Science.gov

Sample records for affect soil physical

  1. Affects of different tillage managements on soil physical quality in a clayey soil.

    PubMed

    Sağlam, Mustafa; Selvi, Kemal Çağatay; Dengiz, Orhan; Gürsoy, Fatma Esra

    2015-01-01

    This study, conducted in 2011, researches the effects of different tillage practices on the physical soil quality of clayey soil. This soil quality index (SQI) assessment was made by studying the changes in physical soil functions such as suitability for root development, facilitation for water entry, movement and storage, and resistance against surface degradation based on tillage management. When compared with the control parcel, statistically significant decreases were seen in the SQI with different tillage practices (p < 0.05). Among the tillage practices, the highest SQI was seen with the plow + rotary tiller + direct seeding machine, while the lowest SQI was seen with the direct drilling practice. On the other hand, the statistically insignificant effects of tillage practices on the soil quality of the study area were considered to be a result of either the study period or the joint effect of soil texture and climatic features. Thus, long-term tillage practices were recommended in order to get healthier information about soil quality by considering soil and climatic conditions. In addition, for heavy clayey soils, reduced tillage practices, which included plowing, were thought to develop physical soil qualities of root development and water movement.

  2. Soil Physics

    NASA Astrophysics Data System (ADS)

    Marshall, T. J.; Holmes, J. W.; Rose, C. W.

    1996-06-01

    Now in its third edition, this textbook gives a comprehensive account of soil physics with emphasis on field applications for students and research workers engaged in water resources studies, soil sciences, and plant sciences. The authors have added chapters on soil erosion, conservation, and the role of soil in affecting water quality to this new edition. The book gives an account of how water influences the structure and strength of soil; how plants absorb water from soils; how water from rain and irrigation enters the soil and flows through it to contribute to stream flow and flow in artificial drains; how soluble salts and chemical pollutants are transported; how soils are eroded by water and wind; and how the evaporation rate from the land surface is influenced by soil water supply, the nature of the plant cover and the evaporative power of the atmosphere. This book will be useful to students and research workers in environmental sciences, hydrology, agriculture, soil science, and civil engineering.

  3. Soil physical and hydrological properties as affected by long-term addition of various organic amendments

    NASA Astrophysics Data System (ADS)

    Eden, Marie; Völkel, Jörg; Mercier, Vincent; Labat, Christophe; Houot, Sabine

    2014-05-01

    The use of organic residues as soil amendments in agriculture not only reduces the amount of waste needing to be disposed of; it may also lead to improvements in soil properties, including physical and hydrological ones. The present study examines a long-term experiment called "Qualiagro", run jointly by INRA and Veolia Environment in Feucherolles, France (near Paris). It was initiated in 1998 on a loess-derived silt loam (787 g/kg silt, 152 g/kg clay) and includes ten treatments: four types of organic amendments and a control (CNT) each at two levels of mineral nitrogen (N) addition: minimal (Nmin) and optimal (Nopt). The amendments include three types of compost and farmyard manure (FYM), which were applied every other year at a rate of ca. 4 t carbon ha-1. The composts include municipal solid waste compost (MSW), co-compost of green wastes and sewage sludge (GWS), and biowaste compost (BIO). The plots are arranged in a randomized block design and have a size of 450 m²; each treatment is replicated four times (total of 40 plots). Ca. 15 years after the start of the experiment soil organic carbon (OC) had continuously increased in the amended plots, while it remained stable or decreased in the control plots. This compost- or manure-induced increase in OC plays a key role, affecting numerous dependant soil properties like bulk density, porosity and water retention. The water holding capacity (WHC) of a soil is of particular interest to farmers in terms of water supply for plants, but also indicates soil quality and functionality. Addition of OC may affect WHC in different ways: carbon-induced aggregation may increase larger-pore volume and hence WHC at the wet end while increased surface areas may lead to an increased retention of water at the dry end. Consequently it is difficult to predict (e.g. with pedotransfer functions) the impact on the amount of water available for plants (PAW), which was experimentally determined for the soils, along with the entire range

  4. How physical alteration of technic materials affects mobility and phytoavailabilty of metals in urban soils?

    PubMed

    El Khalil, Hicham; Schwartz, Christophe; El Hamiani, Ouafae; Sirguey, Catherine; Kubiniok, Jochen; Boularbah, Ali

    2016-06-01

    One fundamental characteristic distinguishing urban soils from natural soils is the presence of technic materials or artefacts underlining the influence of human activity. These technic materials have different nature (organic or inorganic) and origins. They contribute to the enrichment of the soil solution by metallic trace elements. The present study aims to determine the effect of physical alteration of the technic coarse fraction on the bioavailability of metallic trace elements in urban Technosols. In general, results show that physical alteration increases the metallic trace elements water extractible concentrations of technic materials. The ability of lettuce to accumulate metallic trace elements, even at low concentrations, underlines the capacity of technic materials to contaminate the anthropised soil solution by bioavailable metals. The highest metal levels, accumulated by the various organs of the lettuce (leaves and roots), were measured in plants grown in presence of metallic particles mixtures. This indicates that the majority of metallic trace elements released by this technic constituent is bioavailable and explains the low plant biomass obtained. The abundant part of metallic trace elements released by the other technic constituents (building materials, bones, wood, plastic and fabric-paper) remains less bioavailable. Under anthropised soil conditions, technic materials have a significant effect on the metallic trace elements behavior. They impact the flow of these metallic elements in Technosols, which can increase their bioavailability and, therefore, the contamination of the food chain. PMID:26999750

  5. Distribution of organic carbon in physical fractions of soils as affected by agricultural management

    SciTech Connect

    Sindhu, Jagadamma; Lal, Dr. Rattan

    2010-08-01

    Soil organic carbon (SOC) is distributed heterogeneously among different-sized primary particles and aggregates. Further, the SOC associated with different physical fractions respond differently to managements. Therefore, this study was conducted with the objective to quantify the SOC associated with all the three structural levels of SOC (particulate organic matter, soil separates and aggregate-size fractions) as influenced by long-term change in management. The study also aims at reevaluating the concept that the SOC sink capacity of individual size-fractions is limited. Long-term tillage and crop rotation effects on distribution of SOC among fractions were compared with soil from adjacent undisturbed area under native vegetation for the mixed, mesic, Typic Fragiudalf of Wooster, OH. Forty five years of no-till (NT) management resulted in more SOC accumulation in soil surface (0 7.5 cm) than in chisel tillage and plow tillage (PT) treatments. However, PT at this site resulted in a redistribution of SOC from surface to deeper soil layers. The soils under continuous corn accumulated significantly more SOC than those under corn soybean rotation at 7.5 45 cm depth. Although soil texture was dominated by the silt-sized particles, most of the SOC pool was associated with the clay fraction. Compared to PT, the NT treatment resulted in (i) significantly higher proportion of large macroaggregates (>2,000 m) and (ii) 1.5 2.8 times higher SOC concentrations in all aggregate-size classes. A comparative evaluation using radar graphs indicated that among the physical fractions, the SOC associated with sand and silt fractions quickly changed with a land use conversion from native vegetation to agricultural crops. A key finding of this study is the assessment of SOC sink capacity of individual fractions, which revealed that the clay fraction of agricultural soils continues to accumulate more SOC, albeit at a slower rate, with progressive increase in total SOC concentration

  6. Factors affecting soil cohesion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erodibility is a measure of a soil’s resistance against erosive forces and is affected by both intrinsic (or inherent) soil property and the extrinsic condition at the time erodibility measurement is made. Since soil erodibility is usually calculated from results obtained from erosion experimen...

  7. MILESTONES IN SOIL PHYSICS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This special issue of “Soil Science“ celebrates the enormous accomplishments made during the past century or more in the field of soil science, including some of the key articles published in Soil Science during its 90 years of existence. In this article, we focus on the contributions in soil physic...

  8. Morphology and physical properties of soil material in cryogenic cracks of permafrost-affected meadow-chernozemic soils of the Trans-Baikal Region

    NASA Astrophysics Data System (ADS)

    Tsybenov, Yu. B.; Chimitdorzhieva, G. D.; Chimitdorzhieva, E. O.; Egorova, R. A.; Mil'kheev, E. Yu.; Davydova, T. V.; Korsunova, Ts. D.-Ts.

    2016-08-01

    Meadow-chernozemic soils (Turbic Chernozems Molliglossic) in the western Trans-Baikal Region are dissected by large cryogenic cracks penetrating to the depth of 100-120 cm and filled with humified material. The depth of humus pockets is 50-80 cm, and their width in the upper part is 50-90 cm. The lower boundary of most of the humus pockets lies at the depth of 60-70 cm. The development of cryogenic cracks proceeded due to their penetration into the frozen ground, which is evidenced by their sharply narrowing lower part. The fraction of physical clay (<0.01 mm) constitutes a considerable part of the material filling the cracks, which explains the significant humus content in this material. The contents of humus and adsorbed bases sharply decrease down through the soil profile in the soil mass between the cracks and remain relatively stable in the material filling the cracks. The soil mass in humus pockets is less compact that that in the background soil mass at the same depth, which is explained by the higher humus content in the pockets. Humified soil material in the pockets is also characterized by a higher porosity and, hence, higher water permeability than the surrounding soil mass.

  9. Soil physics: a Moroccan perspective

    NASA Astrophysics Data System (ADS)

    Lahlou, Sabah; Mrabet, Rachid; Ouadia, Mohamed

    2004-06-01

    Research on environmental pollution and degradation of soil and water resources is now of highest priority worldwide. To address these problems, soil physics should be conceived as a central core to this research. This paper objectives are to: (1) address the role and importance of soil physics, (2) demonstrate progress in this discipline, and (3) present various uses of soil physics in research, environment and industry. The study of dynamic processes at and within the soil vadose zone (flow, dispersion, transport, sedimentation, etc.), and ephemeral phenomena (deformation, compaction, etc.), form an area of particular interest in soil physics. Soil physics has changed considerably over time. These changes are due to needed precision in data collection for accurate interpretation of space and time variation of soil properties. Soil physics interacts with other disciplines and sciences such as hydro(geo)logy, agronomy, environment, micro-meteorology, pedology, mathematics, physics, water sciences, etc. These interactions prompted the emergence of advanced theories and comprehensive mechanisms of most natural processes, development of new mathematical tools (modeling and computer simulation, fractals, geostatistics, transformations), creation of high precision instrumentation (computer assisted, less time constraint, increased number of measured parameters) and the scale sharpening of physical measurements which ranges from micro to watershed. The environment industry has contributed to an enlargement of many facets of soil physics. In other words, research demand in soil physics has increased considerably to satisfy specific and environmental problems (contamination of water resources, global warming, etc.). Soil physics research is still at an embryonic stage in Morocco. Consequently, soil physicists can take advantage of developments occurring overseas, and need to build up a database of soil static and dynamic properties and to revise developed models to meet

  10. SOIL ORGANIC AMENDMENT AS AFFECTING HERBICIDE FATE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The addition of organic amendments or organic wastes to soils have been shown to affect the fate of soil applied herbicides, although it is an issue very seldom considered when making the decision of fertilizing soil or disposing organic wastes. The addition of organic wastes to soils is viewed as v...

  11. Soil resources area affects herbivore health.

    PubMed

    Garner, James A; Ahmad, H Anwar; Dacus, Chad M

    2011-06-01

    Soil productivity effects nutritive quality of food plants, growth of humans and animals, and reproductive health of domestic animals. Game-range surveys sometimes poorly explained variations in wildlife populations, but classification of survey data by major soil types improved effectiveness. Our study evaluates possible health effects of lower condition and reproductive rates for wild populations of Odocoileus virginianus Zimmerman (white-tailed deer) in some physiographic regions of Mississippi. We analyzed condition and reproductive data for 2400 female deer from the Mississippi Department of Wildlife, Fisheries, and Parks herd health evaluations from 1991-1998. We evaluated age, body mass (Mass), kidney mass, kidney fat mass, number of corpora lutea (CL) and fetuses, as well as fetal ages. Region affected kidney fat index (KFI), which is a body condition index, and numbers of fetuses of adults (P≤0.001). Region affected numbers of CL of adults (P≤0.002). Mass and conception date (CD) were affected (P≤0.001) by region which interacted significantly with age for Mass (P≤0.001) and CD (P<0.04). Soil region appears to be a major factor influencing physical characteristics of female deer.

  12. Soil cultivation in vineyards alters interactions between soil biota and soil physical and hydrological properties

    NASA Astrophysics Data System (ADS)

    Zaller, Johann G.; Buchholz, Jacob; Querner, Pascal; Winter, Silvia; Kratschmer, Sophie; Pachinger, Bärbel; Strauss, Peter; Bauer, Thomas; Stiper, Katrin; Potthoff, Martin; Guernion, Muriel; Scimia, Jennifer; Cluzeau, Daniel

    2016-04-01

    Several ecosystem services provided by viticultural landscapes result from interactions between soil organisms and soil parameters. However, to what extent different soil cultivation intensities in vineyards compromise soil organisms and their interactions between soil physical and hydrological properties is not well understood. In this study we examined (i) to what extent different soil management intensities affect the activity and diversity of soil biota (earthworms, Collembola, litter decomposition), and (ii) how soil physical and hydrological properties influence these interactions, or vice versa. Investigating 16 vineyards in Austria, earthworms were assessed by hand sorting, Collembola via pitfall trapping and soil coring, litter decomposition by using the tea bag method. Additionally, soil physical (water infiltration, aggregate stability, porosity, bulk density, soil texture) and chemical (pH, soil carbon content, cation exchange capacity, potassium, phosphorus) parameters were assessed. Results showed complex ecological interactions between soil biota and various soil characteristics altered by management intensity. These investigations are part of the transdisciplinary BiodivERsA project VineDivers and will ultimately lead into management recommendations for various stakeholders.

  13. Bringing life to soil physical processes

    NASA Astrophysics Data System (ADS)

    Hallett, P. D.

    2013-12-01

    When Oklahoma's native prairie grass roots were replaced by corn, the greatest environmental (and social) disaster ever to hit America ensued. The soils lost structure, physical binding by roots was annihilated and when drought came the Great Dust Bowl commenced. This form of environmental disaster has repeated over history and although not always apparent, similar processes drive the degradation of seemingly productive farmland and forests. But just as negative impacts on biology are deleterious to soil physical properties, positive impacts could reverse these trends. In finding solutions to soil sustainability and food security, we should be able to exploit biological processes to improve soil physical properties. This talk will focus on a quantitative understanding of how biology changes soil physical behaviour. Like the Great Dust Bowl, it starts with reinforcement mechanisms by plant roots. We found that binding of soil by cereal (barley) roots within 5 weeks of planting can more than double soil shear strength, with greater plant density causing greater reinforcement. With time, however, the relative impact of root reinforcement diminishes due to root turnover and aging of the seedbed. From mechanical tests of individual roots, reasonable predictions of reinforcement by tree roots are possible with fibre bundle models. With herbaceous plants like cereals, however, the same parameters (root strength, stiffness, size and distribution) result in a poor prediction. We found that root type, root age and abiotic factors such as compaction and waterlogging affect mechanical behaviour, further complicating the understanding and prediction of root reinforcement. For soil physical stability, the interface between root and soil is an extremely important zone in terms of resistance of roots to pull-out and rhizosphere formation. Compounds analogous to root exudates have been found with rheological tests to initially decrease the shear stress where wet soils flow, but

  14. Effectiveness of compost use in salt-affected soil.

    PubMed

    Lakhdar, Abdelbasset; Rabhi, Mokded; Ghnaya, Tahar; Montemurro, Francesco; Jedidi, Naceur; Abdelly, Chedly

    2009-11-15

    Soil degradation and salinization are two of the utmost threat affecting agricultural areas, derived from the increasing use of low quality water and inappropriate cultural practices. The problem of low productivity of saline soils may be ascribed not only to their salt toxicity or damage caused by excess amounts of soluble salts but also arising from the lack of organic matter and available mineral nutrients especially N, P, and K. Concerns about salinization risk and environmental quality and productivity of agro-ecosystems have emphasized the need to develop management practices that maintain soil resources. Composted municipal solid waste (MSW) was commonly used to enhance soil productivity in the agricultural lands and rebuild fertility. However, their application could be also a promising alternative to alleviate the adverse effects caused by soil salinization. MSW compost, with high organic matter content and low concentrations of inorganic and organic pollutants allow an improvement of physical, chemical and biochemical characteristics and constitute low cost soil recovery.

  15. Irrigation Practice Affects Soil Phosphorus Chemistry

    NASA Astrophysics Data System (ADS)

    Ippolito, J.; Bjorneberg, D.

    2011-12-01

    It is expected, given the same water source applied to the same soil, that changes in soil chemistry would be subtle when comparing furrow and sprinkler irrigation practices. From four paired fields, we collected soil (after similar crops were harvested in September) from the 0-5 cm depth. Samples were analyzed for changes in soil P chemistry due to sprinkler or furrow irrigation using: 1) the Olsen soil test P extraction; 2) the alkaline phosphatase enzyme assay; 3) a sequential extraction technique which fractionated inorganic and organic soil P pools; and 4) a measure of the amorphous soil Al and Fe mineral phases. Olsen-extractable soil P was lower under sprinkler irrigation; however, this was not due to a reduction in microbial phosphatase activity. Soils under sprinkler irrigation contained lower inorganic P concentrations in soluble/Al-bound/Fe-bound and in the occluded phases, lesser amounts of organic P present in the moderately labile and non-labile fractions, and contained lower amorphous Fe concentrations. These results indicate that the method of water application affects soil chemistry and nutrient cycling.

  16. Urban soil moisture affecting local air temperature

    NASA Astrophysics Data System (ADS)

    Wiesner, Sarah; Ament, Felix; Eschenbach, Annette

    2015-04-01

    The climate in cities differs from that in the surrounding area due to modified surfaces. Parameters like surface sealing ratio, vegetation and building material are known to be relevant for the intensity of the microclimatic modification. But what about the influence of soil moisture content and availability at the soil surface? Soil acts as a storage and transmitter for water. In doing so, it may have a differently pronounced impact on local climate through distinct evapotranspiration. The actual evapotranspiration rates are determined by water availability at the surface - dependant from soil physical properties and water refill from above or below - and the presence of evapotranspirators, i.e. plants that transpire water from deeper soil areas. The issue of soil hydrological characteristics and water replenishment limiting the local cooling effect of soils is the topic of this contribution. A long-term record (2010-2014) of ongoing measurements in the city of Hamburg, Germany, is evaluated. The data is provided by atmospheric and pedologic measurement sites of the HUSCO network (Hamburg Urban Soil Climate Observatory). They are located within six urban districts: the city core, four suburban districts, featuring different mean groundwater table depths (> 5 m below surface / < 2.5 m below surface), and one industrial area. The temporal evolutions of water content and soil water tension of the suburban soil profiles are found to be very diverse, related to soil substrate, organic matter content and groundwater table depth. Most distinct variations are observed within the upper horizons of suburban soil. Soil hydrological processes show characteristic patterns at each measurement site, including topsoil water content (Θ) variability. Yet, differences between distinct urban land use types are visible only according to differences in the prevailing soil texture. Impacts of different vegetation types on the soil water dynamics can be identified, while the influence

  17. Switchgrass cultivars differentially affect soil carbon stabilization

    NASA Astrophysics Data System (ADS)

    Adkins, J.; Jastrow, J. D.; Wullschleger, S. D.; De Graaff, M.

    2012-12-01

    Soil organic carbon (SOC) storage depends on the amount and quality of plant-derived carbon (C) inputs to soil, which is largely regulated by plant roots via the processes of root turnover and exudation. While we know that plant roots mediate SOC stabilization, we do not fully understand which root characteristics specifically promote soil C storage. With this study we asked whether roots with coarse root systems versus roots with finely branched root systems differentially affect soil C stabilization. In order to answer this question, we collected soil cores (4.8 cm diameter, to a depth of 30 cm) from directly over the crown of six switchgrass (Panicum virgatum L.) cultivars that differed in root architecture. Specifically, three cultivars had fibrous root systems (i.e. high specific root length) and three had coarse root systems (i.e. low specific root length). The cultivars (C4 species) were grown in a C3 grassland for four years, allowing us to use isotopic fractionation techniques to assess differences in soil C input and stabilization. The cores were divided into depth increments of 10 cm and the soils were sieved (2mm). Soil from each depth increment was dispersed by shaking for 16 hours in a NaHMP solution to isolate coarse particulate organic matter (C-POM), fine particulate organic matter (F-POM), silt, and clay-sized fractions. Samples of soil fractions across all depths were analyzed for C and N contents as well as δ13C signature. We found that the relative abundance of the different soil fractions and associated δ13C signatures differed significantly among cultivars. These results indicate that switchgrass cultivars can differentially impact soil carbon inputs and stabilization. We hypothesize that these differences may be driven by variability in root architectures.

  18. Evaporative losses from soils covered by physical and different types of biological soil crusts

    USGS Publications Warehouse

    Chamizo, S.; Cantón, Y.; Domingo, F.; Belnap, J.

    2013-01-01

    Evaporation of soil moisture is one of the most important processes affecting water availability in semiarid ecosystems. Biological soil crusts, which are widely distributed ground cover in these ecosystems, play a recognized role on water processes. Where they roughen surfaces, water residence time and thus infiltration can be greatly enhanced, whereas their ability to clog soil pores or cap the soil surface when wetted can greatly decrease infiltration rate, thus affecting evaporative losses. In this work, we compared evaporation in soils covered by physical crusts, biological crusts in different developmental stages and in the soils underlying the different biological crust types. Our results show that during the time of the highest evaporation (Day 1), there was no difference among any of the crust types or the soils underlying them. On Day 2, when soil moisture was moderately low (11%), evaporation was slightly higher in well-developed biological soil crusts than in physical or poorly developed biological soil crusts. However, crust removal did not cause significant changes in evaporation compared with the respective soil crust type. These results suggest that the small differences we observed in evaporation among crust types could be caused by differences in the properties of the soil underneath the biological crusts. At low soil moisture (<6%), there was no difference in evaporation among crust types or the underlying soils. Water loss for the complete evaporative cycle (from saturation to dry soil) was similar in both crusted and scraped soils. Therefore, we conclude that for the specific crust and soil types tested, the presence or the type of biological soil crust did not greatly modify evaporation with respect to physical crusts or scraped soils.

  19. Can soil drying affect the sorption of pesticides in soil?

    NASA Astrophysics Data System (ADS)

    Chaplain, Véronique; Saint, Philippe; Mamy, Laure; Barriuso, Enrique

    2010-05-01

    The sorption of pesticides in soils mainly controls their further dispersion into the environment. Sorption is usually related to the physico-chemical properties of molecules but it also depends on the hydrophobic features of soils. However, the hydrophobicity of soils changes with wetting and drying cycles and this can be enhanced with climate change. The objective of this study was to measure by using controlled artificial soils the influence of the hydrophobic characteristic of soils on the retention of a model pesticide. Artificial soils consisted in silica particles covered by synthetic cationic polymers. Polymers were characterized by the molar ratio of monomers bearing an alkyl chain of 12C. Two polymers were used, with 20 and 80 % ratios, and the same degree of polymerization. In addition, porous and non-porous particles were used to study the accessibility notion and to measure the influence of diffusion on pesticide sorption kinetics. Lindane was chosen as model molecule because its adsorption is supposed mainly due to hydrophobic interactions. Results on polymers adsorption on silica showed that it was governed by electrostatic interactions, without any dependency of the hydrophobic ratio. Polymers covered the entire surface of porous particles. Kinetic measurements showed that lindane sorption was slowed in porous particles due to the molecular diffusion inside the microporosity. The adsorption of lindane on covered silica particles corresponded to a partition mechanism described by linear isotherms. The slope was determined by the hydrophobic ratio of polymers: the sorption of lindane was highest in the most hydrophobic artificial soil. As a result, modification in soil hydrophobicity, that can happen with climate change, might affect the sorption and the fate of pesticides. However additional experiments are needed to confirm these first results. Such artificial soils should be used as reference materials to compare the reactivity of pesticides, to

  20. Nitrogen starvation affects bacterial adhesion to soil

    PubMed Central

    Borges, Maria Tereza; Nascimento, Antônio Galvão; Rocha, Ulisses Nunes; Tótola, Marcos Rogério

    2008-01-01

    One of the main factors limiting the bioremediation of subsoil environments based on bioaugmentation is the transport of selected microorganisms to the contaminated zones. The characterization of the physiological responses of the inoculated microorganisms to starvation, especially the evaluation of characteristics that affect the adhesion of the cells to soil particles, is fundamental to anticipate the success or failure of bioaugmentation. The objective of this study was to investigate the effect of nitrogen starvation on cell surface hydrophobicity and cell adhesion to soil particles by bacterial strains previously characterized as able to use benzene, toluene or xilenes as carbon and energy sources. The strains LBBMA 18-T (non-identified), Arthrobacter aurescens LBBMA 98, Arthrobacter oxydans LBBMA 201, and Klebsiella sp. LBBMA 204–1 were used in the experiments. Cultivation of the cells in nitrogen-deficient medium caused a significant reduction of the adhesion to soil particles by all the four strains. Nitrogen starvation also reduced significantly the strength of cell adhesion to the soil particles, except for Klebsiella sp. LBBMA 204–1. Two of the four strains showed significant reduction in cell surface hydrophobicity. It is inferred that the efficiency of bacterial transport through soils might be potentially increased by nitrogen starvation. PMID:24031246

  1. Tillage system affects microbiological properties of soil

    NASA Astrophysics Data System (ADS)

    Delgado, A.; de Santiago, A.; Avilés, M.; Perea, F.

    2012-04-01

    Soil tillage significantly affects organic carbon accumulation, microbial biomass, and subsequently enzymatic activity in surface soil. Microbial activity in soil is a crucial parameter contributing to soil functioning, and thus a basic quality factor for soil. Since enzymes remain soil after excretion by living or disintegrating cells, shifts in their activities reflect long-term fluctuations in microbial biomass. In order to study the effects of no-till on biochemical and microbiological properties in comparison to conventional tillage in a representative soil from South Spain, an experiment was conducted since 1982 on the experimental farm of the Institute of Agriculture and Fisheries Research of Andalusia (IFAPA) in Carmona, SW Spain (37o24'07''N, 5o35'10''W). The soil at the experimental site was a very fine, montomorillonitic, thermic Chromic Haploxerert (Soil Survey Staff, 2010). A randomized complete block design involving three replications and the following two tillage treatments was performed: (i) Conventional tillage, which involved mouldboard plowing to a depth of 50 cm in the summer (once every three years), followed by field cultivation to a depth of 15 cm before sowing; crop residues being burnt, (ii) No tillage, which involved controlling weeds before sowing by spraying glyphosate and sowing directly into the crop residue from the previous year by using a planter with double-disk openers. For all tillage treatments, the crop rotation (annual crops) consisted of winter wheat, sunflower, and legumes (pea, chickpea, or faba bean, depending on the year), which were grown under rainfed conditions. Enzymatic activities (ß-glucosidase, dehydrogenase, aryl-sulphatase, acid phosphatase, and urease), soil microbial biomass by total viable cells number by acridine orange direct count, the density of cultivable groups of bacteria and fungi by dilution plating on semi-selective media, the physiological profiles of the microbial communities by BiologR, and the

  2. Effectiveness of compost use in salt-affected soil.

    PubMed

    Lakhdar, Abdelbasset; Rabhi, Mokded; Ghnaya, Tahar; Montemurro, Francesco; Jedidi, Naceur; Abdelly, Chedly

    2009-11-15

    Soil degradation and salinization are two of the utmost threat affecting agricultural areas, derived from the increasing use of low quality water and inappropriate cultural practices. The problem of low productivity of saline soils may be ascribed not only to their salt toxicity or damage caused by excess amounts of soluble salts but also arising from the lack of organic matter and available mineral nutrients especially N, P, and K. Concerns about salinization risk and environmental quality and productivity of agro-ecosystems have emphasized the need to develop management practices that maintain soil resources. Composted municipal solid waste (MSW) was commonly used to enhance soil productivity in the agricultural lands and rebuild fertility. However, their application could be also a promising alternative to alleviate the adverse effects caused by soil salinization. MSW compost, with high organic matter content and low concentrations of inorganic and organic pollutants allow an improvement of physical, chemical and biochemical characteristics and constitute low cost soil recovery. PMID:19576686

  3. Influence of surface and subsurface tillage on soil physical properties and soil/plant relationships of planted loblolly pine

    SciTech Connect

    D. L. Kelting; H. L. Allen

    2000-05-01

    Soil tillage can improve tree survival and growth by reducing competing vegetation, increasing nutrient availability, improving planting quality, and improving soil physical properties. The authors conducted a tillage study with competition control and nutrient amendments to isolate the physical effects of tillage on tree growth. The objectives of this study were to understand: (1) how tillage affects soil physical properties; (2) the relationships between these properties and root growth; (3) linkages between root growth response and aboveground growth; and (4) tillage effects on aboveground growth. Four replicates of a 2x2 factorial combination of surface (disking) and subsurface (subsoiling) were installed on a well-drained, clay-textured subsoil, soil located on the Piedmont of North Carolina. Disking improved soil physical properties (reduced bulk density and increased aeration porosity) in the surface 20-cm of soil. Subsoiling improved soil physical properties at all depths in the planting row, with improvements still noted at 60-cm from the planting row in the surface 10-cm of soil. Rooting patterns followed the changes in soil physical properties. Despite improvements in soil physical properties and changes in rooting patterns, aboveground tree growth was not affected by tillage. The results of this study point to the need for better diagnostics for identifying sites were tillage is appropriate in situations where fertilization and vegetation control are planned. Potential factors to consider are presence and abundance of old root channels, soil shrink/swell capacity, soil structure, presence and depth to root restricting layers, and historical precipitation records.

  4. Physical properties of soils in Rostov agglomeration

    NASA Astrophysics Data System (ADS)

    Gorbov, S. N.; Bezuglova, O. S.; Abrosimov, K. N.; Skvortsova, E. B.; Tagiverdiev, S. S.; Morozov, I. V.

    2016-08-01

    Physical properties of natural and anthropogenically transformed soils of Rostov agglomeration were examined. The data obtained by conventional methods and new approaches to the study of soil physical properties (in particular, tomographic study of soil monoliths) were used for comparing the soils of different functional zones of the urban area. For urban territories in the steppe zone, a comparison of humus-accumulative horizons (A, Asod, Ap, and buried [A] horizons) made it possible to trace tendencies of changes in surface soils under different anthropogenic impacts and in the buried and sealed soils. The microtomographic study demonstrated differences in the bulk density and aggregation of urban soils from different functional zones. The A horizon in the forest-park zone is characterized by good aggregation and high porosity, whereas buried humus-accumulative horizons of anthropogenically transformed soils are characterized by poor aggregation and low porosity. The traditional parameters of soil structure and texture also proved to be informative for the identification of urban pedogenesis.

  5. Effect of biosolid waste compost on soil respiration in salt-affected soils

    NASA Astrophysics Data System (ADS)

    Raya, Silvia; Gómez, Ignacio; García, Fuensanta; Navarro, José; Jordán, Manuel Miguel; Belén Almendro, María; Martín Soriano, José

    2013-04-01

    respiration, compost, electrical conductivity, salinization, Bac-Trac References: Abdelbasset Lakhdar, Mokded Rabhi, Tahar Ghnaya, Francesco Montemurro, Naceur Jedidi , Chedly Abdelly. Effectiveness of compost use in salt-affected soil. Journal of Hazardous Materials 171 (2009) pp 29-37. M. Tejada, C. Garcia, J.L. Gonzalez , M.T. Hernandez . Use of organic amendment as a strategy for saline soil remediation:Influence on the physical, chemical and biological properties of soil. Soil Biology & Biochemistry 38 (2006) pp 1413-1421. I. Gomez; J.M. Disla Soriano; J. Navarro-Pedreño; F. García-Orenes; M.B. Almendro-Candel; M.M. Jordan. Quantification of soil respiration in different saline soil of Alicante (Spain). EGU General Assembly (2012). Viena. Ed. Geophysycal Research Abstracts. Vol 14 EGU2012-2399,(2012). (Acknowledgements: This work was supported by the Spanish MICINN. Project Ref.: CGL2009-11194)

  6. Plant diversity and root traits benefit physical properties key to soil function in grasslands.

    PubMed

    Gould, Iain J; Quinton, John N; Weigelt, Alexandra; De Deyn, Gerlinde B; Bardgett, Richard D

    2016-09-01

    Plant diversity loss impairs ecosystem functioning, including important effects on soil. Most studies that have explored plant diversity effects belowground, however, have largely focused on biological processes. As such, our understanding of how plant diversity impacts the soil physical environment remains limited, despite the fundamental role soil physical structure plays in ensuring soil function and ecosystem service provision. Here, in both a glasshouse and a long-term field study, we show that high plant diversity in grassland systems increases soil aggregate stability, a vital structural property of soil, and that root traits play a major role in determining diversity effects. We also reveal that the presence of particular plant species within mixed communities affects an even wider range of soil physical processes, including hydrology and soil strength regimes. Our results indicate that alongside well-documented effects on ecosystem functioning, plant diversity and root traits also benefit essential soil physical properties.

  7. Plant diversity and root traits benefit physical properties key to soil function in grasslands.

    PubMed

    Gould, Iain J; Quinton, John N; Weigelt, Alexandra; De Deyn, Gerlinde B; Bardgett, Richard D

    2016-09-01

    Plant diversity loss impairs ecosystem functioning, including important effects on soil. Most studies that have explored plant diversity effects belowground, however, have largely focused on biological processes. As such, our understanding of how plant diversity impacts the soil physical environment remains limited, despite the fundamental role soil physical structure plays in ensuring soil function and ecosystem service provision. Here, in both a glasshouse and a long-term field study, we show that high plant diversity in grassland systems increases soil aggregate stability, a vital structural property of soil, and that root traits play a major role in determining diversity effects. We also reveal that the presence of particular plant species within mixed communities affects an even wider range of soil physical processes, including hydrology and soil strength regimes. Our results indicate that alongside well-documented effects on ecosystem functioning, plant diversity and root traits also benefit essential soil physical properties. PMID:27459206

  8. How does soil management affect carbon losses from soils?

    NASA Astrophysics Data System (ADS)

    Klik, A.; Trümper, G.

    2009-04-01

    Agricultural soils are a major source as well as a sink of organic carbon (OC). Amount and distribution of OC within the soil and within the landscape are driven by land management but also by erosion and deposition processes. At the other hand the type of soil management influences mineralization and atmospheric carbon dioxide losses by soil respiration. In a long-term field experiment the impacts of soil tillage systems on soil erosion processes were investigated. Following treatments were compared: 1) conventional tillage (CT), 2) conservation tillage with cover crop during the winter period (CS), and 3) no-till with cover crop during winter period (NT). The studies were carried out at three sites in the Eastern part of Austria with annual precipitation amounts from 650 to 900 mm. The soil texture ranged from silt loam to loam. Since 2007 soil CO2 emissions are measured with a portable soil respiration system in intervals of about one week, but also in relation to management events. Concurrent soil temperature and soil water content are measured and soil samples are taken for chemical and microbiological analyses. An overall 14-yr. average soil loss between 1.0 t.ha-1.yr-1 for NT and 6.1 t.ha-1.yr-1 for CT resulted in on-site OC losses from 18 to 79 kg ha-1.yr-1. The measurements of the carbon dioxide emissions from the different treatments indicate a high spatial variation even within one plot. Referred to CT plots calculated carbon losses amounted to 65-94% for NT plots while for the different RT plots they ranged between 84 and 128%. Nevertheless site specific considerations have to be taken into account. Preliminary results show that the adaptation of reduced or no-till management strategies has enormous potential in reducing organic carbon losses from agricultural used soils.

  9. Can transgenic maize affect soil microbial communities?

    PubMed

    Mulder, Christian; Wouterse, Marja; Raubuch, Markus; Roelofs, Willem; Rutgers, Michiel

    2006-09-29

    The aim of the experiment was to determine if temporal variations of belowground activity reflect the influence of the Cry1Ab protein from transgenic maize on soil bacteria and, hence, on a regulatory change of the microbial community (ability to metabolize sources belonging to different chemical guilds) and/or a change in numerical abundance of their cells. Litter placement is known for its strong influence on the soil decomposer communities. The effects of the addition of crop residues on respiration and catabolic activities of the bacterial community were examined in microcosm experiments. Four cultivars of Zea mays L. of two different isolines (each one including the conventional crop and its Bacillus thuringiensis cultivar) and one control of bulk soil were included in the experimental design. The growth models suggest a dichotomy between soils amended with either conventional or transgenic maize residues. The Cry1Ab protein appeared to influence the composition of the microbial community. The highly enhanced soil respiration observed during the first 72 h after the addition of Bt-maize residues can be interpreted as being related to the presence of the transgenic crop residues. This result was confirmed by agar plate counting, as the averages of the colony-forming units of soils in conventional treatments were about one-third of those treated with transgenic straw. Furthermore, the addition of Bt-maize appeared to induce increased microbial consumption of carbohydrates in BIOLOG EcoPlates. Three weeks after the addition of maize residues to the soils, no differences between the consumption rate of specific chemical guilds by bacteria in soils amended with transgenic maize and bacteria in soils amended with conventional maize were detectable. Reaped crop residues, comparable to post-harvest maize straw (a common practice in current agriculture), rapidly influence the soil bacterial cells at a functional level. Overall, these data support the existence of short

  10. Can surfactants affect management of non-water repellent soils?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surfactants affect the water relations of water repellent soils but may or may not affect those of wettable soils. We studied the effects of three surfactants, Aquatrols IrrigAid Gold®, an ethylene oxide/propylene oxide block copolymer, and an alkyl polyglycoside, along with untreated tap water as ...

  11. Investigation of factors affecting gaseous mercury concentrations in soils.

    PubMed

    Moore, Christopher W; Castro, Mark S

    2012-03-01

    The purpose of this study was to determine the effects of soil temperature, soil moisture, redox potential (Eh) and soil organic matter (SOM) on the total gaseous mercury (TGM) concentrations in background soils. Our measurements were made in a grass field and deciduous forest at the Piney Reservoir Ambient Air Monitoring Station (PRAAMS) in Garrett County, Maryland. Three plots in each area were sampled every third week from July 2009 to June 2010 at the Oe-A soil horizon interface, the A-E soil horizon interface, and 5 and 10 cm into the E soil horizon. The mean soil TGM concentration for all depths in the forest (2.3 ± 2.2 ng m(-3)) was significantly higher than the mean soil TGM concentration in the grass field (1.5 ± 1.9 ng m(-3)). Soil TGM at all depths was most strongly and consistently correlated to soil temperature. The soil TGM concentrations were highest and most variable at the forest Oe-A soil horizon interface (4.1 ± 2.0 ng m(-3)), ranging from 1.5 to 8.4 ng m(-3). This soil horizon interface had 11 to 26% more SOM and the soil Eh was 100 to 400 mV lower than the other soil depths. Our results suggest that soil temperature, soil Eh and SOM are significant factors affecting TGM concentrations in forest soils. Future studies of TGM dynamics in background soils may benefit from closely monitoring the organic soil horizon.

  12. Modelling fungal growth in heterogeneous soil: analyses of the effect of soil physical structure on fungal community dynamics

    NASA Astrophysics Data System (ADS)

    Falconer, R.; Radoslow, P.; Grinev, D.; Otten, W.

    2009-04-01

    Fungi play a pivital role in soil ecosystems contributing to plant productivity. The underlying soil physical and biological processes responsible for community dynamics are interrelated and, at present, poorly understood. If these complex processes can be understood then this knowledge can be managed with an aim to providing more sustainable agriculture. Our understanding of microbial dynamics in soil has long been hampered by a lack of a theoretical framework and difficulties in observation and quantification. We will demonstrate how the spatial and temporal dynamics of fungi in soil can be understood by linking mathematical modelling with novel techniques that visualise the complex structure of the soil. The combination of these techniques and mathematical models opens up new possibilities to understand how the physical structure of soil affects fungal colony dynamics and also how fungal dynamics affect soil structure. We will quantify, using X ray tomography, soil structure for a range of artificially prepared microcosms. We characterise the soil structures using soil metrics such as porosity, fractal dimension, and the connectivity of the pore volume. Furthermore we will use the individual based fungal colony growth model of Falconer et al. 2005, which is based on the physiological processes of fungi, to assess the effect of soil structure on microbial dynamics by qualifying biomass abundances and distributions. We demonstrate how soil structure can critically affect fungal species interactions with consequences for biological control and fungal biodiversity.

  13. Microbial Community Composition Affects Soil Fungistasis†

    PubMed Central

    de Boer, Wietse; Verheggen, Patrick; Klein Gunnewiek, Paulien J. A.; Kowalchuk, George A.; van Veen, Johannes A.

    2003-01-01

    Most soils inhibit fungal germination and growth to a certain extent, a phenomenon known as soil fungistasis. Previous observations have implicated microorganisms as the causal agents of fungistasis, with their action mediated either by available carbon limitation (nutrient deprivation hypothesis) or production of antifungal compounds (antibiosis hypothesis). To obtain evidence for either of these hypotheses, we measured soil respiration and microbial numbers (as indicators of nutrient stress) and bacterial community composition (as an indicator of potential differences in the composition of antifungal components) during the development of fungistasis. This was done for two fungistatic dune soils in which fungistasis was initially fully or partly relieved by partial sterilization treatment or nutrient addition. Fungistasis development was measured as restriction of the ability of the fungi Chaetomium globosum, Fusarium culmorum, Fusarium oxysporum, and Trichoderma harzianum to colonize soils. Fungistasis did not always reappear after soil treatments despite intense competition for carbon, suggesting that microbial community composition is important in the development of fungistasis. Both microbial community analysis and in vitro antagonism tests indicated that the presence of pseudomonads might be essential for the development of fungistasis. Overall, the results lend support to the antibiosis hypothesis. PMID:12571002

  14. Soil invertebrate fauna affect N2 O emissions from soil.

    PubMed

    Kuiper, Imke; de Deyn, Gerlinde B; Thakur, Madhav P; van Groenigen, Jan Willem

    2013-09-01

    Nitrous oxide (N2 O) emissions from soils contribute significantly to global warming. Mitigation of N2 O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses - a possible role for soil fauna has until now largely been overlooked. We studied the effect of six groups of soil invertebrate fauna and tested the hypothesis that all of them increase N2 O emissions, although to different extents. We conducted three microcosm experiments with sandy soil and hay residue. Faunal groups included in our experiments were as follows: fungal-feeding nematodes, mites, springtails, potworms, earthworms and isopods. In experiment I, involving all six faunal groups, N2 O emissions declined with earthworms and potworms from 78.4 (control) to 37.0 (earthworms) or 53.5 (potworms) mg N2 O-N m(-2) . In experiment II, with a higher soil-to-hay ratio and mites, springtails and potworms as faunal treatments, N2 O emissions increased with potworms from 51.9 (control) to 123.5 mg N2 O-N m(-2) . Experiment III studied the effect of potworm density; we found that higher densities of potworms accelerated the peak of the N2 O emissions by 5 days (P < 0.001), but the cumulative N2 O emissions remained unaffected. We propose that increased soil aeration by the soil fauna reduced N2 O emissions in experiment I, whereas in experiment II N2 O emissions were driven by increased nitrogen and carbon availability. In experiment III, higher densities of potworms accelerated nitrogen and carbon availability and N2 O emissions, but did not increase them. Overall, our data show that soil fauna can suppress, increase, delay or accelerate N2 O emissions from soil and should therefore be an integral part of future N2 O studies. PMID:23625707

  15. Surface-applied biosolids enhance soil organic carbon and nitrogen stocks but have contrasting effects on soil physical quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beneficial reuse of biosolids through land application can increase soil organic carbon (SOC) storage while also improving soil physical properties that affect fertility. The effects of continuous biosolids applications in the mid- to long-term, however, are likely to depend on application rate, me...

  16. Soil warming affects soil organic matter chemistry of all density fractions of a mountain forest soil

    NASA Astrophysics Data System (ADS)

    Schnecker, Jörg; Wanek, Wolfgang; Borken, Werner; Schindlbacher, Andreas

    2016-04-01

    Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and increase thereby the soil CO2 efflux. Elevated microbial activity might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. We here investigated the chemical and isotopic composition of bulk soil and three different density fractions of forest soils from a long term warming experiment in the Austrian Alps. At the time of sampling the soils in this experiment had been warmed during the snow-free period for 8 consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO2 release from the soil continued to be elevated by the warming treatment. Our results which included organic C content, total N content, δ13C, δ 14C, δ 15N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. The differences in the three individual fractions (free particulate organic matter, occluded particulate organic matter and mineral associated organic matter) were mostly small and the direction of warming induced change was variable with fraction and sampling depth. We did however find statistically significant effects of warming in all density fractions from 0-10 cm depth, 10-20 cm depth or both. Our results also including significant changes in the supposedly more stable mineral associated organic matter fraction where δ 13C values decreased at both sampling depths and the relative proportion of N-bearing compounds decreased at a sampling depth of 10-20 cm. All the observed changes can be attributed to an interplay of enhanced microbial decomposition of SOM and increased root litter input. This study suggests that soil warming destabilizes all density fractions of

  17. Soil water repellency affects production and transport of CO2 and CH4 in soil

    NASA Astrophysics Data System (ADS)

    Urbanek, Emilia; Qassem, Khalid

    2016-04-01

    Soil moisture is known to be vital in controlling both the production and transport of C gases in soil. Water availability regulates the decomposition rates of soil organic matter by the microorganisms, while the proportion of water/air filled pores controls the transport of gases within the soil and at the soil-atmosphere interface. Many experimental studies and process models looking at soil C gas fluxes assume that soil water is uniformly distributed and soil is easily wettable. Most soils, however, exhibit some degree of soil water repellency (i.e. hydrophobicity) and do not wet spontaneously when dry or moderately moist. They have restricted infiltration and conductivity of water, which also results in extremely heterogeneous soil water distribution. This is a world-wide occurring phenomenon which is particularly common under permanent vegetation e.g. forest, grass and shrub vegetation. This study investigates the effect of soil water repellency on microbial respiration, CO2 transport within the soil and C gas fluxes between the soil and the atmosphere. The results from the field monitoring and laboratory experiments show that soil water repellency results in non-uniform water distribution in the soil which affects the CO2 and CH4 gas fluxes. The main conclusion from the study is that water repellency not only affects the water relations in the soil, but has also a great impact on greenhouse gas production and transport and therefore should be included as an important parameter during the sites monitoring and modelling of gas fluxes.

  18. Fractal Scaling of Particle Size Distribution and Relationships with Topsoil Properties Affected by Biological Soil Crusts

    PubMed Central

    Gao, Guang-Lei; Ding, Guo-Dong; Wu, Bin; Zhang, Yu-Qing; Qin, Shu-Gao; Zhao, Yuan-Yuan; Bao, Yan-Feng; Liu, Yun-Dong; Wan, Li; Deng, Ji-Feng

    2014-01-01

    Background Biological soil crusts are common components of desert ecosystem; they cover ground surface and interact with topsoil that contribute to desertification control and degraded land restoration in arid and semiarid regions. Methodology/Principal Findings To distinguish the changes in topsoil affected by biological soil crusts, we compared topsoil properties across three types of successional biological soil crusts (algae, lichens, and mosses crust), as well as the referenced sandland in the Mu Us Desert, Northern China. Relationships between fractal dimensions of soil particle size distribution and selected soil properties were discussed as well. The results indicated that biological soil crusts had significant positive effects on soil physical structure (P<0.05); and soil organic carbon and nutrients showed an upward trend across the successional stages of biological soil crusts. Fractal dimensions ranged from 2.1477 to 2.3032, and significantly linear correlated with selected soil properties (R2 = 0.494∼0.955, P<0.01). Conclusions/Significance Biological soil crusts cause an important increase in soil fertility, and are beneficial to sand fixation, although the process is rather slow. Fractal dimension proves to be a sensitive and useful index for quantifying changes in soil properties that additionally implies desertification. This study will be essential to provide a firm basis for future policy-making on optimal solutions regarding desertification control and assessment, as well as degraded ecosystem restoration in arid and semiarid regions. PMID:24516668

  19. Teaching Affective Qualities in Physical Education

    ERIC Educational Resources Information Center

    Heidorn, Brent; Welch, Mindy M.

    2010-01-01

    Physical educators at all levels have observed learners in a school-based physical education setting as well as physical activity or sport settings outside of organized school curricula demonstrating behaviors deemed inappropriate or inconsistent with professional standards. Because sport is such a public, social, and international phenomenon,…

  20. Reduced soil wettability can affect greenhouse gas fluxes

    NASA Astrophysics Data System (ADS)

    Urbanek, Emilia; Qassem, Khalid

    2015-04-01

    Soil moisture is known to be an important factor affecting the carbon (C) dynamics in soils including decomposition of organic matter and exchange of gases like CO2 and CH4 between the soil and the atmosphere. Most studies and process models looking at the soil C dynamics assume, however, that soils are easily wettable and water is relatively uniformly distributed within the soil pores. Most soils, however, do not wet spontaneously when dry or moderately moist, but instead exhibit some degree of soil water repellency (i.e. hydrophobicity), which can restrict infiltration and conductivity of water for weeks or months. This is world-wide occurring phenomenon which affects all soil textural types but is particularly common under permanent vegetation e.g. forest, grass and shrub vegetation. Soil water repellency is most profound during drier seasons, when the soil moisture content is relatively low. Although prolonged contact with water can gradually decrease water repellency, some soils do not recover to being completely wettable even after very wet winter months or substantial rainfall events. It has been recognized that with the predicted climatic changes the phenomenon of soil water repellency will become even more pronounced and severe, additionally it may occur in the areas and climatic zones where the effect have not been currently recognized. One of the main implications of soil water repellency is restricted water infiltration and reduced conductivity, which results in reduced soil water availability for plants and soil biota, even after prolonged periods of rainfall. As the process of C mineralization and consequently CO2 efflux from soil is driven by the accessibility of organic matter to decomposing organisms, which in turn is directly dependent on (i) soil moisture and (ii) soil temperature it is, therefore hypothesised that carbon decomposition and CO2 efflux in water repellent soils will also be affected when soil in the water repellent state. The CO2

  1. The chemistry of salt-affected soils and waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the chemistry of salt affected soils and waters is necessary for management of irrigation in arid and semi-arid regions. In this chapter we review the origin of salts in the landscape, the major chemical reactions necessary for prediction of the soil solution composition, and the use of...

  2. Effects of amendment of different biochars on soil physical and biological properties related to carbon mineralization

    NASA Astrophysics Data System (ADS)

    Zhang, Renduo; Zhu, Shuzhi; Ouyang, Lei

    2014-05-01

    Biochar addition to soils potentially affects various soil properties, and these effects are dependent on biochars derived from different feedstock materials and pyrolysis processes. The objective of this study was to investigate the effects of amendment of different biochars on soil physical and biological properties. Biochars were produced with dairy manure and woodchip at temperatures of 300, 500, and 700°C, respectively. Each biochar was mixed at 5% (w/w) with a forest soil and the mixture was incubated for 180 days, during which soil physical and biological properties, and soil respiration rates were measured. Results showed that the biochar addition significantly enhanced the formation of soil macroaggregates at the early incubation time. The biochar application significantly reduced soil bulk density, increased the amount of soil organic matter, and stimulated microbial activity and soil respiration rates at the early incubation stage. Biochar applications improved water retention capacity, with stronger effects by biochars produced at higher pyrolysis temperatures. At the same suction, the soil with woodchip biochars possessed higher water content than with the dairy manure biochars. Biochar addition significantly affected the soil physical and biological properties, which resulted in different soil carbon mineralization rates.

  3. Interplay between physical movements of soils and mineral grains and chemical weathering

    NASA Astrophysics Data System (ADS)

    Yoo, K.

    2007-12-01

    Most soil biogeochemistry studies treat the soils and their inorganic and organic constituents as physically immobile. Those soil materials, however, are in perpetual motion due to the conversion of bedrock to soils, colluvial transport, and vertical mixing by various biophysical perturbations of the soils. Subsequently, a soil is continuously replaced by the materials from the neighboring soils and the underlying parent material, while its individual horizons are gradually mixed with the materials in the neighboring horizons. The movements of bulk soil materials are ultimately driven by moving individual mineral grains. While rarely appreciated, these physical movements of soil's mineral components operate in the presence of strong vertical and topographic gradients of the rates of mineral dissolution and leaching. The result is that the physical movement of soil constituents affects chemical weathering. The fluxes of soil materials (via physical movements and solute fluxes) in and out of a soil system defined by a researcher determine the time length that the materials reside in the system. The residence time, together with the system-specific rates of chemical weathering, determine the degree of weathering of the materials within the system. This presentation provides a new mathematical framework to consistently quantify the residence times of minerals, individual soil horizons, soil profiles, and an entire soil within a watershed boundary. Soil age, which is equivalent of the time length since the cessation of erosion or deposition on level grounds, becomes a special case of the residence time. The model is combined with empirical data to quantitatively illustrate the impacts that the physical motion of soil constituents have on the rates of chemical weathering. The data are drawn from ongoing field and laboratory studies focusing on the impact of river incision, colluvial flux, bioturbation, and agricultural tillage on the vertical and lateral variation of

  4. Physical, chemical, and biological properties of soils in the city of Mariupol, Ukraine

    NASA Astrophysics Data System (ADS)

    Shekhovtseva, O. G.; Mal'tseva, I. A.

    2015-12-01

    Physicochemical and biological properties of urbanized soils in the city of Mariupol have been considered in comparison with the background soils. The parametrical characteristics (abundance and biomass) of soil algal groups, the content of humus, the reaction of soil solution, the content of heavy metals, and the particle size distributions of soils under different anthropogenic impacts have been assessed. The physicochemical properties of soils developing under urboecosystem conditions affect the number of structure-forming species, biomass, and proportions of soil algae. According to the particle size distribution, urban soils are classified among the medium and heavy loamy soils with the predominance of the clay and coarse silt fractions. The fractions of physical clay and clay are of highest importance for the existence of algae. The accumulation of heavy metals in the surface horizons of soils can stimulate or inhibit the development of algae depending on the metal concentration.

  5. Digital map of salt-affected soils of Khakassia

    NASA Astrophysics Data System (ADS)

    Chernousenko, G. I.; Kalinina, N. V.; Rukhovich, D. I.; Koroleva, P. V.

    2012-11-01

    A new methodological approach aimed at the creation and correction of digital soil maps on the basis of systematized and georeferenced available cartographic and attribute information arranged into a GIS project has been tested. The particular stages and methods of the creation of a digital map of salt-affected soils of Khakassia with the use of GIS technologies in the ArcInfo format are described. All the available cartographic materials, including the Soils of Russia GIS project, digital elevation models, remote sensing data, and analytical data on 82 soil pits (including the authors' materials and previously published data), have been used for the creation of this new map.

  6. Soil carbon dioxide fluxes in relation to physical properties as influenced by management practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among greenhouse gases, carbon dioxide (CO2) is one of the most significant contributors to regional and global warming as well as climatic change. However, CO2 flux from the soil surface to the atmosphere can be affected by modifications in soil physical properties resulting from changes in land ma...

  7. Factors affecting sequestration and bioavailability of phenanthrene in soils

    SciTech Connect

    White, J.C.; Kelsey, J.W.; Hatzinger, P.B.; Alexander, M.

    1997-10-01

    A study was conducted to determine factors affecting the sequestration and changes in bioavailability as phenanthrene persists in soils. Phenanthrene became sequestered in seven soils differing appreciably in organic matter and clay content as measured by earthworm uptake, bacterial mineralization, or extractability. Phenanthrene also became sequestered as it aged in soil aggregates of various sizes as measured by decline in availability to a bacterium, a mild extractant, or both. Wetting and drying a soil during aging reduced the amount of phenanthrene recovered by a mild extractant and the rate and extent of bacterial mineralization of the hydrocarbon. After biodegradation of phenanthrene added to the soil, more of the compound remained if it had been aged than if it had not been aged. Wetting and drying the soil during aging further increased the amount of phenanthrene remaining after biodegradation. The rate and extent of bacterial mineralization of phenanthrene were less in leached than in unleached soil. Aging/sequestration is thus markedly affected by soil properties and environmental factors.

  8. Soil Particle Heterogeneity Affects the Growth of a Rhizomatous Wetland Plant

    PubMed Central

    Xue, Wei; Peng, Yi-Ke; Zhang, Ming-Xiang; Yu, Fei-Hai

    2013-01-01

    Soil is commonly composed of particles of different sizes, and soil particle size may greatly affect the growth of plants because it affects soil physical and chemical properties. However, no study has tested the effects of soil particle heterogeneity on the growth of clonal plants. We conducted a greenhouse experiment in which individual ramets of the wetland plant Bolboschoenus planiculmis were grown in three homogeneous soil treatments with uniformly sized quartz particles (small: 0.75 mm, medium: 1.5 mm, or large: 3 mm), one homogeneous treatment with an even mixture of large and medium particles, and two heterogeneous treatments consisting of 16 or 4 patches of large and medium particles. Biomass, ramet number, rhizome length and spacer length were significantly greater in the treatment with only medium particles than in the one with only large particles. Biomass, ramet number, rhizome length and tuber number in the patchy treatments were greater in patches of medium than of large particles; this difference was more pronounced when patches were small than when they were large. Soil particle size and soil particle heterogeneity can greatly affect the growth of clonal plants. Thus, studies to test the effects of soil heterogeneity on clonal plants should distinguish the effects of nutrient heterogeneity from those of particle heterogeneity. PMID:23936110

  9. Key soil functional properties affected by soil organic matter - evidence from published literature

    NASA Astrophysics Data System (ADS)

    Murphy, Brian

    2015-07-01

    The effect of varying the amount of soil organic matter on a range of individual soil properties was investigated using a literature search of published information largely from Australia, but also included relevant information from overseas. Based on published pedotransfer functions, soil organic matter was shown to increase plant available water by 2 to 3 mm per 10 cm for each 1% increase in soil organic carbon, with the largest increases being associated with sandy soils. Aggregate stability increased with increasing soil organic carbon, with aggregate stability decreasing rapidly when soil organic carbon fell below 1.2 to 1.5 5%. Soil compactibility, friability and soil erodibility were favourably improved by increasing the levels of soil organic carbon. Nutrient cycling was a major function of soil organic matter. Substantial amounts of N, P and S become available to plants when the soil organic matter is mineralised. Soil organic matter also provides a food source for the microorganisms involved in the nutrient cycling of N, P, S and K. In soils with lower clay contents, and less active clays such as kaolinites, soil organic matter can supply a significant amount of the cation exchange capacity and buffering capacity against acidification. Soil organic matter can have a cation exchange capacity of 172 to 297 cmol(+)/kg. As the cation exchange capacity of soil organic matter varies with pH, the effectiveness of soil organic matter to contribute to cation exchange capacity below pH 5.5 is often minimal. Overall soil organic matter has the potential to affect a range of functional soil properties.

  10. What physics does affect the MRI threshold

    SciTech Connect

    Ilgisonis, V. I.; Lakhin, V. P.; Khalzov, I. V.; Smolyakov, A. I.

    2010-06-16

    Several physical effects, which can considerably decrease the magnetorotational instability (MRI) threshold are discussed. First, we show that MRI features are changed significantly in non-uniform magnetic field. Second, the buoyancy effect is shown to can be destabilizing for azimuthal flow of a resistive plasma. Third, we demonstrate that the rotating fluid may be unstable with respect to non-axisymmetric modes at much lower rotation velocities than with respect to usual symmetric modes.

  11. Genetic by environment interactions affect plant–soil linkages

    PubMed Central

    Pregitzer, Clara C; Bailey, Joseph K; Schweitzer, Jennifer A

    2013-01-01

    The role of plant intraspecific variation in plant–soil linkages is poorly understood, especially in the context of natural environmental variation, but has important implications in evolutionary ecology. We utilized three 18- to 21-year-old common gardens across an elevational gradient, planted with replicates of five Populus angustifolia genotypes each, to address the hypothesis that tree genotype (G), environment (E), and G × E interactions would affect soil carbon and nitrogen dynamics beneath individual trees. We found that soil nitrogen and carbon varied by over 50% and 62%, respectively, across all common garden environments. We found that plant leaf litter (but not root) traits vary by genotype and environment while soil nutrient pools demonstrated genotype, environment, and sometimes G × E interactions, while process rates (net N mineralization and net nitrification) demonstrated G × E interactions. Plasticity in tree growth and litter chemistry was significantly related to the variation in soil nutrient pools and processes across environments, reflecting tight plant–soil linkages. These data overall suggest that plant genetic variation can have differential affects on carbon storage and nitrogen cycling, with implications for understanding the role of genetic variation in plant–soil feedback as well as management plans for conservation and restoration of forest habitats with a changing climate. PMID:23919173

  12. Modelling the historical changes in physical soil properties caused by wind erosion process

    NASA Astrophysics Data System (ADS)

    Lackóová, Lenka

    2016-04-01

    Soil physical properties could be significantly affected by land degradation processes. Spatial variation modelling of physical soil properties in time is important in areas where wind erosion occurs regularly. The objectives of this study were to determine the changes of spatial variability of sand, silt and clay % contents in selected area in Slovakia over 45 years using topsoil physical properties at European scale (using LUCAS topsoil) and historical Complex Soil Survey Data. The Complex Soil Survey was made in the period 1960-1970 for the whole of the Slovak Republic, using a unified methodology to build an important soil properties database including physical topsoil properties. Spatial model distribution using regression kriging algorithm created by Soil Science and Conservation Research Institute was used for comparison with LUCAS topsoil particle size distribution datasets and their derived products of clay, sand and silt % content. The results of this study will show the effects of wind erosion in long time scale. Continual total mass removal during wind erosion can produce dramatic changes in the texture of the soil surface. Fine particles are removed, which tend to concentrate sand as erosion continues. Wind erosion physically removes the most fertile portion of the soil which may lead to lower productivity or destroying the characteristics of topsoil beneficial to plant growth. Historical changes of physical soil properties are discussed in this study.

  13. What Is Beautiful Feels Good: Affective Reactions to Physical Attractiveness.

    ERIC Educational Resources Information Center

    Carducci, Bernardo J.; Ogan, Tamra A.

    Previous research has consistently demonstrated that variations in physical attractiveness elicit different evaluative and behavioral responses. To assess differences in affective responses to variations in physical attractiveness and the affect of sex on those responses, 76 college students (31 male and 45 female) viewed colored slides of an…

  14. Anthropogenic lead distribution in rodent-affected and undisturbed soils in southern California

    SciTech Connect

    Mace, J.E.; Graham, R.C.; Amrhein, C.

    1997-01-01

    Anthropogenic Pb is the world`s largest and most widespread heavy metal contamination. Inspired by recent evidence suggesting a faster redistribution of Pb through the mineral soil profile than was previously expected, we investigated the effects of rodent activity on Pb redistribution. Total Pb was analyzed at the 0-1, 1-4, and 4-7-cm depths in a rodent-affected soil and in an undisturbed soil, in the same proximity and with the same parent material, in the Box Springs Mountains near Riverside, California. Six replicate sites of each condition were sampled. Lead was recovered by a digest in 4 M HNO{sub 3} and measured using a graphite furnace atomic absorption spectrophotometer. Anthropotenic Pb content to a 7-cm depth averaged 19 mg kg{sup -1} in undisturbed soils and 10 mg kg{sup -1} in rodent-affected soils. In both soils, the highest concentrations of Pb were located in the top 4 cm of the profile. After accounting for an estimated native Pb ({approximately}3.3 mg kg{sup -1}), we determined that 20 to 38 kg ha{sup -1} Pb has been deposited on these soils, through air pollution. Our findings suggest rodents significantly modify the distribution of anthropogenic Pb in the rodent-affected soils of the box Springs Mountains primarily in two ways: (i) by reducing Pb concentration in surface soils, thereby decreasing the potential for erosional redistribution of Pb, and (ii) by decreasing Pb transport time through the soil profile as a result of physical mixing. This redistribution mechanism is likely applicable to other surface deposited anthropogenic contaminants that have similarly low soil mobility. 18 refs., 1 fig., 2 tabs.

  15. Physical parameters affecting living cells in space

    NASA Astrophysics Data System (ADS)

    Langbein, Dieter

    The question is posed: Why does a living cell react to the absence of gravity? What sensors may it have? Does it note pressure, sedimentation, convection, or other parameters? If somewhere in a liquid volume sodium ions are replaced by potassium ions, the density of the liquid changes locally: the heavier regions sink, the lighter regions rise. This may contribute to species transport, to the metabolism. Under microgravity this mechanism is strongly reduced. On the other hand, other reasons for convection like thermal and solutal interface convection are left. Do they affect species transport? Another important effect of gravity is the hydrostatic pressure. On the macroscopic side, the pressure between our head and feet changes by 0.35 atmospheres. On the microscopic level the hydrostatic pressure on the upper half of a cell membrane is lower than on the lower half. This, by affecting the ion transport through the membrane, may change the surrounding electric potential. It has been suggested to be one of the reasons for graviperception. Following the discussion of these and other effects possibly important in life sciences in space, an order of magnitude analysis of the residual accelerations tolerable during experiments in materials sciences is outlined. In the field of life sciences only rough estimates are available at present.

  16. Physico-chemical change in vertical soil horizon characteristics of distillery affected soil.

    PubMed

    Ansari, Farid; Awasthi, A K; Kumar, P

    2013-10-01

    Effect of treated distillery effluent on the physico-chemical characteristics of vertical soil horizon was studied to observe the impact of effluent on soil of nearby area where distillery canal flows. The studies were also carried out with respect to the unaffected region to compare the soil characteristics. The results showed that in distillery affected soil pH, bulk density and alkalinity increased with depth whereas water holding capacity, chloride, organic carbon, available nitrogen, phosphorus and potassium decreased with depth compared to unaffected soil horizon. Preliminary study revealed that although most of the parameters were high in distillery affected soil horizon which might promote growth of plants but increase in pH and other toxic substances with depth could cause ground water pollution through constant and continuous leaching.

  17. Physico-chemical change in vertical soil horizon characteristics of distillery affected soil.

    PubMed

    Ansari, Farid; Awasthi, A K; Kumar, P

    2013-10-01

    Effect of treated distillery effluent on the physico-chemical characteristics of vertical soil horizon was studied to observe the impact of effluent on soil of nearby area where distillery canal flows. The studies were also carried out with respect to the unaffected region to compare the soil characteristics. The results showed that in distillery affected soil pH, bulk density and alkalinity increased with depth whereas water holding capacity, chloride, organic carbon, available nitrogen, phosphorus and potassium decreased with depth compared to unaffected soil horizon. Preliminary study revealed that although most of the parameters were high in distillery affected soil horizon which might promote growth of plants but increase in pH and other toxic substances with depth could cause ground water pollution through constant and continuous leaching. PMID:25906588

  18. Carbon dioxide flux as affected by tillage and irrigation in soil converted from perennial forages to annual crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among greenhouse gases, carbon dioxide (CO2) is one of the most significant contributors to regional and global warming as well as climatic change. However, CO2 flux from the soil surface to the atmosphere can be affected by modifications in soil physical properties resulting from changes in land ma...

  19. Pesticide interactions with soils affected by olive oil mill wastewater

    NASA Astrophysics Data System (ADS)

    Keren, Yonatan; Bukhanovsky, Nadezhda; Borisover, Mikhail

    2013-04-01

    Soil pesticide sorption is well known to affect the fate of pesticides, their bioavailability and the potential to contaminate air and water. Soil - pesticide interactions may be strongly influenced by soil organic matter (SOM) and organic matter (OM)-rich soil amendments. One special OM source in soils is related to olive oil production residues that may include both solid and liquid wastes. In the Mediterranean area, the olive oil production is considered as an important field in the agricultural sector. Due to the significant rise in olive oil production, the amount of wastes is growing respectively. Olive oil mill waste water (OMWW) is the liquid byproduct in the so-called "three phase" technological process. Features of OMWW include the high content of fatty aliphatic components and polyphenols and their often-considered toxicity. One way of OMWW disposal is the land spreading, e.g., in olive orchards. The land application of OMWW (either controlled or not) is supposed to affect the multiple soil properties, including hydrophobicity and the potential of soils to interact with pesticides. Therefore, there is both basic and applied interest in elucidating the interactions between organic compounds and soils affected by OMWW. However, little is known about the impact of OMWW - soil interactions on sorption of organic compounds, and specifically, on sorption of agrochemicals. This paper reports an experimental study of sorption interactions of a series of organic compounds including widely used herbicides such as diuron and simazine, in a range of soils that were affected by OMWW (i) historically or (ii) in the controlled land disposal experiments. It is demonstrated that there is a distinct increase in apparent sorption of organic chemicals in soils affected by OMWW. In selected systems, this increase may be explained by increase in SOM content. However, the SOM quality places a role: the rise in organic compound - soil interactions may both exceed the SOM

  20. Effects of rock fragments on water dynamics in a fire-affected soil

    NASA Astrophysics Data System (ADS)

    Gordillo-Rivero, Ángel J.; García-Moreno, Jorge; Jordán, Antonio; Zavala, Lorena M.

