting sequestration and bioavailability of phenanthrene in soils

    SciTech Connect

    White, J.C.; Kelsey, J.W.; Hatzinger, P.B.; Alexander, M.

    1997-10-01

    A study was conducted to determine factors affecting the sequestration and changes in bioavailability as phenanthrene persists in soils. Phenanthrene became sequestered in seven soils differing appreciably in organic matter and clay content as measured by earthworm uptake, bacterial mineralization, or extractability. Phenanthrene also became sequestered as it aged in soil aggregates of various sizes as measured by decline in availability to a bacterium, a mild extractant, or both. Wetting and drying a soil during aging reduced the amount of phenanthrene recovered by a mild extractant and the rate and extent of bacterial mineralization of the hydrocarbon. After biodegradation of phenanthrene added to the soil, more of the compound remained if it had been aged than if it had not been aged. Wetting and drying the soil during aging further increased the amount of phenanthrene remaining after biodegradation. The rate and extent of bacterial mineralization of phenanthrene were less in leached than in unleached soil. Aging/sequestration is thus markedly affected by soil properties and environmental factors.

  4. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils.

    PubMed

    Maaroufi, Nadia I; Nordin, Annika; Hasselquist, Niles J; Bach, Lisbet H; Palmqvist, Kristin; Gundale, Michael J

    2015-08-01

    It is proposed that carbon (C) sequestration in response to reactive nitrogen (Nr ) deposition in boreal forests accounts for a large portion of the terrestrial sink for anthropogenic CO2 emissions. While studies have helped clarify the magnitude by which Nr deposition enhances C sequestration by forest vegetation, there remains a paucity of long-term experimental studies evaluating how soil C pools respond. We conducted a long-term experiment, maintained since 1996, consisting of three N addition levels (0, 12.5, and 50 kg N ha(-1) yr(-1) ) in the boreal zone of northern Sweden to understand how atmospheric Nr deposition affects soil C accumulation, soil microbial communities, and soil respiration. We hypothesized that soil C sequestration will increase, and soil microbial biomass and soil respiration will decrease, with disproportionately large changes expected compared to low levels of N addition. Our data showed that the low N addition treatment caused a non-significant increase in the organic horizon C pool of ~15% and a significant increase of ~30% in response to the high N treatment relative to the control. The relationship between C sequestration and N addition in the organic horizon was linear, with a slope of 10 kg C kg(-1) N. We also found a concomitant decrease in total microbial and fungal biomasses and a ~11% reduction in soil respiration in response to the high N treatment. Our data complement previous data from the same study system describing aboveground C sequestration, indicating a total ecosystem sequestration rate of 26 kg C kg(-1) N. These estimates are far lower than suggested by some previous modeling studies, and thus will help improve and validate current modeling efforts aimed at separating the effect of multiple global change factors on the C balance of the boreal region.

  5. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils.

    PubMed

    Maaroufi, Nadia I; Nordin, Annika; Hasselquist, Niles J; Bach, Lisbet H; Palmqvist, Kristin; Gundale, Michael J

    2015-08-01

    It is proposed that carbon (C) sequestration in response to reactive nitrogen (Nr ) deposition in boreal forests accounts for a large portion of the terrestrial sink for anthropogenic CO2 emissions. While studies have helped clarify the magnitude by which Nr deposition enhances C sequestration by forest vegetation, there remains a paucity of long-term experimental studies evaluating how soil C pools respond. We conducted a long-term experiment, maintained since 1996, consisting of three N addition levels (0, 12.5, and 50 kg N ha(-1) yr(-1) ) in the boreal zone of northern Sweden to understand how atmospheric Nr deposition affects soil C accumulation, soil microbial communities, and soil respiration. We hypothesized that soil C sequestration will increase, and soil microbial biomass and soil respiration will decrease, with disproportionately large changes expected compared to low levels of N addition. Our data showed that the low N addition treatment caused a non-significant increase in the organic horizon C pool of ~15% and a significant increase of ~30% in response to the high N treatment relative to the control. The relationship between C sequestration and N addition in the organic horizon was linear, with a slope of 10 kg C kg(-1) N. We also found a concomitant decrease in total microbial and fungal biomasses and a ~11% reduction in soil respiration in response to the high N treatment. Our data complement previous data from the same study system describing aboveground C sequestration, indicating a total ecosystem sequestration rate of 26 kg C kg(-1) N. These estimates are far lower than suggested by some previous modeling studies, and thus will help improve and validate current modeling efforts aimed at separating the effect of multiple global change factors on the C balance of the boreal region. PMID:25711504

  6. Vegetation affects the relative abundances of dominant soil bacterial taxa and soil respiration rates in an upland grassland soil.

    PubMed

    Thomson, Bruce C; Ostle, Nick; McNamara, Niall; Bailey, Mark J; Whiteley, Andrew S; Griffiths, Robert I

    2010-02-01

    Plant-derived organic matter inputs are thought to be a key driver of soil bacterial community composition and associated soil processes. We sought to investigate the role of acid grassland vegetation on soil bacterial community structure by assessing bacterial diversity in combination with other soil variables in temporally and spatially distinct samples taken from a field-based plant removal experiment. Removal of aboveground vegetation resulted in reproducible differences in soil properties, soil respiration and bacterial diversity. Vegetated soils had significantly increased carbon and nitrogen concentrations and exhibited higher rates of respiration. Molecular analyses revealed that the soils were broadly dominated by Alphaproteobacterial and Acidobacterial lineages, with increased abundances of Alphaproteobacteria in vegetated soils and more Acidobacteria in bare soils. This field-based study contributes to a growing body of evidence documenting the effect of soil nutrient status on the relative abundances of dominant soil bacterial taxa, with Proteobacterial taxa dominating over Acidobacteria in soils exhibiting higher rates of C turnover. Furthermore, we highlight the role of aboveground vegetation in mediating this effect by demonstrating that plant removal can alter the relative abundances of dominant soil taxa with concomitant changes in soil CO(2)-C efflux.

  7. The role of fungi for carbon decomposition in soils of different structure and fresh organic matter content

    NASA Astrophysics Data System (ADS)

    Schmidt, Sonja; Chenu, Claire; Falconer, Ruth; Geradin, Cyril; Nunan, Naoise; Otten, Wilfred; Pouteau, Valerie

    2014-05-01

    Sequestration of C in soils has a major influence on climate change. Fungi play an important role in carbon decomposition and sequestration but the effect of soil structure and input of fresh organic matter (particulate organic matter POM) is still unclear. Fungi is predominant involved in cellulose decomposition and the priming effect (PE) where old SOM is decomposed by using fresh carbon as a source of energy. Information on how soil structure affects colonisation and decomposition of POM and SOM by fungi could help to get explain processes involved in carbon sequestration and CO2respiration. The objective of this study was to get a better understanding on the involvement of fungi in CO2 emissions arising from soils and to gain information on what factors in the soil are driving organic matter (OM) decomposition. Experimental data on fungal growth and carbon decomposition as affected by POM abundance and soil structure were obtained. Sterilised maize straw (1-2 mm2) and soil (

  8. Nitrogen Alters Fungal Communities in Boreal Forest Soil: Implications for Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Treseder, K. K.

    2005-12-01

    One potential effect of climate change in high latitude ecosystems is to increase soil nutrient availability. In particular, greater nitrogen availability could impact decomposer communities and lead to altered rates of soil carbon cycling. Since fungi are the primary decomposers in many high-latitude ecosystems, we used molecular techniques and field surveys to test whether fungal communities and abundances differed in response to nitrogen fertilization in a boreal forest ecosystem. We predicted that fungi that degrade recalcitrant carbon would decline under nitrogen fertilization, while fungi that degrade labile carbon would increase, leading to no net change in rates of soil carbon mineralization. The molecular data showed that basidiomycete fungi dominate the active fungal community in both fertilized and unfertilized soils. However, we found that fertilization reduced peak mushroom biomass by 79%, although most of the responsive fungi were ectomycorrhizal and therefore their capacity to degrade soil carbon is uncertain. Fertilization increased the activity of the cellulose-degrading enzyme beta-glucosidase by 78%, while protease activity declined by 39% and polyphenol oxidase, a lignin-degrading enzyme, did not respond. Rates of soil respiration did not change in response to fertilization. These results suggest that increased nitrogen availability does alter the composition of the fungal community, and its potential to degrade different carbon compounds. However, these differences do not affect the total flux of CO2 from the soil, even though the contribution to CO2 respiration from different carbon pools may vary with fertilization. We conclude that in the short term, increased nitrogen availability due to climate warming or nitrogen deposition is more likely to alter the turnover of individual carbon pools rather than total carbon fluxes from the soil. Future work should determine if changes in fungal community structure and associated differences in

  9. [Roles of soil dissolved organic carbon in carbon cycling of terrestrial ecosystems: a review].

    PubMed

    Li, Ling; Qiu, Shao-Jun; Liu, Jing-Tao; Liu, Qing; Lu, Zhao-Hua

    2012-05-01

    Soil dissolved organic carbon (DOC) is an active fraction of soil organic carbon pool, playing an important role in the carbon cycling of terrestrial ecosystems. In view of the importance of the carbon cycling, this paper summarized the roles of soil DOC in the soil carbon sequestration and greenhouse gases emission, and in considering of our present ecological and environmental problems such as soil acidification and climate warming, discussed the effects of soil properties, environmental factors, and human activities on the soil DOC as well as the response mechanisms of the DOC. This review could be helpful to the further understanding of the importance of soil DOC in the carbon cycling of terrestrial ecosystems and the reduction of greenhouse gases emission.

  10. Consolidating soil carbon turnover models by improved estimates of belowground carbon input

    NASA Astrophysics Data System (ADS)

    Taghizadeh-Toosi, Arezoo; Christensen, Bent T.; Glendining, Margaret; Olesen, Jørgen E.

    2016-09-01

    World soil carbon (C) stocks are third only to those in the ocean and earth crust, and represent twice the amount currently present in the atmosphere. Therefore, any small change in the amount of soil organic C (SOC) may affect carbon dioxide (CO2) concentrations in the atmosphere. Dynamic models of SOC help reveal the interaction among soil carbon systems, climate and land management, and they are also frequently used to help assess SOC dynamics. Those models often use allometric functions to calculate soil C inputs in which the amount of C in both above and below ground crop residues are assumed to be proportional to crop harvest yield. Here we argue that simulating changes in SOC stocks based on C input that are proportional to crop yield is not supported by data from long-term experiments with measured SOC changes. Rather, there is evidence that root C inputs are largely independent of crop yield, but crop specific. We discuss implications of applying fixed belowground C input regardless of crop yield on agricultural greenhouse gas mitigation and accounting.

  11. Consolidating soil carbon turnover models by improved estimates of belowground carbon input.

    PubMed

    Taghizadeh-Toosi, Arezoo; Christensen, Bent T; Glendining, Margaret; Olesen, Jørgen E

    2016-09-01

    World soil carbon (C) stocks are third only to those in the ocean and earth crust, and represent twice the amount currently present in the atmosphere. Therefore, any small change in the amount of soil organic C (SOC) may affect carbon dioxide (CO2) concentrations in the atmosphere. Dynamic models of SOC help reveal the interaction among soil carbon systems, climate and land management, and they are also frequently used to help assess SOC dynamics. Those models often use allometric functions to calculate soil C inputs in which the amount of C in both above and below ground crop residues are assumed to be proportional to crop harvest yield. Here we argue that simulating changes in SOC stocks based on C input that are proportional to crop yield is not supported by data from long-term experiments with measured SOC changes. Rather, there is evidence that root C inputs are largely independent of crop yield, but crop specific. We discuss implications of applying fixed belowground C input regardless of crop yield on agricultural greenhouse gas mitigation and accounting.

  12. Consolidating soil carbon turnover models by improved estimates of belowground carbon input.

    PubMed

    Taghizadeh-Toosi, Arezoo; Christensen, Bent T; Glendining, Margaret; Olesen, Jørgen E

    2016-01-01

    World soil carbon (C) stocks are third only to those in the ocean and earth crust, and represent twice the amount currently present in the atmosphere. Therefore, any small change in the amount of soil organic C (SOC) may affect carbon dioxide (CO2) concentrations in the atmosphere. Dynamic models of SOC help reveal the interaction among soil carbon systems, climate and land management, and they are also frequently used to help assess SOC dynamics. Those models often use allometric functions to calculate soil C inputs in which the amount of C in both above and below ground crop residues are assumed to be proportional to crop harvest yield. Here we argue that simulating changes in SOC stocks based on C input that are proportional to crop yield is not supported by data from long-term experiments with measured SOC changes. Rather, there is evidence that root C inputs are largely independent of crop yield, but crop specific. We discuss implications of applying fixed belowground C input regardless of crop yield on agricultural greenhouse gas mitigation and accounting. PMID:27580672

  13. Consolidating soil carbon turnover models by improved estimates of belowground carbon input

    PubMed Central

    Taghizadeh-Toosi, Arezoo; Christensen, Bent T.; Glendining, Margaret; Olesen, Jørgen E.

    2016-01-01

    World soil carbon (C) stocks are third only to those in the ocean and earth crust, and represent twice the amount currently present in the atmosphere. Therefore, any small change in the amount of soil organic C (SOC) may affect carbon dioxide (CO2) concentrations in the atmosphere. Dynamic models of SOC help reveal the interaction among soil carbon systems, climate and land management, and they are also frequently used to help assess SOC dynamics. Those models often use allometric functions to calculate soil C inputs in which the amount of C in both above and below ground crop residues are assumed to be proportional to crop harvest yield. Here we argue that simulating changes in SOC stocks based on C input that are proportional to crop yield is not supported by data from long-term experiments with measured SOC changes. Rather, there is evidence that root C inputs are largely independent of crop yield, but crop specific. We discuss implications of applying fixed belowground C input regardless of crop yield on agricultural greenhouse gas mitigation and accounting. PMID:27580672

  14. Elevated atmospheric carbon dioxide in agroecosystems affects groundwater quality

    SciTech Connect

    Torbert, H.A.; Prior, S.A.; Rogers, H.H.; Schlesinger, W.H.; Mullins, G.L.; Runion, G.B.

    1996-07-01

    Increasing atmospheric carbon dioxide (CO{sub 2}) concentration has led to concerns about global changes to the environment. One area of global change that has not been addressed is the effect of elevated atmospheric CO{sub 2} on groundwater quality below agroecosystems. Elevated CO{sub 2} concentration alterations of plant growth and C/N ratios may modify C and N cycling in soil and affect nitrate (NO{sub 3}{sup {minus}}) leaching to groundwater. This study was conducted to examine the effects of a legume (soybean [Glycine max (L.) Merr.]) and a nonlegume (grain sorghum [Sorghum bicolor (L.) Moench]) CO{sub 2}-enriched agroecosystems on NO{sub 3}{sup {minus}} movement below the root zone in a Blanton loamy sand (loamy siliceous, thermic, Grossarenic Paleudults). The study was a split-plot design replicated three times with plant species (soybean and grain sorghum) as the main plots and CO{sub 2} concentration ({approximately}360 and {approximately}720 {mu}L L{sup {minus}1} CO{sub 2}) as subplots using open-top field chambers. Fertilizer application was made with {sup 15}N-depleted NH{sub 4}NO{sub 3} to act as a fertilizer tracer. Soil solution samples were collected weekly at 90-cm depth for a 2-yr period and monitored for NO{sub 3}{sup {minus}}-N concentrations. Isotope analysis of soil solution indicated that the decomposition of organic matter was the primary source of No{sub 3}{sup {minus}}-N in soil solution below the root zone through most of the monitoring period. Significant differences were observed for NO{sub 3}{sup {minus}}-N concentrations between soybean and grain sorghum, with soybean having the higher NO{sub 3}{sup {minus}}-N concentration. Elevated CO{sub 2} increased total dry weight, total N content, and C/N ratio of residue returned to soil in both years. Elevated CO{sub 2} significantly decreased NO{sub 3}{sup {minus}}-N concentrations below the root zone in both soybean and grain sorghum. 37 refs., 2 figs., 2 tabs.

  15. Carbon Monoxide Affecting Planetary Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    He, Chao; Horst, Sarah

    2016-10-01

    Atmospheric hazes are present in a range of solar system and extrasolar planetary atmospheres, and organic hazes, such as that in Titan's atmosphere, could be a source of prebiotic molecules.1 However, the chemistry occurring in planetary atmospheres and the resulting chemical structures are still not clear. Numerous experimental simulations2 have been carried out in the laboratory to understand the chemistry in N2/CH4 atmospheres, but very few simulations4 have included CO in their initial gas mixtures, which is an important component in many N2/CH4 atmospheres including Titan, Triton, and Pluto.3 Here we have conducted a series of atmosphere simulation experiments using AC glow discharge (cold plasma) as energy source to irradiate reactions in gas mixtures of CO, CH4, and N2 with a range of CO mixing ratios (from 0, 0.05%, 0.2%, 0.5%, 1%, 2.5%, to 5%) at low temperature (~100 K). Gas phase products are monitored during the reaction by quadrupole mass spectrometer (MS), and solid phase products are analyzed by solution-state nuclear magnetic resonance spectroscopy (NMR). MS results show that with the increase of CO in the initial gases, the production of nitrogenous organic molecules increases while the production of hydrogen molecules decreases in the gas phase. NMR measurements of the solid phase products show that with the increase of CO, hydrogen atoms bonded to nitrogen or oxygen in unsaturated structures increase while those bonded to saturated carbon decrease, which means more unsaturated species and less saturated species formed with the addition of CO. MS and NMR results demonstrate that the inclusion of CO affects the compositions of both gas and solid phase products, indicating that CO has an important impact on the chemistry occurring in our experiments and probably in planetary atmospheres.1. Hörst, S. M., et al. 2012, AsBio, 12, 8092. Cable, M. L., et al. 2012, Chem. Rev., 112, 18823. Lutz, B. L., et al. 1983, Sci, 220, 1374; Greaves, J. S., et al

  16. Legacy effects of grassland management on soil carbon to depth.

    PubMed

    Ward, Susan E; Smart, Simon M; Quirk, Helen; Tallowin, Jerry R B; Mortimer, Simon R; Shiel, Robert S; Wilby, Andrew; Bardgett, Richard D

    2016-08-01

    The importance of managing land to optimize carbon sequestration for climate change mitigation is widely recognized, with grasslands being identified as having the potential to sequester additional carbon. However, most soil carbon inventories only consider surface soils, and most large-scale surveys group ecosystems into broad habitats without considering management intensity. Consequently, little is known about the quantity of deep soil carbon and its sensitivity to management. From a nationwide survey of grassland soils to 1 m depth, we show that carbon in grassland soils is vulnerable to management and that these management effects can be detected to considerable depth down the soil profile, albeit at decreasing significance with depth. Carbon concentrations in soil decreased as management intensity increased, but greatest soil carbon stocks (accounting for bulk density differences), were at intermediate levels of management. Our study also highlights the considerable amounts of carbon in subsurface soil below 30 cm, which is missed by standard carbon inventories. We estimate grassland soil carbon in Great Britain to be 2097 Tg C to a depth of 1 m, with ~60% of this carbon being below 30 cm. Total stocks of soil carbon (t ha(-1) ) to 1 m depth were 10.7% greater at intermediate relative to intensive management, which equates to 10.1 t ha(-1) in surface soils (0-30 cm), and 13.7 t ha(-1) in soils from 30 to 100 cm depth. Our findings highlight the existence of substantial carbon stocks at depth in grassland soils that are sensitive to management. This is of high relevance globally, given the extent of land cover and large stocks of carbon held in temperate managed grasslands. Our findings have implications for the future management of grasslands for carbon storage and climate mitigation, and for global carbon models which do not currently account for changes in soil carbon to depth with management.

  17. Legacy effects of grassland management on soil carbon to depth.

    PubMed

    Ward, Susan E; Smart, Simon M; Quirk, Helen; Tallowin, Jerry R B; Mortimer, Simon R; Shiel, Robert S; Wilby, Andrew; Bardgett, Richard D

    2016-08-01

    The importance of managing land to optimize carbon sequestration for climate change mitigation is widely recognized, with grasslands being identified as having the potential to sequester additional carbon. However, most soil carbon inventories only consider surface soils, and most large-scale surveys group ecosystems into broad habitats without considering management intensity. Consequently, little is known about the quantity of deep soil carbon and its sensitivity to management. From a nationwide survey of grassland soils to 1 m depth, we show that carbon in grassland soils is vulnerable to management and that these management effects can be detected to considerable depth down the soil profile, albeit at decreasing significance with depth. Carbon concentrations in soil decreased as management intensity increased, but greatest soil carbon stocks (accounting for bulk density differences), were at intermediate levels of management. Our study also highlights the considerable amounts of carbon in subsurface soil below 30 cm, which is missed by standard carbon inventories. We estimate grassland soil carbon in Great Britain to be 2097 Tg C to a depth of 1 m, with ~60% of this carbon being below 30 cm. Total stocks of soil carbon (t ha(-1) ) to 1 m depth were 10.7% greater at intermediate relative to intensive management, which equates to 10.1 t ha(-1) in surface soils (0-30 cm), and 13.7 t ha(-1) in soils from 30 to 100 cm depth. Our findings highlight the existence of substantial carbon stocks at depth in grassland soils that are sensitive to management. This is of high relevance globally, given the extent of land cover and large stocks of carbon held in temperate managed grasslands. Our findings have implications for the future management of grasslands for carbon storage and climate mitigation, and for global carbon models which do not currently account for changes in soil carbon to depth with management. PMID:26854892

  18. Decadally cycling soil carbon is more sensitive to warming than faster-cycling soil carbon.

    PubMed

    Lin, Junjie; Zhu, Biao; Cheng, Weixin

    2015-12-01

    The response of soil organic carbon (SOC) pools to globally rising surface temperature crucially determines the feedback between climate change and the global carbon cycle. However, there is a lack of studies investigating the temperature sensitivity of decomposition for decadally cycling SOC which is the main component of total soil carbon stock and the most relevant to global change. We tackled this issue using two decadally (13) C-labeled soils and a much improved measuring system in a long-term incubation experiment. Results indicated that the temperature sensitivity of decomposition for decadally cycling SOC (>23 years in one soil and >55 years in the other soil) was significantly greater than that for faster-cycling SOC (<23 or 55 years) or for the entire SOC stock. Moreover, decadally cycling SOC contributed substantially (35-59%) to the total CO2 loss during the 360-day incubation. Overall, these results indicate that the decomposition of decadally cycling SOC is highly sensitive to temperature change, which will likely make this large SOC stock vulnerable to loss by global warming in the 21st century and beyond.