    2014-05-01

    Rock fragments (RF) are common in the surface of Mediterranean semiarid soils, and have important effects on the soil physical (bulk density and porosity) and hydrological processes (infiltration, evaporation, splash erosion and runoff generation) (Poesen and Lavee, 1994; Rieke-Zapp et al., 2007). In some cases, RFs in Mediterranean areas have been shown to protect bare soils from erosion risk (Cerdà, 2001; Martínez-Zavala, Jordán, 2008; Zavala et al., 2010). Some of these effects are much more relevant when vegetation cover is low or has been reduced after land use change or other causes, as forest fires. Although very few studies exist, the interest on the hydrological effects of RFs in burned areas is increasing recently. After a forest fire, RFs may contribute significantly to soil recovery. In this research we have studied the effect of surface and embedded RFs on soil water control, infiltration and evaporation in calcareous fire-affected soils from a Mediterranean area (SW Spain). For this study, we selected an area with soils derived from limestone under holm oak forest, recently affected by a moderate severity forest fire. The proportion of RF cover showed a significant positive relation with soil water-holding capacity and infiltration rates, although infiltration rate reduced significantly when RF cover increased above a certain threshold. Soil evaporation rate decreased with increasing volumetric content of RFs and became stable with RF contents approximately above 30%. Evaporation also decreased with increasing RF cover. When RF cover increased above 50%, no significant differences were observed between burned and control vegetated plots. REFERENCES Poesen, J., Lavee, H. 1994. Rock fragments in top soils: significance and processes. Catena Supplement 23, 1-28. Cerdà, A. 2001. Effect of rock fragment cover on soil infiltration, interrill runoff and erosion. European Journal of Soil Science 52, 59-68. DOI: 10.1046/j.1365-2389.2001.00354.x. Rieke

  1. Physical Features of Soil: Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the second of six modules in advanced crop and soil science and introduces the agriculture student to the subject of physical features of the soil. Upon completing the two day lesson, the student will be able to determine the texture and structural types of soil, list the structural classes of the soil and where they…

  2. Can subterranean cave systems affect soil CO2 fluxes?

    NASA Astrophysics Data System (ADS)

    Krajnc, Bor; Ferlan, Mitja; Ogrinc, Nives

    2015-04-01

    Main factors affecting soil CO2 fluxes in most ecosystems are soil temperature and soil moisture. Nevertheless occasionally high soil CO2 fluxes were observed at carst areas, which could result from ventilation of subterranean cavities (Ferlan et al., 2011). The aim of this work was to determine the influence of cave ventilation to soil CO2 fluxes. Research was done in a dead-end passage of Postojna cave (Pisani rov) and on the surface area above the passage (Velika Jeršanova dolina) in south-western Slovenia. Inside the cave we measured CO2 concentrations, its carbon (13C) stable isotope composition, 222Rn activity concentrations, temperatures and air pressure. At the surface we had chosen two sampling plots; test plot above the cave and control. At both plots we measured soil CO2 fluxes with automatic chambers, CO2 concentrations, temperatures and carbon stable isotope composition of soil air at three different depths (0.2 m, 0.5 m and 0.8 m) and different meteorological parameters such as: air temperature, air pressure, wind speed an precipitation. To detect the cave influence, we compared two surface CO2 flux measurements with air temperatures and changes of CO2 concentrations in the cave atmosphere. Our results on CO2 concentrations in the gallery of the cave indicated that the ventilation of this particular gallery also depends on outside air temperatures. Outside temperature increased and corresponded to higher CO2 concentrations, whereas at lower temperatures (T < 9 oC) cave started to ventilate and exhaled CO2 reach air through unknown fissures and cracks. At the control plot the soil CO2 fluxes were in a good correlation with soil temperatures (r = 0.789, p =0.01), where greater soil temperatures correspond to greater soil CO2 fluxes. Soil CO2 fluxes at the plot above the cave did not show statistically significant correlations with soil temperatures or soil moisture indicating that other factors possibly cave ventilation could influence it. References

  3. Volatilization of EPTC as affected by soil moisture

    NASA Astrophysics Data System (ADS)

    Fu, Liqun

    Volatilization is an important process that controls the dissipation of pesticides after field application. Soil moisture plays an important role in controlling the volatilization of pesticides. However, the extent of this role is unclear. This study was conducted to determine how soil moisture affects the sorption capacity and vapor loss of EPTC (S-ethyl dipropyl carbamothioate) from two soils, Weswood clay loam (fine- silty, mixed, thermic fluventic ustochrepts) and Padina loamy sand (loamy, siliceous, thermic grossarenic paleustalfs). Soil samples with different moisture contents were exposed to saturated EPTC vapor for 1, 2, 5, or 12 days and sorbed concentrations were measured. Sorption capacity of Weswood after 12 days exposure was about 12 times higher with air-dry soil than at the wilting point (-1500 kPa). For Padina, after 12 days exposure, the sorption capacity was about 18 times higher at air- dry than at -1500 kPa. The maximum sorption extrapolated from the partitioning coefficients determined with an equilibrium batch system and Henry's law were similar to the sorption capacities when moisture content was close to the wilting point for both soils. Desorption of EPTC vapor from soils with different moistures was determined by a purge and trap method. EPTC vapor losses strongly depended on the soil moisture and/or the humidity of the air. If the air was dry, volatilization of EPTC was much larger when the soil was wet. If humidity of the air was high, the effect of soil moisture on volatilization was not as great. No significant correlation at a confidence level of 95% was found between water and EPTC vapor losses for either soil when water saturated air was used as a purge gas. When purged with dry air, losses of water and EPTC vapor were strongly correlated at a confidence level of 99%. This study indicates that decreasing soil moisture significantly increases EPTC sorption and decreases volatilization. Simulation of volatilization with a one

  4. Ranking factors affecting emissions of GHG from incubated agricultural soils

    PubMed Central

    García-Marco, S; Ravella, S R; Chadwick, D; Vallejo, A; Gregory, A S; Cárdenas, L M

    2014-01-01

    Agriculture significantly contributes to global greenhouse gas (GHG) emissions and there is a need to develop effective mitigation strategies. The efficacy of methods to reduce GHG fluxes from agricultural soils can be affected by a range of interacting management and environmental factors. Uniquely, we used the Taguchi experimental design methodology to rank the relative importance of six factors known to affect the emission of GHG from soil: nitrate (NO3−) addition, carbon quality (labile and non-labile C), soil temperature, water-filled pore space (WFPS) and extent of soil compaction. Grassland soil was incubated in jars where selected factors, considered at two or three amounts within the experimental range, were combined in an orthogonal array to determine the importance and interactions between factors with a L16 design, comprising 16 experimental units. Within this L16 design, 216 combinations of the full factorial experimental design were represented. Headspace nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) concentrations were measured and used to calculate fluxes. Results found for the relative influence of factors (WFPS and NO3− addition were the main factors affecting N2O fluxes, whilst glucose, NO3− and soil temperature were the main factors affecting CO2 and CH4 fluxes) were consistent with those already well documented. Interactions between factors were also studied and results showed that factors with little individual influence became more influential in combination. The proposed methodology offers new possibilities for GHG researchers to study interactions between influential factors and address the optimized sets of conditions to reduce GHG emissions in agro-ecosystems, while reducing the number of experimental units required compared with conventional experimental procedures that adjust one variable at a time. PMID:25177207

  5. Ranking factors affecting emissions of GHG from incubated agricultural soils.

    PubMed

    García-Marco, S; Ravella, S R; Chadwick, D; Vallejo, A; Gregory, A S; Cárdenas, L M

    2014-07-01

    Agriculture significantly contributes to global greenhouse gas (GHG) emissions and there is a need to develop effective mitigation strategies. The efficacy of methods to reduce GHG fluxes from agricultural soils can be affected by a range of interacting management and environmental factors. Uniquely, we used the Taguchi experimental design methodology to rank the relative importance of six factors known to affect the emission of GHG from soil: nitrate (NO3 (-)) addition, carbon quality (labile and non-labile C), soil temperature, water-filled pore space (WFPS) and extent of soil compaction. Grassland soil was incubated in jars where selected factors, considered at two or three amounts within the experimental range, were combined in an orthogonal array to determine the importance and interactions between factors with a L16 design, comprising 16 experimental units. Within this L16 design, 216 combinations of the full factorial experimental design were represented. Headspace nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) concentrations were measured and used to calculate fluxes. Results found for the relative influence of factors (WFPS and NO3 (-) addition were the main factors affecting N2O fluxes, whilst glucose, NO3 (-) and soil temperature were the main factors affecting CO2 and CH4 fluxes) were consistent with those already well documented. Interactions between factors were also studied and results showed that factors with little individual influence became more influential in combination. The proposed methodology offers new possibilities for GHG researchers to study interactions between influential factors and address the optimized sets of conditions to reduce GHG emissions in agro-ecosystems, while reducing the number of experimental units required compared with conventional experimental procedures that adjust one variable at a time. PMID:25177207

  6. Effects of Vermicompost and Water Treatment Residuals on Soil Physical Properties and Wheat Yield

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mahmoud M.; Mahmoud, Essawy K.; Ibrahim, Doaa A.

    2015-04-01

    The application of vermicompost and water treatment residuals to improve the physical properties in the salt affected soils is a promising technology to meet the requirements of high plant growth and cost-effective reclamation. Therefore, the aim of this study was to investigate the effect of vermicompost and its mixtures with water treatment residuals on selected physical properties of saline sodic soil and on wheat yield. The treatments were vermicompost, water treatment residuals, vermicompost + water treatment residuals (1:1 and 2:1 wet weight ratio) at levels of 5 and 10 g dry weight kg-1 dry soil. The considered physical properties included aggregate stability, mean weight diameter, pore size distribution and dry bulk density. The addition of vermicompost and water treatment residuals had significant positive effects on the studied soil physical properties, and improved the grain yield of wheat. The treatment of (2 vermicompost + 1 water treatment residuals) at level of 5 g kg-1 soil gave the best grain yield. Combination of vermicompost and water treatment residuals improved the water treatment residuals efficiency in ameliorating the soil physical properties, and could be considered as an ameliorating material for the reclamation of salt affected soils.

  7. Prolonged Soil Frost Affects Hydraulics and Phenology of Apple Trees.

    PubMed

    Beikircher, Barbara; Mittmann, Claudia; Mayr, Stefan

    2016-01-01

    Restoration of an adequate water supply in spring is a prerequisite for survival of angiosperm trees in temperate regions. Trees must re-establish access to soil water and recover xylem functionality. We thus hypothesized that prolonged soil frost impairs recovery and affects hydraulics and phenology of Malus domestica var. 'Golden Delicious.' To test this hypothesis, over two consecutive winters the soil around some trees was insulated to prolong soil frosting, From mid-winter to early summer, the level of native embolism, the water and starch contents of wood, bark and buds were quantified at regular intervals and findings correlated with various phenological parameters, xylogenesis and fine root growth. The findings confirm that prolonged soil frost affects tree hydraulics and phenology but the severity of the effect depends on the climatic conditions. In both study years, percentage loss of hydraulic conductivity (PLC) decreased from about 70% at the end of winter to about 10% in May. Thereby, xylem refilling strongly coincided with a decrease of starch in wood and bark. Also treated trees were able to restore their hydraulic system by May but, in the warm spring of 2012, xylem refilling, the increases in water content and starch depolymerization were delayed. In contrast, in the cold spring of 2013 only small differences between control and treated trees were observed. Prolongation of soil frost also led to a delay in phenology, xylogenesis, and fine root growth. We conclude that reduced water uptake from frozen or cold soils impairs refilling and thus negatively impacts tree hydraulics and growth of apple trees in spring. Under unfavorable circumstances, this may cause severe winter damage or even dieback. PMID:27379146

  8. Prolonged Soil Frost Affects Hydraulics and Phenology of Apple Trees.

    PubMed

    Beikircher, Barbara; Mittmann, Claudia; Mayr, Stefan

    2016-01-01

    Restoration of an adequate water supply in spring is a prerequisite for survival of angiosperm trees in temperate regions. Trees must re-establish access to soil water and recover xylem functionality. We thus hypothesized that prolonged soil frost impairs recovery and affects hydraulics and phenology of Malus domestica var. 'Golden Delicious.' To test this hypothesis, over two consecutive winters the soil around some trees was insulated to prolong soil frosting, From mid-winter to early summer, the level of native embolism, the water and starch contents of wood, bark and buds were quantified at regular intervals and findings correlated with various phenological parameters, xylogenesis and fine root growth. The findings confirm that prolonged soil frost affects tree hydraulics and phenology but the severity of the effect depends on the climatic conditions. In both study years, percentage loss of hydraulic conductivity (PLC) decreased from about 70% at the end of winter to about 10% in May. Thereby, xylem refilling strongly coincided with a decrease of starch in wood and bark. Also treated trees were able to restore their hydraulic system by May but, in the warm spring of 2012, xylem refilling, the increases in water content and starch depolymerization were delayed. In contrast, in the cold spring of 2013 only small differences between control and treated trees were observed. Prolongation of soil frost also led to a delay in phenology, xylogenesis, and fine root growth. We conclude that reduced water uptake from frozen or cold soils impairs refilling and thus negatively impacts tree hydraulics and growth of apple trees in spring. Under unfavorable circumstances, this may cause severe winter damage or even dieback.

  9. Prolonged Soil Frost Affects Hydraulics and Phenology of Apple Trees

    PubMed Central

    Beikircher, Barbara; Mittmann, Claudia; Mayr, Stefan

    2016-01-01

    Restoration of an adequate water supply in spring is a prerequisite for survival of angiosperm trees in temperate regions. Trees must re-establish access to soil water and recover xylem functionality. We thus hypothesized that prolonged soil frost impairs recovery and affects hydraulics and phenology of Malus domestica var. ‘Golden Delicious.’ To test this hypothesis, over two consecutive winters the soil around some trees was insulated to prolong soil frosting, From mid-winter to early summer, the level of native embolism, the water and starch contents of wood, bark and buds were quantified at regular intervals and findings correlated with various phenological parameters, xylogenesis and fine root growth. The findings confirm that prolonged soil frost affects tree hydraulics and phenology but the severity of the effect depends on the climatic conditions. In both study years, percentage loss of hydraulic conductivity (PLC) decreased from about 70% at the end of winter to about 10% in May. Thereby, xylem refilling strongly coincided with a decrease of starch in wood and bark. Also treated trees were able to restore their hydraulic system by May but, in the warm spring of 2012, xylem refilling, the increases in water content and starch depolymerization were delayed. In contrast, in the cold spring of 2013 only small differences between control and treated trees were observed. Prolongation of soil frost also led to a delay in phenology, xylogenesis, and fine root growth. We conclude that reduced water uptake from frozen or cold soils impairs refilling and thus negatively impacts tree hydraulics and growth of apple trees in spring. Under unfavorable circumstances, this may cause severe winter damage or even dieback. PMID:27379146

  10. Does distance from the sea affect a soil microarthropod community?

    NASA Astrophysics Data System (ADS)

    Wasserstrom, Haggai; Steinberger, Yosef

    2016-10-01

    Coastal sand dunes are dynamic ecosystems characterized by strong abiotic gradients from the seashore inland. Due to significant differences in the abiotic parameters in such an environment, there is great interest in biotic adaptation in these habitats. The aim of the present study, which was conducted in the northern Sharon sand-dune area of Israel, was to illustrate the spatial changes of a soil microarthropod community along a gradient from the seashore inland. Soil samples were collected from the 0-10 cm depth at five locations at different distances, from the seashore inland. Samples were taken from the bare open spaces during the wet winter and dry summer seasons. The soil microarthropod community exhibited dependence both on seasonality and sampling location across the gradient. The community was more abundant during the wet winter seasons, with an increasing trend from the shore inland, while during the dry summers, such a trend was not observed and community density was lower. The dominant groups within soil Acari were Prostigmata and Endeostigmata, groups known to have many representatives with adaptation to xeric or psammic environments. In addition, mite diversity tended to be higher at the more distant locations from the seashore, and lower at the closer locations, a trend that appeared only during the wet winters. This study demonstrated the heterogeneity of a soil microarthropod community in a coastal dune field in a Mediterranean ecosystem, indicating that the gradient abiotic parameters also affect the abundance and composition of a soil microarthropod community in sand dunes.

  11. Effects of Tillage, Rotation and Cover Crop on the Physical Properties of a Silt-Loam Soil

    NASA Astrophysics Data System (ADS)

    Haruna, Samuel Idoko; Nkongolo, Nsalambi Vakanda

    2015-04-01

    Soil and crop management practices can affect the physical properties and have a direct impact on soil sustainability and crop performance. The objective of this study was to investigate how soil physical properties were affected by three years of tillage, cover crop and crop rotation treatments in a corn and soybean field. The study was conducted on a Waldron siltyloam soil at Lincoln University of Missouri. Soil physical properties studied were soil bulk density, volumetric and gravimetric water contents, volumetric air content, total pore space, air-filled and water-filled pore space, gas diffusion coefficient and pore tortuosity factor. Results showed significant interactions (p<0.05) between cover crop and crop rotation for bulk density, gravimetric and total pore space in 2013. In addition, cover crop also significantly interacted (p<0.05) with tillage for bulk density and total pore space. All soil physical properties studied were significantly affected by the depth of sampling (p<0.0001), except for bulk density, the pore tortuosity factor and total pore space in 2012, and gravimetric and volumetric in 2013. Overall, soil physical properties were significantly affected by the treatments, with the effects changing from one year to another. Addition of a cover crop improved soil physical properties better in rotation than in monoculture.

  12. Including physical and biological soil crusts properties in gully prediction

    NASA Astrophysics Data System (ADS)

    Gay, A.; Cerdan, O.; Desprats, J. F.; Malam Issa, O.; Valentin, C.; Rajot, J. L.; Descroix, L.

    2012-04-01

    In Sahelian region, concentrated overland flow often leads to the formation of gullies. Although this phenomenon is widespread in those regions, research efforts are still needed to be able to model their spatial distribution and the role of the different parameters involved in this process. In this context, the objectives of this study are twofold. The first step is to investigate to what extent the role of Sahelian soil surface crusts (biological and/or physical) on soil surface infiltrability and detachment affect the formation and development of gullies. The second step is to integrate the results of these investigations in a simple geomorphological model to predict gully location at the watershed scale. The evaluation of the resulting model on two test catchments demonstrated that the integration of soil crusting is a key parameter to insure the quality and relevance of gully prediction. The model is able to distinguish between two types of gullies, those whose width range between 0.5m and 4m and those whose width exceeds 4m. The application of the model at the regional scale is however limited by the resolution of available regional digital elevation model (i.e. the 90m resolution SRTM DEM) which only permits the prediction of large gullies (width > 4m).

  13. Contents and composition of organic matter in subsurface soils affected by land use and soil mineralogy

    NASA Astrophysics Data System (ADS)

    Ellerbrock, Ruth H.; Kaiser, Michael

    2010-05-01

    Land use and mineralogy affect the ability of surface as well as subsurface soils to sequester organic carbon and their contribution to mitigate the greenhouse effect. This study aimed to investigate the long-term impact of land use (i.e., arable and forest) and soil mineralogy on contents and composition of soil organic matter (SOM) from subsurface soils. Seven soils different in mineralogy (Albic and Haplic Luvisol, Colluvic and Haplic Regosol, Haplic and Vertic Cambisol, Haplic Stagnosol) were selected within Germany. Soil samples were taken from forest and adjacent arable sites. First, particulate and water soluble organic matter were separated from the subsurface soil samples. From the remaining solid residues the OM(PY) fractions were separated, analyzed for its OC content (OCPY) and characterized by FTIR spectroscopy. For the arable subsurface soils multiple regression analyses indicate significant positive relationships between the soil organic carbon contents and the contents of i) exchangeable Ca and oxalate soluble Fe, and Alox contents. Further for the neutral arable subsurface soils the contents OCPY weighted by its C=O contents were found to be related to the contents of Ca indicating interactions between OM(PY) and Ca cations. For the forest subsurface soils (pH <5) the OCPY contents were positively related with the contents of Na-pyrophosphate soluble Fe and Al. For the acidic forest subsurface soils such findings indicate interactions between OM(PY) and Fe3+ and Al3+ cations. The effects of land use and soil mineralogy on contents and composition of SOM and OM(PY) will be discussed.

  14. Soil physical quality changes under different management systems after 10 years in Argentinian Humid Pampa

    NASA Astrophysics Data System (ADS)

    Costa, J. L.; Aparicio, V. C.; Cerda, A.

    2014-08-01

    The Argentinian Humid Pampa extends over about 60 million ha, 90% of which are agricultural lands. The southeast of the Buenos Aires Province is part of the Humid Pampa (1 206 162 ha). The main crops are wheat, sunflower, corn and soybean. The management systems used in the area are: moldboard plow (MP), chisel plow (CP) and no-till (NT). Excessive soil cultivation under MP causes decreases in the soil organic carbon content (SOC). Adopting NT may reduce the effects of intensive agriculture, through the maintenance and accumulation of SOC. However, the soil compaction under NT causes degradation of the soil structure, reduces the soil water availability and reduces the soil hydraulic conductivity. We evaluated the evolution of the soil physical parameters in three management systems. After 10 years of experiments in four farmers' fields, we found that: soil bulk density was significantly higher under NT. The change in mean weight diameter (CMWD) of aggregates increased as the management system became more intensive. We did not find significant differences in time and management systems in hydraulic conductivity at tension (h)0 cm and h=20 cm. The reduction in total porosity under NT is mainly a product of a reduction in the percentage of mesopores in the soil. Time had no statistically significant effect on the SOC content. The management system did not affect the yields of crop. In this work, the results indicate a modification of some soil physical parameters (porosity, near-saturated hydraulic conductivity, soil structure) due to uninterrupted agricultural production.

  15. Does management intensity in inter rows effect soil physical properties in Austrian and Romanian vineyards?

    NASA Astrophysics Data System (ADS)

    Bauer, Thomas; Strauss, Peter; Stiper, Katrin; Klipa, Vladimir; Popescu, Daniela; Winter, Silvia; Zaller, Johann G.

    2016-04-01

    Successful viticulture is mainly influenced by soil and climate. The availability of water during the growing season highly influences wine quality and quantity. To protect soil from being eroded most of the winegrowers keep the inter row zones of the vineyards green. Greening also helps to provide water-stress to the grapes for harvesting high quality wines. However, these greening strategies concerning the intensity of inter row management differ from farm to farm and are mainly based on personal experience of the winegrowers. However to what extent different inter row management practices affect soil physical properties are not clearly understood yet. To measure possible effects of inter row management in vineyards on soil physical parameters we selected paired vineyards with different inter row management in Austria and Romania. In total more than 7000 soil analysis were conducted for saturated and unsaturated hydraulic conductivity, soil water retention, water stable aggregates, total organic carbon, cation exchange capacity, potassium, phosphorous, soil texture, bulk density and water infiltration. The comparison between high intensity management with at least one soil disturbance per year, medium intensity with one soil disturbance every second inter row per year and low intensity management with no soil disturbance since at least 5 years indicates that investigated soil physical properties did not improve for the upper soil layer (3-8cm). This is in contrast to general perceptions of improved soil physical properties due to low intensity of inter row management, i.e. permanent vegetated inter rows. This may be attributed to long term and high frequency mechanical stress by agricultural machinery in inter rows.

  16. Xiphinema americanum as Affected by Soil Organic Matter and Porosity.

    PubMed

    Ponchillia, P E

    1972-07-01

    The effects of four soil types, soil porosity, particle size, and organic matter were tested on survival and migration of Xiphinema americanum. Survival and migration were significantly greater in silt loam than in clay loam and silty clay soils. Nematode numbers were significantly greater in softs planted with soybeans than in fallow softs. Nematode survival was greatest at the higher of two pore space levels in four softs. Migration of X. americanum through soft particle size fractions of 75-150, 150-250, 250-500, 500-700, and 700-1,000 mu was significantly greater in the middle three fractions, with the least occurring in the smallest fraction. Additions of muck to silt loam and loamy sand soils resulted in reductions in survival and migration of the nematode. The fulvic acid fraction of muck, extracted with sodium hydroxide, had a deleterious effect on nematode activity. I conclude that soils with small amounts of air-filled pore space, extremes in pore size, or high organic matter content are deleterious to the migration and survival of X. americanum, and that a naturally occurring toxin affecting this species may be present in native soft organic matter.

  17. Linking hydraulic properties of fire-affected soils to infiltration and water repellency

    USGS Publications Warehouse

    Moody, J.A.; Kinner, D.A.; Ubeda, X.

    2009-01-01

    Heat from wildfires can produce a two-layer system composed of extremely dry soil covered by a layer of ash, which when subjected to rainfall, may produce extreme floods. To understand the soil physics controlling runoff for these initial conditions, we used a small, portable disk infiltrometer to measure two hydraulic properties: (1) near-saturated hydraulic conductivity, Kf and (2) sorptivity, S(??i), as a function of initial soil moisture content, ??i, ranging from extremely dry conditions (??i < 0.02 cm3 cm-3) to near saturation. In the field and in the laboratory replicate measurements were made of ash, reference soils, soils unaffected by fire, and fire-affected soils. Each has a different degrees of water repellency that influences Kf and S(??i). Values of Kf ranged from 4.5 ?? 10-3 to 53 ?? 10-3 cm s-1 for ash; from 0.93 ?? 10-3 to 130 ?? 10-3 cm s-1 for reference soils; and from 0.86 ?? 10-3 to 3.0 ?? 10-3 cm s-1, for soil unaffected by fire, which had the lowest values of Kf. Measurements indicated that S(??i) could be represented by an empirical non-linear function of ??i with a sorptivity maximum of 0.18-0.20 cm s-0.5, between 0.03 and 0.08 cm3 cm-3. This functional form differs from the monotonically decreasing non-linear functions often used to represent S(??i) for rainfall-runoff modeling. The sorptivity maximum may represent the combined effects of gravity, capillarity, and adsorption in a transitional domain corresponding to extremely dry soil, and moreover, it may explain the observed non-linear behavior, and the critical soil-moisture threshold of water repellent soils. Laboratory measurements of Kf and S(??i) are the first for ash and fire-affected soil, but additional measurements are needed of these hydraulic properties for in situ fire-affected soils. They provide insight into water repellency behavior and infiltration under extremely dry conditions. Most importantly, they indicate how existing rainfall-runoff models can be modified to

  18. How will climate change affect vine behaviour in different soils?

    NASA Astrophysics Data System (ADS)

    Leibar, Urtzi; Aizpurua, Ana; Morales, Fermin; Pascual, Inmaculada; Unamunzaga, Olatz

    2014-05-01

    and water-deficit had a clear influence on the grape phenological development and composition, whilst soil affected root configuration and anthocyanins concentration. Effects of climate change and water availability on different soil conditions should be considered to take full advantage or mitigate the consequences of the future climate conditions.

  19. Soil properties affecting wheat yields following drilling-fluid application.

    PubMed

    Bauder, T A; Barbarick, K A; Ippolito, J A; Shanahan, J F; Ayers, P D

    2005-01-01

    Oil and gas drilling operations use drilling fluids (mud) to lubricate the drill bit and stem, transport formation cuttings to the surface, and seal off porous geologic formations. Following completion of the well, waste drilling fluid is often applied to cropland. We studied potential changes in soil compaction as indicated by cone penetration resistance, pH, electrical conductivity (EC(e)), sodium adsorption ratio (SAR), extractable soil and total straw and grain trace metal and nutrient concentrations, and winter wheat (Triticum aestivum L. 'TAM 107') grain yield following water-based, bentonitic drilling-fluid application (0-94 Mg ha(-1)) to field test plots. Three methods of application (normal, splash-plate, and spreader-bar) were used to study compaction effects. We measured increasing SAR, EC(e), and pH with drilling-fluid rates, but not to levels detrimental to crop production. Field measurements revealed significantly higher compaction within areas affected by truck travel, but also not enough to affect crop yield. In three of four site years, neither drilling-fluid rate nor application method affected grain yield. Extractions representing plant availability and plant analyses results indicated that drilling fluid did not significantly increase most trace elements or nutrient concentrations. These results support land application of water-based bentonitic drilling fluids as an acceptable practice on well-drained soils using controlled rates. PMID:16091622

  20. Soil properties affecting wheat yields following drilling-fluid application.

    PubMed

    Bauder, T A; Barbarick, K A; Ippolito, J A; Shanahan, J F; Ayers, P D

    2005-01-01

    Oil and gas drilling operations use drilling fluids (mud) to lubricate the drill bit and stem, transport formation cuttings to the surface, and seal off porous geologic formations. Following completion of the well, waste drilling fluid is often applied to cropland. We studied potential changes in soil compaction as indicated by cone penetration resistance, pH, electrical conductivity (EC(e)), sodium adsorption ratio (SAR), extractable soil and total straw and grain trace metal and nutrient concentrations, and winter wheat (Triticum aestivum L. 'TAM 107') grain yield following water-based, bentonitic drilling-fluid application (0-94 Mg ha(-1)) to field test plots. Three methods of application (normal, splash-plate, and spreader-bar) were used to study compaction effects. We measured increasing SAR, EC(e), and pH with drilling-fluid rates, but not to levels detrimental to crop production. Field measurements revealed significantly higher compaction within areas affected by truck travel, but also not enough to affect crop yield. In three of four site years, neither drilling-fluid rate nor application method affected grain yield. Extractions representing plant availability and plant analyses results indicated that drilling fluid did not significantly increase most trace elements or nutrient concentrations. These results support land application of water-based bentonitic drilling fluids as an acceptable practice on well-drained soils using controlled rates.

  1. Soil physical property estimation from soil strength and apparent electrical conductivity sensor data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantification of soil physical properties through soil sampling and laboratory analyses is time-, cost-, and labor-consuming, making it difficult to obtain the spatially-dense data required for precision agriculture. Proximal soil sensing is an attractive alternative, but many currently available s...

  2. Copper phytoavailability and uptake by Elsholtzia splendens from contaminated soil as affected by soil amendments.

    PubMed

    Peng, Hong-Yun; Yang, Xiao-E; Jiang, Li-Ying; He, Zhen-Li

    2005-01-01

    Pot and field experiments were conducted to evaluate bioavailability of Cu in contaminated paddy soil (PS) and phytoremediation potential by Elsholtzia splendens as affected by soil amendments. The results from pot experiment showed that organic manure (M) applied to the PS not only remarkably raised the H2O exchangeable Cu, which were mainly due to the increased exchangeable and organic fractions of Cu in the PS by M, but also stimulated plant growth and Cu accumulation in E. splendens. At M application rate of 5.0%, shoot Cu concentration in the plant increased by four times grown on the PS, so as to the elevated shoot Cu accumulation by three times as compared to the control. In the field trial, soil amendments by M and furnace slag (F), and soil preparations like soil capping (S) and soil discing (D) were performed in the PS. Soil capping and discing considerably declined total Cu in the PS. Application of M solely or together with F enhanced plant growth and increased H2O exchangeable Cu levels in the soil. The increased extractability of Cu in the rhizosphere of E. splendens was noted, which may have mainly attributed to the rhizospheric acidification and chelation by dissolved organic matter (DOM), thus resulting in elevating Cu uptake and accumulation by E. splendens. Amendments with organic manure plus furnace slag (MF) to the PS caused the highest exactable Cu with saturated H2O in the rhizospheric soil of E. splendens after they were grown for 170 days in the PS, thus achieving 1.74 kg Cu ha(-1) removal from the contaminated soil by the whole plant of E. splendens at one season, which is higher than those of the other soil treatments. The results indicated that application of organic manure at a proper rate could enhance Cu bioavailability and increase effectiveness of Cu phytoextraction from the contaminated soil by the metal-tolerant and accumulating plant species (E. splendens). PMID:15792303

  3. Effects of current physical activity on affective response to exercise: physical and social-cognitive mechanisms.

    PubMed

    Magnan, Renee E; Kwan, Bethany M; Bryan, Angela D

    2013-01-01

    Affective responses during exercise are often important determinants of exercise initiation and maintenance. Current physical activity may be one individual difference that is associated with the degree to which individuals have positive (or negative) affective experiences during exercise. The objective of this study was to explore physical and cognitive explanations of the relationship between current activity status (more versus less active) and affective response during a 30-minute bout of moderate-intensity exercise. Participants reported their current level of physical activity, exercise self-efficacy and affect during a 30-minute bout of moderate-intensity exercise. More active individuals experienced higher levels of positive affect and tranquillity and lower levels of negative affect and fatigue during exercise. Multivariate models for each affective state indicated separate processes through which physical activity may be associated with changes in affect during exercise. These models indicate that affect experienced during physical activity is related to the current activity level and these relationships can be partially explained by the physical and cognitive factors explored in this study. Recommendations for future research to elucidate whether positive affective response to physical activity improves as a function of becoming more active over time are discussed.

  4. Crop response to localized organic amendment in soils with limiting physical properties

    NASA Astrophysics Data System (ADS)

    Lordan, Joan; Pascual, Miquel; Fonseca, Francisco; Villar, Josep Maria; Montilla, Victor; Papió, Josep; Rufat, Josep

    2013-04-01

    This 2-year study evaluated the use of rice husk as a localized organic amendment in a soil with limiting physical properties. The research was conducted in a commercial peach orchard planted in 2011 using a ridge planting system. Six soil and water management treatments were evaluated in 18 experimental units, which were set up in the field using a randomized complete block design. The treatments were compared both in terms of soil physical properties and crop response. Soil amendment with rice husk was the most effective technique. It improved soil conditions (soil infiltration and soil porosity), providing a better soil environment for root activity and thereby resulted in better crop performance. Concerning growth parameters, the amended treatment presented the highest overall values without negatively affecting crop water status. These techniques were suitable for mitigating the effects of soils with limiting physical conditions. Localized applications of amendments, as proposed in this work, imply an important reduction in application rates. It is important to consider an efficient use of by-products since there is a growing interest in industrial and agronomical exploitations.

  5. Natural physical and biological processes compromise the long-term performance of compacted soil caps

    SciTech Connect

    Smith, E.D.

    1995-12-01

    Compacted soil barriers are components of essentially all caps placed on closed waste disposal sites. The intended functions of soil barriers in waste facility caps include restricting infiltration of water and release of gases and vapors, either independently or in combination with synthetic membrane barriers, and protecting other manmade or natural barrier components. Review of the performance of installed soil barriers and of natural processes affecting their performance indicates that compacted soil caps may function effectively for relatively short periods (years to decades), but natural physical and biological processes can be expected to cause them to fail in the long term (decades to centuries). This paper addresses natural physical and biological processes that compromise the performance of compacted soil caps and suggests measures that may reduce the adverse consequences of these natural failure mechanisms.

  6. Microclimate affects soil chemical and mineralogical properties of cold-alpine soils of the Altai Mountains (Russia)

    NASA Astrophysics Data System (ADS)

    Egli, Markus; Lessovaia, Sofia; Chistyakov, Kirill; Inozemzev, Svyatoslav

    2013-04-01

    Precipitation and temperature particularly influence soil properties by affecting the type and rates of chemical, biological, and physical processes. To a great extent, element leaching and weathering rates are governed by these processes. Vegetation growth and decomposition, that depend on temperature and the other environmental factors, influence weathering reactions through the production of acidity and organic ligands that may promote chemical weathering and subsequent elemental leaching. The present work focuses on cold-alpine soils of the Altai Mountains (Siberia, Russia). The investigated field site (2380 m asl) is characterised by cold winters (with absolute minimum temperatures of -50°C; a mean temperature in January is -21°C) and cool summers (+8°C mean temperature in July). The mean annual temperature is -5.4°C. Annual precipitations are relatively low (500 mm with 20% of precipitation in July). Permafrost is widespread and occurs sometimes at a depth of 30 to 50 cm. Several studies have shown the influence of slope aspect and the resulting microclimate on soil weathering and development. There is however no unanimous agreement whether weathering is more intense on north- or south-facing slopes and whether small differences in thermal conditions may lead to detectable differences. Higher temperatures do not necessarily lead to higher weathering rates in cold alpine regions as shown by previous investigations in the European Alps. Water fluxes through the soils seemed to be more important. We consequently investigated soils in the cold-alpine environment of the Central Altai Mountains on a very small area close to a local glacier tongue. Half of the investigated soil profiles were south-facing (5) and the other half north-facing (5). The soils have the same parent material (mica-rich till), altitude, topography, and soil age. The vegetation is alpine grassland that is partially intersected with some juniper and mosses, which portion in the soil

  7. Loss in microbial diversity affects nitrogen cycling in soil

    PubMed Central

    Philippot, Laurent; Spor, Aymé; Hénault, Catherine; Bru, David; Bizouard, Florian; Jones, Christopher M; Sarr, Amadou; Maron, Pierre-Alain

    2013-01-01

    Microbial communities have a central role in ecosystem processes by driving the Earth's biogeochemical cycles. However, the importance of microbial diversity for ecosystem functioning is still debated. Here, we experimentally manipulated the soil microbial community using a dilution approach to analyze the functional consequences of diversity loss. A trait-centered approach was embraced using the denitrifiers as model guild due to their role in nitrogen cycling, a major ecosystem service. How various diversity metrics related to richness, eveness and phylogenetic diversity of the soil denitrifier community were affected by the removal experiment was assessed by 454 sequencing. As expected, the diversity metrics indicated a decrease in diversity in the 1/103 and 1/105 dilution treatments compared with the undiluted one. However, the extent of dilution and the corresponding reduction in diversity were not commensurate, as a dilution of five orders of magnitude resulted in a 75% decrease in estimated richness. This reduction in denitrifier diversity resulted in a significantly lower potential denitrification activity in soil of up to 4–5 folds. Addition of wheat residues significantly increased differences in potential denitrification between diversity levels, indicating that the resource level can influence the shape of the microbial diversity–functioning relationship. This study shows that microbial diversity loss can alter terrestrial ecosystem processes, which suggests that the importance of functional redundancy in soil microbial communities has been overstated. PMID:23466702

  8. Physical controls of soil moisture variability at multiple scales

    NASA Astrophysics Data System (ADS)

    Jana, R. B.; Mohanty, B.

    2013-12-01

    Understanding what factors drive soil hydrological processes at different scales and their variability is very critical to further our ability to model the various components of the hydrologic cycle more accurately. Soil moisture, and, by association, soil hydraulic parameters have been known to be a function of location, and the support scale at which they are measured. Recent increase in remote sensing platforms necessitates increased calibration/validation efforts of their soil moisture products with ground-based measurements. Such cal/val operations require some form of up- or down-scaling process. Understanding the factors that drive soil hydrological processes at different scales, and their variability, is very critical to minimize errors due to this step in the cal/val procedure. Existing literature provides a description of the different sources of soil moisture variability across a range of resolutions from point to continental scales, classified under four categories: soil texture and structure, topography, vegetation, and meteorological forcings. While it is accepted that a dynamic relationship exists between these physical controls and the soil hydraulic properties across spatial scales, the nature of the relationship is not very well understood. In order to formulate better scaling algorithms, it is first necessary to determine the form and amount of influence exerted by the controlling factors on the variability of the soil moisture or hydraulic parameters at each scale of interest. One method to understand the effect of the physical controls is to analyze the covariance or coherence of the physical controls with the soil hydraulic properties across multiple scales and different hydro-climates. Such a study, using wavelet analysis, is presented here. A variety of datasets from multiple platforms across the globe were employed in this study. The AMSR-E soil moisture product was used as the remotely sensed, coarse resolution dataset. Fine resolution

  9. Microbial response following straw application in a soil affected by a wildfire

    NASA Astrophysics Data System (ADS)

    Barreiro, Ana; Lombao, Alba; Díaz-Raviña, Montserrat; Martin, Angela; Fontúrbel, Maria Teresa; Vega, Jose Antonio; Fernández, Cristina; Carballas, Tarsy

    2015-04-01

    Mulching treatment is often recommended to reduce post-fire erosion and sediments yields but information concerning their effects on soil microorganisms is scarce. In the present investigation the evolution of several parameters related with the mass and activity of soil microorganisms was examined in a hillslope shrubland located in Saviñao (Lugo, NW Spain) and susceptible to suffer post-fire erosion (38% slope). In this area, affected by a medium-high severity wildfire in September 2012, different treatments with wheat straw applied to the burnt soil in mulch strips (800 and 1000 kg ha-1) were established by quadruplicate (10 m x 40 m plots) and compared with the corresponding burnt untreated control. Soil samples were collected from the A horizon (0-2.5 cm depth) at different sampling times over one year after the wildfire and different soil biochemical properties (microbial biomass C, soil respiration, bacterial activity, -glucosidase, urease and phosphatase activities) were analyzed. The results showed large variation among the four field replicates of the same treatment (spatial variability), which makes difficult to evaluate the effect of mulch treatment. The evolution of the different biochemical properties in the post-fire stabilization treatments with the wheat straw applied in mulch strips were mainly related to the time passed after the fire (short- and medium- term changes in soil physical and chemical properties induced by both fire and climatic conditions) rather than to the straw mulching effects; in addition, a different temporal pattern was observed depending on the variable considered. The results pointed out the usefulness of examining intra-annual natural variability (spatial variation, seasonal fluctuations) when different indices of mass and activity of microorganisms were used as monitoring tools in soil ecosystems affected by fire. Acknowledgements. A. Barreiro and A. Lombao are recipients of FPU grants from Spanish Ministry of

  10. Gender Differences in Introductory University Physics Performance: The Influence of High School Physics Preparation and Affect

    NASA Astrophysics Data System (ADS)

    Hazari, Zahra

    2006-12-01

    The attrition of females studying physics after high school has been a continuing concern for the physics education community. If females are well prepared, feel confident, and do well in introductory college physics, they may be inclined to study physics further. This quantitative study uses HLM to identify factors from high school physics preparation (content, pedagogy, and assessment) and the affective domain that predict female and male performance in introductory college physics. The study includes controls for student demographic and academic background characteristics, and the final dataset consists of 1973 surveys from 54 introductory college physics classes. The results highlight high school physics and affective experiences that differentially predict female and male performance. These experiences include: learning requirements, computer graphing/analysis, long written problems, everyday world examples, community projects cumulative tests/quizzes, father's encouragement, family's belief that science leads to a better career, and the length of time students believe that high school physics would help in university physics. There were also experiences that similarly predict female and male performance. The results paint a dynamic picture of the factors from high school physics and the affective domain that influence the future physics performance of females and males. The implication is that there are many aspects to the teaching of physics in high school that, although widely used and thought to be effective, need reform in their implementation in order to be fully beneficial to females and/or males in college.

  11. Thallium isotope variations in anthropogenically-affected soils

    NASA Astrophysics Data System (ADS)

    Vanek, Ales; Chrastny, Vladislav; Penizek, Vit; Mihaljevic, Martin; Komarek, Michael; Cabala, Jerzy

    2014-05-01

    Our preliminary data from soils impacted by long-term Tl deposition in the vicinity of a primary/secondary Zn smelter at Olkusz (Poland) indicate apparent variability of ɛ205Tl within soil profiles. The identified ɛ205Tl values presented for the forest soil profile reached -1.7 in the surface/organic horizon, +1.9 in the organo-mineral horizon (Ap), and +1.0 in the mineral horizon (C). This finding suggests both the enrichment of 203Tl isotope in the topsoil, as well as its preferential release during smelting operations, as "lighter" Tl tends to enter the emissions during a high-temperature process. The maximum ɛ205Tl value in the subsurface horizon Ap is in accordance with the concentration peak of oxalate-extractable Mn, indicating the presence of amorphous/poorly-crystalline Mn oxides with a potential to isotopically fractionate Tl toward the "heavier" fraction. The Tl isotope signature in the bottom horizon probably reflects the composition of a local geochemical anomaly of Tl. However, a portion of mobile (anthropogenic) Tl with negative ɛ205Tl moving downwards in the soil profile cannot be neglected. In general, there is no detailed information about the biogeochemical cycling and variations of Tl isotopes in areas affected by significant anthropogenic inputs of the metal (e.g., coal burning and primary metallurgy); the questions of the degree to which the factors such as soil (and sediment) chemistry, mineralogy, local biota, and pollution source control Tl isotope fractionation remain unresolved. Therefore, further research on the topic is needed before any principal conclusions will be made.

  12. Experimental design based on field spectrometry for characterization of fire-affected soils.

    NASA Astrophysics Data System (ADS)

    Rosero, Olga; Vlassova, Lidia; Montorio Llovería, Raquel; Pérez-Cabello, Fernando

    2014-05-01

    Wildfires can modify physical and chemical properties of soils (Mataix-Solera et al., 2011; Badía et al., 2014). These disturbances involve changes in soil spectral properties, which can be analyzed by using field spectrometry (VIS-SWIR) (Montorio et al., 2008; Guerrero et al., 2010). The aim of this study is to present an experimental design for hyperspectral characterization of fire affected soils in laboratory conditions. We analyzed soil samples from Montes de Zuera area (Aragón, Spain) repeatedly affected by wildfires in the period of 1979-2008. Fourteen samples, seven from the burned zones and the corresponding control samples were collected in spring of 2013. Spectral analysis was performed on subsamples of around 130 g (fine fraction, particle size < 2 mm), previously dried in a stove at 105°C during 36 hours, and placed in crystal petri dishes (90 mm x 15 mm). The spectra were obtained using spectroradiometer ASD FieldSpec® 4 (spectral range from 350 nm to 2500 nm) combined with a Contact Probe ensuring homogeneity of observation and illumination conditions. Spectralon reference panel Labsphere® was used for conversion to reflectance values. The resulting reflectance is an average of the measurements corresponding to five random points of the subsample, each of them representing a mean value of 10 spectra. The averaging of spectra improves the signal to noise ratio and, at the same time, it minimizes the variations caused by the samples surface roughness. Statistically significant differences have been detected between burned and control soils. Reflectance increase of 12% (average for the whole spectrum) was observed in 70% of the samples: 16%, 15% and 10% increase in visible, NIR and SWIR respectively. Therefore regardless of the wildfire date, an increase of reflectance is observed in burned soils due to changes on soil properties. A detailed analysis of physical, chemical and biological properties of soils will be used in further research to

  13. The soil physics contributions of Edgar Buckingham

    USGS Publications Warehouse

    Nimmo, J.R.; Landa, E.R.

    2005-01-01

    During 1902 to 1906 as a soil physicist at the USDA Bureau of Soils (BOS), Edgar Buckingham originated the concepts of matric potential, soil-water retention curves, specific water capacity, and unsaturated hydraulic conductivity (K) as a distinct property of a soil. He applied a formula equivalent to Darcy's law (though without specific mention of Darcy's work) to unsaturated flow. He also contributed significant research on quasi-empirical formulas for K as a function of water content, water flow in capillary crevices and in thin films, and scaling. Buckingham's work on gas flow in soils produced paradigms that are consistent with our current understanding. His work on evaporation elucidated the concept of self-mulching and produced sound and sometimes paradoxical generalizations concerning conditions that favor or retard evaporation. Largely overshadowing those achievements, however, is that he launched a theory, still accepted today, that could predict transient water content as a function of time and space. Recently discovered documents reveal some of the arguments Buckingham had with BOS officials, including the text of a two-paragraph conclusion of his famous 1907 report on soil water, and the official letter documenting rejection of that text. Strained interpersonal relations motivated the departure of Buckingham and other brilliant physicists (N.E. Dorsey, F.H. King, and Lyman Briggs) from the BOS during 1903 to 1906. Given that Buckingham and his BOS colleagues had been rapidly developing the means of quantifying unsaturated flow, these strained relations probably slowed the advancement of unsaturated flow theory. ?? Soil Science Society of America.

  14. Sodic soil properties and sunflower growth as affected by byproducts of flue gas desulfurization.

    PubMed

    Wang, Jinman; Bai, Zhongke; Yang, Peiling

    2012-01-01

    The main component of the byproducts of flue gas desulfurization (BFGD) is CaSO(4), which can be used to improve sodic soils. The effects of BFGD on sodic soil properties and sunflower growth were studied in a pot experiment. The experiment consisted of eight treatments, at four BFGD rates (0, 7.5, 15 and 22.5 t ha(-1)) and two leaching levels (750 and 1200 m(3) ha(-1)). The germination rate and yield of the sunflower increased, and the exchangeable sodium percentage (ESP), pH and total dissolved salts (TDS) in the soils decreased after the byproducts were applied. Excessive BFGD also affected sunflower germination and growth, and leaching improved reclamation efficiency. The physical and chemical properties of the reclaimed soils were best when the byproducts were applied at 7.5 t ha(-1) and water was supplied at 1200 m(3)·ha(-1). Under these conditions, the soil pH, ESP, and TDS decreased from 9.2, 63.5 and 0.65% to 7.8, 2.8 and 0.06%, and the germination rate and yield per sunflower reached 90% and 36.4 g, respectively. Salinity should be controlled by leaching when sodic soils are reclaimed with BFGD as sunflower growth is very sensitive to salinity during its seedling stage. PMID:23285042

  15. Sodic Soil Properties and Sunflower Growth as Affected by Byproducts of Flue Gas Desulfurization

    PubMed Central

    Wang, Jinman; Bai, Zhongke; Yang, Peiling

    2012-01-01

    The main component of the byproducts of flue gas desulfurization (BFGD) is CaSO4, which can be used to improve sodic soils. The effects of BFGD on sodic soil properties and sunflower growth were studied in a pot experiment. The experiment consisted of eight treatments, at four BFGD rates (0, 7.5, 15 and 22.5 t ha−1) and two leaching levels (750 and 1200 m3 ha−1). The germination rate and yield of the sunflower increased, and the exchangeable sodium percentage (ESP), pH and total dissolved salts (TDS) in the soils decreased after the byproducts were applied. Excessive BFGD also affected sunflower germination and growth, and leaching improved reclamation efficiency. The physical and chemical properties of the reclaimed soils were best when the byproducts were applied at 7.5 t ha−1 and water was supplied at 1200 m3·ha−1. Under these conditions, the soil pH, ESP, and TDS decreased from 9.2, 63.5 and 0.65% to 7.8, 2.8 and 0.06%, and the germination rate and yield per sunflower reached 90% and 36.4 g, respectively. Salinity should be controlled by leaching when sodic soils are reclaimed with BFGD as sunflower growth is very sensitive to salinity during its seedling stage. PMID:23285042

  16. Observational Evidence that Soil Moisture Variations Affect Precipitation

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Suarez, Max J.; Higgins, R. Wayne; VandenDool, Huug M.

    2002-01-01

    Land-atmosphere feedback, by which precipitation-induced soil moisture anomalies affect subsequent precipitation, may be an important element of Earth's climate system, but its very existence has never been demonstrated conclusively at regional to continental scales. Evidence for the feedback is sought in a 50-year observational precipitation dataset covering the United States. The precipitation variance and autocorrelation fields are characterized by features that agree (in structure, though not in magnitude) with those produced by an atmospheric general circulation model (AGCM). Because the model-generated features are known to result from land-atmosphere feedback alone, the observed features are highly suggestive of the existence of feedback in nature.

  17. Physical and Psychological Decrements Affecting Reading in the Aged.

    ERIC Educational Resources Information Center

    Wilson, Molly M.

    While reading has been recognized as a potentially useful and enjoyable pastime for the elderly, physical and psychological decrements affect the ability of the elderly to read. As the eyes age, near-point tasks become more difficult. In addition to reduced sensory intake, perceptual changes occur. The central nervous system slows, and data travel…

  18. [Effects of solar greenhouse vegetable cultivation on soil physical quality].

    PubMed

    Sun, Yan; Wang, Yi-quan; Liu, Jun; Xia, Fa-sheng; Wang, Jin-gui; Li, Jian-bo

    2011-08-01

    Taking the solar greenhouse heavy loam soil having been planted vegetables for different years at Yunyang Town in Jingyang County of Shaanxi Province as test objects, and with the uncovered vegetable soil adjacent to the greenhouse as the control, this paper studied the effects of solar greenhouse vegetable cultivation on soil physical quality. Solar greenhouse vegetable cultivation had greater effects on the bulk density of 0-30 cm soil layer (an increase in 0-10 cm soil layer and a decrease in 10-30 cm soil layer), but little effects on that of 30-40 cm soil layer. In 0-40 cm solar greenhouse soil profile, the contents of < 0.01 mm physical clay and < 0.001 mm clay were lower in upper layer than in deeper layer, indicating their downward movement, and this phenomenon was more obvious with increasing year of solar greenhouse vegetable cultivation. Within the first 5 years of solar greenhouse vegetable cultivation, soil field water capacity decreased significantly, with a decrement of 13.8%, but remained relatively stable after then.

  19. Macrofauna assemblage composition and soil moisture interact to affect soil ecosystem functions

    NASA Astrophysics Data System (ADS)

    Collison, E. J.; Riutta, T.; Slade, E. M.

    2013-02-01

    Changing climatic conditions and habitat fragmentation are predicted to alter the soil moisture conditions of temperate forests. It is not well understood how the soil macrofauna community will respond to changes in soil moisture, and how changes to species diversity and community composition may affect ecosystem functions, such as litter decomposition and soil fluxes. Moreover, few studies have considered the interactions between the abiotic and biotic factors that regulate soil processes. Here we attempt to disentangle the interactive effects of two of the main factors that regulate soil processes at small scales - moisture and macrofauna assemblage composition. The response of assemblages of three common temperate soil invertebrates (Glomeris marginata Villers, Porcellio scaber Latreille and Philoscia muscorum Scopoli) to two contrasting soil moisture levels was examined in a series of laboratory mesocosm experiments. The contribution of the invertebrates to the leaf litter mass loss of two common temperate tree species of contrasting litter quality (easily decomposing Fraxinus excelsior L. and recalcitrant Quercus robur L.) and to soil CO2 fluxes were measured. Both moisture conditions and litter type influenced the functioning of the invertebrate assemblages, which was greater in high moisture conditions compared with low moisture conditions and on good quality vs. recalcitrant litter. In high moisture conditions, all macrofauna assemblages functioned at equal rates, whereas in low moisture conditions there were pronounced differences in litter mass loss among the assemblages. This indicates that species identity and assemblage composition are more important when moisture is limited. We suggest that complementarity between macrofauna species may mitigate the reduced functioning of some species, highlighting the importance of maintaining macrofauna species richness.

  20. Bacterial diversity and composition in major fresh produce growing soils affected by physiochemical properties and geographic locations.

    PubMed

    Ma, Jincai; Ibekwe, A Mark; Yang, Ching-Hong; Crowley, David E

    2016-09-01

    Microbial diversity of agricultural soils has been well documented, but information on leafy green producing soils is limited. In this study, we investigated microbial diversity and community structures in 32 (16 organic, 16 conventionally managed soils) from California (CA) and Arizona (AZ) using pyrosequencing, and identified factors affecting bacterial composition. Results of detrended correspondence analysis (DCA) and dissimilarity analysis showed that bacterial community structures of conventionally managed soils were similar to that of organically managed soils; while the bacterial community structures in soils from Salinas, California were different (P<0.05) from those in soils from Yuma, Arizona and Imperial Valley, California. Canonical correspondence analysis (CCA) and artificial neural network (ANN) analysis of bacterial community structures and soil variables showed that electrical conductivity (EC), clay content, water-holding capacity (WHC), pH, total nitrogen (TN), and organic carbon (OC) significantly (P<0.05) correlated with microbial communities. CCA based variation partitioning analysis (VPA) showed that soil physical properties (clay, EC, and WHC), soil chemical variables (pH, TN, and OC) and sampling location explained 16.3%, 12.5%, and 50.9%, respectively, of total variations in bacterial community structure, leaving 13% of the total variation unexplained. Our current study showed that bacterial community composition and diversity in major fresh produce growing soils from California and Arizona is a function of soil physiochemical characteristics and geographic distances of sampling sites.

  1. Bacterial diversity and composition in major fresh produce growing soils affected by physiochemical properties and geographic locations.

    PubMed

    Ma, Jincai; Ibekwe, A Mark; Yang, Ching-Hong; Crowley, David E

    2016-09-01

    Microbial diversity of agricultural soils has been well documented, but information on leafy green producing soils is limited. In this study, we investigated microbial diversity and community structures in 32 (16 organic, 16 conventionally managed soils) from California (CA) and Arizona (AZ) using pyrosequencing, and identified factors affecting bacterial composition. Results of detrended correspondence analysis (DCA) and dissimilarity analysis showed that bacterial community structures of conventionally managed soils were similar to that of organically managed soils; while the bacterial community structures in soils from Salinas, California were different (P<0.05) from those in soils from Yuma, Arizona and Imperial Valley, California. Canonical correspondence analysis (CCA) and artificial neural network (ANN) analysis of bacterial community structures and soil variables showed that electrical conductivity (EC), clay content, water-holding capacity (WHC), pH, total nitrogen (TN), and organic carbon (OC) significantly (P<0.05) correlated with microbial communities. CCA based variation partitioning analysis (VPA) showed that soil physical properties (clay, EC, and WHC), soil chemical variables (pH, TN, and OC) and sampling location explained 16.3%, 12.5%, and 50.9%, respectively, of total variations in bacterial community structure, leaving 13% of the total variation unexplained. Our current study showed that bacterial community composition and diversity in major fresh produce growing soils from California and Arizona is a function of soil physiochemical characteristics and geographic distances of sampling sites. PMID:27135583

  2. Microbial Carbon Cycling in Permafrost-Affected Soils

    SciTech Connect

    Vishnivetskaya, T.; Liebner, Susanne; Wilhelm, Ronald; Wagner, Dirk

    2011-01-01

    The Arctic plays a key role in Earth s climate system as global warming is predicted to be most pronounced at high latitudes and because one third of the global carbon pool is stored in ecosystems of the northern latitudes. In order to improve our understanding of the present and future carbon dynamics in climate sensitive permafrost ecosystems, present studies concentrate on investigations of microbial controls of greenhouse gas fluxes, on the activity and structure of the involved microbial communities, and on their response to changing environmental conditions. Permafrost-affected soils can function as both a source and a sink for carbon dioxide and methane. Under anaerobic conditions, caused by flooding of the active layer and the effect of backwater above the permafrost table, the mineralization of organic matter can only be realized stepwise by specialized microorganisms. Important intermediates of the organic matter decomposition are hydrogen, carbon dioxide and acetate, which can be further reduced to methane by methanogenic archaea. Evolution of methane fluxes across the subsurface/atmosphere boundary will thereby strongly depend on the activity of anaerobic methanogenic archaea and obligately aerobic methane oxidizing proteobacteria, which are known to be abundant and to significantly reduce methane emissions in permafrost-affected soils. Therefore current studies on methane-cycling microorganisms are the object of particular attention in permafrost studies, because of their key role in the Arctic methane cycle and consequently of their significance for the global methane budget.

  3. Physical and mechanical properties of the lunar soil (a review)

    NASA Astrophysics Data System (ADS)

    Slyuta, E. N.

    2014-09-01

    We review the data on the physical and mechanical properties of the lunar soil that were acquired in the direct investigations on the lunar surface carried out in the manned and automatic missions and in the laboratory examination of the lunar samples returned to the Earth. In justice to the American manned program Apollo, we show that a large volume of the data on the properties of the lunar soil was also obtained in the Soviet automatic program Lunokhod and with the automatic space stations Luna-16, -20, and -24 that returned the lunar soil samples to the Earth. We consider all of the main physical and mechanical properties of the lunar soil, such as the granulometric composition, density and porosity, cohesion and adhesion, angle of internal friction, shear strength of loose soil, deformation characteristics (the deformation modulus and Poisson ratio), compressibility, and the bearing capacity, and show the change of some properties versus the depth. In most cases, the analytical dependence of the main parameters is presented, which is required in developing reliable engineering models of the lunar soil. The main physical and mechanical properties are listed in the summarizing table, and the currently available models and simulants of the lunar soil are reviewed.

  4. Estimating Soil Cation Exchange Capacity from Soil Physical and Chemical Properties

    NASA Astrophysics Data System (ADS)

    Bateni, S. M.; Emamgholizadeh, S.; Shahsavani, D.

    2014-12-01

    The soil Cation Exchange Capacity (CEC) is an important soil characteristic that has many applications in soil science and environmental studies. For example, CEC influences soil fertility by controlling the exchange of ions in the soil. Measurement of CEC is costly and difficult. Consequently, several studies attempted to obtain CEC from readily measurable soil physical and chemical properties such as soil pH, organic matter, soil texture, bulk density, and particle size distribution. These studies have often used multiple regression or artificial neural network models. Regression-based models cannot capture the intricate relationship between CEC and soil physical and chemical attributes and provide inaccurate CEC estimates. Although neural network models perform better than regression methods, they act like a black-box and cannot generate an explicit expression for retrieval of CEC from soil properties. In a departure with regression and neural network models, this study uses Genetic Expression Programming (GEP) and Multivariate Adaptive Regression Splines (MARS) to estimate CEC from easily measurable soil variables such as clay, pH, and OM. CEC estimates from GEP and MARS are compared with measurements at two field sites in Iran. Results show that GEP and MARS can estimate CEC accurately. Also, the MARS model performs slightly better than GEP. Finally, a sensitivity test indicates that organic matter and pH have respectively the least and the most significant impact on CEC.

  5. Soil physical properties: Key factors for successful reclamation of disturbed landscapes

    NASA Astrophysics Data System (ADS)

    Krümmelbein, Julia; Raab, Thomas

    2013-04-01

    The practice of open cast mining, e.g. for lignite, results in major landscape disturbances and especially affects soils because relocation and subsequent mixing of naturally developed soil horizons leads to areas with extremely altered soil properties compared to the undisturbed conditions. Various reclamation measures are applied to recover the reconstructed landscape for different land use options. Major parts of the post mining landscapes are used for agriculture, agroforestry or silviculture, the remaining voids of the coal mines fill successively with groundwater after mine closure and are or will be used mainly for touristic and leisure purposes. Small proportions of the post mining areas are left for natural succession, or habitats for endangered flora and fauna are initiated. In reclamation research, many studies have focused on soil chemical and biological constraints of post mining substrates and investigated factors such as unsuitable pH, in many cases very low pH, (poor) nutrient contents and (poor) biological activity. But the initial and developing soil physical parameters and functions are also key factors for the success of reclamation practices. The soil water and gas balance influence strongly the suitability of a site for the intended future land use. The mechanical stability of the soil determines the rigidity of the pore system against deforming forces and thereby the persistence of soil functions, such as water and air permeability over time. The amendment of unfavourable (initial) soil physical properties is in most cases more complex and time-consuming than e.g. optimization of pH or fertilization with nutrients. Moreover, regarding the suitability of a site e.g. as a habitat for plants or microorganisms, poor physical pre-conditions can turn substrates with perfect nutrient contents and composition and pH into infertile locations of very low productivity. We show results of an on-going field study where the effects of different

  6. Laboratory assessment of factors affecting soil clogging of soil aquifer treatment systems.

    PubMed

    Pavelic, P; Dillon, P J; Mucha, M; Nakai, T; Barry, K E; Bestland, E

    2011-05-01

    In this study the effect of soil type, level of pre-treatment, ponding depth, temperature and sunlight on clogging of soil aquifer treatment (SAT) systems was evaluated over an eight week duration in constant temperature and glasshouse environments. Of the two soil types tested, the more permeable sand media clogged more than the loam, but still retained an order of magnitude higher absolute permeability. A 6- to 8-fold difference in hydraulic loading rates was observed between the four source water types tested (one potable water and three recycled waters), with improved water quality resulting in significantly higher infiltration. Infiltration rates for ponding depths of 30 cm and 50 cm were higher than 10 cm, although for 50 cm clogging rates were higher due to greater compaction of the clogging layer. Overall, physical clogging was more significant than other forms of clogging. Microbial clogging becomes increasingly important when the particulate concentrations in the source waters are reduced through pre-treatment and for finer textured soils due to the higher specific surface area of the media. Clogging by gas binding took place in the glasshouse but not in the lab, and mechanical clogging associated with particle rearrangement was evident in the sand media but not in the loam. These results offer insight into the soil, water quality and operating conditions needed to achieve viable SAT systems.

  7. Soil Organic Carbon Pools and Stocks in Permafrost-Affected Soils on the Tibetan Plateau

    PubMed Central

    Dörfer, Corina; Kühn, Peter; Baumann, Frank; He, Jin-Sheng; Scholten, Thomas

    2013-01-01

    The Tibetan Plateau reacts particularly sensitively to possible effects of climate change. Approximately two thirds of the total area is affected by permafrost. To get a better understanding of the role of permafrost on soil organic carbon pools and stocks, investigations were carried out including both discontinuous (site Huashixia, HUA) and continuous permafrost (site Wudaoliang, WUD). Three organic carbon fractions were isolated using density separation combined with ultrasonic dispersion: the light fractions (<1.6 g cm−3) of free particulate organic matter (FPOM) and occluded particulate organic matter (OPOM), plus a heavy fraction (>1.6 g cm−3) of mineral associated organic matter (MOM). The fractions were analyzed for C, N, and their portion of organic C. FPOM contained an average SOC content of 252 g kg−1. Higher SOC contents (320 g kg−1) were found in OPOM while MOM had the lowest SOC contents (29 g kg−1). Due to their lower density the easily decomposable fractions FPOM and OPOM contribute 27% (HUA) and 22% (WUD) to the total SOC stocks. In HUA mean SOC stocks (0–30 cm depth) account for 10.4 kg m−2, compared to 3.4 kg m−2 in WUD. 53% of the SOC is stored in the upper 10 cm in WUD, in HUA only 39%. Highest POM values of 36% occurred in profiles with high soil moisture content. SOC stocks, soil moisture and active layer thickness correlated strongly in discontinuous permafrost while no correlation between SOC stocks and active layer thickness and only a weak relation between soil moisture and SOC stocks could be found in continuous permafrost. Consequently, permafrost-affected soils in discontinuous permafrost environments are susceptible to soil moisture changes due to alterations in quantity and seasonal distribution of precipitation, increasing temperature and therefore evaporation. PMID:23468904

  8. Soil organic matter dynamics under Beech and Hornbeam as affected by soil biological activity

    NASA Astrophysics Data System (ADS)

    Kooijman, A. M.; Cammeraat, L. H.

    2009-04-01

    Organic matter dynamics are highly affected both the soil fauna as well as the source of organic matter, having important consequences for the spatial heterogeneity of organic matter storage and conversion. We studied oldgrowth mixed deciduous forests in Central-Luxemburg on decalcified dolomitic marl, dominated by high-degradable hornbeam (Carpinus betulus L.) or low-degradable beech (Fagus sylvatica L.). Decomposition was measured both in the laboratory and in the field. Litter decomposition was higher for hornbeam than for beech under laboratory conditions, but especially in the field, which is mainly to be attributed to macro-fauna activity, specifically to earthworms (Lumbricus terrestris and Allolobophora species). We also investigated differences between beech and hornbeam with regard to litter input and habitat conditions. Total litter input was the same, but contribution of beech and hornbeam litter clearly differed between the two species. Also, mass of the ectorganic horizon and soil C:N ratio were significantly higher for beech, which was reflected in clear differences in the development of ectorganic profiles on top of the soil. Under beech a mull-moder was clearly present with a well developed fermentation and litter horizon, whereas under hornbeam all litter is incorporated into the soil, leaving the mineral soil surface bear in late summer (mull-type of horizon). In addition to litter quality, litter decomposition was affected by pH and soil moisture. Both pH and soil moisture were higher under hornbeam than under beech, which may reflect differences in soil development and litter quality effects over longer time scales. Under beech, dense layers of low-degradable litter may prevent erosion, and increase clay eluviation and leaching of base cations, leading to acid and dry conditions, which further decrease litter decay. Under hornbeam, the soil is not protected by a litter layer, and clay eluviation and acidification may be counteracted by erosion

  9. Soil organic matter transformation in cryoturbated horizons of permafrost affected soils

    NASA Astrophysics Data System (ADS)

    Capek, Petr; Diakova, Katerina; Dickopp, Jan-Erik; Barta, Jiri; Santruckova, Hana; Wild, Birgit; Schnecker, Joerg; Guggenberg, Georg; Gentsch, Norman; Hugelius, Gustaf; Kuhry, Peter; Lashchinsky, Nikolaj; Gittel, Antje; Schleper, Christa; Mikutta, Robert; Palmtag, Juri; Shibistova, Olga; Urich, Tim; Zimov, Sergey; Richter, Andreas

    2014-05-01

    Cryoturbated soil horizons are special feature of permafrost affected soils. These soils are known to store great amount of organic carbon and cryoturbation undoubtedly contribute to it to large extent. Despite this fact there is almost no information about soil organic matter (SOM) transformation in cryoturbated horizons. Therefore we carried out long term incubation experiment in which we inspect SOM transformation in cryoturbated as well as in organic and mineral soil horizons under different temperature and redox regimes as potential drivers. We found out that lower SOM transformation in cryoturbated horizons compared to organic horizons was mainly limited by the amount of microbial biomass, which is extremely low in absolute numbers or expressed to SOM concentration. The biochemical transformation ensured by extracellular enzymes is relatively high leading to high concentrations of dissolved organic carbon in cryoturbated horizons. Nevertheless the final step of SOM transformation leading to C mineralization to CO2 or CH4 seems to be restricted by low microbial biomass. Critical step of biochemical transformation of complex SOM is dominated by phenoloxidases, which break down complex organic compounds to simple ones. Their oxygen consumption greatly overwhelms oxygen consumption of the whole microbial community. However the phenoloxidase activity shows strong temperature response with optimum at 13.7° C. Therefore we suggest that apparent SOM stability in cryoturbated horizons, which is expressed in old C14 dated age, is caused by low amount of microbial biomass and restricted diffusion of oxygen to extracellular enzymes in field.