  19. Decadally cycling soil carbon is more sensitive to warming than faster-cycling soil carbon.

    PubMed

    Lin, Junjie; Zhu, Biao; Cheng, Weixin

    2015-12-01

    The response of soil organic carbon (SOC) pools to globally rising surface temperature crucially determines the feedback between climate change and the global carbon cycle. However, there is a lack of studies investigating the temperature sensitivity of decomposition for decadally cycling SOC which is the main component of total soil carbon stock and the most relevant to global change. We tackled this issue using two decadally (13) C-labeled soils and a much improved measuring system in a long-term incubation experiment. Results indicated that the temperature sensitivity of decomposition for decadally cycling SOC (>23 years in one soil and >55 years in the other soil) was significantly greater than that for faster-cycling SOC (<23 or 55 years) or for the entire SOC stock. Moreover, decadally cycling SOC contributed substantially (35-59%) to the total CO2 loss during the 360-day incubation. Overall, these results indicate that the decomposition of decadally cycling SOC is highly sensitive to temperature change, which will likely make this large SOC stock vulnerable to loss by global warming in the 21st century and beyond. PMID:26301625

  20. Long-term tillage and drainage influences on soil organic carbon dynamics, aggregate stability, and corn yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Labile pools of soil organic carbon (SOC) and nitrogen (N) affect the carbon (C) and N fluxes from terrestrial soils, whereas, long-term C and N storage is determined by the long-lived recalcitrant fractions. Tillage influences these labile pools, however effect of the tillage systems may be differe...

  1. Soil carbon storage in a small arid catchment in the Negev desert (Israel)

    NASA Astrophysics Data System (ADS)

    Hoffmann, Ulrike; Kuhn, Nikolaus

    2010-05-01

    The mineral soil represents a major pool in the global carbon cycle. The behavior of mineral soil as a carbon reservoir in global climate and environmental issues is far from fully understood and causes a serious lack of comparable data on mineral soil organic carbon (SOC) at regional scale. To improve our understanding of soil carbon sequestration, it is necessary to acquire regional estimates of soil carbon pools in different ecosystem types. So far, little attention has been given to Dryland ecosystems, but they are often considered as highly sensitive to environmental change, with large and rapid responses to even smallest changes of climate conditions. Due to this fact, Drylands, as an ecosystem with extensive surface area across the globe (6.15 billion ha), have been suggested as a potential component for major carbon storage. A priori reasoning suggests that regional spatial patterns of SOC density (kg/m²) in Drylands are mostly affected by vegetation, soil texture, landscape position, soil truncation, wind erosion/deposition and the effect of water supply. Particularly unassigned is the interaction between soil volume, geomorphic processes and SOC density on regional scale. This study aims to enhance our understanding of regional spatial variability in dependence on soil volume, topography and surface parameters in areas susceptible to environmental change. Soil samples were taken in small transects at different representative slope positions across a range of elevations, soil texture, vegetation types, and terrain positions in a small catchment (600 ha) in the Negev desert. Topographic variables were extracted from a high resolution (0.5m) digital elevation model. Subsequently, we estimated the soil volume by excavating the entire soil at the representative sampling position. The volume was then estimated by laser scanning before and after soil excavation. SOC concentration of the soil samples was determined by CHN-analyser. For each sample, carbon

  2. Fast labile carbon turnover obscures sensitivity of heterotrophic respiration from soil to temperature: A model analysis

    NASA Astrophysics Data System (ADS)

    Gu, Lianhong; Post, Wilfred M.; King, Anthony W.

    2004-03-01

    Labile carbon, although often a small fraction of soil organic carbon (SOC), significantly affects heterotrophic respiration at short timescales because of its rapid decomposition. However, in the current literature, most soil respiration measurements are interpreted without simultaneous information on labile carbon pool dynamics. Sensitivity of soil respiration to temperature is routinely derived directly from field observations, and such relationships have been used to extrapolate effects of global change (e.g., warming) on carbon emission from SOC. Here we use a multipool SOC model to demonstrate the impacts of seasonal fluctuations of labile carbon pools on interpretation of soil respiration measurements. We find that labile carbon pool sizes vary widely in response to seasonal changes in representative plant material inputs and temperature even though the model is operating at equilibrium in terms of annual means. Convolution of the dynamics of fast turnover carbon pools and temporal progression in temperature lead to misrepresentation and misinterpretation of the heterotrophic respiration-temperature relationships estimated from bulk soil CO2 exchanges. Temperature sensitivity is overestimated when the variations of labile carbon pools and temperature are in phase and underestimated when they are out of phase. Furthermore, with normally used observation time windows (weeks to a year), temperature sensitivity is more likely to be underestimated. A distortion of temperature sensitivity (Q10) from 2 (actual, sensitive dependence on temperature) to nearly 1 (false, no dependence on temperature) is shown. Applying estimated temperature sensitivity parameter back into the model considerably overestimates soil carbon storage at equilibrium. Our findings indicate that caution must be taken when soil respiration-temperature relationships are evaluated based on bulk soil observations and when sensitivity of soil respiration to temperature estimated directly under field

  3. Litter contribution to soil organic carbon in the processes of agriculture abandon

    NASA Astrophysics Data System (ADS)

    Novara, A.; Rühl, J.; La Mantia, T.; Gristina, L.; La Bella, S.; Tuttolomondo, T.

    2015-04-01

    The mechanisms of litter decomposition, translocation and stabilization into soil layers are fundamental processes in the functioning of the ecosystem, as they regulate the cycle of soil organic matter (SOM) and CO2 emission into the atmosphere. In this study the contribution of litters of different stages of Mediterranean secondary succession on carbon sequestration was investigated, analyzing the role of earthworms in the translocation of SOM into the soil profile. For this purpose the δ13C difference between meadow C4-C soil and C3-C litter was used in a field experiment. Four undisturbed litters of different stages of succession (45, 70, 100 and 120 since agriculture abandon) were collected and placed on the top of isolated C4 soil cores. The litter contribution to C stock was affected by plant species and it increased with the age of the stage of secondary succession. One year after the litter position, the soil organic carbon increased up to 40% in comparison to soils not treated with litter after 120 years of abandon. The new carbon derived from C3 litter was decomposed and transferred into soil profile thanks to earthworms and the leaching of dissolved organic carbon. After 1 year the carbon increase attributed to earthworm activity was 6 and 13% in the soils under litter of fields abandoned for 120 and 45 years, respectively.

  4. Altered soil microbial community at elevated CO2 leads to loss of soil carbon

    PubMed Central

    Carney, Karen M.; Hungate, Bruce A.; Drake, Bert G.; Megonigal, J. Patrick

    2007-01-01

    Increased carbon storage in ecosystems due to elevated CO2 may help stabilize atmospheric CO2 concentrations and slow global warming. Many field studies have found that elevated CO2 leads to higher carbon assimilation by plants, and others suggest that this can lead to higher carbon storage in soils, the largest and most stable terrestrial carbon pool. Here we show that 6 years of experimental CO2 doubling reduced soil carbon in a scrub-oak ecosystem despite higher plant growth, offsetting ≈52% of the additional carbon that had accumulated at elevated CO2 in aboveground and coarse root biomass. The decline in soil carbon was driven by changes in soil microbial composition and activity. Soils exposed to elevated CO2 had higher relative abundances of fungi and higher activities of a soil carbon-degrading enzyme, which led to more rapid rates of soil organic matter degradation than soils exposed to ambient CO2. The isotopic composition of microbial fatty acids confirmed that elevated CO2 increased microbial utilization of soil organic matter. These results show how elevated CO2, by altering soil microbial communities, can cause a potential carbon sink to become a carbon source. PMID:17360374

  5. Australian climate-carbon cycle feedback reduced by soil black carbon

    NASA Astrophysics Data System (ADS)

    Lehmann, Johannes; Skjemstad, Jan; Sohi, Saran; Carter, John; Barson, Michele; Falloon, Pete; Coleman, Kevin; Woodbury, Peter; Krull, Evelyn

    2008-12-01

    Annual emissions of carbon dioxide from soil organic carbon are an order of magnitude greater than all anthropogenic carbon dioxide emissions taken together. Global warming is likely to increase the decomposition of soil organic carbon, and thus the release of carbon dioxide from soils, creating a positive feedback. Current models of global climate change that recognize this soil carbon feedback are inaccurate if a larger fraction of soil organic carbon than postulated has a very slow decomposition rate. Here we show that by including realistic stocks of black carbon in prediction models, carbon dioxide emissions are reduced by 18.3 and 24.4% in two Australian savannah regions in response to a warming of 3∘C over 100 years. This reduction in temperature sensitivity, and thus the magnitude of the positive feedback, results from the long mean residence time of black carbon, which we estimate to be approximately 1,300 and 2,600 years, respectively. The inclusion of black carbon in climate models is likely to require spatially explicit information about its distribution, given that the black carbon content of soils ranged from 0 to 82% of soil organic carbon in a continental-scale analysis of Australia. We conclude that accurate information about the distribution of black carbon in soils is important for projections of future climate change.

  6. Variations in soil carbonate formation and seasonal bias over >4 km of relief in the western Andes (30°S) revealed by clumped isotope thermometry

    NASA Astrophysics Data System (ADS)

    Burgener, Landon; Huntington, Katharine W.; Hoke, Gregory D.; Schauer, Andrew; Ringham, Mallory C.; Latorre, Claudio; Díaz, Francisca P.

    2016-05-01

    Carbonate clumped isotope thermometry provides a new method for investigating long-standing questions regarding seasonal biases in soil carbonate formation and the relationship between soil carbonate formation temperatures recorded by clumped isotopes (T (Δ47)) and surface temperatures. We address these questions by comparing C, O, and clumped isotope data from Holocene soil carbonates to meteorological and in situ soil monitoring data along a 170 km transect with >4 km of relief in Chile (30°S). This arid transect experiences a winter wet season, and a >20 °C range in mean annual air temperature. We test the hypothesis that, regardless of soil moisture conditions, soil carbonates from arid regions record warm season biases and form in isotopic equilibrium with soil water and soil CO2. Below 3200 m, precipitation falls as rain and soil carbonate T (Δ47) values at depths >40 cm resemble summer soil temperatures. Above 3200 m, precipitation falls as snow and T (Δ47) values resemble mean annual soil temperatures. Soil carbonates from the highest site yield anomalous δ18 O, δ13 C, and T (Δ47) values indicative of kinetic isotope effects consistent with cryogenic carbonate formation. Our findings (1) demonstrate that soil carbonate T (Δ47) values from shallow (<40 cm) depths can be affected by short-term temperature changes following precipitation events; (2) suggest that only the largest precipitation events affect soil moisture at depths >40 cm; (3) highlight the role of the soil moisture regime in modulating the timing of soil carbonate formation, which affects the resulting carbonate T (Δ47) values; and (4) show that soil carbonates from high elevation or high latitude sites may form under non-equilibrium conditions. These findings underscore the importance of understanding past soil moisture conditions when attempting to reconstruct paleotemperatures using carbonate clumped isotope thermometry.

  7. Management Impacts on Forest Floor and Soil Organic Carbon in Northern Temperate Forests of the US

    PubMed Central

    2011-01-01

    Background The role of forests in the global carbon cycle has been the subject of a great deal of research recently, but the impact of management practices on forest soil dynamics at the stand level has received less attention. This study used six forest management experimental sites in five northern states of the US to investigate the effects of silvicultural treatments (light thinning, heavy thinning, and clearcutting) on forest floor and soil carbon pools. Results No overall trend was found between forest floor carbon stocks in stands subjected to partial or complete harvest treatments. A few sites had larger stocks in control plots, although estimates were often highly variable. Forest floor carbon pools did show a trend of increasing values from southern to northern sites. Surface soil (0-5 cm) organic carbon content and concentration were similar between treated and untreated plots. Overall soil carbon (0-20 cm) pool size was not significantly different from control values in sites treated with partial or complete harvests. No geographic trends were evident for any of the soil properties examined. Conclusions Results indicate that it is unlikely that mineral soil carbon stocks are adversely affected by typical management practices as applied in northern hardwood forests in the US; however, the findings suggest that the forest floor carbon pool may be susceptible to loss. PMID:22206625

  8. Soil carbon dioxide partial pressure and dissolved inorganic carbonate chemistry under elevated carbon dioxide and ozone.

    PubMed

    Karberg, N J; Pregitzer, K S; King, J S; Friend, A L; Wood, J R

    2005-01-01

    Global emissions of atmospheric CO(2) and tropospheric O(3) are rising and expected to impact large areas of the Earth's forests. While CO(2) stimulates net primary production, O(3) reduces photosynthesis, altering plant C allocation and reducing ecosystem C storage. The effects of multiple air pollutants can alter belowground C allocation, leading to changes in the partial pressure of CO(2) (pCO(2)) in the soil , chemistry of dissolved inorganic carbonate (DIC) and the rate of mineral weathering. As this system represents a linkage between the long- and short-term C cycles and sequestration of atmospheric CO(2), changes in atmospheric chemistry that affect net primary production may alter the fate of C in these ecosystems. To date, little is known about the combined effects of elevated CO(2) and O(3) on the inorganic C cycle in forest systems. Free air CO(2) and O(3) enrichment (FACE) technology was used at the Aspen FACE project in Rhinelander, Wisconsin to understand how elevated atmospheric CO(2) and O(3) interact to alter pCO(2) and DIC concentrations in the soil. Ambient and elevated CO(2) levels were 360+/-16 and 542+/-81 microl l(-1), respectively; ambient and elevated O(3) levels were 33+/-14 and 49+/-24 nl l(-1), respectively. Measured concentrations of soil CO(2) and calculated concentrations of DIC increased over the growing season by 14 and 22%, respectively, under elevated atmospheric CO(2) and were unaffected by elevated tropospheric O(3). The increased concentration of DIC altered inorganic carbonate chemistry by increasing system total alkalinity by 210%, likely due to enhanced chemical weathering. The study also demonstrated the close coupling between the seasonal delta(13)C of soil pCO(2) and DIC, as a mixing model showed that new atmospheric CO(2) accounted for approximately 90% of the C leaving the system as DIC. This study illustrates the potential of using stable isotopic techniques and FACE technology to examine long- and short

  9. Modelling carbon in permafrost soils from preindustrial to the future

    NASA Astrophysics Data System (ADS)

    Kleinen, T.; Brovkin, V.

    2015-12-01

    The carbon release from thawing permafrost soils constitutes one of the large uncertainties in the carbon cycle under future climate change. Analysing the problem further, this uncertainty results from an uncertainty about the total amount of C that is stored in frozen soils, combined with an uncertainty about the areas where soils might thaw under a particular climate change scenario, as well as an uncertainty about the decomposition product since some of the decomposed C might result the release of CH4 as well as CO2. We use the land surface model JSBACH, part of the Max Planck Institute Earth System Model MPI-ESM, to quantify the release of soil carbon from thawing permafrost soils. We have extended the soil carbon model YASSO by introducing carbon storages in frozen soils, with increasing fractions of C being available to decomposition as permafrost thaws. In order to quantify the amount of carbon released as CH4, as opposed to CO2, we have also implemented a TOPMODEL-based wetland scheme, as well as anaerobic C decomposition and methane transport. We initialise the soil C pools for the preindustrial climate state from the Northern Circumpolar Soil Carbon Database to insure initial C pool sizes close to measurements. We then determine changes in soil C storage in transient model experiments following historical and future climate changes under RCP 8.5. Based on these experiments, we quantify the greenhouse gas release from permafrost C decomposition, determining both CH4 and CO2 emissions.

  10. Soil Carbon Storage in Christmas Tree Farms: Maximizing Ecosystem Management and Sustainability for Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Chapman, S. K.; Shaw, R.; Langley, A.

    2008-12-01

    Management of agroecosystems for the purpose of manipulating soil carbon stocks could be a viable approach for countering rising atmospheric carbon dioxide concentrations, while maximizing sustainability of the agroforestry industry. We investigated the carbon storage potential of Christmas tree farms in the southern Appalachian mountains as a potential model for the impacts of land management on soil carbon. We quantified soil carbon stocks across a gradient of cultivation duration and herbicide management. We compared soil carbon in farms to that in adjacent pastures and native forests that represent a control group to account for variability in other soil-forming factors. We partitioned tree farm soil carbon into fractions delineated by stability, an important determinant of long-term sequestration potential. Soil carbon stocks in the intermediate pool are significantly greater in the tree farms under cultivation for longer periods of time than in the younger tree farms. This pool can be quite large, yet has the ability to repond to biological environmental changes on the centennial time scale. Pasture soil carbon was significantly greater than both forest and tree farm soil carbon, which were not different from each other. These data can help inform land management and soil carbon sequestration strategies.

  11. Managing uncertainty in soil carbon feedbacks to climate change

    NASA Astrophysics Data System (ADS)

    Bradford, Mark A.; Wieder, William R.; Bonan, Gordon B.; Fierer, Noah; Raymond, Peter A.; Crowther, Thomas W.

    2016-08-01

    Planetary warming may be exacerbated if it accelerates loss of soil carbon to the atmosphere. This carbon-cycle-climate feedback is included in climate projections. Yet, despite ancillary data supporting a positive feedback, there is limited evidence for soil carbon loss under warming. The low confidence engendered in feedback projections is reduced further by the common representation in models of an outdated knowledge of soil carbon turnover. 'Model-knowledge integration' -- representing in models an advanced understanding of soil carbon stabilization -- is the first step to build confidence. This will inform experiments that further increase confidence by resolving competing mechanisms that most influence projected soil-carbon stocks. Improving feedback projections is an imperative for establishing greenhouse gas emission targets that limit climate change.

  12. Effects of Vegetation Removal and Soil Disturbance on Soil Organic and Inorganic Carbon Dynamics in California Desert Ecosystems

    NASA Astrophysics Data System (ADS)

    Swanson, A. C.; Allen, E. B.; Allen, M. F.; Hernandez, R. R.

    2015-12-01

    Solar energy developments are projected to be deployed over desert wildland areas with deep soil inorganic carbon (SIC) deposits, which often involves elimination of deep-rooted vegetation. This land cover change may systemically alter SIC pools since respired CO2 is the carbon (C) source during SIC formation. We sought to understand how removal of creosote bush scrub affects soil C pools. We hypothesized that vegetation is important for maintaining SIC and soil organic C (SOC) pools and that disturbance to the vegetation and soil will change CO2 flux with increased losses from SIC. Soils were collected from sites that had intact creosote bush scrub habitat adjacent to disturbed, bare areas where the native vegetation had been previously removed. Samples were taken from beneath shrub canopies and interspaces in intact areas, and from random points in the disturbed area. Soils were analyzed for SIC, SOC, microbial and labile C, and δ13C. Soils were also incubated to determine the potential CO2 flux from disturbed and undisturbed soils along with the sources of CO2. Three replicates per soil underwent a control and water addition treatment and flux and δ13C of CO2 were measured continuously. Control replicates yielded no significant CO2 flux. CO2 flux from watered soils was higher beneath shrub canopy (18.57µmol g soil-1 day-1±1.86) than the interspace soils (0.86 µmol g soil-1 day-1±0.17). Soils collected from bare areas had an intermediate flux (5.41 µmol g soil-1 day-1±2.68 and 3.68 µmol g soil-1 day-1±0.85, respectively) lying between shrub canopy and interspace soils. There was no significant difference between the δ13C values of CO2 from shrub canopy and interspace soils, both of which had a very low δ13C values (-22.60‰±0.64 and -23.88‰±0.89, respectively), resembling that of organic C. However, the isotopic values of CO2 from disturbed soils were significantly higher (-16.68‰±1.36 and -15.22‰±2.12, respectively) suggesting that these

  13. Pesticide interactions with soils affected by olive oil mill wastewater

    NASA Astrophysics Data System (ADS)

    Keren, Yonatan; Bukhanovsky, Nadezhda; Borisover, Mikhail

    2013-04-01

    Soil pesticide sorption is well known to affect the fate of pesticides, their bioavailability and the potential to contaminate air and water. Soil - pesticide interactions may be strongly influenced by soil organic matter (SOM) and organic matter (OM)-rich soil amendments. One special OM source in soils is related to olive oil production residues that may include both solid and liquid wastes. In the Mediterranean area, the olive oil production is considered as an important field in the agricultural sector. Due to the significant rise in olive oil production, the amount of wastes is growing respectively. Olive oil mill waste water (OMWW) is the liquid byproduct in the so-called "three phase" technological process. Features of OMWW include the high content of fatty aliphatic components and polyphenols and their often-considered toxicity. One way of OMWW disposal is the land spreading, e.g., in olive orchards. The land application of OMWW (either controlled or not) is supposed to affect the multiple soil properties, including hydrophobicity and the potential of soils to interact with pesticides. Therefore, there is both basic and applied interest in elucidating the interactions between organic compounds and soils affected by OMWW. However, little is known about the impact of OMWW - soil interactions on sorption of organic compounds, and specifically, on sorption of agrochemicals. This paper reports an experimental study of sorption interactions of a series of organic compounds including widely used herbicides such as diuron and simazine, in a range of soils that were affected by OMWW (i) historically or (ii) in the controlled land disposal experiments. It is demonstrated that there is a distinct increase in apparent sorption of organic chemicals in soils affected by OMWW. In selected systems, this increase may be explained by increase in SOM content. However, the SOM quality places a role: the rise in organic compound - soil interactions may both exceed the SOM

  14. A disconnect between O horizon and mineral soil carbon - Implications for soil C sequestration

    SciTech Connect

    Garten Jr, Charles T

    2009-01-01

    Changing inputs of carbon to soil is one means of potentially increasing carbon sequestration in soils for the purpose of mitigating projected increases in atmospheric CO{sub 2} concentrations. The effect of manipulations of aboveground carbon input on soil carbon storage was tested in a temperate, deciduous forest in east Tennessee, USA. A 4.5-year experiment included exclusion of aboveground litterfall and supplemental litter additions (three times ambient) in an upland and a valley that differed in soil nitrogen availability. The estimated decomposition rate of the carbon stock in the O horizon was greater in the valley than in the upland due to higher litter quality (i.e., lower C/N ratios). Short-term litter exclusion or addition had no effect on carbon stock in the mineral soil, measured to a depth of 30 cm, or the partitioning of carbon in the mineral soil between particulate- and mineral-associated organic matter. A two-compartment model was used to interpret results from the field experiments. Field data and a sensitivity analysis of the model were consistent with little carbon transfer between the O horizon and the mineral soil. Increasing aboveground carbon input does not appear to be an effective means of promoting carbon sequestration in forest soil at the location of the present study because a disconnect exists in carbon dynamics between O horizon and mineral soil. Factors that directly increase inputs to belowground soil carbon, via roots, or reduce decomposition rates of organic matter are more likely to benefit efforts to increase carbon sequestration in forests where carbon dynamics in the O horizon are uncoupled from the mineral soil.

  15. Microbial Functional Potential and Community Composition in Permafrost-Affected Soils of the NW Canadian Arctic

    PubMed Central

    Frank-Fahle, Béatrice A.; Yergeau, Étienne; Greer, Charles W.; Lantuit, Hugues; Wagner, Dirk

    2014-01-01

    Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic. PMID:24416279

  16. Microbial functional potential and community composition in permafrost-affected soils of the NW Canadian Arctic.

    PubMed

    Frank-Fahle, Béatrice A; Yergeau, Etienne; Greer, Charles W; Lantuit, Hugues; Wagner, Dirk

    2014-01-01

    Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic.

  17. Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community.

    PubMed

    Khodakovskaya, Mariya V; Kim, Bong-Soo; Kim, Jong Nam; Alimohammadi, Mohammad; Dervishi, Enkeleda; Mustafa, Thikra; Cernigla, Carl E

    2013-01-14

    Multi-walled carbon nanotubes (CNTs) can affect plant phenotype and the composition of soil microbiota. Tomato plants grown in soil supplemented with CNTs produce two times more flowers and fruit compared to plants grown in control soil. The effect of carbon nanotubes on microbial community of CNT-treated soil is determined by denaturing gradient gel electrophoresis and pyrosequencing analysis. Phylogenetic analysis indicates that Proteobacteria and Bacteroidetes are the most dominant groups in the microbial community of soil. The relative abundances of Bacteroidetes and Firmicutes are found to increase, whereas Proteobacteria and Verrucomicorbia decrease with increasing concentration of CNTs. The results of comparing diversity indices and species level phylotypes (OTUs) between samples showed that there is not a significant affect on bacterial diversity.

  18. Soil carbon distribution in Alaska in relation to soil-forming factors

    USGS Publications Warehouse

    Johnson, K.D.; Harden, J.; McGuire, A.D.; Bliss, N.B.; Bockheim, J.G.; Clark, M.; Nettleton-Hollingsworth, T.; Jorgenson, M.T.; Kane, E.S.; Mack, M.; O'Donnell, J.; Ping, C.-L.; Schuur, E.A.G.; Turetsky, M.R.; Valentine, D.W.

    2011-01-01

    The direction and magnitude of soil organic carbon (SOC) changes in response to climate change remain unclear and depend on the spatial distribution of SOC across landscapes. Uncertainties regarding the fate of SOC are greater in high-latitude systems where data are sparse and the soils are affected by sub-zero temperatures. To address these issues in Alaska, a first-order assessment of data gaps and spatial distributions of SOC was conducted from a recently compiled soil carbon database. Temperature and landform type were the dominant controls on SOC distribution for selected ecoregions. Mean SOC pools (to a depth of 1-m) varied by three, seven and ten-fold across ecoregion, landform, and ecosystem types, respectively. Climate interactions with landform type and SOC were greatest in the uplands. For upland SOC there was a six-fold non-linear increase in SOC with latitude (i.e., temperature) where SOC was lowest in the Intermontane Boreal compared to the Arctic Tundra and Coastal Rainforest. Additionally, in upland systems mineral SOC pools decreased as climate became more continental, suggesting that the lower productivity, higher decomposition rates and fire activity, common in continental climates, interacted to reduce mineral SOC. For lowland systems, in contrast, these interactions and their impacts on SOC were muted or absent making SOC in these environments more comparable across latitudes. Thus, the magnitudes of SOC change across temperature gradients were non-uniform and depended on landform type. Additional factors that appeared to be related to SOC distribution within ecoregions included stand age, aspect, and permafrost presence or absence in black spruce stands. Overall, these results indicate the influence of major interactions between temperature-controlled decomposition and topography on SOC in high-latitude systems. However, there remains a need for more SOC data from wetlands and boreal-region permafrost soils, especially at depths > 1 m in order

  19. The ash in forest fire affected soils control the soil losses. Part 1. The pioneer research

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Pereira, Paulo

    2013-04-01

    composition (Pereira and Úbeda, 2010) and Pereira et al., 2012). Some of the new research challenges related to ash impact in the fire affected soils are related to the ash redistribution after the fire, the impact of ash in soil and water chemistry, the temporal changes of soil erosion, the control ash exert on vegetation recovery and the role to be played by ash in the best management of fire affected land. Those topics needs new ideas and new scientists such as Paulo Pereira show in the Part II of this abstract. Acknowledgements, Lithuanian Research Council. Project LITFIRE, Fire effects on Lithuanian soils and ecosystems (MIP-48/2011) and the research projects GL2008-02879/BTE and LEDDRA 243857. References Bodí, M., Mataix-Solera, J., Doerr, S., and Cerdà, A. 2011b. The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content. Geoderma, 160, 599-607. Cerdà, A. 1998a. Postfire dynamics of erosional processes under mediterranean climatic conditions. Z. Geomorphol., 42 (3) 373-398. Cerdà, A. 1998b. Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrological Processes, 12, 1031-1042. Cerdà, A., and Doerr, S. H.2010. The effect of ant mounds on overland flow and soil erodibility following a wildfire in eastern Spain. Ecohydrology, 3, 392-401. Cerdà, A., and Doerr, S.H. 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74, 256-263. Pereira, P., and Úbeda, X. 2010. Spatial distribution of heavy metals released from ashes after a wildfire, Journal of Environment Engineering and Landscape Management, 18, 13-22. Pereira, P., Ubeda, X., Martin, D.A. 2012. Fire severity effects on ash chemical composition and extractable elements. Geoderma, 191, 105 - 114. Pérez-Cabello, F., Cerdà, A., de la Riva, J., Echeverría, M.T., García-Martín, A., Ibarra, P., Lasanta, T., Montorio

  20. Accelerated soil carbon turnover under tree plantations limits soil carbon storage

    PubMed Central

    Chen, Guangshui; Yang, Yusheng; Yang, Zhijie; Xie, Jinsheng; Guo, Jianfen; Gao, Ren; Yin, Yunfeng; Robinson, David

    2016-01-01

    The replacement of native forests by tree plantations is increasingly common globally, especially in tropical and subtropical areas. Improving our understanding of the long-term effects of this replacement on soil organic carbon (SOC) remains paramount for effectively managing ecosystems to mitigate anthropogenic carbon emissions. Meta-analyses imply that native forest replacement usually reduces SOC stocks and may switch the forest from a net sink to a net source of atmospheric carbon. Using a long-term chronosequence during which areas of subtropical native forest were replaced by Chinese fir, we show by direct measurement that plantations have significantly accelerated SOC turnover compared with native forest, an effect that has persisted for almost a century. The immediate stimulation of SOC decomposition was caused by warmer soil before the closure of the plantation’s canopy. Long-term reductions in SOC mean residence times were coupled to litter inputs. Faster SOC decomposition was associated with lower soil microbial carbon use efficiency, which was due to smaller litter inputs and reduced nutrient availabilities. Our results indicate a previously unelucidated control on long-term SOC dynamics in native forests and demonstrate a potential constraint on climate mitigation when such forests are replaced by plantations. PMID:26805949

  1. Isotopic studies of Yucca Mountain soil fluids and carbonate pedogenesis

    SciTech Connect

    McConnaughey, T.A.; Whelan, J.F.; Wickland, K.P.; Moscati, R.J.

    1994-12-31

    Secondary carbonates occurring within the soils, faults, and subsurface fractures of Yucca Mountain contain some of the best available records of paleoclimate and palehydrology for the potential radioactive waste repository site. This article discusses conceptual and analytical advances being made with regard to the interpretation of stable isotope data from pedogenic carbonates, specifically related to the {sup 13}C content of soil CO{sub 2}, CaCO{sub 3}, precipitation mechanisms, and isotopic fractionations between parent fluids and precipitating carbonates. The {sup 13}C content of soil carbon dioxide from Yucca Mountain and vicinity shows most of the usual patterns expected in such contexts: Decreasing {sup 13}C content with depth decreasing {sup 13}C with altitude and reduced {sup 13}C during spring. These patterns exist within the domain of a noisy data set; soil and vegetational heterogeneities, weather, and other factors apparently contribute to isotopic variability in the system. Several soil calcification mechanisms appear to be important, involving characteristic physical and chemical environments and isotopic fractionations. When CO{sub 2} loss from thin soil solutions is an important driving factor, carbonates may contain excess heavy isotopes, compared to equilibrium precipitation with soil fluids. When root calcification serves as a proton generator for plant absorption of soil nutrients, heavy isotope deficiencies are likely. Successive cycles of dissolution and reprecipitation mix and redistribute pedogenic carbonates, and tend to isotopically homogenize and equilibrate pedogenic carbonates with soil fluids.

  2. Arbuscular mycorrhizal fungi enhance soil carbon sequestration in the coalfields, northwest China

    PubMed Central

    Wang, Zhi-Gang; Bi, Yin-Li; Jiang, Bin; Zhakypbek, Yryszhan; Peng, Su-Ping; Liu, Wen-Wen; Liu, Hao

    2016-01-01

    Carbon storage is affected by photosynthesis (Pn) and soil respiration (Rs), which have been studied extensively in natural and agricultural systems. However, the effects of Pn and Rs on carbon storages in the presence of arbuscular mycorrhizal fungi (AMF) in coalfields remain unclear. A field experiment was established in 2014 in Shendong coal mining subsidence area. The treatments comprised two inoculation levels (inoculated with or without 100 g AMF inoculums per seedlings) and four plant species [wild cherry (Prunus discadenia Koebne L.), cerasus humilis (Prunus dictyneura Diels L.), shiny leaf Yellow horn (Xanthoceras sorbifolium Bunge L.) and apricot (Armeniaca sibirica L.)]. AMF increased Pn of four species ranging from 15.3% to 33.1% and carbon storage, averaged by 17.2% compared to controls. Soil organic carbon (OC), easily extractable glomalin-relation soil protein (EE-GRSP), and total glomalin-relation soil protein (T-GRSP) were significantly increased by AMF treatment. The effect of AMF on the sensitivity of Rs depended on soil temperature. The results highlighted the exponential models to explain the responses of Rs to soil temperature, and for the first time quantified AMF caused carbon sequestration and Rs. Thus, to our knowledge, AMF is beneficial to ecosystems through facilitating carbon conservation in coalfield soils. PMID:27748365

  3. Arbuscular mycorrhizal fungi enhance soil carbon sequestration in the coalfields, northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Gang; Bi, Yin-Li; Jiang, Bin; Zhakypbek, Yryszhan; Peng, Su-Ping; Liu, Wen-Wen; Liu, Hao

    2016-10-01

    Carbon storage is affected by photosynthesis (Pn) and soil respiration (Rs), which have been studied extensively in natural and agricultural systems. However, the effects of Pn and Rs on carbon storages in the presence of arbuscular mycorrhizal fungi (AMF) in coalfields remain unclear. A field experiment was established in 2014 in Shendong coal mining subsidence area. The treatments comprised two inoculation levels (inoculated with or without 100 g AMF inoculums per seedlings) and four plant species [wild cherry (Prunus discadenia Koebne L.), cerasus humilis (Prunus dictyneura Diels L.), shiny leaf Yellow horn (Xanthoceras sorbifolium Bunge L.) and apricot (Armeniaca sibirica L.)]. AMF increased Pn of four species ranging from 15.3% to 33.1% and carbon storage, averaged by 17.2% compared to controls. Soil organic carbon (OC), easily extractable glomalin-relation soil protein (EE-GRSP), and total glomalin-relation soil protein (T-GRSP) were significantly increased by AMF treatment. The effect of AMF on the sensitivity of Rs depended on soil temperature. The results highlighted the exponential models to explain the responses of Rs to soil temperature, and for the first time quantified AMF caused carbon sequestration and Rs. Thus, to our knowledge, AMF is beneficial to ecosystems through facilitating carbon conservation in coalfield soils.

  4. Microflora of soils under pine forests area affected by gradation of leaf-eating insects.

    PubMed

    Stremińska, Marta A; Błaszczyk, Mieczysław; Sierpińska, Alicja; Kolk, Andrzej

    2002-01-01

    Soils of pine forests in the Bytnica Forestry District, Poland, are poor in nutrients readily accessible to plants. The excessively acidic reaction of the soils, typical for soils under pine forests, unfavourably affects the growth of microorganisms whose numbers are lower than in soils under deciduous and mixed forests. In the pine forests of the studied forestry there were outbreaks of a defoliating insect - pine beauty moth (Panolis flammea L.), which resulted in over 60% defoliation of the trees. The studies were carried out on the area of tree stands subjected to gradation by leaf-eating insects (sprayed and not sprayed) and healthy stand of the same age class (age 60 to 70 years). The studies revealed increased number of soil microorganisms in samples taken from the area affected by pine beauty moth gradation in the case of both unsprayed areas and those sprayed with the pesticide. The occurrence in these soils of larger numbers of ammonifying and denitrifying bacteria points to the presence of conditions favouring the growth of heterotrophic organisms. Changes in the number of actinomycetes and fungi in soils under tree stands subjected to gradation by insects, compared to healthy stands, can be a consequence of a change of environmental conditions (e.g. % content of organic carbon). Soils under defoliated tree stands show higher biochemical activity related to nitrogen cycling in the pine forest ecosystem. This leads to higher availability of organic nitrogen for conversion to inorganic forms of nitrogen, which are utilised by trees. Further changes occurring in soils under forest stands affected by gradation by leaf-eating insects would allow to gain knowledge on the ecological consequences of the use of insecticides in the protection of pine stands against harmful insects, with particular stress on those situations in which pine stands not threatened by complete defoliation are sprayed.

  5. The uncertainty of modeled soil carbon stock change for Finland

    NASA Astrophysics Data System (ADS)

    Lehtonen, Aleksi; Heikkinen, Juha

    2013-04-01

    Countries should report soil carbon stock changes of forests for Kyoto Protocol. Under Kyoto Protocol one can omit reporting of a carbon pool by verifying that the pool is not a source of carbon, which is especially tempting for the soil pool. However, verifying that soils of a nation are not a source of carbon in given year seems to be nearly impossible. The Yasso07 model was parametrized against various decomposition data using MCMC method. Soil carbon change in Finland between 1972 and 2011 were simulated with Yasso07 model using litter input data derived from the National Forest Inventory (NFI) and fellings time series. The uncertainties of biomass models, litter turnoverrates, NFI sampling and Yasso07 model were propagated with Monte Carlo simulations. Due to biomass estimation methods, uncertainties of various litter input sources (e.g. living trees, natural mortality and fellings) correlate strongly between each other. We show how original covariance matrices can be analytically combined and the amount of simulated components reduce greatly. While doing simulations we found that proper handling correlations may be even more essential than accurate estimates of standard errors. As a preliminary results, from the analysis we found that both Southern- and Northern Finland were soil carbon sinks, coefficient of variations (CV) varying 10%-25% when model was driven with long term constant weather data. When we applied annual weather data, soils were both sinks and sources of carbon and CVs varied from 10%-90%. This implies that the success of soil carbon sink verification depends on the weather data applied with models. Due to this fact IPCC should provide clear guidance for the weather data applied with soil carbon models and also for soil carbon sink verification. In the UNFCCC reporting carbon sinks of forest biomass have been typically averaged for five years - similar period for soil model weather data would be logical.

  6. Volatilization of EPTC as affected by soil moisture

    NASA Astrophysics Data System (ADS)

    Fu, Liqun

    Volatilization is an important process that controls the dissipation of pesticides after field application. Soil moisture plays an important role in controlling the volatilization of pesticides. However, the extent of this role is unclear. This study was conducted to determine how soil moisture affects the sorption capacity and vapor loss of EPTC (S-ethyl dipropyl carbamothioate) from two soils, Weswood clay loam (fine- silty, mixed, thermic fluventic ustochrepts) and Padina loamy sand (loamy, siliceous, thermic grossarenic paleustalfs). Soil samples with different moisture contents were exposed to saturated EPTC vapor for 1, 2, 5, or 12 days and sorbed concentrations were measured. Sorption capacity of Weswood after 12 days exposure was about 12 times higher with air-dry soil than at the wilting point (-1500 kPa). For Padina, after 12 days exposure, the sorption capacity was about 18 times higher at air- dry than at -1500 kPa. The maximum sorption extrapolated from the partitioning coefficients determined with an equilibrium batch system and Henry's law were similar to the sorption capacities when moisture content was close to the wilting point for both soils. Desorption of EPTC vapor from soils with different moistures was determined by a purge and trap method. EPTC vapor losses strongly depended on the soil moisture and/or the humidity of the air. If the air was dry, volatilization of EPTC was much larger when the soil was wet. If humidity of the air was high, the effect of soil moisture on volatilization was not as great. No significant correlation at a confidence level of 95% was found between water and EPTC vapor losses for either soil when water saturated air was used as a purge gas. When purged with dry air, losses of water and EPTC vapor were strongly correlated at a confidence level of 99%. This study indicates that decreasing soil moisture significantly increases EPTC sorption and decreases volatilization. Simulation of volatilization with a one

  7. Effects of amendment of different biochars on soil physical and biological properties related to carbon mineralization

    NASA Astrophysics Data System (ADS)

    Zhang, Renduo; Zhu, Shuzhi; Ouyang, Lei

    2014-05-01

    Biochar addition to soils potentially affects various soil properties, and these effects are dependent on biochars derived from different feedstock materials and pyrolysis processes. The objective of this study was to investigate the effects of amendment of different biochars on soil physical and biological properties. Biochars were produced with dairy manure and woodchip at temperatures of 300, 500, and 700°C, respectively. Each biochar was mixed at 5% (w/w) with a forest soil and the mixture was incubated for 180 days, during which soil physical and biological properties, and soil respiration rates were measured. Results showed that the biochar addition significantly enhanced the formation of soil macroaggregates at the early incubation time. The biochar application significantly reduced soil bulk density, increased the amount of soil organic matter, and stimulated microbial activity and soil respiration rates at the early incubation stage. Biochar applications improved water retention capacity, with stronger effects by biochars produced at higher pyrolysis temperatures. At the same suction, the soil with woodchip biochars possessed higher water content than with the dairy manure biochars. Biochar addition significantly affected the soil physical and biological properties, which resulted in different soil carbon mineralization rates.

  8. Soil organic carbon enrichment of dust emissions: Magnitude, mechanisms and its implications for the carbon cycle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion is an important component of the global carbon cycle. However, little attention has been given to the role of aeolian processes in influencing soil organic carbon (SOC) flux and the release of greenhouse gasses, such as carbon-dioxide (CO2), to the atmosphere. Understanding the magnitu...