  10. The number comb for a soil physical properties dynamic measurement

    NASA Astrophysics Data System (ADS)

    Olechko, K.; Patiño, P.; Tarquis, A. M.

    2012-04-01

    We propose the prime numbers distribution extracted from the soil digital multiscale images and some physical properties time series as the precise indicator of the spatial and temporal dynamics under soil management changes. With this new indicator the soil dynamics can be studied as a critical phenomenon where each phase transition is estimated and modeled by the graph partitioning induced phase transition. The critical point of prime numbers distribution was correlated with the beginning of Andosols, Vertisols and saline soils physical degradation under the unsustainable soil management in Michoacan, Guanajuato and Veracruz States of Mexico. The data banks corresponding to the long time periods (between 10 and 28 years) were statistically compared by RISK 5.0 software and our own algorithms. Our approach makes us able to distill free-form natural laws of soils physical properties dynamics directly from the experimental data. The Richter (1987) and Schmidt and Lipson (2009) original approaches were very useful to design the algorithms to identify Hamiltonians, Lagrangians and other laws of geometric and momentum conservation especially for erosion case.

  11. Global Change Simulations Affect Potential Methane Oxidation in Upland Soils

    NASA Astrophysics Data System (ADS)

    Blankinship, J. C.; Hungate, B. A.

    2004-12-01

    decreased rates (p=0.014). These responses may be explained by improved soil aggregate stability in the first case, and reduced aggregate stability in the latter case. No effects of warming, elevated precipitation, elevated N deposition, or multifactor interactions were found. Among MCCE soils, similarly, no effects of elevated or reduced precipitation were found. While warming did not affect low elevation ecosystems, it did significantly decrease rates in the highest elevation mixed conifer forest (p=0.004). This suggests a vulnerability of cold-adapted CH4 oxidizing bacteria to elevated temperature. However, bacterial communities in all sampled ecosystems appear to be resistant to drier conditions and unaffected by wetter conditions. If biological oxidation is responsible for the current stability in atmospheric CH4 concentrations, then the improved function of this global CH4 sink is likely driven by indirect plant effects under elevated atmospheric CO2. Improved function, however, may be absent or reversed in future ecosystems that experience increased wildfire frequency and in high altitude and latitude ecosystems that experience rapid warming.

  12. Long-term effects of deep soil loosening on root distribution and soil physical parameters in compacted lignite mine soils

    NASA Astrophysics Data System (ADS)

    Badorreck, Annika; Krümmelbein, Julia; Raab, Thomas

    2015-04-01

    Soil compaction is a major problem of soils on dumped mining substrates in Lusatia, Germany. Deep ripping and cultivation of deep rooting plant species are considered to be effective ways of agricultural recultivation. Six years after experiment start, we studied the effect of initial deep soil loosening (i.e. down to 65 cm) on root systems of rye (Secale cereale) and alfalfa (Medicago sativa) and on soil physical parameters. We conducted a soil monolith sampling for each treatment (deep loosened and unloosened) and for each plant species (in three replicates, respectively) to determine root diameter, length density and dry mass as well as soil bulk density. Further soil physical analysis comprised water retention, hydraulic conductivity and texture in three depths. The results showed different reactions of the root systems of rye and alfalfa six years after deep ripping. In the loosened soil the root biomass of the rye was lower in depths of 20-40 cm and the root biomass of alfalfa was also decreased in depths of 20-50 cm together with a lower root diameter for both plant species. Moreover, total and fine root length density was higher for alfalfa and vice versa for rye. The soil physical parameters such as bulk density showed fewer differences, despite a higher bulk density in 30-40cm for the deep loosened rye plot which indicates a more pronounced plough pan.

  13. Soil solid materials affect the kinetics of extracellular enzymatic reactions

    NASA Astrophysics Data System (ADS)

    Lammirato, C.; Miltner, A.; Kästner, M.

    2009-04-01

    INTRODUCTION Soil solid materials affect the degradation processes of many organic compounds by decreasing the bioavailability of substrates and by interacting with degraders. The magnitude of this effect in the environment is shown by the fact that xenobiotics which are readily metabolized in aquatic environments can have long residence times in soil. Extracellular enzymatic hydrolysis of cellobiose (enzyme: beta-glucosidase from Aspergillus niger) was chosen as model degradation process since it is easier to control and more reproducible than a whole cell processes. Furthermore extracellular enzymes play an important role in the environment since they are responsible for the first steps in the degradation of organic macromolecules; beta-glucosidase is key enzyme in the degradation of cellulose and therefore it is fundamental in the carbon cycle and for soil in general. The aims of the project are: 1) quantification of solid material effect on degradation, 2) separation of the effects of minerals on enzyme (adsorption →change in activity) and substrate (adsorption →change in bioavailability). Our hypothesis is that a rate reduction in the enzymatic reaction in the presence of a solid phase results from the sum of decreased bioavailability of the substrate and decreased activity of enzyme molecules. The relative contribution of the two terms to the overall effect can vary widely depending on the chemical nature of the substrate, the properties of the enzyme and on the surface properties of the solid materials. Furthermore we hypothesize that by immobilizing the enzyme in an appropriate carrier the adsorption of enzymes to soil materials can be eliminated and that therefore immobilization can increase the overall reaction rate (activity loss caused by immobilization < activity loss caused by adsorption to soil minerals). MATERIALS AND METHODS Enzymatic kinetic experiments are carried out in homogeneous liquid systems and in heterogeneous systems where solid

  14. Importance of soil-water relation in assessment endpoint in bioremediated soils: Plant growth and soil physical properties

    SciTech Connect

    Li, X.; Sawatsky, N.

    1995-12-31

    Much effort has been focused on defining the end-point of bioremediated soils by chemical analysis (Alberta Tier 1 or CCME Guideline for Contaminated Soils) or toxicity tests. However, these tests do not completely assess the soil quality, or the capability of soil to support plant growth after bioremediation. This study compared barley (Hordeum vulgare) growth on: (i) non-contaminated, agricultural topsoil, (2) oil-contaminated soil (4% total extractable hydrocarbons, or TEH), and (3) oil-contaminated soil treated by bioremediation (< 2% TEH). Soil physical properties including water retention, water uptake, and water repellence were measured. The results indicated that the growth of barley was significantly reduced by oil-contamination of agricultural topsoil. Furthermore, bioremediation did not improve the barley yield. The lack of effects from bioremediation was attributed to development of water repellence in hydrocarbon contaminated soils. There seemed to be a critical water content around 18% to 20% in contaminated soils. Above this value the water uptake by contaminated soil was near that of the agricultural topsoil. For lower water contents, there was a strong divergence in sorptivity between contaminated and agricultural topsoil. For these soils, water availability was likely the single most important parameter controlling plant growth. This parameter should be considered in assessing endpoint of bioremediation for hydrocarbon contaminated soils.

  15. Quantifying intrinsic and extrinsic factors affecting soil erodibility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erodibility has traditionally been conceived as a soil dependent parameter that can be quantified from intrinsic soil properties that usually stay constant. Development of erosion prediction equations, from the empirical-based Universal Soil Loss Equation (USLE) to a more processed-based Water ...

  16. Organic farming and cover crops as an alternative to mineral fertilizers to improve soil physical properties

    NASA Astrophysics Data System (ADS)

    Sánchez de Cima, Diego; Luik, Anne; Reintam, Endla

    2015-10-01

    For testing how cover crops and different fertilization managements affect the soil physical properties in a plough based tillage system, a five-year crop rotation experiment (field pea, white potato, common barley undersown with red clover, red clover, and winter wheat) was set. The rotation was managed under four different farming systems: two conventional: with and without mineral fertilizers and two organic, both with winter cover crops (later ploughed and used as green manure) and one where cattle manure was added yearly. The measurements conducted were penetration resistance, soil water content, porosity, water permeability, and organic carbon. Yearly variations were linked to the number of tillage operations, and a cumulative effect of soil organic carbon in the soil as a result of the different fertilization amendments, organic or mineral. All the systems showed similar tendencies along the three years of study and differences were only found between the control and the other systems. Mineral fertilizers enhanced the overall physical soil conditions due to the higher yield in the system. In the organic systems, cover crops and cattle manure did not have a significant effect on soil physical properties in comparison with the conventional ones, which were kept bare during the winter period. The extra organic matter boosted the positive effect of crop rotation, but the higher number of tillage operations in both organic systems counteracted this effect to a greater or lesser extent.

  17. Geochemical and physical properties of wetland soils at the Savannah River site

    SciTech Connect

    Dixon, K.L; Rogers, V.A.; Conner, S.P.; Cummings, C.L.; Gladden, J.B.; Weber, J.M.

    1996-05-01

    The Savannah River Site (SRS), located in Aiken, Allendale, and Barnwell Counties, South Carolina, is a nuclear production facility operated for the U.S. Department of Energy (DOE) by Westinghouse Savannah River Company (WSRC). To facilitate future human health and ecological risk assessments, treatability studies, remedial investigations, and feasibility studies for its wetland areas, SRS needs a database of background geochemical and physical properties of wetland soils. These data are needed for comparison to data collected from wetland soils that may have been affected by SRS operations. SRS contains 36,000 acres of wetlands and an additional 5,000 acres of bottom land soils subject to flooding. Recent studies of wetland soils near various waste units at SRS show that some wetlands have been impacted by releases of contaminants resulting from SRS operations (WSRC, 1992). Waste waters originating from the operations facilities typically have been discharged into seepage basins located in upland soils, direct discharge of waste water to wetland areas has been minimal. This suggests that impacted wetland areas have been affected indirectly as a result of transport mechanisms such as surface runoff, groundwater seeps, fluvial or sediment transport, and leaching. Looney et al. (1990) conducted a study to characterize the geochemical and physical properties of upland soils and shallow sediments on the SRS. A primary objective of the upland study was to collect the data needed to assess the qualitative and quantitative impacts of SRS operations on the environment. By comparing the upland soils data to data collected from waste units located in similar soils, SRS impacts could be assessed. The data were also intended to aid in selection of remediation alternatives. Because waste units at SRS have historically been located in upland areas, wetland soils were not sampled. (Abstract Truncated)

  18. The Effects of Bentonite on the Physic Chemical Characteristics of Sandy Soils in Algeria

    NASA Astrophysics Data System (ADS)

    Reguieg Yssaad, Houcine; Belkhodja, Moulay

    In the objective to rehabilitate the degradation soils and improve the agricultural product, especially cereals and leguminous plants, in the sandy soils countries, we take an interest in the use of bentonite to ameliorate the physical and chemicals properties of these soils. To value the ecological advantage of this clay in these countries, it is proposed a study of increasing amount effect of bentonite on the physical and chemical characteristics on sandy soils. Results show that the texture of mixture tends from sandy soil under 2.5% of bentonite added to sandy silt soil under 7, 10 and 15% of bentonite. The EC increases with the amount bentonite mixture. pH does not fluctuate from one mixture to the another and tends to the alkalinity of soil; Total CaCO3 raises when the bentonite is added in the mixture but active CaCO3 decreases. The high bentonite amounts (10 and 15%) showed no effect on the total phosphorus. The mixture bentonite at 15% reduces the organic carbon and organic matter, whereas total nitrogen falls down when this mixture is enriched with bentonite. Na+ and Ca++ become higher when bentonite increases its amount; K+ reduces in all treatments then this reduction affects Mg++ only under high mixture bentonite (15%).

  19. Trace metal distribution in pristine permafrost-affected soils of the Lena River Delta and its Hinterland, Northern Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Antcibor, I.; Zubrzycki, S.; Eschenbach, A.; Kutzbach, L.; Bol'shiyanov, D.; Pfeiffer, E.-M.

    2013-02-01

    Soils are an important compartment of ecosystems and have the ability to immobilize chemicals preventing their movement to other environment compartments. Predicted climatic changes together with other anthropogenic influences on Arctic terrestrial environments may affect biogeochemical processes enhancing leaching and migration of trace elements in permafrost-affected soils. This is especially important since the Arctic ecosystems are considered to be very sensitive to climatic changes as well as to chemical contamination. This study characterizes background levels of trace metals in permafrost-affected soils of the Lena River Delta and its hinterland in northern Siberia (73.5° N-69.5° N) representing a remote region far from evident anthropogenic trace metal sources. Investigations on total element contents of iron (Fe), arsenic (As), manganese (Mn), zinc (Zn), nickel (Ni), copper (Cu), lead (Pb), cadmium (Cd), cobalt (Co) and mercury (Hg) in different soil types developed in different geological parent materials have been carried out. The highest concentrations of the majority of the measured elements were observed in soils belonging to ice-rich permafrost sediments formed during the Pleistocene (ice-complex) in the Lena River Delta region. Correlation analyses of trace metal concentrations and soil chemical and physical properties at a Holocene estuarine terrace and two modern floodplain levels in the southern-central Lena River Delta (Samoylov Island) showed that the main factors controlling the trace metal distribution in these soils are organic matter content, soil texture and contents of iron and manganese-oxides. Principal Component Analysis (PCA) revealed that soil oxides play a significant role in trace metal distribution in both top and bottom horizons. Occurrence of organic matter contributes to Cd binding in top soils and Cu binding in bottom horizons. Observed ranges of the background concentrations of the majority of trace elements were similar to

  20. Gender differences in introductory university physics performance: The influence of high school physics preparation and affect

    NASA Astrophysics Data System (ADS)

    Hazari, Zahra Sana

    The attrition of females studying physics after high school is a concern to the science education community. Most undergraduate science programs require introductory physics coursework. Thus, success in introductory physics is necessary for students to progress to higher levels of science study. Success also influences attitudes; if females are well-prepared, feel confident, and do well in introductory physics, they may be inclined to study physics further. This quantitative study using multilevel modeling focused on determining factors from high school physics preparation (content, pedagogy, and assessment) and the affective domain that influenced female and male performance in introductory university physics. The study controlled for some university/course level characteristics as well as student demographic and academic background characteristics. The data consisted of 1973 surveys from 54 introductory physics courses within 35 universities across the US. The results highlight high school physics and affective experiences that differentially influenced female and male performance. These experiences include: learning requirements, computer graphing/analysis, long written problems, everyday world examples, community projects, cumulative tests/quizzes, father's encouragement, family's belief that science leads to a better career, and the length of time students believed that high school physics would help in university physics. There were also experiences that had a similar influence on female and male performance. Positively related to performance were: covering fewer topics for longer periods of time, the history of physics as a recurring topic, physics-related videos, and test/quiz questions that involved calculations and/or were drawn from standardized tests. Negatively related to performance were: student-designed projects, reading/discussing labs the day before performing them, microcomputer based laboratories, discussion after demonstrations, and family

  1. [Inhibitory effect of DMPP on soil nitrification as affected by soil moisture content, pH and organic matter].

    PubMed

    Xue, Yan; Wu, Zhi-Jie; Zhang, Li-Li; Gong, Ping; Dong, Xin-Xin; Nie, Yan-Xia

    2012-10-01

    A laboratory incubation test with meadow brown soil was conducted to study the inhibitory effect of 3,4-dimethylpyrazole phosphate (DMPP) on soil nitrification as affected by soil moisture content (40%, 60% and 80% of the maximum field capacity), pH (4, 7 and 10), and organic matter (retained and removal). With the decrease of soil moisture content, the degradation of DMPP in soil tended to slow down, and the oxidation of soil NH4+ was more inhibited. At pH 10, more DMPP was remained in soil, and had the greatest inhibitory effect; at pH 7 and pH 4, the DMPP was lesser remained, with a smaller inhibitory effect. The removal of organic matter prolonged the remaining time of DMPP in soil, and decreased the apparent soil nitrification rate significantly.

  2. Physical and chemical effects of biochar on natural and artificial water repellent soils

    NASA Astrophysics Data System (ADS)

    Hallin, Ingrid; Douglas, Peter; Doerr, Stefan H.; Bryant, Rob; Matthews, Ian; Charbonneau, Cecile

    2014-05-01

    Water repellency (WR) affects soils worldwide. Hydrophobic compounds accumulate in soil through organic matter decomposition, microbial activity, condensation of organic compounds during vegetation fires, or through anthropogenic impacts such as oil spills. WR hinders vegetation establishment, which can lead to soil erosion and increased runoff. Biochar is currently being evaluated for its potential to increase soil carbon and as a soil amendment. To date, the effect of biochar on water repellent soils has remained largely undetermined. This study considered the potential of biochar as both a physical and chemical amendment for water repellent soils by asking two questions: does adding biochar reduce the observed degree of soil water repellency; and does biochar remove hydrophobic compounds from soil? The potential of biochar as a physical amendment to water repellent soils was evaluated by mixing 5, 10, 25 and 40% (by weight) each of coarse and fine ground biochar with two naturally water repellent soils and measuring the water drop penetration time (WDPT) for each mixture. Biochar particles beyond the range of existing soil particle diameters increased WDPT variability, which could be explained by increased surface roughness and the resulting enhancement of water repellency effects through Cassie-Baxter interactions. Overall, fine biochar was more effective at reducing water repellency: 25% w/w rendered both soils studied wettable. Removal of hydrophobic compounds by biochar was tested by mixing 1, 5, 10, 25 and 40% biochar with acid washed sand (AWS) coated with 1.2x10-5 mol octadecane and octadecanoic acid (per gram AWS, which corresponds to approximately 50 monolayers hydrophobic compound per gram AWS). Each mix stood for 1 to 30 days in a solution of pH 3, 6 or 9 before the AWS was extracted and the quantity of hydrophobic compound remaining determined by infrared spectroscopy and/or gas chromatography. Biochar successfully removed the hydrophobic compounds

  3. Key biogeochemical factors affecting soil carbon storage in Posidonia meadows

    NASA Astrophysics Data System (ADS)

    Serrano, Oscar; Ricart, Aurora M.; Lavery, Paul S.; Mateo, Miguel Angel; Arias-Ortiz, Ariane; Masque, Pere; Rozaimi, Mohammad; Steven, Andy; Duarte, Carlos M.

    2016-08-01

    Biotic and abiotic factors influence the accumulation of organic carbon (Corg) in seagrass ecosystems. We surveyed Posidonia sinuosa meadows growing in different water depths to assess the variability in the sources, stocks and accumulation rates of Corg. We show that over the last 500 years, P. sinuosa meadows closer to the upper limit of distribution (at 2-4 m depth) accumulated 3- to 4-fold higher Corg stocks (averaging 6.3 kg Corg m-2) at 3- to 4-fold higher rates (12.8 g Corg m-2 yr-1) compared to meadows closer to the deep limits of distribution (at 6-8 m depth; 1.8 kg Corg m-2 and 3.6 g Corg m-2 yr-1). In shallower meadows, Corg stocks were mostly derived from seagrass detritus (88 % in average) compared to meadows closer to the deep limit of distribution (45 % on average). In addition, soil accumulation rates and fine-grained sediment content (< 0.125 mm) in shallower meadows (2.0 mm yr-1 and 9 %, respectively) were approximately 2-fold higher than in deeper meadows (1.2 mm yr-1 and 5 %, respectively). The Corg stocks and accumulation rates accumulated over the last 500 years in bare sediments (0.6 kg Corg m-2 and 1.2 g Corg m-2 yr-1) were 3- to 11-fold lower than in P. sinuosa meadows, while fine-grained sediment content (1 %) and seagrass detritus contribution to the Corg pool (20 %) were 8- and 3-fold lower than in Posidonia meadows, respectively. The patterns found support the hypothesis that Corg storage in seagrass soils is influenced by interactions of biological (e.g., meadow productivity, cover and density), chemical (e.g., recalcitrance of Corg stocks) and physical (e.g., hydrodynamic energy and soil accumulation rates) factors within the meadow. We conclude that there is a need to improve global estimates of seagrass carbon storage accounting for biogeochemical factors driving variability within habitats.

  4. To what extent clay mineralogy affects soil aggregation? Consequences for soil organic matter stabilization

    NASA Astrophysics Data System (ADS)

    Fernandez-Ugalde, O.; Barré, P.; Hubert, F.; Virto, I.; Chenu, C.; Ferrage, E.; Caner, L.

    2012-12-01

    Aggregation is a key process for soil functioning as it influences C storage, vulnerability to erosion and water holding capacity. While the influence of soil organic C on aggregation has been documented, much less is known about the role of soil mineralogy. Soils usually contain a mixture of clay minerals with contrasted surface properties, which should result on different abilities of clay minerals to aggregation. We took advantage of the intrinsic mineral heterogeneity of a temperate Luvisol to compare the role of clay minerals (illite, smectite, kaolinite, and mixed-layer illite-smectite) in aggregation. In a first step, grassland and tilled soil samples were fractionated in water in aggregate-size classes according to the hierarchical model of aggregation (Tisdall and Oades, 1982). Clay mineralogy and organic C in the aggregate-size classes were analyzed. The results showed that interstratified minerals containing swelling phases accumulated in aggregated fractions (>2 μm) compared to free clay fractions (<2 μm) in the two land-uses. The accumulation increased from large macro-aggregates (>500 μm) to micro-aggregates (50-250 μm). C concentration and C/N ratio followed the opposite trend. These results constitute a clay mineral-based evidence for the hierarchical model of aggregation, which postulates an increasing importance of the reactivity of clay minerals in the formation of micro-aggregates compared to larger aggregates. In the latter aggregates, formation relies on the physical enmeshment of particles by fungal hyphae, and root and microbial exudates. In a second step, micro-aggregates from the tilled soil samples were submitted to increasingly disaggregating treatments by sonication to evaluate the link between their water stability and clay mineralogy. Micro-aggregates with increasing stability showed an increase of interstratified minerals containing swelling phases and C concentration for low intensities of disaggregation (from 0 to 5 J mL-1

  5. Influence of soil amendments made from digestate on soil physics and the growth of spring wheat

    NASA Astrophysics Data System (ADS)

    Dietrich, Nils; Knoop, Christine; Raab, Thomas; Krümmelbein, Julia

    2016-04-01

    Every year 13 million tons of organic wastes accumulate in Germany. These wastes are a potential alternative for the production of energy in biogas plants, especially because the financial subventions for the cultivation of renewable resources for energy production were omitted in 2014. The production of energy from biomass and organic wastes in biogas plants results in the accumulation of digestate and therefore causes the need for a sustainable strategy of the utilization of these residues. Within the scope of the BMBF-funded project 'VeNGA - Investigations for recovery and nutrient use as well as soil and plant-related effects of digestate from waste fermentation' the application of processed digestate as soil amendments is examined. Therefore we tested four different mechanical treatment processes (rolled pellets, pressed pellets, shredded compost and sieved compost) to produce soil amendments from digestate with regard to their impact on soil physics, soil chemistry and the interactions between plants and soil. Pot experiments with soil amendments were performed in the greenhouse experiment with spring wheat and in field trials with millet, mustard and forage rye. After the first year of the experiment, preliminary results indicate a positive effect of the sieved compost and the rolled pellets on biomass yield of spring wheat as compared to the other variations. First results from the Investigation on soil physics show that rolled pellets have a positive effect on the soil properties by influencing size and distribution of pores resulting in an increased water holding capacity. Further ongoing enhancements of the physical and chemical properties of the soil amendments indicate promising results regarding the ecological effects by increased root growth of spring wheat.

  6. Application of Multitemporal Remotely Sensed Soil Moisture for the Estimation of Soil Physical Properties

    NASA Technical Reports Server (NTRS)

    Mattikalli, N. M.; Engman, E. T.; Jackson, T. J.; Ahuja, L. R.

    1997-01-01

    This paper demonstrates the use of multitemporal soil moisture derived from microwave remote sensing to estimate soil physical properties. The passive microwave ESTAR instrument was employed during June 10-18, 1992, to obtain brightness temperature (TB) and surface soil moisture data in the Little Washita watershed, Oklahoma. Analyses of spatial and temporal variations of TB and soil moisture during the dry-down period revealed a direct relationship between changes in T and soil moisture and soil physical (viz. texture) and hydraulic (viz. saturated hydraulic conductivity, K(sat)) properties. Statistically significant regression relationships were developed for the ratio of percent sand to percent clay (RSC) and K(sat), in terms of change components of TB and surface soil moisture. Validation of results using field measured values and soil texture map indicated that both RSC and K(sat) can be estimated with reasonable accuracy. These findings have potential applications of microwave remote sensing to obtain quick estimates of the spatial distributions of K(sat), over large areas for input parameterization of hydrologic models.

  7. Does temperature of charcoal creation affect subsequent mineralization of soil carbon and nitrogen?

    NASA Astrophysics Data System (ADS)

    Pelletier-Bergeron, S.; Bradley, R.; Munson, A. D.

    2012-04-01

    Forest fire is the most common form of natural disturbance of boreal forest ecosystems and has primordial influence on successional processes. This may be due in part to the pre-disturbance vegetation development stage and species composition, but these successional pathways could also vary with differences in fire behavior and consequently in fire intensity, defined as the energy released during various phases of a fire. Fire intensity may also affect soil C and N cycling by affecting the quality of the charcoal that is produced. For example, the porosity of coal tends to increase with increasing temperature at which it is produced Higher porosity would logically increase the surface area to which dissolved soil molecules, such as tannins and other phenolics, may be adsorbed. We report on a microcosm study in which mineral and organic soils were jointly incubated for eight weeks with a full factorial array of treatments that included the addition of Kalmia tannins, protein, and wood charcoal produced at five different temperatures. A fourth experimental factor comprised the physical arrangement of the material (stratified vs. mixed), designed to simulate the effect of soil scarification after fire and salvage harvest. We examined the effects of these treatments on soil C and N mineralisation and soil microbial biomass. The furnace temperature at which the charcoal was produced had a significant effect on its physico-chemical properties; increasing furnace temperatures corresponded to a significant increase in % C (P<0.001), and a significant decrease in %O (P<0.001) and %H (P<0.001). Temperature also had significant impacts on microporosity (surface area and volume). Temperature of production had no effect (P=0.1355) on soil microbial biomass. We observed a linear decreasing trend (P<0.001) in qCO2 with increasing temperature of production, which was mainly reflected in a decline in basal respiration. Finally, we found a significant interaction (P=0.010) between

  8. Soil Water Retention as Indicator for Soil Physical Quality - Examples from Two SoilTrEC European Critical Zone Observatories

    NASA Astrophysics Data System (ADS)

    Rousseva, Svetla; Kercheva, Milena; Shishkov, Toma; Dimitrov, Emil; Nenov, Martin; Lair, Georg J.; Moraetis, Daniel

    2014-05-01

    Soil water retention is of primary importance for majority of soil functions. The characteristics derived from Soil Water Retention Curve (SWRC) are directly related to soil structure and soil water regime and can be used as indicators for soil physical quality. The aim of this study is to present some parameters and relationships based on the SWRC data from the soil profiles characterising the European SoilTrEC Critical Zone Observatories Fuchsenbigl and Koiliaris. The studied soils are representative for highly productive soils managed as arable land in the frame of soil formation chronosequence at "Marchfeld" (Fuchsenbigl CZO), Austria and heavily impacted soils during centuries through intensive grazing and farming, under severe risk of desertification in context of climatic and lithological gradient at Koiliaris, Crete, Greece. Soil water retention at pF ≤ 2.52 was determined using the undisturbed soil cores (100 cm3 and 50 cm3) by a suction plate method. Water retention at pF = 4.2 was determined by a membrane press method and at pF ≥ 5.6 - by adsorption of water vapour at controlled relative humidity, both using ground soil samples. The soil physical quality parameter (S-parameter) was defined as the slope of the water retention curve at its inflection point (Dexter, 2006), determined with the obtained parameters of van Genuhten (1980) water retention equation. The S-parameter values were categorised to assess soil physical quality as follows: S < 0.020 very poor, 0.020 ≤ S < 0.035 poor, 0.035 ≤ S < 0.050 good, S ≥ 0.050 very good (Dexter, 2004). The results showed that most of the studied topsoil horizons have good physical quality according to both the S-parameter and the Plant-Available Water content (PAW), with the exception of the soils from croplands at CZO Fuxenbigl (F4, F5) which are with poor soil structure. The link between the S-parameter and the indicator of soil structure stability (water stable soil aggregates with size 1-3 mm) is not

  9. Do soil textural properties affect water use efficiency?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil-Plant-Environment Research (SPER) facility at USDA-ARS, Bushland, TX, was conceived by Terry A. Howell, Sr., and developed by the evapotranspiration (ET) research scientists at Bushland. It consists of a rain shelter and 48 weighing lysimeters containing monolithic soil cores of four soil ...

  10. The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau.

    PubMed

    Zhang, Xinfang; Xu, Shijian; Li, Changming; Zhao, Lin; Feng, Huyuan; Yue, Guangyang; Ren, Zhengwei; Cheng, Guogdong

    2014-01-01

    In the Tibetan permafrost region, vegetation types and soil properties have been affected by permafrost degradation, but little is known about the corresponding patterns of their soil microbial communities. Thus, we analyzed the effects of vegetation types and their covariant soil properties on bacterial and fungal community structure and membership and bacterial community-level physiological patterns. Pyrosequencing and Biolog EcoPlates were used to analyze 19 permafrost-affected soil samples from four principal vegetation types: swamp meadow (SM), meadow (M), steppe (S) and desert steppe (DS). Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria dominated bacterial communities and the main fungal phyla were Ascomycota, Basidiomycota and Mucoromycotina. The ratios of Proteobacteria/Acidobacteria decreased in the order: SM>M>S>DS, whereas the Ascomycota/Basidiomycota ratios increased. The distributions of carbon and nitrogen cycling bacterial genera detected were related to soil properties. The bacterial communities in SM/M soils degraded amines/amino acids very rapidly, while polymers were degraded rapidly by S/DS communities. UniFrac analysis of bacterial communities detected differences among vegetation types. The fungal UniFrac community patterns of SM differed from the others. Redundancy analysis showed that the carbon/nitrogen ratio had the main effect on bacteria community structures and their diversity in alkaline soil, whereas soil moisture was mainly responsible for structuring fungal communities. Thus, microbial communities and their functioning are probably affected by soil environmental change in response to permafrost degradation.

  11. Are physicians' ratings of pain affected by patients' physical attractiveness?

    PubMed

    Hadjistavropoulos, H D; Ross, M A; von Baeyer, C L

    1990-01-01

    The degree to which physical attractiveness and nonverbal expressions of pain influence physicians' perceptions of pain was investigated. Photographs of eight female university students were represented in four experimental conditions created by the manipulation of cosmetics, hairstyles, and facial expressions: (a) attractive-no pain, (b) attractive-pain, (c) unattractive-no pain, and (d) unattractive-pain. Each photograph was accompanied by a brief description of the patient's pain problem that was standard across conditions. Medical residents (N = 60) viewed the photographs and rated each patient's pain, distress, negative affective experience, health, personality, blame for the situation, and the physician's own solicitude for the patient. The results showed that physicians' ratings of pain were influenced both by attractiveness of patients and by nonverbal expressions of pain. Unattractive patients, and patients who were expressing pain, were perceived as experiencing more pain, distress, and negative affective experiences than attractive patients and patients who were not expressing pain. Unattractive patients also received higher ratings of solicitude on the doctor's part and lower ratings of health than attractive patients. Physician's assessments of pain appear to be influenced by the physical attractiveness of the patient. PMID:2367884

  12. Are physicians' ratings of pain affected by patients' physical attractiveness?

    PubMed

    Hadjistavropoulos, H D; Ross, M A; von Baeyer, C L

    1990-01-01

    The degree to which physical attractiveness and nonverbal expressions of pain influence physicians' perceptions of pain was investigated. Photographs of eight female university students were represented in four experimental conditions created by the manipulation of cosmetics, hairstyles, and facial expressions: (a) attractive-no pain, (b) attractive-pain, (c) unattractive-no pain, and (d) unattractive-pain. Each photograph was accompanied by a brief description of the patient's pain problem that was standard across conditions. Medical residents (N = 60) viewed the photographs and rated each patient's pain, distress, negative affective experience, health, personality, blame for the situation, and the physician's own solicitude for the patient. The results showed that physicians' ratings of pain were influenced both by attractiveness of patients and by nonverbal expressions of pain. Unattractive patients, and patients who were expressing pain, were perceived as experiencing more pain, distress, and negative affective experiences than attractive patients and patients who were not expressing pain. Unattractive patients also received higher ratings of solicitude on the doctor's part and lower ratings of health than attractive patients. Physician's assessments of pain appear to be influenced by the physical attractiveness of the patient.

  13. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil.

    PubMed

    Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2016-06-15

    The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling. PMID:26974565

  14. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil.

    PubMed

    Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2016-06-15

    The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling.

  15. Restoring a landscape to reduce erosion-induced variability in soil properties affecting productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In hilly landscapes, tillage and water erosion can combine to induce large variability in soil productivity at the field scale. Approaches to manage this variability have been proposed, including restoring the landscape by physically moving soil from areas of net deposition to areas of net soil loss...

  16. Restoration of eroded landscapes to reduce variability in soil properties affecting productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In hilly landscapes, tillage and water erosion combine to induce large variability in soil productivity at the field scale. Approaches to manage this variability have been proposed, including restoring the landscape by physically moving soil from areas of net deposition to areas of net soil loss. We...

  17. On the structural factors of soil humic matter related to soil water repellence in fire-affected soils

    NASA Astrophysics Data System (ADS)

    Almendros, G.; González-Vila, F. J.; González-Pérez, J. A.; Knicker, H.; De la Rosa, J. M.; Dettweiler, C.; Hernández, Z.

    2012-04-01

    In order to elucidate the impact of forest fires on physical and chemical properties of the soils as well as on the chemical composition of the soil organic matter, samples from two Mediterranean soils with contrasted characteristics and vegetation (O horizon, Lithic Leptosols under Quercus ilex and Pinus pinaster) and one agricultural soil (Ap horizon, Luvisol) were heated at 350 °C in laboratory conditions for three successive steps up to 600 s. The C- and N-depletion in the course of the heating showed small changes up to an oxidation time of 300 s. On the other side, and after 600 s, considerable C-losses (between 21% in the Luvisol and 50% in the Leptosols) were observed. The relatively low N-depletion ca. 4% (Luvisol) and 21% (Leptosol under pine) suggested preferential loss of C and the subsequent relative enrichment of nitrogen. Paralleling the progressive depletion of organic matter, the Leptosols showed a significant increase of both pH and electrical conductivity. The former change paralleled the rapid loss of carboxyl groups, whereas the latter point to the relative enrichment of ash with a bearing on the concentration of inorganic ions, which could be considered a positive effect for the post-fire vegetation. The quantitative and qualitative analyses by solid-state 13C NMR spectra of the humic fractions in the samples subjected to successive heating times indicate significant concentration of aromatic structures newly-formed in the course of the dehydration and cyclization of carbohydrates (accumulation of black carbon-type polycyclic aromatic structures), and probably lipids and peptides. The early decarboxylation, in addition to the depletion of O-alkyl hydrophilic constituents and further accumulation of secondary aromatic structures resulted in the dramatic increase in the soil water drop penetration time. It was confirmed that this enhancement of the soil hydrophobicity is not related to an increased concentration of soil free lipid, but is

  18. Physical separations soil washing system cold test results

    SciTech Connect

    McGuire, J.P.

    1993-07-28

    This test summary describes the objectives, methodology, and results of a physical separations soil-washing system setup and shakedown test using uncontaminated soil. The test is being conducted in preparation for a treatability test to be conducted in the North Pond of the 300-FF-1 Operable Unit. It will be used to assess the feasibility of using a physical separations process to reduce the volume of contaminated soils in the 300-FF-1 Operable Unit. The test is described in DOE-RL (1993). The setup test was conducted at an uncontrolled area located approximately 3.2 km northwest of the 300-FF-1 Operable Unit. The material processed was free of contamination. The physical separation equipment to be used in the test was transferred to the US Department of Energy (DOE) by the US Environmental Protection Agency (EPA) Risk Reduction Engineering Laboratory. On May 13, 1993, soil-washing equipment was moved to the cold test location. Design assistance and recommendation for operation was provided by the EPA.

  19. Spatial variability structure of soil CO2 emission and soil physical and chemical properties characterized by fractal dimension in sugarcane areas

    NASA Astrophysics Data System (ADS)

    Bicalho, E. S.; Teixeira, D. B.; Panosso, A. R.; Perillo, L. I.; Iamaguti, J. L.; Pereira, G. T.; La Scala, N., Jr.

    2012-04-01

    Soil CO2 emission (FCO2) is influenced by chemical, physical and biological factors that affect the production of CO2 in the soil and its transport to the atmosphere, varying in time and space depending on environmental conditions, including the management of agricultural area. The aim of this study was to investigate the structure of spatial variability of FCO2 and soil properties by using fractal dimension (DF), derived from isotropic variograms at different scales, and construction of fractograms. The experimental area consisted of a regular grid of 60 × 60 m on sugarcane area under green management, containing 141 points spaced at minimum distances ranging from 0.5 to 10 m. Soil CO2 emission, soil temperature and soil moisture were evaluated over a period of 7 days, and soil chemical and physical properties were determined by sampling at a depth of 0.0 to 0.1 m. FCO2 showed an overall average of 1.51 µmol m-2 s-1, correlated significantly (p < 0.05) with soil physical factors such as soil bulk density, air-filled pore space, macroporosity and microporosity. Significant DF values were obtained in the characterization of FCO2 in medium and large scales (from 20 m). Variations in DF with the scale, which is the fractogram, indicate that the structure of FCO2 variability is similar to that observed for the soil temperature and total pore volume, and reverse for the other soil properties, except for macroporosity, sand content, soil organic matter, carbon stock, C/N ratio and CEC, which fractograms were not significantly correlated to the FCO2 fractogram. Thus, the structure of spatial variability for most soil properties, characterized by fractogram, presents a significant relationship with the structure of spatial variability of FCO2, generally with similar or dissimilar behavior, indicating the possibility of using the fractogram as tool to better observe the behavior of the spatial dependence of the variables along the scale.

  20. Atmospheric Deposition of Heavy Metals in Soil Affected by Different Soil Uses of Southern Spain

    NASA Astrophysics Data System (ADS)

    Acosta, J. A.; Faz, A.; Martínez-Martínez, S.; Bech, J.

    2009-04-01

    Heavy metals are a natural constituent of rocks, sediments and soils. However, the heavy metal content of top soils is also dependent on other sources than weathering of the indigenous minerals; input from atmospheric deposition seems to be an important pathway. Atmospheric deposition is defined as the process by which atmospheric pollutants are transferred to terrestrial and aquatic surfaces and is commonly classified as either dry or wet. The interest in atmospheric deposition has increased over the past decade due to concerns about the effects of deposited materials on the environment. Dry deposition provides a significant mechanism for the removal of particles from the atmosphere and is an important pathway for the loading of heavy metals into the soil ecosystem. Within the last decade, an intensive effort has been made to determine the atmospheric heavy metal deposition in both urban and rural areas. The main objective of this study was to identification of atmospheric heavy metals deposition in soil affected by different soil uses. Study area is located in Murcia Province (southeast of Spain), in the surroundings of Murcia City. The climate is typically semiarid Mediterranean with an annual average temperature of 18°C and precipitation of 350 mm. In order to determine heavy metals atmospheric deposition a sampling at different depths (0-1 cm, 1-5 cm, 5-15 cm and 15-30 cm) was carried out in 7 sites including agricultural soils, two industrial areas and natural sites. The samples were taken to the laboratory where, dried, passed through a 2 mm sieve, and grinded. For the determination of the moisture the samples were weighed and oven dried at 105 °C for 24 h. The total amounts of metals (Pb, Cu, Pb, Zn, Cd, Mn, Ni and Cr) were determined by digesting the samples with nitric/perchoric acids and measuring with ICP-MS. Results showed that zinc contamination in some samples of industrial areas was detected, even this contamination reaches 30 cm depth; thus it is

  1. Landscape position moderates how ant nests affect hydrology and soil chemistry across a Chihuahuan Desert watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ants moderate the supply of critical resources such as water and nutrients in desert environments by changing the physical arrangement of soils during nest construction. We measured water infiltration and soil physical and chemical properties on and off the nests of two ant species (Pogonomyrmex rug...

  2. Influence of the Soil Genesis on Physical and Mechanical Properties

    PubMed Central

    Marschalko, Marian; Yilmaz, Işık; Fojtová, Lucie; Kubečka, Karel; Bouchal, Tomáš; Bednárik, Martin

    2013-01-01

    The paper deals with the influence of soil genesis on the physical-mechanical properties. The presented case study was conducted in the region of the Ostrava Basin where there is a varied genetic composition of the Quaternary geological structure on the underlying Neogeneous sediments which are sediments of analogous granulometry but different genesis. In this study, 7827 soil samples of an eolian, fluvial, glacial, and deluvial origin and their laboratory analyses results were used. The study identified different values in certain cases, mostly in coarser-grained foundation soils, such as sandy loam S4 (MS) and clayey sand F4 (CS). The soils of the fluvial origin manifest different values than other genetic types. Next, based on regression analyses, dependence was proved neither on the deposition depth (depth of samples) nor from the point of view of the individual foundation soil classes or the genetic types. The contribution of the paper is to point at the influence of genesis on the foundation soil properties so that engineering geologists and geotechnicians pay more attention to the genesis during engineering-geological and geotechnical investigations. PMID:23844398

  3. Influence of the soil genesis on physical and mechanical properties.

    PubMed

    Marschalko, Marian; Yilmaz, Işık; Fojtová, Lucie; Kubečka, Karel; Bouchal, Tomáš; Bednárik, Martin

    2013-01-01

    The paper deals with the influence of soil genesis on the physical-mechanical properties. The presented case study was conducted in the region of the Ostrava Basin where there is a varied genetic composition of the Quaternary geological structure on the underlying Neogeneous sediments which are sediments of analogous granulometry but different genesis. In this study, 7827 soil samples of an eolian, fluvial, glacial, and deluvial origin and their laboratory analyses results were used. The study identified different values in certain cases, mostly in coarser-grained foundation soils, such as sandy loam S4 (MS) and clayey sand F4 (CS). The soils of the fluvial origin manifest different values than other genetic types. Next, based on regression analyses, dependence was proved neither on the deposition depth (depth of samples) nor from the point of view of the individual foundation soil classes or the genetic types. The contribution of the paper is to point at the influence of genesis on the foundation soil properties so that engineering geologists and geotechnicians pay more attention to the genesis during engineering-geological and geotechnical investigations.

  4. The ash in forest fire affected soils control the soil losses. Part 1. The pioneer research

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Pereira, Paulo

    2013-04-01

    composition (Pereira and Úbeda, 2010) and Pereira et al., 2012). Some of the new research challenges related to ash impact in the fire affected soils are related to the ash redistribution after the fire, the impact of ash in soil and water chemistry, the temporal changes of soil erosion, the control ash exert on vegetation recovery and the role to be played by ash in the best management of fire affected land. Those topics needs new ideas and new scientists such as Paulo Pereira show in the Part II of this abstract. Acknowledgements, Lithuanian Research Council. Project LITFIRE, Fire effects on Lithuanian soils and ecosystems (MIP-48/2011) and the research projects GL2008-02879/BTE and LEDDRA 243857. References Bodí, M., Mataix-Solera, J., Doerr, S., and Cerdà, A. 2011b. The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content. Geoderma, 160, 599-607. Cerdà, A. 1998a. Postfire dynamics of erosional processes under mediterranean climatic conditions. Z. Geomorphol., 42 (3) 373-398. Cerdà, A. 1998b. Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrological Processes, 12, 1031-1042. Cerdà, A., and Doerr, S. H.2010. The effect of ant mounds on overland flow and soil erodibility following a wildfire in eastern Spain. Ecohydrology, 3, 392-401. Cerdà, A., and Doerr, S.H. 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74, 256-263. Pereira, P., and Úbeda, X. 2010. Spatial distribution of heavy metals released from ashes after a wildfire, Journal of Environment Engineering and Landscape Management, 18, 13-22. Pereira, P., Ubeda, X., Martin, D.A. 2012. Fire severity effects on ash chemical composition and extractable elements. Geoderma, 191, 105 - 114. Pérez-Cabello, F., Cerdà, A., de la Riva, J., Echeverría, M.T., García-Martín, A., Ibarra, P., Lasanta, T., Montorio

  5. Cadmium content of plants as affected by soil cadmium concentration

    SciTech Connect

    Lehoczky, E.; Szabados, I.; Marth, P.

    1996-12-31

    Pot experiments were conducted in greenhouse conditions to study the effects of increasing cadmium (Cd) levels on biomass production and Cd contents in corn, (Zea mays L.), garlic (Allium sativum L.), and spinach (Spinacia oleracea L.). Plants were grown in two soil types: Eutric cambisol soil and A gleyic luvisol soil. Spinach proved to be the most sensitive to Cd treatments as its biomass considerably decreased with the increasing Cd levels. Cadmium contents of the three crops increased with increasing levels of Cd applications. Statistical differences were observed in the Cd contents of crops depending on soil type. With the same Cd rates, Cd tissue concentration of test plants grown in the strongly acidic Gleyic luvisol soil were many times higher than that of plants grown in a neutral Eutric cambisol soil. 14 refs., 4 tabs.

  6. Soil quality index as affected by different cropping systems in northwestern Himalayas.

    PubMed

    Sofi, J A; Bhat, A G; Kirmai, N A; Wani, J A; Lone, Aabid H; Ganie, Mumtaz A; Dar, G I H

    2016-03-01

    Soil quality assessment provides a tool for evaluating the sustainability of soils under different crop cafeterias. Our objective was to develop the soil quality index for evaluating the soil quality indicators under different cropping systems in northwest Himalaya-India. Composite soil samples were taken from the study area from different cropping systems which include T1 (forest soil control), T2 (rice-oilseed, lower belts), T3 (rice-oilseed, higher belts), T4 (rice-oats), T5 (rice-fallow), T6 (maize-oats), T7 (maize-peas), T8 (apple), T9 (apple-beans), and T10 (apple-maize). Physical, chemical, and biological soil indicators were determined, and it was found that soil enzyme activities involved in nutrient cycling were significantly higher in forest soils, which were reflected in higher levels of available pool of nutrients. Carbon stocks were found significantly higher in forest soil which was translated in improved soil physical condition. Principal component analysis (PCA) was performed to reduce multidimensionality of data followed by scoring by homothetic transformation of the selected indicators. Pearson's interclass correlation was performed to avoid redundancy, and highly correlated variables were not retained. Inclusion of legumes in the apple orchard floor recorded highest soil quality rating across the treatments. Cereal-based cropping systems were found in lower soil quality rating; however, the incorporation of peas in the system improved soil health.

  7. Carbon amendment and soil depth affect the distribution and abundance of denitrifiers in agricultural soils.

    PubMed

    Barrett, M; Khalil, M I; Jahangir, M M R; Lee, C; Cardenas, L M; Collins, G; Richards, K G; O'Flaherty, V

    2016-04-01

    The nitrite reductase (nirS and nirK) and nitrous oxide reductase-encoding (nosZ) genes of denitrifying populations present in an agricultural grassland soil were quantified using real-time polymerase chain reaction (PCR) assays. Samples from three separate pedological depths at the chosen site were investigated: horizon A (0-10 cm), horizon B (45-55 cm), and horizon C (120-130 cm). The effect of carbon addition (treatment 1, control; treatment 2, glucose-C; treatment 3, dissolved organic carbon (DOC)) on denitrifier gene abundance and N2O and N2 fluxes was determined. In general, denitrifier abundance correlated well with flux measurements; nirS was positively correlated with N2O, and nosZ was positively correlated with N2 (P < 0.03). Denitrifier gene copy concentrations per gram of soil (GCC) varied in response to carbon type amendment (P < 0.01). Denitrifier GCCs were high (ca. 10(7)) and the bac:nirK, bac:nirS, bac:nir (T) , and bac:nosZ ratios were low (ca. 10(-1)/10) in horizon A in all three respective treatments. Glucose-C amendment favored partial denitrification, resulting in higher nir abundance and higher N2O fluxes compared to the control. DOC amendment, by contrast, resulted in relatively higher nosZ abundance and N2 emissions, thus favoring complete denitrification. We also noted soil depth directly affected bacterial, archaeal, and denitrifier abundance, possibly due to changes in soil carbon availability with depth.

  8. Soil biological activity as affected by tillage intensity

    NASA Astrophysics Data System (ADS)

    Gajda, A. M.; Przewłoka, B.

    2012-02-01

    The effect of tillage intensity on changes of microbiological activity and content of particulate organic matter in soil under winter wheat duirng 3 years was studied. Microbial response related to the tillage-induced changes in soil determined on the content of biomass C and N, the rate of CO2 evolution, B/F ratio, the activity of dehydrogenases, acid and alkaline phosphatases, soil C/N ratio and microbial biomass C/N ratio confirmed the high sensitivity of soil microbial populations to the tillage system applied. After three year studies, the direct sowing system enhanced the increase of labile fraction of organic matter content in soil. There were no significant changes in the labile fraction quantity observed in soil under conventional tillage. Similar response related to the tillage intensity was observed in particulate organic matter quantities expressed as a percentage of total organic matter in soil. A high correlation coefficients calculated between contents of soil microbial biomass C and N, particulate organic matter and potentially mineralizable N, and the obtained yields of winter wheat grown on experimental fields indicated on a high importance of biological quality of status of soil for agricultural crop production.

  9. Consequences of using different soil texture determination methodologies for soil physical quality and unsaturated zone time lag estimates

    NASA Astrophysics Data System (ADS)

    Fenton, O.; Vero, S.; Ibrahim, T. G.; Murphy, P. N. C.; Sherriff, S. C.; Ó hUallacháin, D.

    2015-11-01

    Elucidation of when the loss of pollutants, below the rooting zone in agricultural landscapes, affects water quality is important when assessing the efficacy of mitigation measures. Investigation of this inherent time lag (tT) is divided into unsaturated (tu) and saturated (ts) components. The duration of these components relative to each other differs depending on soil characteristics and the landscape position. The present field study focuses on tu estimation in a scenario where the saturated zone is likely to constitute a higher proportion of tT. In such instances, or where only initial breakthrough (IBT) or centre of mass (COM) is of interest, utilisation of site and depth specific "simple" textural class or actual sand-silt-clay percentages to generate soil water characteristic curves with associated soil hydraulic parameters is acceptable. With the same data it is also possible to estimate a soil physical quality (S) parameter for each soil layer which can be used to infer many other physical, chemical and biological quality indicators. In this study, hand texturing in the field was used to determine textural classes of a soil profile. Laboratory methods, including hydrometer, pipette and laser diffraction methods were used to determine actual sand-silt-clay percentages of sections of the same soil profile. Results showed that in terms of S, hand texturing resulted in a lower index value (inferring a degraded soil) than that of pipette, hydrometer and laser equivalents. There was no difference between S index values determined using the pipette, hydrometer and laser diffraction methods. The difference between the three laboratory methods on both the IBT and COM stages of tu were negligible, and in this instance were unlikely to affect either groundwater monitoring decisions, or to be of consequence from a policy perspective. When tu estimates are made over the full depth of the vadose zone, which may extend to several metres, errors resulting from the use of

  10. Consequences of using different soil texture determination methodologies for soil physical quality and unsaturated zone time lag estimates.

    PubMed

    Fenton, O; Vero, S; Ibrahim, T G; Murphy, P N C; Sherriff, S C; Ó hUallacháin, D

    2015-11-01

    Elucidation of when the loss of pollutants, below the rooting zone in agricultural landscapes, affects water quality is important when assessing the efficacy of mitigation measures. Investigation of this inherent time lag (t(T)) is divided into unsaturated (t(u)) and saturated (t(s)) components. The duration of these components relative to each other differs depending on soil characteristics and the landscape position. The present field study focuses on tu estimation in a scenario where the saturated zone is likely to constitute a higher proportion of t(T). In such instances, or where only initial breakthrough (IBT) or centre of mass (COM) is of interest, utilisation of site and depth specific "simple" textural class or actual sand-silt-clay percentages to generate soil water characteristic curves with associated soil hydraulic parameters is acceptable. With the same data it is also possible to estimate a soil physical quality (S) parameter for each soil layer which can be used to infer many other physical, chemical and biological quality indicators. In this study, hand texturing in the field was used to determine textural classes of a soil profile. Laboratory methods, including hydrometer, pipette and laser diffraction methods were used to determine actual sand-silt-clay percentages of sections of the same soil profile. Results showed that in terms of S, hand texturing resulted in a lower index value (inferring a degraded soil) than that of pipette, hydrometer and laser equivalents. There was no difference between S index values determined using the pipette, hydrometer and laser diffraction methods. The difference between the three laboratory methods on both the IBT and COM stages of t(u) were negligible, and in this instance were unlikely to affect either groundwater monitoring decisions, or to be of consequence from a policy perspective. When t(u) estimates are made over the full depth of the vadose zone, which may extend to several metres, errors resulting from

  11. Consequences of using different soil texture determination methodologies for soil physical quality and unsaturated zone time lag estimates.

    PubMed

    Fenton, O; Vero, S; Ibrahim, T G; Murphy, P N C; Sherriff, S C; Ó hUallacháin, D

    2015-11-01

    Elucidation of when the loss of pollutants, below the rooting zone in agricultural landscapes, affects water quality is important when assessing the efficacy of mitigation measures. Investigation of this inherent time lag (t(T)) is divided into unsaturated (t(u)) and saturated (t(s)) components. The duration of these components relative to each other differs depending on soil characteristics and the landscape position. The present field study focuses on tu estimation in a scenario where the saturated zone is likely to constitute a higher proportion of t(T). In such instances, or where only initial breakthrough (IBT) or centre of mass (COM) is of interest, utilisation of site and depth specific "simple" textural class or actual sand-silt-clay percentages to generate soil water characteristic curves with associated soil hydraulic parameters is acceptable. With the same data it is also possible to estimate a soil physical quality (S) parameter for each soil layer which can be used to infer many other physical, chemical and biological quality indicators. In this study, hand texturing in the field was used to determine textural classes of a soil profile. Laboratory methods, including hydrometer, pipette and laser diffraction methods were used to determine actual sand-silt-clay percentages of sections of the same soil profile. Results showed that in terms of S, hand texturing resulted in a lower index value (inferring a degraded soil) than that of pipette, hydrometer and laser equivalents. There was no difference between S index values determined using the pipette, hydrometer and laser diffraction methods. The difference between the three laboratory methods on both the IBT and COM stages of t(u) were negligible, and in this instance were unlikely to affect either groundwater monitoring decisions, or to be of consequence from a policy perspective. When t(u) estimates are made over the full depth of the vadose zone, which may extend to several metres, errors resulting from

  12. Physical vs. Chemical Weathering Controls of Soils' Capacity to Store Carbon: Hillslope Transects under Different Climatic Conditions

    NASA Astrophysics Data System (ADS)

    Yoo, K.; Wackett, A.; Amundson, R.; Heimsath, A. M.

    2015-12-01

    Soil C storage is balanced by photosynthetic production and microbial decomposition of organic matter (OM). Recently, this view has been expanded to account for the effects of physical erosion of OM in determining soil C storage. In parallel, the focus on OM quality as a primary determinant of C turnover has shifted to OM-mineral interactions. These recent advances necessitates our ability to discern how physical erosion, which controls the production, breakdown, and removal of colluvial soils, and chemical weathering, which generates secondary phyllosilicate and iron oxides, independently and collaboratively affect soils' capacity to store C. Here we present soil organic C contents and storages as a function of soil properties that are controlled by physical vs. chemical weathering processes. The study site includes two hillslopes under different climates in SW Australia. The wetter site has continuous canopy of eucalyptus, while the drier site is covered by grasses with scattered eucalyptus overstorey. The two hillslope transects share similar granodiorite parent materials and denudation rates. Bioturbation-driven soil creep appears equally effective at both sites. In eroding areas, chemical weathering has created greater mineral surface area in the soils of wetter site, while physical soil production and erosion resulted in forming the eroding soils of similar thicknesses at both sites. In the drier site, however, vegetation density varies significantly with topography-dependent soil moisture, which appears to have resulted in a soil toposequence where impacts of localized overland-flow erosion is evident through soil mineral surface area, texture, and C contents. These soil properties, in contrast, are largely homogeneous across the wetter hillslope transect presumably because of the lack of localized overland-flow erosion. As a result, at the depositional areas, the drier site exhibits greater or similar soil C storages, which sharply contrasts with the

  13. Soil-Structural Stability as Affected by Clay Mineralogy, Soil Texture and Polyacrylamide Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil-structural stability (expressed in terms of aggregate stability and pore size distribution) depends on (i) soil inherent properties, (ii) extrinsic condition prevailing in the soil that may vary temporally and spatially, and (iii) addition of soil amendments. Different soil management practices...

  14. Biosolids affect soil barium in a dryland wheat agroecosystem.

    PubMed

    Ippolito, J A; Barbarick, K A

    2006-01-01

    In December 2003, the USEPA released an amended list of 15 "candidate pollutants for exposure and hazard screening" with regard to biosolids land application, including Ba. Therefore, we decided to monitor soil Ba concentrations from a dryland wheat (Triticum aestivum L.)-fallow agroecosystem experiment. This experiment received 10 biennial biosolids applications (1982-2003) at rates from 0 to 26.8 dry Mg ha(-1) per application year. The study was conducted on a Platner loam (Aridic Paleustoll), approximately 30 km east of Brighton, CO. Total soil Ba, as measured by 4 M HNO(3), increased with increasing biosolids application rate. In the soil-extraction data from 1988 to 2003, however, we observed significant (P < 0.10) linear or exponential declines in ammonium bicarbonate-diethylenetriaminepentaacetic acid (AB-DTPA) extractable Ba concentrations as a function of increasing biosolids application rates. This was observed in 6 of 7 and 3 of 7 yr for the 0- to 20- and 20- to 60-cm soil depths, respectively. Results suggest that while total soil Ba increased as a result of biosolids application with time, the mineral form of Ba was present in forms not extractable with AB-DTPA. Scanning electron microscopy using energy dispersive spectroscopy verified soil Ba-S compounds in the soil surface, probably BaSO(4). Wet chemistry sequential extraction suggested BaCO(3) precipitation was increasing in the soil subsurface. Our research showed that biosolids application may increase total soil Ba, but soil Ba precipitates are insoluble and should not be an environmental concern in similar soils under similar climatic and management conditions. PMID:17071904

  15. Different Degrees of Plant Invasion Significantly Affect the Richness of the Soil Fungal Community

    PubMed Central

    Si, Chuncan; Liu, Xueyan; Wang, Congyan; Wang, Lei; Dai, Zhicong; Qi, Shanshan; Du, Daolin

    2013-01-01

    Several studies have shown that soil microorganisms play a key role in the success of plant invasion. Thus, ecologists have become increasingly interested in understanding the ecological effects of biological invasion on soil microbial communities given continuing increase in the effects of invasive plants on native ecosystems. This paper aims to provide a relatively complete depiction of the characteristics of soil microbial communities under different degrees of plant invasion. Rhizospheric soils of the notorious invasive plant Wedelia trilobata with different degrees of invasion (uninvaded, low-degree, and high-degree using its coverage in the invaded ecosystems) were collected from five discrete areas in Hainan Province, P. R. China. Soil physicochemical properties and community structure of soil microorganisms were assessed. Low degrees of W. trilobata invasion significantly increased soil pH values whereas high degrees of invasion did not significantly affected soil pH values. Moreover, the degree of W. trilobata invasion exerted significant effects on soil Ca concentration but did not significantly change other indices of soil physicochemical properties. Low and high degrees of W. trilobata invasion increased the richness of the soil fungal community but did not pose obvious effects on the soil bacterial community. W. trilobata invasion also exerted obvious effects on the community structure of soil microorganisms that take part in soil nitrogen cycling. These changes in soil physicochemical properties and community structure of soil microbial communities mediated by different degrees of W. trilobata invasion may present significant functions in further facilitating the invasion process. PMID:24392015

  16. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status

    PubMed Central

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0–20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20–30 cm layer. Soil moisture in the 20–50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20–50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants’ ability to access nutrients and water. An

  17. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status.

    PubMed

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0-20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20-30 cm layer. Soil moisture in the 20-50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20-50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants' ability to access nutrients and water. An optimal

  18. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status.

    PubMed

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0-20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20-30 cm layer. Soil moisture in the 20-50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20-50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants' ability to access nutrients and water. An optimal

  19. [Factors affecting activation and transference of soil colloidal phosphorus and related analysis technologies].

    PubMed

    Zhao, Yue; Liang, Xin-qiang; Fu, Chao-dong; Zhu, Si-rui; Zhang, Yi-xiang; Ji, Yuan-jing

    2015-04-01

    Colloids play a key role in the transference process of phosphorus (P) in soil. Activation and transference of soil colloidal phosphorus have great effect on soil P pool and the surrounding water quality. This paper summarized the current studies on soil colloidal P, discussing the effects of the various factors (e. g., soil physical and chemical properties, fertilization, rainfall and soil amendments) on the transference of soil colloidal P. Some advanced analysis technologies (e.g., flow field-flow fractionation, transmission electron microscope-energy dispersive X-ray spectrometer, X-ray absorption near-edge structure and nuclear magnetic resonance) and methods of reducing soil colloidal P were also involved. This review would provide important information on the mechanism of soil colloidal P transference. PMID:26259473

  20. Soil organic matter composition affected by potato cropping managements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic matter is a small but important soil component. As a heterogeneous mixture of geomolecules and biomolecules, soil organic matter (SOM) can be fractionated into distinct pools with different solubility and lability. Water extractable organic matter (WEOM) fraction is the most labile and mobil...

  1. How Soil Roughness Affects Runoff and Sediment Production?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of soil surface roughness on runoff and sediment production have not been clearly quantified, mostly due to the lack of a logical separation between geometric (i.e., surface microtopography) and process (i.e., runoff generation, soil detachment by raindrop and runoff) scales. In this resea...

  2. The mechanical microenvironment in cancer: How physics affects tumours.

    PubMed

    Nagelkerke, Anika; Bussink, Johan; Rowan, Alan E; Span, Paul N

    2015-12-01

    The tumour microenvironment contributes greatly to the response of tumour cells. It consists of chemical gradients, for example of oxygen and nutrients. However, a physical environment is also present. Apart from chemical input, cells also receive physical signals. Tumours display unique mechanical properties: they are a lot stiffer than normal tissue. This may be either a cause or a consequence of cancer, but literature suggests it has a major impact on tumour cells as will be described in this review. The mechanical microenvironment may cause malignant transformation, possibly through activation of oncogenic pathways and inhibition of tumour suppressor genes. In addition, the mechanical microenvironment may promote tumour progression by influencing processes such as epithelial-to-mesenchymal transition, enhancing cell survival through autophagy, but also affects sensitivity of tumour cells to therapeutics. Furthermore, multiple intracellular signalling pathways prove sensitive to the mechanical properties of the microenvironment. It appears the increased stiffness is unlikely to be caused by increased stiffness of the tumour cells themselves. However, there are indications that tumours display a higher cell density, making them more rigid. In addition, increased matrix deposition in the tumour, as well as increased interstitial fluid pressure may account for the increased stiffness of tumours. Overall, tumour mechanics are significantly different from normal tissue. Therefore, this feature should be further explored for use in cancer prevention, detection and treatment.

  3. How surface roughness affects chemical transfer from soil to surface runoff?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil surface roughness affects transport processes, e.g., runoff generation, infiltration, sediment detachment, etc., occurring on the surface. Nevertheless, how soil roughness affects chemical transport is less known. In this study, we partitioned roughness elements into mounds which diverge water ...

  4. Physical and chemical properties of young soils of the Icelandic highlands

    NASA Astrophysics Data System (ADS)

    Gísladóttir, Guðrún; Mankasingh, Utra

    2015-04-01

    Most of the Icelandic soils are of volcanic origin, classified as andisols (carbon content 1-12%), many of which are strongly affected by erosion and so, formation of new soils is of great interest. The effect of land cover type on the weathering patterns and the formation of new soils are of interest. The southern Icelandic highlands are characterised by harsh climate, shallow soils and limited vegetation cover. We hypothesise that in the highland regions of Iceland the progression of land cover from unvegetated to vegetated sites will impact soil development. This study describes the physical and chemical properties of highland soils in Iceland. Soil samples were collected from 12 sites in September 2013, nine sites were fully vegetated and three unvegetated: grassland (G1-G8), with moss, Carex Bigelowii and dwarf shrubs, sandy fluvial wetland (S) and unvegetated gravels (M1-M3). All soils with vegetative cover were characterized by weak or structureless soil ranging in texture from loamy sand to silty clay loam, while at unvegetated sites soil texture was structureless and sandy. On average, the bulk density of soils (range 0.53 - 1.16 g cm-3) were lower at vegetated sites than unvegetated sites. The soil depth is greater in the vegetated sites, indicating greater soil development. The average % carbon (%C), % nitrogen (%N), overall % soil organic matter (%SOM), of vegetated sites were higher than for unvegetated sites, indicating the difference in soil development: vegetated sites (mean), 1.60%C, 0.10%N, 4.9%SOM; unvegetated sites (mean), 0.27%C, 0.02%N, 1.81%SOM. All soils had significant amounts of amorphous clay minerals such as allophone, imogolite, ferrihydrite or aluminium-humus complexes and also high aluminium and iron percentages, and high phosphate retention. All of which are characteristic for andisols. There were strong associations between Fe and Al and the soil C, which are indicative of Al and Fe complexed with humus or allophane and ferrihydrite

  5. Physics at Work: Decontaminating Soil by the Application of Heat

    NASA Astrophysics Data System (ADS)

    Edelstein, William A.

    1996-03-01

    Heat can increase the desorption rates and mobility of soil contaminants by orders of magnitude. In-situ heating, in conjunction with soil vapor extraction, can thereby speed up remediation enormously and has the potential to reduce contaminants to very low levels in a reasonable period of time. The low thermal conductivity of soil makes it imperative to devise an efficient strategy for heating a large volume of soil in order to achieve a complete and cost-effective cleanup. A number of heating methods have been proposed including: pumping hot gas or steam into the affected area; passing 60-Hz or radiofrequency currents through the affected volume; or putting simple thermal wells (which use electrical or gas heaters) into the ground. The use of hot gases would seem to be inefficient in coupling heat into the soil, although steam can transport and deposit substantial quantities of heat below 100 degC by virtue of water's latent heat of vaporization. 60-Hz and radiofrequency heating are attempts to deposit heat throughout the target volume. However, current converges at electrodes and power (and heating) density is significantly higher there than elsewhere. Below 100 degC, heat can be transported by steam generated near electrodes to the rest of the target volume, but there seems to be little gain vs. straight steam injection. Above 100 degC, the volume away from the electrodes tends to be heated by thermal diffusion, and there is little advantage of electrode systems over simple thermal wells. Understanding or modeling heat transport in situ is complex, particularly because of the presence of water. Water has a large latent heat and is a substantial energy sink; water plays a sizable role in heat transport (as steam); and soil permeability is significantly increased after the water is removed.