  9. Forest soil carbon is threatened by intensive biomass harvesting

    NASA Astrophysics Data System (ADS)

    Achat, David L.; Fortin, Mathieu; Landmann, Guy; Ringeval, Bruno; Augusto, Laurent

    2015-11-01

    Forests play a key role in the carbon cycle as they store huge quantities of organic carbon, most of which is stored in soils, with a smaller part being held in vegetation. While the carbon storage capacity of forests is influenced by forestry, the long-term impacts of forest managers’ decisions on soil organic carbon (SOC) remain unclear. Using a meta-analysis approach, we showed that conventional biomass harvests preserved the SOC of forests, unlike intensive harvests where logging residues were harvested to produce fuelwood. Conventional harvests caused a decrease in carbon storage in the forest floor, but when the whole soil profile was taken into account, we found that this loss in the forest floor was compensated by an accumulation of SOC in deeper soil layers. Conversely, we found that intensive harvests led to SOC losses in all layers of forest soils. We assessed the potential impact of intensive harvests on the carbon budget, focusing on managed European forests. Estimated carbon losses from forest soils suggested that intensive biomass harvests could constitute an important source of carbon transfer from forests to the atmosphere (142-497 Tg-C), partly neutralizing the role of a carbon sink played by forest soils.

  10. Forest soil carbon is threatened by intensive biomass harvesting.

    PubMed

    Achat, David L; Fortin, Mathieu; Landmann, Guy; Ringeval, Bruno; Augusto, Laurent

    2015-01-01

    Forests play a key role in the carbon cycle as they store huge quantities of organic carbon, most of which is stored in soils, with a smaller part being held in vegetation. While the carbon storage capacity of forests is influenced by forestry, the long-term impacts of forest managers' decisions on soil organic carbon (SOC) remain unclear. Using a meta-analysis approach, we showed that conventional biomass harvests preserved the SOC of forests, unlike intensive harvests where logging residues were harvested to produce fuelwood. Conventional harvests caused a decrease in carbon storage in the forest floor, but when the whole soil profile was taken into account, we found that this loss in the forest floor was compensated by an accumulation of SOC in deeper soil layers. Conversely, we found that intensive harvests led to SOC losses in all layers of forest soils. We assessed the potential impact of intensive harvests on the carbon budget, focusing on managed European forests. Estimated carbon losses from forest soils suggested that intensive biomass harvests could constitute an important source of carbon transfer from forests to the atmosphere (142-497 Tg-C), partly neutralizing the role of a carbon sink played by forest soils. PMID:26530409

  11. Forest soil carbon is threatened by intensive biomass harvesting

    PubMed Central

    Achat, David L.; Fortin, Mathieu; Landmann, Guy; Ringeval, Bruno; Augusto, Laurent

    2015-01-01

    Forests play a key role in the carbon cycle as they store huge quantities of organic carbon, most of which is stored in soils, with a smaller part being held in vegetation. While the carbon storage capacity of forests is influenced by forestry, the long-term impacts of forest managers’ decisions on soil organic carbon (SOC) remain unclear. Using a meta-analysis approach, we showed that conventional biomass harvests preserved the SOC of forests, unlike intensive harvests where logging residues were harvested to produce fuelwood. Conventional harvests caused a decrease in carbon storage in the forest floor, but when the whole soil profile was taken into account, we found that this loss in the forest floor was compensated by an accumulation of SOC in deeper soil layers. Conversely, we found that intensive harvests led to SOC losses in all layers of forest soils. We assessed the potential impact of intensive harvests on the carbon budget, focusing on managed European forests. Estimated carbon losses from forest soils suggested that intensive biomass harvests could constitute an important source of carbon transfer from forests to the atmosphere (142–497 Tg-C), partly neutralizing the role of a carbon sink played by forest soils. PMID:26530409

  12. Forest soil carbon oxidation state and oxidative ratio responses to elevated CO2

    NASA Astrophysics Data System (ADS)

    Hockaday, William C.; Gallagher, Morgan E.; Masiello, Caroline A.; Baldock, Jeffrey A.; Iversen, Colleen M.; Norby, Richard J.

    2015-09-01

    The oxidative ratio (OR) of the biosphere is the stoichiometric ratio (O2/CO2) of gas exchange by photosynthesis and respiration—a key parameter in budgeting calculations of the land and ocean carbon sinks. Carbon cycle-climate feedbacks could alter the OR of the biosphere by affecting the quantity and quality of organic matter in plant biomass and soil carbon pools. This study considers the effect of elevated atmospheric carbon dioxide concentrations ([CO2]) on the OR of a hardwood forest after nine growing seasons of Free-Air CO2 Enrichment. We measured changes in the carbon oxidation state (Cox) of biomass and soil carbon pools as a proxy for the ecosystem OR. The OR of net primary production, 1.039, was not affected by elevated [CO2]. However, the Cox of the soil carbon pool was 40% higher at elevated [CO2], and the estimated OR values for soil respiration increased from 1.006 at ambient [CO2] to 1.054 at elevated [CO2]. A biochemical inventory of the soil organic matter ascribed the increases in Cox and OR to faster turnover of reduced substrates, lignin and lipids, at elevated [CO2]. This implicates the heterotrophic soil community response to elevated [CO2] as a driver of disequilibrium in the ecosystem OR. The oxidation of soil carbon pool constitutes an unexpected terrestrial O2 sink. Carbon budgets constructed under the assumption of OR equilibrium would equate such a terrestrial O2 sink to CO2 uptake by the ocean. The potential for climate-driven disequilibriua in the cycling of O2 and CO2 warrants further investigation.

  13. [Effects of simulated acid rain on decomposition of soil organic carbon and crop straw].

    PubMed

    Zhu, Xue-Zhu; Huang, Yao; Yang, Xin-Zhong

    2009-02-01

    To evaluate the effects of acid rain on the organic carbon decomposition in different acidity soils, a 40-day incubation test was conducted with the paddy soils of pH 5.48, 6.70 and 8.18. The soils were amended with 0 and 15 g x kg(-1) of rice straw, adjusted to the moisture content of 400 g x kg(-1) air-dried soil by using simulated rain of pH 6.0, 4.5, and 3.0, and incubated at 20 degrees C. The results showed that straw, acid rain, and soil co-affected the CO2 emission from soil system. The amendment of straw increased the soil CO2 emission rate significantly. Acid rain had no significant effects on soil organic carbon decomposition, but significantly affected the straw decomposition in soil. When treated with pH 3.0 acid rain, the amount of decomposed straw over 40-day incubation in acid (pH 5.48) and alkaline (pH 8.18) soils was 8% higher, while that in neutral soil (pH 6.70) was 15% lower, compared to the treatment of pH 6.0 rain. In the treatment of pH 3.0 acid rain, the decomposition rate of soil organic C in acid (pH 5.48) soil was 43% and 50% (P < 0.05) higher than that in neutral (pH 6.70) and alkaline (pH 8.18) soils, while the decomposition rate of straw in neutral soil was 17% and 16% (P < 0.05) lower than that in acid and alkaline soils, respectively.

  14. [Effects of simulated acid rain on decomposition of soil organic carbon and crop straw].

    PubMed

    Zhu, Xue-Zhu; Huang, Yao; Yang, Xin-Zhong

    2009-02-01

    To evaluate the effects of acid rain on the organic carbon decomposition in different acidity soils, a 40-day incubation test was conducted with the paddy soils of pH 5.48, 6.70 and 8.18. The soils were amended with 0 and 15 g x kg(-1) of rice straw, adjusted to the moisture content of 400 g x kg(-1) air-dried soil by using simulated rain of pH 6.0, 4.5, and 3.0, and incubated at 20 degrees C. The results showed that straw, acid rain, and soil co-affected the CO2 emission from soil system. The amendment of straw increased the soil CO2 emission rate significantly. Acid rain had no significant effects on soil organic carbon decomposition, but significantly affected the straw decomposition in soil. When treated with pH 3.0 acid rain, the amount of decomposed straw over 40-day incubation in acid (pH 5.48) and alkaline (pH 8.18) soils was 8% higher, while that in neutral soil (pH 6.70) was 15% lower, compared to the treatment of pH 6.0 rain. In the treatment of pH 3.0 acid rain, the decomposition rate of soil organic C in acid (pH 5.48) soil was 43% and 50% (P < 0.05) higher than that in neutral (pH 6.70) and alkaline (pH 8.18) soils, while the decomposition rate of straw in neutral soil was 17% and 16% (P < 0.05) lower than that in acid and alkaline soils, respectively. PMID:19459394

  15. How Glassy States Affect Brown Carbon Production?

    NASA Astrophysics Data System (ADS)

    Liu, P.; Li, Y.; Wang, Y.; Bateman, A. P.; Zhang, Y.; Gong, Z.; Gilles, M. K.; Martin, S. T.

    2015-12-01

    Secondary organic material (SOM) can become light-absorbing (i.e. brown carbon) via multiphase reactions with nitrogen-containing species such as ammonia and amines. The physical states of SOM, however, potentially slow the diffusion of reactant molecules in organic matrix under conditions that semisolids or solids prevail, thus inhibiting the browning reaction pathways. In this study, the physical states and the in-particle diffusivity were investigated by measuring the evaporation kinetics of both water and organics from aromatic-derived SOMs using a quartz-crystal-microbalance (QCM). The results indicate that the SOMs derived from aromatic precursors toluene and m-xylene became solid (glassy) and the in particle diffusion was significantly impeded for sufficiently low relative humidity ( < 20% RH) at 293 K. Optical properties and the AMS spectra were measured for toluene-derived SOM after ammonia exposure at varied RHs. The results suggest that the production of light-absorbing nitrogen-containing compounds from multiphase reactions with ammonia was kinetically limited in the glassy organic matrix, which otherwise produce brown carbon. The results of this study have significant implications for production and optical properties of brown carbon in urban atmospheres that ultimately influence the climate and tropospheric photochemistry.

  16. Does North Appalachian Agriculture Contribute to Soil Carbon Sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural systems are important for world ecosystems. They can be managed to moderate CO2 emissions. World soils can be both a sink and source of atmospheric CO2, but it is a slow process. Data from long-term soil management experiments are needed to assess soil carbon (C) sink capacity through a...

  17. CRADA Carbon Sequestration in Soils and Commercial Products

    SciTech Connect

    Jacobs, G.K.

    2002-01-31

    ORNL, through The Consortium for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems (CSiTE), collaborated with The Village Botanica, Inc. (VB) on a project investigating carbon sequestration in soils and commercial products from a new sustainable crop developed from perennial Hibiscus spp. Over 500 pre-treated samples were analyzed for soil carbon content. ORNL helped design a sampling scheme for soils during the planting phase of the project. Samples were collected and prepared by VB and analyzed for carbon content by ORNL. The project did not progress to a Phase II proposal because VB declined to prepare the required proposal.

  18. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells.

    PubMed

    Li, Xiaojing; Wang, Xin; Zhao, Qian; Wan, Lili; Li, Yongtao; Zhou, Qixing

    2016-11-15

    The soil microbial fuel cell (MFC) is a promising biotechnology for the bioelectricity recovery as well as the remediation of organics contaminated soil. However, the electricity production and the remediation efficiency of soil MFC are seriously limited by the tremendous internal resistance of soil. Conductive carbon fiber was mixed with petroleum hydrocarbons contaminated soil and significantly enhanced the performance of soil MFC. The maximum current density, the maximum power density and the accumulated charge output of MFC mixed carbon fiber (MC) were 10, 22 and 16 times as high as those of closed circuit control due to the carbon fiber productively assisted the anode to collect the electron. The internal resistance of MC reduced by 58%, 83% of which owed to the charge transfer resistance, resulting in a high efficiency of electron transfer from soil to anode. The degradation rates of total petroleum hydrocarbons enhanced by 100% and 329% compared to closed and opened circuit controls without the carbon fiber respectively. The effective range of remediation and the bioelectricity recovery was extended from 6 to 20cm with the same area of air-cathode. The mixed carbon fiber apparently enhanced the bioelectricity generation and the remediation efficiency of soil MFC by means of promoting the electron transfer rate from soil to anode. The use of conductively functional materials (e.g. carbon fiber) is very meaningful for the remediation and bioelectricity recovery in the bioelectrochemical remediation. PMID:27162144

  19. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells.

    PubMed

    Li, Xiaojing; Wang, Xin; Zhao, Qian; Wan, Lili; Li, Yongtao; Zhou, Qixing

    2016-11-15

    The soil microbial fuel cell (MFC) is a promising biotechnology for the bioelectricity recovery as well as the remediation of organics contaminated soil. However, the electricity production and the remediation efficiency of soil MFC are seriously limited by the tremendous internal resistance of soil. Conductive carbon fiber was mixed with petroleum hydrocarbons contaminated soil and significantly enhanced the performance of soil MFC. The maximum current density, the maximum power density and the accumulated charge output of MFC mixed carbon fiber (MC) were 10, 22 and 16 times as high as those of closed circuit control due to the carbon fiber productively assisted the anode to collect the electron. The internal resistance of MC reduced by 58%, 83% of which owed to the charge transfer resistance, resulting in a high efficiency of electron transfer from soil to anode. The degradation rates of total petroleum hydrocarbons enhanced by 100% and 329% compared to closed and opened circuit controls without the carbon fiber respectively. The effective range of remediation and the bioelectricity recovery was extended from 6 to 20cm with the same area of air-cathode. The mixed carbon fiber apparently enhanced the bioelectricity generation and the remediation efficiency of soil MFC by means of promoting the electron transfer rate from soil to anode. The use of conductively functional materials (e.g. carbon fiber) is very meaningful for the remediation and bioelectricity recovery in the bioelectrochemical remediation.

  20. Big Data for Big Questions: Global Soil Change and the National Soil Carbon Network

    NASA Astrophysics Data System (ADS)

    Nave, L. E.; Swanston, C.

    2010-12-01

    Many major questions related to global soil change are too large to be answered through primary research alone. Although independent, intensive primary research at discrete study sites advances our mechanistic understanding of how specific soils change, scientists can assess larger patterns of soil change by synthesizing existing primary research, and linking individual studies via research networks. Here, we illustrate how primary research can be synthesized into large databases to answer questions beyond the reach of individual studies, using examples from a meta-analysis of forest management effects on soil C storage. Questions of interest to the synthesis included: does forest harvesting have a consistent effect on soil C storage? And, how does fire affect forest soil C storage? To answer these questions, we derived >600 soil C response ratios from >100 temperate forest harvest and fire papers. Despite ample underlying variation, meta-analysis detected a significant harvesting effect on soil C storage (-13 ±4%), and also identified factors driving variation in this overall effect. Specifically, harvesting had different effects on forest floor vs. mineral soil C storage, with forest floors showing significant C losses (-30 ±6%), and mineral soils showing no overall change. Within harvested forest floors, variation in C storage shifts was best explained by forest composition (conifer presence mitigated C losses), while soil type explained the most variation in mineral soil C responses to harvest. In our synthesis of fire effects on temperate forest soil C storage, meta-analysis revealed an overall C storage reduction of 35 ±8%. As with forest harvesting, fire had no overall effect on mineral soils, but forest floor C storage declined by 59 ±7%. Forest floors from conifer stands lost more C than those from hardwood and mixed forests, and fire type also mattered—wildfires caused significantly greater forest floor C losses than prescribed burns. Across all

  1. Factors controlling carbon metabolism and humification in different soil agroecosystems.

    PubMed

    Doni, S; Macci, C; Peruzzi, E; Ceccanti, B; Masciandaro, G

    2014-01-01

    The aim of this study was to describe the processes that control humic carbon sequestration in soil. Three experimental sites differing in terms of management system and climate were selected: (i) Abanilla-Spain, soil treated with municipal solid wastes in Mediterranean semiarid climate; (ii) Puch-Germany, soil under intensive tillage and conventional agriculture in continental climate; and (iii) Alberese-Italy, soil under organic and conventional agriculture in Mediterranean subarid climate. The chemical-structural and biochemical soil properties at the initial sampling time and one year later were evaluated. The soils under organic (Alberese, soil cultivated with Triticum durum Desf.) and nonintensive management practices (Puch, soil cultivated with Triticum aestivum L. and Avena sativa L.) showed higher enzymatically active humic carbon, total organic carbon, humification index (B/E(3)s), and metabolic potential (dehydrogenase activity/water soluble carbon) if compared with conventional agriculture and plough-based tillage, respectively. In Abanilla, the application of municipal solid wastes stimulated the specific β-glucosidase activity (extracellular β-glucosidase activity/extractable humic carbon) and promoted the increase of humic substances with respect to untreated soil. The evolution of the chemical and biochemical status of the soils along a climatic gradient suggested that the adoption of certain management practices could be very promising in increasing SOC sequestration potential.

  2. Factors Controlling Carbon Metabolism and Humification in Different Soil Agroecosystems

    PubMed Central

    Doni, S.; Macci, C.; Peruzzi, E.; Ceccanti, B.; Masciandaro, G.

    2014-01-01

    The aim of this study was to describe the processes that control humic carbon sequestration in soil. Three experimental sites differing in terms of management system and climate were selected: (i) Abanilla-Spain, soil treated with municipal solid wastes in Mediterranean semiarid climate; (ii) Puch-Germany, soil under intensive tillage and conventional agriculture in continental climate; and (iii) Alberese-Italy, soil under organic and conventional agriculture in Mediterranean subarid climate. The chemical-structural and biochemical soil properties at the initial sampling time and one year later were evaluated. The soils under organic (Alberese, soil cultivated with Triticum durum Desf.) and nonintensive management practices (Puch, soil cultivated with Triticum aestivum L. and Avena sativa L.) showed higher enzymatically active humic carbon, total organic carbon, humification index (B/E3s), and metabolic potential (dehydrogenase activity/water soluble carbon) if compared with conventional agriculture and plough-based tillage, respectively. In Abanilla, the application of municipal solid wastes stimulated the specific β-glucosidase activity (extracellular β-glucosidase activity/extractable humic carbon) and promoted the increase of humic substances with respect to untreated soil. The evolution of the chemical and biochemical status of the soils along a climatic gradient suggested that the adoption of certain management practices could be very promising in increasing SOC sequestration potential. PMID:25614887

  3. Weathering controls on mechanisms of carbon storage in grassland soils

    USGS Publications Warehouse

    Masiello, C.A.; Chadwick, O.A.; Southon, J.; Torn, M.S.; Harden, J.W.

    2004-01-01

    On a sequence of soils developed under similar vegetation, temperature, and precipitation conditions, but with variations in mineralogical properties, we use organic carbon and 14C inventories to examine mineral protection of soil organic carbon. In these soils, 14C data indicate that the creation of slow-cycling carbon can be modeled as occurring through reaction of organic ligands with Al3+ and Fe3+ cations in the upper horizons, followed by sorption to amorphous inorganic Al compounds at depth. Only one of these processes, the chelation Al3+ and Fe3+ by organic ligands, is linked to large carbon stocks. Organic ligands stabilized by this process traverse the soil column as dissolved organic carbon (both from surface horizons and root exudates). At our moist grassland site, this chelation and transport process is very strongly correlated with the storage and long-term stabilization of soil organic carbon. Our 14C results show that the mechanisms of organic carbon transport and storage at this site follow a classic model previously believed to only be significant in a single soil order (Spodosols), and closely related to the presence of forests. The presence of this process in the grassland Alfisol, Inceptisol, and Mollisol soils of this chronosequence suggests that this process is a more significant control on organic carbon storage than previously thought. Copyright 2004 by the American Geophysical Union.

  4. Weathering controls on mechanisms of carbon storage in grassland soils

    SciTech Connect

    Masiello, C.A.; Chadwick, O.A.; Southon, J.; Torn, M.S.; Harden, J.W.

    2004-09-01

    On a sequence of soils developed under similar vegetation, temperature, and precipitation conditions, but with variations in mineralogical properties, we use organic carbon and 14C inventories to examine mineral protection of soil organic carbon. In these soils, 14C data indicate that the creation of slow-cycling carbon can be modeled as occurring through reaction of organic ligands with Al3+ and Fe3+ cations in the upper horizons, followed by sorption to amorphous inorganic Al compounds at depth. Only one of these processes, the chelation of Al3+ and Fe3+ by organic ligands, is linked to large carbon stocks. Organic ligands stabilized by this process traverse the soil column as dissolved organic carbon (both from surface horizons and root exudates). At our moist grassland site, this chelation and transport process is very strongly correlated with the storage and long-term stabilization of soil organic carbon. Our 14C results show that the mechanisms of organic carbon transport and storage at this site follow a classic model previously believed to only be significant in a single soil order (Spodosols), and closely related to the presence of forests. The presence of this process in the grassland Alfisol, Inceptisol, and Mollisol soils of this chronosequence suggests that this process is a more significant control on organic carbon storage than previously thought.

  5. Climate change induced rainfall patterns affect wheat productivity and agroecosystem functioning dependent on soil types

    NASA Astrophysics Data System (ADS)

    Tabi Tataw, James; Baier, Fabian; Krottenthaler, Florian; Pachler, Bernadette; Schwaiger, Elisabeth; Whylidal, Stefan; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas; Zaller, Johann G.