  6. Characteristic Changes in Soil CO2 Efflux Resulting from Physical Disturbance

    NASA Astrophysics Data System (ADS)

    Klapstein, S.; Risk, D. A.

    2009-12-01

    Subsoil organic matter (SOM) stability has long thought to be governed primarily by temperature and microbial dynamics with very little emphasis being placed on the contribution of physical factors to microbial metabolism. In nature, rain, invertebrate and animal action, soil moisture, mechanical disturbance, freeze-thaw, and other processes may generate a response from the microbial community due to the movement of substrate and microbes, changes in oxygen availability, solubilization, and mechanical weathering. Understanding how physical factors affect both labile and recalcitrant carbon is important for predicting future changes in the soil carbon pool, a pool that contains twice the amount of carbon than that of the atmosphere. Here, paired lab-field experiments explore the effect of changes in the physical environment and respiration of SOM in mineral soil from an 80-year old red spruce forest stand in Nova Scotia, Canada. The factors tested were substrate transport, physical abrasion, wetting, and change in oxygen availability and were carried out using the following respective disturbance methodologies; electrokinetics, mixing and vibration, wetting, and air sparging. Briefly, electrokinetics has been used in the bioremediation field and fundamentally relies on electric fields to move charged particles and microbes thereby testing the island effect proposed recently by some researchers. Physical abrasion breaks down soil aggregates and abrades SOM directly, wetting causes dissolution of SOM, and air sparging injects O2-rich air into potentially depleted regions. The response of each disturbance factor was measured by Continuous Timeseries-Forced Diffusion (CT-FD), a continuous real time CO2 emissions monitoring tool that provides high frequency data which helped capture the unique temporal properties of each disturbance. Additional supporting geochemistry and gas transport modeling experiments were carried out to help quantify and validate the impact of each

  7. How do soil physical conditions for crop growth vary over time under established contrasting tillage regimes?

    NASA Astrophysics Data System (ADS)

    Hallett, Paul; Stobart, Ron; Valentine, Tracy; George, Timothy; Morris, Nathan; Newton, Adrian; McKenzie, Blair

    2014-05-01

    When plant breeders develop modern cereal varieties for the sustainable intensification of agriculture, insufficient thought is given to the impact of tillage on soil physical conditions for crop production. In earlier work, we demonstrated that barley varieties that perform best in ploughed soil (the approach traditionally used for breeding trials) were not the same as those performing best under shallow non-inversion or zero-tillage. We also found that the Quantitative Trait Loci (QTL) associated with improved phosphorus uptake, and hence useful for marker assisted breeding, were not robust between different tillage regimes. The impact of the soil environment had greater impact than the genetics in GxE interactions. It is obvious that soil tillage should be considered when breeding the next generation of crops. Tillage may also have important impacts on carbon storage, but we found that despite greater soil carbon at shallow depths under non-inversion tillage, the carbon stored throughout the soil profile was not affected by tillage. Studies on soil tillage impacts to crop productivity and soil quality are often performed in one season, on single sites that have had insufficient time to develop. Our current research explores multiple sites, on different soils, with temporal measurements of soil physical conditions under contrasting tillage regimes. We use the oldest established contemporary tillage experiments in the United Kingdom, with all sites sharing ploughed and shallow (7cm) non-inversion tillage treatments. In eastern Scotland (Mid Pilmore), the site also has zero tillage and deep ploughing (40 cm) treatments, and was established 11 years ago. In east England there are two sites, both also having a deep non-inversion tillage treatment, and they were established 6 (New Farm Systems) and 8 (STAR) years ago. We measure a range of crop and soil properties at sowing, one month after sowing and post-harvest, including rapid lab based assays that allow high

  8. Physically-based quantitative analysis of soil erosion induced by heavy rainfall on steep slopes

    NASA Astrophysics Data System (ADS)

    Della Sala, Maria; Cuomo, Sabatino; Novità, Antonio

    2014-05-01

    Heavy rainstorms cause either shallow landslides or soil superficial erosion in steep hillslopes covered by coarse unsaturated soils (Cascini et al., 2013), even over large areas (Cuomo and Della Sala, 2013a). The triggering stage of both phenomena is related to ground infiltration, runoff and overland flow (Cuomo and Della Sala, 2013), which are key processes to be investigated. In addition, the mobilization of solid particles deserves a proper physical-based modeling whether a quantitative estimation of solid particles discharge at the outlet of mountain basin is required. In this work, the approaches for soil superficial erosion analysis are firstly reviewed; then, a relevant case study of two medium-sized mountain basins, affected by flow-like phenomena with huge consequences (Cascini et al., 2009) is presented, which motivates a parametric numerical analysis with a physically-based model carried out for a wide class of soil properties and rainfall scenarios (Cuomo et al., 2013b). The achieved results outline that the peak discharge of water and solid particles driven by overland flow depends on rainfall intensity while volumetric solid concentration within the washout is related to the morphometric features of the whole mountain basin. Furthermore, soil suction is outlined as a key factor for the spatial-temporal evolution of infiltration and runoff in the basin, also affecting the discharge of water and solid particles at the outlet of the basin. Based on these insights, selected cases are analyzed aimed to provide a wide class of possible slope erosion scenarios. It is shown that, provided the same amount of cumulated rainfall, the sequence of high and low intensity rainfall events strongly affects the time-discharge at the outlet of the basin without significant variations of the maximum volumetric solid concentration. References Cascini, L., Cuomo, S., Ferlisi, S., Sorbino, G. (2009). Detection of mechanisms for destructive landslides in Campania region

  9. Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil.

    PubMed

    Mukherjee, A; Lal, R; Zimmerman, A R

    2014-07-15

    Short and long-term impacts of biochar on soil properties under field conditions are poorly understood. In addition, there is a lack of field reports of the impacts of biochar on soil physical properties, gaseous emissions and C stability, particularly in comparison with other amendments. Thus, three amendments - biochar produced from oak at 650°C, humic acid (HA) and water treatment residual - (WTR) were added to a scalped silty-loam soil @ 0.5% (w/w) in triplicated plots under soybean. Over the 4-month active growing season, all amendments significantly increased soil pH, but the effect of biochar was the greatest. Biochar significantly increased soil-C by 7%, increased sub-nanopore surface area by 15% and reduced soil bulk density by 13% compared to control. However, only WTR amendment significantly increased soil nanopore surface area by 23% relative to the control. While total cumulative CH4 and CO2 emissions were not significantly affected by any amendment, cumulative N2O emission was significantly decreased in the biochar-amended soil (by 92%) compared to control over the growing period. Considering both the total gas emissions and the C removed from the atmosphere as crop growth and C added to the soil, WTR and HA resulted in net soil C losses and biochar as a soil C gain. However, all amendments reduced the global warming potential (GWP) of the soil and biochar addition even produced a net negative GWP effect. The short observation period, low application rate and high intra-treatment variation resulted in fewer significant effects of the amendments on the physicochemical properties of the soils than one might expect indicating further possible experimentation altering these variables. However, there was clear evidence of amendment-soil interaction processes affecting both soil properties and gaseous emissions, particularly for biochar, that might lead to greater changes with additional field emplacement time.

  10. Key biogeochemical factors affecting soil carbon storage in Posidonia meadows

    NASA Astrophysics Data System (ADS)

    Serrano, O.; Ricart, A. M.; Lavery, P. S.; Mateo, M. A.; Arias-Ortiz, A.; Masque, P.; Steven, A.; Duarte, C. M.

    2015-11-01

    Biotic and abiotic factors influence the accumulation of organic carbon (Corg) in seagrass ecosystems. We surveyed Posidonia sinuosa meadows growing in different water depths to assess the variability in the sources, stocks and accumulation rates of Corg. We show that over the last 500 years, P. sinuosa meadows closer to the upper limit of distribution (at 2-4 m depth) accumulated 3 to 4-fold higher Corg stocks (averaging 6.3 kg Corg m-2) at 3 to 4-fold higher rates (12.8 g Corg m-2 yr-1) compared to meadows closer to the deep limits of distribution (at 6-8 m depth; 1.8 kg Corg m-2 and 3.6 g Corg m-2 yr-1). In shallower meadows, Corg stores were mostly derived from seagrass detritus (88 % in average) compared to meadows closer to the deep limit of distribution (45 % on average). Also, sediment accumulation rates and fine-grained sediment content (< 0.125 mm) in shallower meadows (2.0 mm yr-1 and 9 %, respectively) were approximately 2-fold higher than in deeper meadows (1.2 mm yr-1 and 5 %, respectively). The Corg stocks and accumulation rates accumulated over the last 500 years in bare sediments (0.6 kg Corg m-2 and 1.2 g Corg m-2 yr-1) were 3 to 11-fold lower than in P. sinuosa meadows, while fine-grained sediment content (1 %) and seagrass detritus contribution to the Corg pool (20 %) were 8 and 3-fold lower than in Posidonia meadows, respectively. The patterns found support the hypotheses that Corg storage in seagrass soils is influenced by interactions of biological (e.g. meadow productivity, cover and density), chemical (e.g. recalcitrance of Corg stocks) and physical (e.g. hydrodynamic energy and sediment accumulation rates) factors within the meadow. We conclude that there is a need to improve global estimates of seagrass carbon storage accounting for biogeochemical factors driving variability within habitats.

  11. Soil salinity as affected by high-sulfate water

    SciTech Connect

    Papadopoulos, I.

    1985-11-01

    In a laboratory experiment, the author investigated both salt buildup in three soils irrigated with various amounts of water high in sulfates and also the good-quality water needed for reclaiming such soils. Salt buildup followed in two distinct stages. The first stage was marked by a sharp increase in soil salinity as ions of both high and low solubility contributed to it. Salt buildup in the second stage was substantially slower and linearly related to the concentration of highly soluble ions. The SAR measured in soils taken from the pots at the end of salinization increased with every volume of sulfate water applied. There was initially also an increase in saturated hydraulic conductivity, followed thereafter by a sharp decrease. As with salt buildup the rate of leaching of salts followed two stages. First soluble salts were readily leached. Sharp decrease of both soil solution EC and SAR occurred at this stage. Thereafter, a steady state was reached, and decrease in soil solution EC was gradual and strongly dependent on gypsum dissolution.

  12. Mycelial actinobacteria in salt-affected soils of arid territories of Ukraine and Russia

    NASA Astrophysics Data System (ADS)

    Grishko, V. N.; Syshchikova, O. V.; Zenova, G. M.; Kozhevin, P. A.; Dubrova, M. S.; Lubsanova, D. A.; Chernov, I. Yu.

    2015-01-01

    A high population density (up to hundreds of thousands or millions CFU/g soil) of mycelial bacteria (actinomycetes) is determined in salt-affected soils of arid territories of Ukraine, Russia, and Turkmenistan. Of all the studied soils, the lowest amounts of actinomycetes (thousands and tens of thousands CFU/g soil) are isolated from sor (playa) and soda solonchaks developed on the bottoms of drying salt lakes in Buryatia and in the Amu Darya Delta. Actinomycetes of the Streptomyces, Micromonospora, and Nocardiopsis genera were recorded in the studied soils. It is found that conditions of preincubation greatly affect the activity of substrate consumption by the cultures of actinomycetes. This could be attributed to changes in the metabolism of actinomycetes as a mechanism of their adaptation to the increased osmotic pressure of the medium. The alkali tolerance of halotolerant actinomycetes isolated from the salt-affected soils is experimentally proved.

  13. Physical Factors Affecting Outflow Facility Measurements in Mice

    PubMed Central

    Boussommier-Calleja, Alexandra; Li, Guorong; Wilson, Amanda; Ziskind, Tal; Scinteie, Oana Elena; Ashpole, Nicole E.; Sherwood, Joseph M.; Farsiu, Sina; Challa, Pratap; Gonzalez, Pedro; Downs, J. Crawford; Ethier, C. Ross; Stamer, W. Daniel; Overby, Darryl R.

    2015-01-01

    Purpose Mice are commonly used to study conventional outflow physiology. This study examined how physical factors (hydration, temperature, and anterior chamber [AC] deepening) influence ocular perfusion measurements in mice. Methods Outflow facility (C) and pressure-independent outflow (Fu) were assessed by multilevel constant pressure perfusion of enucleated eyes from C57BL/6 mice. To examine the effect of hydration, seven eyes were perfused at room temperature, either immersed to the limbus in saline and covered with wet tissue paper or exposed to room air. Temperature effects were examined in 12 eyes immersed in saline at 20°C or 35°C. Anterior chamber deepening was examined in 10 eyes with the cannula tip placed in the anterior versus posterior chamber (PC). Posterior bowing of the iris (AC deepening) was visualized by three-dimensional histology in perfusion-fixed C57BL/6 eyes and by spectral-domain optical coherence tomography in living CD1 mice. Results Exposure to room air did not significantly affect C, but led to a nonzero Fu that was significantly reduced upon immersion in saline. Increasing temperature from 20°C to 35°C increased C by 2.5-fold, more than could be explained by viscosity changes alone (1.4-fold). Perfusion via the AC, but not the PC, led to posterior iris bowing and increased outflow. Conclusions Insufficient hydration contributes to the appearance of pressure-independent outflow in enucleated mouse eyes. Despite the large lens, AC deepening may artifactually increase outflow in mice. Temperature-dependent metabolic processes appear to influence conventional outflow regulation. Physical factors should be carefully controlled in any outflow studies involving mice. PMID:26720486

  14. Climate change and physical disturbance manipulations result in distinct biological soil crust communities.

    PubMed

    Steven, Blaire; Kuske, Cheryl R; Gallegos-Graves, La Verne; Reed, Sasha C; Belnap, Jayne

    2015-11-01

    Biological soil crusts (biocrusts) colonize plant interspaces in many drylands and are critical to soil nutrient cycling. Multiple climate change and land use factors have been shown to detrimentally impact biocrusts on a macroscopic (i.e., visual) scale. However, the impact of these perturbations on the bacterial components of the biocrusts remains poorly understood. We employed multiple long-term field experiments to assess the impacts of chronic physical (foot trampling) and climatic changes (2°C soil warming, altered summer precipitation [wetting], and combined warming and wetting) on biocrust bacterial biomass, composition, and metabolic profile. The biocrust bacterial communities adopted distinct states based on the mechanism of disturbance. Chronic trampling decreased biomass and caused small community compositional changes. Soil warming had little effect on biocrust biomass or composition, while wetting resulted in an increase in the cyanobacterial biomass and altered bacterial composition. Warming combined with wetting dramatically altered bacterial composition and decreased Cyanobacteria abundance. Shotgun metagenomic sequencing identified four functional gene categories that differed in relative abundance among the manipulations, suggesting that climate and land use changes affected soil bacterial functional potential. This study illustrates that different types of biocrust disturbance damage biocrusts in macroscopically similar ways, but they differentially impact the resident soil bacterial communities, and the communities' functional profiles can differ depending on the disturbance type. Therefore, the nature of the perturbation and the microbial response are important considerations for management and restoration of drylands.

  15. Climate change and physical disturbance manipulations result in distinct biological soil crust communities.

    PubMed

    Steven, Blaire; Kuske, Cheryl R; Gallegos-Graves, La Verne; Reed, Sasha C; Belnap, Jayne

    2015-11-01

    Biological soil crusts (biocrusts) colonize plant interspaces in many drylands and are critical to soil nutrient cycling. Multiple climate change and land use factors have been shown to detrimentally impact biocrusts on a macroscopic (i.e., visual) scale. However, the impact of these perturbations on the bacterial components of the biocrusts remains poorly understood. We employed multiple long-term field experiments to assess the impacts of chronic physical (foot trampling) and climatic changes (2°C soil warming, altered summer precipitation [wetting], and combined warming and wetting) on biocrust bacterial biomass, composition, and metabolic profile. The biocrust bacterial communities adopted distinct states based on the mechanism of disturbance. Chronic trampling decreased biomass and caused small community compositional changes. Soil warming had little effect on biocrust biomass or composition, while wetting resulted in an increase in the cyanobacterial biomass and altered bacterial composition. Warming combined with wetting dramatically altered bacterial composition and decreased Cyanobacteria abundance. Shotgun metagenomic sequencing identified four functional gene categories that differed in relative abundance among the manipulations, suggesting that climate and land use changes affected soil bacterial functional potential. This study illustrates that different types of biocrust disturbance damage biocrusts in macroscopically similar ways, but they differentially impact the resident soil bacterial communities, and the communities' functional profiles can differ depending on the disturbance type. Therefore, the nature of the perturbation and the microbial response are important considerations for management and restoration of drylands. PMID:26276111

  16. Predicting physical and chemical water properties from relationships with watershed soil characteristics.

    PubMed

    Shirazi, M A; Boersma, L; Johnson, C B; Haggerty, P K

    2001-01-01

    The Surface Waters component of the Environmental Monitoring and Assessment Program (EMAPSW) was developed by the USEPA to evaluate the extent and condition of lakes and streams over national and regional scales. Realistically, chemical or physical water properties (WPs) such as acidity or turbidity can be field-sampled for only a small portion of all lakes and streams. However, soil characteristics (SCs) affect WPs and broad-scale soil survey data have become available in the State Soil Geographic Data Base (STATSGO). We developed models relating observed WPs to SCs to extrapolate the sampled WPs to a region, potentially reducing extensive monitoring needs. Our study region consisted of 13 northeastern and Mid-Atlantic states and contained 882 STATSGO soil map units. We used map units as the spatial component of WP analysis. The WPs were sampled in 721 randomly selected EMAPSW study sites. The watersheds of these sites represent 7.1% of the region's total area and spatially intersect 400 of its soil map units. Each intersected map unit was assigned the weighted average WPs from the corresponding watersheds. Conditional expectation models were used to extrapolate sampled WPs to 882 map units. The relative standard errors ranged from low for pH (0.8%), intermediate for total P (12.1%), and very high for chloride (54.8%). The high extrapolation errors indicate outlier conditions from natural, non-soil, or anthropogenic sources.

  17. Climate Change and Physical Disturbance Manipulations Result in Distinct Biological Soil Crust Communities

    PubMed Central

    Steven, Blaire; Gallegos-Graves, La Verne; Reed, Sasha C.; Belnap, Jayne

    2015-01-01

    Biological soil crusts (biocrusts) colonize plant interspaces in many drylands and are critical to soil nutrient cycling. Multiple climate change and land use factors have been shown to detrimentally impact biocrusts on a macroscopic (i.e., visual) scale. However, the impact of these perturbations on the bacterial components of the biocrusts remains poorly understood. We employed multiple long-term field experiments to assess the impacts of chronic physical (foot trampling) and climatic changes (2°C soil warming, altered summer precipitation [wetting], and combined warming and wetting) on biocrust bacterial biomass, composition, and metabolic profile. The biocrust bacterial communities adopted distinct states based on the mechanism of disturbance. Chronic trampling decreased biomass and caused small community compositional changes. Soil warming had little effect on biocrust biomass or composition, while wetting resulted in an increase in the cyanobacterial biomass and altered bacterial composition. Warming combined with wetting dramatically altered bacterial composition and decreased Cyanobacteria abundance. Shotgun metagenomic sequencing identified four functional gene categories that differed in relative abundance among the manipulations, suggesting that climate and land use changes affected soil bacterial functional potential. This study illustrates that different types of biocrust disturbance damage biocrusts in macroscopically similar ways, but they differentially impact the resident soil bacterial communities, and the communities' functional profiles can differ depending on the disturbance type. Therefore, the nature of the perturbation and the microbial response are important considerations for management and restoration of drylands. PMID:26276111

  18. Climate change and physical disturbance manipulations result in distinct biological soil crust communities

    USGS Publications Warehouse

    Steven, Blaire; Kuske, Cheryl R.; Gallegos-Graves, La Verne; Reed, Sasha C.; Belnap, Jayne

    2015-01-01

    Biological soil crusts (biocrusts) colonize plant interspaces in many drylands and are critical to soil nutrient cycling. Multiple climate change and land use factors have been shown to detrimentally impact biocrusts on a macroscopic (i.e., visual) scale. However, the impact of these perturbations on the bacterial components of the biocrusts remain poorly understood. We employed multiple long-term field experiments to assess the impacts of chronic physical (foot trampling) and climatic changes (2 °C soil warming, altered summer precipitation (wetting), and combined warming and wetting) on biocrust bacterial biomass, composition, and metabolic profile. The biocrust bacterial communities adopted distinct states based on the mechanism of disturbance. Chronic trampling decreased biomass and caused small community compositional change. Soil warming had little effect on biocrust biomass or composition, while wetting resulted in an increase in cyanobacterial biomass and altered bacterial composition. Warming combined with wetting dramatically altered bacterial composition and decreased cyanobacteria abundance. Shotgun metagenomic sequencing identified four functional gene categories that differed in relative abundance among the manipulations, suggesting that climate and land use changes affected soil bacterial functional potential. This study illustrates that different types of biocrust disturbance damage biocrusts in macroscopically similar ways, but they differentially impact the resident soil bacterial communities and the community functional profile can differ depending on the disturbance type. Therefore, the nature of the perturbation and the microbial response are important considerations for management and restoration of drylands.

  19. Soil structure, colloids, and chemical transport as affected by short-term reducing conditions: a laboratory study

    NASA Astrophysics Data System (ADS)

    de-Campos, A. B.; Mamedov, A. I.; Huang, C.; Wagner, L. E.

    2008-12-01

    Upland soils in the Midwestern US often undergo reducing conditions when soils are temporally flooded during the spring and remain water saturated for days or weeks. Short-term reducing conditions change the chemistry of the soil and may affect soil structure and solution chemical transport. The effects of short-term reducing conditions on chemical and physical properties of the soils, colloids, and associated chemical/nutrients transport are still not well understood and was the objective of our study. A biogeochemical reactor was built to achieve reducing conditions. Three cultivated and three uncultivated soils with different organic carbon contents were incubated in the reactor for 1 hour and 3 days under anaerobic conditions. Effects of the redox state on soil structure (pore size distribution) and drainable porosity, colloids mobility, and chemical transport were determined using high energy moisture characteristic and analytical methods. After each treatment, the soil solution was collected for redox potential (Eh), pH, and electrical conductivity (EC) measurements, and chemical analysis of metals (Ca, Mg, K), nutrients (N, P), and dissolved organic carbon. Strongly reducing conditions were achieved after 3 days of incubation and were followed by a decrease in soil porosity and an increase in pH, EC, clay dispersion, swelling, colloids mobility, and associated chemical transport. The trend for each soil depended on their initial structural stability and chemical properties. The structure of cultivated soils and the leaching of nutrients and carbon from uncultivated soils were more sensitive to the redox state. A strong correlation was found between changes in Eh and drainable porosity. The role of short-term reducing conditions on changes in redox sensitive elements, organic matter decomposition, pH, and EC and their influence on soil structure and soil particles or colloids/chemical transport for both soil groups are discussed in the paper. This study

  20. Soil-aquifer phenomena affecting groundwater under vertisols: a review

    NASA Astrophysics Data System (ADS)

    Kurtzman, D.; Baram, S.; Dahan, O.

    2016-01-01

    Vertisols are cracking clayey soils that (i) usually form in alluvial lowlands where, normally, groundwater pools into aquifers; (ii) have different types of voids (due to cracking), which make flow and transport of water, solutes and gas complex; and (iii) are regarded as fertile soils in many areas. The combination of these characteristics results in the unique soil-aquifer phenomena that are highlighted and summarized in this review. The review is divided into the following four sections: (1) soil cracks as preferential pathways for water and contaminants: in this section lysimeter-to basin-scale observations that show the significance of cracks as preferential-flow paths in vertisols, which bypass matrix blocks in the unsaturated zone, are summarized. Relatively fresh-water recharge and groundwater contamination from these fluxes and their modeling are reviewed; (2) soil cracks as deep evaporators and unsaturated-zone salinity: deep sediment samples under uncultivated vertisols in semiarid regions reveal a dry (immobile), saline matrix, partly due to enhanced evaporation through soil cracks. Observations of this phenomenon are compiled in this section and the mechanism of evapoconcentration due to air flow in the cracks is discussed; (3) impact of cultivation on flushing of the unsaturated zone and aquifer salinization: the third section examines studies reporting that land-use change of vertisols from native land to cropland promotes greater fluxes through the saline unsaturated-zone matrix, eventually flushing salts to the aquifer. Different degrees of salt flushing are assessed as well as aquifer salinization on different scales, and a comparison is made with aquifers under other soils; (4) relatively little nitrate contamination in aquifers under vertisols: in this section we turn the light on observations showing that aquifers under cultivated vertisols are somewhat resistant to groundwater contamination by nitrate (the major agriculturally related

  1. Monitoring of soil water storage along elevation transech on morphological diverse study-sites affected by soil erosion

    NASA Astrophysics Data System (ADS)

    Jaksik, Ondrej; Kodesova, Radka; Nikodem, Antonin; Fer, Miroslav; Klement, Ales; Kratina, Josef

    2015-04-01

    Soil water availability is one of the key factors determining plant growth. Spatial distribution of soil water content is influenced by many factors. For the field-scale, one of the most important factors is terrain and its shape. The goal of our study was to characterize soil water storage within the soil profile with respect to terrain attributes. Two morphologically diverse study sites were chosen, in order to monitor soil water storage during vegetation season. The first site Brumovice in located in the Southern Moravian Region. The original soil unit was Haplic Chernozem developed on loess, which was gradually degraded by soil erosion. In the steepest parts, due to substantial loss of soil material, soil is transformed to Regosol. As a result of consequently sedimentation of previously eroded material in toe slopes and terrain depressions colluvial soils are formed. The second site Vidim is placed in the Central Bohemia. Dominant soil unit in wider area is Haplic Luvisol on loess loam. Similar process of progressive soil transformation was identified. On each study site, two elevation transects were delimited, where each consists of 5 monitoring spots. Access tubes were installed in order to measure soil moisture in six different depths (10, 20, 30 40, 60 a 100 cm) using Profile Probe PR2. The monitoring was conducted during vegetation season: April - July 2012 in Brumovice and May - July 2013 in Vidim. The average soil water contents were calculated for following three layers: topsoil A (0-20 cm), subsoil B (20-40cm), and substrate (40-100cm). The soil water storage within the soil profile was also expressed. Sensors TMS3 were also used for continual soil water content monitoring in the depth of 0-15 cm. In addition undisturbed soil samples were taken from topsoil to measure soil hydraulic properties using the multistep outflow experiment. Data were used to assess retention ability of erosion affected soils. The soil water storage and particularly average

  2. Chemical Soil Physics Phenomena for Chemical Sensing of Buried UXO

    SciTech Connect

    Phelan, James, M.; Webb, Stephen W.

    1999-06-14

    Technology development efforts are under way to apply chemical sensors to discriminate inert ordnance and clutter from live munitions that remain a threat to reutilization of military ranges. However, the chemical signature is affected by multiple environmental phenomena that can enhance or reduce its presence and transport behavior, and can affect the distribution of the chemical signature in the environment. For example, the chemical can be present in the vapor, aqueous, and solid phases. The distribution of the chemical among these phases, including the spatial distribution, is key in designing appropriate detectors, e.g., gas, aqueous or solid phase sampling instruments. A fundamental understanding of the environmental conditions that affect the chemical signature is needed to describe the favorable and unfavorable conditions of a chemical detector based survey to minimize the consequences of a false negative. UXO source emission measurements are being made to estimate the chemical flux from a limited set of ordnance items. Phase partitioning analysis has been completed to show what the expected concentrations of chemical analytes would be fi-om total concentrations measured in the soil. The soil moisture content in the dry region has been shown to be critical in the attenuation of soil gas concentrations by increased sorption to soil particles. Numerical simulation tools have been adapted to include surface boundary conditions such as solar radiation, surface boundary layer (which is a function of wind speed), precipitation and evaporation, and plant cover/root density to allow transport modeling and evaluate long term processes. Results of this work will provide performance targets for sensor developers and support operational decisions regarding field deployments.

  3. Ptaquiloside in Pteridium aquilinum subsp. aquilinum and corresponding soils from the South of Italy: influence of physical and chemical features of soils on its occurrence.

    PubMed

    Zaccone, Claudio; Cavoski, Ivana; Costi, Roberta; Sarais, Giorgia; Caboni, Pierluigi; Traversa, Andreina; Miano, Teodoro M

    2014-10-15

    The bracken fern Pteridium aquilinum (L.) Kuhn, one of the most common plant species on Earth, produces a wide range of secondary metabolites including the norsesquiterpene glucoside ptaquiloside (PTA). Several studies are present in literature about eco-toxicological aspects related to PTA, whereas results about the effect of growth conditions and soil properties on the production and mobility of PTA are sometimes conflicting and further investigations are needed. The aim of the present work is to investigate the occurrence and possible fate of PTA in soils showing different physical and chemical features, and collected in several areas of the South of Italy. The PTA content was determined in both soil and fern samples by GC-MS; both the extraction protocol and recovery were previously tested through incubation studies. Soils samples were also characterized from the physical and chemical points of view in order to correlate the possible influence of soil parameters on PTA production and occurrence. PTA concentration in P. aquilinum fern seemed to be significantly affected by the availability of nutrients (mainly P) and soil pH. At the same time, PTA concentration in soil samples was always undetectable, independent of the PTA concentration in the corresponding Pteridium samples and pedo-climatic conditions. This seems to suggest the degradation of the PTA by indigenous soil microbial community, whereas incubation studies underlined a certain affinity of PTA for both organic colloids and clay/silt particles. PMID:25089695

  4. Ptaquiloside in Pteridium aquilinum subsp. aquilinum and corresponding soils from the South of Italy: influence of physical and chemical features of soils on its occurrence.

    PubMed

    Zaccone, Claudio; Cavoski, Ivana; Costi, Roberta; Sarais, Giorgia; Caboni, Pierluigi; Traversa, Andreina; Miano, Teodoro M

    2014-10-15

    The bracken fern Pteridium aquilinum (L.) Kuhn, one of the most common plant species on Earth, produces a wide range of secondary metabolites including the norsesquiterpene glucoside ptaquiloside (PTA). Several studies are present in literature about eco-toxicological aspects related to PTA, whereas results about the effect of growth conditions and soil properties on the production and mobility of PTA are sometimes conflicting and further investigations are needed. The aim of the present work is to investigate the occurrence and possible fate of PTA in soils showing different physical and chemical features, and collected in several areas of the South of Italy. The PTA content was determined in both soil and fern samples by GC-MS; both the extraction protocol and recovery were previously tested through incubation studies. Soils samples were also characterized from the physical and chemical points of view in order to correlate the possible influence of soil parameters on PTA production and occurrence. PTA concentration in P. aquilinum fern seemed to be significantly affected by the availability of nutrients (mainly P) and soil pH. At the same time, PTA concentration in soil samples was always undetectable, independent of the PTA concentration in the corresponding Pteridium samples and pedo-climatic conditions. This seems to suggest the degradation of the PTA by indigenous soil microbial community, whereas incubation studies underlined a certain affinity of PTA for both organic colloids and clay/silt particles.

  5. Quantifying the heterogeneity of soil compaction, physical soil properties and soil moisture across multiple spatial scales

    NASA Astrophysics Data System (ADS)

    Coates, Victoria; Pattison, Ian; Sander, Graham

    2016-04-01

    England's rural landscape is dominated by pastoral agriculture, with 40% of land cover classified as either improved or semi-natural grassland according to the Land Cover Map 2007. Since the Second World War the intensification of agriculture has resulted in greater levels of soil compaction, associated with higher stocking densities in fields. Locally compaction has led to loss of soil storage and an increased in levels of ponding in fields. At the catchment scale soil compaction has been hypothesised to contribute to increased flood risk. Previous research (Pattison, 2011) on a 40km2 catchment (Dacre Beck, Lake District, UK) has shown that when soil characteristics are homogeneously parameterised in a hydrological model, downstream peak discharges can be 65% higher for a heavy compacted soil than for a lightly compacted soil. However, at the catchment scale there is likely to be a significant amount of variability in compaction levels within and between fields, due to multiple controlling factors. This research focusses in on one specific type of land use (permanent pasture with cattle grazing) and areas of activity within the field (feeding area, field gate, tree shelter, open field area). The aim was to determine if the soil characteristics and soil compaction levels are homogeneous in the four areas of the field. Also, to determine if these levels stayed the same over the course of the year, or if there were differences at the end of the dry (October) and wet (April) periods. Field experiments were conducted in the River Skell catchment, in Yorkshire, UK, which has an area of 120km2. The dynamic cone penetrometer was used to determine the structural properties of the soil, soil samples were collected to assess the bulk density, organic matter content and permeability in the laboratory and the Hydrosense II was used to determine the soil moisture content in the topsoil. Penetration results show that the tree shelter is the most compacted and the open field area

  6. Soil tillage, physical disturbance and fauna population: a case study in western Iran

    NASA Astrophysics Data System (ADS)

    Moradi, Jabbar

    2015-04-01

    As a vital biological habitat for a great number of organisms and a medium for soil food web, soil has a great importance in regulating the two main life-supporting processes: production and decomposition. For more sustainable agricultural systems, understanding the mechanisms shaping soil fauna populations is of great importance specially in semi-arid regions with low organic matter soils. In this regard a two year study in 2008 and 2009 was conducted in western Iran to see the consequences of implementing three different tillage systems (conventional, minimum and no tillage) and three levels of organic matter amendment (0, 20 and 40 ton.ha-1 of cattle manure) over the population of soil fauna (i.e. earthworms, mite, springtail and nematodes) in three different sampling periods each year. In the second year BD decreased in the tillage treatments with mechanical turmoil but seems it started to increase in conventional tillage that can be due to higher decomposition of organic matter as the result of aeration and mixing of organic matter with the soil but shows a decrease pattern for the other two which can be due to less and no disturbance and as a result less elimination of soil aggregates. Observed earthworm populations were low besides of their patchy distribution that made the numbers unreliable to be interpreted. Soil mites showed no change regarding to treatments implemented which highlighted the importance of the need to observations in the suborder level and some other environmental variables. Soil springtails were reduced by soil tillage indicating their sensitivity to the disturbance in their physical habitat. Nematodes were mainly affected by organic matter. They showed an increase in their population (113 N.100g soil-1) in 2008 with application of 40 ton.ha-1 of cattle manure but in the second year because of the remaining effects of cattle manure the changes has been observed in response to the disturbance induced by tillage with the lowest numbers in

  7. Soil microbes and plant invasions—how soil-borne pathogens regulate plant populations and affect plant invasions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exotic plant invaders are a major global threat to biodiversity and ecosystem function. Here I present multiple lines of evidence suggesting that soil microbial communities affect the population growth rates of Prunus serotina in its native range and affect its invasiveness abroad. Research often ...

  8. Different tree species affect soil respiration spatial distribution in a subtropical forest of southern Taiwan

    NASA Astrophysics Data System (ADS)

    Chiang, Po-Neng; Yu, Jui-Chu; Wang, Ya-nan; Lai, Yen-Jen

    2014-05-01

    Global forests contain 69% of total carbon stored in forest soil and litter. But the carbon storage ability and release rate of warming gases of forest soil also affect global climate change. Soil carbon cycling processes are paid much attention by ecological scientists and policy makers because of the possibility of carbon being stored in soil via land use management. Soil respiration contributed large part of terrestrial carbon flux, but the relationship of soil respiration and climate change was still obscurity. Most of soil respiration researches focus on template and tropical area, little was known that in subtropical area. Afforestation is one of solutions to mitigate CO2 increase and to sequestrate CO2 in tree and soil. Therefore, the objective of this study is to clarify the relationship of tree species and soil respiration distribution in subtropical broad-leaves plantation in southern Taiwan. The research site located on southern Taiwan was sugarcane farm before 2002. The sugarcane was removed and fourteen broadleaved tree species were planted in 2002-2005. Sixteen plots (250m*250m) were set on 1 km2 area, each plot contained 4 subplots (170m2). The forest biomass (i.e. tree height, DBH) understory biomass, litter, and soil C were measured and analyzed at 2011 to 2012. Soil respiration measurement was sampled in each subplot in each month. The soil belongs to Entisol with over 60% of sandstone. The soil pH is 5.5 with low base cations because of high sand percentage. Soil carbon storage showed significantly negative relationship with soil bulk density (p<0.001) in research site. The differences of distribution of live tree C pool among 16 plots were affected by growth characteristic of tree species. Data showed that the accumulation amount of litterfall was highest in December to February and lowest in June. Different tree species planted in 16 plots, resulting in high spatial variation of litterfall amount. It also affected total amount of litterfall

  9. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition.

    PubMed

    Hendriks, Marloes; Ravenek, Janneke M; Smit-Tiekstra, Annemiek E; van der Paauw, Jan Willem; de Caluwe, Hannie; van der Putten, Wim H; de Kroon, Hans; Mommer, Liesje

    2015-08-01

    Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands. PMID:25871977

  10. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition.

    PubMed

    Hendriks, Marloes; Ravenek, Janneke M; Smit-Tiekstra, Annemiek E; van der Paauw, Jan Willem; de Caluwe, Hannie; van der Putten, Wim H; de Kroon, Hans; Mommer, Liesje

    2015-08-01

    Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands.

  11. Soil Physical Characteristics and Biological Indicators of Soil Quality Under Different Biodegradable Mulches

    NASA Astrophysics Data System (ADS)

    Schaeffer, S. M.; Flury, M.; Sintim, H.; Bandopadhyay, S.; Ghimire, S.; Bary, A.; DeBruyn, J.

    2015-12-01

    Application of conventional polyethylene (PE) mulch in crop production offers benefits of increased water use efficiency, weed control, management of certain plant diseases, and maintenance of a micro-climate conducive for plant growth. These factors improve crop yield and quality, but PE must be retrieved and safely disposed of after usage. Substituting PE with biodegradable plastic mulches (BDM) would alleviate disposal needs, and is potentially a more sustainable practice. However, knowledge of potential impacts of BDMs on agricultural soil ecosystems is needed to evaluate sustainability. We (a) monitored soil moisture and temperature dynamics, and (b) assessed soil quality upon usage of different mulches, with pie pumpkin (Cucurbita pepo) as the test crop. Experimental field trials are ongoing at two sites, one at Northwestern Washington Research and Extension Center, Mount Vernon, WA, and the other at East Tennessee Research and Education Center, Knoxville, TN. The treatments constitute four different commercial BDM products, one experimental BDM; no mulch and PE served as the controls. Soil quality parameters being examined include: organic matter content, aggregate stability, water infiltration rate, CO2 flux, pH, and extracellular enzyme activity. In addition, lysimeters were installed to examine the soil water and heat flow dynamics. We present baseline and the first field season results from this study. Mulch cover appeared to moderate soil temperatures, but biodegradable mulches also appeared to lose water more quickly than PE. All mulch types, with the exception of cellulose, reduced the diurnal fluctuations in soil temperature at 10cm depth from 1 to 4ºC. However, volumetric water content ranged from 0.10 to 0.22 m3 m-3 under the five biodegradable mulches compared to 0.22 to 0.28 m3 m-3 under conventional PE. Results from the study will be useful for management practices by providing knowledge on how different mulches impact soil physical and

  12. Sensitivity of Polygonum aviculare Seeds to Light as Affected by Soil Moisture Conditions

    PubMed Central

    Batlla, Diego; Nicoletta, Marcelo; Benech-Arnold, Roberto

    2007-01-01

    Background and Aims It has been hypothesized that soil moisture conditions could affect the dormancy status of buried weed seeds, and, consequently, their sensitivity to light stimuli. In this study, an investigation is made of the effect of different soil moisture conditions during cold-induced dormancy loss on changes in the sensitivity of Polygonum aviculare seeds to light. Methods Seeds buried in pots were stored under different constant and fluctuating soil moisture environments at dormancy-releasing temperatures. Seeds were exhumed at regular intervals during storage and were exposed to different light treatments. Changes in the germination response of seeds to light treatments during storage under the different moisture environments were compared in order to determine the effect of soil moisture on the sensitivity to light of P. aviculare seeds. Key Results Seed acquisition of low-fluence responses during dormancy release was not affected by either soil moisture fluctuations or different constant soil moisture contents. On the contrary, different soil moisture environments affected seed acquisition of very low fluence responses and the capacity of seeds to germinate in the dark. Conclusions The results indicate that under field conditions, the sensitivity to light of buried weed seeds could be affected by the soil moisture environment experienced during the dormancy release season, and this could affect their emergence pattern. PMID:17430979

  13. Drainage and leaching dynamics in a cropped hummocky soil landscape with erosion-affected pedogenesis

    NASA Astrophysics Data System (ADS)

    Gerke, Horst H.; Rieckh, Helene; Sommer, Michael

    2016-04-01

    Hummocky soil landscapes are characterized by 3D spatial patterns of soil types that result from erosion-affected pedogenesis. Due to tillage and water erosion, truncated profiles have been formed at steep and mid slopes and colluvial soils at hollows. Pedogenetic variations in soil horizons at the different hillslope positions suggested feedback effects between erosion affected soil properties, the water balances, and the crop growth and leaching rates. Water balance simulations compared uniform with hillslope position-specific crop and root growths for soils at plateau, flat mid slope, steep slope, and hollow using the Hydrus-1D program. The boundary condition data were monitored at the CarboZALF-D experimental field site, which was cropped with perennial lucerne (Medicago sativa L.) in 2013 and 2014. Crop and root growth was assumed proportional to observed leaf area index (LAI). Fluxes of dissolved organic and inorganic carbon (DOC, DIC) were obtained from simulated water fluxes and measured DOC and DIC concentrations. For the colluvic soil, the predominately upward flow led to a net input in DIC and DOC. For the truncated soils at steep slopes, a reduced crop growth caused an relative increase in drainage, suggesting an accelerated leaching, which in the long term could accelerate the soil development and more soil variations along eroding hillslopes in arable soil landscapes.

  14. How irrigation affects soil erosion estimates of RUSLE2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RUSLE2 is a robust and computationally efficient conservation planning tool that estimates soil, climate, and land management effects on sheet and rill erosion and sediment delivery from hillslopes, and also estimates the size distribution and clay enrichment of sediment delivered to the channel sys...

  15. Aminopyralid soil residues affect rotational vegetable crops in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field experiments were conducted to determine the sensitivity of bell pepper, eggplant, tomato, muskmelon, and watermelon to aminopyralid soil residues. Aminopyralid was applied at six rates ranging from 0.0014 kg ae ha 1 to 0.0448 kg ae ha 1, and vegetable crops were planted in the treated areas. ...

  16. Do long-lived ants affect soil microbial communities?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to test the hypothesis that desert ant species that build nests that remain viable at a particular point in space for more than a decade produce soil conditions that enhance microbial biomass and functional diversity. We studied the effects of a seed-harvester ant, Pogonomyrm...

  17. Does Gray-Tailed Vole Activity Affect Soil Quality?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Voles are well-known crop pests, especially when peak populations are present, but their role in soil fertility and impacts on agricultural sustainability are not well understood. Five months after the abrupt disappearance of a peak in a gray-tailed vole (Microtus canicaudus) population, we examined...

  18. Determination of Soil Hydraulic Properties Using Magnetic Resonance Techniques and Classical Soil Physics Measurements

    NASA Astrophysics Data System (ADS)

    Stingaciu, Laura R.; Weihermüller, Lutz; Pohlmeier, Andreas; Stapf, Siegfried; Vereecken, Harry

    2011-03-01

    Water and solute movement as any other transport processes through soil are influenced by the hydraulic properties of the soils. The heterogeneities of the soils imply heterogeneous spatial distribution of the hydraulic properties leading to heterogeneous distribution of soil water content. This may affects the water availability for plant growth, the groundwater contamination and nutrients losses within the root zone. The measurement techniques available today for the estimation of soil hydraulic parameters do not account for the heterogeneity of the sample and treat each measurement sample as a homogeneous representative volume. On the other side natural soils contain large heterogeneities mostly in terms of inclusions of different materials. Therefore the purpose of this study is to estimate soil hydraulic properties of a heterogeneous sample by combining classical multi-step-outflow (MSO) with magnetic resonance imaging (MRI) experiments. MSO experiments were performed on a sample filled with sand and sand-clay mixture in a coaxial structure. During each pressure application MRI images at 4.7 T (200 MHz) were recorded using a pure phase-encoding MRI sequence in order to provide information about the soil water content at specific locations within the coaxial sample. The recorded cumulative outflow and water content data were used as input data in the inversion of the MSO experiment. For the simulation and inversion of the MSO experiment we used the hydrological model HYDRUS-2D3D in which the initial hydraulic parameters of the two materials were estimated based on CPMG-T2 relaxation measurements on homogeneous sub-samples. The results show conclusively that the combination of the two MRI and MSO methods leads to a unique estimation of the hydraulic properties of two materials simultaneously.

  19. Hydrocarbon deposition and soil microflora as affected by highway traffic.

    PubMed

    Tuhácková, J; Cajthaml, T; Novák, K; Novotný, C; Mertelík, J; Sasek, V

    2001-01-01

    The proximity of a busy highway (90,000 vehicles/day) increased the amount of polycyclic aromatic hydrocarbons (PAHs) in soil at the depth of 5-15 cm from 106 ng/g as a grassland background to 3095 ng/g dry soil at the highway verge (a sum of 10 PAH species). The PAH concentration was related to the distance from the source and exhibited a biphasic character, which is interpreted in terms of bimodal distribution of the exhaust microparticles with different rates of deposition. Similarly, the tendency of benz(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, and indeno(1,2,3-cd)pyrene to decrease their proportion with distance from the highway, in contrast to phenanthrene, fluoranthene, pyrene, benzo(a)pyrene, and benzo(g,h,i)perylene, was attributed to their prevalent localisation on the heavier particle fraction. The abundance of bacteria (8.33 x background) and fungi (3.17 x background) close to the highway is thought to be a consequence of hydrocarbon deposition from the traffic that serves as a significant energetic input into the soil. The elevated concentrations of hydrocarbon substrates, as indicated by PAHs, increased both the absolute and relative numbers of the microbial degraders of diesel fuel, biphenyl, naphthalene, and pyrene. Their maximum numbers at 0.5-1.5 m from the pavement reached 1.3 x 10(4), 1.2 x 10(5), 1.1 x 10(4), and 6.6 x 10(3) colony-forming units (CFU) or infection units per gramme dry soil, respectively. On the other hand, the number of anthracene degraders (1.1 x 10(3) CFU per g dry soil) remained close to the detection limit of the enumeration technique used (0.1-0.2 x 10(3) per g dry soil), consistently with the absence of anthracene and higher linear PAHs in the investigated soil samples. The amounts of persisting PAHs justify artificial inoculation with effective degrader strains in the vicinity of motorways.

  20. The Relationship of Freshmen's Physics Achievement and Their Related Affective Characteristics

    ERIC Educational Resources Information Center

    Gungor, Almer (Abak); Eryilmaz, Ali; Fakioglu, Turgut

    2007-01-01

    The purpose of this study was to determine the best-fitting structural equation model between the freshmen's physics achievement and selected affective characteristics related to physics. These characteristics are students' situational interest in physics, personal interest in physics, aspiring extra activities related to physics, importance of…

  1. Study on the spatiotemporal variability and affecting factors in soil moisture at a humid area

    NASA Astrophysics Data System (ADS)

    Liu, H.; Yu, Z.

    2008-12-01

    The spatiotemporal variability of soil moisture and its affecting factors in a humid area were examined based on the field measuring date in the Tai lake drainage basin, China. 24 sensors near the soil surface and 12 sensors in 2 profiles (6 in each) were set up for collecting hourly soil moisture data with the Frequency Domain Reflectometry (FDR) sensors in 2006. Coefficient of variation (CV) and semi-variogram were calculated to evaluate the temporal variability in different locations and the spatial variability in different periods. The surface soil moisture appears middle or weak variability, and most of the CV values are in the range of 0.13-0.26. Soil characteristics, topography, vegetation, meteorological factors and human activities influenced the soil moisture spatiotemporal variability significantly. The factors appear having different affecting abilities on the spatiotemporal variability, and the domain factors are different in four seasons. Soil characteristics mainly influence the temporal variability in the scale of hill slope. Coarser texture on the upper part of the slope results in a larger variability. Topography and micro-topography affects the spatial variability in all 3 dimensions. The variability is larger at upper locations and chine of the slope. The effect of vegetation on the soil moisture variability is stronger in spring, summer, and autumn than in winter, according to the different growth activities and water demand. The trees on the slope influence the CV values along the slope. Meteorological factors are the forcing factors of the soil water variation. Higher rainfall and evaporation variations produce higher variability in soil moisture while the rainfall has more influence in the summer and the evaporation has more in the fall. The results provide better understanding of soil moisture variation and base for further study on how the soil moisture variation could affect the rainfall runoff partitioning.

  2. Emission and distribution of fumigants as affected by soil moistures in three different textured soils.

    PubMed

    Qin, Ruijun; Gao, Suduan; Ajwa, Husein

    2013-01-01

    Water application is a low-cost strategy to control emissions of soil fumigant to meet the requirements of the stringent environmental regulations and it is applicable for a wide range of commodity groups. Although it is known that an increase in soil moisture reduces emissions, the range of soil moisture for minimizing emissions without risking pest control, is not well defined for various types of soils. With two column studies, we determined the effect of different soil moisture levels on emission and distribution of 1,3-dichloropropene and chloropicrin in three different textured soils. Results on sandy loam and loam soils showed that by increasing soil moisture from 30% to 100% of field capacity (FC), peak fluxes were lowered by 77-88% and their occurrences were delayed 5-15 h, and cumulative emissions were reduced 24-49%. For the sandy soil, neither peak fluxes nor the cumulative emissions were significantly different when soil moisture increased from 30% to 100% FC. Compared to the drier soils, the wetter soils retained consistently higher fumigant concentrations in the gas-phase, suggesting efficacy may not be impacted in these soils. The air-filled porosity positively and linearly correlated with the cumulative emission loss across all soil types indicating that it may serve as a good indicator for estimating emissions. These laboratory findings can be further tested under field conditions to conclude what irrigation regime should be used for increasing soil water content before fumigant application that can achieve maximum emission reduction and uniform fumigant distribution with high exposure index values.

  3. Comparing the performance of various digital soil mapping approaches to map physical soil properties

    NASA Astrophysics Data System (ADS)

    Laborczi, Annamária; Takács, Katalin; Pásztor, László

    2015-04-01

    Spatial information on physical soil properties is intensely expected, in order to support environmental related and land use management decisions. One of the most widely used properties to characterize soils physically is particle size distribution (PSD), which determines soil water management and cultivability. According to their size, different particles can be categorized as clay, silt, or sand. The size intervals are defined by national or international textural classification systems. The relative percentage of sand, silt, and clay in the soil constitutes textural classes, which are also specified miscellaneously in various national and/or specialty systems. The most commonly used is the classification system of the United States Department of Agriculture (USDA). Soil texture information is essential input data in meteorological, hydrological and agricultural prediction modelling. Although Hungary has a great deal of legacy soil maps and other relevant soil information, it often occurs, that maps do not exist on a certain characteristic with the required thematic and/or spatial representation. The recent developments in digital soil mapping (DSM), however, provide wide opportunities for the elaboration of object specific soil maps (OSSM) with predefined parameters (resolution, accuracy, reliability etc.). Due to the simultaneous richness of available Hungarian legacy soil data, spatial inference methods and auxiliary environmental information, there is a high versatility of possible approaches for the compilation of a given soil map. This suggests the opportunity of optimization. For the creation of an OSSM one might intend to identify the optimum set of soil data, method and auxiliary co-variables optimized for the resources (data costs, computation requirements etc.). We started comprehensive analysis of the effects of the various DSM components on the accuracy of the output maps on pilot areas. The aim of this study is to compare and evaluate different

  4. Climate change and physical disturbance cause similar community shifts in biological soil crusts.

    PubMed

    Ferrenberg, Scott; Reed, Sasha C; Belnap, Jayne

    2015-09-29

    Biological soil crusts (biocrusts)—communities of mosses, lichens, cyanobacteria, and heterotrophs living at the soil surface—are fundamental components of drylands worldwide, and destruction of biocrusts dramatically alters biogeochemical processes, hydrology, surface energy balance, and vegetation cover. Although there has been long-standing concern over impacts of physical disturbances on biocrusts (e.g., trampling by livestock, damage from vehicles), there is increasing concern over the potential for climate change to alter biocrust community structure. Using long-term data from the Colorado Plateau, we examined the effects of 10 y of experimental warming and altered precipitation (in full-factorial design) on biocrust communities and compared the effects of altered climate with those of long-term physical disturbance (>10 y of replicated human trampling). Surprisingly, altered climate and physical disturbance treatments had similar effects on biocrust community structure. Warming, altered precipitation frequency [an increase of small (1.2 mm) summer rainfall events], and physical disturbance from trampling all promoted early successional community states marked by dramatic declines in moss cover and increases in cyanobacteria cover, with more variable effects on lichens. Although the pace of community change varied significantly among treatments, our results suggest that multiple aspects of climate change will affect biocrusts to the same degree as physical disturbance. This is particularly disconcerting in the context of warming, as temperatures for drylands are projected to increase beyond those imposed as treatments in our study.

  5. Climate change and physical disturbance cause similar community shifts in biological soil crusts.

    PubMed

    Ferrenberg, Scott; Reed, Sasha C; Belnap, Jayne

    2015-09-29

    Biological soil crusts (biocrusts)—communities of mosses, lichens, cyanobacteria, and heterotrophs living at the soil surface—are fundamental components of drylands worldwide, and destruction of biocrusts dramatically alters biogeochemical processes, hydrology, surface energy balance, and vegetation cover. Although there has been long-standing concern over impacts of physical disturbances on biocrusts (e.g., trampling by livestock, damage from vehicles), there is increasing concern over the potential for climate change to alter biocrust community structure. Using long-term data from the Colorado Plateau, we examined the effects of 10 y of experimental warming and altered precipitation (in full-factorial design) on biocrust communities and compared the effects of altered climate with those of long-term physical disturbance (>10 y of replicated human trampling). Surprisingly, altered climate and physical disturbance treatments had similar effects on biocrust community structure. Warming, altered precipitation frequency [an increase of small (1.2 mm) summer rainfall events], and physical disturbance from trampling all promoted early successional community states marked by dramatic declines in moss cover and increases in cyanobacteria cover, with more variable effects on lichens. Although the pace of community change varied significantly among treatments, our results suggest that multiple aspects of climate change will affect biocrusts to the same degree as physical disturbance. This is particularly disconcerting in the context of warming, as temperatures for drylands are projected to increase beyond those imposed as treatments in our study. PMID:26371310

  6. Climate change and physical disturbance cause similar community shifts in biological soil crusts

    USGS Publications Warehouse

    Ferrenberg, Scott; Reed, Sasha C.; Belnap, Jayne

    2015-01-01

    Biological soil crusts (biocrusts)—communities of mosses, lichens, cyanobacteria, and heterotrophs living at the soil surface—are fundamental components of drylands worldwide, and destruction of biocrusts dramatically alters biogeochemical processes, hydrology, surface energy balance, and vegetation cover. While there has been long-standing concern over impacts of 5 physical disturbances on biocrusts (e.g., trampling by livestock, damage from vehicles), there is also increasing concern over the potential for climate change to alter biocrust community structure. Using long-term data from the Colorado Plateau, USA, we examined the effects of 10 years of experimental warming and altered precipitation (in full-factorial design) on biocrust communities, and compared the effects of altered climate with those of long-term physical 10 disturbance (>10 years of replicated human trampling). Surprisingly, altered climate and physical disturbance treatments had similar effects on biocrust community structure. Warming, altered precipitation frequency [an increase of small (1.2 mm) summer rainfall events], and physical disturbance from trampling all promoted early successional community states marked by dramatic declines in moss cover and increased cyanobacteria cover, with more variable effects 15 on lichens. While the pace of community change varied significantly among treatments, our results suggest that multiple aspects of climate change will affect biocrusts to the same degree as physical disturbance. This is particularly disconcerting in the context of warming, as temperatures for drylands are projected to increase beyond those imposed by the climate treatments used in our study.

  7. Climate change and physical disturbance cause similar community shifts in biological soil crusts

    PubMed Central

    Ferrenberg, Scott; Reed, Sasha C.; Belnap, Jayne

    2015-01-01

    Biological soil crusts (biocrusts)—communities of mosses, lichens, cyanobacteria, and heterotrophs living at the soil surface—are fundamental components of drylands worldwide, and destruction of biocrusts dramatically alters biogeochemical processes, hydrology, surface energy balance, and vegetation cover. Although there has been long-standing concern over impacts of physical disturbances on biocrusts (e.g., trampling by livestock, damage from vehicles), there is increasing concern over the potential for climate change to alter biocrust community structure. Using long-term data from the Colorado Plateau, we examined the effects of 10 y of experimental warming and altered precipitation (in full-factorial design) on biocrust communities and compared the effects of altered climate with those of long-term physical disturbance (>10 y of replicated human trampling). Surprisingly, altered climate and physical disturbance treatments had similar effects on biocrust community structure. Warming, altered precipitation frequency [an increase of small (1.2 mm) summer rainfall events], and physical disturbance from trampling all promoted early successional community states marked by dramatic declines in moss cover and increases in cyanobacteria cover, with more variable effects on lichens. Although the pace of community change varied significantly among treatments, our results suggest that multiple aspects of climate change will affect biocrusts to the same degree as physical disturbance. This is particularly disconcerting in the context of warming, as temperatures for drylands are projected to increase beyond those imposed as treatments in our study. PMID:26371310

  8. Estimations of soil fertility in physically degraded agricultural soils through selective accounting of fine earth and gravel fractions

    NASA Astrophysics Data System (ADS)

    Nagaraja, Mavinakoppa S.; Bhardwaj, Ajay Kumar; Prabhakara Reddy, G. V.; Srinivasamurthy, Chilakunda A.; Kumar, Sandeep

    2016-06-01

    Soil fertility and organic carbon (C) stock estimations are crucial to soil management, especially that of degraded soils, for productive agricultural use and in soil C sequestration studies. Currently, estimations based on generalized soil mass (hectare furrow basis) or bulk density are used which may be suitable for normal agricultural soils, but not for degraded soils. In this study, soil organic C, available nitrogen (N), available phosphorus (P2O5) and available potassium (K2O), and their stocks were estimated using three methods: (i) generalized soil mass (GSM, 2 million kg ha-1 furrow soil), (ii) bulk-density-based soil mass (BDSM) and (iii) the proportion of fine earth volume (FEV) method, for soils sampled from physically degraded lands in the eastern dry zone of Karnataka State in India. Comparative analyses using these methods revealed that the soil organic C, N, P2O and K2O stocks determined by using BDSM were higher than those determined by the GSM method. The soil organic C values were the lowest in the FEV method. The GSM method overestimated soil organic C, N, P2O and K2O by 9.3-72.1, 9.5-72.3, 7.1-66.6 and 9.2-72.3 %, respectively, compared to FEV-based estimations for physically degraded soils. The differences among the three methods of estimation were lower in soils with low gravel content and increased with an increase in gravel volume. There was overestimation of soil organic C and soil fertility with GSM and BDSM methods. A reassessment of methods of estimation was, therefore, attempted to provide fair estimates for land development projects in degraded lands.

  9. The pinyon rhizosphere, plant stress, and herbivory affect the abundance of microbial decomposers in soils.

    PubMed

    Kuske, C R; Ticknor, L O; Busch, J D; Gehring, C A; Whitham, T G

    2003-05-01

    In terrestrial ecosystems, changes in environmental conditions that affect plant performance cause a cascade of effects through many trophic levels. In a 2-year field study, seasonal abundance measurements were conducted for fast-growing bacterial heterotrophs, humate-degrading actinomycetes, fungal heterotrophs, and fluorescent pseudomonads that represent the decomposers in soil. Links between plant health and soil microbiota abundance in pinyon rhizospheres were documented across two soil types: a dry, nutrient-poor volcanic cinder field and a sandy-loam soil. On the stressful cinder fields, we identified relationships between soil decomposer abundance, pinyon age, and stress due to insect herbivory. Across seasonal variation, consistent differences in microbial decomposer abundance were identified between the cinders and sandy-loam soil. Abundance of bacterial heterotrophs and humate-degrading actinomycetes was affected by both soil nutritional status and the pinyon rhizosphere. In contrast, abundance of the fungal heterotrophs and fluorescent pseudomonads was affected primarily by the pinyon rhizosphere. On the cinder field, the three bacterial groups were more abundant on 150-year-old trees than on 60-year-old trees, whereas fungal heterotrophs were unaffected by tree age. Fungal heterotrophs and actinomycetes were more abundant on insect-resistant trees than on susceptible trees, but the opposite was true for the fluorescent pseudomonads. Although all four groups were present in all the environments, the four microbial groups were affected differently by the pinyon rhizosphere, by tree age, and by tree stress caused by the cinder soil and insect herbivory.

  10. Vegetation affects the relative abundances of dominant soil bacterial taxa and soil respiration rates in an upland grassland soil.

    PubMed

    Thomson, Bruce C; Ostle, Nick; McNamara, Niall; Bailey, Mark J; Whiteley, Andrew S; Griffiths, Robert I

    2010-02-01

    Plant-derived organic matter inputs are thought to be a key driver of soil bacterial community composition and associated soil processes. We sought to investigate the role of acid grassland vegetation on soil bacterial community structure by assessing bacterial diversity in combination with other soil variables in temporally and spatially distinct samples taken from a field-based plant removal experiment. Removal of aboveground vegetation resulted in reproducible differences in soil properties, soil respiration and bacterial diversity. Vegetated soils had significantly increased carbon and nitrogen concentrations and exhibited higher rates of respiration. Molecular analyses revealed that the soils were broadly dominated by Alphaproteobacterial and Acidobacterial lineages, with increased abundances of Alphaproteobacteria in vegetated soils and more Acidobacteria in bare soils. This field-based study contributes to a growing body of evidence documenting the effect of soil nutrient status on the relative abundances of dominant soil bacterial taxa, with Proteobacterial taxa dominating over Acidobacteria in soils exhibiting higher rates of C turnover. Furthermore, we highlight the role of aboveground vegetation in mediating this effect by demonstrating that plant removal can alter the relative abundances of dominant soil taxa with concomitant changes in soil CO(2)-C efflux.

  11. Ecological soil quality affected by land use and management on semi-arid Crete

    NASA Astrophysics Data System (ADS)

    van Leeuwen, J. P.; Moraetis, D.; Lair, G. J.; Bloem, J.; Nikolaidis, N. P.; Hemerik, L.; de Ruiter, P. C.

    2015-03-01

    Land use and soil management practice can have strong effects on soil quality, defined in terms of soil fertility, carbon sequestration and conservation of biodiversity. In this study, we investigate whether ecological soil quality parameters are adequate to assess soil quality under harsh conditions, and are able to reflect different land uses and intensities of soil management practices. We selected three sites as main representatives for the dominant types of land use in the region: an intensively cultivated olive orchard (annually tilled), an extensively used olive orchard (not tilled) and a heavily grazed pasture site in the Koiliaris catchment (Crete/Greece). Soil quality was analysed using an ecosystem approach, studying soil biological properties such as soil organism biomass and activity, and taxonomic diversity of soil microarthropods, in connection to abiotic soil parameters, including soil organic matter contents, and soil aggregate stability. The intensively cultivated olive orchard had a much lower aggregate water stability than the extensive olive orchard and the pasture. Contents of soil organic C and N were higher in the extensively used olive orchard than in the intensively cultivated orchard, with intermediate concentrations in the pasture. This was mainly caused by the highest input of organic matter, combined with the lowest organic matter decomposition rate. Soil organism biomasses in all sites were relatively low compared to values reported from less harsh systems, while microarthropod richness was highest in the pasture compared to both the intensive and extensive olive orchards. From the present results we conclude that microarthropod taxonomic richness is a very useful indicator for ecological soil quality, because it is not only able to separate harsh sites from other systems, but it is also sensitive enough to show differences between land management practices under harsh conditions. Microbial biomass and especially microarthropod

  12. Impact of Site Disturbances from Harvesting and Logging on Soil Physical Properties and Pinus kesiya Tree Growth.

    PubMed

    Missanjo, Edward; Kamanga-Thole, Gift

    2014-01-01

    A study was conducted to determine the impacts of soil disturbance and compaction on soil physical properties and tree growth and the effectiveness of tillage in maintaining or enhancing site productivity for intensively managed Pinus kesiya Royle ex Gordon sites in Dedza, Malawi. The results indicate that about fifty-two percent of the area of compacted plots was affected by the vehicular traffic. Seventy percent of the trees were planted on microsites with some degree of soil disturbance. Soil bulk density at 0-20 cm depth increased from 0.45 to 0.66 Mg m(-3) in the most compacted portions of traffic lanes. Soil strength in traffic lanes increased at all 60 cm depth but never exceeded 1200 kPa. Volumetric soil water content in compacted traffic lanes was greater than that in noncompacted soil. Total soil porosity decreased 13.8% to 16.1% with compaction, while available water holding capacity increased. The study revealed no detrimental effects on tree height and diameter from soil disturbance or compaction throughout the three growing season. At the ages of two and three, a tree volume index was actually greater for trees planted on traffic lanes than those on nondisturbed soil. PMID:27355043

  13. Impact of Site Disturbances from Harvesting and Logging on Soil Physical Properties and Pinus kesiya Tree Growth

    PubMed Central

    Missanjo, Edward

    2014-01-01

    A study was conducted to determine the impacts of soil disturbance and compaction on soil physical properties and tree growth and the effectiveness of tillage in maintaining or enhancing site productivity for intensively managed Pinus kesiya Royle ex Gordon sites in Dedza, Malawi. The results indicate that about fifty-two percent of the area of compacted plots was affected by the vehicular traffic. Seventy percent of the trees were planted on microsites with some degree of soil disturbance. Soil bulk density at 0–20 cm depth increased from 0.45 to 0.66 Mg m−3 in the most compacted portions of traffic lanes. Soil strength in traffic lanes increased at all 60 cm depth but never exceeded 1200 kPa. Volumetric soil water content in compacted traffic lanes was greater than that in noncompacted soil. Total soil porosity decreased 13.8% to 16.1% with compaction, while available water holding capacity increased. The study revealed no detrimental effects on tree height and diameter from soil disturbance or compaction throughout the three growing season. At the ages of two and three, a tree volume index was actually greater for trees planted on traffic lanes than those on nondisturbed soil. PMID:27355043

  14. Dissipation of sulfamethoxazole in pasture soils as affected by soil and environmental factors.

    PubMed

    Srinivasan, Prakash; Sarmah, Ajit K

    2014-05-01

    The dissipation of sulfamethoxazole (SMO) antibiotic in three different soils was investigated through laboratory incubation studies. The experiments were conducted under different incubation conditions such as initial chemical concentration, soil depth, temperature, and with sterilisation. The results indicate that SMO dissipated rapidly in New Zealand pasture soils, and the 50% dissipation times (DT50) in Hamilton, Te Kowhai and Horotiu soils under non-sterile conditions were 9.24, 4.3 and 13.33 days respectively. During the incubation period for each sampling event the soil dehydrogenase activity (DHA) and the variation in microbial community were monitored thorough phospholipid fatty acid extraction analysis (PLFA). The DHA data correlated well with the dissipation rate constants of SMO antibiotic, an increase in the DHA activity resulted in faster antibiotic dissipation. The PLFA analysis was indicative of higher bacterial presence as compared to fungal community, highlighting the type of microbial community responsible for dissipation. The results indicate that with increasing soil depth, SMO dissipation in soil was slower (except for Horotiu) while with increase in temperature the antibiotic loss was faster, and was noticeable in all the soils. Both the degree of biological activity and the temperature of the soil influenced overall SMO dissipation. SMO is not likely to persist more than 5-6 months in all three soils suggesting that natural biodegradation may be sufficient for the removal of these contaminants from the soil. Its dissipation in sterile soils indicated abiotic factors such as strong sorption onto soil components to play a role in the dissipation of SMO.

  15. Does Physics Teaching Affect Gender-based Science Anxiety?

    ERIC Educational Resources Information Center

    Udo, M. K.; Ramsey, G. P.; Reynolds-Alpert, S.; Mallow, J. V.