    2014-05-01

    Wheat is a crop of global importance supplying more than half of the world's population with carbohydrates. We examined, whether climate change induced rainfall patterns towards less frequent but heavier events alter wheat agroecosystem productivity and functioning under three different soil types. Therefore, in a full-factorial experiment Triticum aestivum L. was cultivated in 3 m2 lysimeter plots containing the soil types sandy calcaric phaeozem, gleyic phaeozem or calcic chernozem. Prognosticated rainfall patterns based on regionalised climate change model calculations were compared with current long-term rainfall patterns; each treatment combination was replicated three times. Future rainfall patterns significantly reduced wheat growth and yield, reduced the leaf area index, accelerated crop development, reduced arbuscular mycorrhizal fungi colonisation of roots, increased weed density and the stable carbon isotope signature (δ13C) of both old and young wheat leaves. Different soil types affected wheat growth and yield, ecosystem root production as well as weed abundance and biomass. The interaction between climate and soil type was significant only for the harvest index. Our results suggest that even slight changes in rainfall patterns can significantly affect the functioning of wheat agroecosystems. These rainfall effects seemed to be little influenced by soil types suggesting more general impacts of climate change across different soil types. Wheat production under future conditions will likely become more challenging as further concurrent climate change factors become prevalent.

  6. [Effects of Chinese fir litter on soil organic carbon decomposition and microbial biomass carbon].

    PubMed

    Wang, Xiao-Feng; Wang, Si-Long; Zhang, Wei-Dong

    2013-09-01

    By using 13C stable isotope tracer technique, this paper studied the effects of Chinese fir litter addition on the soil organic carbon (SOC) decomposition, microbial biomass carbon, and dissolved organic carbon in 0-5 cm and 40-45 cm layers. The decomposition rate of SOC in 40-45 cm layer was significantly lower than that in 0-5 cm layer, but the priming effect induced by the Chinese fir litter addition showed an opposite trend. The Chinese fir litter addition increased the soil total microbial biomass carbon and the microbial biomass carbon derived from native soil significantly, but had less effects on the soil dissolved organic carbon. Turning over the subsoil to the surface of the woodland could accelerate the soil carbon loss in Chinese fir plantation due to the priming effect induced by the litters. PMID:24417093

  7. [Effects of Chinese fir litter on soil organic carbon decomposition and microbial biomass carbon].

    PubMed

    Wang, Xiao-Feng; Wang, Si-Long; Zhang, Wei-Dong

    2013-09-01

    By using 13C stable isotope tracer technique, this paper studied the effects of Chinese fir litter addition on the soil organic carbon (SOC) decomposition, microbial biomass carbon, and dissolved organic carbon in 0-5 cm and 40-45 cm layers. The decomposition rate of SOC in 40-45 cm layer was significantly lower than that in 0-5 cm layer, but the priming effect induced by the Chinese fir litter addition showed an opposite trend. The Chinese fir litter addition increased the soil total microbial biomass carbon and the microbial biomass carbon derived from native soil significantly, but had less effects on the soil dissolved organic carbon. Turning over the subsoil to the surface of the woodland could accelerate the soil carbon loss in Chinese fir plantation due to the priming effect induced by the litters.

  8. Prolonged Soil Frost Affects Hydraulics and Phenology of Apple Trees.

    PubMed

    Beikircher, Barbara; Mittmann, Claudia; Mayr, Stefan

    2016-01-01

    Restoration of an adequate water supply in spring is a prerequisite for survival of angiosperm trees in temperate regions. Trees must re-establish access to soil water and recover xylem functionality. We thus hypothesized that prolonged soil frost impairs recovery and affects hydraulics and phenology of Malus domestica var. 'Golden Delicious.' To test this hypothesis, over two consecutive winters the soil around some trees was insulated to prolong soil frosting, From mid-winter to early summer, the level of native embolism, the water and starch contents of wood, bark and buds were quantified at regular intervals and findings correlated with various phenological parameters, xylogenesis and fine root growth. The findings confirm that prolonged soil frost affects tree hydraulics and phenology but the severity of the effect depends on the climatic conditions. In both study years, percentage loss of hydraulic conductivity (PLC) decreased from about 70% at the end of winter to about 10% in May. Thereby, xylem refilling strongly coincided with a decrease of starch in wood and bark. Also treated trees were able to restore their hydraulic system by May but, in the warm spring of 2012, xylem refilling, the increases in water content and starch depolymerization were delayed. In contrast, in the cold spring of 2013 only small differences between control and treated trees were observed. Prolongation of soil frost also led to a delay in phenology, xylogenesis, and fine root growth. We conclude that reduced water uptake from frozen or cold soils impairs refilling and thus negatively impacts tree hydraulics and growth of apple trees in spring. Under unfavorable circumstances, this may cause severe winter damage or even dieback. PMID:27379146

  9. Prolonged Soil Frost Affects Hydraulics and Phenology of Apple Trees.

    PubMed

    Beikircher, Barbara; Mittmann, Claudia; Mayr, Stefan

    2016-01-01

    Restoration of an adequate water supply in spring is a prerequisite for survival of angiosperm trees in temperate regions. Trees must re-establish access to soil water and recover xylem functionality. We thus hypothesized that prolonged soil frost impairs recovery and affects hydraulics and phenology of Malus domestica var. 'Golden Delicious.' To test this hypothesis, over two consecutive winters the soil around some trees was insulated to prolong soil frosting, From mid-winter to early summer, the level of native embolism, the water and starch contents of wood, bark and buds were quantified at regular intervals and findings correlated with various phenological parameters, xylogenesis and fine root growth. The findings confirm that prolonged soil frost affects tree hydraulics and phenology but the severity of the effect depends on the climatic conditions. In both study years, percentage loss of hydraulic conductivity (PLC) decreased from about 70% at the end of winter to about 10% in May. Thereby, xylem refilling strongly coincided with a decrease of starch in wood and bark. Also treated trees were able to restore their hydraulic system by May but, in the warm spring of 2012, xylem refilling, the increases in water content and starch depolymerization were delayed. In contrast, in the cold spring of 2013 only small differences between control and treated trees were observed. Prolongation of soil frost also led to a delay in phenology, xylogenesis, and fine root growth. We conclude that reduced water uptake from frozen or cold soils impairs refilling and thus negatively impacts tree hydraulics and growth of apple trees in spring. Under unfavorable circumstances, this may cause severe winter damage or even dieback.

  10. Prolonged Soil Frost Affects Hydraulics and Phenology of Apple Trees

    PubMed Central

    Beikircher, Barbara; Mittmann, Claudia; Mayr, Stefan

    2016-01-01

    Restoration of an adequate water supply in spring is a prerequisite for survival of angiosperm trees in temperate regions. Trees must re-establish access to soil water and recover xylem functionality. We thus hypothesized that prolonged soil frost impairs recovery and affects hydraulics and phenology of Malus domestica var. ‘Golden Delicious.’ To test this hypothesis, over two consecutive winters the soil around some trees was insulated to prolong soil frosting, From mid-winter to early summer, the level of native embolism, the water and starch contents of wood, bark and buds were quantified at regular intervals and findings correlated with various phenological parameters, xylogenesis and fine root growth. The findings confirm that prolonged soil frost affects tree hydraulics and phenology but the severity of the effect depends on the climatic conditions. In both study years, percentage loss of hydraulic conductivity (PLC) decreased from about 70% at the end of winter to about 10% in May. Thereby, xylem refilling strongly coincided with a decrease of starch in wood and bark. Also treated trees were able to restore their hydraulic system by May but, in the warm spring of 2012, xylem refilling, the increases in water content and starch depolymerization were delayed. In contrast, in the cold spring of 2013 only small differences between control and treated trees were observed. Prolongation of soil frost also led to a delay in phenology, xylogenesis, and fine root growth. We conclude that reduced water uptake from frozen or cold soils impairs refilling and thus negatively impacts tree hydraulics and growth of apple trees in spring. Under unfavorable circumstances, this may cause severe winter damage or even dieback. PMID:27379146

  11. Does distance from the sea affect a soil microarthropod community?

    NASA Astrophysics Data System (ADS)

    Wasserstrom, Haggai; Steinberger, Yosef

    2016-10-01

    Coastal sand dunes are dynamic ecosystems characterized by strong abiotic gradients from the seashore inland. Due to significant differences in the abiotic parameters in such an environment, there is great interest in biotic adaptation in these habitats. The aim of the present study, which was conducted in the northern Sharon sand-dune area of Israel, was to illustrate the spatial changes of a soil microarthropod community along a gradient from the seashore inland. Soil samples were collected from the 0-10 cm depth at five locations at different distances, from the seashore inland. Samples were taken from the bare open spaces during the wet winter and dry summer seasons. The soil microarthropod community exhibited dependence both on seasonality and sampling location across the gradient. The community was more abundant during the wet winter seasons, with an increasing trend from the shore inland, while during the dry summers, such a trend was not observed and community density was lower. The dominant groups within soil Acari were Prostigmata and Endeostigmata, groups known to have many representatives with adaptation to xeric or psammic environments. In addition, mite diversity tended to be higher at the more distant locations from the seashore, and lower at the closer locations, a trend that appeared only during the wet winters. This study demonstrated the heterogeneity of a soil microarthropod community in a coastal dune field in a Mediterranean ecosystem, indicating that the gradient abiotic parameters also affect the abundance and composition of a soil microarthropod community in sand dunes.

  12. Effectiveness of compost use in salt-affected soil.

    PubMed

    Lakhdar, Abdelbasset; Rabhi, Mokded; Ghnaya, Tahar; Montemurro, Francesco; Jedidi, Naceur; Abdelly, Chedly

    2009-11-15

    Soil degradation and salinization are two of the utmost threat affecting agricultural areas, derived from the increasing use of low quality water and inappropriate cultural practices. The problem of low productivity of saline soils may be ascribed not only to their salt toxicity or damage caused by excess amounts of soluble salts but also arising from the lack of organic matter and available mineral nutrients especially N, P, and K. Concerns about salinization risk and environmental quality and productivity of agro-ecosystems have emphasized the need to develop management practices that maintain soil resources. Composted municipal solid waste (MSW) was commonly used to enhance soil productivity in the agricultural lands and rebuild fertility. However, their application could be also a promising alternative to alleviate the adverse effects caused by soil salinization. MSW compost, with high organic matter content and low concentrations of inorganic and organic pollutants allow an improvement of physical, chemical and biochemical characteristics and constitute low cost soil recovery. PMID:19576686

  13. A global predictive model of carbon in mangrove soils

    NASA Astrophysics Data System (ADS)

    Jardine, Sunny L.; Siikamäki, Juha V.

    2014-10-01

    Mangroves are among the most threatened and rapidly vanishing natural environments worldwide. They provide a wide range of ecosystem services and have recently become known for their exceptional capacity to store carbon. Research shows that mangrove conservation may be a low-cost means of reducing CO2 emissions. Accordingly, there is growing interest in developing market mechanisms to credit mangrove conservation projects for associated CO2 emissions reductions. These efforts depend on robust and readily applicable, but currently unavailable, localized estimates of soil carbon. Here, we use over 900 soil carbon measurements, collected in 28 countries by 61 independent studies, to develop a global predictive model for mangrove soil carbon. Using climatological and locational data as predictors, we explore several predictive modeling alternatives, including machine-learning methods. With our predictive model, we construct a global dataset of estimated soil carbon concentrations and stocks on a high-resolution grid (5 arc min). We estimate that the global mangrove soil carbon stock is 5.00 ± 0.94 Pg C (assuming a 1 meter soil depth) and find this stock is highly variable over space. The amount of carbon per hectare in the world’s most carbon-rich mangroves (approximately 703 ± 38 Mg C ha-1) is roughly a 2.6 ± 0.14 times the amount of carbon per hectare in the world’s most carbon-poor mangroves (approximately 272 ± 49 Mg C ha-1). Considerable within country variation in mangrove soil carbon also exists. In Indonesia, the country with the largest mangrove soil carbon stock, we estimate that the most carbon-rich mangroves contain 1.5 ± 0.12 times as much carbon per hectare as the most carbon-poor mangroves. Our results can aid in evaluating benefits from mangrove conservation and designing mangrove conservation policy. Additionally, the results can be used to project changes in mangrove soil carbon stocks based on changing climatological predictors, e.g. to

  14. Forest soil carbon oxidation state and oxidative ratio responses to elevated CO2

    DOE PAGESBeta

    Hockaday, William C.; Gallagher, Morgan E.; Masiello, Caroline A.; Baldock, Jeffrey A.; Iversen, Colleen M.; Norby, Richard J.

    2015-09-21

    The oxidative ratio (OR) of the biosphere is the stoichiometric ratio (O2/CO2) of gas exchange by photosynthesis and respiration a key parameter in budgeting calculations of the land and ocean carbon sinks. Carbon cycle-climate feedbacks could alter the OR of the biosphere by affecting the quantity and quality of organic matter in plant biomass and soil carbon pools. Here, this study considers the effect of elevated atmospheric carbon dioxide concentrations ([CO2]) on the OR of a hardwood forest after nine growing seasons of Free-Air CO2 Enrichment. We measured changes in the carbon oxidation state (Cox) of biomass and soil carbonmore » pools as a proxy for the ecosystem OR. The OR of net primary production, 1.039, was not affected by elevated [CO2]. However, the Cox of the soil carbon pool was 40% higher at elevated [CO2], and the estimated OR values for soil respiration increased from 1.006 at ambient [CO2] to 1.054 at elevated [CO2]. A biochemical inventory of the soil organic matter ascribed the increases in Cox and OR to faster turnover of reduced substrates, lignin and lipids, at elevated [CO2]. This implicates the heterotrophic soil community response to elevated [CO2] as a driver of disequilibrium in the ecosystem OR. The oxidation of soil carbon pool constitutes an unexpected terrestrial O2 sink. Carbon budgets constructed under the assumption of OR equilibrium would equate such a terrestrial O2 sink to CO2 uptake by the ocean. We find that the potential for climate-driven disequilibriua in the cycling of O2 and CO2 warrants further investigation.« less

  15. Mineral protection of soil carbon counteracted by root exudates

    NASA Astrophysics Data System (ADS)

    Keiluweit, Marco; Bougoure, Jeremy J.; Nico, Peter S.; Pett-Ridge, Jennifer; Weber, Peter K.; Kleber, Markus

    2015-06-01

    Multiple lines of existing evidence suggest that climate change enhances root exudation of organic compounds into soils. Recent experimental studies show that increased exudate inputs may cause a net loss of soil carbon. This stimulation of microbial carbon mineralization (`priming’) is commonly rationalized by the assumption that exudates provide a readily bioavailable supply of energy for the decomposition of native soil carbon (co-metabolism). Here we show that an alternate mechanism can cause carbon loss of equal or greater magnitude. We find that a common root exudate, oxalic acid, promotes carbon loss by liberating organic compounds from protective associations with minerals. By enhancing microbial access to previously mineral-protected compounds, this indirect mechanism accelerated carbon loss more than simply increasing the supply of energetically more favourable substrates. Our results provide insights into the coupled biotic-abiotic mechanisms underlying the `priming’ phenomenon and challenge the assumption that mineral-associated carbon is protected from microbial cycling over millennial timescales.

  16. The Effects of Simulated Wildfire on Particle Size and Carbon Content in Piedmont Soils.

    NASA Astrophysics Data System (ADS)

    Wynes, A.; Werts, S. P.

    2014-12-01

    Soils are a known carbon sink, holding twice as much carbon as the atmosphere (Schlesinger, 1995). However, little is known about how much soil organic carbon (SOC) is released from the soil during fire events. Surface fires can heat mineral soils to up to 500°C at depths of several centimeters and maintain that temperature for hours (Werts and Jahren, 2007). This has been known to affect the size of particles in soils, carbon content in the soils, and the clay mineralogy (Hungerford et al, 1993). This study looks at relationships between soil clay content and clay chemistry in relation to carbon emissions during surface fires, to determine temperature effects on several piedmont soil types from South Carolina. Soil samples were taken from three different sites varying in clay content, clay type, parent material, and development. Temperature increases were applied in increments of 50°C, with a range from 100°C to 500°C, to determine fire effects on SOC, particle size, and clay mineralogy of the soils. We found a decrease in SOC (up to 98%) from the original amount in all soil horizons with temperature applications up to 500°C. At a temperature range between 100°C and 300°C, most soil horizons showed an increase in clay of a range between 0.1 and 34%. At temperatures ranging from 300°C to 500°C, there was a decrease in clay ranging from 2.5-42%. While previous research suggests that a positive correlation between the percentage of clay and SOC in soils is common (Feller and Beare, 1997), in this study, a negative correlation was found between the percentage of clay and SOC in all three soil types (R2=0.87, 0.76, and 0.59) at 100°C. There appears to be an increasingly positive relationship between clay and carbon as temperature increases, although a consistent high correlation was not present at all temperatures. This is counter to what was found initially in our soils prior to heating. While research into surface fires is important to the understanding of

  17. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis.

    PubMed

    Liu, Chang; Lu, Meng; Cui, Jun; Li, Bo; Fang, Changming

    2014-05-01

    Straw return has been widely recommended as an environmentally friendly practice to manage carbon (C) sequestration in agricultural ecosystems. However, the overall trend and magnitude of changes in soil C in response to straw return remain uncertain. In this meta-analysis, we calculated the response ratios of soil organic C (SOC) concentrations, greenhouse gases (GHGs) emission, nutrient contents and other important soil properties to straw addition in 176 published field studies. Our results indicated that straw return significantly increased SOC concentration by 12.8 ± 0.4% on average, with a 27.4 ± 1.4% to 56.6 ± 1.8% increase in soil active C fraction. CO2 emission increased in both upland (27.8 ± 2.0%) and paddy systems (51.0 ± 2.0%), while CH4 emission increased by 110.7 ± 1.2% only in rice paddies. N2 O emission has declined by 15.2 ± 1.1% in paddy soils but increased by 8.3 ± 2.5% in upland soils. Responses of macro-aggregates and crop yield to straw return showed positively linear with increasing SOC concentration. Straw-C input rate and clay content significantly affected the response of SOC. A significant positive relationship was found between annual SOC sequestered and duration, suggesting that soil C saturation would occur after 12 years under straw return. Overall, straw return was an effective means to improve SOC accumulation, soil quality, and crop yield. Straw return-induced improvement of soil nutrient availability may favor crop growth, which can in turn increase ecosystem C input. Meanwhile, the analysis on net global warming potential (GWP) balance suggested that straw return increased C sink in upland soils but increased C source in paddy soils due to enhanced CH4 emission. Our meta-analysis suggested that future agro-ecosystem models and cropland management should differentiate the effects of straw return on ecosystem C budget in upland and paddy soils. PMID:24395454

  18. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis

    DOE PAGESBeta

    Jian, Siyang; Li, Jianwei; Chen, Ji; Wang, Gangsheng; Mayes, Melanie A.; Dzantor, Kudjo E.; Hui, Dafeng; Luo, Yiqi

    2016-07-08

    Nitrogen (N) fertilization affects the rate of soil organic carbon (SOC) decomposition by regulating extracellular enzyme activities (EEA). Extracellular enzymes have not been represented in global biogeochemical models. Understanding the relationships among EEA and SOC, soil N (TN), and soil microbial biomass carbon (MBC) under N fertilization would enable modeling of the influence of EEA on SOC decomposition. Based on 65 published studies, we synthesized the activities of α-1,4-glucosidase (AG), β-1,4-glucosidase (BG), β-d-cellobiosidase (CBH), β-1,4-xylosidase (BX), β-1,4-N-acetyl-glucosaminidase (NAG), leucine amino peptidase (LAP), urease (UREA), acid phosphatase (AP), phenol oxidase (PHO), and peroxidase (PEO) in response to N fertilization. Here, themore » proxy variables for hydrolytic C acquisition enzymes (C-acq), N acquisition (N-acq), and oxidative decomposition (OX) were calculated as the sum of AG, BG, CBH and BX; AG and LAP; PHO and PEO, respectively.« less

  19. Soil organic carbon as a factor in passive microwave retrievals of soil water content over agricultural croplands

    NASA Astrophysics Data System (ADS)

    Manns, Hida R.; Berg, Aaron A.; Colliander, Andreas

    2015-09-01

    Remote sensing has the potential to deliver global soil water content (SWC) on vast scales with frequent revisit times for progress in the fields of climate, weather forecasting, agriculture and hydrology. Although surface roughness, vegetation and soil texture have been established as sources of variability in passive microwave interpretation, soil organic carbon (SOC) has not typically been considered as a factor that affects SWC estimation during field sampling campaigns. SOC was observed along with soil texture and bulk density during the Soil Moisture Active Passive Validation Experiment in 2012 (SMAPVEX12), the Soil Moisture Active Passive (SMAP) satellite algorithm development field sampling campaign held June 6 to July 19 in Southern Manitoba, Canada. Aerial measurements from the PALS (Passive Active L-band System) instrument were recorded over agricultural fields and forest areas from aircraft while SWC was measured simultaneously on the ground with resistance probes on 17 sampling dates. Additionally, fields were sampled for surface roughness, vegetation growth and water content, soil and vegetation temperature and soil physical characteristics. A soil core was collected on each field each sampling time to assess bulk density, soil particle size and SOC. SOC accounted for more variability in the anomalies between PALS and ground sampled SWC than sand, clay or bulk density, although all soil variables explained significant variability. With analysis by partial least squares multiple regression over 11 sampling dates and 39 fields where both ground and PALS data were well represented, only SOC contributed significantly to the regression of SWC beyond the variance all soil variables had in common. The significance of SOC in the relative SWC anomalies was highest in very wet and very dry conditions and in loam soil over all sampling dates, while bulk density was more significant in sand soils. This analysis suggests SOC is a simple variable that incorporates

  20. Topography effect on soil organic carbon pool in Mediterranean natural areas (Southern Spain)

    NASA Astrophysics Data System (ADS)

    Parras-Alcántara, Luis; Lozan-García, Beatriz; Galán-Espejo, Arantxa

    2014-05-01

    Soils are important reservoirs of carbon, in fact, the primary terrestrial pool of organic carbon (OC) that accounts more than 75% of the Earth's terrestrial OC are the soils. In addition, soils have the ability to store carbon for a long time, playing a crucial role in the overall carbon cycle. In Spanish soils, climate, use and management are very influential in the carbon variability, mainly in the soils in Mediterranean dry climate, characterized by its low OC content, weak structure and readily degradable. Generally, the capacity to soil carbon store depends on abiotic factors such as the climate and mineralogical composition, but also depends on soil use and management. The principal factors that affect to forest soils carbon concentration and stock are: climate, landscape, landscape position, slope, latitude, chemical properties, texture and aggregation, anthropogenic factors, natural disturbance - wind, fire, drought, insects and diseases…etc. The soil organic matter (SOM), given by the total organic carbon content (TOC) is one of the main indicators of soil quality. Several studies have been carried out to estimate differences in SOC in relation to soil properties, land uses and climate. Although the impact of topographic aspect on soil properties is widely recognized, relatively few studies have been conducted to examine the role of aspect on SOC content globally. Studies indicate some variations in soil properties related to topographic. Topographic aspect induces local variation in temperature and precipitation solar radiation and relative humidity, which along with chemical and physical composition of the substrate, are the main regulators of decomposition rates of SOM. The spatial variation of soil properties is significantly influenced by some environmental factors such as topographic aspect that induced microclimate differences, topographic (landscape) positions, parent materials, and vegetation communities. Many attempts have been made to

  1. Carbon sequestration in soil by in situ catalyzed photo-oxidative polymerization of soil organic matter.

    PubMed

    Piccolo, Alessandro; Spaccini, Riccardo; Nebbioso, Antonio; Mazzei, Pierluigi

    2011-08-01

    Here we describe an innovative mechanism for carbon sequestration in soil by in situ photopolymerization of soil organic matter under biomimetic catalysis. Three different Mediterranean soils were added with a synthetic water-soluble iron-porphyrin, irradiated by solar light, and subjected first to 5 days incubation and, then, 15, and 30 wetting and drying (w/d) cycles. The in situ catalyst-assisted photopolymerization of soil organic carbon (SOC) increased water stability of soil aggregates both after 5 days incubation and 15 w/d cycles, but not after 30 w/d cycles. Particle-size distribution of all treated soils confirmed the induced soil physical improvement, by showing a concomitant lower yield of the clay-sized fraction and larger yields of either coarse sand- or fine sand-size fractions, depending on soil texture, though only after 5 days incubation. The gain in soil physical quality was reflected by the shift of OC content from small to large soil aggregates, thereby suggesting that photopolymerization stabilized OC by both chemical and physical processes. A further evidence of the carbon sequestration capacity of the photocatalytic treatment was provided by the significant reduction of CO(2) respired by all soils after both incubation and w/d cycles. Our findings suggest that "green" catalytic technologies may potentially be the bases for future practices to increase soil carbon stabilization and mitigate CO(2) emissions from arable soils.

  2. Dissolved Organic Carbon in Headwater Streams and Riparian Soil Organic Carbon along an Altitudinal Gradient in the Wuyi Mountains, China

    PubMed Central

    Huang, Wei; McDowell, William H.; Zou, Xiaoming; Ruan, Honghua; Wang, Jiashe; Li, Liguang

    2013-01-01

    Stream water dissolved organic carbon (DOC) correlates positively with soil organic carbon (SOC) in many biomes. Does this relationship hold in a small geographic region when variations of temperature, precipitation and vegetation are driven by a significant altitudinal gradient? We examined the spatial connectivity between concentrations of DOC in headwater stream and contents of riparian SOC and water-soluble soil organic carbon (WSOC), riparian soil C:N ratio, and temperature in four vegetation types along an altitudinal gradient in the Wuyi Mountains, China. Our analyses showed that annual mean concentrations of headwater stream DOC were lower in alpine meadow (AM) than in subtropical evergreen broadleaf forest (EBF), coniferous forest (CF), and subalpine dwarf forest (SDF). Headwater stream DOC concentrations were negatively correlated with riparian SOC as well as WSOC contents, and were unrelated to riparian soil C:N ratio. Our findings suggest that DOC concentrations in headwater streams are affected by different factors at regional and local scales. The dilution effect of higher precipitation and adsorption of soil DOC to higher soil clay plus silt content at higher elevation may play an important role in causing lower DOC concentrations in AM stream of the Wuyi Mountains. Our results suggest that upscaling and downscaling of the drivers of DOC export from forested watersheds when exploring the response of carbon flux to climatic change or other drivers must done with caution. PMID:24265737

  3. Dissolved organic carbon in headwater streams and riparian soil organic carbon along an altitudinal gradient in the Wuyi Mountains, China.

    PubMed

    Huang, Wei; McDowell, William H; Zou, Xiaoming; Ruan, Honghua; Wang, Jiashe; Li, Liguang

    2013-01-01

    Stream water dissolved organic carbon (DOC) correlates positively with soil organic carbon (SOC) in many biomes. Does this relationship hold in a small geographic region when variations of temperature, precipitation and vegetation are driven by a significant altitudinal gradient? We examined the spatial connectivity between concentrations of DOC in headwater stream and contents of riparian SOC and water-soluble soil organic carbon (WSOC), riparian soil C:N ratio, and temperature in four vegetation types along an altitudinal gradient in the Wuyi Mountains, China. Our analyses showed that annual mean concentrations of headwater stream DOC were lower in alpine meadow (AM) than in subtropical evergreen broadleaf forest (EBF), coniferous forest (CF), and subalpine dwarf forest (SDF). Headwater stream DOC concentrations were negatively correlated with riparian SOC as well as WSOC contents, and were unrelated to riparian soil C:N ratio. Our findings suggest that DOC concentrations in headwater streams are affected by different factors at regional and local scales. The dilution effect of higher precipitation and adsorption of soil DOC to higher soil clay plus silt content at higher elevation may play an important role in causing lower DOC concentrations in AM stream of the Wuyi Mountains. Our results suggest that upscaling and downscaling of the drivers of DOC export from forested watersheds when exploring the response of carbon flux to climatic change or other drivers must done with caution.

  4. Windthrows increase soil carbon stocks in a Central Amazon forest

    NASA Astrophysics Data System (ADS)

    dos Santos, L. T.; Magnabosco Marra, D.; Trumbore, S.; Camargo, P. B.; Chambers, J. Q.; Negrón-Juárez, R. I.; Lima, A. J. N.; Ribeiro, G. H. P. M.; dos Santos, J.; Higuchi, N.

    2015-12-01

    Windthrows change forest structure and species composition in Central Amazon forests. However, the effects of widespread tree mortality associated with wind-disturbances on soil properties have not yet been described. In this study, we investigated short-term effects (seven years after disturbance) of a windthrow event on soil carbon stocks and concentrations in a Central Amazon terra firme forest. The soil carbon stock (averaged over a 0-30 cm depth profile) in disturbed plots (61.4 ± 4.18 Mg ha-1, mean ± standard error) was marginally higher (p = 0.009) than that from undisturbed plots (47.7 ± 6.95 Mg ha-1). The soil organic carbon concentration in disturbed plots (2.0 ± 0.08 %) was significantly higher (p < 0.001) than that from undisturbed plots (1.36 ± 0.12 %). Moreover, soil carbon stocks were positively correlated with soil clay content (r = 0.575 and p = 0.019) and with tree mortality intensity (r = 0.493 and p = 0.045). Our results indicate that large inputs of plant litter associated with large windthrow events cause a short-term increase in soil carbon content, and the degree of increase is related to soil clay content and tree mortality intensity. Higher nutrient availability in soils from large canopy gaps created by wind disturbance may increase vegetation resilience and favor forest recovery.

  5. Black Carbon - Soil Organic Matter abiotic and biotic interactions

    NASA Astrophysics Data System (ADS)

    Cotrufo, Francesca; Boot, Claudia; Denef, Karolien; Foster, Erika; Haddix, Michelle; Jiang, Xinyu; Soong, Jennifer; Stewart, Catherine

    2014-05-01

    Wildfires, prescribed burns and the use of char as a soil amendment all add large quantities of black carbon to soils, with profound, yet poorly understood, effects on soil biology and chemical-physical structure. We will present results emerging from our black carbon program, which addresses questions concerning: 1) black carbon-soil organic matter interactions, 2) char decomposition and 3) impacts on microbial community structure and activities. Our understanding derives from a complementary set of post-fire black carbon field surveys and laboratory and field experiments with grass and wood char amendments, in which we used molecular (i.e., BPCA, PLFA) and isotopic (i.e., 13C and 15N labelled char) tracers. Overall, emerging results demonstrate that char additions to soil are prone to fast erosion, but a fraction remains that increases water retention and creates a better environment for the microbial community, particularly favoring gram negative bacteria. However, microbial decomposition of black carbon only slowly consumes a small fraction of it, thus char still significantly contributes to soil carbon sequestration. This is especially true in soils with little organic matter, where black carbon additions may even induce negative priming.

  6. Estimating Regional Changes in Soil Carbon with High Spatial Resolution

    SciTech Connect

    West, Tristram O.; Brandt, Craig C; Marland, Gregg; De La Torre Ugarte, Daniel G; Larson, James; Hellwinckel, Chad M; Wilson, Bradly; Tyler, Donald G; Nelson, Richard G

    2008-01-01

    To manage lands locally for carbon sequestration and for emissions reductions it is useful to have a system that can monitor and predict changes in soil carbon and greenhouse gas emissions with high spatial resolution. We are developing a carbon accounting framework that can estimate carbon dynamics and net emissions associated with changes in land management. One component of this framework integrates field measurements, inventory data, and remote sensing products to estimate changes in soil carbon and to estimate where these changes are likely to occur at a sub-county (30m x 30m) resolution. We applied this framework component to a mid-western region of the US that consists of 679 counties approximately centered around Iowa. We estimate the 1990 baseline soil carbon to a maximum depth of 3m for this region to be 4,117 Tg C. Cumulative soil carbon accumulation of 70.3 Tg C is estimated for this region between 1991-2000, of which 33.8 Tg C is due to changes in tillage intensity. Without accounting for soil carbon loss following changes to more intensive tillage practices, our estimate increases to 45.0 Tg C. This difference indicates that on-site permanence of soil carbon associated with a change to less intensive tillage practices is approximately 75% if no additional economic incentives are provided for soil carbon sequestration practices. This carbon accounting framework offers a method to integrate inventory and remote sensing data on an annual basis and to transparently account for alternating annual trends in land management and associated carbon stocks and fluxes.

  7. Grass invasion effects on forest soil carbon depend on landscape-level land use patterns.

    PubMed

    Craig, Matthew E; Pearson, Scott M; Fraterrigo, Jennifer M

    2015-08-01

    Plant invasions can alter the quality and quantity of detrital and root-derived inputs entering a system, thereby influencing the activities of microbial decomposers and affecting the soil carbon cycle. The effect of these inputs on soil carbon storage is often conflicting, suggesting strong context dependency in the plant-decomposer relationship. Whether there is a generalizable pattern that explains this dependency remains relatively unexplored. Here, we (1) examine how invasion by the exotic grass Microstegium vimineum affects carbon cycling across a land use gradient, and (2) evaluate the importance of inorganic nitrogen availability and other environmental variables for explaining patterns in soil carbon. Using paired invaded and uninvaded plots, we quantified invasion effects on belowground carbon pools, extracellular enzyme activities, and native leaf litter decomposition in forests embedded in an urban, agricultural, or forested landscape matrix. Compared to the urban matrix, invasion-associated declines in total soil organic carbon in the forested and agricultural landscapes were 3.5 and 2.5 times greater, respectively. Inorganic nitrogen availability and M. vimineum biomass interacted to explain these patterns: when both nitrogen availability and M. vimineum biomass were high, invaded soils exhibited higher total organic carbon, unchanged particulate organic matter carbon, and higher mineral-associated organic matter carbon compared to adjacent uninvaded soils. Consistent with these patterns, activities of carbon-mineralizing enzymes were lower in invaded than in uninvaded soils when both nitrogen availability and M. vimineum biomass were high. By contrast,. decomposition of native leaf litter was faster when inorganic nitrogen availability and M. vimineum biomass were high. Our findings suggest that, although this invader may accelerate carbon cycling in forest soils, its effects on soil carbon storage largely depend on nitrogen availability and invader

  8. Soil carbon stock and soil characteristics at Tasik Chini Forest Reserve, Pahang, Malaysia

    NASA Astrophysics Data System (ADS)

    Nur Aqlili Riana, R.; Sahibin A., R.

    2015-09-01

    This study was carried out to determine soil carbon stock and soil characteristic at Tasik Chini Forest Reserve (TCFR), Pahang. A total of 10 (20 m x 25 m) permanent sampling plot was selected randomly within the area of TCFR. Soil samples were taken from all subplots using dutch auger based on soil depth of 0-20cm, 20-40cm, 40-60cm. Soil parameters determined were size distribution, soil water content, bulk density, organic matter, organic carbon content, pH and electrical conductivity. All parameters were determined following their respective standard methods. Results obtained showed that the soil in TCFR was dominated by clay texture (40%), followed by sandy clay loam (30%), loam (20%). Silty clay, clay loam and sandy loam constitutes about 10% of the soil texture. Range of mean percentage of organic matter and bulk density are from 2.42±0.06% to 11.64±0.39% and 1.01 to 1.04 (gcm-ł), respectively. Soil pH are relatively very acidic and mean of electrical conductivity is low. Soil carbon content ranged from 0.83±0.03 to 1.87±0.41%. All soil parameter showed a decreasing trend with depth except electrical conductivity. ANOVA test of mean percentage of organic matter, soil water content, soil pH and electrical conductivity showed a significant difference between plot (p<0.05). However there are no significant difference of mean bulk density between plots (p>0.05). There are no significant difference in mean percentage of soil water content, organic matter and bulk density between three different depth (p>0.05). There were a significant difference on percentage of soil carbon organic between plots and depth. The mean of soil organic carbon stock in soil to a depth of 60 cm calculated was 35.50 t/ha.

  9. Role of carbonates in soil organic matter stabilization in agricultural Mediterranean soils

    NASA Astrophysics Data System (ADS)

    Apesteguía, Marcos; Virto, Iñigo; Plante, Alain

    2016-04-01

    Carbonated soils are present in many semiarid areas, where lithogenic and secondary carbonates are important constituents of the soil mineral matrix. The presence of CaCO3 in calcareous soils has been described as an organic matter stabilization agent mainly due to chemical stabilization mechanisms. In two recent studies in the north of Spain the importance of CaCO3 on soil physical characteristics was highlighted, as they were observed to be acting as macroaggregates stabilization agents. A third study was carried out on the same experimental site, with the hypothesis that the observed differences in aggregation may favor organic matter stabilization in carbonate-containing soils. With that aim we studied the soil physical characteristics (water retention and porosity) and the bioavailability of soil organic matter (SOM) in the two contrasting soils in that site, one Typic Calcixerept (CALC) and one Calcic Haploxerept (DECALC). Bioavailability was evaluated trough the measurement of mineralization rates in a 30 days soil incubations. Intact and disaggregated samples were incubated to evaluate the effect of physical protection on SOM bioavailability in whole soil and macroaggregates 2-5 mm samples. Therefore, four fractions of each soil were studied: intact whole soil < 5 mm (I-WS), disaggregated whole soil (D-WS), intact macroaggregates 2-5 mm (I-Magg), and disaggregated macroaggregates (D-Magg). Soil organic carbon content was greater in CALC and had smaller mineralization rates during incubation, indicating a smaller organic matter bioavailability for microbial decomposition. However, the greater increment of mineralization observed in DECALC after disaggregation, together with the scarce differences observed in physical characteristics among both soils, indicate that physical protection was not responsible of greater SOM stability in CALC soil. New hypotheses are needed to explain the observed better protection of organic matter in carbonate-rich Mediterranean

  10. Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover

    PubMed Central

    You, Yeming; Wang, Juan; Huang, Xueman; Tang, Zuoxin; Liu, Shirong; Sun, Osbert J

    2014-01-01

    Forest soils store vast amounts of terrestrial carbon, but we are still limited in mechanistic understanding on how soil organic carbon (SOC) stabilization or turnover is controlled by biotic and abiotic factors in forest ecosystems. We used phospholipid fatty acids (PLFAs) as biomarker to study soil microbial community structure and measured activities of five extracellular enzymes involved in the degradation of cellulose (i.e., β-1,4-glucosidase and cellobiohydrolase), chitin (i.e., β-1,4-N-acetylglucosaminidase), and lignin (i.e., phenol oxidase and peroxidase) as indicators of soil microbial functioning in carbon transformation or turnover across varying biotic and abiotic conditions in a typical temperate forest ecosystem in central China. Redundancy analysis (RDA) was performed to determine the interrelationship between individual PFLAs and biotic and abiotic site factors as well as the linkage between soil microbial structure and function. Path analysis was further conducted to examine the controls of site factors on soil microbial community structure and the regulatory pathway of changes in SOC relating to microbial community structure and function. We found that soil microbial community structure is strongly influenced by water, temperature, SOC, fine root mass, clay content, and C/N ratio in soils and that the relative abundance of Gram-negative bacteria, saprophytic fungi, and actinomycetes explained most of the variations in the specific activities of soil enzymes involved in SOC transformation or turnover. The abundance of soil bacterial communities is strongly linked with the extracellular enzymes involved in carbon transformation, whereas the abundance of saprophytic fungi is associated with activities of extracellular enzymes driving carbon oxidation. Findings in this study demonstrate the complex interactions and linkage among plant traits, microenvironment, and soil physiochemical properties in affecting SOC via microbial regulations. PMID

  11. Managing Semi-Arid Rangelands for Carbon Storage: Grazing and Woody Encroachment Effects on Soil Carbon and Nitrogen

    PubMed Central

    Yusuf, Hasen M.; Treydte, Anna C.; Sauerborn, Jauchim

    2015-01-01

    High grazing intensity and wide-spread woody encroachment may strongly alter soil carbon (C) and nitrogen (N) pools. However, the direction and quantity of these changes have rarely been quantified in East African savanna ecosystem. As shifts in soil C and N pools might further potentially influence climate change mitigation, we quantified and compared soil organic carbon (SOC) and total soil nitrogen (TSN) content in enclosures and communal grazing lands across varying woody cover i.e. woody encroachment levels. Estimated mean SOC and TSN stocks at 0–40 cm depth varied across grazing regimes and among woody encroachment levels. The open grazing land at the heavily encroached site on sandy loam soil contained the least SOC (30 ± 2.1 Mg ha-1) and TSN (5 ± 0.57 Mg ha-1) while the enclosure at the least encroached site on sandy clay soil had the greatest mean SOC (81.0 ± 10.6 Mg ha-1) and TSN (9.2 ± 1.48 Mg ha-1). Soil OC and TSN did not differ with grazing exclusion at heavily encroached sites, but were twice as high inside enclosure compared to open grazing soils at low encroached sites. Mean SOC and TSN in soils of 0–20 cm depth were up to 120% higher than that of the 21–40 cm soil layer. Soil OC was positively related to TSN, cation exchange capacity (CEC), but negatively related to sand content. Our results show that soil OC and TSN stocks are affected by grazing, but the magnitude is largely influenced by woody encroachment and soil texture. We suggest that improving the herbaceous layer cover through a reduction in grazing and woody encroachment restriction are the key strategies for reducing SOC and TSN losses and, hence, for climate change mitigation in semi-arid rangelands. PMID:26461478

  12. Managing Semi-Arid Rangelands for Carbon Storage: Grazing and Woody Encroachment Effects on Soil Carbon and Nitrogen.

    PubMed

    Yusuf, Hasen M; Treydte, Anna C; Sauerborn, Jauchim

    2015-01-01

    High grazing intensity and wide-spread woody encroachment may strongly alter soil carbon (C) and nitrogen (N) pools. However, the direction and quantity of these changes have rarely been quantified in East African savanna ecosystem. As shifts in soil C and N pools might further potentially influence climate change mitigation, we quantified and compared soil organic carbon (SOC) and total soil nitrogen (TSN) content in enclosures and communal grazing lands across varying woody cover i.e. woody encroachment levels. Estimated mean SOC and TSN stocks at 0-40 cm depth varied across grazing regimes and among woody encroachment levels. The open grazing land at the heavily encroached site on sandy loam soil contained the least SOC (30 ± 2.1 Mg ha-1) and TSN (5 ± 0.57 Mg ha-1) while the enclosure at the least encroached site on sandy clay soil had the greatest mean SOC (81.0 ± 10.6 Mg ha-1) and TSN (9.2 ± 1.48 Mg ha-1). Soil OC and TSN did not differ with grazing exclusion at heavily encroached sites, but were twice as high inside enclosure compared to open grazing soils at low encroached sites. Mean SOC and TSN in soils of 0-20 cm depth were up to 120% higher than that of the 21-40 cm soil layer. Soil OC was positively related to TSN, cation exchange capacity (CEC), but negatively related to sand content. Our results show that soil OC and TSN stocks are affected by grazing, but the magnitude is largely influenced by woody encroachment and soil texture. We suggest that improving the herbaceous layer cover through a reduction in grazing and woody encroachment restriction are the key strategies for reducing SOC and TSN losses and, hence, for climate change mitigation in semi-arid rangelands.