    2001-01-01

    Presents the results of a study designed to measure the level of science anxiety in students enrolled in physics courses at Loyola University in Chicago. The leading factors contributing to science anxiety include nonscience anxiety and gender. Concludes that the teaching of an introductory physics course can reduce acute levels of science…

  16. Using the ESA's ASAR GM radar instrument to map physical soil properties (case study over Australia)

    NASA Astrophysics Data System (ADS)

    Doubkova, Marcela; van Dijk, Albert; Bauer-Marschallinger, Bernhard

    2010-05-01

    A quantitative and qualitative comparison was made between a suite of physical soil parameters derived from the Australian Soil Resources Information System (ASRIS) and backscattering characteristics calculated from the Advanced Synthetic Aperture radar Global Mode (ASAR GM) on ESA's ENVISAT satellite. Based on the results opportunities were identified to map soil physical properties over areas with limited vegetation cover, and to further improve the retrieval of soil moisture content from radar remote sensing.

  17. Negative Experiences in Physical Education and Sport: How Much Do They Affect Physical Activity Participation Later in Life?

    ERIC Educational Resources Information Center

    Cardinal, Bradley J.; Yan, Zi; Cardinal, Marita K.

    2013-01-01

    People's feelings toward physical activity are often influenced by memories of their childhood experiences in physical education and sport. Unfortunately, many adults remember negative experiences, which may affect their desire to maintain a physically active lifestyle. A survey that asked 293 students about recollections from their childhood…

  18. Soil-restoration rate and initial soil formation trends on example of anthropogenically affected soils of opencast mine in Kursk region, Russian Federation

    NASA Astrophysics Data System (ADS)

    Pigareva, Tatiana

    2015-04-01

    The mining industry is one of the main factors which anthropogenically change the environment. Mining process results in removing of the rocks and mechanical changes of considerable amounts of ground. One of the main results of mining arising of antropic ecosystems as well as increasing of the new created soils total area is technosols. The main factor controlling the soil formation in postmining environment is the quality of spoiled materials. Initial soil formation has been investigated on spoils of the largest iron ore extraction complex in Russia - Mikhailovsky mining and concentration complex which is situated in Kursk region, Russia. Investigated soils are presented by monogenetic weak developed soils of different age (10-15-20 years). Young soils are formed on the loess parent materials (20 year-old soil), or on a mix of sand and clay overburdens (15 and 10-year-old soils). Anthropogenically affected soils are characterized by well-developed humus horizon which is gradually replaced by weakly changed soil-building rocks (profile type A-C for 10-, 15-years old soils, and A-AC-C for 20 years old soils). Gray-humus soils are characterized by presence of diagnostic humus horizon gradually replaced by soil-building rock. The maximum intensity of humus accumulation has been determined in a semi-hydromorphic 10-year-old soil developed on the mixed heaps which is connected with features of water-air conditions complicating mineralization of plant remnants. 20-year-old soil on loess is characterized by rather high rate of organic substances accumulation between all the automorphous soils. It was shown that one of the most effective restoration ways for anthropogenically affected soils is a biological reclamation. Since overburdens once appeared on a day surface are overgrown badly in the first years, they are subject to influence of water and wind erosion. Our researchers have found out that permanent grasses are able to grow quickly; they accumulate a considerable

  19. Affective Learning Profiles in Compulsory High School Physical Education: An Instructional Communication Perspective

    ERIC Educational Resources Information Center

    Webster, Collin A.; Mindrila, Diana; Weaver, Glenn

    2013-01-01

    Affective learning is a major focus of the national K-12 physical education (PE) content standards (National Association for Sport and Physical Education [NASPE, 2004]). Understanding how students might fit into different affective learning subgroups would help extend affective learning theory in PE and suggest possible intervention strategies for…

  20. Production of biochar out of organic urban waste to amend salt affected soils in the basin of Mexico

    NASA Astrophysics Data System (ADS)

    Chavez Garcia, Elizabeth; Siebe, Christina

    2016-04-01

    Biochar is widely recognized as an efficient tool for carbon sequestration and soil fertility. The understanding of its chemical and physical properties, strongly related to the biomass and production conditions, is central to identify the most suitable application of biochar. On the other hand, salt affected soils reduce the value and productivity of extensive areas worldwide. One feasible option to recover them is to add organic amendments, which improve water holding capacity and increase sorption sites for cations as sodium. The former lake Texcoco in the basin of Mexico has been a key area for the control of surface run-off and air quality of Mexico City. However, the high concentrations of soluble salts in their soils do not allow the development of a vegetation cover that protects the soil from wind erosion, being the latter the main cause of poor air quality in the metropolitan area during the dry season. On the other hand, the population of the city produces daily 2000 t of organic urban wastes, which are currently composted. Thus, we tested if either compost or biochar made out of urban organic waste can improve the salt affected soils of former lake Texcoco to grow grass and avoid wind erosion. We examined the physico-chemical properties of biochar produced from urban organic waste under pyrolysis conditions. We also set up a field experiment to evaluate the addition of these amendments into the saline soils of Texcoco. Our preliminary analyses show biochar yield was ca. 40%, it was mainly alkaline (pH: 8-10), with a moderate salt content (electrical conductivity: 0.5-3 mS/cm). We show also results of the initial phase of the field experiment in which we monitor the electrical conductivity, pH, water content, water tension and soil GHG fluxes on small plots amended with either biochar or compost in three different doses.

  1. Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater.

    PubMed

    Keren, Yonatan; Borisover, Mikhail; Bukhanovsky, Nadezhda

    2015-11-01

    The organic compound-soil interactions may be strongly influenced by changes in soil organic matter (OM) which affects the environmental fate of multiple organic pollutants. The soil OM changes may be caused by land disposal of various OM-containing wastes. One unique type of OM-rich waste is olive mill-related wastewater (OMW) characterized by high levels of OM, the presence of fatty aliphatics and polyphenolic aromatics. The systematic data on effects of the land-applied OMW on organic compound-soil interactions is lacking. Therefore, aqueous sorption of simazine and diuron, two herbicides, was examined in batch experiments onto three soils, including untreated and OMW-affected samples. Typically, the organic compound-soil interactions increased following the prior land application of OMW. This increase is associated with the changes in sorption mechanisms and cannot be attributed solely to the increase in soil organic carbon content. A novel observation is that the OMW application changes the soil-sorbent matrix in such a way that the solute uptake may become cooperative or the existing ability of a soil sorbent to cooperatively sorb organic molecules from water may become characterized by a larger affinity. The remarkable finding of this study was that in some cases a cooperative uptake of organic molecules by soils makes itself evident in distinct sigmoidal sorption isotherms rarely observed in soil sorption of non-ionized organic compounds; the cooperative herbicide-soil interactions may be characterized by the Hill model coefficients. However, no single trend was found for the effect of applied OMW on the mechanisms of organic compound-soil interactions.

  2. Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater.

    PubMed

    Keren, Yonatan; Borisover, Mikhail; Bukhanovsky, Nadezhda

    2015-11-01

    The organic compound-soil interactions may be strongly influenced by changes in soil organic matter (OM) which affects the environmental fate of multiple organic pollutants. The soil OM changes may be caused by land disposal of various OM-containing wastes. One unique type of OM-rich waste is olive mill-related wastewater (OMW) characterized by high levels of OM, the presence of fatty aliphatics and polyphenolic aromatics. The systematic data on effects of the land-applied OMW on organic compound-soil interactions is lacking. Therefore, aqueous sorption of simazine and diuron, two herbicides, was examined in batch experiments onto three soils, including untreated and OMW-affected samples. Typically, the organic compound-soil interactions increased following the prior land application of OMW. This increase is associated with the changes in sorption mechanisms and cannot be attributed solely to the increase in soil organic carbon content. A novel observation is that the OMW application changes the soil-sorbent matrix in such a way that the solute uptake may become cooperative or the existing ability of a soil sorbent to cooperatively sorb organic molecules from water may become characterized by a larger affinity. The remarkable finding of this study was that in some cases a cooperative uptake of organic molecules by soils makes itself evident in distinct sigmoidal sorption isotherms rarely observed in soil sorption of non-ionized organic compounds; the cooperative herbicide-soil interactions may be characterized by the Hill model coefficients. However, no single trend was found for the effect of applied OMW on the mechanisms of organic compound-soil interactions. PMID:26183941

  3. Biochar pyrolyzed at two temperatures affects Escherichia coli transport through a sandy soil.

    PubMed

    Bolster, Carl H; Abit, Sergio M

    2012-01-01

    The incorporation of biochar into soils has been proposed as a means to sequester carbon from the atmosphere. An added environmental benefit is that biochar has also been shown to increase soil retention of nutrients, heavy metals, and pesticides. The goal of this study was to evaluate whether biochar amendments affect the transport of Escherichia coli through a water-saturated soil. We looked at the transport of three E. coli isolates through 10-cm columns packed with a fine sandy soil amended with 2 or 10% (w/w) poultry litter biochar pyrolyzed at 350 or 700°C. For all three isolates, mixing the high-temperature biochar at a rate of 2% into the soil had no impact on transport behavior. When added at a rate of 10%, a reduction of five orders of magnitude in the amount of E. coli transported through the soil was observed for two of the isolates, and a 60% reduction was observed for the third isolate. Mixing the low-temperature biochar into the soil resulted in enhanced transport through the soil for two of the isolates, whereas no significant differences in transport behavior were observed between the low-temperature and high-temperature biochar amendments for one isolate. Our results show that the addition of biochar can affect the retention and transport behavior of E. coli and that biochar application rate, biochar pyrolysis temperature, and bacterial surface characteristics were important factors determining the transport of E. coli through our test soil. PMID:22218181

  4. Affective and Physical Changes Associated with Oral Contraceptive Use.

    ERIC Educational Resources Information Center

    Wiener, Alane L.; And Others

    Although investigations of the physiological effects of oral contraceptives suggest that affective changes may accompany their use, empirical documentation of these effects has not been consistent. This study examined physiological and affective changes accompanying use of a low-dosage oral contraceptive while controlling for possible expectancy…

  5. Biochemical resistance of pyrogenic organic matter in fire-affected mineral soils of Southern Europe

    NASA Astrophysics Data System (ADS)

    Knicker, H.; González Vila, F. J.; Clemente Salas, L.

    2012-04-01

    Incorporated into the soil, naturally formed pyrogenic organic matter (PyOM) is considered as highly recalcitrant, but direct estimation of PyOM decomposition rates are scarce. With this aim in mind, we subjected organic matter (OM) of fire-affected and unaffected soils to biochemical degradation under laboratory conditions and monitored CO2 production over a period of seven months. The soils derived from fire affected and unaffected areas of the Sierra de Aznalcóllar and the Doñana National Park, Southern Spain. Virtual fractionation of the solid-state 13C nuclear magnetic resonance (NMR) spectra of the fire affected soils into fire-unaffected soil organic matter (SOM) and PyOM yielded charcoal C contributions of 30 to 50% to the total organic C (Corg) of the sample derived from the Aznalcóllar region. Fitting the respiration data with a double exponential decay model revealed a fast carbon flush during the first three weeks of the experiment. Solid-state 13C NMR spectroscopy evidenced the contribution of aromatic moieties of the PyOM to this initial carbon release and to the biosynthesis of new microbial biomass. The input of PyOM resulted in an increase of the mean residence time (MRT) of the slow OM pool of the soil by a factor of 3 to 4 to approximately 40 years which rises doubts rises doubts about the presumed big influence of PyOM as an additional C-sink in soils. On the other hand, although being small the difference in turnover rates is evident and has some major implication with respect to long-term alteration of the chemical composition of OM in fire-affected soils. Based on the obtained results and the analysis of PyOM in other soil systems, a conceptual model is presented which can explain the different behavior of PyOM under different soil conditions.

  6. Factors Affecting Junior High School Students' Interest in Physics

    NASA Astrophysics Data System (ADS)

    Trumper, Ricardo

    2006-03-01

    We report the results of a study on students' interest in physics at the end of their compulsory schooling in Israel carried out in the framework of the ROSE Project. Factors studied were their opinions about science classes, their out-of-school experiences in physics, and their attitudes toward science and technology. Students' overall interest in physics was "neutral" (neither positive nor negative), with boys showing a higher interest than girls. We found a strong correlation between students' "neutral" interest in physics and their negative opinions about science classes. These findings raise serious questions about the implementation of changes made in the Israeli science curriculum in primary and junior high school, especially if the goal is to prepare the young generation for life in a scientific-technological era. A more in-depth analysis of the results led us to formulate curricular, behavioral, and organizational changes needed to reach this goal.

  7. [Spatial distribution pattern of soil nitrogen in Huanghuadianzi watershed and related affecting factors].

    PubMed

    Li, Long; Yao, Yun-feng; Qin, Fu-cang; Gao, Yu-han; Zhang, Mei-li

    2015-05-01

    This research was conducted in Huanghuadianzi watershed in Aohan, Chifeng, Inner Mongolia. Geostatistic was used to study the spatial distribution of soil nitrogen and their affecting factors. The results showed that the soil nitrogen contents in all layers distributed as an island shape, and the high value areas were mainly distributed in the northwest of the watershed as an obvious fertile island shape, while the low value areas were mainly distributed in the south of the watershed. Nitrogen was mainly concentrated in the surface soil, and its content decreased with the increase of soil depth. The soil nitrogen content at first increased then decreased with the altitude, decreased with the slope, and showed the order of shady slope>semi-shady slope>semi-sunny slope> sunny slope in different aspects. The average soil nitrogen contents in different land use types ranked as cropland >woodland > grassland.

  8. How People Have Used Soils, How Soils Have Affected U.S. History.

    ERIC Educational Resources Information Center

    Polak, Julia

    1996-01-01

    Presents a lesson plan that investigates social aspects of the land and soil and how people use these resources. Following an introduction by the teacher on land and soil use, students answer related questions on handouts. Later handouts direct the students to group research projects and class presentations. (MJP)

  9. Wind erosion as affected by soil temporal variation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wind erosion prediction system (WEPS) requires information about numerous spatial and temporal variables and complex interactions that affect erosion, particulate matter (PM 10 and 2.5) generation, and nutrient loss. Abrasion of clods and crusts, aggregate slaking, and dispersion during wind and...

  10. Physical Activity Affects Brain Integrity in HIV + Individuals

    PubMed Central

    Ortega, Mario; Baker, Laurie M.; Vaida, Florin; Paul, Robert; Basco, Brian; Ances, Beau M.

    2015-01-01

    Prior research has suggested benefits of aerobic physical activity (PA) on cognition and brain volumes in HIV uninfected (HIV−) individuals, however, few studies have explored the relationships between PA and brain integrity (cognition and structural brain volumes) in HIV-infected (HIV +) individuals. Seventy HIV + individuals underwent neuropsychological testing, structural neuroimaging, laboratory tests, and completed a PA questionnaire, recalling participation in walking, running, and jogging activities over the last year. A PA engagement score of weekly metabolic equivalent (MET) hr of activity was calculated using a compendium of PAs. HIV + individuals were classified as physically active (any energy expended above resting expenditure, n = 22) or sedentary (n = 48). Comparisons of neuropsychological performance, grouped by executive and motor domains, and brain volumes were completed between groups. Physically active and sedentary HIV + individuals had similar demographic and laboratory values, but the active group had higher education (14.0 vs. 12.6 years, p = .034). Physically active HIV + individuals performed better on executive (p = .040, unadjusted; p = .043, adjusted) but not motor function (p = .17). In addition, among the physically active group the amount of physical activity (METs) positively correlated with executive (Pearson’s r = 0.45, p = 0.035) but not motor (r = 0.21; p = .35) performance. In adjusted analyses the physically active HIV + individuals had larger putamen volumes (p = .019). A positive relationship exists between PA and brain integrity in HIV + individuals. Results from the present study emphasize the importance to conduct longitudinal interventional investigation to determine if PA improves brain integrity in HIV + individuals. PMID:26581799

  11. Physical and chemical properties of industrial mineral oils affecting lubrication

    SciTech Connect

    Godfrey, D.; Herguth, W.R.

    1996-02-01

    The lubricating properties of mineral oils, and contaminants which affect those properties, are discussed. A contaminant is any material not in the original fresh oil, whether it is generated within the system or ingested. 5 refs.

  12. Factors affecting the mobilization of DOC and metals in a peat soil under a warmer scenario

    NASA Astrophysics Data System (ADS)

    Carrera, Noela; Barreal, María. Esther; Briones, María. Jesús I.

    2010-05-01

    Most climate change models predict an increase of temperature of 3-5°C in Southern Europe by the end of this century (IPCC 2007). However, changes in summer precipitations are more uncertain, and although a decrease in rainfall inputs is forecasted by most models, the magnitude of this effect has not been assessed properly (Rowell & Jones 2006). Peatland areas are very sensitive to climate change. In Galicia they survive in upland areas where cold temperatures and continuous moisture supply allow their presence. Besides abiotic factors, alterations in soil fauna activities can also affect peat turnover. Among them, enchytraeids are usually the most numerous invertebrate group in these systems and both temperature and moisture content regulate their abundances and vertical distribution. Previous studies have demonstrated that changes in their populations associated to increasing temperatures can significantly affect metal mobilization, namely iron and aluminium, together with an important decline in the acidity of the soil solution, which possibly eliminates one of the critical mechanisms restricting DOC release (Carrera et al., 2009). In this study we investigated whether changes in water content of the peat soil and soil invertebrate activities associated to increasing temperatures could alter the mobilization rates of Fe and Al and in turn, DOC. 72 undisturbed soil cores (6 cm diameter x 10 cm deep) with their associated vegetation were taken from a blanket bog in Galicia (NW Spain). Back at the laboratory they were sliced horizontally into two layers, (0-5cm and 5-10cm) which were defaunated by means of a wet extraction. Thereafter, the two soil layers derived from the same core were introduced in each microcosm by placing them in their original position but separated by a 1 mm nylon mesh to allow the vertical movements of the organisms. Half of the experimental units were adjusted to the used moisture values observed in the field (80% SWC, H1), whereas in the

  13. Soil moisture affects fatty acids and oil quality parameters in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought affects yield of peanut, but its effect on oleic and linoleic acids that influence its oil quality of peanut genotypes with different levels of drought resistance has not been clearly investigated. Therefore, the aims of this research were to determine whether soil water levels could affect...

  14. Key factors, Soil N Processes, and nitrite accumulation affecting nitrous oxide emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A better understanding of the key factors affecting nitrous oxide (N2O) emission and potential mitigation strategies is essential for sustainable agriculture. The objective of this study was to examine the important factors affecting N2O emissions, soil processes involved, and potential mitigation s...

  15. Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales.

    PubMed

    Zeglin, L H; Bottomley, P J; Jumpponen, A; Rice, C W; Arango, M; Lindsley, A; McGowan, A; Mfombep, P; Myrold, D D

    2013-10-01

    Climate change models predict that future precipitation patterns will entail lower-frequency but larger rainfall events, increasing the duration of dry soil conditions. Resulting shifts in microbial C cycling activity could affect soil C storage. Further, microbial response to rainfall events may be constrained by the physiological or nutrient limitation stress of extended drought periods; thus seasonal or multiannual precipitation regimes may influence microbial activity following soil wet-up. We quantified rainfall-driven dynamics of microbial processes that affect soil C loss and retention, and microbial community composition, in soils from a long-term (14-year) field experiment contrasting "Ambient" and "Altered" (extended intervals between rainfalls) precipitation regimes. We collected soil before, the day following, and five days following 2.5-cm rainfall events during both moist and dry periods (June and September 2011; soil water potential = -0.01 and -0.83 MPa, respectively), and measured microbial respiration, microbial biomass, organic matter decomposition potential (extracellular enzyme activities), and microbial community composition (phospholipid fatty acids). The equivalent rainfall events caused equivalent microbial respiration responses in both treatments. In contrast, microbial biomass was higher and increased after rainfall in the Altered treatment soils only, thus microbial C use efficiency (CUE) was higher in Altered than Ambient treatments (0.70 +/- 0.03 > 0.46 +/- 0.10). CUE was also higher in dry (September) soils. C-acquiring enzyme activities (beta-glucosidase, cellobiohydrolase, and phenol oxidase) increased after rainfall in moist (June), but not dry (September) soils. Both microbial biomass C:N ratios and fungal:bacterial ratios were higher at lower soil water contents, suggesting a functional and/or population-level shift in the microbiota at low soil water contents, and microbial community composition also differed following wet

  16. Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales.

    PubMed

    Zeglin, L H; Bottomley, P J; Jumpponen, A; Rice, C W; Arango, M; Lindsley, A; McGowan, A; Mfombep, P; Myrold, D D

    2013-10-01

    Climate change models predict that future precipitation patterns will entail lower-frequency but larger rainfall events, increasing the duration of dry soil conditions. Resulting shifts in microbial C cycling activity could affect soil C storage. Further, microbial response to rainfall events may be constrained by the physiological or nutrient limitation stress of extended drought periods; thus seasonal or multiannual precipitation regimes may influence microbial activity following soil wet-up. We quantified rainfall-driven dynamics of microbial processes that affect soil C loss and retention, and microbial community composition, in soils from a long-term (14-year) field experiment contrasting "Ambient" and "Altered" (extended intervals between rainfalls) precipitation regimes. We collected soil before, the day following, and five days following 2.5-cm rainfall events during both moist and dry periods (June and September 2011; soil water potential = -0.01 and -0.83 MPa, respectively), and measured microbial respiration, microbial biomass, organic matter decomposition potential (extracellular enzyme activities), and microbial community composition (phospholipid fatty acids). The equivalent rainfall events caused equivalent microbial respiration responses in both treatments. In contrast, microbial biomass was higher and increased after rainfall in the Altered treatment soils only, thus microbial C use efficiency (CUE) was higher in Altered than Ambient treatments (0.70 +/- 0.03 > 0.46 +/- 0.10). CUE was also higher in dry (September) soils. C-acquiring enzyme activities (beta-glucosidase, cellobiohydrolase, and phenol oxidase) increased after rainfall in moist (June), but not dry (September) soils. Both microbial biomass C:N ratios and fungal:bacterial ratios were higher at lower soil water contents, suggesting a functional and/or population-level shift in the microbiota at low soil water contents, and microbial community composition also differed following wet

  17. Associations between positive and negative affect and 12-month physical disorders in a national sample.

    PubMed

    Weiser, Eric B

    2012-06-01

    Associations between positive and negative affect and a range of 12-month physical disorders were investigated in the Midlife Development in the United States Survey, a nationally representative sample of 3,032 adults ages 25-74. These associations were examined, controlling for relevant sociodemographic and psychiatric covariates. High positive affect was associated with decreased risk of physical disorders, whereas high negative affect was associated with increased risk. However, associations between positive affect and physical disorders were partially attenuated following adjustment for concurrent negative affect. Additionally, high affect balance was associated with decreased risk of physical disorders before and after adjustments. These findings underscore the relevance of affective disposition in health status, suggesting that both positive and negative affect may serve as viable health risk parameters.

  18. Quantification of Heavy Metals in Mining Affected Soil and Their Bioaccumulation in Native Plant Species.

    PubMed

    Nawab, Javed; Khan, Sardar; Shah, Mohammad Tahir; Khan, Kifayatullah; Huang, Qing; Ali, Roshan

    2015-01-01

    Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p < 0.01) higher in mine affected soil as compared to reference soil, however Cr and Ni exceeded maximum allowable limit (250 and 60 mg kg(-1), respectively) set by SEPA for soil. Inter-metal correlations between soil, roots and shoots showed that the sources of contamination of heavy metals were mainly associated with chromites mining. All the plant species accumulated significantly higher concentrations of heavy metals as compared to reference plant. The open dumping of mine wastes can create serious problems (food crops and drinking water contamination with heavy metals) for local community of the study area. The native wild plant species (Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals.

  19. Quantification of Heavy Metals in Mining Affected Soil and Their Bioaccumulation in Native Plant Species.

    PubMed

    Nawab, Javed; Khan, Sardar; Shah, Mohammad Tahir; Khan, Kifayatullah; Huang, Qing; Ali, Roshan

    2015-01-01

    Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p < 0.01) higher in mine affected soil as compared to reference soil, however Cr and Ni exceeded maximum allowable limit (250 and 60 mg kg(-1), respectively) set by SEPA for soil. Inter-metal correlations between soil, roots and shoots showed that the sources of contamination of heavy metals were mainly associated with chromites mining. All the plant species accumulated significantly higher concentrations of heavy metals as compared to reference plant. The open dumping of mine wastes can create serious problems (food crops and drinking water contamination with heavy metals) for local community of the study area. The native wild plant species (Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals. PMID:26079739

  20. Evolution of physical controls for soil moisture in humid and subhumid watersheds

    NASA Astrophysics Data System (ADS)

    Gaur, Nandita; Mohanty, Binayak P.

    2013-03-01

    The covariability of soil moisture with soil, vegetation, topography, and precipitation is linked by physical relationships. The influence of each of these interdependent physical controls on soil moisture spatial distribution depends on the nature of heterogeneity present in the domain and evolves with time and scale. This paper investigates the effect of three physical controls, i.e., topography (slope), vegetation (type), and soil (texture), on soil moisture spatial distribution in the Little Washita and Walnut Creek watersheds in Oklahoma and Iowa, respectively, at two support scales. Point-support-scale data collected from four soil moisture campaigns (SMEX02, SMEX03, SMEX05, and CLASIC07) and airborne-scale data from three soil moisture campaigns (SGP97, SGP99, and SMEX02) were used in this analysis. The effect of different physical controls on the spatial mean and variability of soil moisture was assessed using Kruskal-Wallis and Shannon entropy respectively. It was found that at both (point and airborne) support scales, nonuniform precipitation (forcing) across the domain can mask the effect of the dominant physical controls on the soil moisture distribution. In order to isolate land-surface controls from the impact of forcing, the effect of precipitation variability was removed. After removing the effect of precipitation variability, it was found that for most soil moisture conditions, soil texture as opposed to vegetation and topography is the dominant physical control at both the point and airborne scales in Iowa and Oklahoma. During a very wet year (2007), however, the effect of topography on the soil moisture spatial variability overrides the effect of soil texture at the point support scale. These findings are valuable for developing any physically based scaling algorithms to upscale or downscale soil moisture between the point and watershed scales in the studied watersheds in humid and subhumid regions of the Great Plains of USA. These results may

  1. Permafrost-Affected Soils of the Russian Arctic and their Carbon Pools

    NASA Astrophysics Data System (ADS)

    Zubrzycki, S.; Kutzbach, L.; Pfeiffer, E.-M.

    2014-02-01

    Permafrost-affected soils have accumulated enormous pools of organic matter during the Quaternary Period. The area occupied by these soils amounts to more than 8.6 million km2, which is about 27% of all land areas north of 50° N. Therefore, permafrost-affected soils are considered to be one of the most important cryosphere elements within the climate system. Due to the cryopedogenic processes that form these particular soils and the overlying vegetation that is adapted to the arctic climate, organic matter has accumulated to the present extent of up to 1024 Pg (1 Pg = 1015 g = 1 Gt) of soil organic carbon stored within the uppermost three meters of ground. Considering the observed progressive climate change and the projected polar amplification, permafrost-affected soils will undergo fundamental property changes. Higher turnover and mineralization rates of the organic matter are consequences of these changes, which are expected to result in an increased release of climate-relevant trace gases into the atmosphere. As a result, permafrost regions with their distinctive soils are likely to trigger an important tipping point within the global climate system, with additional political and social implications. The controversy of whether permafrost regions continue accumulating carbon or already function as a carbon source remains open until today. An increased focus on this subject matter, especially in underrepresented Siberian regions, could contribute to a more robust estimation of the soil organic carbon pool of permafrost regions and at the same time improve the understanding of the carbon sink and source functions of permafrost-affected soils.

  2. Correlation between biological and physical availabilities of phenanthrene in soils and soil humin in aging experiments

    SciTech Connect

    White, J.C.; Hunter, M.; Nam, K.; Pignatello, J.J.; Alexander, M.

    1999-08-01

    The bioavailability of an organic compound in a soil or sediment commonly declines with the soil-chemical contact time (aging). A series of parallel desorption and bioavailability experiments was carried out on phenanthrene previously aged up to {approximately}100 d in Mount Pleasant silt loam (Mt. Pleasant, NY, USA) or Pahokee peat soil to determine as a function of the aging period the degree of correlation between the reduction in bioavailability and the rate and extent of desorption and the influence of soil organic matter composition on availability. The mineralization of phenanthrene by two bacteria and the uptake of phenanthrene by earthworms showed expected declines with aging. Likewise, the rate of phenanthrene desorption in the absence of organisms decreased with aging. The decline in initial rate of mineralization or desorption was nearly an order of magnitude after 50 to 60 d of aging. Plots of normalized rates of mineralization or desorption practically coincided. Similarly, plots of normalized fraction mineralized or fraction desorbed during an arbitrary period gave comparable slopes. The partial removal of organic matter from the peat by extraction with dilute NaOH to leave the humin fraction reduced the biodegradation of phenanthrene aged for 38 and 63 d as compared to the nonextracted peat, but the effect disappeared at longer incubation times. The rate of desorption from samples of peat previously extracted with NaOH or Na{sub 4}P{sub 2}O{sub 7} declined with aging and, for a given aging period, was significantly slower than from nonextracted peat. This work shows that the reduction in bioavailability of phenanthrene over time in soil is directly correlated with reduction of its physical availability due to desorption limitations. In addition, this study shows that removal of extractable humic substances leads to a decline in the rate of desorption and in the bioavailability of the substrate.

  3. Role of soil erodibility in affecting available nitrogen and phosphorus losses under simulated rainfall

    NASA Astrophysics Data System (ADS)

    Wang, Guoqiang; Wu, Binbin; Zhang, Lei; Jiang, Hong; Xu, Zongxue

    2014-06-01

    The loss of available nutrients and the effects of soil erodibility on available nutrients losses were rarely researched. Here, laboratory simulation experiments were conducted to determine the soil erodibility effects on the available nitrogen (AN) and phosphorus (AP) losses. The impacts of rainfall intensity and slope on AN and AP losses were also studied. Two contrasting agricultural soils (Burozems and Cinnamon) that occur throughout the northern erosion region of China were selected. Two rainfall intensities (60 and 120 mm h-1) and two slopes (10% and 20%) were studied. Overall, greater runoff, sediment and available nutrient losses occurred from the Cinnamon soil due to its greater soil erodibility, which was approximately 2.8 times greater than that of the Burozems soil. The influence of runoff on sediment was positively linear. The absolute slope of the regression line between runoff rate and sediment yield rate was suitable as a soil erodibility indicator. Runoff-associated AN and AP losses were mainly controlled by runoff rate, and were weakly affected by soil erodibility (p > 0.05). However, soil erodibility significantly influenced the sediment-associated AN and AP losses (p < 0.01), and a positive logarithmic correlation best described their relationships. Since the runoff-associated AN and AP losses dominated the total AN and AP losses for both soils, soil erodibility also exhibited negligible influence on the total AN and AP losses (p > 0.05). Increasing rainfall intensity and slope generally increased the runoff, sediment, and available nutrient losses for both soils, but had no significant influences on their relationships. Our results provide a better understanding of soil and nutrient loss mechanisms.

  4. How can climate, soil, and monitoring schedule affect temporal stability of soil water contents?

    NASA Astrophysics Data System (ADS)

    Martinez, G.; Pachepsky, Y. A.; Vereecken, H.

    2012-12-01

    Temporal stability (TS) of soil water content (SWC) reflects the spatio-temporal organization of soil water. The TS SWC was originally recognized as a phenomenon that can be used to provide temporal average SWC of an area of interest from observations at a representative location(s). Currently application fields of TS SWC are numerous, e.g. up- and downscaling SWC, SWC monitoring and data assimilation, precision farming, and sensor network design and optimization. However, the factors that control the SWC organization and TS SWC are not completely understood. Among these factors are soil hydraulic properties that are considered as local controls, weather patterns, and the monitoring schedule. The objective of this work was to use modeling to assess the effect of these factors on the spatio-temporal patterns of SWC. We ran the HYDRUS6 code to simulate four years of SWC in 4-m long soil columns. The columns were assumed homogeneous, soil hydraulic conductivity was drawn from lognormal distributions. Sets of columns were generated separately for sandy loam and loamy soils, soil water retention was set to typical values for those soil textures. Simulations were carried out for four climates present at the continental US. The climate-specific weather patterns were obtained with the CLIGEN code using climate-specific weather observation locations that were humid subtropical from College Station (TX), humid continental from Indianapolis (IN), cold semiarid from Moscow (ID) and hot semiarid from Tucson (AZ). We evaluated the TS and representative location (RL) selections by comparing i) different climates; ii) for the same climates different years; iii) different time intervals between samplings; iv) one year duration surveys vs. one month summer campaigns; and v) different seasons of the same year. Spatial variability of the mean relative differences (MRD) differed among climates for both soils, as the probability of observing the same variance in the MRD was lower than

  5. Tillage Effects on Selected Soil Physical Properties in a Maize-Bean Intercropping System in Mwala District, Kenya

    PubMed Central

    Karuma, Anne; Mtakwa, Peter; Amuri, Nyambilila; Gachene, Charles K.; Gicheru, Patrick

    2014-01-01

    A field study was carried out to evaluate the effects of tillage practices on soil physical properties in Mwala district, Eastern Kenya, during the long rains (LR) and short rains (SR) of 2012/13. The treatments were disc ploughing (DP), disc ploughing and harrowing (DPH), ox-ploughing (OX), subsoiling-ripping (SSR), hand hoeing with tied ridges (HTR), hand hoeing only (H). These were investigated under three cropping systems of sole maize, sole bean, and maize-bean intercrop in a split-plot design with four replications. Soil physical properties were monitored at different weeks after planting (WAP) throughout the growing seasons. A four-season average shows that soil moisture content was significantly (P < 0.05) higher in OX > SSR > DPH > H > HTR > DP with values ranging from 13.1 to 14.1%. Soil surface roughness and crust strength varied significantly (P < 0.05) over time within the growing seasons, between the tillage practices, and across the different seasons with values ranging from 26 to 66% and 1.21 to 1.31 MPa, respectively. Tillage practices and cropping systems did not significantly affect bulk density, porosity, or Ksat values. It is apparent that long term tillage experiment (>4 seasons) would be required to detect changes in soil physical properties as a result of the soil management practices. PMID:27379288

  6. Spatial Variability Some Physical and Chemical Prpperties Soil surface In Dasht-e-Tabriz Different Landforms

    NASA Astrophysics Data System (ADS)

    Foroughifar, Hamed; Asghar Jafarzadeh, Ali; Torabi, Hosien; Aliasgharzad, Naser; Toomanian, Norair

    2010-05-01

    Spatial distribution of soil properties at the field and watershed scale(region scale) affect yield potential, hydrologic responses , and transport of herbicides and No3 to surface or groundwater.The present study aim was to evaluate some physical and chemical properties spatial variability and frequency distribution within and between landforms of Dash-e-Tabriz in the northwest of Iran.For this evaluation 98 samples from soils surface of layer according to grid sampling design and with 500-1000 meters distance based on soils variability were selected and analysed.Landforms were hill, piedmont plain, plain, river alluvial plain and lowland.The study of soil variables frequency distribution showed that Bd, CEC, Caco3, pH,clay and silt follow normal distribution ,which to study their variation one can use parametric statistical method.Variables such as MWD, N(total), SAR, EC, P(available) and sand showed log-normal distribution,that for their variation study,should first be transformed to a logarithmic scale.The variables frequency distribution increase within landforms,which in lowland, hill, and river alluvial plain they showed normal distribution and only EC in piedmont plain and sand, OC and N(total) in plain had log-normal distributions.The results indicate significantly differences of soil properties distribution among landforms,which clay ,pH, EC ,SAR and MWD, CEC, Bd, N(total), OC, P(available), sand, silt were strongly and moderately spatial dependent respectively and Caco3 had no spatial dependence and it is following nugget model.These results indicate that strong spatial dependence due to the effects of intrinsic factors such as parent material, relief and soil types. Also soil properties variations result from variation in depositional environments and or differences in pedogenic or hydrologic processes for different landform positions,and so it can be affected by the flood irrigation,fertilizeir addition,high watertable level or agriculture practices

  7. Soil properties affecting toxicity of zinc to soil microbial properties in laboratory-spiked and field-contaminated soils.

    PubMed

    Smolders, Erik; Buekers, Jurgen; Oliver, Ian; McLaughlin, Mike J

    2004-11-01

    The effects of soil properties and zinc (Zn) availability on the toxicity of Zn to soil microbial processes are poorly understood. Three soil microbial processes--potential nitrification rate (PNR), substrate (glucose)-induced respiration (SIR), and a maize residue respiration (MRR)--were measured in 15 European topsoils (pH 3.0-7.5; total Zn 7-191 mg/kg) that were freshly spiked with ZnCl2. The Zn toxicity thresholds of 20 to 50% effective concentrations (EC20s and EC50s) based on total concentrations of Zn in soil varied between 5- and 26-fold among soils, depending on the assay. The Zn toxicity thresholds based on Zn concentrations in soil solution varied at least 10-fold more than corresponding total metal thresholds. Soil pH had no significant effect on soil total Zn toxicity thresholds, whereas significant positive correlations were found between these thresholds and background Zn for the PNR and SIR test (r = 0.74 and 0.71, respectively; log-log correlations). No such trend was found for the MRR test. Soil solution-based thresholds showed highly significant negative correlations with soil pH for all assays that might be explained by competition of H+ for binding sites, as demonstrated for aquatic species. The microbial assays were also applied to soils collected under galvanized pylons (three sites) where concentrations of total Zn were up to 2,100 to 3,700 mg Zn/kg. Correlations between concentrations of total Zn and microbial responses were insignificant at all sites even though spiking reference samples to equivalent concentrations reduced microbial activities up to more than 10-fold. Differences in response between spiked and field soils are partly but not completely attributed to the large differences in concentrations of Zn in soil solution. We conclude that soil pH has no significant effect on Zn toxicity to soil microbial processes in laboratory-spiked soils, and we suggest that community tolerance takes place at both background and elevated Zn

  8. Decreased summer drought affects plant productivity and soil carbon dynamics in a Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.

    2011-09-01

    Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 58 % and 220 %, respectively, as compared to the control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction in precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodlands. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long-term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long-term soil C stocks.

  9. Decreased summer drought affects plant productivity and soil carbon dynamics in Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.

    2011-06-01

    Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. The throughfall manipulation experiment started in 2004 and we report data up to the 2009 growing season. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 50 % and 220 %, respectively, as compared to control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction of precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodland. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long term soil C stocks.

  10. Characterizing Soil Organic Matter Degradation Levels in Permafrost-affected Soils using Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Matamala, R.; Jastrow, J. D.; Calderon, F.; Liang, C.; Miller, R. M.; Ping, C. L.; Michaelson, G. J.; Hofmann, S.

    2014-12-01

    Diffuse-reflectance Fourier-transform mid-infrared spectroscopy (MidIR) was used to (1) investigate soil quality along a latitudinal gradient of Alaskan soils, and in combination with soil incubations, (2) to assess the relative lability of soil organic matter in the active layer and upper permafrost for some of those soils. Twenty nine sites were sampled along a latitudinal gradient (78.79 N to 55.35 N deg). The sites included 8 different vegetation types (moss/lichen, non-acidic and acidic tundra, shrub areas, deciduous forests, mixed forests, coniferous forests, and grassland). At each site, soils were separated by soil horizons and analyzed for pH, cation exchange capacity (CEC), organic and inorganic C, and total N. Samples were also scanned to obtain MidIR spectra, and ratios of characteristic bands previously suggested as indicators of organic matter quality or degradation level were calculated. Principal component analysis showed that axis 1 explained 70% of the variation and was correlated with the general Organic:Mineral ratio, soil organic C, total N, and CEC, but not with vegetation type. Axis 2 explained 25% of the variation and was correlated with most of the band ratios, with negative values for the condensation index (ratio of aromatic to aliphatic organic matter) and positive values for all humification ratios (HU1: ratio of aliphatic to polysaccharides; HU2: ratio of aromatics to polysaccharides; and HU3 ratio of lignin/phenols to polysaccharides) suggesting that axis 2 variations were related to differences in level of soil organic matter degradation. Active organic, active mineral and permafrost layers from selected tundra sites were incubated for two months at -1, 1, 4, 8 and 16 ⁰C. The same band ratios were correlated with total CO2 mineralized during the incubations. Data from 4⁰C showed that the cumulative respired CO2 from the active organic layer across all sites was negatively correlated with the HU1 humification ratio, suggesting

  11. Do Forest Age and Soil Depth Affect Carbon and Nitrogen Adsorption in Mineral Horizons?

    NASA Astrophysics Data System (ADS)

    Spina, P. G.; Lovett, G. M.; Fuss, C. B.; Goodale, C. L.; Lang, A.; Fahey, T.

    2015-12-01

    Mineral soils retain large amounts of organic matter through sorption on the surfaces of mineral soils, the largest pools of carbon (C) and nitrogen (N) in the forests of the northeastern U.S. In addition to determining organic matter storage, adsorption and desorption processes are important controllers of runoff chemistry. We are studying adsorption dynamics of mineral soils collected from a chronosequence of hardwood forest sites in the White Mountains, NH to determine how soils vary in their DOM adsorption capacities as a function of effective C and N saturation. We hypothesize that forest age determines proximity to saturation because young forests may need to mine soil organic matter (SOM) in mineral soils to obtain nitrogen to meet growth demands, while the soils of older forests have had time to reaccumulate SOM, eventually reaching C and N saturation. Consequently, we expect adsorption capacities to first increase with forest age in young forests, as the trees mine C and N from mineral surfaces. They will then decrease with forest age in older forests as mining slows and C and N begin to re-accumulate. Batch experiments were conducted with mineral soil samples and dilutions of forest floor leachate. However, preliminary results from a mature forest site (about 100 years old), which we predicted to be a low point of C and N saturation from decades of mining, contradict expectations. Dissolved organic carbon (DOC) adsorption in its shallow mineral soil layers (0-3 cm below E or A horizons) are lower than younger sites ranging from 20 to about 40 years old. In addition to forest age, soil depths also affect N retention dynamics in forest soils. We hypothesized that deeper mineral soils might have greater adsorption capacities due to the fact that they are exposed to less DOC and DON leaching from organic layers and therefore less saturated. Results from the same mature forest site confirm this. Soils from 3-10 cm depth have more potential to adsorb DOC and

  12. Seasonal exposure to drought and air warming affects soil Collembola and mites.

    PubMed

    Xu, Guo-Liang; Kuster, Thomas M; Günthardt-Goerg, Madeleine S; Dobbertin, Matthias; Li, Mai-He

    2012-01-01

    Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment) at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4 °C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length ≤ 0.20 mm) increased, but the percentage of large mites (body length >0.40 mm) decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type.

  13. Determinants affecting physical activity levels in animal models

    NASA Technical Reports Server (NTRS)

    Tou, Janet C L.; Wade, Charles E.

    2002-01-01

    Weight control is dependent on energy balance. Reduced energy expenditure (EE) associated with decreased physical activity is suggested to be a major underlying cause in the increasing prevalence of weight gain and obesity. Therefore, a better understanding of the biological determinants involved in the regulation of physical activity is essential. To facilitate interpretation in humans, it is helpful to consider the evidence from animal studies. This review focuses on animal studies examining the biological determinants influencing activity and potential implications to human. It appears that physical activity is influenced by a number of parameters. However, regardless of the parameter involved, body weight appears to play an underlying role in the regulation of activity. Furthermore, the regulation of activity associated with body weight appears to occur only after the animal achieves a critical weight. This suggests that activity levels are a consequence rather than a contributor to weight control. However, the existence of an inverse weight-activity relationship remains inconclusive. Confounding the results are the multifactorial nature of physical activity and the lack of appropriate measuring devices. Furthermore, many determinants of body weight are closely interlocked, making it difficult to determine whether a single, combination, or interaction of factors is important for the regulation of activity. For example, diet-induced obesity, aging, lesions to the ventral medial hypothalamus, and genetics all produce hypoactivity. Providing a better understanding of the biological determinants involved in the regulation of activity has important implications for the development of strategies for the prevention of weight gain leading to obesity and subsequent morbidity and mortality in the human population.

  14. Determinants Affecting Physical Activity Levels In Animal Models

    NASA Technical Reports Server (NTRS)

    Tou, Janet C. L.; Wade, Charles E.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    Weight control is dependent on energy balance. Reduced energy expenditure (EE) associated with decreased physical activity is suggested to be a major underlying cause in the increasing prevalence of weight gain and obesity. Therefore, a better understanding of the biological determinants involved in the regulation of physical activity is essential. To facilitate interpretation in humans, it is helpful to consider the evidence from animal studies. This review focuses on animal studies examining the biological determinants influencing activity and potential implications to human. It appears that physical activity is influenced by a number of parameters. However, regardless of the parameter involved, body weight appears to play all underlying role in the regulation of activity. Furthermore, the regulation of activity associated with body weight appears to occur only after the animal achieves a critical weight. This suggests that activity levels are a consequence rather than a contributor to weight control. However, the existence of an inverse weight-activity relationship remains inconclusive. Confounding the results are the multi-factorial nature of physical activity and the lack of appropriate measuring devices. Furthermore, many determinants of body weight are closely interlocked making it difficult to determine whether a single, combination or interaction of factors is important for the regulation of activity. For example, diet-induced obesity, aging, lesions to tile ventral medial hypothalamus and genetics all produce hypoactivity. Providing a better understanding of the biological determinants involved in the regulation of activity has important implications for the development of strategies for the prevention of weight gain leading to obesity and subsequent morbidity and mortality in the human population.

  15. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China.

    PubMed

    Cai, Andong; Feng, Wenting; Zhang, Wenju; Xu, Minggang

    2016-05-01

    Mineral-associated organic carbon (MOC), that is stabilized by fine soil particles (i.e., silt plus clay, <53 μm), is important for soil organic carbon (SOC) persistence and sequestration, due to its large contribution to total SOC (TSOC) and long turnover time. Our objectives were to investigate how climate, soil type, soil texture, and agricultural managements affect MOC contributions to TSOC in China. We created a dataset from 103 published papers, including 1106 data points pairing MOC and TSOC across three major land use types: cropland, grassland, and forest. Overall, the MOC/TSOC ratio ranged from 0.27 to 0.80 and varied significantly among soil groups in cropland, grassland, and forest. Croplands and forest exhibited significantly higher median MOC/TSOC ratios than in grassland. Moreover, forest and grassland soils in temperate regions had higher MOC/TSOC ratios than in subtropical regions. Furthermore, the MOC/TSOC ratio was much higher in ultisol, compared with the other soil types. Both the MOC content and MOC/TSOC ratio were positively correlated with the amount of fine fraction (silt plus clay) in soil, highlighting the importance of soil texture in stabilizing organic carbon across various climate zones. In cropland, different fertilization practices and land uses (e.g., upland, paddy, and upland-paddy rotation) significantly altered MOC/TSOC ratios, but not in cropping systems (e.g., mono- and double-cropping) characterized by climatic differences. This study demonstrates that the MOC/TSOC ratio is mainly driven by soil texture, soil types, and related climate and land uses, and thus the variations in MOC/TSOC ratios should be taken into account when quantitatively estimating soil C sequestration potential of silt plus clay particles on a large scale. PMID:26905446

  16. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China.

    PubMed

    Cai, Andong; Feng, Wenting; Zhang, Wenju; Xu, Minggang

    2016-05-01

    Mineral-associated organic carbon (MOC), that is stabilized by fine soil particles (i.e., silt plus clay, <53 μm), is important for soil organic carbon (SOC) persistence and sequestration, due to its large contribution to total SOC (TSOC) and long turnover time. Our objectives were to investigate how climate, soil type, soil texture, and agricultural managements affect MOC contributions to TSOC in China. We created a dataset from 103 published papers, including 1106 data points pairing MOC and TSOC across three major land use types: cropland, grassland, and forest. Overall, the MOC/TSOC ratio ranged from 0.27 to 0.80 and varied significantly among soil groups in cropland, grassland, and forest. Croplands and forest exhibited significantly higher median MOC/TSOC ratios than in grassland. Moreover, forest and grassland soils in temperate regions had higher MOC/TSOC ratios than in subtropical regions. Furthermore, the MOC/TSOC ratio was much higher in ultisol, compared with the other soil types. Both the MOC content and MOC/TSOC ratio were positively correlated with the amount of fine fraction (silt plus clay) in soil, highlighting the importance of soil texture in stabilizing organic carbon across various climate zones. In cropland, different fertilization practices and land uses (e.g., upland, paddy, and upland-paddy rotation) significantly altered MOC/TSOC ratios, but not in cropping systems (e.g., mono- and double-cropping) characterized by climatic differences. This study demonstrates that the MOC/TSOC ratio is mainly driven by soil texture, soil types, and related climate and land uses, and thus the variations in MOC/TSOC ratios should be taken into account when quantitatively estimating soil C sequestration potential of silt plus clay particles on a large scale.

  17. Soil biota can change after exotic plant invasion: Does this affect ecosystem processes?

    USGS Publications Warehouse

    Belnap, J.; Phillips, S.L.; Sherrod, S.K.; Moldenke, A.

    2005-01-01

    Invasion of the exotic annual grass Bromus tectorum into stands of the native perennial grass Hilaria jamesii significantly reduced the abundance of soil biota, especially microarthropods and nematodes. Effects of invasion on active and total bacterial and fungal biomass were variable, although populations generally increased after 50+ years of invasion. The invasion of Bromus also resulted in a decrease in richness and a species shift in plants, microarthropods, fungi, and nematodes. However, despite the depauperate soil fauna at the invaded sites, no effects were seen on cellulose decomposition rates, nitrogen mineralization rates, or vascular plant growth. When Hilaria was planted into soils from not-invaded, recently invaded, and historically invaded sites (all currently or once dominated by Hilaria), germination and survivorship were not affected. In contrast, aboveground Hilaria biomass was significantly greater in recently invaded soils than in the other two soils. We attributed the Hilaria response to differences in soil nutrients present before the invasion, especially soil nitrogen, phosphorus, and potassium, as these nutrients were elevated in the soils that produced the greatest Hilaria biomass. Our data suggest that it is not soil biotic richness per se that determines soil process rates or plant productivity, but instead that either (1) the presence of a few critical soil food web taxa can keep ecosystem function high, (2) nutrient loss is very slow in this ecosystem, and/or (3) these processes are microbially driven. However, the presence of Bromus may reduce key soil nutrients over time and thus may eventually suppress native plant success. ?? 2005 by the Ecological Society of America.

  18. Comparison of empirical, semi-empirical and physically based models of soil hydraulic functions derived for bi-modal soils

    NASA Astrophysics Data System (ADS)

    Kutílek, M.; Jendele, L.; Krejča, M.

    2009-02-01

    The accelerated flow in soil pores is responsible for a rapid transport of pollutants from the soil surface to deeper layers up to groundwater. The term preferential flow is used for this type of transport. Our study was aimed at the preferential flow realized in the structural porous domain in bi-modal soils. We compared equations describing the soil water retention function h( θ) and unsaturated hydraulic conductivity K( h), eventually K( θ) modified for bi-modal soils, where θ is the soil water content and h is the pressure head. The analytical description of a curve passing experimental data sets of the soil hydraulic function is typical for the empirical equation characterized by fitting parameters only. If the measured data are described by the equation derived by the physical model without using fitting parameters, we speak about a physically based model. There exist several transitional subtypes between empirical and physically based models. They are denoted as semi-empirical, or semi-physical. We tested 3 models of soil water retention function and 3 models of unsaturated conductivity using experimental data sets of sand, silt, silt loam and loam. All used soils are typical by their bi-modality of the soil porous system. The model efficiency was estimated by RMSE (Root mean square error) and by RSE (Relative square error). The semi-empirical equation of the soil water retention function had the lowest values of RMSE and RSE and was qualified as "optimal" for the formal description of the shape of the water retention function. With this equation, the fit of the modelled data to experiments was the closest one. The fitting parameters smoothed the difference between the model and the physical reality of the soil porous media. The physical equation based upon the model of the pore size distribution did not allow exact fitting of the modelled data to the experimental data due to the rigidity and simplicity of the physical model when compared to the real soil

  19. Comparison of empirical, semi-empirical and physically based models of soil hydraulic functions derived for bi-modal soils.

    PubMed

    Kutílek, M; Jendele, L; Krejca, M

    2009-02-16

    The accelerated flow in soil pores is responsible for a rapid transport of pollutants from the soil surface to deeper layers up to groundwater. The term preferential flow is used for this type of transport. Our study was aimed at the preferential flow realized in the structural porous domain in bi-modal soils. We compared equations describing the soil water retention function h(theta) and unsaturated hydraulic conductivity K(h), eventually K(theta) modified for bi-modal soils, where theta is the soil water content and h is the pressure head. The analytical description of a curve passing experimental data sets of the soil hydraulic function is typical for the empirical equation characterized by fitting parameters only. If the measured data are described by the equation derived by the physical model without using fitting parameters, we speak about a physically based model. There exist several transitional subtypes between empirical and physically based models. They are denoted as semi-empirical, or semi-physical. We tested 3 models of soil water retention function and 3 models of unsaturated conductivity using experimental data sets of sand, silt, silt loam and loam. All used soils are typical by their bi-modality of the soil porous system. The model efficiency was estimated by RMSE (Root mean square error) and by RSE (Relative square error). The semi-empirical equation of the soil water retention function had the lowest values of RMSE and RSE and was qualified as "optimal" for the formal description of the shape of the water retention function. With this equation, the fit of the modelled data to experiments was the closest one. The fitting parameters smoothed the difference between the model and the physical reality of the soil porous media. The physical equation based upon the model of the pore size distribution did not allow exact fitting of the modelled data to the experimental data due to the rigidity and simplicity of the physical model when compared to the

  20. Microflora of soils under pine forests area affected by gradation of leaf-eating insects.

    PubMed

    Stremińska, Marta A; Błaszczyk, Mieczysław; Sierpińska, Alicja; Kolk, Andrzej

    2002-01-01

    Soils of pine forests in the Bytnica Forestry District, Poland, are poor in nutrients readily accessible to plants. The excessively acidic reaction of the soils, typical for soils under pine forests, unfavourably affects the growth of microorganisms whose numbers are lower than in soils under deciduous and mixed forests. In the pine forests of the studied forestry there were outbreaks of a defoliating insect - pine beauty moth (Panolis flammea L.), which resulted in over 60% defoliation of the trees. The studies were carried out on the area of tree stands subjected to gradation by leaf-eating insects (sprayed and not sprayed) and healthy stand of the same age class (age 60 to 70 years). The studies revealed increased number of soil microorganisms in samples taken from the area affected by pine beauty moth gradation in the case of both unsprayed areas and those sprayed with the pesticide. The occurrence in these soils of larger numbers of ammonifying and denitrifying bacteria points to the presence of conditions favouring the growth of heterotrophic organisms. Changes in the number of actinomycetes and fungi in soils under tree stands subjected to gradation by insects, compared to healthy stands, can be a consequence of a change of environmental conditions (e.g. % content of organic carbon). Soils under defoliated tree stands show higher biochemical activity related to nitrogen cycling in the pine forest ecosystem. This leads to higher availability of organic nitrogen for conversion to inorganic forms of nitrogen, which are utilised by trees. Further changes occurring in soils under forest stands affected by gradation by leaf-eating insects would allow to gain knowledge on the ecological consequences of the use of insecticides in the protection of pine stands against harmful insects, with particular stress on those situations in which pine stands not threatened by complete defoliation are sprayed.

  1. Factors affecting paddy soil arsenic concentration in Bangladesh: prediction and uncertainty of geostatistical risk mapping.

    PubMed

    Ahmed, Zia U; Panaullah, Golam M; DeGloria, Stephen D; Duxbury, John M

    2011-12-15

    Knowledge of the spatial correlation of soil arsenic (As) concentrations with environmental variables is needed to assess the nature and extent of the risk of As contamination from irrigation water in Bangladesh. We analyzed 263 paired groundwater and paddy soil samples covering highland (HL) and medium highland-1 (MHL-1) land types for geostatistical mapping of soil As and delineation of As contaminated areas in Tala Upazilla, Satkhira district. We also collected 74 non-rice soil samples to assess the baseline concentration of soil As for this area. The mean soil As concentrations (mg/kg) for different land types under rice and non-rice crops were: rice-MHL-1 (21.2)>rice-HL (14.1)>non-rice-MHL-1 (11.9)>non-rice-HL (7.2). Multiple regression analyses showed that irrigation water As, Fe, land elevation and years of tubewell operation are the important factors affecting the concentrations of As in HL paddy soils. Only years of tubewell operation affected As concentration in the MHL-1 paddy soils. Quantitatively similar increases in soil As above the estimated baseline-As concentration were observed for rice soils on HL and MHL-1 after 6-8 years of groundwater irrigation, implying strong retention of As added in irrigation water in both land types. Application of single geostatistical methods with secondary variables such as regression kriging (RK) and ordinary co-kriging (OCK) gave little improvement in prediction of soil As over ordinary kriging (OK). Comparing single prediction methods, kriging within strata (KWS), the combination of RK for HL and OCK for MHL-1, gave more accurate soil As predictions and showed the lowest misclassification of declaring a location "contaminated" with respect to 14.8 mg As/kg, the highest value obtained for the baseline soil As concentration. Prediction of soil As buildup over time indicated that 75% or the soils cropped to rice would contain at least 30 mg/L As by the year 2020. PMID:22055452

  2. Factors affecting paddy soil arsenic concentration in Bangladesh: prediction and uncertainty of geostatistical risk mapping.

    PubMed

    Ahmed, Zia U; Panaullah, Golam M; DeGloria, Stephen D; Duxbury, John M

    2011-12-15

    Knowledge of the spatial correlation of soil arsenic (As) concentrations with environmental variables is needed to assess the nature and extent of the risk of As contamination from irrigation water in Bangladesh. We analyzed 263 paired groundwater and paddy soil samples covering highland (HL) and medium highland-1 (MHL-1) land types for geostatistical mapping of soil As and delineation of As contaminated areas in Tala Upazilla, Satkhira district. We also collected 74 non-rice soil samples to assess the baseline concentration of soil As for this area. The mean soil As concentrations (mg/kg) for different land types under rice and non-rice crops were: rice-MHL-1 (21.2)>rice-HL (14.1)>non-rice-MHL-1 (11.9)>non-rice-HL (7.2). Multiple regression analyses showed that irrigation water As, Fe, land elevation and years of tubewell operation are the important factors affecting the concentrations of As in HL paddy soils. Only years of tubewell operation affected As concentration in the MHL-1 paddy soils. Quantitatively similar increases in soil As above the estimated baseline-As concentration were observed for rice soils on HL and MHL-1 after 6-8 years of groundwater irrigation, implying strong retention of As added in irrigation water in both land types. Application of single geostatistical methods with secondary variables such as regression kriging (RK) and ordinary co-kriging (OCK) gave little improvement in prediction of soil As over ordinary kriging (OK). Comparing single prediction methods, kriging within strata (KWS), the combination of RK for HL and OCK for MHL-1, gave more accurate soil As predictions and showed the lowest misclassification of declaring a location "contaminated" with respect to 14.8 mg As/kg, the highest value obtained for the baseline soil As concentration. Prediction of soil As buildup over time indicated that 75% or the soils cropped to rice would contain at least 30 mg/L As by the year 2020.

  3. Effect of soil type and soil management on soil physical, chemical and biological properties in commercial organic olive orchards in Southern Spain

    NASA Astrophysics Data System (ADS)

    Gomez, Jose Alfonso; Auxiliadora Soriano, Maria; Montes-Borrego, Miguel; Navas, Juan Antonio; Landa, Blanca B.

    2014-05-01

    One of the objectives of organic agriculture is to maintain and improve soil quality, while simultaneously producing an adequate yield. A key element in organic olive production is soil management, which properly implemented can optimize the use of rainfall water enhancing infiltration rates and controlling competition for soil water by weeds. There are different soil management strategies: eg. weed mowing (M), green manure with surface tillage in spring (T), or combination with animal grazing among the trees (G). That variability in soil management combined with the large variability in soil types on which organic olive trees are grown in Southern Spain, difficult the evaluation of the impact of different soil management on soil properties, and yield as well as its interpretation in terms of improvement of soil quality. This communications presents the results and analysis of soil physical, chemical and biological properties on 58 soils in Southern Spain during 2005 and 2006, and analyzed and evaluated in different studies since them. Those 58 soils were sampled in 46 certified commercial organic olive orchards with four soil types as well as 12 undisturbed areas with natural vegetation near the olive orchards. The four soil types considered were Eutric Regosol (RGeu, n= 16), Eutric Cambisol (CMeu, n=16), Calcaric Regosol (RGca, n=13 soils sampled) and Calcic Cambisol (CMcc), and the soil management systems (SMS) include were 10 light tillage (LT), 16 sheep grazing (G), 10 tillage (T), 10 mechanical mowing (M), and 12 undisturbed areas covered by natural vegetation (NV-C and NV-S). Our results indicate that soil management had a significant effect on olive yield as well as on key soil properties. Among these soil properties are physical ones, such as infiltration rate or bulk density, chemical ones, especially organic carbon concentration, and biological ones such as soil microbial respiration and bacterial community composition. Superimpose to that soil

  4. [Sizes of soil macropores and related main affecting factors on a vegetated basalt slope].

    PubMed

    Guan, Qi; Xu, Ze-Min; Tian, Lin

    2013-10-01

    The landslide on vegetated slopes caused by extreme weather has being increased steadily, and the preferential flow in soil macropores plays an important role in the landslide. By using water breakthrough curve and Poiseuille equation, this paper estimated the radius range, amount, and average volume of soil macropores on a vegetated basalt slope of Maka Mountain, Southwest China, and analyzed the distribution of the soil macropores and the main affecting factors. In the study area, the radius of soil macropores ranged from 0.3 to 1.8 mm, mainly between 0.5 and 1.2 mm. The large-radius macropores (1.4-1.8 mm) were lesser, while the small-radius macropores (< 1.4 mm) were more. With the development of soil profile, soil macropores were more in upper layers and lesser in deeper layers. The average volume of the macropores contributed 84.7% to the variance of steady effluent rate. Among the factors affecting the average volume of the large macropores, vegetations root mass had a linear relationship, with the correlation coefficient being 0.70, and soil organic matter content also had a linear relationship, with the correlation coefficient being 0.64.

  5. Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil.

    PubMed

    Bernard, Laetitia; Chapuis-Lardy, Lydie; Razafimbelo, Tantely; Razafindrakoto, Malalatiana; Pablo, Anne-Laure; Legname, Elvire; Poulain, Julie; Brüls, Thomas; O'Donohue, Michael; Brauman, Alain; Chotte, Jean-Luc; Blanchart, Eric

    2012-01-01

    Priming effect (PE) is defined as a stimulation of the mineralization of soil organic matter (SOM) following a supply of fresh organic matter. This process can have important consequences on the fate of SOM and on the management of residues in agricultural soils, especially in tropical regions where soil fertility is essentially based on the management of organic matter. Earthworms are ecosystem engineers known to affect the dynamics of SOM. Endogeic earthworms ingest large amounts of soil and assimilate a part of organic matter it contains. During gut transit, microorganisms are transported to new substrates and their activity is stimulated by (i) the production of readily assimilable organic matter (mucus) and (ii) the possible presence of fresh organic residues in the ingested soil. The objective of our study was to see (i) whether earthworms impact the PE intensity when a fresh residue is added to a tropical soil and (ii) whether this impact is linked to a stimulation/inhibition of bacterial taxa, and which taxa are affected. A tropical soil from Madagascar was incubated in the laboratory, with a (13)C wheat straw residue, in the presence or absence of a peregrine endogeic tropical earthworm, Pontoscolex corethrurus. Emissions of (12)CO(2) and (13)CO(2) were followed during 16 days. The coupling between DNA-SIP (stable isotope probing) and pyrosequencing showed that stimulation of both the mineralization of wheat residues and the PE can be linked to the stimulation of several groups especially belonging to the Bacteroidetes phylum.

  6. [Sizes of soil macropores and related main affecting factors on a vegetated basalt slope].

    PubMed

    Guan, Qi; Xu, Ze-Min; Tian, Lin

    2013-10-01

    The landslide on vegetated slopes caused by extreme weather has being increased steadily, and the preferential flow in soil macropores plays an important role in the landslide. By using water breakthrough curve and Poiseuille equation, this paper estimated the radius range, amount, and average volume of soil macropores on a vegetated basalt slope of Maka Mountain, Southwest China, and analyzed the distribution of the soil macropores and the main affecting factors. In the study area, the radius of soil macropores ranged from 0.3 to 1.8 mm, mainly between 0.5 and 1.2 mm. The large-radius macropores (1.4-1.8 mm) were lesser, while the small-radius macropores (< 1.4 mm) were more. With the development of soil profile, soil macropores were more in upper layers and lesser in deeper layers. The average volume of the macropores contributed 84.7% to the variance of steady effluent rate. Among the factors affecting the average volume of the large macropores, vegetations root mass had a linear relationship, with the correlation coefficient being 0.70, and soil organic matter content also had a linear relationship, with the correlation coefficient being 0.64. PMID:24483084

  7. Kirkham’s legacy and contemporary challenges in soil physics research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper, written by the winners of the Don and Betty Kirkham Award in Soil Physics, is dedicated to the legacy of Don Kirkham. It describes eight longstanding or emerging research areas in soil physics that contain key unsolved problems. All are field-oriented with applications to a number of imp...

  8. Soil Heat Flow. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Simpson, James R.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Soil heat flow and the resulting soil temperature distributions have ecological consequences…

  9. Soil moisture variations affect short-term plant-microbial competition for ammonium, glycine, and glutamate.

    PubMed

    Månsson, Katarina F; Olsson, Magnus O; Falkengren-Grerup, Ursula; Bengtsson, Göran

    2014-04-01

    We tested whether the presence of plant roots would impair the uptake of ammonium ([Formula: see text]), glycine, and glutamate by microorganisms in a deciduous forest soil exposed to constant or variable moisture in a short-term (24-h) experiment. The uptake of (15)NH4 and dual labeled amino acids by the grass Festuca gigantea L. and soil microorganisms was determined in planted and unplanted soils maintained at 60% WHC (water holding capacity) or subject to drying and rewetting. The experiment used a design by which competition was tested in soils that were primed by plant roots to the same extent in the planted and unplanted treatments. Festuca gigantea had no effect on microbial N uptake in the constant moist soil, but its presence doubled the microbial [Formula: see text] uptake in the dried and rewetted soil compared with the constant moist. The drying and rewetting reduced by half or more the [Formula: see text] uptake by F. gigantea, despite more than 60% increase in the soil concentration of [Formula: see text]. At the same time, the amino acid and [Formula: see text]-N became equally valued in the plant uptake, suggesting that plants used amino acids to compensate for the lower [Formula: see text] acquisition. Our results demonstrate the flexibility in plant-microbial use of different N sources in response to soil moisture fluctuations and emphasize the importance of including transient soil conditions in experiments on resource competition between plants and soil microorganisms. Competition between plants and microorganisms for N is demonstrated by a combination of removal of one of the potential competitors, the plant, and subsequent observations of the uptake of N in the organisms in soils that differ only in the physical presence and absence of the plant during a short assay. Those conditions are necessary to unequivocally test for competition.

  10. Impact of Ca-amendments and soil management in physical properties linked to soil-water relationship in degraded Ultisols from South-Europe

    NASA Astrophysics Data System (ADS)

    Mariscal-Sancho, I.; Gonzalez-Fernandez, P.; León, P.; Gómez-Paccard, C.; Benito, M.; Espejo, R.

    2012-04-01

    Cañamerós raña formation in western Spain was cleared for cropping in 1940´s. Its highly weathered acidic soils (Ultisols) were deeply affected by tillage. The soil organic matter (SOM) content and specially the particulate organic matter (POM), a labile fraction, were drastically reduced, and most of their chemical and physical soil properties related to its quality were negatively affected. The extraction of Ca through the harvest and the release of Al retained in organic-Al complexes resulted in a lower Ca/Al ratio which increased the Al toxicity. These effects led to a drastic yield reduction and the abandon of many degraded fields after 20-70 years of unsustainable managements. On these degraded soils we studied the effect of different soil management strategies (no-till with wild pasture (WP) and no-till with an improved pasture (IP)), and amendment applications (sugar foam waste (SF), and SF + Phosphogypsum (PH) versus control (C)). One of the objectives of this work was to evaluate the efficiency of these practices to recover soil quality parameters, especially those related to soil-water relationship. A Split-plot experiment was established in a degraded field. We evaluated the changes in superficial infiltration, bulk density, and content of water-stable aggregates per 100 g of soil before the Ca-amendment applications and pasture establishments, and after 4.5 years. We also measured the changes in SOM and POM contents which are closely related with the previous parameters. The Ca applications reduced Al toxicity, improved the pasture yield and increased organic matter inputs to soil. The results showed a significant increase of POM in all treatment compared with the POM content at the beginning of this experiment. However the "SOM minus POM" which could be classified as recalcitrant organic matter did not show significant increments. The increase of POM had a positive effect on the content of water-stable aggregates per 100 g of soil and the water

  11. Physically-based failure analysis of shallow layered soil deposits over large areas

    NASA Astrophysics Data System (ADS)

    Cuomo, Sabatino; Castorino, Giuseppe Claudio; Iervolino, Aniello

    2014-05-01

    In the last decades, the analysis of slope stability conditions over large areas has become popular among scientists and practitioners (Cascini et al., 2011; Cuomo and Della Sala, 2013). This is due to the availability of new computational tools (Baum et al., 2002; Godt et al., 2008; Baum and Godt, 2012; Salciarini et al., 2012) - implemented in GIS (Geographic Information System) platforms - which allow taking into account the major hydraulic and mechanical issues related to slope failure, even for unsaturated soils, as well as the spatial variability of both topography and soil properties. However, the effectiveness (Sorbino et al., 2010) of the above methods it is still controversial for landslides forecasting especially depending on the accuracy of DTM (Digital Terrain Model) and for the chance that distinct triggering mechanisms may occur over large area. Among the major uncertainties, layering of soil deposits is of primary importance due to soil layer conductivity contrast and differences in shear strength. This work deals with the hazard analysis of shallow landslides over large areas, considering two distinct schematizations of soil stratigraphy, i.e. homogeneous or layered. To this purpose, the physically-based model TRIGRS (Baum et al., 2002) is firstly used, then extended to the case of layered deposit: specifically, a unique set of hydraulic properties is assumed while distinct soil unit weight and shear strength are considered for each soil layer. Both models are applied to a significant study area of Southern Italy, about 4 km2 large, where shallow deposits of air-fall volcanic (pyroclastic) soils have been affected by several landslides, causing victims, damages and economic losses. The achieved results highlight that soil volume globally mobilized over the study area highly depends on local stratigraphy of shallow deposits. This relates to the depth of critical slip surface which rarely corresponds to the bedrock contact where cohesionless coarse

  12. Coupled model of physical and biological processes affecting maize pollination

    NASA Astrophysics Data System (ADS)

    Arritt, R.; Westgate, M.; Riese, J.; Falk, M.; Takle, E.

    2003-04-01

    Controversy over the use of genetically modified (GM) crops has led to increased interest in evaluating and controlling the potential for inadvertent outcrossing in open-pollinated crops such as maize. In response to this problem we have developed a Lagrangian model of pollen dispersion as a component of a coupled end-to-end (anther to ear) physical-biological model of maize pollination. The Lagrangian method is adopted because of its generality and flexibility: first, the method readily accommodates flow fields of arbitrary complexity; second, each element of the material being transported can be identified by its source, time of release, or other properties of interest. The latter allows pollen viability to be estimated as a function of such factors as travel time, temperature, and relative humidity, so that the physical effects of airflow and turbulence on pollen dispersion can be considered together with the biological aspects of pollen release and viability. Predicted dispersion of pollen compares well both to observations and to results from a simpler Gaussian plume model. Ability of the Lagrangian model to handle complex air flows is demonstrated by application to pollen dispersion in the vicinity of an agricultural shelter belt. We also show results indicating that pollen viability can be quantified by an "aging function" that accounts for temperature, humidity, and time of exposure.

  13. Increased nitrogen deposition did not affect the composition and turnover of plant and microbial biomarkers in forest soil density fractions

    NASA Astrophysics Data System (ADS)

    Griepentrog, Marco; Bodé, Samuel; Boeckx, Pascal; Hagedorn, Frank; Wiesenberg, Guido L. B.; Schmidt, Michael W. I.

    2013-04-01

    from fungal- to bacterial-derived amino sugars from light (plant-like) to heavy (mineral) soil fractions. Other than expected, elevated CO2 and increased nitrogen deposition did not affect the distribution of amino sugars within and between soil fractions. One explanation could be that the four years of the experiment were too short to reach a new equilibrium of fungi and bacteria. For the first time we were able to determine isotope ratios of individual amino sugars in soil density fractions from a natural abundance field experiment. Our results show that, in the presence of soil minerals amino sugars turn over slower than in light, physically unprotected fractions. Surprisingly, fungal amino sugars turn over at the same rate than total organic carbon, while bacterial amino sugars turn over slower. Furthermore, nitrogen deposition did not affect the turnover of individual amino sugars in soil density fractions, indicating that microbial community distribution was not affected after four years of increased nitrogen deposition. This is in contradiction to the often observed reduction of fungal biomass after nitrogen additions. Data from the lipid analysis (plant biomarkers) are still under investigation and will be presented in conjunction with the results for amino sugars (microbial biomarkers).

  14. Trace metal accumulation in soil and their phytoavailability as affected by greenhouse types in north China.

    PubMed

    Yang, Lanqin; Huang, Biao; Mao, Mingcui; Yao, Lipeng; Hickethier, Martina; Hu, Wenyou

    2015-05-01

    Long-term heavy organic fertilizer application has linked greenhouse vegetable production (GVP) with trace metal contamination in north China. Given that trace metals release from fertilizers and their availability may be affected by discrepant environmental conditions, especially temperature under different greenhouses, this study investigated Cd, Cu, Pb, and Zn accumulation and contamination extent in soil as well as their phytoavailability under two major greenhouses in Tongshan, north China, namely solar greenhouse (SG) and round-arched plastic greenhouse (RAPG), to evaluate their presumed difference. The results showed significant Cd, Cu, Pb, and Zn accumulation in GVP soil by comparing with those in open-field soil, but their accumulation extent and rates were generally greater in SG than those in RAPG. This may be related to more release of trace metals to soil due to the acceleration of decomposition and humification process of organic fertilizers under higher soil temperature in SG relative to that in RAPG. Overall, soil in both greenhouses was generally less polluted or moderately polluted by the study metals. Similarly, decreased soil pH and elevated soil available metals in SG caused higher trace metals in leaf vegetables in SG than those in RAPG, although there was no obvious risk via vegetable consumption under both greenhouses. Lower soil pH may be predominantly ascribed to more intensive farming practices in SG while elevated soil available metals may be attributed to more release of dissolved organic matter-metal complexes from soil under higher temperature in SG. The data provided in this study may assist in developing reasonable and sustainable fertilization strategies to abate trace metal contamination in both greenhouses.

  15. Emission and distribution of fumigants as affected by soil moistures in three different textured soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stringent environmental regulations are being developed to control the emission of soil fumigants to reduce air pollution. Water application is a low-cost strategy for fumigant emission control and applicable for a wide range of commodity groups, especially those with low profit margins. Although it...

  16. Soil residue analysis and degradation of saflufenacil as affected by moisture content and soil characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate saflufenacil degradation and persistence in soils from rice regions under field capacity (non-flooded) and saturated (flooded) conditions. Saflufenacil dissolved in acetonitrile was added into pre-incubated samples at the rate of 2000 g ha-1. The amount of...

  17. Soil Loss From Tillage Ridge as Affected by Waste Materials and Soil Amendments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In semi-arid regions with low crop residues, tillage ridges are used to mitigate wind and water erosion. Unfortunately, without sufficient immobile soil aggregates, bare ridges also often need additional protection. From late winter through early summer of 2006-2008 the reduction in erosion by vario...

  18. Geohelminths distribution as affected by soil properties, physicochemical factors and climate in Sharkyia governorate Egypt.

    PubMed

    Etewa, Samia E; Abdel-Rahman, Sara A; Abd El-Aal, Naglaa F; Fathy, Ghada M; El-Shafey, Mahmoud A; Ewis, A M G

    2016-06-01

    Soil-transmitted helminths are mainly a group of parasitic nematodes causing human infection through contact with parasite eggs or larvae; they survive in the warm and moist soil of the tropical and subtropical countries. This study was carried out in Sharkyia governorate from October, 2011 to October, 2013, to correlate between the prevalence and distribution of these parasites in the soil and the physicochemical factors affecting the examined samples of the soil. One hundred and twenty samples of different types of soil (clay, silt, sand) from different localities were collected and examined. Diagnosis of geohelminths was confirmed by the recovery of their eggs and larvae with other protozoa by different parasitological methods. The modified baermann method was found to be more efficient in detection of geohelminths larvae than charcoal culture method. Among the examined sites geohelminths were much more numerous in the soil of rural areas especially in the spring and summer seasons, while the contamination of canal banks by geohelminths was the worst (80 %). An insignificant correlation was reported between the soil texture and the number of positive samples in the examined areas while the relationship was directly proportional among (moisture, PH, organic). It appeared that the most common geohelminthic stage was Toxocara spp. eggs besides other types of protozoa especially Balantidium coli cysts. This suggests that factors other than soil texture are important in the prevalence of geohelminths in the soil e.g. temperature, moisture, PH and organic matter. So, to change some of these factors in a trial to control geoparasites transmission but with keeping the environment should be tried. These results also open the way to further studies to highlight the mutual affection between inhabitants of these sites and the prevalence of these geoparasites.

  19. Geohelminths distribution as affected by soil properties, physicochemical factors and climate in Sharkyia governorate Egypt.

    PubMed

    Etewa, Samia E; Abdel-Rahman, Sara A; Abd El-Aal, Naglaa F; Fathy, Ghada M; El-Shafey, Mahmoud A; Ewis, A M G

    2016-06-01

    Soil-transmitted helminths are mainly a group of parasitic nematodes causing human infection through contact with parasite eggs or larvae; they survive in the warm and moist soil of the tropical and subtropical countries. This study was carried out in Sharkyia governorate from October, 2011 to October, 2013, to correlate between the prevalence and distribution of these parasites in the soil and the physicochemical factors affecting the examined samples of the soil. One hundred and twenty samples of different types of soil (clay, silt, sand) from different localities were collected and examined. Diagnosis of geohelminths was confirmed by the recovery of their eggs and larvae with other protozoa by different parasitological methods. The modified baermann method was found to be more efficient in detection of geohelminths larvae than charcoal culture method. Among the examined sites geohelminths were much more numerous in the soil of rural areas especially in the spring and summer seasons, while the contamination of canal banks by geohelminths was the worst (80 %). An insignificant correlation was reported between the soil texture and the number of positive samples in the examined areas while the relationship was directly proportional among (moisture, PH, organic). It appeared that the most common geohelminthic stage was Toxocara spp. eggs besides other types of protozoa especially Balantidium coli cysts. This suggests that factors other than soil texture are important in the prevalence of geohelminths in the soil e.g. temperature, moisture, PH and organic matter. So, to change some of these factors in a trial to control geoparasites transmission but with keeping the environment should be tried. These results also open the way to further studies to highlight the mutual affection between inhabitants of these sites and the prevalence of these geoparasites. PMID:27413327

  20. A Comparison of Video-Based and Interaction-Based Affect Detectors in Physics Playground

    ERIC Educational Resources Information Center

    Kai, Shiming; Paquette, Luc; Baker, Ryan S.; Bosch, Nigel; D'Mello, Sidney; Ocumpaugh, Jaclyn; Shute, Valerie; Ventura, Matthew

    2015-01-01

    Increased attention to the relationships between affect and learning has led to the development of machine-learned models that are able to identify students' affective states in computerized learning environments. Data for these affect detectors have been collected from multiple modalities including physical sensors, dialogue logs, and logs of…

  1. Coarse fragments affects soil properties in a mantled-karst landscape of the Ozark Highlands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper investigates the effect of rock fragments on soil physical hydraulic properties within the mantled karst landscapes of the Savoy Experimental Watershed (SEW), a setting typical of much of the Ozark Plateaus. Water resources in these settings are highly susceptible to contamination. As a r...

  2. Effects of vegetable oil residue after soil extraction on physical-chemical properties of sandy soil and plant growth.

    PubMed

    Gong, Zongqiang; Li, Peijun; Wilke, B M; Alef, Kassem

    2008-01-01

    Vegetable oil has the ability to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated sandy soil for a remediation purpose, with some of the oil remaining in the soil. Although most of the PAHs were removed, the risk of residue oil in the soil was not known. The objective of this study was to evaluate the effects of the vegetable oil residue on higher plant growth and sandy soil properties after soil extraction for a better understanding of the soil remediation. Addition of sunflower oil and column experiment were performed on a PAH contaminated soil and/or a control soil, respectively. Soils were incubated for 90 d, and soil pH was measured during the soil incubation. Higher plant growth bioassays with Avena sativa L. (oat) and Brassica rapa L. (turnip) were performed after the incubation, and then soil organic carbon contents were measured. The results show that both the nutrient amendment and the sunflower oil degradation resulted in the decrease of soil pH. When these two process worked together, their effects were counteracted due to the consumption of the nutrients and oil removal, resulting in different pH profiles. Growth of A. sativa was adversely affected by the sunflower oil, and the nutrient amendments stimulated the A. sativa growth significantly. B. rapa was more sensitive to the sunflower oil than A. sativa. Only 1% sunflower oil addition plus nutrient amendment stimulated B. rapa growth. All the other treatments on B. rapa inhibited its growth significantly. The degradation of the sunflower oil in the soils was proved by the soil organic carbon content.

  3. Effects of vegetable oil residue after soil extraction on physical-chemical properties of sandy soil and plant growth.

    PubMed

    Gong, Zongqiang; Li, Peijun; Wilke, B M; Alef, Kassem

    2008-01-01

    Vegetable oil has the ability to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated sandy soil for a remediation purpose, with some of the oil remaining in the soil. Although most of the PAHs were removed, the risk of residue oil in the soil was not known. The objective of this study was to evaluate the effects of the vegetable oil residue on higher plant growth and sandy soil properties after soil extraction for a better understanding of the soil remediation. Addition of sunflower oil and column experiment were performed on a PAH contaminated soil and/or a control soil, respectively. Soils were incubated for 90 d, and soil pH was measured during the soil incubation. Higher plant growth bioassays with Avena sativa L. (oat) and Brassica rapa L. (turnip) were performed after the incubation, and then soil organic carbon contents were measured. The results show that both the nutrient amendment and the sunflower oil degradation resulted in the decrease of soil pH. When these two process worked together, their effects were counteracted due to the consumption of the nutrients and oil removal, resulting in different pH profiles. Growth of A. sativa was adversely affected by the sunflower oil, and the nutrient amendments stimulated the A. sativa growth significantly. B. rapa was more sensitive to the sunflower oil than A. sativa. Only 1% sunflower oil addition plus nutrient amendment stimulated B. rapa growth. All the other treatments on B. rapa inhibited its growth significantly. The degradation of the sunflower oil in the soils was proved by the soil organic carbon content. PMID:19209632

  4. Physical processes affecting the sedimentary environments of Long Island Sound

    USGS Publications Warehouse

    Signell, R.P.; Knebel, H. J.; List, J.H.; Farris, A.S.; ,

    1997-01-01

    A modeling study was undertaken to simulate the bottom tidal-, wave-, and wind-driven currents in Long Island Sound in order to provide a general physical oceanographic framework for understanding the characteristics and distribution of seafloor sedimentary environments. Tidal currents are important in the funnel-shaped eastern part of the Sound, where a strong gradient of tidal-current speed was found. This current gradient parallels the general westward progression of sedimentary environments from erosion or non-deposition, through bedload transport and sediment sorting, to fine-grained deposition. Wave-driven currents, meanwhile, appear to be important along the shallow margins of the basin, explaining the occurrence of relatively coarse sediments in regions where tidal currents alone are not strong enough to move sediment. Finally, westerly wind events are shown to locally enhance bottom currents along the axial depression of the sound, providing a possible explanation for the relatively coarse sediments found in the depression despite tide- and wave-induced currents below the threshold of sediment movement. The strong correlation between the near-bottom current intensity based on the model results and the sediment response as indicated by the distribution of sedimentary environments provides a framework for predicting the long-term effects of anthropogenic activities.

  5. Thallium occurrence and partitioning in soils and sediments affected by mining activities in Madrid province (Spain).

    PubMed

    Gomez-Gonzalez, M A; Garcia-Guinea, J; Laborda, F; Garrido, F

    2015-12-01

    Thallium (Tl) and its compounds are toxic to biota even at low concentrations but little is known about Tl concentration and speciation in soils. An understanding of the source, mobility, and dispersion of Tl is necessary to evaluate the environmental impact of Tl pollution cases. In this paper, we examine the Tl source and dispersion in two areas affected by abandoned mine facilities whose residues remain dumped on-site affecting to soils and sediments of natural water courses near Madrid city (Spain). Total Tl contents and partitioning in soil solid phases as determined by means of a sequential extraction procedure were also examined in soils along the riverbeds of an ephemeral and a permanent streams collecting water runoff and drainage from the mines wastes. Lastly, electronic microscopy and cathodoluminescence probe are used as a suitable technique for Tl elemental detection on thallium-bearing phases. Tl was found mainly bound to quartz and alumino-phyllosilicates in both rocks and examined soils. Besides, Tl was also frequently found associated to organic particles and diatom frustules in all samples from both mine scenarios. These biogenic silicates may regulate the transfer of Tl into the soil-water system.

  6. Climate change induced rainfall patterns affect wheat productivity and agroecosystem functioning dependent on soil types

    NASA Astrophysics Data System (ADS)

    Tabi Tataw, James; Baier, Fabian; Krottenthaler, Florian; Pachler, Bernadette; Schwaiger, Elisabeth; Whylidal, Stefan; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas; Zaller, Johann G.

    2014-05-01

    Wheat is a crop of global importance supplying more than half of the world's population with carbohydrates. We examined, whether climate change induced rainfall patterns towards less frequent but heavier events alter wheat agroecosystem productivity and functioning under three different soil types. Therefore, in a full-factorial experiment Triticum aestivum L. was cultivated in 3 m2 lysimeter plots containing the soil types sandy calcaric phaeozem, gleyic phaeozem or calcic chernozem. Prognosticated rainfall patterns based on regionalised climate change model calculations were compared with current long-term rainfall patterns; each treatment combination was replicated three times. Future rainfall patterns significantly reduced wheat growth and yield, reduced the leaf area index, accelerated crop development, reduced arbuscular mycorrhizal fungi colonisation of roots, increased weed density and the stable carbon isotope signature (δ13C) of both old and young wheat leaves. Different soil types affected wheat growth and yield, ecosystem root production as well as weed abundance and biomass. The interaction between climate and soil type was significant only for the harvest index. Our results suggest that even slight changes in rainfall patterns can significantly affect the functioning of wheat agroecosystems. These rainfall effects seemed to be little influenced by soil types suggesting more general impacts of climate change across different soil types. Wheat production under future conditions will likely become more challenging as further concurrent climate change factors become prevalent.

  7. Diversity and structure of AMF communities as affected by tillage in a temperate soil.

    PubMed

    Jansa, J; Mozafar, A; Anken, T; Ruh, R; Sanders, I R; Frossard, E

    2002-10-01

    Arbuscular mycorrhizal fungi (AMF) were studied in differently tilled soils from a long-term field experiment in Switzerland. Diversity and structure of AMF communities were surveyed either directly on spores isolated from the field soil or on spores isolated from trap cultures, planted with different host plants. Single-spore cultures were established from the AMF spores obtained from trap cultures. Identification of the AMF was made by observation of spore morphology and confirmed by sequencing of ITS rDNA. At least 17 recognised AMF species were identified in samples from field and/or trap cultures, belonging to five genera of AMF--Glomus, Gigaspora, Scutellospora, Acaulospora, and Entrophospora. Tillage had a significant influence on the sporulation of some species and non- Glomus AMF tended to be more abundant in the no-tilled soil. The community structure of AMF in the field soil was significantly affected by tillage treatment. However, no significant differences in AMF diversity were detected among different soil tillage treatments. AMF community composition in trap cultures was affected much more by the species of the trap plant than by the original tillage treatment of the field soil. The use of trap cultures for fungal diversity estimation in comparison with direct observation of field samples is discussed.

  8. Thallium occurrence and partitioning in soils and sediments affected by mining activities in Madrid province (Spain).

    PubMed

    Gomez-Gonzalez, M A; Garcia-Guinea, J; Laborda, F; Garrido, F

    2015-12-01

    Thallium (Tl) and its compounds are toxic to biota even at low concentrations but little is known about Tl concentration and speciation in soils. An understanding of the source, mobility, and dispersion of Tl is necessary to evaluate the environmental impact of Tl pollution cases. In this paper, we examine the Tl source and dispersion in two areas affected by abandoned mine facilities whose residues remain dumped on-site affecting to soils and sediments of natural water courses near Madrid city (Spain). Total Tl contents and partitioning in soil solid phases as determined by means of a sequential extraction procedure were also examined in soils along the riverbeds of an ephemeral and a permanent streams collecting water runoff and drainage from the mines wastes. Lastly, electronic microscopy and cathodoluminescence probe are used as a suitable technique for Tl elemental detection on thallium-bearing phases. Tl was found mainly bound to quartz and alumino-phyllosilicates in both rocks and examined soils. Besides, Tl was also frequently found associated to organic particles and diatom frustules in all samples from both mine scenarios. These biogenic silicates may regulate the transfer of Tl into the soil-water system. PMID:26218566

  9. Diversity and structure of AMF communities as affected by tillage in a temperate soil.

    PubMed

    Jansa, J; Mozafar, A; Anken, T; Ruh, R; Sanders, I R; Frossard, E

    2002-10-01

    Arbuscular mycorrhizal fungi (AMF) were studied in differently tilled soils from a long-term field experiment in Switzerland. Diversity and structure of AMF communities were surveyed either directly on spores isolated from the field soil or on spores isolated from trap cultures, planted with different host plants. Single-spore cultures were established from the AMF spores obtained from trap cultures. Identification of the AMF was made by observation of spore morphology and confirmed by sequencing of ITS rDNA. At least 17 recognised AMF species were identified in samples from field and/or trap cultures, belonging to five genera of AMF--Glomus, Gigaspora, Scutellospora, Acaulospora, and Entrophospora. Tillage had a significant influence on the sporulation of some species and non- Glomus AMF tended to be more abundant in the no-tilled soil. The community structure of AMF in the field soil was significantly affected by tillage treatment. However, no significant differences in AMF diversity were detected among different soil tillage treatments. AMF community composition in trap cultures was affected much more by the species of the trap plant than by the original tillage treatment of the field soil. The use of trap cultures for fungal diversity estimation in comparison with direct observation of field samples is discussed. PMID:12375133

  10. Factors affecting metribuzin retention in Algerian soils and assessment of the risks of contamination.

    PubMed

    Oukali-Haouchine, Ouzna; Barriuso, Enrique; Mayata, Yamina; Moussaoui, Khadija M

    2013-05-01

    Metribuzin is a widely used herbicide around the world but it could lead to soil and water contamination. Metribuzin retention on a silty-clay agricultural soil of Algeria was studied in laboratory batch experiments to assess the contamination risk of the groundwater. Factors conditioning the fate of metribuzin were investigated: soil nature, metribuzin formulation, NPK fertilizer, and soil pH. Freundlich sorption isotherms gave the coefficients K F between 1.2 and 4.9 and 1/n a between 0.52 and 0.93. The adsorption is directly dependent on organic and clay soil contents. Formulated metribuzin (Metriphar) reduces the adsorption (K F = 1.25) compared to pure metribuzin (K F = 2.81). The addition of an NPK fertilizer decreases the soil pH (6.67 for the soil without fertilizer and 5.86 for 2 % of fertilizer) and increases metribuzin adsorption (K F is 4.83 for 2 % of fertilizer). The pH effect on the adsorption is corroborated in experiments changing the soil pH between 5 (K F is 4.17) and 8 (K F is 1.57) under controlled conditions. Desorption isotherms show a hysteresis and only 30 to 40 % of the initially adsorbed metribuzin is released. The estimated GUS index is ≥ 2.8 for a DT50 ≥ 30 days. K F values and the hysteresis show that metribuzin is little but strongly retained on the soil. Formulated metribuzin and addition of fertilizer affect the retention. However, the GUS index indicates a high mobility and a significant risk of leaching. The most appropriate risk management measure would be an important increase in organic matter content of the soil by addition of organic amendments.

  11. Physical exercise affects attentional orienting behavior through noradrenergic mechanisms.

    PubMed

    Robinson, Andrea M; Buttolph, Thomas; Green, John T; Bucci, David J

    2015-06-01

    Spontaneously hypertensive rats (SHRs), a commonly used animal model of attention-deficit/hyperactivity disorder, exhibit little habituation of the orienting response to repeated presentations of a nonreinforced visual stimulus. However, SHRs that have access to a running wheel for 5, 10, or 21 days exhibit robust habituation that is indistinguishable from normo-active rats. Two days of exercise, in comparison, is not sufficient to affect habituation. Here we tested the hypothesis that the effect of exercise on orienting behavior in SHRs is mediated by changes in noradrenergic function. In Experiment 1, we found that 5, 10, or 21 days of access to a running wheel, but not 2 days, significantly reduced levels of the norepinephrine transporter in medial prefrontal cortex. In Experiment 2, we tested for a causal relationship between changes in noradrenergic function and orienting behavior by blocking noradrenergic receptors during exercise. Rats that received propranolol (beta adrenergic/noradrenergic receptor blocker) during 10 days of exercise failed to exhibit an exercise-induced reduction in orienting behavior. The results inform a growing literature regarding the effects of exercise on behavior and the potential use of exercise as a treatment for mental disorders. PMID:26030434

  12. Physical exercise affects attentional orienting behavior through noradrenergic mechanisms.

    PubMed

    Robinson, Andrea M; Buttolph, Thomas; Green, John T; Bucci, David J

    2015-06-01

    Spontaneously hypertensive rats (SHRs), a commonly used animal model of attention-deficit/hyperactivity disorder, exhibit little habituation of the orienting response to repeated presentations of a nonreinforced visual stimulus. However, SHRs that have access to a running wheel for 5, 10, or 21 days exhibit robust habituation that is indistinguishable from normo-active rats. Two days of exercise, in comparison, is not sufficient to affect habituation. Here we tested the hypothesis that the effect of exercise on orienting behavior in SHRs is mediated by changes in noradrenergic function. In Experiment 1, we found that 5, 10, or 21 days of access to a running wheel, but not 2 days, significantly reduced levels of the norepinephrine transporter in medial prefrontal cortex. In Experiment 2, we tested for a causal relationship between changes in noradrenergic function and orienting behavior by blocking noradrenergic receptors during exercise. Rats that received propranolol (beta adrenergic/noradrenergic receptor blocker) during 10 days of exercise failed to exhibit an exercise-induced reduction in orienting behavior. The results inform a growing literature regarding the effects of exercise on behavior and the potential use of exercise as a treatment for mental disorders.

  13. Physical Exercise Affects Attentional Orienting Behavior through Noradrenergic Mechanisms

    PubMed Central

    Robinson, Andrea M.; Buttolph, Thomas; Green, John T.; Bucci, David J.

    2015-01-01

    Spontaneously Hypertensive Rats (SHRs), a commonly-used animal model of ADHD, exhibit little habituation of the orienting response to repeated presentations of a non-reinforced visual stimulus. However, SHRs that have access to a running wheel for 5, 10, or 21 days exhibit robust habituation that is indistinguishable from normo-active rats. Two days of exercise, in comparison, was not sufficient to affect habituation. Here we tested the hypothesis that the effect of exercise on orienting behavior in SHRs is mediated by changes in noradrenergic function. In Experiment 1, we found that 5, 10, or 21 days of access to a running wheel, but not 2 days, significantly reduced levels of the norepinephrine transporter (NET) in medial prefrontal cortex. In Experiment 2, we tested for a causal relationship between changes in noradrenergic function and orienting behavior by blocking noradrenergic receptors during exercise. Rats that received propranolol (beta adrenergic/noradrenergic receptor blocker) during 10 days of exercise failed to exhibit an exercise-induced reduction in orienting behavior. The results inform a growing literature regarding the effects of exercise on behavior and the potential use of exercise as a treatment for mental disorders. PMID:26030434

  14. Mapping physical properties of Swiss forest soils by robust external-drift kriging from legacy soil data

    NASA Astrophysics Data System (ADS)

    Papritz, Andreas; Ramirez Lopez, Leo; Baltensweiler, Andri; Walthert, Lorenz

    2015-04-01

    Climate change scenario predict for Switzerland increasing summer temperature and decreasing precipitation. In coming decades forests will therefore likely experience more often drought. However, it is not clear to what extent these changes will occur and where in Switzerland they will be most pronounced. Soil-Vegetation-Atmosphere-Transfer (SVAT) models allow to explore likely changes in the water regime of forest under changing climate. Such process models require information of soil physical properties that largely control water storage in forest soils. Spatial information on physical properties of forest soils is currently lacking in Switzerland. Therefore one objective of the project "Soils and water regime of Swiss forests and forest sites under present and future climate BOWA-CH" (http://www.wsl.ch/fe/boden/projekte/bowa_ch/index_EN) was to predict basic physical properties of forest soils at high spatial resolution for the whole Swiss territory. Based on legacy data of about 2000 forest soil profiles, we mapped particle size composition, volumetric content of rock fragments, soil organic carbon (SOC) content and soil density for fixed-depth soil layers (0-10, 10-30, 30-60, ..., 120-150 cm) by robust external drift kriging (Nussbaum et al., 2014). Comprehensive, digitally available information on climate, topography, vegetation and geology were used as covariates for statistical modelling. Preliminary sets of covariates were chosen by LASSO, and the selection was refined by cross-validating the model for the external drift. External validation with 20 % of the data revealed that clay and sand content, soil density and SOC could be predicted with acceptable precision. Predictions of rock fragment content and silt content were less precise, and the developed model failed to spatially predict soil depth. This is unfortunate because soil depth and rock fragment content largely control water storage in soils. Nussbaum, M., Papritz, A., Baltensweiler, A

  15. Physics teachers' perspectives on factors that affect urban physics participation and accessibility

    NASA Astrophysics Data System (ADS)

    Kelly, Angela M.

    2013-06-01

    The accessibility of secondary physics in U.S. urban school districts is a complex issue. Many schools do not offer a physics option, and for those that do, access is often restricted by various school policies and priorities that do not promote physics participation for all. To analyze this problem in greater depth, I adopted a qualitative phenomenological methodology to explore urban physics teachers’ views on school- and district-based conditions that may marginalize traditionally underrepresented students. Teachers from three large urban districts shared concerns and suggestions regarding administrative commitment, student preparedness for physics, reform initiatives and testing mandates, promoting physics enrollments, and implementing high quality instruction. Data from interviews and focus groups provided contextual insights into ways in which physics study may be improved and encouraged for urban youth. Teachers believed expanding access could be facilitated with differentiated levels of physics, incorporating mathematical applications with multiple representations, educating students and counselors on the ramifications of choosing or not choosing elective sciences, well-designed grant-funded initiatives, and flexibility with prerequisites and science course sequencing. Teachers experienced frustration with standardized testing, lack of curricular autonomy, shifting administrative directives, and top-down reforms that did not incorporate their feedback in the decision-making processes. Data from this study revealed that physics teacher networks, often housed at local universities, have been a key resource for establishing supportive professional communities to share best practices that may influence school-based reforms that promote physics participation in urban schools.

  16. Can programmed or self-selected physical activity affect physical fitness of adolescents?

    PubMed

    Neto, Cláudio F; Neto, Gabriel R; Araújo, Adenilson T; Sousa, Maria S C; Sousa, Juliana B C; Batista, Gilmário R; Reis, Victor M M R

    2014-09-29

    The aim of this study was to verify the effects of programmed and self-selected physical activities on the physical fitness of adolescents. High school adolescents, aged between 15 and 17 years, were divided into two experimental groups: a) a self-selected physical activity group (PAS) with 55 students (aged 15.7 ± 0.7 years), who performed physical activities with self-selected rhythm at the following sports: basketball, volleyball, handball, futsal and swimming; and b) a physical fitness training group (PFT) with 53 students (aged 16.0 ± 0.7 years), who performed programmed physical fitness exercises. Both types of activity were developed during 60 min classes. To assess physical fitness the PROESP-BR protocol was used. The statistical analysis was performed by repeated measures ANOVA. The measurements of pre and post-tests showed significantly different values after PFT in: 9 minute running test, medicine ball throw, horizontal jump, abdominal endurance, running speed and flexibility. After PAS differences were detected in abdominal endurance, agility, running speed and flexibility. The intervention with programmed physical activity promoted more changes in the physical abilities; however, in the self-selected program, agility was improved probably because of the practice of sports. Therefore, physical education teachers can use PFT to improve cardiorespiratory fitness and power of lower and upper limbs and PAS to improve agility of high school adolescents.

  17. Lability of potentially toxic elements in soils affected by smelting activities.

    PubMed

    Popescu, I; Biasioli, M; Ajmone-Marsan, F; Stănescu, R

    2013-01-01

    Determination of total concentration of potentially toxic elements (PTEs) in soil is not a reliable tool for evaluating potential exposure risk for humans. PTE lability (EDTA, SBET and solution extraction) and chemical speciation (BCR sequential extraction) were investigated for Pb, Cd, Cu, and Zn, as well as how these could be affected by flooding in soils polluted by smelting activities. The flooding experiment was performed in pots from which soil solution was extracted at different time intervals using Rhizon Moisture Samplers. After experiments, the soil was again subjected to the previous extractions (EDTA, SBET, and BCR) in order to reveal the changes which occurred during anoxia. From the results we can conclude that PTE lability is very high and flooding caused the increase in their mobility up to 100% (for bioaccessible Pb). The experiment demonstrated that temporary reducing conditions can increase the risk of contaminants passing to other environmental compartments and the food chain.

  18. Lability of potentially toxic elements in soils affected by smelting activities.

    PubMed

    Popescu, I; Biasioli, M; Ajmone-Marsan, F; Stănescu, R

    2013-01-01

    Determination of total concentration of potentially toxic elements (PTEs) in soil is not a reliable tool for evaluating potential exposure risk for humans. PTE lability (EDTA, SBET and solution extraction) and chemical speciation (BCR sequential extraction) were investigated for Pb, Cd, Cu, and Zn, as well as how these could be affected by flooding in soils polluted by smelting activities. The flooding experiment was performed in pots from which soil solution was extracted at different time intervals using Rhizon Moisture Samplers. After experiments, the soil was again subjected to the previous extractions (EDTA, SBET, and BCR) in order to reveal the changes which occurred during anoxia. From the results we can conclude that PTE lability is very high and flooding caused the increase in their mobility up to 100% (for bioaccessible Pb). The experiment demonstrated that temporary reducing conditions can increase the risk of contaminants passing to other environmental compartments and the food chain. PMID:23127724

  19. Forest Structure Affects Soil Mercury Losses in the Presence and Absence of Wildfire.

    PubMed

    Homann, Peter S; Darbyshire, Robyn L; Bormann, Bernard T; Morrissette, Brett A

    2015-11-01

    Soil is an important, dynamic component of regional and global mercury (Hg) cycles. This study evaluated how changes in forest soil Hg masses caused by atmospheric deposition and wildfire are affected by forest structure. Pre and postfire soil Hg measurements were made over two decades on replicate experimental units of three prefire forest structures (mature unthinned, mature thinned, clear-cut) in Douglas-fir dominated forest of southwestern Oregon. In the absence of wildfire, O-horizon Hg decreased by 60% during the 14 years after clearcutting, possibly the result of decreased atmospheric deposition due to the smaller-stature vegetative canopy; in contrast, no change was observed in mature unthinned and thinned forest. Wildfire decreased O-horizon Hg by >88% across all forest structures and decreased mineral-soil (0 to 66 mm depth) Hg by 50% in thinned forest and clear-cut. The wildfire-associated soil Hg loss was positively related to the amount of surface fine wood that burned during the fire, the proportion of area that burned at >700 °C, fire severity as indicated by tree mortality, and soil C loss. Loss of soil Hg due to the 200,000 ha wildfire was more than four times the annual atmospheric Hg emissions from human activities in Oregon.

  20. The Phosphorus Transfer From Soil To Water As Affected By The Agronomic Management

    NASA Astrophysics Data System (ADS)

    Borda, Teresa; Celi, Luisella; Buenemann, Else; Oberson, Astrid; Frossard, Emmanuel; Barberis, Elisabetta

    2010-05-01

    Fertilizer management, in the long term, can affect the amount of P that can be in excess compared to the cultural needs and modify the soil P buffer capacity. These factors can led to P losses from soil to waters, especially via runoff and as particulate P (90% of TP). Soil texture and the amount of organic matter are the main key factors to estimate soil disperdibility but, in turn, the P amount and its forms can also have a dispersive effect and can influence P enrichment of particles potentially lost during runoff processes and its contribution to water eutrophication. The environmental impact due to the P transfer depends on P speciation, because only the inorganic and soluble P forms, or the most degradable organic P ones, are bioavailable. To evaluate the effect of agronomic practices on P losses and on its bioavailability in the long term, soil samples from a middle term experiment have been selected. The field experiment is based on maize cropping systems applying different fertilizers, mineral, as NPK and PK, and organic, as manure (M) and slurry (S) since 1992. To obtain the suspended sediment from soil, a simple water dispersion test was applied (Withers et al., 2007) and the different P forms were characterized. On soil and on suspended sediment the Hedley fractionation (Hedley et al., 1982) was used to determine the P forms, their potential lability and the effect on soil disperdibility. The adoption of isotopic techniques was considered to compare different methods and to estimate the risk of P losses in the long-term. Dispersion test, to simulate the rainy event and the irrigation practices effect on soil, showed that the amount of total suspended sediment lost (TSS) was lower in the organic fertilized plots, while the particulate P bounded to sediment (PP/TSS) was higher than in the mineral fertilized plots. Indeed the complexive effect of organic fertilization, increasing organic matter content and Olsen P, was reflected in a lower soil

  1. Cropping history affects nodulation and symbiotic efficiency of distinct hairy vetch genotypes with resident soil rhizobia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Presence of compatible rhizobia strains is essential for nodulation and BNF of hairy vetch (Vicia villosa, HV). We evaluated how past HV cultivation affects nodulation and nitrogen fixation across host genotypes. Five groups of HV genotypes were inoculated with soil dilutions from six paired fields,...

  2. Evaluation of factors affecting nitrous oxide emission and N transformation in a sandy loam soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A better understanding of the complex factors affecting nitrous oxide (N2O) emission and potential mitigation practices will assist in developing strategies to improve the sustainability of agricultural production systems. Using surface soil collected from a pomegranate orchard, a series of laborato...

  3. Genome Sequence of Methanosarcina soligelidi SMA-21, Isolated from Siberian Permafrost-Affected Soil

    PubMed Central

    Shapiro, Nicole; Woyke, Tanja; Horn, Fabian; Bakermans, Corien; Wagner, Dirk

    2015-01-01

    Here, we announce the genome sequence of Methanosarcina soligelidi SMA-21, an anaerobic methanogenic archaeon that was previously isolated from Siberian permafrost-affected soil. The sequencing of strain SMA-21 yielded a 4.06-Mb genome with 41.5% G+C content, containing a total of 2,647 open reading frames. PMID:25908125

  4. Spatial pattern formation of microbes at the soil microscale affect soil C and N turnover in an individual-based microbial community model

    NASA Astrophysics Data System (ADS)

    Kaiser, Christina; Evans, Sarah; Dieckmann, Ulf; Widder, Stefanie

    2016-04-01

    At the μm-scale, soil is a highly structured and complex environment, both in physical as well as in biological terms, characterized by non-linear interactions between microbes, substrates and minerals. As known from mathematics and theoretical ecology, spatial structure significantly affects the system's behaviour by enabling synergistic dynamics, facilitating diversity, and leading to emergent phenomena such as self-organisation and self-regulation. Such phenomena, however, are rarely considered when investigating mechanisms of microbial soil organic matter turnover. Soil organic matter is the largest terrestrial reservoir for organic carbon (C) and nitrogen (N) and plays a pivotal role in global biogeochemical cycles. Still, the underlying mechanisms of microbial soil organic matter buildup and turnover remain elusive. We explored mechanisms of microbial soil organic matter turnover using an individual-based, stoichiometrically and spatially explicit computer model, which simulates the microbial de-composer system at the soil microscale (i.e. on a grid of 100 x 100 soil microsites). Soil organic matter dynamics in our model emerge as the result of interactions among individual microbes with certain functional traits (f.e. enzyme production rates, growth rates, cell stoichiometry) at the microscale. By degrading complex substrates, and releasing labile substances microbes in our model continusly shape their environment, which in turn feeds back to spatiotemporal dynamics of the microbial community. In order to test the effect of microbial functional traits and organic matter input rate on soil organic matter turnover and C and N storage, we ran the model into steady state using continuous inputs of fresh organic material. Surprisingly, certain parameter settings that induce resource limitation of microbes lead to regular spatial pattern formation (f.e. moving spiral waves) of microbes and substrate at the μm-scale at steady-state. The occurrence of these

  5. Do Physical Activity Facilities near Schools Affect Physical Activity in High School Girls?

    PubMed Central

    Trilk, Jennifer L.; Ward, Dianne S.; Dowda, Marsha; Pfeiffer, Karin A.; Porter, Dwayne E.; Hibbert, James; Pate, Russell R.

    2011-01-01

    Objective To investigate associations between the number of physical activity facilities within walking distance of school and physical activity behavior in 12th grade girls during after-school hours. Methods Girls (N=1394) from 22 schools completed a self-report to determine physical activity after 3:00 pm. The number of physical activity facilities within a 0.75-mile buffer of the school was counted with a Geographic Information System. Associations between the number of facilities and girls’ physical activity were examined using linear mixed-model analysis of variance. Results Overall, girls who attended schools with ≥ 5 facilities within the buffer reported more physical activity per day than girls in schools with < 5 facilities. In addition, girls who attended rural schools with ≥ 5 facilities reported ~12% more physical activity per day than girls who attended rural schools with < 5 facilities. No difference existed for girls in urban/suburban schools with ≥ 5 vs. < 5 facilities. Conclusion When school siting decisions are made, the number of physical activity facilities surrounding the school should be considered to encourage physical activity in 12th grade girls. PMID:21334248

  6. The importance of physical activity and sleep for affect on stressful days: Two intensive longitudinal studies.

    PubMed

    Flueckiger, Lavinia; Lieb, Roselind; Meyer, Andrea H; Witthauer, Cornelia; Mata, Jutta

    2016-06-01

    We investigated the potential stress-buffering effect of 3 health behaviors-physical activity, sleep quality, and snacking-on affect in the context of everyday life in young adults. In 2 intensive longitudinal studies with up to 65 assessment days over an entire academic year, students (Study 1, N = 292; Study 2, N = 304) reported stress intensity, sleep quality, physical activity, snacking, and positive and negative affect. Data were analyzed using multilevel regression analyses. Stress and positive affect were negatively associated; stress and negative affect were positively associated. The more physically active than usual a person was on a given day, the weaker the association between stress and positive affect (Study 1) and negative affect (Studies 1 and 2). The better than usual a person's sleep quality had been during the previous night, the weaker the association between stress and positive affect (Studies 1 and 2) and negative affect (Study 2). The association between daily stress and positive or negative affect did not differ as a function of daily snacking (Studies 1 and 2). On stressful days, increasing physical activity or ensuring high sleep quality may buffer adverse effects of stress on affect in young adults. These findings suggest potential targets for health-promotion and stress-prevention programs, which could help reduce the negative impact of stress in young adults. (PsycINFO Database Record

  7. [Heidaigou Opencast Coal Mine: Soil Enzyme Activities and Soil Physical and Chemical Properties Under Different Vegetation Restoration].

    PubMed

    Fang, Ying; Ma, Ren-tian; An, Shao-shan; Zhao, Jun-feng; Xiao, Li

    2016-03-15

    Choosing the soils under different vegetation recovery of Heidaigou dump as the research objects, we mainly analyzed their basic physical and chemical properties and enzyme activities with the method of Analysis of Variance as well as their relations using Pearson correlation analysis and path analysis hoping to uncover the driving factors of the differences between soil enzyme activities under different vegetation restoration, and provide scientific suggestions for the plant selection as well as make a better evaluation to the reclamation effect. The results showed that: (1) Although the artificial vegetation restoration improved the basic physical and chemical properties of the soils while increasing their enzyme activities to a certain extent, the soil conditions still did not reach the level of the natural grassland; (2) Contents of soil organic carbon (SOC) and soil total nitrogen (TN) of the seabuckthorns were the nearest to those of the grassland, which reached 54. 22% and 70. 00% of those of the grassland. In addition, the soil bulk density of the seabuckthorns stand was 17. 09% lower than the maximum value of the amorpha fruitcosa land. The SOC and TN contents as well as the bulk density showed that seabuckthorns had advantages as the species for land reclamation of this dump; Compared with the seabuckthorn, the pure poplar forest had lower contents of SOC and TN respectively by 35.64% and 32.14% and displayed a 16.79% higher value of soil bulk density; (3) The activities of alkaline phosphotase under different types of vegetation rehabilitation had little variation. But soil urease activities was more sensitive to reflect the effects of vegetation restoration on soil properties; (4) Elevation of the SOC and TN turned out to be the main cause for soil fertility restoration and increased biological activities of the dump.

  8. [Heidaigou Opencast Coal Mine: Soil Enzyme Activities and Soil Physical and Chemical Properties Under Different Vegetation Restoration].

    PubMed

    Fang, Ying; Ma, Ren-tian; An, Shao-shan; Zhao, Jun-feng; Xiao, Li

    2016-03-15

    Choosing the soils under different vegetation recovery of Heidaigou dump as the research objects, we mainly analyzed their basic physical and chemical properties and enzyme activities with the method of Analysis of Variance as well as their relations using Pearson correlation analysis and path analysis hoping to uncover the driving factors of the differences between soil enzyme activities under different vegetation restoration, and provide scientific suggestions for the plant selection as well as make a better evaluation to the reclamation effect. The results showed that: (1) Although the artificial vegetation restoration improved the basic physical and chemical properties of the soils while increasing their enzyme activities to a certain extent, the soil conditions still did not reach the level of the natural grassland; (2) Contents of soil organic carbon (SOC) and soil total nitrogen (TN) of the seabuckthorns were the nearest to those of the grassland, which reached 54. 22% and 70. 00% of those of the grassland. In addition, the soil bulk density of the seabuckthorns stand was 17. 09% lower than the maximum value of the amorpha fruitcosa land. The SOC and TN contents as well as the bulk density showed that seabuckthorns had advantages as the species for land reclamation of this dump; Compared with the seabuckthorn, the pure poplar forest had lower contents of SOC and TN respectively by 35.64% and 32.14% and displayed a 16.79% higher value of soil bulk density; (3) The activities of alkaline phosphotase under different types of vegetation rehabilitation had little variation. But soil urease activities was more sensitive to reflect the effects of vegetation restoration on soil properties; (4) Elevation of the SOC and TN turned out to be the main cause for soil fertility restoration and increased biological activities of the dump. PMID:27337909

  9. Sitona lineatus (Coleoptera: Curculionidae) Larval Feeding on Pisum sativum L. Affects Soil and Plant Nitrogen.

    PubMed

    Cárcamo, Héctor A; Herle, Carolyn E; Lupwayi, Newton Z

    2015-01-01

    Adults of Sitona lineatus (pea leaf weevil, PLW) feed on foliage of several Fabaceae species but larvae prefer to feed on nodules of Pisum sativum L. and Vicia faba L. Indirectly, through their feeding on rhizobia, weevils can reduce soil and plant available nitrogen (N). However, initial soil N can reduce nodulation and damage by the weevil and reduce control requirements. Understanding these interactions is necessary to make integrated pest management recommendations for PLW. We conducted a greenhouse study to quantify nodulation, soil and plant N content, and nodule damage by weevil larvae in relation to soil N amendment with urea, thiamethoxam insecticide seed coating and crop stage. PLWs reduced the number of older tumescent (multilobed) nodules and thiamethoxam addition increased them regardless of other factors. Nitrogen amendment significantly increased soil available N (>99% nitrate) as expected and PLW presence was associated with significantly lower levels of soil N. PLW decreased plant N content at early flower and thiamethoxam increased it, particularly at late flower. The study illustrated the complexity of interactions that determine insect herbivory effects on plant and soil nutrition for invertebrates that feed on N-fixing root nodules. We conclude that effects of PLW on nodulation and subsequent effects on plant nitrogen are more pronounced during the early growth stages of the plant. This suggests the importance of timing of PLW infestation and may explain the lack of yield depression in relation to this pest observed in many field studies. Also, pea crops in soils with high levels of soil N are unlikely to be affected by this herbivore and should not require insecticide inputs. PMID:26106086

  10. Sitona lineatus (Coleoptera: Curculionidae) Larval Feeding on Pisum sativum L. Affects Soil and Plant Nitrogen

    PubMed Central

    Cárcamo, Héctor A.; Herle, Carolyn E.; Lupwayi, Newton Z.

    2015-01-01

    Adults of Sitona lineatus (pea leaf weevil, PLW) feed on foliage of several Fabaceae species but larvae prefer to feed on nodules of Pisum sativum L. and Vicia faba L. Indirectly, through their feeding on rhizobia, weevils can reduce soil and plant available nitrogen (N). However, initial soil N can reduce nodulation and damage by the weevil and reduce control requirements. Understanding these interactions is necessary to make integrated pest management recommendations for PLW. We conducted a greenhouse study to quantify nodulation, soil and plant N content, and nodule damage by weevil larvae in relation to soil N amendment with urea, thiamethoxam insecticide seed coating and crop stage. PLWs reduced the number of older tumescent (multilobed) nodules and thiamethoxam addition increased them regardless of other factors. Nitrogen amendment significantly increased soil available N (>99% nitrate) as expected and PLW presence was associated with significantly lower levels of soil N. PLW decreased plant N content at early flower and thiamethoxam increased it, particularly at late flower. The study illustrated the complexity of interactions that determine insect herbivory effects on plant and soil nutrition for invertebrates that feed on N-fixing root nodules. We conclude that effects of PLW on nodulation and subsequent effects on plant nitrogen are more pronounced during the early growth stages of the plant. This suggests the importance of timing of PLW infestation and may explain the lack of yield depression in relation to this pest observed in many field studies. Also, pea crops in soils with high levels of soil N are unlikely to be affected by this herbivore and should not require insecticide inputs. PMID:26106086

  11. Sitona lineatus (Coleoptera: Curculionidae) Larval Feeding on Pisum sativum L. Affects Soil and Plant Nitrogen.

    PubMed

    Cárcamo, Héctor A; Herle, Carolyn E; Lupwayi, Newton Z

    2015-01-01

    Adults of Sitona lineatus (pea leaf weevil, PLW) feed on foliage of several Fabaceae species but larvae prefer to feed on nodules of Pisum sativum L. and Vicia faba L. Indirectly, through their feeding on rhizobia, weevils can reduce soil and plant available nitrogen (N). However, initial soil N can reduce nodulation and damage by the weevil and reduce control requirements. Understanding these interactions is necessary to make integrated pest management recommendations for PLW. We conducted a greenhouse study to quantify nodulation, soil and plant N content, and nodule damage by weevil larvae in relation to soil N amendment with urea, thiamethoxam insecticide seed coating and crop stage. PLWs reduced the number of older tumescent (multilobed) nodules and thiamethoxam addition increased them regardless of other factors. Nitrogen amendment significantly increased soil available N (>99% nitrate) as expected and PLW presence was associated with significantly lower levels of soil N. PLW decreased plant N content at early flower and thiamethoxam increased it, particularly at late flower. The study illustrated the complexity of interactions that determine insect herbivory effects on plant and soil nutrition for invertebrates that feed on N-fixing root nodules. We conclude that effects of PLW on nodulation and subsequent effects on plant nitrogen are more pronounced during the early growth stages of the plant. This suggests the importance of timing of PLW infestation and may explain the lack of yield depression in relation to this pest observed in many field studies. Also, pea crops in soils with high levels of soil N are unlikely to be affected by this herbivore and should not require insecticide inputs.

  12. Soils affected by heavy metals due to old mining on perudic conditions

    NASA Astrophysics Data System (ADS)

    Garrigo, Jordi; Elustondo, David; Laheras, Ester; Oiarzabal, Maite; Jaume, Bech

    2010-05-01

    The aim of this work is to assess the actual status of the soils of a natural environment surrounding an abandoned mine (exploited since the Roman Age) where Pb, Zn, Fe and Cu were obtained. The study has been carried out in the Aitzondo valley (Guipuzkoa, North of Iberian Peninsula), which cross the exploited mountainous area with middle temperatures and perudic soil moisture regime Soils in the valley are polygenic, acids, very washed and sometimes show redoximorphic features and have undergone a great mobilization of trace metals due to these physical-chemical characteristics that enhance the heavy metals solubility and mobility. The analysis of soil surface samples shows a punctual and intense pollution at Meazuri area (where the mine is located) and another more dispersal and wide pollution due to the parent material (Palaeozoic shales). The main soil type of the area has been characterized by means of the performance of a soil and six surface samples have been collected along an altitudinal transect, which goes down from 460 to 75 meters. Both profile and surface samples have been analysed for suitable parameters due to their repercussion in mobility and fixation of some heavy metals (organic matter, clay content…). Total (Na, K, Mg, Ca, Al, Fe, Mn, Ti, Cd, Cr) and extractable fraction (using NH4Ac-EDTA pH=4.65, as extracting agent, have been analysed. Trace elements Cd, Cr, Cu, Ni, Pb and Zn have been measured. On summary, the soils studied are characterized by high levels of trace metals inherited from the parent material whose composition shows a great metallic richness. Hence, values of trace metals are very high even in remote areas where there has not been anthropic influence. Besides, the physical-chemical properties (acidity, base saturation, organic matter) have enhanced the mobility of trace metals. The anthropogenic activity (mining activity) has caused an increase in values of several metals, reaching, in some cases, concentrations above the

  13. Bacterial diversity and composition in major fresh produce growing soils affected by physiochemical properties and geographic locations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial diversity of agricultural soils is well documented, but information on leafy green producing soils is limited. Our goal was to assess bacterial composition and diversity in leafy green producing soils using pyrosequencing, and to identify factors affecting bacterial community structures. C...

  14. Soil hydraulic properties affected by topsoil thickness in cultivated switchgrass and corn-soybean rotation production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Loss of productive topsoil by soil erosion over time can reduce the productive capacity of soil and can significantly affect soil hydraulic properties. This study evaluated the effects of reduced topsoil thickness and perennial switchgrass (Panicum virgatum L.) versus corn (Zea mays L.)/soybean [Gly...

  15. Do land utilization patterns affect methanotrophic communities in a Chinese upland red soil?

    PubMed

    Zheng, Yong; Liu, Xinzhan; Zhang, Limei; Zhou, Zhifeng; He, Jizheng

    2010-01-01

    Soil samples were collected from three plots under different land utilization patterns including degradation, farming, and restoration. The abundances of methanotrophs were quantified using real-time polymerase chain reaction (PCR) based on the pmoA and 16S rRNA genes, and the community fingerprint was analyzed using denaturing gradient gel electrophoresis (DGGE) aiming at pmoA gene. Significantly lower 16S rRNA and pmoA genes copies were found in the degradation treatment than in farming and restoration. Higher abundances of Type I than those of Type II methanotrophs were detected in all treatments. The treatment of farming was clearly separated from degradation and restoration according to the DGGE profile by cluster analysis. The lowest diversity indices were observed in the F (farming plot), suggesting that the community structure was strongly affected by farming activities. There were significantly positive correlations between the copy numbers of pmoA also Type II-related 16S rRNA genes and soil available K content. Strong negative and positive correlations were found between Type I and soil pH, and available P content, respectively. We concluded that the vegetation cover or not, soil characteristics including pH and nutrients of P and K as a result of anthropogenic disturbance may be key factors affecting methanotrophic communities in upland soil.

  16. Seven types of nonsexual romantic physical affection among Brigham young university students.

    PubMed

    Gulledge, Andrew K; Stahmann, Robert F; Wilson, Colwick M

    2004-10-01

    College students from Brigham Young University (N= 186; 68 men, 118 women, M age=22.7 yr., SD=3.5) completed a survey regarding nonsexual, romantic physical affection-defined as any touch intended to arouse feelings of love in the giver or the recipient. Respondents included both dating and married individuals, although this was not specified on the questionnaire. This descriptive study reports the mean, median, mode, and standard deviation for each of the seven physical affection types: backrubs/massages, caressing/stroking, cuddling/holding, holding hands, hugging, kissing on the face, and kissing on the lips. Grouped frequency distributions further describe the amounts of each type of physical affection. Although physical affection has been underrepresented in the literature, studies have shown it to be associated with relationship satisfaction, partner satisfaction, psychological intimacy, feeling understood, the development of attachment bonds, modulating cardiovascular arousal, and easier conflict resolution. PMID:15587229

  17. Analysis of physical parameters related with water infiltration in tropical soils located in edges forest in urban areas

    NASA Astrophysics Data System (ADS)

    Márcia Longo, Regina; Cunha, Jessica C. M.; Lammoglia, Rafaella; Mendes, Deborah R.; Mungilioli, Sarah S.; Damame, Desiree B.; Demamboro, Antônio C.; Bettine, Sueli C.; Ribeiro, Admilson I.; Fengler, Felipe H.

    2015-04-01

    A very important factor for water infiltration into the soil in urban forest systems and suffering constant anthropogenic pressures is the analysis of soil compaction where these forests are or will be established. In this context, this work aimed to promote studies on physical parameters related to distribution of pores, compaction and soil biological activity in forest remnants border areas located in urban watersheds in Campinas / SP - Brazil. The Forest of Santa Genebra (22°49'45 "S and 47°06'33" W) has an average altitude of 680m and tropical climate of altitude, has an area of 251 ha and a nine kilometer perimeter. It constitutes 85% of Semideciduos forests and 15% swamp forest. Due to its location close to urban centers, roads and agricultural areas under direct influence of the anthropic means. For the present study analyzes were performed: particle size, soil density, porosity, matters organic, of biopores, and root distribution (primary, secondary and tertiary) and seedlings in 40 points on the perimeter of the forest equidistant 200m remaining edge. The analysis of the results allowed us to observe that areas suffer direct influence of human activities surrounding. With the results set correlations between the different parameters in order to allow a better understanding of the dynamics of water infiltration into the soil under these conditions and the quantity of tertiary roots, biopores and soil density were the best indicator of environmental quality as suffer direct influence of the surrounding areas, especially those near the most urbanized regions. In general, it can be observed that human activities such as deforestation and vehicle traffic, animals and people, promoted soil compaction and consequent changes in water infiltration into the soil in areas of edges of this remnant of these consequences affect direct numerous parameters that directly influence the dynamics of an ecosystem restoration that is now significantly affected by the

  18. Phosphorus geochemistry in a Brazilian semiarid mangrove soil affected by shrimp farm effluents.

    PubMed

    Nóbrega, G N; Otero, X L; Macías, F; Ferreira, T O

    2014-09-01

    Wastewater discharge from shrimp farming is one of the main causes of eutrophication in mangrove ecosystems. We investigated the phosphorus (P) geochemistry in mangrove soils affected by shrimp farming effluents by carrying out a seasonal study of two mangrove forests (a control site (CS); a site affected by shrimp farm effluents (SF)). We determined the soil pH, redox potential (Eh), total organic carbon (TOC), total phosphorus (TP), and dissolved P. We also carried out sequential extraction of the P-solid phases. In SF, the effluents affected the soil physicochemical conditions, resulting in lower Eh and higher pH, as well as lower TOC and higher TP than in CS. Organic P forms were dominant in both sites and seasons, although to a lesser extent in SF. The lower TOC in SF was related to the increased microbial activity and organic matter decomposition caused by fertilization. The higher amounts of P oxides in SF suggest that the effluents alter the dominance of iron and sulfate reduction in mangrove soils, generating more reactive Fe that is available for bonding to phosphates. Strong TP losses were recorded in both sites during the dry season, in association with increased amounts of exchangeable and dissolved P. The higher bioavailability of P during the dry season may be attributed to increased mineralization of organic matter and dissolution of Ca-P in response to more oxidizing and acidic conditions. The P loss has significant environmental implications regarding eutrophication and marine productivity. PMID:24838803

  19. Soil amendment affects Cd uptake by wheat - are we underestimating the risks from chloride inputs?

    PubMed

    Dahlin, A Sigrun; Eriksson, Jan; Campbell, Colin D; Öborn, Ingrid

    2016-06-01

    Many parts of the world are investigating the efficacy of recycling nutrient resources to agriculture from different industry and domestic sectors as part of a more circular economy. The complex nature of recycled products as soil amendments coupled to the large diversity of soil types and their inherent properties make it difficult to optimize the benefits and minimize the risks from potentially toxic elements often present in recycled materials. Here we investigated how wheat grain cadmium (Cd) concentration was affected by soil amendments, namely human urine and biogas digestate compared to traditional farm manures and mineral fertilizers. We show that Cl(-) inadvertently added to soils with e.g. urine or biogas digestate strongly increased crop Cd concentrations, largely by mobilizing inherent soil Cd. This resulted in wheat grain Cd levels that could result in exceeding recommended WHO limits for dietary intake. This was evident even in soils with low inherent Cd content and when Cd inputs were low. The future of a circular economy that helps to underpin global food security needs to ensure that the effects of applying complex materials to different types of agricultural land are fully understood and do not jeopardize food safety.

  20. Isotopic Tracing of Thallium Contamination in Soils Affected by Emissions from Coal-Fired Power Plants.

    PubMed

    Vaněk, Aleš; Grösslová, Zuzana; Mihaljevič, Martin; Trubač, Jakub; Ettler, Vojtěch; Teper, Leslaw; Cabala, Jerzy; Rohovec, Jan; Zádorová, Tereza; Penížek, Vít; Pavlů, Lenka; Holubík, Ondřej; Němeček, Karel; Houška, Jakub; Drábek, Ondřej; Ash, Christopher

    2016-09-20

    Here, for the first time, we report the thallium (Tl) isotope record in moderately contaminated soils with contrasting land management (forest and meadow soils), which have been affected by emissions from coal-fired power plants. Our findings clearly demonstrate that Tl of anthropogenic (high-temperature) origin with light isotope composition was deposited onto the studied soils, where heavier Tl (ε(205)Tl ∼ -1) naturally occurs. The results show a positive linear relationship (R(2) = 0.71) between 1/Tl and the isotope record, as determined for all the soils and bedrocks, also indicative of binary Tl mixing between two dominant reservoirs. We also identified significant Tl isotope variations within the products from coal combustion and thermo-desorption experiments with local Tl-rich coal pyrite. Bottom ash exhibited the heaviest Tl isotope composition (ε(205)Tl ∼ 0), followed by fly ash (ε(205)Tl between -2.5 and -2.8) and volatile Tl fractions (ε(205)Tl between -6.2 and -10.3), suggesting partial Tl isotope fractionations. Despite the evident role of soil processes in the isotope redistributions, we demonstrate that Tl contamination can be traced in soils and propose that the isotope data represent a possible tool to aid our understanding of postdepositional Tl dynamics in surface environments for the future.

  1. The Isiokpo oil-pipeline leakage: total organic carbon/organic matter contents of affected soils.

    PubMed

    Osuji, Leo C; Adesiyan, Samuel O

    2005-08-01

    The environmental impact of the 1997 leakage of the high-pressure crude-oil pipeline at Isiokpo in the Niger Delta in the southeast of Nigeria was evaluated, with particular reference to total-organic-carbon (TOC) and total-organic-matter (TOM) contents of soils within the vicinity of the oil spillage. The soils, taken from depths of 0-15 cm (surface) and 15-30 cm (subsurface), were found to be more acidic (pH 4.2-5.6) than the unpolluted soils, with a high average moisture content of 6.8%. The extractable hydrocarbon content ranged from 2.71-3.48 mg/kg, indicating hydrocarbon contamination. However, contrary to expectation, the TOC and TOM contents of the polluted soils did not show any significant increase in concentration, supposedly due to natural rehabilitation of the affected mat layer of soils. Thus, notwithstanding the possible proliferation of heterotrophic organisms by the presence of the added petroleum hydrocarbons, environmental conditions such as weathering and climatic predispositions, as well as physico-chemical parameters such as pH, moisture content, and temperature must have encumbered the carbon-mineralizing capacity of the heterotrophs, thereby reducing the turnover of carbon and the decomposition of organic matter. The restrictions by high moisture content might not come directly from H(2)O itself, but are probably a consequence of hindered soil ventilation, which reduces O(2) supply and gaseous diffusion, conditions that might have been substantially aggravated by the added petroleum hydrocarbons.

  2. Soil amendment affects Cd uptake by wheat - are we underestimating the risks from chloride inputs?

    PubMed

    Dahlin, A Sigrun; Eriksson, Jan; Campbell, Colin D; Öborn, Ingrid

    2016-06-01

    Many parts of the world are investigating the efficacy of recycling nutrient resources to agriculture from different industry and domestic sectors as part of a more circular economy. The complex nature of recycled products as soil amendments coupled to the large diversity of soil types and their inherent properties make it difficult to optimize the benefits and minimize the risks from potentially toxic elements often present in recycled materials. Here we investigated how wheat grain cadmium (Cd) concentration was affected by soil amendments, namely human urine and biogas digestate compared to traditional farm manures and mineral fertilizers. We show that Cl(-) inadvertently added to soils with e.g. urine or biogas digestate strongly increased crop Cd concentrations, largely by mobilizing inherent soil Cd. This resulted in wheat grain Cd levels that could result in exceeding recommended WHO limits for dietary intake. This was evident even in soils with low inherent Cd content and when Cd inputs were low. The future of a circular economy that helps to underpin global food security needs to ensure that the effects of applying complex materials to different types of agricultural land are fully understood and do not jeopardize food safety. PMID:26974588

  3. Isotopic Tracing of Thallium Contamination in Soils Affected by Emissions from Coal-Fired Power Plants.

    PubMed

    Vaněk, Aleš; Grösslová, Zuzana; Mihaljevič, Martin; Trubač, Jakub; Ettler, Vojtěch; Teper, Leslaw; Cabala, Jerzy; Rohovec, Jan; Zádorová, Tereza; Penížek, Vít; Pavlů, Lenka; Holubík, Ondřej; Němeček, Karel; Houška, Jakub; Drábek, Ondřej; Ash, Christopher

    2016-09-20

    Here, for the first time, we report the thallium (Tl) isotope record in moderately contaminated soils with contrasting land management (forest and meadow soils), which have been affected by emissions from coal-fired power plants. Our findings clearly demonstrate that Tl of anthropogenic (high-temperature) origin with light isotope composition was deposited onto the studied soils, where heavier Tl (ε(205)Tl ∼ -1) naturally occurs. The results show a positive linear relationship (R(2) = 0.71) between 1/Tl and the isotope record, as determined for all the soils and bedrocks, also indicative of binary Tl mixing between two dominant reservoirs. We also identified significant Tl isotope variations within the products from coal combustion and thermo-desorption experiments with local Tl-rich coal pyrite. Bottom ash exhibited the heaviest Tl isotope composition (ε(205)Tl ∼ 0), followed by fly ash (ε(205)Tl between -2.5 and -2.8) and volatile Tl fractions (ε(205)Tl between -6.2 and -10.3), suggesting partial Tl isotope fractionations. Despite the evident role of soil processes in the isotope redistributions, we demonstrate that Tl contamination can be traced in soils and propose that the isotope data represent a possible tool to aid our understanding of postdepositional Tl dynamics in surface environments for the future. PMID:27536872

  4. The ash in forest fire affected soils control the soil losses. Part 2. Current and future research challenges

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Cerdà, Artemi

    2013-04-01

    Ash distribution on soil surface and impacts on soil properties received a great attention in recently (Pereira et al., 2010; Pereira et al., 2013). Ash it is a highly mobile material that can be easily transported wind, especially in severe wildland fires, where organic matter is reduced to dust, due the high temperatures of combustion. In the immediate period after the fire, ash cover rules soil erosion as previous researchers observed (Cerdà, 1998a; 1998b) and have strong influence on soil hydrological properties, such as water retention (Stoof et al. 2011 ) and wettability (Bodi et al., 2011). Ash it is also a valuable source of nutrients important for plant recuperation (Pereira et al., 2011; Pereira et al., 2012), but can act also as a source contamination, since are also rich in heavy metals (Pereira and Ubeda, 2010). Ash has different physical and chemical properties according the temperature of combustion, burned specie and time of exposition (Pereira et al., 2010). Thus this different properties will have different implications on soil properties including erosion that can increase due soil sealing (Onda et al. 2008) or decrease as consequence of raindrop impact reduction (Cerdà and Doerr, 2008). The current knowledge shows that ash has different impacts on soil properties and this depends not only from the type of ash produced, but of the soil properties (Woods and Balfour, 2010). After fire wind and water strong redistribute ash on soil surface, increasing the vulnerability of soil erosion in some areas, and reducing in others. Understand this mobility is fundamental have a better comprehension about the spatial and temporal effects of ash in soil erosion. Have a better knowledge about this mobility is a priority to future research. Other important aspects to have to be assessed in the future are how ash particulates percolate on soil and how ash chemical composition is important to induce soil aggregation and dispersion. How soil micro topography

  5. Can corn plants inoculated with arbuscular mycorrhiza fungi affect soil clay assemblage?

    NASA Astrophysics Data System (ADS)

    Adamo, P.; Cozzolino, V.; Di Meo, V.; Velde, B.