  13. Response of total belowground carbon flux and soil organic carbon storage to increasing mean annual temperature in Hawaiian tropical montane wet forest.

    NASA Astrophysics Data System (ADS)

    Giardina, C. P.; Litton, C. M.; Crow, S. E.

    2011-12-01

    Controls on the allocation of carbon belowground by plants and the retention of this carbon as new soil organic carbon are poorly quantified, yet exert a large influence on the carbon balance of the terrestrial biosphere. While many studies have now quantified total belowground carbon flux (TBCF), and general global patterns have been identified, rigorous field tests of the effects of climate variables on TBCF do not yet exist, and the conversion of TBCF into soil organic carbon - particularly long-lived soil organic carbon - has received little attention. These represent critical gaps in our understanding of terrestrial carbon cycling, and currently severely constrain efforts to model climate change impacts on belowground carbon processes and storage. We have established a model mean annual temperature gradient spanning 5.2°C in Hawaiian tropical montane wet forests where soil type and age, soil moisture balance, vegetation composition, and disturbance history do not co-vary with temperature. We found that TBCF increases by a factor of two over the 5.2°C MAT gradient in response to increasing ecosystem productivity, while total soil carbon storage is constant. These findings suggest that as temperatures warm, there will be a significant increase in TBCF and belowground carbon process leading to increased flux of CO2 from soils as soil respiration, but that soil organic carbon storage will be relatively insensitive to warming - at least where moisture availability is not affected by rising temperatures. While short-term responses to warming may differ, this study represents long-term insight into the impacts of rising temperatures on belowground carbon cycling and assumes that ecosystem characteristics will change with warming as quantified across this MAT gradient.

  14. Factors affecting expired waveform for carbon monoxide

    SciTech Connect

    Rubin, D.Z.; Lewis, S.M.; Mittman, C.

    1984-01-01

    The authors previously presented a method based on a computer lung model for determining the distribution of both specific ventilation and specific diffusing capacity. These argon and carbon monoxide (CO) washin and washout studies were obtained in 12 normal subjects and 24 patients with varying degrees of obstructive lung disease. In addition to end-tidal and mixed expired gas concentrations, the expired waveform for both gases was sampled. In patients we found that this method failed to adequately describe CO dynamics during the early part of expiration; predicted concentrations were higher than actual data. Modifications of the original model that satisfy all data are presented. This new model suggests that CO uptake occurs in spaces with ventilatory properties of dead space. The accuracy and reliability of these observations were established by computer simulation studies as well as by repeated testing in one subject. These proved to be highly reproducible over a period of 5 mo. Standard parameter sensitivity tests showed parameters to vary by less than 10% and to be stable even when realistic levels of noise were added to the data. We conclude that studies involving ventilation of insoluble gases are insufficient to describe gas exchange in the lung. The addition of an exchangeable gas adds significant understanding of lung function, particularly in disease.

  15. Soil moisture effects on the carbon isotopic composition of soil respiration

    EPA Science Inventory

    The carbon isotopic composition ( 13C) of recently assimilated plant carbon is known to depend on water-stress, caused either by low soil moisture or by low atmospheric humidity. Air humidity has also been shown to correlate with the 13C of soil respiration, which suggests indir...

  16. When bulk density methods matter: Implications for estimating soil organic carbon pools in rocky soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resolving uncertainty in the carbon cycle is paramount to refining climate predictions. Soil organic carbon (SOC) is a major component of terrestrial C pools, and accuracy of SOC estimates are only as good as the measurements and assumptions used to obtain them. Dryland soils account for a substanti...

  17. Spatial distribution of soil organic carbon stocks in France

    NASA Astrophysics Data System (ADS)

    Martin, M. P.; Wattenbach, M.; Smith, P.; Meersmans, J.; Jolivet, C.; Boulonne, L.; Arrouays, D.

    2010-11-01

    Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, whereby it can influence the course of climate change. Changes in soil organic soil stocks (SOCS) are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOCS is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing circa 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory. We calibrated a boosted regression tree model on the observed stocks, modelling SOCS as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOCS for the whole of metropolitan France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on soil organic carbon for such soils. The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOCS and pedo-climatic variables (plus their interactions) over the French territory. These relationship strongly depended on the land use, and more specifically differed between forest soils and cultivated soil. The total estimate of SOCS in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOCS distributions of France, and consequently that the previously published approach at the European

  18. Prevalence and Contribution of Anaerobic Microsites to Carbon Mineralization in Upland Soils

    NASA Astrophysics Data System (ADS)

    Fendorf, S. E.; Keiluweit, M.; Gee, K. E.; Kleber, M.; Wanzek, T.; Nico, P. S.

    2015-12-01

    Soil organic matter (SOM) storage, or residence time, is dominantly controlled by the mineralization (oxidation) rate, which is affected by climatic factors (particularly temperature and rainfall) influencing microbial metabolic rates as well as SOM chemistry, mineral-organic associations, and physical protection. Variation in anaerobic respiratory pathways can further, and dramatically, impact carbon oxidation rates. Within the aggregated structure of soils, steep chemical gradients arise from the supply of oxygen and nutrients along macropores that are rapidly consumed (relative to supply) within the micropore domains of aggregate interiors. As a consequence of demand exceeding oxygen supply within soil aggregates and peds, an appreciable fraction of the soil volume may persist in an anaerobic state within upland, agriculturally productive system. Factors limiting oxygen diffusion and availability such as soil texture, soil moisture content, organic matter input, and aggregate size (soil structure) provide central controls on microbial carbon mineralization rates. Here, we combine laboratory studies with manipulations of field samples and in-field measurements to illustrate how soil structure and carbon availability interact to impose anaerobic conditions and associated respiratory constraints on organic matter mineralization rates and thus storage within soils.

  19. [Characteristics of soil microbial biomass carbon and soil water soluble organic carbon in the process of natural restoration of Karst forest].

    PubMed

    Huang, Zong-Sheng; Fu, Yu-Hong; Yu, Li-Fei

    2012-10-01

    By the method of taking space instead of time, an incubation test was conducted to study the characteristics of soil microbial biomass carbon and water soluble organic carbon in the process of natural restoration of Karst forest in Maolan Nature Reserve, Guizhou Province of Southwest China. The soil microbial biomass carbon content and soil basal respiration decreased with increasing soil depth but increased with the process of the natural restoration, soil microbial quotient increased with increasing soil depth and with the process of restoration, and soil water soluble organic carbon content decreased with increasing soil depth. In the process of the natural restoration, surface soil water soluble organic carbon content increased, while sublayer soil water soluble organic carbon content decreased after an initial increase. The ratio of soil water soluble organic carbon to total soil organic carbon increased with increasing soil depth but decreased with the process of restoration. Soil quality increased with the process of restoration. Also, the quality and quantity of soil organic carbon increased with the process of restoration, in which, soil microbial biomass carbon content had the greatest change, while soil water soluble organic carbon content had less change. PMID:23359931

  20. [Characteristics of soil microbial biomass carbon and soil water soluble organic carbon in the process of natural restoration of Karst forest].

    PubMed

    Huang, Zong-Sheng; Fu, Yu-Hong; Yu, Li-Fei

    2012-10-01

    By the method of taking space instead of time, an incubation test was conducted to study the characteristics of soil microbial biomass carbon and water soluble organic carbon in the process of natural restoration of Karst forest in Maolan Nature Reserve, Guizhou Province of Southwest China. The soil microbial biomass carbon content and soil basal respiration decreased with increasing soil depth but increased with the process of the natural restoration, soil microbial quotient increased with increasing soil depth and with the process of restoration, and soil water soluble organic carbon content decreased with increasing soil depth. In the process of the natural restoration, surface soil water soluble organic carbon content increased, while sublayer soil water soluble organic carbon content decreased after an initial increase. The ratio of soil water soluble organic carbon to total soil organic carbon increased with increasing soil depth but decreased with the process of restoration. Soil quality increased with the process of restoration. Also, the quality and quantity of soil organic carbon increased with the process of restoration, in which, soil microbial biomass carbon content had the greatest change, while soil water soluble organic carbon content had less change.

  1. Does consideration of water routing affect simulated water and carbon dynamics in terrestrial ecosystems?

    NASA Astrophysics Data System (ADS)

    Tang, G.; Schneiderman, E. M.; Band, L. E.; Hwang, T.; Pierson, D. C.; Pradhanang, S. M.; Zion, M. S.

    2013-10-01

    The cycling of carbon in terrestrial ecosystems is closely coupled with the cycling of water. An important mechanism connecting ecological and hydrological processes in terrestrial ecosystems is lateral flow of water along landscapes. Few studies, however, have examined explicitly how consideration of water routing affects simulated water and carbon dynamics in terrestrial ecosystems. The objective of this study is to explore how consideration of water routing in a process-based hydroecological model affects simulated water and carbon dynamics. To achieve that end, we rasterized the regional hydroecological simulation systems (RHESSys) and employed the rasterized RHESSys (R-RHESSys) in a forested watershed. We performed and compared two contrasting simulations, one with and another without water routing. We found that R-RHESSys is able to correctly simulate major hydrological and ecological variables regardless of whether water routing is considered. When water routing was neglected, however, soil water table depth and saturation deficit were simulated to be smaller and spatially more homogeneous. As a result, evaporation, forest productivity and soil heterotrophic respiration also were simulated to be spatially more homogeneous compared to simulation with water routing. When averaged for the entire watershed, however, differences in simulated water and carbon fluxes are not significant between the two simulations. Overall, the study demonstrated that consideration of water routing enabled R-RHESSys to better capture our preconception of the spatial patterns of water table depth and saturation deficit across the watershed. Because the spatial pattern of soil moisture is fundamental to water efflux from land to the atmosphere, forest productivity and soil microbial activity, ecosystem and carbon cycle models, therefore, need to explicitly represent water routing in order to accurately quantify the magnitudes and patterns of water and carbon fluxes in terrestrial

  2. Soil physical and hydrological properties as affected by long-term addition of various organic amendments

    NASA Astrophysics Data System (ADS)

    Eden, Marie; Völkel, Jörg; Mercier, Vincent; Labat, Christophe; Houot, Sabine

    2014-05-01

    The use of organic residues as soil amendments in agriculture not only reduces the amount of waste needing to be disposed of; it may also lead to improvements in soil properties, including physical and hydrological ones. The present study examines a long-term experiment called "Qualiagro", run jointly by INRA and Veolia Environment in Feucherolles, France (near Paris). It was initiated in 1998 on a loess-derived silt loam (787 g/kg silt, 152 g/kg clay) and includes ten treatments: four types of organic amendments and a control (CNT) each at two levels of mineral nitrogen (N) addition: minimal (Nmin) and optimal (Nopt). The amendments include three types of compost and farmyard manure (FYM), which were applied every other year at a rate of ca. 4 t carbon ha-1. The composts include municipal solid waste compost (MSW), co-compost of green wastes and sewage sludge (GWS), and biowaste compost (BIO). The plots are arranged in a randomized block design and have a size of 450 m²; each treatment is replicated four times (total of 40 plots). Ca. 15 years after the start of the experiment soil organic carbon (OC) had continuously increased in the amended plots, while it remained stable or decreased in the control plots. This compost- or manure-induced increase in OC plays a key role, affecting numerous dependant soil properties like bulk density, porosity and water retention. The water holding capacity (WHC) of a soil is of particular interest to farmers in terms of water supply for plants, but also indicates soil quality and functionality. Addition of OC may affect WHC in different ways: carbon-induced aggregation may increase larger-pore volume and hence WHC at the wet end while increased surface areas may lead to an increased retention of water at the dry end. Consequently it is difficult to predict (e.g. with pedotransfer functions) the impact on the amount of water available for plants (PAW), which was experimentally determined for the soils, along with the entire range

  3. Protection of soil carbon within macro-aggregates depends on intra-aggregate pore characteristics

    PubMed Central

    Kravchenko, Alexandra N.; Negassa, Wakene C.; Guber, Andrey K.; Rivers, Mark L.

    2015-01-01

    Soil contains almost twice as much carbon (C) as the atmosphere and 5–15% of soil C is stored in a form of particulate organic matter (POM). Particulate organic matter C is regarded as one of the most labile components of the soil C, such that can be easily lost under right environmental settings. Conceptually, micro-environmental conditions are understood to be responsible for protection of soil C. However, quantitative knowledge of the specific mechanisms driving micro-environmental effects is still lacking. Here we combined CO2 respiration measurements of intact soil samples with X-ray computed micro-tomography imaging and investigated how micro-environmental conditions, represented by soil pores, influence decomposition of POM. We found that atmosphere-connected soil pores influenced soil C’s, and especially POM’s, decomposition. In presence of such pores losses in POM were 3–15 times higher than in their absence. Moreover, we demonstrated the presence of a feed-forward relationship between soil C decomposition and pore connections that enhance it. Since soil hydrology and soil pores are likely to be affected by future climate changes, our findings indicate that not-accounting for the influence of soil pores can add another sizable source of uncertainty to estimates of future soil C losses. PMID:26541265

  4. Xiphinema americanum as Affected by Soil Organic Matter and Porosity.

    PubMed

    Ponchillia, P E

    1972-07-01

    The effects of four soil types, soil porosity, particle size, and organic matter were tested on survival and migration of Xiphinema americanum. Survival and migration were significantly greater in silt loam than in clay loam and silty clay soils. Nematode numbers were significantly greater in softs planted with soybeans than in fallow softs. Nematode survival was greatest at the higher of two pore space levels in four softs. Migration of X. americanum through soft particle size fractions of 75-150, 150-250, 250-500, 500-700, and 700-1,000 mu was significantly greater in the middle three fractions, with the least occurring in the smallest fraction. Additions of muck to silt loam and loamy sand soils resulted in reductions in survival and migration of the nematode. The fulvic acid fraction of muck, extracted with sodium hydroxide, had a deleterious effect on nematode activity. I conclude that soils with small amounts of air-filled pore space, extremes in pore size, or high organic matter content are deleterious to the migration and survival of X. americanum, and that a naturally occurring toxin affecting this species may be present in native soft organic matter.

  5. International Soil Carbon Network (ISCN) Database v3-1

    DOE Data Explorer

    Nave, Luke [University of Michigan] (ORCID:0000000182588335); Johnson, Kris [USDA-Forest Service; van Ingen, Catharine [Microsoft Research; Agarwal, Deborah [Lawrence Berkeley National Laboratory] (ORCID:0000000150452396); Humphrey, Marty [University of Virginia; Beekwilder, Norman [University of Virginia

    2016-01-01

    The ISCN is an international scientific community devoted to the advancement of soil carbon research. The ISCN manages an open-access, community-driven soil carbon database. This is version 3-1 of the ISCN Database, released in December 2015. It gathers 38 separate dataset contributions, totalling 67,112 sites with data from 71,198 soil profiles and 431,324 soil layers. For more information about the ISCN, its scientific community and resources, data policies and partner networks visit: http://iscn.fluxdata.org/.

  6. The fate of organic carbon in colluvial soils in a subtropical agricultural catchment (Arvorezinha, Brazil)

    NASA Astrophysics Data System (ADS)

    Van de Broek, Marijn; Van Oost, Kristof; Minella, Jean; Govers, Gerard

    2016-04-01

    , relatively moist during most of the year. The effect of soil redistribution on carbon dynamics has, until now, mainly taken place in temperate areas, leaving (sub)tropical areas largely understudied. Our study shows that it is important to extend available field information to other climatic zones: while the processes occurring here may be similar, the impact on carbon cycling may be different because process rates are affected by climate. Global extrapolations based on temperate field zone data only may overestimate the soil erosion sink term, as they may overestimate carbon burial efficiency. References [1] Ramankutty et al. 2008, Global Biogeochemical Cycles 22; [2] Wang et al. 2014, Biogeosciences (11)

  7. How will climate change affect vine behaviour in different soils?

    NASA Astrophysics Data System (ADS)

    Leibar, Urtzi; Aizpurua, Ana; Morales, Fermin; Pascual, Inmaculada; Unamunzaga, Olatz

    2014-05-01

    and water-deficit had a clear influence on the grape phenological development and composition, whilst soil affected root configuration and anthocyanins concentration. Effects of climate change and water availability on different soil conditions should be considered to take full advantage or mitigate the consequences of the future climate conditions.

  8. Effect of biosolid waste compost on soil respiration in salt-affected soils

    NASA Astrophysics Data System (ADS)

    Raya, Silvia; Gómez, Ignacio; García, Fuensanta; Navarro, José; Jordán, Manuel Miguel; Belén Almendro, María; Martín Soriano, José

    2013-04-01

    A great part of mediterranean soils are affected by salinization. This is an important problem in semiarid areas increased by the use of low quality waters, the induced salinization due to high phreatic levels and adverse climatology. Salinization affects 25% of irrigated agriculture, producing important losses on the crops. In this situation, the application of organic matter to the soil is one of the possible solutions to improve their quality. The main objective of this research was to asses the relation between the salinity level (electrical conductivity, EC) in the soil and the response of microbial activity (soil respiration rate) after compost addition. The study was conducted for a year. Soil samples were collected near to an agricultural area in Crevillente and Elche, "El Hondo" Natural Park (Comunidad de Regantes from San Felipe Neri). The experiment was developed to determine and quantify the soil respiration rate in 8 different soils differing in salinity. The assay was done in close pots -in greenhouse conditions- containing soil mixed with different doses of sewage sludge compost (2, 4 and 6%) besides the control. They were maintained at 60% of water holding capacity (WHC). Soil samples were analyzed every four months for a year. The equipment used to estimate the soil respiration was a Bac-Trac and CO2 emitted by the soil biota was measured and quantified by electrical impedance changes. It was observed that the respiration rate increases as the proportion of compost added to each sample increases as well. The EC was incremented in each sampling period from the beginning of the experiment, probably due to the fact that soils were in pots and lixiviation was prevented, so the salts couldńt be lost from soil. Over time the compost has been degraded and, it was more susceptible to be mineralized. Salts were accumulated in the soil. Also it was observed a decrease of microbial activity with the increase of salinity in the soil. Keywords: soil

  9. A meta-analysis of soil biodiversity impacts on the carbon cycle

    NASA Astrophysics Data System (ADS)

    de Graaff, M.-A.; Adkins, J.; Kardol, P.; Throop, H. L.

    2014-11-01

    Loss of biodiversity can impact ecosystem functioning, such as altering carbon (C) cycling rates. Soils are the largest terrestrial C reservoir, containing more C globally than the biotic and atmospheric pools together. As such, soil C cycling, and the processes controlling it, have the potential to affect atmospheric CO2 concentrations and subsequent climate change. Despite the growing evidence of links between plant diversity and soil C cycling, there is a dearth of information on whether similar relationships exist between biodiversity of soil organisms (microbes and soil fauna) and C cycling. This is despite increasing recognition that soil communities display high levels of both taxonomic and functional diversity and are key drivers of fluxes of C between the atmosphere and terrestrial ecosystems. Here, we used meta-analysis and regression analysis to quantitatively assess how soil biodiversity affects soil C cycling pools and processes (i.e., soil C respiration, litter decomposition, and plant biomass). We compared the response of pool amd process variables to changes in biodiversity both within and across trophic groups of organisms. Overall, loss of soil diversity significantly reduced soil C respiration (-27.5%) and plant tissue decomposition (-18%), but did not affect above- and belowground plant biomass. Detailed analyses showed that loss of within-group biodiversity significantly reduced soil C respiration, while loss of across-group diversity did not. Decomposition was negatively affected by losses of both within-group and across-group diversity. Further, loss of microbial diversity strongly reduced soil C respiration (-41%). In contrast, plant tissue decomposition was negatively affected by loss of soil faunal diversity, but was unaffected by loss of microbial diversity. Taken together, our findings show that loss of soil biodiversity can strongly affect soil C cycling processes, and highlight the importance of diversity across organismal groups for

  10. The influence of carbonates in parent rocks on the biological properties of mountain soils of the Northwest Caucasus region

    NASA Astrophysics Data System (ADS)

    Kazeev, K. Sh.; Kutrovskii, M. A.; Dadenko, E. V.; Vezdeneeva, L. S.; Kolesnikov, S. I.; Val'kov, V. F.

    2012-03-01

    The biological activity of different subtypes of soddy-calcareous soils (rendzinas) of the Northwest Caucasus region was studied. In the Novorossiisk-Abrau-Dyurso region (dry subtropics), typical soddy-calcareous soils with the high content of carbonates predominate; in the more humid conditions of the Lagonaki Plateau (Republic of Adygeya), leached soddy-calcareous soils carbonate-free down to the parent rock are spread. The number of microarthropods, the populations of fungi and bacteria, and the enzyme activity (catalase, dehydrogenase, and invertase) testify that the biological activity of these soils significantly differs. In the typical soddy-calcareous soils of the dry subtropics, the content of carbonates does not affect the characteristics mentioned; in the more humid conditions of the West Caucasus region, the presence of carbonates in the parent rocks intensifies the biological activity of the soddy-calcareous soils.

  11. Soil properties affecting wheat yields following drilling-fluid application.

    PubMed

    Bauder, T A; Barbarick, K A; Ippolito, J A; Shanahan, J F; Ayers, P D

    2005-01-01

    Oil and gas drilling operations use drilling fluids (mud) to lubricate the drill bit and stem, transport formation cuttings to the surface, and seal off porous geologic formations. Following completion of the well, waste drilling fluid is often applied to cropland. We studied potential changes in soil compaction as indicated by cone penetration resistance, pH, electrical conductivity (EC(e)), sodium adsorption ratio (SAR), extractable soil and total straw and grain trace metal and nutrient concentrations, and winter wheat (Triticum aestivum L. 'TAM 107') grain yield following water-based, bentonitic drilling-fluid application (0-94 Mg ha(-1)) to field test plots. Three methods of application (normal, splash-plate, and spreader-bar) were used to study compaction effects. We measured increasing SAR, EC(e), and pH with drilling-fluid rates, but not to levels detrimental to crop production. Field measurements revealed significantly higher compaction within areas affected by truck travel, but also not enough to affect crop yield. In three of four site years, neither drilling-fluid rate nor application method affected grain yield. Extractions representing plant availability and plant analyses results indicated that drilling fluid did not significantly increase most trace elements or nutrient concentrations. These results support land application of water-based bentonitic drilling fluids as an acceptable practice on well-drained soils using controlled rates. PMID:16091622

  12. Soil properties affecting wheat yields following drilling-fluid application.

    PubMed

    Bauder, T A; Barbarick, K A; Ippolito, J A; Shanahan, J F; Ayers, P D

    2005-01-01

    Oil and gas drilling operations use drilling fluids (mud) to lubricate the drill bit and stem, transport formation cuttings to the surface, and seal off porous geologic formations. Following completion of the well, waste drilling fluid is often applied to cropland. We studied potential changes in soil compaction as indicated by cone penetration resistance, pH, electrical conductivity (EC(e)), sodium adsorption ratio (SAR), extractable soil and total straw and grain trace metal and nutrient concentrations, and winter wheat (Triticum aestivum L. 'TAM 107') grain yield following water-based, bentonitic drilling-fluid application (0-94 Mg ha(-1)) to field test plots. Three methods of application (normal, splash-plate, and spreader-bar) were used to study compaction effects. We measured increasing SAR, EC(e), and pH with drilling-fluid rates, but not to levels detrimental to crop production. Field measurements revealed significantly higher compaction within areas affected by truck travel, but also not enough to affect crop yield. In three of four site years, neither drilling-fluid rate nor application method affected grain yield. Extractions representing plant availability and plant analyses results indicated that drilling fluid did not significantly increase most trace elements or nutrient concentrations. These results support land application of water-based bentonitic drilling fluids as an acceptable practice on well-drained soils using controlled rates.

  13. Distribution characteristic of soil organic carbon fraction in different types of wetland in Hongze Lake of China.

    PubMed

    Lu, Yan; Xu, Hongwen

    2014-01-01

    Soil organic carbon fractions included microbial biomass carbon (MBC), dissolved organic carbon (DOC), and labile organic carbon (LOC), which was investigated over a 0-20 cm depth profile in three types of wetland in Hongze Lake of China. Their ecoenvironmental effect and the relationships with soil organic carbon (SOC) were analyzed in present experiment. The results showed that both active and SOC contents were in order reduced by estuarine wetland, flood plain, and out-of-lake wetland. Pearson correlative analysis indicated that MBC and DOC were positively related to SOC. The lowest ratios of MBC and DOC to SOC in the estuarine wetland suggested that the turnover rate of microbial active carbon pool was fairly low in this kind of wetland. Our results showed that estuarine wetland had a strong carbon sink function, which played important role in reducing greenhouse gas emissions; besides, changes of water condition might affect the accumulation and decomposition of organic carbon in the wetland soils.

  14. Copper phytoavailability and uptake by Elsholtzia splendens from contaminated soil as affected by soil amendments.

    PubMed

    Peng, Hong-Yun; Yang, Xiao-E; Jiang, Li-Ying; He, Zhen-Li

    2005-01-01

    Pot and field experiments were conducted to evaluate bioavailability of Cu in contaminated paddy soil (PS) and phytoremediation potential by Elsholtzia splendens as affected by soil amendments. The results from pot experiment showed that organic manure (M) applied to the PS not only remarkably raised the H2O exchangeable Cu, which were mainly due to the increased exchangeable and organic fractions of Cu in the PS by M, but also stimulated plant growth and Cu accumulation in E. splendens. At M application rate of 5.0%, shoot Cu concentration in the plant increased by four times grown on the PS, so as to the elevated shoot Cu accumulation by three times as compared to the control. In the field trial, soil amendments by M and furnace slag (F), and soil preparations like soil capping (S) and soil discing (D) were performed in the PS. Soil capping and discing considerably declined total Cu in the PS. Application of M solely or together with F enhanced plant growth and increased H2O exchangeable Cu levels in the soil. The increased extractability of Cu in the rhizosphere of E. splendens was noted, which may have mainly attributed to the rhizospheric acidification and chelation by dissolved organic matter (DOM), thus resulting in elevating Cu uptake and accumulation by E. splendens. Amendments with organic manure plus furnace slag (MF) to the PS caused the highest exactable Cu with saturated H2O in the rhizospheric soil of E. splendens after they were grown for 170 days in the PS, thus achieving 1.74 kg Cu ha(-1) removal from the contaminated soil by the whole plant of E. splendens at one season, which is higher than those of the other soil treatments. The results indicated that application of organic manure at a proper rate could enhance Cu bioavailability and increase effectiveness of Cu phytoextraction from the contaminated soil by the metal-tolerant and accumulating plant species (E. splendens). PMID:15792303

  15. Connecting soil organic carbon and root biomass with land-use and vegetation in temperate grassland.

    PubMed

    McGranahan, Devan Allen; Daigh, Aaron L; Veenstra, Jessica J; Engle, David M; Miller, James R; Debinski, Diane M

    2014-01-01

    Soils contain much of Earth's terrestrial organic carbon but are sensitive to land-use. Rangelands are important to carbon dynamics and are among ecosystems most widely impacted by land-use. While common practices like grazing, fire, and tillage affect soil properties directly related to soil carbon dynamics, their magnitude and direction of change vary among ecosystems and with intensity of disturbance. We describe variability in soil organic carbon (SOC) and root biomass--sampled from 0-170 cm and 0-100 cm, respectively--in terms of soil properties, land-use history, current management, and plant community composition using linear regression and multivariate ordination. Despite consistency in average values of SOC and root biomass between our data and data from rangelands worldwide, broad ranges in root biomass and SOC in our data suggest these variables are affected by other site-specific factors. Pastures with a recent history of severe grazing had reduced root biomass and greater bulk density. Ordination suggests greater exotic species richness is associated with lower root biomass but the relationship was not apparent when an invasive species of management concern was specifically tested. We discuss how unexplained variability in belowground properties can complicate measurement and prediction of ecosystem processes such as carbon sequestration. PMID:25401142

  16. Connecting soil organic carbon and root biomass with land-use and vegetation in temperate grassland.

    PubMed

    McGranahan, Devan Allen; Daigh, Aaron L; Veenstra, Jessica J; Engle, David M; Miller, James R; Debinski, Diane M

    2014-01-01

    Soils contain much of Earth's terrestrial organic carbon but are sensitive to land-use. Rangelands are important to carbon dynamics and are among ecosystems most widely impacted by land-use. While common practices like grazing, fire, and tillage affect soil properties directly related to soil carbon dynamics, their magnitude and direction of change vary among ecosystems and with intensity of disturbance. We describe variability in soil organic carbon (SOC) and root biomass--sampled from 0-170 cm and 0-100 cm, respectively--in terms of soil properties, land-use history, current management, and plant community composition using linear regression and multivariate ordination. Despite consistency in average values of SOC and root biomass between our data and data from rangelands worldwide, broad ranges in root biomass and SOC in our data suggest these variables are affected by other site-specific factors. Pastures with a recent history of severe grazing had reduced root biomass and greater bulk density. Ordination suggests greater exotic species richness is associated with lower root biomass but the relationship was not apparent when an invasive species of management concern was specifically tested. We discuss how unexplained variability in belowground properties can complicate measurement and prediction of ecosystem processes such as carbon sequestration.

  17. Soil microbial community structure and nitrogen cycling responses to agroecosystem management and carbon substrate addition

    NASA Astrophysics Data System (ADS)

    Berthrong, S. T.; Buckley, D. H.; Drinkwater, L. E.

    2011-12-01

    Fertilizer application in conventional agriculture leads to N saturation and decoupled soil C and N cycling, whereas organic practices, e.g. complex rotations and legume incorporation, often results in increased SOM and tightly coupled cycles of C and N. These legacy effects of management on soils likely affect microbial community composition and microbial process rates. This project tested if agricultural management practices led to distinct microbial communities and if those communities differed in ability to utilize labile plant carbon substrates and to produce more plant available N. We addressed several specific questions in this project. 1) Do organic and conventional management legacies on similar soils produce distinct soil bacterial and fungal community structures and abundances? 2) How do these microbial community structures change in response to carbon substrate addition? 3) How do the responses of the microbial communities influence N cycling? To address these questions we conducted a laboratory incubation of organically and conventionally managed soils. We added C-13 labelled glucose either in one large dose or several smaller pulses. We extracted genomic DNA from soils before and after incubation for TRFLP community fingerprinting. We measured C in soil pools and respiration and N in soil extracts and leachates. Management led to different compositions of bacteria and fungi driven by distinct components in organic soils. Biomass did not differ across treatments indicating that differences in cycling were due to composition rather than abundance. C substrate addition led to convergence in bacterial communities; however management still strongly influenced the difference in communities. Fungal communities were very distinct between managements and plots with substrate addition not altering this pattern. Organic soils respired 3 times more of the glucose in the first week than conventional soils (1.1% vs 0.4%). Organic soils produced twice as much

  18. Simulation of soil organic carbon in different soil size fractions using 13Carbon measurement data

    NASA Astrophysics Data System (ADS)

    Gottschalk, P.; Bellarby, J.; Chenu, C.; Foereid, B.; Wattenbach, M.; Zingore, S.; Smith, J.

    2009-04-01

    We simulate the soil organic carbon (SOC) dynamics at a chronoseqeunce site in France, using the Rothamsted Carbon model. The site exhibits a transition from C3 plants, dominated by pine forest, to a conventional C4 maize rotation. The different 13C signatures of the forest plants and maize are used to distinguish between the woodland derived carbon (C) and the maize derived C. The model is evaluated against total SOC and C derived from forest and maize, respectively. The SOC dynamics of the five SOC pools of the model, decomposable plant material (DPM), resistant plant material (RPM), biomass, humus and inert C, are also compared to the SOC dynamics measured in different soil size fractions. These fractions are > 50 μm (particulate organic matter), 2-50 μm (silt associated SOC) and <2 μm (clay associated SOC). Other authors had shown that the RPM pool of the model corresponds well to SOC measured in the soil size fraction > 50 μm and the sum of the other pools corresponds well to the SOC measured in the soil size fraction < 50 μm. Default model applications show that the model underestimates the fast drop in forest C stocks in the first 20 years after land-use change and overestimates the C accumulation of maize C. Several hypotheses were tested to evaluate the simulations. Input data and internal model parameter uncertainties had minor effects on the simulations results. Accounting for erosion and implementing a simple tillage routine did not improve the simulation fit to the data. We therefore hypothesize that a generic process that is not yet explicitly accounted for in the ROTHC model could explain the loss in soil C after land use change. Such a process could be the loss of the physical protection of soil organic matter as would be observed following cultivation of a previously uncultivated soil. Under native conditions a fraction of organic matter is protected in stable soil aggregates. These aggregates are physically disrupted by continuous and

  19. Soil Inorganic Carbon in Deserts: Active Carbon Sink or Inert Reservoir?

    NASA Astrophysics Data System (ADS)

    Monger, H. C.; Cole, D. R.

    2011-12-01

    Soil inorganic carbon is the third largest C pool in the active global carbon cycle, containing at least 800 petagrams of carbon. Although carbonate dissolution-precipitation reactions have been understood for over a century, the role of soil inorganic carbon in carbon sequestration, and in particular pedogenic carbonate, is a deceptively complex process because it involves interdependent connections among climate, plants, microorganisms, silicate minerals, soil moisture, pH, and Ca supply via rain, dust, or in situ weathering. An understanding of soil inorganic carbon as a sink or reservoir also requires examination of the system at local to continental scales and at seasonal to millennial time scales. In desert soils studied in North America, carbon isotope ratios and radiocarbon dates were measured in combination with electron microscopy, lab and field experiments with biological calcite formation, and field measurements of carbon dioxide emissions. These investigations reveal that soil inorganic carbon is both an active sink and a inert reservoir depending on the spatial and temporal scale and source of calcium.

  20. Effects of organic carbon sequestration strategies on soil enzymatic activities

    NASA Astrophysics Data System (ADS)

    Puglisi, E.; Suciu, N.; Botteri, L.; Ferrari, T.; Coppolecchia, D.; Trevisan, M.; Piccolo, A.

    2009-04-01

    Greenhouse gases emissions can be counterbalanced with proper agronomical strategies aimed at sequestering carbon in soils. These strategies must be tested not only for their ability in reducing carbon dioxide emissions, but also for their impact on soil quality: enzymatic activities are related to main soil ecological quality, and can be used as early and sensitive indicators of alteration events. Three different strategies for soil carbon sequestration were studied: minimum tillage, protection of biodegradable organic fraction by compost amendment and oxidative polimerization of soil organic matter catalyzed by biometic porfirins. All strategies were compared with a traditional agricultural management based on tillage and mineral fertilization. Experiments were carried out in three Italian soils from different pedo-climatic regions located respectively in Piacenza, Turin and Naples and cultivated with maize or wheat. Soil samples were taken for three consecutive years after harvest and analyzed for their content in phosphates, ß-glucosidase, urease and invertase. An alteration index based on these enzymatic activities levels was applied as well. The biomimetic porfirin application didn't cause changes in enzymatic activities compared to the control at any treatment or location. Enzymatic activities were generally higher in the minimum tillage and compost treatment, while differences between location and date of samplings were limited. Application of the soil alteration index based on enzymatic activities showed that soils treated with compost or subjected to minimum tillage generally have a higher biological quality. The work confirms the environmental sustainability of the carbon sequestering agronomical practices studied.

  1. Influence of Litter Diversity on Dissolved Organic Matter Release and Soil Carbon Formation in a Mixed Beech Forest

    PubMed Central

    Scheibe, Andrea; Gleixner, Gerd

    2014-01-01

    We investigated the effect of leaf litter on below ground carbon export and soil carbon formation in order to understand how litter diversity affects carbon cycling in forest ecosystems. 13C labeled and unlabeled leaf litter of beech (Fagus sylvatica) and ash (Fraxinus excelsior), characterized by low and high decomposability, were used in a litter exchange experiment in the Hainich National Park (Thuringia, Germany). Litter was added in pure and mixed treatments with either beech or ash labeled with 13C. We collected soil water in 5 cm mineral soil depth below each treatment biweekly and determined dissolved organic carbon (DOC), δ13C values and anion contents. In addition, we measured carbon concentrations and δ13C values in the organic and mineral soil (collected in 1 cm increments) up to 5 cm soil depth at the end of the experiment. Litter-derived C contributes less than 1% to dissolved organic matter (DOM) collected in 5 cm mineral soil depth. Better decomposable ash litter released significantly more (0.50±0.17%) litter carbon than beech litter (0.17±0.07%). All soil layers held in total around 30% of litter-derived carbon, indicating the large retention potential of litter-derived C in the top soil. Interestingly, in mixed (ash and beech litter) treatments we did not find a higher contribution of better decomposable ash-derived carbon in DOM, O horizon or mineral soil. This suggest that the known selective decomposition of better decomposable litter by soil fauna has no or only minor effects on the release and formation of litter-derived DOM and soil organic matter. Overall our experiment showed that 1) litter-derived carbon is of low importance for dissolved organic carbon release and 2) litter of higher decomposability is faster decomposed, but litter diversity does not influence the carbon flow. PMID:25486628

  2. Influence of litter diversity on dissolved organic matter release and soil carbon formation in a mixed beech forest.

    PubMed

    Scheibe, Andrea; Gleixner, Gerd

    2014-01-01

    We investigated the effect of leaf litter on below ground carbon export and soil carbon formation in order to understand how litter diversity affects carbon cycling in forest ecosystems. 13C labeled and unlabeled leaf litter of beech (Fagus sylvatica) and ash (Fraxinus excelsior), characterized by low and high decomposability, were used in a litter exchange experiment in the Hainich National Park (Thuringia, Germany). Litter was added in pure and mixed treatments with either beech or ash labeled with 13C. We collected soil water in 5 cm mineral soil depth below each treatment biweekly and determined dissolved organic carbon (DOC), δ13C values and anion contents. In addition, we measured carbon concentrations and δ13C values in the organic and mineral soil (collected in 1 cm increments) up to 5 cm soil depth at the end of the experiment. Litter-derived C contributes less than 1% to dissolved organic matter (DOM) collected in 5 cm mineral soil depth. Better decomposable ash litter released significantly more (0.50±0.17%) litter carbon than beech litter (0.17±0.07%). All soil layers held in total around 30% of litter-derived carbon, indicating the large retention potential of litter-derived C in the top soil. Interestingly, in mixed (ash and beech litter) treatments we did not find a higher contribution of better decomposable ash-derived carbon in DOM, O horizon or mineral soil. This suggest that the known selective decomposition of better decomposable litter by soil fauna has no or only minor effects on the release and formation of litter-derived DOM and soil organic matter. Overall our experiment showed that 1) litter-derived carbon is of low importance for dissolved organic carbon release and 2) litter of higher decomposability is faster decomposed, but litter diversity does not influence the carbon flow.

  3. Soil carbon flux following pulse precipitation events in the shortgrass steppe

    USGS Publications Warehouse

    Munson, S.M.; Benton, T.J.; Lauenroth, W.K.; Burke, I.C.

    2010-01-01

    Pulses of water availability characterize semiarid and arid ecosystems. Most precipitation events in these ecosystems are small (???10 mm), but can stimulate carbon flux. The large proportion of carbon stored belowground and small carbon inputs create the potential for these small precipitation events to have large effects on carbon cycling. Land-use change can modify these effects through alteration of the biota and soil resources. The goal of our research was to determine how small precipitation events (2, 5, and 10 mm) affected the dynamics of soil carbon flux and water loss in previously cultivated Conservation Reserve Program (CRP) fields and undisturbed shortgrass steppe. Total carbon loss and duration of elevated carbon flux increased as event size increased in all field types. Time since cultivation increased in importance for carbon flux as event size increased. A comparison of water loss rates to carbon flux suggests that water is limiting to carbon flux for the smallest events, but is less limiting for events above 5 mm. We also describe how water availability interacts with temperature in controlling carbon flux rate. We conclude that small precipitation events have the potential for large short-term losses of carbon in the shortgrass steppe. ?? 2009 The Ecological Society of Japan.

  4. Application of a two-pool model to soil carbon dynamics under elevated CO2.

    PubMed

    van Groenigen, Kees Jan; Xia, Jianyang; Osenberg, Craig W; Luo, Yiqi; Hungate, Bruce A

    2015-12-01

    Elevated atmospheric CO2 concentrations increase plant productivity and affect soil microbial communities, with possible consequences for the turnover rate of soil carbon (C) pools and feedbacks to the atmosphere. In a previous analysis (Van Groenigen et al., 2014), we used experimental data to inform a one-pool model and showed that elevated CO2 increases the decomposition rate of soil organic C, negating the storage potential of soil. However, a two-pool soil model can potentially explain patterns of soil C dynamics without invoking effects of CO2 on decomposition rates. To address this issue, we refit our data to a two-pool soil C model. We found that CO2 enrichment increases decomposition rates of both fast and slow C pools. In addition, elevated CO2 decreased the carbon use efficiency of soil microbes (CUE), thereby further reducing soil C storage. These findings are consistent with numerous empirical studies and corroborate the results from our previous analysis. To facilitate understanding of C dynamics, we suggest that empirical and theoretical studies incorporate multiple soil C pools with potentially variable decomposition rates. PMID:26313640

  5. Application of a two-pool model to soil carbon dynamics under elevated CO2.

    PubMed

    van Groenigen, Kees Jan; Xia, Jianyang; Osenberg, Craig W; Luo, Yiqi; Hungate, Bruce A

    2015-12-01

    Elevated atmospheric CO2 concentrations increase plant productivity and affect soil microbial communities, with possible consequences for the turnover rate of soil carbon (C) pools and feedbacks to the atmosphere. In a previous analysis (Van Groenigen et al., 2014), we used experimental data to inform a one-pool mod