    2012-04-01

    Plants can extract K from exchangeable and non-exchangeable sites in the soil clay mineral structures. The latter, known as fixed K, is usually seen as an illite layer, i.e. an anhydrous K layer that forms a 1.0 nm structural layer unit as seen by X-ray diffraction. Nutrient availability can be enhanced in the root zone by arbuscular mycorrhiza fungi. In this study, the effects of non-inoculated and Glomus intraradices inoculated corn plant growth under different experimental conditions on soil K-bearing clay minerals were identified. The soil, a Vertic Xerofluvent, was planted in corn in a 2008-2010 randomized field experiment. Bulk and rhizosphere soil sampling was carried out from May to September 2010 from fertilized plots (N200P90K160 and N200P0K160) with and without plants. According to XRD analysis, three major K-bearing minerals were present in soil: smectite-rich mixed layer mineral, illite-rich mixed layer mineral and illite. Results at 40DAS indicate extraction of K from clay minerals by plant uptake, whereas at 130DAS much of the nutrient seems to be returned to the soil. There is an apparent difference between bulk and rhizophere clays. The XRD patterns are not unequivocally affected by Glomus inoculation. There are observable changes in clay mineralogy in fallow unfertilized compared with fertilized soil. In the studied soil, the illite rich mixed-layer minerals seem to be the source of K absorbed by plants, while illite acts as sink of K released from the plant-microorganisms system at the end of the growing season and as source for the following crop.

  6. Flow Cell Sampling Technique: A new approach to analyze physical soil and particle surface properties of undisturbed soil samples

    NASA Astrophysics Data System (ADS)

    Krueger, Jiem; Leue, Martin; Heinze, Stefanie; Bachmann, Jörg

    2016-04-01

    During unsaturated water conditions, water flow occurs in the soil mainly by water film flow and depends on moisture content and pore surface properties. More attention is attributed to coatings enclosing soil particles and thus may affect wetting properties as well as hydraulic soil functions. Particle coatings are most likely responsible for many adsorption processes and are expected to favor local heterogeneous microstructure with enhanced biological activity. Many of the effects described cannot be detected on the basis of conventional soil column experiments, which were usually made to study soil hydraulic processes or surface - soil solution exchange processes. The general objective of this study was to develop a new field sampling method to unravel heterogeneous flow processes on small scales in an undisturbed soil under controlled lab conditions. This will be done by using modified flow cells (Plexiglas). Beside the measurements within a flow cell as breakthrough curves, the developed technique has several additional advantages in contrast to common columns or existing flow chamber/cell designs. The direct modification from the sampling frame to the flow cell provides the advantage to combine several analyses. The new technique enables to cut up to 5 thin undisturbed soil slices (quasi-replicates) down to 10 and/or 5 mm. Relative large particles, for instance, may limit this sampling method. The large observation area of up to 150 cm2 allows the characterization of particle surface properties in a high spatial resolution within an undisturbed soil sample. This sampling technique, as shown in our study, has the opportunity to link soil wetting hydraulic and several particle surface properties to spatial soil heterogeneities. This was shown with tracer experiments, small-scale contact angle measurements and analyses of the spatial distribution of functional groups of soil organic matter via DRIFT mapping.

  7. The effects of the physical and chemical properties of soils on the spectral reflectance of soils

    NASA Technical Reports Server (NTRS)

    Montgomery, O. L.; Baumgardner, M. F.

    1974-01-01

    The effects of organic matter, free iron oxides, texture, moisture content, and cation exchange capacity on the spectral reflectance of soils were investigated along with techniques for differentiating soil orders by computer analysis of multispectral data. By collecting soil samples of benchmark soils from the different climatic regions within the United States and using the extended wavelength field spectroradiometer to obtain reflectance values and curves for each sample, average curves were constructed for each soil order. Results indicate that multispectral analysis may be a valuable tool for delineating and quantifying differences between soils.

  8. Scaling preferential flow processes in agricultural soils affected by tillage and trafficking at the field scale

    NASA Astrophysics Data System (ADS)

    Filipović, Vilim; Coquet, Yves

    2016-04-01

    There is an accumulation of experimental evidences that agricultural soils, at least the top horizons affected by tillage practices, are not homogeneous and present a structure that is strongly dependent on farming practices like tillage and trafficking. Soil tillage and trafficking can create compacted zones in the soil with hydraulic properties and porosity which are different from those of the non-compacted zones. This spatial variability can strongly influence transport processes and initiate preferential flow. Two or three dimensional models can be used to account for spatial variability created by agricultural practices, but such models need a detailed assessment of spatial heterogeneity which can be rather impractical to provide. This logically raises the question whether and how one dimensional model may be designed and used to account for the within-field spatial variability in soil structure created by agricultural practices. Preferential flow (dual-permeability) modelling performed with HYDRUS-1D will be confronted to classical modelling based on the Richards and convection-dispersion equations using HYDRUS-2D taking into account the various soil heterogeneities created by agricultural practices. Our goal is to derive one set of equivalent 1D soil hydraulic parameters from 2D simulations which accounts for soil heterogeneities created by agricultural operations. A field experiment was carried out in two phases: infiltration and redistribution on a plot by uniform sprinkle irrigation with water or bromide solution. Prior to the field experiment the soil structure of the tilled layer was determined along the face of a large trench perpendicular to the tillage direction (0.7 m depth and 3.1 m wide). Thirty TDR probes and tensiometers were installed in different soil structural zones (Δ compacted soil and Γ macroporous soil) which ensured soil water monitoring throughout the experiment. A map of bromide was constructed from small core samples (4 cm diam

  9. Nature's amazing biopolymer: basic mechanical and hydrological properties of soil affected by plant exudates

    NASA Astrophysics Data System (ADS)

    Naveed, Muhammad; Roose, Tiina; Raffan, Annette; George, Timothy; Bengough, Glyn; Brown, Lawrie; Keyes, Sam; Daly, Keith; Hallett, Paul

    2016-04-01

    Plant exudates are known to have a very large impact on soil physical properties through changes in mechanical and hydrological processes driven by long-chain polysaccharides and surface active compounds. Whilst these impacts are well known, the basic physical properties of these exudates have only been reported in a small number of studies. We present data for exudates obtained from barley roots and chia seeds, incorporating treatments examining biological decomposition of the exudates. When these exudates were added to a sandy loam soil, contact angle and drop penetration time increased exponentially with increasing exudate concentration. These wetting properties were strongly correlated with both exudate density and zero-shear viscosity, but not with exudate surface tension. Water holding capacity and water repellency of exudate mixed soil tremendously increased with exudate concentration, however they were significantly reduced on decomposition when measured after 14 days of incubation at 16C. Mechanical stability greatly increased with increasing exudate amendment to soils, which was assessed using a rheological amplitude sweep test near saturation, at -50 cm matric potential (field capacity) using indentation test, and at air-dry condition using the Brazilian test. This reflects that exudates not only attenuate plant water stress but also impart mechanical stability to the rhizosphere. These data are highly relevant to the understanding and modelling of rhizosphere development, which is the next phase of our research.

  10. Sustained impact of drought on wet shrublands mediated by soil physical changes

    NASA Astrophysics Data System (ADS)

    Dominguez, Maria T.; Smith, Andrew; Robinson, David; van Baarsel, Susie; Mills, Robert; Marshall, Miles; Koller, Eva; Lebron, Inma; Hall, Jane; Emmett, Bridget

    2015-04-01

    Projected warming, and increasingly frequent extreme events such as drought, may substantially enhance soil organic matter decomposition in wet organic soils, contributing to the positive feedback between the terrestrial carbon cycle and climate change. Evidence suggests that, as wet organic soils contain large organic C stocks, acclimation to warming might occur more slowly in comparison to mineral soils. The long-term response of wet organic soils to drought remains however uncertain. Ecosystems with organo-mineral soils might be more vulnerable to drought events than peatlands, because of a limited soil moisture pool being available to buffer drying events. We investigated the long-term (14 years) impact of warming and repeated summer droughts on soil respiration from podzolic (organo-mineral) soils in a wet shrubland, using a whole-ecosystem climate-change experiment in North Wales, UK. The experimental drought aimed to emulate the UK summer drought of 1995, considered to be the most recent significant drought year prior to treatment initiation. The impact of drought (average respiration stimulation of 22 % for all seasons and years) was enhanced over the years, which was linked to major changes in soil structure that led to a 54 % reduction in water holding capacity. Bryophyte abundance was found to buffer soil moisture losses. After a bryophyte expansion in 2005 the impact of warming on soil efflux was attenuated; this suggests that bryophytes might have a key role in the resilience these soils to warming despite their relatively small contribution to total aboveground biomass. Plant productivity was very resilient to warming or drought, indicating that the increases in soil respiration have not been balanced by increases in C inputs to soil. The results indicate the potentially critical role that changes in sub-dominant vegetation and in soil physical properties may have in determining climate change impacts on soil C dynamics.

  11. Characterization of the geochemical and physical properties of wetland soils on the Savannah River Site: Field sampling activities. Final report

    SciTech Connect

    Dixon, K.L.

    1992-11-01

    There are 36,000 acres of wetlands on the Savannah River Site (SRS) and an additional 5,000 acres of floodplain. Recent studies of wetland soils near various waste sites at SRS have shown that some wetlands have been contaminated with pollutants resulting from SRS operations. In general, releases of contaminants to wetland areas have been indirect. These releases may have originated at disposal lagoons or waste facilities located in the vicinity of the wetland areas. Transport mechanisms such as surface runoff, soil erosion, sediment transport, and groundwater seepage into downgradient wetland areas are responsible for the indirect discharges to the wetland areas. The SRS determined that a database of background geochemical and physical properties for wetland soils on the SRS was needed to facilitate future remedial investigations, human health and ecological risk assessments, treatability studies, and feasibility studies for the wetland areas. These data are needed for comparison to contaminant data collected from wetland soils that have been affected by contamination from SRS operations. This report describes the efforts associated with the collection of soil cores, preparation of a lithologic log for each core, and the processing and packaging of individual soil samples for shipment to analytical laboratory facilities.

  12. Characterization of the geochemical and physical properties of wetland soils on the Savannah River Site: Field sampling activities

    SciTech Connect

    Dixon, K.L. )

    1992-11-01

    There are 36,000 acres of wetlands on the Savannah River Site (SRS) and an additional 5,000 acres of floodplain. Recent studies of wetland soils near various waste sites at SRS have shown that some wetlands have been contaminated with pollutants resulting from SRS operations. In general, releases of contaminants to wetland areas have been indirect. These releases may have originated at disposal lagoons or waste facilities located in the vicinity of the wetland areas. Transport mechanisms such as surface runoff, soil erosion, sediment transport, and groundwater seepage into downgradient wetland areas are responsible for the indirect discharges to the wetland areas. The SRS determined that a database of background geochemical and physical properties for wetland soils on the SRS was needed to facilitate future remedial investigations, human health and ecological risk assessments, treatability studies, and feasibility studies for the wetland areas. These data are needed for comparison to contaminant data collected from wetland soils that have been affected by contamination from SRS operations. This report describes the efforts associated with the collection of soil cores, preparation of a lithologic log for each core, and the processing and packaging of individual soil samples for shipment to analytical laboratory facilities.

  13. Impact of petroleum products on soil composition and physical-chemical properties

    NASA Astrophysics Data System (ADS)

    Brakorenko, N. N.; Korotchenko, T. V.

    2016-03-01

    The article describes the grain-size distribution, physical and mechanical properties, swelling and specific electrical resistivity of soils before and after the contact with petroleum products. The changes in mechanical properties of soils contaminated with petroleum products have been stated. It leads to the increase in compressibility values, decline in internal friction angle and cohesion.

  14. A Visual Aid for Teaching Basic Concepts of Soil-Water Physics.

    ERIC Educational Resources Information Center

    Eshel, Amram

    1997-01-01

    Presents a visual aid designed to generate an image of water movement among soil particles using an overhead projector to teach the physical phenomena related to water status and water movement in the soil. Utilizes a base plate of thin transparent plastic, opaque plastic sheets, a plate of glass, and a colored aqueous solution. (AIM)

  15. Simulating soybean canopy temperature as affected by weather variables and soil water potential

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1982-01-01

    Hourly weather data for several clear sky days during summer at Phoenix and Baltimore which covered a wide range of variables were used with a plant atmosphere model to simulate soybean (Glycine max L.) leaf water potential, stomatal resistance and canopy temperature at various soil water potentials. The air and dew point temperatures were found to be the significant weather variables affecting the canopy temperatures. Under identical weather conditions, the model gives a lower canopy temperature for a soybean crop with a higher rooting density. A knowledge of crop rooting density, in addition to air and dew point temperatures is needed in interpreting infrared radiometric observations for soil water status. The observed dependence of stomatal resistance on the vapor pressure deficit and soil water potential is fairly well represented. Analysis of the simulated leaf water potentials indicates overestimation, possibly due to differences in the cultivars.

  16. Flocculant in wastewater affects dynamics of inorganic N and accelerates removal of phenanthrene and anthracene in soil.

    PubMed

    Fernandez-Luqueno, F; Thalasso, F; Luna-Guido, M L; Ceballos-Ramírez, J M; Ordoñez-Ruiz, I M; Dendooven, L

    2009-06-01

    Recycling of municipal wastewater requires treatment with flocculants, such as polyacrylamide. It is unknown how polyacrylamide in sludge affects removal of polycyclic aromatic hydrocarbons (PAH) from soil. An alkaline-saline soil and an agricultural soil were contaminated with phenanthrene and anthracene. Sludge with or without polyacrylamide was added while emission of CO(2) and concentrations of NH(4)(+), NO(3)(-), NO(2)(-), phenanthrene and anthracene were monitored in an aerobic incubation experiment. Polyacrylamide in the sludge had no effect on the production of CO(2), but it reduced the concentration of NH(4)(+), increased the concentration of NO(3)(-) in the Acolman soil and NO(2)(-) in the Texcoco soil, and increased N mineralization compared to the soil amended with sludge without polyacrylamide. After 112d, polyacrylamide accelerated the removal of anthracene from both soils and that of phenanthrene in the Acolman soil. It was found that polyacrylamide accelerated removal of phenanthrene and anthracene from soil.

  17. Do soil microbes and abrasion by soil particles influence persistence and loss of physical dormancy in seeds of tropical pioneers?

    PubMed Central

    Zalamea, Paul-Camilo; Sarmiento, Carolina; Arnold, A. Elizabeth; Davis, Adam S.; Dalling, James W.

    2015-01-01

    Germination from the soil seed bank (SSB) is an important determinant of species composition in tropical forest gaps, with seed persistence in the SSB allowing trees to recruit even decades after dispersal. The capacity to form a persistent SSB is often associated with physical dormancy, where seed coats are impermeable at the time of dispersal. Germination literature often speculates, without empirical evidence, that dormancy-break in physically dormant seeds is the result of microbial action and/or abrasion by soil particles. We tested the microbial/soil abrasion hypothesis in four widely distributed neotropical pioneer tree species (Apeiba membranacea, Luehea seemannii, Ochroma pyramidale, and Cochlospermum vitifolium). Seeds were buried in five common gardens in a lowland tropical forest in Panama, and recovered at 1, 3, 6, and 12 months after burial. Seed permeability, microbial infection, seed coat thickness, and germination were measured. Parallel experiments compared the germination fraction of fresh and aged seeds without soil contact, and in seeds as a function of seed permeability. Contrary to the microbial/soil abrasion hypothesis the proportion of permeable seeds, and of seeds infected by cultivable microbes, decreased as a function of burial duration. Furthermore, seeds stored in dark and dry conditions for 2 years showed a higher proportion of seed germination than fresh seeds in identical germination conditions. We determined that permeable seeds of A. membranacea and O. pyramidale had cracks in the chalazal area or lacked the chalazal plug, whereas all surfaces of impermeable seeds were intact. Our results are inconsistent with the microbial/soil abrasion hypothesis of dormancy loss and instead suggest the existence of multiple dormancy phenotypes, where a fraction of each seed cohort is dispersed in a permeable state and germinates immediately, while the impermeable seed fraction accounts for the persistent SSB. Thus, we conclude that fluctuations

  18. Do soil microbes and abrasion by soil particles influence persistence and loss of physical dormancy in seeds of tropical pioneers?

    PubMed

    Zalamea, Paul-Camilo; Sarmiento, Carolina; Arnold, A Elizabeth; Davis, Adam S; Dalling, James W

    2014-01-01

    Germination from the soil seed bank (SSB) is an important determinant of species composition in tropical forest gaps, with seed persistence in the SSB allowing trees to recruit even decades after dispersal. The capacity to form a persistent SSB is often associated with physical dormancy, where seed coats are impermeable at the time of dispersal. Germination literature often speculates, without empirical evidence, that dormancy-break in physically dormant seeds is the result of microbial action and/or abrasion by soil particles. We tested the microbial/soil abrasion hypothesis in four widely distributed neotropical pioneer tree species (Apeiba membranacea, Luehea seemannii, Ochroma pyramidale, and Cochlospermum vitifolium). Seeds were buried in five common gardens in a lowland tropical forest in Panama, and recovered at 1, 3, 6, and 12 months after burial. Seed permeability, microbial infection, seed coat thickness, and germination were measured. Parallel experiments compared the germination fraction of fresh and aged seeds without soil contact, and in seeds as a function of seed permeability. Contrary to the microbial/soil abrasion hypothesis the proportion of permeable seeds, and of seeds infected by cultivable microbes, decreased as a function of burial duration. Furthermore, seeds stored in dark and dry conditions for 2 years showed a higher proportion of seed germination than fresh seeds in identical germination conditions. We determined that permeable seeds of A. membranacea and O. pyramidale had cracks in the chalazal area or lacked the chalazal plug, whereas all surfaces of impermeable seeds were intact. Our results are inconsistent with the microbial/soil abrasion hypothesis of dormancy loss and instead suggest the existence of multiple dormancy phenotypes, where a fraction of each seed cohort is dispersed in a permeable state and germinates immediately, while the impermeable seed fraction accounts for the persistent SSB. Thus, we conclude that fluctuations

  19. Soil organic carbon sequestration as affected by afforestation: the Darab Kola forest (north of Iran) case study.

    PubMed

    Kooch, Yahya; Hosseini, Seyed Mohsen; Zaccone, Claudio; Jalilvand, Hamid; Hojjati, Seyed Mohammad

    2012-09-01

    Following the ratification of the Kyoto Protocol, afforestation of formerly arable lands and/or degraded areas has been acknowledged as a land-use change contributing to the mitigation of increasing atmospheric CO(2) concentration in the atmosphere. In the present work, we study the soil organic carbon sequestration (SOCS) in 21 year old stands of maple (Acer velutinum Bioss.), oak (Quercus castaneifolia C.A. Mey.), and red pine (Pinus brutia Ten.) in the Darab Kola region, north of Iran. Soil samples were collected at four different depths (0-10, 10-20, 20-30, and 30-40 cm), and characterized with respect to bulk density, water content, electrical conductivity, pH, texture, lime content, total organic C, total N, and earthworm density and biomass. Data showed that afforested stands significantly affected soil characteristics, also raising SOCS phenomena, with values of 163.3, 120.6, and 102.1 Mg C ha(-1) for red pine, oak and maple stands, respectively, vs. 83.0 Mg C ha(-1) for the control region. Even if the dynamics of organic matter (OM) in soil is very complex and affected by several pedo-climatic factors, a stepwise regression method indicates that SOCS values in the studied area could be predicted using the following parameters, i.e., sand, clay, lime, and total N contents, and C/N ratio. In particular, although the chemical and physical stabilization capacity of organic C by soil is believed to be mainly governed by clay content, regression analysis showed a positive correlation between SOCS and sand (R = 0.86(**)), whereas a negative correlation with clay (R = -0.77(**)) was observed, thus suggesting that most of this organic C occurs as particulate OM instead of mineral-associated OM. Although the proposed models do not take into account possible changes due to natural and anthropogenic processes, they represent a simple way that could be used to evaluate and/or monitor the potential of each forest plantation in immobilizing organic C in soil (thus

  20. Soil organic carbon sequestration as affected by afforestation: the Darab Kola forest (north of Iran) case study.

    PubMed

    Kooch, Yahya; Hosseini, Seyed Mohsen; Zaccone, Claudio; Jalilvand, Hamid; Hojjati, Seyed Mohammad

    2012-09-01

    Following the ratification of the Kyoto Protocol, afforestation of formerly arable lands and/or degraded areas has been acknowledged as a land-use change contributing to the mitigation of increasing atmospheric CO(2) concentration in the atmosphere. In the present work, we study the soil organic carbon sequestration (SOCS) in 21 year old stands of maple (Acer velutinum Bioss.), oak (Quercus castaneifolia C.A. Mey.), and red pine (Pinus brutia Ten.) in the Darab Kola region, north of Iran. Soil samples were collected at four different depths (0-10, 10-20, 20-30, and 30-40 cm), and characterized with respect to bulk density, water content, electrical conductivity, pH, texture, lime content, total organic C, total N, and earthworm density and biomass. Data showed that afforested stands significantly affected soil characteristics, also raising SOCS phenomena, with values of 163.3, 120.6, and 102.1 Mg C ha(-1) for red pine, oak and maple stands, respectively, vs. 83.0 Mg C ha(-1) for the control region. Even if the dynamics of organic matter (OM) in soil is very complex and affected by several pedo-climatic factors, a stepwise regression method indicates that SOCS values in the studied area could be predicted using the following parameters, i.e., sand, clay, lime, and total N contents, and C/N ratio. In particular, although the chemical and physical stabilization capacity of organic C by soil is believed to be mainly governed by clay content, regression analysis showed a positive correlation between SOCS and sand (R = 0.86(**)), whereas a negative correlation with clay (R = -0.77(**)) was observed, thus suggesting that most of this organic C occurs as particulate OM instead of mineral-associated OM. Although the proposed models do not take into account possible changes due to natural and anthropogenic processes, they represent a simple way that could be used to evaluate and/or monitor the potential of each forest plantation in immobilizing organic C in soil (thus

  1. Physical Simulation of Maximum Seasonal Soil Freezing Depth in the United States Using Routine Weather Observations.

    NASA Astrophysics Data System (ADS)

    Degaetano, Arthur T.; Cameron, Michael D.; Wilks, Daniel S.

    2001-03-01

    An existing, physically based soil freezing model applicable to humid climates is modified for use in the central and western United States. Simulations using the state-of-the-art Simultaneous Heat and Water (SHAW) model indicated that the original model required the addition of a water budgeting scheme and alteration of the equation for soil thermal conductivity. Using only daily temperature, liquid precipitation, snowfall, and snow cover, this new model allows the simulation of maximum seasonal frost depths at several thousand U.S. stations.Comparison of the model-derived maximum frost depths with observed and soil temperature-inferred soil freezing maxima at 32 arid and semiarid locations indicates excellent agreement. Observed maximum soil freezing depths, ranging from 0 to over 100 cm, are simulated, with an average absolute error of 5.4 cm. At individual stations, the seasonal penetration and thawing of soil freezing tracks that of the observations very closely, regardless of ambient soil moisture conditions.

  2. Bacterial population succession and adaptation affected by insecticide application and soil spraying history

    PubMed Central

    Itoh, Hideomi; Navarro, Ronald; Takeshita, Kazutaka; Tago, Kanako; Hayatsu, Masahito; Hori, Tomoyuki; Kikuchi, Yoshitomo

    2014-01-01

    Although microbial communities have varying degrees of exposure to environmental stresses such as chemical pollution, little is known on how these communities respond to environmental disturbances and how past disturbance history affects these community-level responses. To comprehensively understand the effect of organophosphorus insecticide application on microbiota in soils with or without insecticide-spraying history, we investigated the microbial succession in response to the addition of fenitrothion [O,O-dimethyl O-(3-methyl-p-nitrophenyl) phosphorothioate, abbreviated as MEP] by culture-dependent experiments and deep sequencing of 16S rRNA genes. Despite similar microbial composition at the initial stage, microbial response to MEP application was remarkably different between soils with and without MEP-spraying history. MEP-degrading microbes more rapidly increased in the soils with MEP-spraying history, suggesting that MEP-degrading bacteria might already exist at a certain level and could quickly respond to MEP re-treatment in the soil. Culture-dependent and -independent evaluations revealed that MEP-degrading Burkholderia bacteria are predominant in soils after MEP application, limited members of which might play a pivotal role in MEP-degradation in soils. Notably, deep sequencing also revealed that some methylotrophs dramatically increased after MEP application, strongly suggesting that these bacteria play a role in the consumption and removal of methanol, a harmful derivative from MEP-degradation, for better growth of MEP-degrading bacteria. This comprehensive study demonstrated the succession and adaptation processes of microbial communities under MEP application, which were critically affected by past experience of insecticide-spraying. PMID:25221549

  3. Synchrotron microtomographic quantification of geometrical soil pore characteristics affected by compaction

    NASA Astrophysics Data System (ADS)

    Udawatta, R. P.; Gantzer, C. J.; Anderson, S. H.; Assouline, S.

    2015-07-01

    Soil compaction degrades soil structure and affects water, heat, and gas exchange as well as root penetration and crop production. The objective of this study was to use X-ray computed microtomography (CMT) techniques to compare differences in geometrical soil pore parameters as influenced by compaction of two different aggregate size classes. Sieved (diam. < 2 mm and < 0.5 mm) and repacked (1.51 and 1.72 Mg m-3) Hamra soil cores of 5- by 5 mm (average porosities were 0.44 and 0.35) were imaged at 9.6-micrometer resolution at the Argonne Advanced Photon Source (synchrotron facility) using X-ray computed microtomography. Images of 58.9 mm3 volume were analyzed using 3-Dimensional Medial Axis (3DMA) software. Geometrical characteristics of the spatial distributions of pore structures (pore radii, volume, connectivity, path length, and tortuosity) were numerically investigated. Results show that the coordination number (CN) distribution and path length (PL) measured from the medial axis were reasonably fit by exponential relationships P(CN) = 10-CN/Co and P(PL) = 10-PL/PLo, respectively, where Co and PLo are the corresponding characteristic constants. Compaction reduced porosity, average pore size, number of pores, and characteristic constants. The average pore radii (63.7 and 61 μm; p < 0.04), largest pore volume (1.58 and 0.58 mm3; p = 0.06), number of pores (55 and 50; p = 0.09), characteristic coordination number (6.32 and 5.94; p = 0.09), and characteristic path length number (116 and 105; p = 0.001) were significantly greater in the low density than the high density treatment. Aggregate size also influenced measured geometrical pore parameters. This analytical technique provides a tool for assessing changes in soil pores that affect hydraulic properties and thereby provides information to assist in assessment of soil management systems.

  4. Synchrotron Microtomographic Quantification of Geometrical Soil Pore Characteristics Affected by Compaction

    NASA Astrophysics Data System (ADS)

    Udawatta, Ranjith; Gantzer, Clark; Anderson, Stephen; Assouline, Shmuel

    2015-04-01

    Soil compaction degrades soil structure and affects water, heat, and gas exchange as well as root penetration and crop production. The objective of this study was to use X-ray computed microtomography (CMT) techniques to compare differences in geometrical soil pore parameters as influenced by compaction of two different aggregate size classes. Sieved (diam. < 2mm and < 0.5mm) and repacked (1.51 and 1.72 Mg m-3) Hamra soil cores of 5- by 5-mm (average porosities were 0.44 and 0.35) were imaged at 9.6-micrometer resolution at the Argonne Advanced Photon Source (synchrotron facility) using X-ray computed microtomography. Images of 58.9 mm3 volume were analyzed using 3-Dimensional Medial Axis (3DMA) software. Geometrical characteristics of the spatial distributions of pore structures (pore radii, volume, connectivity, path length, and tortuosity) were numerically investigated. Results show that the coordination number (CN) distribution and path length (PL) measured from the medial axis were reasonably fit by exponential relationships P(CN)=10-CN/Co and P(PL)=10-PL/PLo, respectively, where Co and PLo are the corresponding characteristic constants. Compaction reduced porosity, average pore size, number of pores, and characteristic constants. The average pore radii (64 and 61 μm; p<0.04), largest pore volume (1.6 and 0.6 mm3; p=0.06), number of pores (55 and 50; p=0.09), characteristic coordination number (6.3 and 6.0; p=0.09), and characteristic path length number (116 and 105; p=0.001) were significantly greater in the low density than the high density treatment. Aggregate size also influenced measured geometrical pore parameters. This analytical technique provides a tool for assessing changes in soil pores that affect hydraulic properties and thereby provides information to assist in assessment of soil management systems.

  5. Synchrotron microtomographic quantification of geometrical soil pore characteristics affected by compaction

    NASA Astrophysics Data System (ADS)

    Udawatta, Ranjith P.; Gantzer, Clark J.; Anderson, Stephen H.; Assouline, Shmuel

    2016-05-01

    Soil compaction degrades soil structure and affects water, heat, and gas exchange as well as root penetration and crop production. The objective of this study was to use X-ray computed microtomography (CMT) techniques to compare differences in geometrical soil pore parameters as influenced by compaction of two different aggregate size classes. Sieved (diameter < 2 mm and < 0.5 mm) and repacked (1.51 and 1.72 Mg m-3) Hamra soil cores of 5 by 5 mm (average porosities were 0.44 and 0.35) were imaged at 9.6 μm resolution at the Argonne Advanced Photon Source (synchrotron facility) using X-ray CMT. Images of 58.9 mm3 volume were analyzed using 3-Dimensional Medial Axis (3-DMA) software. Geometrical characteristics of the spatial distributions of pore structures (pore radii, volume, connectivity, path length, and tortuosity) were numerically investigated. Results show that the coordination number (CN) distribution and path length (PL) measured from the medial axis were reasonably fit by exponential relationships P(CN) = 10-CN/Co and P(PL) = 10-PL/PLo, respectively, where Co and PLo are the corresponding characteristic constants. Compaction reduced porosity, average pore size, number of pores, and characteristic constants. The average pore radii (63.7 and 61 µm; p < 0.04), largest pore volume (1.58 and 0.58 mm3; p = 0.06), number of pores (55 and 50; p = 0.09), and characteristic coordination number (3.74 and 3.94; p = 0.02) were significantly different between the low-density than the high-density treatment. Aggregate size also influenced measured geometrical pore parameters. This analytical technique provides a tool for assessing changes in soil pores that affect hydraulic properties and thereby provides information to assist in assessment of soil management systems.

  6. Geographic information science: Contribution to understanding salt and sodium affected soils in the Senegal River Valley

    NASA Astrophysics Data System (ADS)

    Ndiaye, Ramatoulaye

    The Senegal River valley and delta (SRVD) are affected by long term climate variability. Indicators of these climatic shifts include a rainfall deficit, warmer temperatures, sea level rise, floods, and drought. These shifts have led to environmental degradation, water deficits, and profound effects on human life and activities in the area. Geographic Information Science (GIScience), including satellite-based remote sensing methods offer several advantages over conventional ground-based methods used to map and monitor salt-affected soil (SAS) features. This study was designed to assess the accuracy of information on soil salinization extracted from Landsat satellite imagery. Would available imagery and GIScience data analysis enable an ability to discriminate natural soil salinization from soil sodication and provide an ability to characterize the SAS trend and pattern over 30 years? A set of Landsat MSS (June 1973 and September 1979), Landsat TM (November 1987, April 1994 and November 1999) and ETM+ (May 2001 and March 2003) images have been used to map and monitor salt impacted soil distribution. Supervised classification, unsupervised classification and post-classification change detection methods were used. Supervised classifications of May 2001 and March 2003 images were made in conjunction field data characterizing soil surface chemical characteristics that included exchange sodium percentage (ESP), cation exchange capacity (CEC) and the electrical conductivity (EC). With this supervised information extraction method, the distribution of three different types of SAS (saline, saline-sodic, and sodic) was mapped with an accuracy of 91.07% for 2001 image and 73.21% for 2003 image. Change detection results confirmed a decreasing trend in non-saline and saline soil and an increase in saline-sodic and sodic soil. All seven Landsat images were subjected to the unsupervised classification method which resulted in maps that separate SAS according to their degree of

  7. Drive for thinness, affect regulation and physical activity in eating disorders: a daily life study.

    PubMed

    Vansteelandt, Kristof; Rijmen, Frank; Pieters, Guido; Probst, Michel; Vanderlinden, Johan

    2007-08-01

    Using Ecological Momentary Assessment, the within patient associations between drive for thinness, emotional states, momentary urge to be physically active and physical activity were studied in 32 inpatients with an eating disorder. Participants received an electronic device and had to indicate at nine random times a day during 1 week their momentary drive for thinness, positive and negative emotional states and their urge to be physically active and physical activity. Multilevel analyses indicated that patients with higher mean levels for urge to be physically active were characterized by lower body mass index (BMI) and chronically negative affect whereas patients with higher mean levels for physical activity were characterized by lower BMI and higher dispositions for drive for thinness. In addition, within patient relations between drive for thinness and urge to be physically active were moderated by BMI and chronically negative affect whereas within patient relations between drive for thinness and physical activity were moderated by BMI. Finally, also positive emotional states were significantly associated with physical activity within patients. By using a daily process design, characteristics of physical activity were revealed that have not been identified with assessment methods that have a lower time resolution.

  8. Soil chemical and physical properties at the Bear Brook Watershed in Maine, USA.

    PubMed

    SanClements, Michael D; Fernandez, Ivan J; Norton, Stephen A

    2010-12-01

    Acidic deposition leads to the acidification of waters and accelerated leaching and depletion of soil base cations. The Bear Brook Watershed in Maine has used whole-watershed chemical manipulations to study the effects of elevated N and S on forest ecosystem function on a decadal time scale. The objectives of this study were to define the chemical and physical characteristics of soils in both the reference and treated watersheds after 17 years of treatment and assess evidence of change in soil chemistry by comparing soil studies in 1998 and 2006. Results from 1998 confirmed depletion of soil base cation pools and decreased pH due to elevated N and S within the treated watershed. However, between 1998 and 2006, during a period of declining SO4(2-) deposition and continued whole-watershed experimental acidification on the treated watershed, there was little evidence of continued soil exchangeable base cation concentration depletion or recovery. The addition of a pulse of litterfall and accelerating mineralization from a severe ice storm in 1998 may have had significant effects on forest floor nutrient pools and cycling between 1998 and 2006. Our findings suggest that mineralization of additional litter inputs from the ice storm may have obscured temporal trends in soil chemistry. The physical data presented also demonstrate the importance of coarse fragments in the architecture of these soils. This study underscores the importance of long-term, quantitative soil monitoring in determining the trajectories of change in forest soils and ecosystem processes over time.

  9. Microbial Functional Potential and Community Composition in Permafrost-Affected Soils of the NW Canadian Arctic

    PubMed Central

    Frank-Fahle, Béatrice A.; Yergeau, Étienne; Greer, Charles W.; Lantuit, Hugues; Wagner, Dirk

    2014-01-01

    Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic. PMID:24416279

  10. Microbial functional potential and community composition in permafrost-affected soils of the NW Canadian Arctic.

    PubMed

    Frank-Fahle, Béatrice A; Yergeau, Etienne; Greer, Charles W; Lantuit, Hugues; Wagner, Dirk

    2014-01-01

    Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic.

  11. Momentary Affective States Are Associated with Momentary Volume, Prospective Trends, and Fluctuation of Daily Physical Activity

    PubMed Central

    Kanning, Martina K.; Schoebi, Dominik

    2016-01-01

    Several interventions aiming to enhance physical activity in everyday life showed mixed effects. Affective constructs are thought to potentially support health behavior change. However, little is known about within-subject associations between momentary affect and subsequent physical activity in everyday life. This study analyzed the extent to which three dimensions of affective states (valence, calmness, and energetic arousal) were associated with different components of daily activity trajectories. Sixty-five undergraduates’ students (Age: M = 24.6; SD = 3.2; females: 57%) participated in this study. Physical activity was assessed objectively through accelerometers during 24 h. Affective states assessments were conducted randomly every 45 min using an e-diary with a six-item mood scale that was especially designed for ambulatory assessment. We conducted three-level multi-level analyses to investigate the extent to which momentary affect accounted for momentary volume, prospective trends, and stability vs. fluctuation of physical activity in everyday life. All three affect dimensions were significantly associated with momentary activity volumes and prospective trends over 45 min periods. Physical activity didn’t fluctuate freely, but featured significant autocorrelation across repeated measurements, suggesting some stability of physical activity across 5-min assessments. After adjusting for the autoregressive structure in physical activity assessments, only energetic arousal remained a significant predictor. Feeling energized and awake was associated with an increased momentary volume of activity and initially smaller but gradually growing decreases in subsequent activity within the subsequent 45 min. Although not related to trends in physical activity, higher valence predicted lower stability in physical activity across subsequent 45 min, suggesting more short-term fluctuations in daily activity the more participants reported positive affective valence. The

  12. Assessment of Water and Nitrate-N deep percolation fluxes in soil as affected by irrigation and nutrient management practices

    NASA Astrophysics Data System (ADS)

    Tsehaye, Habte; Ceglie, Francesco; Mimiola, Giancarlo; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio

    2015-04-01

    Many farming practices can result in contamination of groundwater, due to the downward migration of fertilizers and pesticides through the soil profile. The detrimental effects of this contamination are not limited to deterioration of chemical and physical properties of soils and waters, but also constitute a real risk to human and ecosystem health. Groundwater contamination may come from a very large array of chemicals. Nevertheless, on a global scale the main cause of pollution is a high nitrate concentration in the aquifer water. Nitrate concentrations of groundwater have constantly increased during the last decades, and the widespread use of commercial N fertilizers has been implicated as the main causative factor. It is often claimed that nutrient management in organic farming is more environmentally sustainable than its conventional counterpart. It is commonly presumed that organic agriculture causes only minimal environmental pollution. There is scientific evidence that organic management may enhance some soil physical and biological properties. In particular, soil fertility management strategies can affect soil properties and the related hydrological processes. It is thus crucial to quantify and predict management effects on soil properties in order to evaluate the effects of soil type, natural processes such as decomposition of organic matter, irrigation applications and preferential flow on the deep percolation fluxes of water and nitrates to the groundwater. In this study, we measured the water fluxes and the quality of water percolating below the root zone, underlying organic agriculture systems in greenhouse. Specifically, the aim was to examine the effects of application time and type of organic matter in the soil on the nitrate-N deep percolation fluxes under the following three organic soil fertility strategies in greenhouse tomato experiment: i. Organic input Substitution (which will be hereafter denoted SUBST) is represented as typical

  13. Situational motivation and perceived intensity: their interaction in predicting changes in positive affect from physical activity.

    PubMed

    Guérin, Eva; Fortier, Michelle S

    2012-01-01

    There is evidence that affective experiences surrounding physical activity can contribute to the proper self-regulation of an active lifestyle. Motivation toward physical activity, as portrayed by self-determination theory, has been linked to positive affect, as has the intensity of physical activity, especially of a preferred nature. The purpose of this experimental study was to examine the interaction between situational motivation and intensity [i.e., ratings of perceived exertion (RPE)] in predicting changes in positive affect following an acute bout of preferred physical activity, namely, running. Fourty-one female runners engaged in a 30-minute self-paced treadmill run in a laboratory context. Situational motivation for running, pre- and post-running positive affect, and RPE were assessed via validated self-report questionnaires. Hierarchical regression analyses revealed a significant interaction effect between RPE and introjection (P < .05) but not between RPE and identified regulation or intrinsic motivation. At low levels of introjection, the influence of RPE on the change in positive affect was considerable, with higher RPE ratings being associated with greater increases in positive affect. The implications of the findings in light of SDT principles as well as the potential contingencies between the regulations and RPE in predicting positive affect among women are discussed.

  14. Situational Motivation and Perceived Intensity: Their Interaction in Predicting Changes in Positive Affect from Physical Activity

    PubMed Central

    Guérin, Eva; Fortier, Michelle S.

    2012-01-01

    There is evidence that affective experiences surrounding physical activity can contribute to the proper self-regulation of an active lifestyle. Motivation toward physical activity, as portrayed by self-determination theory, has been linked to positive affect, as has the intensity of physical activity, especially of a preferred nature. The purpose of this experimental study was to examine the interaction between situational motivation and intensity [i.e., ratings of perceived exertion (RPE)] in predicting changes in positive affect following an acute bout of preferred physical activity, namely, running. Fourty-one female runners engaged in a 30-minute self-paced treadmill run in a laboratory context. Situational motivation for running, pre- and post-running positive affect, and RPE were assessed via validated self-report questionnaires. Hierarchical regression analyses revealed a significant interaction effect between RPE and introjection (P < .05) but not between RPE and identified regulation or intrinsic motivation. At low levels of introjection, the influence of RPE on the change in positive affect was considerable, with higher RPE ratings being associated with greater increases in positive affect. The implications of the findings in light of SDT principles as well as the potential contingencies between the regulations and RPE in predicting positive affect among women are discussed. PMID:22778914

  15. Roots affect the response of heterotrophic soil respiration to temperature in tussock grass microcosms

    PubMed Central

    Graham, Scott L.; Millard, Peter; Hunt, John E.; Rogers, Graeme N. D.; Whitehead, David

    2012-01-01

    Aims and Background While the temperature response of soil respiration (RS) has been well studied, the partitioning of heterotrophic respiration (RH) by soil microbes from autotrophic respiration (RA) by roots, known to have distinct temperature sensitivities, has been problematic. Further complexity stems from the presence of roots affecting RH, the rhizosphere priming effect. In this study the short-term temperature responses of RA and RH in relation to rhizosphere priming are investigated. Methods Temperature responses of RA, RH and rhizosphere priming were assessed in microcosms of Poa cita using a natural abundance δ13C discrimination approach. Results The temperature response of RS was found to be regulated primarily by RA, which accounted for 70 % of total soil respiration. Heterotrophic respiration was less sensitive to temperature in the presence of plant roots, resulting in negative priming effects with increasing temperature. Conclusions The results emphasize the importance of roots in regulating the temperature response of RS, and a framework is presented for further investigation into temperature effects on heterotrophic respiration and rhizosphere priming, which could be applied to other soil and vegetation types to improve models of soil carbon turnover. PMID:22492330

  16. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests.

    PubMed

    Durán, Jorge; Morse, Jennifer L; Groffman, Peter M; Campbell, John L; Christenson, Lynn M; Driscoll, Charles T; Fahey, Timothy J; Fisk, Melany C; Mitchell, Myron J; Templer, Pamela H

    2014-11-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity during the growing season. Soils from lower elevation plots, which accumulated less snow and experienced more soil temperature variability during the winter (and likely more freeze/thaw events), had less extractable inorganic nitrogen (N), lower rates of microbial N production via potential net N mineralization and nitrification, and higher potential microbial respiration during the growing season. Potential nitrate production rates during the growing season were particularly sensitive to changes in winter snow pack accumulation and winter soil temperature variability, especially in spring. Effects of elevation and winter conditions on N transformation rates differed from those on potential microbial respiration, suggesting that N-related processes might respond differently to winter climate change in northern hardwood forests than C-related processes. PMID:24796872

  17. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests.

    PubMed

    Durán, Jorge; Morse, Jennifer L; Groffman, Peter M; Campbell, John L; Christenson, Lynn M; Driscoll, Charles T; Fahey, Timothy J; Fisk, Melany C; Mitchell, Myron J; Templer, Pamela H

    2014-11-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity during the growing season. Soils from lower elevation plots, which accumulated less snow and experienced more soil temperature variability during the winter (and likely more freeze/thaw events), had less extractable inorganic nitrogen (N), lower rates of microbial N production via potential net N mineralization and nitrification, and higher potential microbial respiration during the growing season. Potential nitrate production rates during the growing season were particularly sensitive to changes in winter snow pack accumulation and winter soil temperature variability, especially in spring. Effects of elevation and winter conditions on N transformation rates differed from those on potential microbial respiration, suggesting that N-related processes might respond differently to winter climate change in northern hardwood forests than C-related processes.

  18. Temporal changes of soil physic-chemical properties at different soil depths during larch afforestation by multivariate analysis of covariance

    PubMed Central

    Wang, Hui-Mei; Wang, Wen-Jie; Chen, Huanfeng; Zhang, Zhonghua; Mao, Zijun; Zu, Yuan-Gang

    2014-01-01

    Soil physic-chemical properties differ at different depths; however, differences in afforestation-induced temporal changes at different soil depths are seldom reported. By examining 19 parameters, the temporal changes and their interactions with soil depth in a large chronosequence dataset (159 plots; 636 profiles; 2544 samples) of larch plantations were checked by multivariate analysis of covariance (MANCOVA). No linear temporal changes were found in 9 parameters (N, K, N:P, available forms of N, P, K and ratios of N: available N, P: available P and K: available K), while marked linear changes were found in the rest 10 parameters. Four of them showed divergent temporal changes between surface and deep soils. At surface soils, changing rates were 262.1 g·kg−1·year−1 for SOM, 438.9 mg·g−1·year−1 for C:P, 5.3 mg·g−1·year−1 for C:K, and −3.23 mg·cm−3·year−1 for bulk density, while contrary tendencies were found in deeper soils. These divergences resulted in much moderated or no changes in the overall 80-cm soil profile. The other six parameters showed significant temporal changes for overall 0–80-cm soil profile (P: −4.10 mg·kg−1·year−1; pH: −0.0061 unit·year−1; C:N: 167.1 mg·g−1·year−1; K:P: 371.5 mg·g−1 year−1; N:K: −0.242 mg·g−1·year−1; EC: 0.169 μS·cm−1·year−1), but without significant differences at different soil depths (P > 0.05). Our findings highlight the importance of deep soils in studying physic-chemical changes of soil properties, and the temporal changes occurred in both surface and deep soils should be fully considered for forest management and soil nutrient balance. PMID:24772281

  19. Temporal changes of soil physic-chemical properties at different soil depths during larch afforestation by multivariate analysis of covariance.

    PubMed

    Wang, Hui-Mei; Wang, Wen-Jie; Chen, Huanfeng; Zhang, Zhonghua; Mao, Zijun; Zu, Yuan-Gang

    2014-04-01

    Soil physic-chemical properties differ at different depths; however, differences in afforestation-induced temporal changes at different soil depths are seldom reported. By examining 19 parameters, the temporal changes and their interactions with soil depth in a large chronosequence dataset (159 plots; 636 profiles; 2544 samples) of larch plantations were checked by multivariate analysis of covariance (MANCOVA). No linear temporal changes were found in 9 parameters (N, K, N:P, available forms of N, P, K and ratios of N: available N, P: available P and K: available K), while marked linear changes were found in the rest 10 parameters. Four of them showed divergent temporal changes between surface and deep soils. At surface soils, changing rates were 262.1 g·kg(-1)·year(-1) for SOM, 438.9 mg·g(-1)·year(-1) for C:P, 5.3 mg·g(-1)·year(-1) for C:K, and -3.23 mg·cm(-3)·year(-1) for bulk density, while contrary tendencies were found in deeper soils. These divergences resulted in much moderated or no changes in the overall 80-cm soil profile. The other six parameters showed significant temporal changes for overall 0-80-cm soil profile (P: -4.10 mg·kg(-1)·year(-1); pH: -0.0061 unit·year(-1); C:N: 167.1 mg·g(-1)·year(-1); K:P: 371.5 mg·g(-1) year(-1); N:K: -0.242 mg·g(-1)·year(-1); EC: 0.169 μS·cm(-1)·year(-1)), but without significant differences at different soil depths (P > 0.05). Our findings highlight the importance of deep soils in studying physic-chemical changes of soil properties, and the temporal changes occurred in both surface and deep soils should be fully considered for forest management and soil nutrient balance. PMID:24772281

  20. Predicting Soil Biological and Physical Properties Using Hydrological Properties

    NASA Astrophysics Data System (ADS)

    Geiger, L.; Hofmockel, K.; Kaleita, A.; Hargreaves, S.

    2012-12-01

    Soil biological and chemical properties vary at different spatial scales, which make predicting processes associated with these properties difficult. However, soil biological and chemical properties are important to fertility and ecosystem functioning. In this study, we used a Self Organizing Map (SOM) to determine whether soil hydrological characteristics can be used to characterize the distribution of a suite of soil biological and chemical properties. From a row crop field in south-central Iowa, we generated 36 sampling locations via a SOM, which were grouped into three categories according to hydrological properties by the SOM. Soil samples were then analyzed for microbial biomass, carbon and nitrogen mineralization potential, and organic and inorganic pools of carbon and nitrogen. We found that sampling locations in category 1 (potholes and toe slopes) had greater microbial biomass, total carbon, total nitrogen, and extractable organic carbon than compared locations in the two well-drained categories. Nitrogen and carbon mineralization and inorganic nitrogen pools did not differ significantly among the categories. These results demonstrate that hydrological characteristics can be used to predict relatively stable biological and chemical soil properties. However, prediction of nitrogen and carbon fluxes remains a challenge.

  1. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).

    PubMed

    Liu, Hongyu; Probst, Anne; Liao, Bohan

    2005-03-01

    In 1985, the collapse of the tailing dam in Chenzhou lead/zinc mine (Hunan, southern China) led to the spread of mining waste spills on the farmland along the Dong River. After the accident, an urgent soil cleaning up was carried out in some places. Seventeen years later, cereal (rice, maize, and sorghum), pulses (soybean, Adzuki bean, mung bean and peanut), vegetables (ipomoea, capsicum, taro and string bean) and the rooted soils were sampled at four sites: (1) the mining area (SZY), (2) the area still covered with the mining tailing spills (GYB), (3) the cleaned area from mining tailing spills (JTC), and (4) a background site (REF). Metal concentrations in the crops and soils were analyzed to evaluate the long-term effects of the spilled waste on the soil and the potential human exposure through food chains. The results showed that the physical-chemical properties of the soils obviously changed due to the different farming styles used by each individual farmer. Leaching effects and plant extraction of metals from some soils were quite weak. Certain soils were still heavily polluted with As, Cd, Zn, Pb and Cu. The contamination levels were in the order of GYB>SZY>JTC showing that the clean-up treatment was effective. The maximum allowable concentration (MAC) levels for Chinese agricultural soils were still highly exceeded, particularly for As and Cd (followed by Zn, Pb and Cu), with mean concentrations of 709 and 7.6 mg kg(-1), respectively. These concentrations exceed the MAC levels by 24 times for As and 13 times for Cd at GYB. Generally, the edible leaves or stems of crops were more heavily contaminated than seeds or fruits. Ipomoea was the most severely contaminated crop. The concentrations of Cd and Pb were 3.30 and 76.9 mg kg(-1) in ipomoea leaves at GYB, which exceeded the maximum permit levels (0.5 mg kg(-1) for Cd and 9 mg kg(-1) for Pb) by 6.6 and 8.5 times, respectively. Taro (+skin) could accumulate high concentrations of Zn and Cd in the edible stem

  2. Short term recovery of soil physical, chemical, micro- and mesobiological functions in a new vineyard under organic farming

    NASA Astrophysics Data System (ADS)

    Costantini, E. A. C.; Agnelli, A. E.; Fabiani, A.; Gagnarli, E.; Mocali, S.; Priori, S.; Simoni, S.; Valboa, G.

    2014-12-01

    Deep earthwork activities carried out before vineyard plantation can severely upset soil profile properties. As a result, soil features in the root environment are often much more similar to those of the underlying substratum than those of the original profile. The time needed to recover the original soil functions is ecologically relevant and may strongly affect vine phenology and grape yield, particularly under organic viticulture. The general aim of this work was to investigate soil resilience after vineyard pre-planting earthworks. In particular, an old and a new vineyard, established on the same soil type, were compared over a five year period for soil chemical, physical, micro and mesobiological properties. The investigated vineyards (Vitis vinifera L., cv. Sangiovese) were located in the Chianti Classico district (Central Italy), on stony and calcareous soils and were not irrigated. The older vineyard was planted in 2000, after slope reshaping by bulldozing and back hoe ploughing down to about 0.8-1.0 m. The new vineyard was planted in 2011, after equivalent earthwork practices carried out in the summer of 2009. Both vineyards were organically managed and fertilized only with compost every autumn (1000 kg ha-1 per year). The new vineyard was cultivated by periodic tillage, while the old vineyard was managed with alternating grass-covered and tilled inter-rows. Soil samples were collected at 0-15 cm depth from the same plots of the new and old vineyards, during the springtime from 2010 to 2014. The old vineyard was sampled in both the tilled and the grass-covered swaths. According to the results from physical and chemical analyses, the new vineyard, during the whole 2010-2014 period, showed lower TOC, N, C/N and EC values, along with higher silt and total CaCO3 contents than the old vineyard, suggesting still evolving equilibrium conditions. The microarthropod analysis showed significantly different abundances and communities' structures, in relation to both

  3. New instruments for soil physics class: Improving the laboratory and field seminars

    NASA Astrophysics Data System (ADS)

    Klipa, Vladimir; Jankovec, Jakub; Snehota, Michal

    2014-05-01

    Teaching soil science and soil physics is an important part of the curriculum of many programs with focus on technical and natural sciences. Courses of soil science and namely soil physics have a long tradition at the faculty of Civil Engineering of the Czech Technical University in Prague. Students receive the theoretical foundations about soil classification, soil physics, soil chemistry and soil hydraulic characteristics in the course. In practical seminars students perform measurements of physical, hydraulic and chemical characteristics of soils, thus a comprehensive survey of soil is done in the given site. So far, students had the opportunity to use old, manually operated instrumentation. The project aims to improve the attractiveness of soil physics course and to extend the practical skills of students by introducing new tasks and by involving modern automated equipment. New instruments were purchased with the support of the Ministry of Education, Youth and Sports of the Czech Republic under the project FRVS No. 1162/2013 G1. Specifically, two tensiometers T8 with multi-functional handheld read-out unit (UMS, GmbH) and manual Mini Disk Infiltrometer (Decagon Devices, Inc.) were purchased and incorporated into the course. In addition, newly designed MultiDisk the automated mini disk Infiltrometer (CTU in Prague) and combined temperature and soil moisture TDT sensor TMS 2 (TOMST®, s.r.o.), were made freely available for soil physics classes and included into the courses. Online tutorials and instructional videos were developed. Detailed multimedia teaching materials were introduced so that students are able to work more independently. Students will practice operating the digital tensiometer T8 with integrated temperature sensor and manual Mini Disk Infiltrometer (diameter disk: 4.4 cm, suction range: 0.5 to 7.0 cm of suction) and MultiDisk the automated mini disk Infiltrometer (see Klipa et al., EGU2014-7230) and combined temperature and soil moisture TDT

  4. Physically-based modifications to the Sacramento Soil Moisture Accounting model. Part A: Modeling the effects of frozen ground on the runoff generation process

    NASA Astrophysics Data System (ADS)

    Koren, Victor; Smith, Michael; Cui, Zhengtao

    2014-11-01

    This paper presents the first of two physically-based modifications to a widely-used and well-validated hydrologic precipitation-runoff model. Here, we modify the Sacramento Soil Moisture Accounting (SAC-SMA) model to include a physically-based representation of the effects of freezing and thawing soil on the runoff generation process. This model is called the SAC-SMA Heat Transfer model (SAC-HT). The frozen ground physics are taken from the Noah land surface model which serves as the land surface component of several National Center for Environmental Prediction (NCEP) numerical weather prediction models. SAC-HT requires a boundary condition of the soil temperature at the bottom of the soil column (a climatic annual air temperature is typically used, and parameters derived from readily available soil texture data). A noteworthy feature of SAC-HT is that the frozen ground component needs no parameter calibration. SAC-HT was tested at 11 sites in the U.S. for soil temperature, one site in Russia for soil temperature and soil moisture, eight basins in the upper Midwest for the effects of frozen-ground on streamflow, and one location for frost depth. High correlation coefficients for simulated soil temperature at three depths at 11 stations were achieved. Multi-year simulations of soil moisture and soil temperature agreed very well at the Valdai, Russia test location. In eight basins affected by seasonally frozen soil in the upper Midwest, SAC-HT provided improved streamflow simulations compared to SAC-SMA when both models used a priori parameters. Further improvement was gained through calibration of the non-frozen ground a priori parameters. Frost depth computed by SAC-HT compared well with observed values in the Root River basin in Minnesota.

  5. Burning management in the tallgrass prairie affects root decomposition, soil food web structure and carbon flow

    NASA Astrophysics Data System (ADS)

    Shaw, E. A.; Denef, K.; Milano de Tomasel, C.; Cotrufo, M. F.; Wall, D. H.

    2015-09-01

    Root litter decomposition is a major component of carbon (C) cycling in grasslands, where it provides energy and nutrients for soil microbes and fauna. This is especially important in grasslands where fire is a common management practice and removes aboveground litter accumulation. In this study, we investigated whether fire affects root decomposition and C flow through the belowground food web. In a greenhouse experiment, we applied 13C-enriched big bluestem (Andropogon gerardii) root litter to intact tallgrass prairie soil cores collected from annually burned (AB) and infrequently burned (IB) treatments at the Konza Prairie Long Term Ecological Research (LTER) site. Incorporation of 13C into microbial phospholipid fatty acids and nematode trophic groups was measured on six occasions during a 180-day decomposition study to determine how C was translocated through the soil food web. Results showed significantly different soil communities between treatments and higher microbial abundance for IB. Root decomposition occurred rapidly and was significantly greater for AB. Microbes and their nematode consumers immediately assimilated root litter C in both treatments. Root litter C was preferentially incorporated in a few groups of microbes and nematodes, but depended on burn treatment: fungi, Gram-negative bacteria, Gram-positive bacteria, and fungivore nematodes for AB and only omnivore nematodes for IB. The overall microbial pool of root litter-derived C significantly increased over time but was not significantly different between burn treatments. The nematode pool of root litter-derived C also significantly increased over time, and was significantly higher for the AB treatment at 35 and 90 days after litter addition. In conclusion, the C flow from root litter to microbes to nematodes is not only measurable, but significant, indicating that higher nematode trophic levels are critical components of C flow during root decomposition which, in turn, is significantly

  6. Examining the construct validity of affective judgments of physical activity measures.

    PubMed

    Chmielewski, Michael; Sala, Margarita; Tang, Rui; Baldwin, Austin

    2016-09-01

    Affective judgments of physical activity have emerged as important predictors of physical activity and interventions targeting affective judgments are a promising approach to improving regular physical activity. Currently, measures assessing a variety of potentially distinct constructs are treated as interchangeable assessments of affective judgments of physical activity. Moreover, little is known about the construct validity of the purported measures of this construct. We review several components of construct validity; highlighting their importance for health psychology research. Then, we examine the construct validity of a wide variety of affective judgment of physical activity measures in MTurk and student samples. Cronbach's alpha for the included measures was uniformly high; however, several scales contained excessively redundant items that ultimately lessen their construct validity. Moreover, dependability estimates for the majority of measures was poor, indicating high levels of transient measurement error. The included measures significantly predicted levels of physical activity; however, their relative predictive power was strongly associated with their dependability. In general, the affective judgment measures demonstrated poor convergent validity suggesting they are not interchangeable and best viewed as assessing distinct, albeit related, constructs. Another important limitation of these measures is that they exhibited poor discriminant validity from exercise self-efficacy, which represents an important theoretical and empirical issue for the field of health behavior research. Overall, the current findings indicate the available affective judgments of physical activity measures are suboptimal, have considerable construct validity limitations, and thereby prevent the further advancement of science, theory, and intervention development in this promising area of research. (PsycINFO Database Record PMID:27537007

  7. Climate and Physical Disturbance Effects on the Spectral Signatures of Biological Soil Crusts: Implications for Future Dryland Energy Balance

    NASA Astrophysics Data System (ADS)

    Rutherford, W. A.; Flagg, C.; Painter, T. H.; Okin, G. S.; Belnap, J.; Reed, S.

    2014-12-01

    Drylands comprise ≈40% of the terrestrial Earth surface and observations suggest they can respond markedly to climate change. A vital component of dryland ecosystems are biological soil crusts (biocrusts) - a network of surface soil lichens, mosses, and cyanobacteria - that perform critical ecosystem functions, such as stabilizing soil and fixing carbon and nitrogen. Yet, our understanding of the role biocrusts play in dryland energy balance remains poor. Changes in climate can rapidly affect biocrust communities and we have long known that biocrusts respond dramatically to physical disturbance, such as human trampling and grazing animals. Associated changes in biocrust cover often result in increased bare soil; creating higher surface reflectance. We used spectral solar reflectance measurements in two manipulative experiments to compare the effects of climate and physical disturbance on biocrusts of the Colorado Plateau We measured reflectance at two heights: at crust surface and 1 m above. The climate disturbance site has four treatments: control, warming (4°C), altered precipitation, and warming plus altered precipitation. The physical disturbance site was trampled by foot annually since 1998. At the climate experiment, the largest change in reflectance was in the altered precipitation treatment (35% increase) at the surface-level, and the smallest difference was in the warmed (17% increase) at the meter-level. Physical disturbance differences were 10% at meter-level and 25% at surface-level. Unexpectedly, these results suggest that, via effects on biocrust communities, climate change could have a larger effect on dryland energy balance relative to physical disturbance, and result in more radiation from drylands returned to the atmosphere. Biocrusts cover large portions of the Earth's surface and, to our knowledge, these are the first data showing climate-induced changes to biocrust reflectance, with negative feedback in the global energy balance.

  8. A physically based surface resistance model for evaporation from bare soils

    NASA Astrophysics Data System (ADS)

    Zhang, Chenming; Li, Ling; Lockington, David

    2015-02-01

    The resistance to vapor transfer across the soil-air interface, termed surface resistance, plays an important role in determining the evaporation rate from unsaturated bare soils. A physically based analytical model is developed to describe the surface resistance under varying liquid water saturation. When the vaporization plane remains in the topmost soil layer (TSL), the model considers the vapor transport through the external diffusive layer (EDL), and the hydraulic connection between the capillary water in the TSL and underneath water source for evaporation. When the vaporization plane develops below the TSL, the model predicts the surface resistance by taking into account the development of the dry soil layer, the major barrier for vapor transport at the soil-drying stage. With the consideration of the soil pore size distribution, the model is applicable to different soil types. The model was validated against six sets of laboratory experiments on the drying process of initially water-saturated soil columns under nonisothermal conditions. These experiments were conducted using different soil types and/or heat intensities above the soil surface. The model was found to perform well over intermediate and low liquid water saturation ranges while underestimating the surface resistance for the high liquid water saturation range. The results suggest that the model overall represents reasonably well the processes underlying the vapor transfer across the soil-air interface. Future model improvement may be gained by considering the hydraulic connection between the capillary water and film water in the TSL.

  9. Physically plausible prescription of land surface model soil moisture

    NASA Astrophysics Data System (ADS)

    Hauser, Mathias; Orth, René; Thiery, Wim; Seneviratne, Sonia

    2016-04-01

    Land surface hydrology is an important control of surface weather and climate, especially under extreme dry or wet conditions where it can amplify heat waves or floods, respectively. Prescribing soil moisture in land surface models is a valuable technique to investigate this link between hydrology and climate. It has been used for example to assess the influence of soil moisture on temperature variability, mean and extremes (Seneviratne et al. 2006, 2013, Lorenz et al., 2015). However, perturbing the soil moisture content artificially can lead to a violation of the energy and water balances. Here we present a new method for prescribing soil moisture which ensures water and energy balance closure by using only water from runoff and a reservoir term. If water is available, the method prevents soil moisture decrease below climatological values. Results from simulations with the Community Land Model (CLM) indicate that our new method allows to avoid soil moisture deficits in many regions of the world. We show the influence of the irrigation-supported soil moisture content on mean and extreme temperatures and contrast our findings with that of earlier studies. Additionally, we will assess how long into the 21st century the new method will be able to maintain present-day climatological soil moisture levels for different regions. Lorenz, R., Argüeso, D., Donat, M.G., Pitman, A.J., den Hurk, B.V., Berg, A., Lawrence, D.M., Chéruy, F., Ducharne, A., Hagemann, S. and Meier, A., 2015. Influence of land-atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble. Journal of Geophysical Research: Atmospheres. Seneviratne, S.I., Lüthi, D., Litschi, M. and Schär, C., 2006. Land-atmosphere coupling and climate change in Europe. Nature, 443(7108), pp.205-209. Seneviratne, S.I., Wilhelm, M., Stanelle, T., Hurk, B., Hagemann, S., Berg, A., Cheruy, F., Higgins, M.E., Meier, A., Brovkin, V. and Claussen, M., 2013. Impact of soil moisture

  10. Acute physical exercise affected processing efficiency in an auditory attention task more than processing effectiveness.

    PubMed

    Dutke, Stephan; Jaitner, Thomas; Berse, Timo; Barenberg, Jonathan

    2014-02-01

    Research on effects of acute physical exercise on performance in a concurrent cognitive task has generated equivocal evidence. Processing efficiency theory predicts that concurrent physical exercise can increase resource requirements for sustaining cognitive performance even when the level of performance is unaffected. This hypothesis was tested in a dual-task experiment. Sixty young adults worked on a primary auditory attention task and a secondary interval production task while cycling on a bicycle ergometer. Physical load (cycling) and cognitive load of the primary task were manipulated. Neither physical nor cognitive load affected primary task performance, but both factors interacted on secondary task performance. Sustaining primary task performance under increased physical and/or cognitive load increased resource consumption as indicated by decreased secondary task performance. Results demonstrated that physical exercise effects on cognition might be underestimated when only single task performance is the focus.

  11. Implications of Using Thermal Desorption to Remediate Contaminated Agricultural Soil: Physical Characteristics and Hydraulic Processes.

    PubMed

    O'Brien, Peter L; DeSutter, Thomas M; Casey, Francis X M; Derby, Nathan E; Wick, Abbey F

    2016-07-01

    Given the recent increase in crude oil production in regions with predominantly agricultural economies, the determination of methods that remediate oil contamination and allow for the land to return to crop production is increasingly relevant. Ex situ thermal desorption (TD) is a technique used to remediate crude oil pollution that allows for reuse of treated soil, but the properties of that treated soil are unknown. The objectives of this research were to characterize TD-treated soil and to describe implications in using TD to remediate agricultural soil. Native, noncontaminated topsoil and subsoil adjacent to an active remediation site were separately subjected to TD treatment at 350°C. Soil physical characteristics and hydraulic processes associated with agricultural productivity were assessed in the TD-treated samples and compared with untreated samples. Soil organic carbon decreased more than 25% in both the TD-treated topsoil and the subsoil, and total aggregation decreased by 20% in the topsoil but was unaffected in the subsoil. The alteration in these physical characteristics explains a 400% increase in saturated hydraulic conductivity in treated samples as well as a decrease in water retention at both field capacity and permanent wilting point. The changes in soil properties identified in this study suggest that TD-treated soils may still be suitable for sustaining vegetation, although likely at a slightly diminished capacity when directly compared with untreated soils. PMID:27380094

  12. Implications of Using Thermal Desorption to Remediate Contaminated Agricultural Soil: Physical Characteristics and Hydraulic Processes.

    PubMed

    O'Brien, Peter L; DeSutter, Thomas M; Casey, Francis X M; Derby, Nathan E; Wick, Abbey F

    2016-07-01

    Given the recent increase in crude oil production in regions with predominantly agricultural economies, the determination of methods that remediate oil contamination and allow for the land to return to crop production is increasingly relevant. Ex situ thermal desorption (TD) is a technique used to remediate crude oil pollution that allows for reuse of treated soil, but the properties of that treated soil are unknown. The objectives of this research were to characterize TD-treated soil and to describe implications in using TD to remediate agricultural soil. Native, noncontaminated topsoil and subsoil adjacent to an active remediation site were separately subjected to TD treatment at 350°C. Soil physical characteristics and hydraulic processes associated with agricultural productivity were assessed in the TD-treated samples and compared with untreated samples. Soil organic carbon decreased more than 25% in both the TD-treated topsoil and the subsoil, and total aggregation decreased by 20% in the topsoil but was unaffected in the subsoil. The alteration in these physical characteristics explains a 400% increase in saturated hydraulic conductivity in treated samples as well as a decrease in water retention at both field capacity and permanent wilting point. The changes in soil properties identified in this study suggest that TD-treated soils may still be suitable for sustaining vegetation, although likely at a slightly diminished capacity when directly compared with untreated soils.

  13. Degradation of flubendiamide as affected by elevated CO2, temperature, and carbon mineralization rate in soil.

    PubMed

    Mukherjee, Irani; Das, Shaon Kumar; Kumar, Aman

    2016-10-01

    An experiment was conducted under three levels of atmospheric CO2 [ambient (398 ± 10 μmol mol(-1)), elevated (570 ± 10 μmol mol(-1)) and open condition], three levels of temperature (4, 25, and 40 °C) to study the degradation pattern of flubendiamide in soil and also carbon mineralization in soil. Results of this study revealed that flubendiamide was found to persist longer under outdoor condition (T1/2, 177.0 and 181.1 days) than ambient (T1/2, 168.4 and 172.3 days) and elevated condition (T1/2, 159.3 and 155.3 days) at 1 and 10 μg g(-1) fortification level, respectively. Results also revealed that flubendiamide dissipated faster at 40 °C (T1/2, 189.4 days) than 25 °C (T1/2, 225.3 days). Slower dissipation was recorded at 4 °C (T1/2, 326.3 days). Thus, increased CO2 levels and temperature following global warming might adversely affect flubendiamide degradation in soil. Laboratory study on microbial biomass carbon (MBC) and carbon mineralization (Cmin) in soil revealed that in des-iodo flubendiamide-treated soils, MBC significantly increased up to 45 days and then decreased. Flubendiamide-treated soil showed a non-significantly decreasing trend of soil MBC with time up to the 15th day of incubation and after 15 days significantly decreased up to 90 days of incubation. In des-iodo flubendiamide-treated soil, the evolution of CO2 decreased up to 45 days, which was increased after 45 days up to 90 days. In flubendiamide-treated soil, CO2 evolution decreased up to 30 days and after 45 days, it increased up to 90 days. PMID:27430656

  14. Intelligent estimation of spatially distributed soil physical properties

    USGS Publications Warehouse

    Iwashita, F.; Friedel, M.J.; Ribeiro, G.F.; Fraser, Stephen J.

    2012-01-01

    Spatial analysis of soil samples is often times not possible when measurements are limited in number or clustered. To obviate potential problems, we propose a new approach based on the self-organizing map (SOM) technique. This approach exploits underlying nonlinear relation of the steady-state geomorphic concave-convex nature of hillslopes (from hilltop to bottom of the valley) to spatially limited soil textural data. The topographic features are extracted from Shuttle Radar Topographic Mission elevation data; whereas soil textural (clay, silt, and sand) and hydraulic data were collected in 29 spatially random locations (50 to 75. cm depth). In contrast to traditional principal component analysis, the SOM identifies relations among relief features, such as, slope, horizontal curvature and vertical curvature. Stochastic cross-validation indicates that the SOM is unbiased and provides a way to measure the magnitude of prediction uncertainty for all variables. The SOM cross-component plots of the soil texture reveals higher clay proportions at concave areas with convergent hydrological flux and lower proportions for convex areas with divergent flux. The sand ratio has an opposite pattern with higher values near the ridge and lower values near the valley. Silt has a trend similar to sand, although less pronounced. The relation between soil texture and concave-convex hillslope features reveals that subsurface weathering and transport is an important process that changed from loss-to-gain at the rectilinear hillslope point. These results illustrate that the SOM can be used to capture and predict nonlinear hillslope relations among relief, soil texture, and hydraulic conductivity data. ?? 2011 Elsevier B.V.

  15. Hydrologic Treatments Affect Gaseous Carbon Loss From Organic Soils, Twitchell Island, California, October 1995-December 1997

    USGS Publications Warehouse

    Miller, Robin L.; Hastings, Lauren; Fujii, Roger

    2000-01-01

    Subsidence of organic soils in the Sacramento-San Joaquin Delta, California, has increased the potential for levee failure and flooding in the region. Because oxidation of the peat soils is a primary cause of subsidence, reversion of affected lands to wetlands has been proposed as a mitigation tool. To test this hypothesis, three 10 x 10 meter enclosures were built on Twitchell Island in the Delta and managed as different wetland habitats. Emissions of carbon dioxide and methane were measured in situ from October 1995 through December 1997, from the systems that developed under the different water-management treatments. Treatments included a seasonal control (SC) under current island management conditions; reverse flooding (RF), where the land is intentionally flooded from early dry season until midsummer; permanent shallow flooding (F); and a more deeply flooded, open-water (OW) treatment. Hydrologic treatments affected microbial processes, plant community and temperature dynamics which, in turn, affected carbon cycling. Water-management treatments with a period of flooding significantly decreased gaseous carbon emissions compared to the seasonal control. Permanent flooding treatments showed significantly higher methane fluxes than treatments with some period of aerobic conditions. Shallow flooding treatments created conditions that support cattail [Typha species (spp.)] marshes, while deep flooding precluded emergent vegetation. Carbon inputs to the permanent shallow flooding treatment tended to be greater than the measured losses. This suggests that permanent shallow flooding has the greatest potential for managing subsidence of these soils by generating organic substrate more rapidly than is lost through decomposition. Carbon input estimates of plant biomass compared to measurements of gaseous carbon losses indicate the potential for mitigation of subsidence through hydrologic management of the organic soils in the area.

  16. Multiple factors affect diversity and abundance of ammonia-oxidizing microorganisms in iron mine soil.

    PubMed

    Xing, Yi; Si, Yan-Xiao; Hong, Chen; Li, Yang

    2015-07-01

    Ammonia oxidation by microorganisms is a critical process in the nitrogen cycle. In this study, four soil samples collected from a desert zone in an iron-exploration area and others from farmland and planted forest soil in an iron mine surrounding area. We analyzed the abundance and diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in iron-mining area near the Miyun reservoir using ammonia monooxygenase. A subunit gene (amoA) as molecular biomarker. Quantitative polymerase chain reaction was applied to explore the relationships between the abundance of AOA and AOB and soil physicochemical parameters. The results showed that AOA were more abundant than AOB and may play a more dominant role in the ammonia-oxidizing process in the whole region. PCR-denaturing gradient gel electrophoresis was used to analyze the structural changes of AOA and AOB. The results showed that AOB were much more diverse than AOA. Nitrosospira cluster three constitute the majority of AOB, and AOA were dominated by group 1.1b in the soil. Redundancy analysis was performed to explore the physicochemical parameters potentially important to AOA and AOB. Soil characteristics (i.e. water, ammonia, organic carbon, total nitrogen, available phosphorus, and soil type) were proposed to potentially contribute to the distributions of AOB, whereas Cd was also closely correlated to the distributions of AOB. The community of AOA correlated with ammonium and water contents. These results highlight the importance of multiple drivers in microbial niche formation as well as their affect on ammonia oxidizer composition, both which have significant consequences for ecosystem nitrogen functioning.

  17. Multiple factors affect diversity and abundance of ammonia-oxidizing microorganisms in iron mine soil.

    PubMed

    Xing, Yi; Si, Yan-Xiao; Hong, Chen; Li, Yang

    2015-07-01

    Ammonia oxidation by microorganisms is a critical process in the nitrogen cycle. In this study, four soil samples collected from a desert zone in an iron-exploration area and others from farmland and planted forest soil in an iron mine surrounding area. We analyzed the abundance and diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in iron-mining area near the Miyun reservoir using ammonia monooxygenase. A subunit gene (amoA) as molecular biomarker. Quantitative polymerase chain reaction was applied to explore the relationships between the abundance of AOA and AOB and soil physicochemical parameters. The results showed that AOA were more abundant than AOB and may play a more dominant role in the ammonia-oxidizing process in the whole region. PCR-denaturing gradient gel electrophoresis was used to analyze the structural changes of AOA and AOB. The results showed that AOB were much more diverse than AOA. Nitrosospira cluster three constitute the majority of AOB, and AOA were dominated by group 1.1b in the soil. Redundancy analysis was performed to explore the physicochemical parameters potentially important to AOA and AOB. Soil characteristics (i.e. water, ammonia, organic carbon, total nitrogen, available phosphorus, and soil type) were proposed to potentially contribute to the distributions of AOB, whereas Cd was also closely correlated to the distributions of AOB. The community of AOA correlated with ammonium and water contents. These results highlight the importance of multiple drivers in microbial niche formation as well as their affect on ammonia oxidizer composition, both which have significant consequences for ecosystem nitrogen functioning. PMID:25860433

  18. [Extraction of Cd by ramie from soils as affected by applications of chelators and peat].

    PubMed

    Shen, Li-Ping; Zong, Liang-Gang; Jiang, Pei; Liu, Wei-Xing; Jiang, Bo; Chen, Ya-Hua

    2009-09-15

    Pot experiments were performed to study the effectiveness of chelators (EDTA, citric acid) and peat in enhancing phyremediation of heavy metal Cd by ramie. The results showed that peat increased the ramie's biomass by improving soil's physical and chemical properties, and the relative yields of peat alone, chelators(EDTA, citric acid) combined with peat were 1.23, 1.13 and 1.41 respectively. So the combination of citric acid and peat was more useful for growth of the ramie. As far as improving Cd uptake was concerned, it seemed that the combination of chelators with peat significantly promoted Cd uptake by the plant, and the percent of changeable Cd in soil were 61.6% and 58.3% . In addition, it had better bioaccumulation effects to combine with chelators and peat, of which Cd bioaccumulation coefficients were 1.33 and 1.32, compared to 1.11, 1.11 and 1.05 in application of peat, EDTA and citric acid respectively. What's more, cadmium removal rates in soil were up to 1.13% and 1.22% respectively in applications of two kinds of chleators (EDTA, citric acid) combined with peat. Therefore, it had better effects of phytoremediation to accumulate more cadmium amounts by combining with citric acid and peat because of more biomass. In conclusion, the phytoremediation by ramie can be more effective when chelators and peat were combined and added to soils.

  19. Impact Assessment of Salinization Affected Soil on Greenhouse Crops using SALTMED

    NASA Astrophysics Data System (ADS)

    Pappa, Polyxeni; Daliakopoulos, Ioannis; Tsanis, Ioannis; Varouchakis, Emmanouil

    2015-04-01

    Here we assess the effects of soil salinization on greenhouse crops and the potential benefits of rainwater harvesting as a soil amelioration technology. The study deals with the following scenarios: (a) variation of irrigation water salinity from 3,000 μS/cm to 500 μS/cm through mixing with rainwater, (b) crop substitution for increased tolerance and (c) climatic variability to account for the impact of climate change. In order to draw meaningful conclusions, a model that takes into account vegetation interaction, soil, irrigation water and climate variables is required. The SALTMED model is a reliable and tested physical process model that simulates evapotranspiration, plant water uptake, water and solute transport to estimate crop yield and biomass production under all irrigation systems. SALTMED is tested with the above scenarios in the RECARE FP7 Project Case Study of Timpaki, in the Island of Crete, Greece. Simulations are conducted for typical cultivations of Solanum lycopersicum, Capsicum anuumm and Solanum melongena. Preliminary results indicate the optimal combination from a set of solutions concerning the soil and water parameters can be beneficial against the salinization threat. Future research includes the validation of the results with field experiments. Keywords: salinization, greenhouse, tomato, SALTMED, rainwater, RECARE

  20. Lunar Soil Erosion Physics for Landing Rockets on the Moon

    NASA Technical Reports Server (NTRS)

    Clegg, Ryan N.; Metzger, Philip T.; Huff, Stephen; Roberson, Luke B.

    2008-01-01

    To develop a lunar outpost, we must understand the blowing of soil during launch and landing of the new Altair Lander. For example, the Apollo 12 Lunar Module landed approximately 165 meters from the deactivated Surveyor Ill spacecraft, scouring its surfaces and creating numerous tiny pits. Based on simulations and video analysis from the Apollo missions, blowing lunar soil particles have velocities up to 2000 m/s at low ejection angles relative to the horizon, reach an apogee higher than the orbiting Command and Service Module, and travel nearly the circumference of the Moon [1-3]. The low ejection angle and high velocity are concerns for the lunar outpost.

  1. Rhizogenesis: Exploring the physical development of the emerging root:soil interface

    NASA Astrophysics Data System (ADS)

    Mooney, Sacha; Helliwell, Jon; Sturrock, Craig; Whalley, Richard; Miller, Tony

    2015-04-01

    The rhizosphere is a distinct zone of soil directly influenced by a plant root, with all below ground resources passing through this dynamic zone prior to capture by plants. Therefore the physical nature of the interface between the rhizosphere and the bulk soil is crucial for plant development. It is well known that the soil microbial community play a significant role in the evolution of the rhizosphere and some studies have shown that it is structurally a very different environment to the surrounding bulk soil. However how this evolution or genesis is influenced by the underlying soil physical properties and how this interacts with different plant species is less well understood. Actually examining the undisturbed rhizosphere has represented a major obstacle to research, due to its microscopic size and often fragile nature. Here we have employed high resolution X-ray Computed Tomography (CT) to successfully map the physical architecture of the developing rhizosphere in natural soils for the first time. We compared the temporal changes to the intact porous structure of the rhizosphere during the emergence of a developing root system, by assessing changes to the soil porous architecture across a range of soil textures and plant species. Our results indicate the physical zone of influence of a root at an early stage is more localised than previously thought possible (at the µm rather than mm scale). Soil porosity increases at the immediate root surface due to localised crack formation in both fine and coarse textured soils. As such the soil porous architecture at the root interface is enhanced and not compacted as previously considered. Subsequent densification of the soil system in response to an expanding root diameter was still observed, however this at some distance away from the root, and is primarily governed by soil particle size, soil bulk density and root diameter. This 'rhizosphere structure' and associated dynamics have important consequences for several

  2. [Spatiotemporal heterogeneity and its formation causes of soil physical properties in karst peak-cluster depression area of northwest Guangxi, China].

    PubMed

    Liu, Shu-juan; Zhang, Wei; Wang, Ke-lin; Chen, Hong-song; Wei, Guo-fu

    2010-09-01

    Soil samples were collected from the grassland, shrub land, secondary forest, and original forest on the hill slope in a typical karst peak-cluster depression area of northwest Guanxi, with the spatiotemporal heterogeneity of soil physical properties investigated by classical statistics, and the formation causes of the heterogeneity analyzed by redundancy analysis (RDA). In 0-15 cm soil layer, the clay (< 0.002 mm) and silt (0.002-0.05 mm) contents of shrub land and original forest had significant differences with those of grassland and secondary forest, respectively, but the clay, silt, and sand (0.05-2.0 mm) contents had no significant differences between grassland and secondary forest. No significant difference was observed in the soil sand content among the four land types, but the soil bulk density of grassland was significantly different from that of other three land types. The soil clay content of grassland increased with increasing elevation, while that of the other three land types was the highest on medium slope, and had no significant differences for the same land types among different slope locations. The soil clay content in different layers of 0-30 cm had a greater variation extent in original forest (14.55%) than in grassland (7.12%), shrub land (11.24%), and secondary forest (13.77%), and the soil particle size composition was greatly affected by the disturbance of human activities. Soil organic carbon (SOC) and vegetation type were the dominant factors affecting the soil physical properties, and the bare rock ratio had greater effects on soil sand content.

  3. Factors affecting daily physical activity and physical performance in maintenance dialysis patients.

    PubMed

    Kopple, Joel D; Kim, Jun C; Shapiro, Bryan B; Zhang, Min; Li, Yinan; Porszasz, Janos; Bross, Rachelle; Feroze, Usama; Upreti, Rajeev; Kalantar-Zadeh, Kamyar

    2015-03-01

    Maintenance hemodialysis (MHD) patients display reduced daily physical activity (DPA) and physical performance (PP). Previous studies did not differentiate the effects of kidney failure and MHD treatments from comorbidities as causes for reduced DPA and PP. In relatively healthy MHD patients and normal adults, we evaluated DPA and PP and examined relationships between DPA and PP and possible associations between anxiety or depression and DPA and PP. DPA, 6-minute walk distance (6-MWD), sit-to-stand (STS), and stair-climbing tests were measured in 72 MHD patients (40% diabetics) with limited comorbidities and 39 normal adults of similar age and gender mix. Anxiety and depression were measured by the Beck anxiety and depression inventories. DPA, time-averaged over 7 days, and all 3 PP tests were impaired in MHD patients, to about 60% to 70% of normal values (P < .0001 for each measurement). MHD patients spent more time sleeping or physically inactive (P < .0001) and less time in ≥ moderate activity (P < .0001). Adjusted DPA correlated with 6-MWD but not STS or stair-climbing. Anxiety and depression were identified in 43% and 33% of MHD patients and 2.5% and 5.1% of normals (P < .0001 for each comparison). Most of the impairment in DPA and PP tests were also observed in MHD patients without anxiety or depression. However, MHD patients with both anxiety and depression generally had the most impaired DPA and PP. In MHD patients, higher adjusted anxiety scores were correlated with impaired 6-MWD and STS, whereas adjusted average DPA was negatively correlated with depression (r = -0.33, P = .006) but not anxiety. DPA on the hemodialysis day (P = .01), day after dialysis (P = .03), and day 2 after dialysis (P = .03) each correlated negatively with degree of depression but not with anxiety. MHD patients displayed negative-adjusted correlations between anxiety and 6-MWD (P = .03) and STS (P = .04). In relatively healthy MHD patients, DPA and PP are substantially impaired

  4. Fire affects root decomposition, soil food web structure, and carbon flow in tallgrass prairie

    NASA Astrophysics Data System (ADS)

    Shaw, E. Ashley; Denef, Karolien; Milano de Tomasel, Cecilia; Cotrufo, M. Francesca; Wall, Diana H.

    2016-05-01

    Root litter decomposition is a major component of carbon (C) cycling in grasslands, where it provides energy and nutrients for soil microbes and fauna. This is especially important in grasslands where fire is common and removes aboveground litter accumulation. In this study, we investigated whether fire affects root decomposition and C flow through the belowground food web. In a greenhouse experiment, we applied 13C-enriched big bluestem (Andropogon gerardii) root litter to intact tallgrass prairie soil cores collected from annually burned (AB) and infrequently burned (IB) treatments at the Konza Prairie Long Term Ecological Research (LTER) site. Incorporation of 13C into microbial phospholipid fatty acids and nematode trophic groups was measured on six occasions during a 180-day decomposition study to determine how C was translocated through the soil food web. Results showed significantly different soil communities between treatments and higher microbial abundance for IB. Root decomposition occurred rapidly and was significantly greater for AB. Microbes and their nematode consumers immediately assimilated root litter C in both treatments. Root litter C was preferentially incorporated in a few groups of microbes and nematodes, but depended on burn treatment: fungi, Gram-negative bacteria, Gram-positive bacteria, and fungivore nematodes for AB and only omnivore nematodes for IB. The overall microbial pool of root-litter-derived C significantly increased over time but was not significantly different between burn treatments. The nematode pool of root-litter-derived C also significantly increased over time, and was significantly higher for the AB treatment at 35 and 90 days after litter addition. In conclusion, the C flow from root litter to microbes to nematodes is not only measurable but also significant, indicating that higher nematode trophic levels are critical components of C flow during root decomposition, which, in turn, is significantly affected by fire. Not

  5. Biological soil crusts emit large amounts of NO and HONO affecting the nitrogen cycle in drylands

    NASA Astrophysics Data System (ADS)

    Tamm, Alexandra; Wu, Dianming; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Steinkamp, Jörg; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J.; Su, Hang; Pöschl, Ulrich; Weber, Bettina

    2016-04-01

    Dryland systems currently cover ˜40% of the world's land surface and are still expanding as a consequence of human impact and global change. In contrast to that, information on their role in global biochemical processes is limited, probably induced by the presumption that their sparse vegetation cover plays a negligible role in global balances. However, spaces between the sparse shrubs are not bare, but soils are mostly covered by biological soil crusts (biocrusts). These biocrust communities belong to the oldest life forms, resulting from an assembly between soil particles and cyanobacteria, lichens, bryophytes, and algae plus heterotrophic organisms in varying proportions. Depending on the dominating organism group, cyanobacteria-, lichen-, and bryophyte-dominated biocrusts are distinguished. Besides their ability to restrict soil erosion they fix atmospheric carbon and nitrogen, and by doing this they serve as a nutrient source in strongly depleted dryland ecosystems. In this study we show that a fraction of the nitrogen fixed by biocrusts is metabolized and subsequently returned to the atmosphere in the form of nitric oxide (NO) and nitrous acid (HONO). These gases affect the radical formation and oxidizing capacity within the troposphere, thus being of particular interest to atmospheric chemistry. Laboratory measurements using dynamic chamber systems showed that dark cyanobacteria-dominated crusts emitted the largest amounts of NO and HONO, being ˜20 times higher than trace gas fluxes of nearby bare soil. We showed that these nitrogen emissions have a biogenic origin, as emissions of formerly strongly emitting samples almost completely ceased after sterilization. By combining laboratory, field, and satellite measurement data we made a best estimate of global annual emissions amounting to ˜1.1 Tg of NO-N and ˜0.6 Tg of HONO-N from biocrusts. This sum of 1.7 Tg of reactive nitrogen emissions equals ˜20% of the soil release under natural vegetation according

  6. Recovery approach affects soil quality in the water level fluctuation zone of the Three Gorges Reservoir, China: implications for revegetation.

    PubMed

    Ye, Chen; Cheng, Xiaoli; Zhang, Quanfa

    2014-02-01

    Plants in the water level fluctuation zone of the Three Gorges Reservoir Region disappeared due to winter-flooding and prolonged inundation. Revegetation (plantation and natural recovery) have been promoted to restore and protect the riparian ecosystem in recent years. Revegetation may affect soil qualities and have broad important implications both for ecological services and soil recovery. In this study, we investigated soil properties including soil pH values, bulk density, soil organic matter (SOM), soil nutrients and heavy metals, soil microbial community structure, microbial biomass, and soil quality index under plantation and natural recovery in the Three Gorges Reservoir Region. Most soil properties showed significant temporal and spatial variations in both the plantation and natural recovery areas. Higher contents of SOM and NO3-N were found in plantation area, while higher contents of soil pH values, bulk density, and total potassium were observed in the natural recovery area. However, there were no significant differences in plant richness and diversity and soil microbial community structure between the two restoration approaches. A soil quality index derived from SOM, bulk density, Zn, Cd, and Hg indicated that natural recovery areas with larger herbaceous coverage had more effective capacity for soil restoration. PMID:24019143

  7. Recovery approach affects soil quality in the water level fluctuation zone of the Three Gorges Reservoir, China: implications for revegetation.

    PubMed

    Ye, Chen; Cheng, Xiaoli; Zhang, Quanfa

    2014-02-01

    Plants in the water level fluctuation zone of the Three Gorges Reservoir Region disappeared due to winter-flooding and prolonged inundation. Revegetation (plantation and natural recovery) have been promoted to restore and protect the riparian ecosystem in recent years. Revegetation may affect soil qualities and have broad important implications both for ecological services and soil recovery. In this study, we investigated soil properties including soil pH values, bulk density, soil organic matter (SOM), soil nutrients and heavy metals, soil microbial community structure, microbial biomass, and soil quality index under plantation and natural recovery in the Three Gorges Reservoir Region. Most soil properties showed significant temporal and spatial variations in both the plantation and natural recovery areas. Higher contents of SOM and NO3-N were found in plantation area, while higher contents of soil pH values, bulk density, and total potassium were observed in the natural recovery area. However, there were no significant differences in plant richness and diversity and soil microbial community structure between the two restoration approaches. A soil quality index derived from SOM, bulk density, Zn, Cd, and Hg indicated that natural recovery areas with larger herbaceous coverage had more effective capacity for soil restoration.

  8. Degradation of fuel oil in salt marsh soils affected by the Prestige oil spill.

    PubMed

    Vega, Flora A; Covelo, Emma F; Reigosa, Manuel J; Andrade, María Luisa

    2009-07-30

    We assessed natural degradation of fuel oil in three marshes from Galicia (Spain) affected by the Prestige oil spill (Baldaio, Barizo, and Muxía). Soil samples collected from polluted and unpolluted areas on four different dates were used to determine total petroleum hydrocarbon content and fuel-oil components. Natural degradation was monitored by analysing changes in the proportion of saturated hydrocarbons, aromatics, asphaltenes and resins in the soils, and also by evaluating the degree of depletion of saturated hydrocarbons on each sampling date. We additionally assessed the phytoremediation potential of Lolium perenne, L., Convolvulus arvensis L. and Raphanus raphanistrum L. All marsh soils exhibited natural degradation of saturated and aromatic hydrocarbons to between 85 and 95% in most cases. In contrast, asphaltenes and resins were degraded to a lesser extent (viz. 64-76% in Barizo 1, Muxía and Traba; 39-44% in Baldaio; and only 12% in Barizo 2, where flooding by the river continues to introduce balls of fuel oil into the soil). Monitoring analyses revealed natural degradation to be dependent on the thickness of the pollutant layer. Field plots sown with L. perenne L. exhibited no significant differences in fuel-oil degradation from untreated plots.

  9. Physical effects of soil drying on roots and crop growth.

    PubMed

    Whitmore, Andrew P; Whalley, W Richard

    2009-01-01

    The nature and effect of the stresses on root growth in crops subject to drying is reviewed. Drought is a complex stress, impacting on plant growth in a number of interacting ways. In response, there are a number of ways in which the growing plant is able to adapt to or alleviate these stresses. It is suggested that the most significant opportunity for progress in overcoming drought stress and increasing crop yields is to understand and exploit the conditions in soil by which plant roots are able to maximize their use of resources. This may not be straightforward, with multiple stresses, sometimes competing functions of roots, and conditions which impact upon roots very differently depending upon what soil, what depth or what stage of growth the root is at. Several processes and the interaction between these processes in soil have been neglected. It is our view that drought is not a single, simple stress and that agronomic practice which seeks to adapt to climate change must take account of the multiple facets of both the stress induced by insufficient water as well as other interacting stresses such as heat, disease, soil strength, low nutrient status, and even hypoxia. The potential for adaptation is probably large, however. The possible changes in stress as a result of the climate change expected under UK conditions are assessed and it appears possible that wet warm winters will impact on root growth as much if not more than dry warm summers. PMID:19584120

  10. Physical properties of soils contaminated by oil lakes, Kuwait

    SciTech Connect

    Mohammad, A.S.; Wahba, S.A.; Al-Khatieb, S.O.

    1996-08-01

    In preparation for a marine assault by the coalition forces, the Iraqi Army heavily mined Kuwait`s coastal zone and the oil fields. Over a million mines were placed on the Kuwait soil. Burning of 732 oil wells in the State of Kuwait due to the Iraqi invasion caused damages which had direct and indirect effect on environment. A total of 20-22 million barrels of spilled crude oil were collected in natural desert depressions and drainage network which formed more than 300 oil lakes. The total area covered with oil reached 49 km{sup 2}. More than 375 trenches revealed the existence of hard, massive caliche (CaCO{sub 3}) subsoil which prevent leached oil from reaching deeper horizons, and limited the maximum depth of penetration to 1.75 m. Total volume of soil contaminated reached 22,652,500 m{sup 3} is still causing environmental problems and needs an urgent cleaning and rehabilitation. Kuwait Oil Company has recovered approximately 21 million barrels from the oil lakes since the liberation of Kuwait. In our examined representative soil profiles the oil penetration was not deeper than 45 cm. Infiltration rate, soil permeability, grain size distribution, aggregates formation and water holding capacity were assessed. 15 refs., 5 figs., 5 tabs.

  11. Tillage effects on Dryland Soil Physical Properties in Northeastern Montana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was initiated in 2005 to evaluate the effect of no-till (NT) chemical fallow and conventional tillage (CT) fallow management on soil penetration resistance (PR), bulk density ('b), gravimetric water content (MC) and saturated hydraulic conductivity (Ks) in spring wheat fallow rotation under ...

  12. Evaluation of soil characteristics potentially affecting arsenic concentration in paddy rice (Oryza sativa L.).

    PubMed

    Bogdan, Katja; Schenk, Manfred K

    2009-10-01

    Paddy rice may contribute considerably to the human intake of As. The knowledge of soil characteristics affecting the As content of the rice plant enables the development of agricultural measures for controlling As uptake. During field surveys in 2004 and 2006, plant samples from 68 fields (Italy, Po-area) revealed markedly differing As concentration in polished rice. The soil factors total As(aqua regia), pH, grain size fractions, total C, plant available P(CAL), poorly crystalline Fe(oxal.) and plant available Si(Na-acetate) content that potentially affect As content of rice were determined. A multiple linear regression analysis showed a significant positive influence of the total As(aqua regia) and plant available P(CAL) content and a negative influence of the poorly crystalline Fe(oxal.) content of the soil on the As content in polished rice and rice straw. Si concentration in rice straw varied widely and was negatively related to As content in straw and polished rice. PMID:19482396

  13. Hydrochemistry of episodic drainage waters discharged from an acid sulfate soil affected catchment

    NASA Astrophysics Data System (ADS)

    Green, R.; Macdonald, B. C. T.; Melville, M. D.; Waite, T. D.

    2006-06-01

    The water quality of drainage discharged via pumping from an acid sulfate soil (ASS) affected catchment used for sugar cane farming is temporally very variable and is influenced by the various rain event magnitudes, their antecedents, and the particular phase of the discharge in any rain event. Rainfall episodes can cause substantial changes in acidity and dissolved metal concentrations in ASS drainage waters over very short time scales with minimum pH often reached within a few hours of initiation of the rainfall event. The initial increase in acidity and dissolved metals concentrations often observed can be attributed mainly to 'first flush' effects resulting from mobilization of salts present in the upper soil profile. During the middle of a large rainfall event dilution effects may result in a decrease in concentrations of dissolved species, but increases in acidity and dissolved metals (particularly aluminium) concentrations in the recession portion of the hydrograph often occur as small field drains discharge into main channels. These observations assist both in understanding of the hydrogeochemical processes leading to acid and metals release from acid sulfate soils affected catchments, and in developing appropriate strategies to treat contaminated discharge waters from such catchments.

  14. Quantifying the timescales over which exogenous and endogenous conditions affect soil respiration.

    PubMed

    Barron-Gafford, Greg A; Cable, Jessica M; Bentley, Lisa Patrick; Scott, Russell L; Huxman, Travis E; Jenerette, G Darrel; Ogle, Kiona

    2014-04-01

    Understanding how exogenous and endogenous factors and above-ground-below-ground linkages modulate carbon dynamics is difficult because of the influences of antecedent conditions. For example, there are variable lags between above-ground assimilation and below-ground efflux, and the duration of antecedent periods are often arbitrarily assigned. Nonetheless, developing models linking above- and below-ground processes is crucial for estimating current and future carbon dynamics. We collected data on leaf-level photosynthesis (Asat ) and soil respiration (Rsoil ) in different microhabitats (under shrubs vs under bunchgrasses) in the Sonoran Desert. We evaluated timescales over which endogenous and exogenous factors control Rsoil by analyzing data in the context of a semimechanistic temperature-response model of Rsoil that incorporated effects of antecedent exogenous (soil water) and endogenous (Asat ) conditions. For both microhabitats, antecedent soil water and Asat significantly affected Rsoil , but Rsoil under shrubs was more sensitive to Asat than that under bunchgrasses. Photosynthetic rates 1 and 3 d before the Rsoil measurement were most important in determining current-day Rsoil under bunchgrasses and shrubs, respectively, indicating a significant lag effect. Endogenous and exogenous controls are critical drivers of Rsoil , but the relative importance and the timescale over which each factor affects Rsoil depends on above-ground vegetation and ecosystem structure characteristics.

  15. Impacts of Biochar on Physical Properties and Erosion Potential of a Mudstone Slopeland Soil

    PubMed Central

    Chien, Wei-Hsin; Liou, Ruei-Cheng

    2014-01-01

    Food demand and soil sustainability have become urgent issues recently because of the global climate changes. This study aims to evaluate the application of a biochar produced by rice hull, on changes of physiochemical characteristics and erosion potential of a degraded slopeland soil. Rice hull biochar pyrolized at 400°C was incorporated into the soil at rates of 2.5%, 5%, and 10% (w/w) and was incubated for 168 d in this study. The results indicated that biochar application reduced the Bd by 12% to 25% and the PR by 57% to 92% after incubation, compared with the control. Besides, porosity and aggregate size increased by 16% to 22% and by 0.59 to 0.94 mm, respectively. The results presented that available water contents significantly increased in the amended soils by 18% to 89% because of the obvious increase of micropores. The water conductivity of the biochar-amended soils was only found in 10% biochar treatment, which might result from significant increase of macropores and reduction of soil strength (Bd and PR). During a simulated rainfall event, soil loss contents significantly decreased by 35% to 90% in the biochar-amended soils. In conclusion, biochar application could availably raise soil quality and physical properties for tilth increasing in the degraded mudstone soil. PMID:25548787

  16. Impacts of biochar on physical properties and erosion potential of a mudstone slopeland soil.

    PubMed

    Hseu, Zeng-Yei; Jien, Shih-Hao; Chien, Wei-Hsin; Liou, Ruei-Cheng

    2014-01-01

    Food demand and soil sustainability have become urgent issues recently because of the global climate changes. This study aims to evaluate the application of a biochar produced by rice hull, on changes of physiochemical characteristics and erosion potential of a degraded slopeland soil. Rice hull biochar pyrolized at 400°C was incorporated into the soil at rates of 2.5%, 5%, and 10% (w/w) and was incubated for 168 d in this study. The results indicated that biochar application reduced the Bd by 12% to 25% and the PR by 57% to 92% after incubation, compared with the control. Besides, porosity and aggregate size increased by 16% to 22% and by 0.59 to 0.94 mm, respectively. The results presented that available water contents significantly increased in the amended soils by 18% to 89% because of the obvious increase of micropores. The water conductivity of the biochar-amended soils was only found in 10% biochar treatment, which might result from significant increase of macropores and reduction of soil strength (Bd and PR). During a simulated rainfall event, soil loss contents significantly decreased by 35% to 90% in the biochar-amended soils. In conclusion, biochar application could availably raise soil quality and physical properties for tilth increasing in the degraded mudstone soil.

  17. Study on monitoring and estimating soil physical properties using piezoceramic transducer

    NASA Astrophysics Data System (ADS)

    Wang, Ruolin; Peng, Tongxiao; Zhu, Daopei; Wang, Ming L.

    2016-04-01

    Soil mechanical properties play the most important role for the structural safety. But soil itself develops with environment as climate, loading and even surrounding biochemical contents which will strongly change the soil mechanical properties and may bring drastic damage to structural foundation. In-time monitoring and estimating on soil mechanical properties is proposed. Two piezoceramic transducers are embedded in predetermined locations: one is used as the actuator and the other is used as a sensor. The active-sensing method is applied to excite a stress wave propagating between the transducers. Variation of the wave velocity along the wave propagation path can be read while the soil properties changing. In this paper, soil specimens with different dry density, moisture content and soil granite ratio are tested to investigate the wave propagation variation through the soil with different properties. A model of shear wave velocity with different soil properties is established. Experimental results demonstrate that piezoelectric response wave may be potentially used to estimate soil physical properties.

  18. Quantitative physical and chemical variables used to assess erosion and fertility loss in tropical Dominican and Haitian soils

    NASA Astrophysics Data System (ADS)

    Pastor, J.; Alexis, S.; Vizcayno, C.; Hernández, A. J.

    2009-04-01

    the mountains were exploited. The monocrops grown across vast expanses rapidly rid the soil of its productive capacity. The Factors affecting soil degradation in this territory may be generally divided into the three groups: physic-natural, political, and socio-economic. The climate and geomorphology are the natural factors mostly influencing the soils. Its relief means its soils are highly vulnerable and sensitive to erosion, and its different ecosystems are similarly sensitive to the actions of cyclones and hurricanes. Many of the lands have slopes exceeding 20%, and 40%. Since the colonisation another cause of the degradation of its soils has been a lack of political will to protect the natural resources. The situation of extreme poverty of the territory, especially in the rural areas, particularly affects plant resources and the soil: to meet needs, the population have to exploit the most marginal of territories rather than intensifying existing systems. Thus, the dynamics of poverty becomes a vicious cycle, with poverty as the cause and consequence of the deteriorated natural resources. As a consequence of all these factors, the expansion of agricultural boundaries following deforestation is one of the causes of soil erosion affecting mountain lands. On the other hand, climatic change including more irregular and less rainfall, along with an increased incidence of natural disasters (cyclones, hurricanes, floods), have placed this territory in a situation very difficult. Our recent discovery of important levels of Al, Pb, Zn, Cu, Cr and Cd in the territory, especially on the superficial layer of river Pedernales Basin soils (Dominican Republic-Haiti), made us to investigate about the possible effects of the soil degradation and erosion produced on the toxicity of these metals. The source of these metals is linked to geoedaphic processes more than to human impacts, in a region that comprises core, intensive agriculture and buffer areas of the reserve, harbouring

  19. Physical model of soil and its implications for landmine detection interference

    NASA Astrophysics Data System (ADS)

    Katsube, T. J.; Grunsky, E.; Das, Y.; DiLabio, R.; McNairn, H.; Connell-Madore, S.; Gauthier, E.; Scromeda, N.

    2006-05-01

    Many soil physical and chemical properties interfere with landmine detection. Prior knowledge of these properties would improve detection technology selection and increase demining safety and efficiency. Developments in rapid mapping of these properties over wide areas is essential to meet military and economic constraints. Fusion of multiple detection technologies is also essential to overcome detection signal interferences. For these purposes, rapid mapping by use of remote sensing is being tested, starting with electrical conductivity mapping by radar remote sensing. Laboratory induced-polarization (IP) is also being tested to develop techniques to discriminate between electromagnetic signals from metallic particles in landmines and in soil, for regions with detection interference. Key physical models of soil are being developed for fusion of various landmine detection systems and to explain remote sensing responses to soil. Radar satellite tests carried out over the Canadian Forces Base Suffield (CFBS; Alberta, Canada) in 2004 and 2005 indicated 10 areas for possible high clay content and electrical conductivity. Eight of these were validated by soil maps and Landsat clay images. Two had high organic content with physical characteristics not known at present. Studies on soil with fine-grained iron-oxide powder and on iron with varied degrees of corrosion show that spectral-IP is sensitive to iron or iron-oxides regardless of their state. Soil has layered structure consisting of various grain-size combinations, but its physical characteristics are significantly influenced by whether its clay content is above or below a critical clay content (15 to 25 %). Results of these tests are discussed in this paper with explanations using the soil physical model.

  20. Affect and achievement goals in physical activity: a meta-analysis.

    PubMed

    Ntoumanis, N; Biddle, S J

    1999-12-01

    Achievement goal orientation theory has been the subject of extensive research in recent years. In view of the importance of identifying the motivational antecedents of affect in physical activity, this study examined through meta-analysis the conflicting evidence regarding the links between different achievement goals and emotions. Using the formulas of Hunter and Schmidt (1), correlations were gathered from 41 independent samples and were corrected for both sampling and measurement errors. The results showed that task orientation and positive affect were moderately-to-highly correlated and in a positive fashion, whereas the relationship between task orientation and negative affect was negative and moderate to small. Both correlations were found to be heterogeneous, and so moderators were sought. The relationships between ego orientation and positive and negative affect were positive but very small, with the former being heterogeneous. Moderators coded were the time frame of affect (independent of context vs. after an athletic event), the physical activity setting (school physical education vs. recreation vs. competitive sport), age (university vs. school students), nationality (British vs. American), nature of negative affect (high vs. low arousal), and the publication status of the studies (published vs. unpublished). Lastly, a subset of the corrected correlations were inserted into a structural equation modelling analysis in order to look concurrently at the relationships among all the variables.

  1. Perceived occupational stress, affective, and physical well-being among telecommunication employees in Greece.

    PubMed

    Lazuras, Lambros; Rodafinos, Angelos; Matsiggos, Georgios; Stamatoulakis, Alexander

    2009-03-01

    The present study examined four potential roles of work-related negative affectivity on the associations between self-reported occupational stress and physical well-being among telecommunication employees in Greece. Participants (764, predominantly male) completed a battery of self-report measures on perceived occupational stress, negative affectivity, and illness symptoms. In line with previous research, negative affectivity exerted a nuisance effect, by inflating the association between reported stressors and illness symptoms, and significantly predicted illness symptoms, over and above the effects of stressors. In addition, negative affectivity influenced reported illness symptom indirectly, through the effects of stressors, and moderated the relationship between interpersonal conflict at work and illness symptoms. The findings suggest that negative affectivity can largely explain and influence in different ways the associations between self-reported stress and physical strain. It is recommended that future studies of occupational stress should control for the effects of negative affectivity, and that health professionals should be cautious of its effects when interpreting relationships between self-reported occupational stress and physical well-being. PMID:19185405

  2. Identification of vulnerable sites in salts affected agricultural soils from South-Eastern Spain

    NASA Astrophysics Data System (ADS)

    Acosta, Jose A.; Faz, Angel; Kalbitz, Karsten; Jansen, Boris; Silvia, Martinez-Martinez

    2010-05-01

    little adsorption to soil colloidal particles. However, other ions such as sulfate, calcium, magnesium, and sodium also displayed significant increases in concentration in July. This can be explained by the movements of soluble salt to the surface due to evaporation and capillary rise and subsequent precipitation of the salts during high temperatures and low rainfall. Rainfall or irrigation events enhance the leaching of salts to deeper soil horizons. The most affected area is located in the west of the study area, at the lowest altitude within the study area. Depressions favour accumulation of salts, due to both runoffs from higher areas during rainfall periods and poor quality irrigation water. It is recommended to use a better quality of water, at least before the summer, in order to reduce the amount of salts in the surface layer, likely to cause stress to crops growing on the soil in question. In conclusion, the spatial distribution of anions in the soil solution is very useful for predicting where higher increases in salinity will be produced. This will allow for identification of vulnerable areas and subsequent implementation of the necessary measures to decrease the risk for sensitive crops. Acknowledgements: to "Fundación Séneca" of "Comunidad Autónoma de Murcia" for its financial support.

  3. Role of Subsurface Physics in the Assimilation of Surface Soil Moisture Observations

    NASA Technical Reports Server (NTRS)

    Reichle, R. H.

    2010-01-01

    Root zone soil moisture controls the land-atmosphere exchange of water and energy and exhibits memory that may be useful for climate prediction at monthly scales. Assimilation of satellite-based surface soil moisture observations into a land surface model is an effective way to estimate large-scale root zone soil moisture. The propagation of surface information into deeper soil layers depends on the model-specific representation of subsurface physics that is used in the assimilation system. In a suite of experiments we assimilate synthetic surface soil moisture observations into four different models (Catchment, Mosaic, Noah and CLM) using the Ensemble Kalman Filter. We demonstrate that identical twin experiments significantly overestimate the information that can be obtained from the assimilation of surface soil moisture observations. The second key result indicates that the potential of surface soil moisture assimilation to improve root zone information is higher when the surface to root zone coupling is stronger. Our experiments also suggest that (faced with unknown true subsurface physics) overestimating surface to root zone coupling in the assimilation system provides more robust skill improvements in the root zone compared with underestimating the coupling. When CLM is excluded from the analysis, the skill improvements from using models with different vertical coupling strengths are comparable for different subsurface truths. Finally, the skill improvements through assimilation were found to be sensitive to the regional climate and soil types.

  4. Physical Shrinkage Relationship in Soils of Dissimilar Lithologies in Central Southeastern Nigeria

    NASA Astrophysics Data System (ADS)

    Onweremadu, E. U.; Akamigbo, F. O. R.; Igwe, C. A.

    This study investigated the relationship between volume shrinkage properties of soils derived from different parent materials in Central Southeastern Nigeria as they related to selected soil physical properties. Using a free survey technique and guided by a geological map of the area, field sampling was conducted in the early months of 2005. Routine analyses were done using collected soil samples. Results showed significant (p<0.05) variation in sand, clay, waterholding capacity, Atterberg limits and Co-efficient Of Linear Extensibility (COLE) among the 6 studied soil groups. Volume shrinkage results indicated severe shrinkage (20-30%) rating for soils derived from Shale, moderate shrinkage (10-20%) for soils formed over Lower Coal Measures and Falsebedded Sandstones and slight shrinkage (0-10%) ratings for the rest. The COLE, used as an index of VS correlated significantly (p<0.05; n = 150) with waterholding capacity (WHC), Liquid Limit (LL), Plastic Limit (PL), Plasticity Index (PI) and clay content. A model was generated which expressed good predictive relationship between COLE and selected physical properties (R = 0.87; R2 = 0.75; 1-R2 = 0.25, RMSE = 0.01 and Bias = +0.00001), indicating high accuracy and little over-estimation by the model. More soil and soil related variables may further improve generated model (s), thus should be included in future studies.

  5. Physical disturbance to ecological niches created by soil structure alters community composition of methanotrophs.

    PubMed

    Kumaresan, Deepak; Stralis-Pavese, Nancy; Abell, Guy C J; Bodrossy, Levente; Murrell, J Colin

    2011-10-01

    Aggregates of different sizes and stability in soil create a composite of ecological niches differing in terms of physico-chemical and structural characteristics. The aim of this study was to identify, using DNA-SIP and mRNA-based microarray analysis, whether shifts in activity and community composition of methanotrophs occur when ecological niches created by soil structure are physically perturbed. Landfill cover soil was subject to three treatments termed: 'control' (minimal structural disruption), 'sieved' (sieved soil using 2 mm mesh) and 'ground' (grinding using mortar and pestle). 'Sieved' and 'ground' soil treatments exhibited higher methane oxidation potentials compared with the 'control' soil treatment. Analysis of the active community composition revealed an effect of physical disruption on active methanotrophs. Type I methanotrophs were the most active methanotrophs in 'sieved' and 'ground' soil treatments, whereas both Type I and Type II methanotrophs were active in the 'control' soil treatment. The result emphasize that changes to a particular ecological niche may not result in an immediate change to the active bacterial composition and change in composition will depend on the ability of the bacterial communities to respond to the perturbation. PMID:23761342

  6. Characterizing scale-specific environmental factors affecting soil organic carbon along two landscape transects.

    PubMed

    She, Dongli; Cao, Yutong; Chen, Qian; Yu, Shuang'en

    2016-09-01

    Soil organic carbon (SOC) is one of the most important soil properties affecting many other soil and environmental properties and processes. In order to understand and manage SOC effectively, it is important to identify the scale-specific main factors affecting SOC distributions, which in this study occurred in a watershed on the Loess Plateau. Two transects were selected that passed along the upper slopes on each side of the main gully of the Liudaogou watershed. Transect 1 (3411-m length) had 27 sampling sites at 131-m intervals; transect 2 (3597 m length) had 30 sampling sites at 124-m intervals. The two transects were chosen in order to compare landscape patterns of differing complexity that were in close proximity, which reduced the effects of factors that would be caused by different locations. The landscape of transect 1 was more complex due to the greater diversity in cultivation. Multivariate empirical mode decomposition (MEMD) decomposed the total variation in SOC and five selected environmental factors into four intrinsic mode functions (IMFs) and a residual according to the scale of occurrence. Scale-specific correlation analysis was used to identify significant relationships between SOC and the environmental factors. The dominant scales were those that were the largest contributors to the total SOC variance; for transect 1, this was the IMF 1 (scale of 403 m), whereas for transect 2, it was the medium scale of the IMF 2 (scale of 688 m). For both transects, vegetation properties (vegetation cover and aboveground biomass) were the main factors affecting SOC distributions at their respective dominant scales. At each scale, the main effective factors could be identified although at the larger scales, their contributions to the overall variance were almost negligible. The distributions of SOC and the factors affecting it were found to be scale dependent. The results of this study highlighted the suitability of the MEMD method in revealing the main scale

  7. Analysis on Soil Seed Bank Diversity Characteristics and Its Relation with Soil Physical and Chemical Properties after Substrate Addition

    PubMed Central

    He, Mengxuan; Lv, Lingyue; Li, Hongyuan; Meng, Weiqing; Zhao, Na

    2016-01-01

    Aims Considered as an essential measure in the application of soil seed bank (SSB) projects, the mixing of substrate and surface soil can effectively improve soil condition. This research is aimed at exploring the diversity characteristics of SSBs and the relationships between SSBs and soil properties. Methods Canonical correspondence analysis (CCA) was adopted to describe the ordination of SSBs on soil properties’ gradients; multiple linear regressions were adopted to analyze the relationship between average growth height and soil properties, density and soil properties. Results Experimental groups of mixed substrate (the mixture of organic and inorganic substrates) had high diversity indexes, especially the Shannon-Wiener Index compared with those of single substrate. Meanwhile, a higher number of species and increased density were also noted in those of mixed substrate. The best test group, No.16, had the highest diversity indexes with a Shannon-Wiener of 1.898, Simpson of 0.633 and Pielou of 0.717, and also showed the highest density of 14000 germinants /m2 and 21 species. In addition, an improvement of the soil’s chemical and physical properties was noted when the substrates were mixed. The mixed substrate of turfy soil and perlite could effectively enhance the soil moisture content, whilst a mixed substrate of rice husk carbon and vermiculite could improve the content of available potassium (AK) and phosphorus (AP) and strengthen soil fertility. The germinated plants also reflected obvious regularities of ordination on soil factor gradients. Three distinct cluster groups were presented, of which the first cluster was distributed in an area with a relatively higher content of AK and AP; the second cluster was distributed at places with relatively higher soil moisture content; and the third cluster of plants didn’t show any obvious relationship with soil physical and chemical properties. Through CCA analysis, AK and AP were considered the most important

  8. Impact of soil parameter and physical process on reproducibility of hydrological processes by land surface model in semiarid grassland

    NASA Astrophysics Data System (ADS)

    Miyazaki, S.; Yorozu, K.; Asanuma, J.; Kondo, M.; Saito, K.

    2014-12-01

    The land surface model (LSM) takes part in the land-atmosphere interaction on the earth system model for the climate change research. In this study, we evaluated the impact of soil parameters and physical process on reproducibility of hydrological process by LSM Minimal Advanced Treatments of Surface Interaction and RunOff (MATSIRO; Takata et al, 2003, GPC) forced by the meteorological data observed at grassland in semiarid climate in China and Mongolia. The testing of MATSIRO was carried out offline mode over the semiarid grassland sites at Tongyu (44.42 deg. N, 122.87 deg. E, altitude: 184m) in China, Kherlen Bayan Ulaan (KBU; 47.21 deg. N, 108.74 deg. E, altitude: 1235m) and Arvaikheer (46.23 N, 102.82E, altitude: 1,813m) in Mongolia. Although all sites locate semiarid grassland, the climate condition is different among sites, which the annual air temperature and precipitation are 5.7 deg. C and 388mm (Tongyu), 1.2 deg.C and 180mm (KBU), and 0.4 deg. C and 245mm(Arvaikheer). We can evaluate the effect of climate condition on the model performance. Three kinds of experiments have been carried out, which was run with the default parameters (CTL), the observed parameters (OBS) for soil physics and hydrology, and vegetation, and refined MATSIRO with the effect of ice in thermal parameters and unfrozen water below the freezing with same parameters as OBS run (OBSr). The validation data has been provided by CEOP(http://www.ceop.net/) , RAISE(http://raise.suiri.tsukuba.ac.jp/), GAME-AAN (Miyazaki et al., 2004, JGR) for Tongyu, KBU, and Arvaikheer, respectively. The reproducibility of the net radiation, the soil temperature (Ts), and latent heat flux (LE) were well reproduced by OBS and OBSr run. The change of soil physical and hydraulic parameter affected the reproducibility of soil temperature (Ts) and soil moisture (SM) as well as energy flux component especially for the sensible heat flux (H) and soil heat flux (G). The reason for the great improvement on the

  9. Soil freezing and thawing processes affected by the different landscapes in the middle reaches of Heihe River Basin, Gansu, China

    NASA Astrophysics Data System (ADS)

    Yi, Jun; Zhao, Ying; Shao, Ming'an; Zhang, Jianguo; Cui, Lele; Si, Bingcheng

    2014-11-01

    An understanding of soil freezing and thawing processes in seasonally frozen soil is important for many agricultural and environmental issues, especially under different landscapes in terms of land use and climate change. In this study, sandy soil behavior under soil freezing and thawing cycles were investigated under three typical landscapes (i.e., farmland, forest, and desert) in the middle reaches of the Heihe River Basin, Northwest China, from December 2011 to May 2012. Both Neutron Moisture Meter and Time Domain Reflectometry techniques were used to investigate the total soil water content (TSWC) and liquid soil water content (LSWC), respectively, and further based on to calculate soil ice content (SIC) and ice ratio (IR). The partition TSWC into LSWC and SIC at different depths is shown to be corresponded well with soil temperature, frost depth and groundwater dynamics, provided a vigorous basis for augmenting the limited data on soil water redistribution in seasonally frozen soils under natural conditions of different landscapes. The greatest freezing cycles were observed for the farmland, characterized with the deepest frost depths (106 cm), the highest IR (>0.9), and the largest upward heat fluxes (120 W m-2), followed by the forest, and then the desert. These differences were primarily attributed to landscape-dependent initial soil water content, soil surface cover and groundwater levels, with marginal effect being attributed to soil physical properties. Profiled water redistribution upon soil freezing and thawing was obviously observed in the moist forest, but neither in the wettest farmland or in the driest desert. The soil frozen processes had a beneficial effect on soil water conservation with reduced evaporation and seepage, and high water content maintained, which could be useful for plant germination in the following spring.

  10. Does deciduous tree species identity affect carbon storage in temperate soils?

    NASA Astrophysics Data System (ADS)

    Jungkunst, Hermann; Schleuß, Per; Heitkamp, Felix

    2015-04-01

    Forest soils contribute roughly 70 % to the global terrestrial soil organic carbon (SOC) pool and thus play a vital role in the global carbon cycle. It is less clear, however, whether temperate tree species identity affects SOC storage beyond the coarse differentiation between coniferous and deciduous trees. The most important driver for soil SOC storage definitely is the fine mineral fraction (clay and fine silt) because of its high sorption ability. It is difficult to disentangle any additional biotic effects since clay and silt vary considerably in nature. For experimental approaches, the process of soil carbon accumulation is too slow and, therefore, sound results cannot be expected for decades. Here we will present our success to distinguish between the effects of fine particle content (abiotic) and tree species composition (biotic) on the SOC pool in an old-growth broad-leaved forest plots along a tree diversity gradient , i.e., 1- (beech), 3- (plus ash and lime tree)- and 5-(plus maple and hornbeam) species. The particle size fractions were separated first and then the carbon concentrations of each fraction was measured. Hence, the carbon content per unit clay was not calculated, as usually done, but directly measured. As expected, the variation in SOC content was mainly explained by the variations in clay content but not entirely. We found that the carbon concentration per unit clay and fine silt in the subsoil was by 30-35% higher in mixed than in monospecific stands indicating a significant species identity or species diversity effect on C stabilization. In contrast to the subsoil, no tree species effects was identified for the topsoil. Indications are given that the mineral phase was already carbon saturated and thus left no more room for a possible biotic effect. Underlying processes must remain speculative, but we will additionally present our latest microcosm results, including isotopic signatures, to underpin the proposed deciduous tree species

  11. The sorption characteristics of mercury as affected by organic matter content and/or soil properties

    NASA Astrophysics Data System (ADS)

    Šípková, Adéla; Šillerová, Hana; Száková, Jiřina

    2014-05-01

    The determination and description of the mercury sorption extend on soil is significant for potential environmental toxic effects. The aim of this study was to assess the effectiveness of mercury sorption at different soil samples and vermicomposts. Mercury interactions with soil organic matter were studied using three soils with different physical-chemical properties - fluvisol, cambisol, and chernozem. Moreover, three different vermicomposts based on various bio-waste materials with high organic matter content were prepared in special fermentors. First was a digestate, second was represented by a mixture of bio-waste from housing estate and woodchips, and third was a garden bio-waste. In the case of vermicompost, the fractionation of organic matter was executed primarily using the resin SuperliteTM DAX-8. Therefore, the representation of individual fractions (humic acid, fulvic acid, hydrophilic compounds, and hydrophobic neutral organic matter) was known. The kinetics of mercury sorption onto materials of interest was studied by static sorption experiments. Samples were exposed to the solution with known Hg concentration of 12 mg kg-1 for the time from 10 minutes to 24 hours. Mercury content in the solutions was measured by the inductively coupled plasma mass spectrometry (ICP-MS). Based on this data, the optimum conditions for following sorption experiments were chosen. Subsequently, the batch sorption tests for all soil types and vermicomposts were performed in solution containing variable mercury concentrations between 1 and 12 mg kg-1. Equilibrium concentration values measured in the solution after sorption and calculated mercury content per kilogram of the soil or the vermi-compost were plotted. Two basic models of sorption isotherm - Langmuir and Freundlich, were used for the evaluation of the mercury sorption properties. The results showed that the best sorption properties from studied soil were identified in chernozem with highest cation exchange

  12. Quantitative physical and chemical variables used to assess erosion and fertility loss in tropical Dominican and Haitian soils

    NASA Astrophysics Data System (ADS)

    Pastor, J.; Alexis, S.; Vizcayno, C.; Hernández, A. J.

    2009-04-01

    the mountains were exploited. The monocrops grown across vast expanses rapidly rid the soil of its productive capacity. The Factors affecting soil degradation in this territory may be generally divided into the three groups: physic-natural, political, and socio-economic. The climate and geomorphology are the natural factors mostly influencing the soils. Its relief means its soils are highly vulnerable and sensitive to erosion, and its different ecosystems are similarly sensitive to the actions of cyclones and hurricanes. Many of the lands have slopes exceeding 20%, and 40%. Since the colonisation another cause of the degradation of its soils has been a lack of political will to protect the natural resources. The situation of extreme poverty of the territory, especially in the rural areas, particularly affects plant resources and the soil: to meet needs, the population have to exploit the most marginal of territories rather than intensifying existing systems. Thus, the dynamics of poverty becomes a vicious cycle, with poverty as the cause and consequence of the deteriorated natural resources. As a consequence of all these factors, the expansion of agricultural boundaries following deforestation is one of the causes of soil erosion affecting mountain lands. On the other hand, climatic change including more irregular and less rainfall, along with an increased incidence of natural disasters (cyclones, hurricanes, floods), have placed this territory in a situation very difficult. Our recent discovery of important levels of Al, Pb, Zn, Cu, Cr and Cd in the territory, especially on the superficial layer of river Pedernales Basin soils (Dominican Republic-Haiti), made us to investigate about the possible effects of the soil degradation and erosion produced on the toxicity of these metals. The source of these metals is linked to geoedaphic processes more than to human impacts, in a region that comprises core, intensive agriculture and buffer areas of the reserve, harbouring

  13. Temporal variability of selected chemical and physical properties of topsoil of three soil types

    NASA Astrophysics Data System (ADS)

    Jirku, Veronika; Kodesova, Radka; Nikodem, Antonin; Muhlhanselova, Marcela; Zigova, Anna

    2013-04-01

    hydraulic conductivity. Probably due to the high variation of soil hydraulic properties no closer correlation between them and other properties was detected. Despite that the slope of the retention curve at the inflection point (which should indicate physical quality of the soil, e.g. soil aggregation and consequently soil porosity system) in many cases increased (decreased) when also the soil aggregate stability and hydraulic conductivity values increased (decreased), no closer correlation was revealed when analyzing for the entire 4 year period. The study showed different trends during different years. This was anticipated in the Greyic Phaeozem where different cops (spring wheat, winter wheat and winter barley) were planted during different years. Different trends were however observed also in the Haplic Cambisol and the Haplic Luvisol, where the same or similar crops (in both cases mostly winter wheat and ones winter barley) was sown. Results showed that climatic conditions (mostly during he winter end spring) played dominant role. Thus data, which were obtained during one year period, could not be used to generalize a soil regime in a particular soil and crop. Our results showed that it is impossible to apply any model, which would be based on statistical analyses, to predict soil properties development during one year or even longer period. Results indicate that findings cannot be used to generalize soil properties for other soil types, plants or climates. Acknowledgment: Authors acknowledge the financial support of the Czech Science Foundation (GA CR 526/08/0434) and the Ministry of Agriculture of the Czech Republic (QJ1230319).

  14. Impact of roots, mycorrhizas and earthworms on soil physical properties as assessed by shrinkage analysis

    NASA Astrophysics Data System (ADS)

    Milleret, R.; Le Bayon, R.-C.; Lamy, F.; Gobat, J.-M.; Boivin, P.

    2009-07-01

    SummarySoil biota such as earthworms, arbuscular mycorrhizal fungi (AMF) and plant roots are known to play a major role in engineering the belowground part of the terrestrial ecosystems, thus strongly influencing the water budget and quality on earth. However, the effect of soil organisms and their interactions on the numerous soil physical properties to be considered are still poorly understood. Shrinkage analysis allows quantifying a large spectrum of soil properties in a single experiment, with small standard errors. The objectives of the present study were, therefore, to assess the ability of the method to quantify changes in soil properties as induced by single or combined effects of leek roots ( Allium porrum), AMF ( Glomus intraradices) and earthworms ( Allolobophora chlorotica). The study was performed on homogenised soil microcosms and the experiments lasted 35 weeks. The volume of the root network and the external fungal hyphae was measured at the end, and undisturbed soil cores were collected. Shrinkage analysis allowed calculating the changes in soil hydro-structural stability, soil plasma and structural pore volumes, soil bulk density and plant available water, and structural pore size distributions. Data analysis revealed different impacts of the experimented soil biota on the soil physical properties. At any water content, the presence of A. chlorotica resulted in a decrease of the specific bulk volume and the hydro-structural stability around 25%, and in a significant increase in the bulk soil density. These changes went with a decrease of the structural pore volumes at any pore size, a disappearing of the thinnest structural pores, a decrease in plant available water, and a hardening of the plasma. On the contrary, leek roots decreased the bulk soil density up to 1.23 g cm -3 despite an initial bulk density of 1.15 g cm -3. This increase in volume was accompanied with a enhanced hydro-structural stability, a larger structural pore volume at any

  15. Tree Species Traits Influence Soil Physical, Chemical, and Biological Properties in High Elevation Forests

    PubMed Central

    Ayres, Edward; Steltzer, Heidi; Berg, Sarah; Wallenstein, Matthew D.; Simmons, Breana L.; Wall, Diana H.

    2009-01-01

    Background Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. Methodology/Principal Findings We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N) concentration and lowest lignin∶N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin∶N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid mites did not

  16. Integrated use of soil physical and water isotope methods for ecohydrological characterization of desertified areas

    NASA Astrophysics Data System (ADS)

    Külls, Christoph; Nunes, Alice; Köbel-Batista, Melanie; Branquinho, Cristina; Bianconi, Nadja; Costantini, Eduardo

    2014-05-01

    Measures for monitoring desertification and soil degradation require a thorough understanding of soil physical properties and of the water balance in order to guide restoration efforts (Costantini et al. 2009). It is hypothesized that long term restoration success on degraded land depends on a series of interacting factors such as exposition, soil type, soil hydrology including lateral flow on hill-slope catenae. Recently, new soil water isotope measurement techniques have been developed (Garvelmann et al. 2012) that provide much faster and reliable stable water isotope profiles in soils. This technique yield information on groundwater recharge, soil water balance and on the origin of water available for plants, which in combination with conservative chemical tracers (chloride) can be validated. A multidisciplinary study including ecologists, soil physicists and hydrologists of the COST Action Desert Restoration Hub was carried out on four semi-arid sites in Portugal. A comparative characterization of soil physical parameters, soil water isotope and chloride profiles was performed in order to estimate pedoclimate, soil aridity, soil water balance and groundwater recharge. In combination with soil physical data a comprehensive and cross-validated characterization of pedoclimate and soil aridity was obtained. These indicators were then integrated and related to plant cover. The long-term rainfall of the four sites ranges from 512 to 638 mm, whereas air temperature is from 15.8 to 17.0°C. The De Martonne index of aridity spans from 19.3 to 24.6, pointing to semiarid to moderately arid climatic conditions. The long-term average number of days when the first 0.50 m of soil is dry ranges from 110 to 134, while the mean annual soil temperature at 0.50 m spans from 15.8 and 19.1°C. The studied profiles show different hydrological characteristics, in particular, the estimated hydraulic conductivity ranges from 0.1-1 to 10-100 µm/s. Three out of four profiles show a

  17. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon

    USGS Publications Warehouse

    Waldrop, M.P.; Zak, D.R.

    2006-01-01

    Recent evidence suggests that atmospheric nitrate (NO3- ) deposition can alter soil carbon (C) storage by directly affecting the activity of lignin-degrading soil fungi. In a laboratory experiment, we studied the direct influence of increasing soil NO 3- concentration on microbial C cycling in three different ecosystems: black oak-white oak (BOWO), sugar maple-red oak (SMRO), and sugar maple-basswood (SMBW). These ecosystems span a broad range of litter biochemistry and recalcitrance; the BOWO ecosystem contains the highest litter lignin content, SMRO had intermediate lignin content, and SMBW leaf litter has the lowest lignin content. We hypothesized that increasing soil solution NO 3- would reduce lignolytic activity in the BOWO ecosystem, due to a high abundance of white-rot fungi and lignin-rich leaf litter. Due to the low lignin content of litter in the SMBW, we further reasoned that the NO3- repression of lignolytic activity would be less dramatic due to a lower relative abundance of white-rot basidiomycetes; the response in the SMRO ecosystem should be intermediate. We increased soil solution NO3- concentrations in a 73-day laboratory incubation and measured microbial respiration and soil solution dissolved organic carbon (DOC) and phenolics concentrations. At the end of the incubation, we measured the activity of ??-glucosidase, N-acetyl-glucosaminidase, phenol oxidase, and peroxidase, which are extracellular enzymes involved with cellulose and lignin degradation. We quantified the fungal biomass, and we also used fungal ribosomal intergenic spacer analysis (RISA) to gain insight into fungal community composition. In the BOWO ecosystem, increasing NO 3- significantly decreased oxidative enzyme activities (-30% to -54%) and increased DOC (+32% upper limit) and phenolic (+77% upper limit) concentrations. In the SMRO ecosystem, we observed a significant decrease in phenol oxidase activity (-73% lower limit) and an increase in soluble phenolic concentrations

  18. School and Classroom Goal Structures: Effects on Affective Responses in Physical Education

    ERIC Educational Resources Information Center

    Barkoukis, Vassilis; Koidou, Eirini; Tsorbatzoudis, Haralambos; Grouios, George

    2012-01-01

    The current study examined the relative impact of school and classroom goal structures on students' affective responses and the mediating role of motivation. The sample of the study consisted of 368 high school students, who completed measures of school and classroom goal structures, motivational regulations in physical education, boredom, and…

  19. Pretend and Physical Play: Links to Preschoolers' Affective Social Competence

    ERIC Educational Resources Information Center

    Lindsey, Eric W.; Colwell, Malinda J.

    2013-01-01

    This study investigated different forms of pretend and physical play as predictors of preschool children's "affective social competence" (ASC). Data were collected from 122 preschool children (57 boys, 65 girls; 86 European American, 9 African American, 17 Hispanic, and 10 other ethnicity) over a 2-year period. Children participated…

  20. Sociocultural and Motivational Factors Affecting Asian American Females Studying Physics and Engineering in High School

    ERIC Educational Resources Information Center

    Sha, Saliha L.

    2012-01-01

    This quantitative study investigated whether and to what extent the motivational and sociocultural factors affect female Asian American high school physics students' achievement, their intended major in college, and their planned career goals at work fields. A survey of 62 questions, extracted from subscales of AAMAS,STPQ and PSE, were…

  1. Factors Affecting the Link between Physical Discipline and Child Externalizing Problems in Black and White Families

    ERIC Educational Resources Information Center

    Lau, Anna S.; Litrownik, Alan J.; Newton, Rae R.; Black, Maureen M.; Everson, Mark D.

    2006-01-01

    We examined contextual factors that may affect the impact of physical discipline on later child behavior problems among high-risk Black and White families. We examined race, parental warmth, and early child problems as potential moderators of the discipline-behavior problem link. The sample included 442 White and Black children and their…

  2. 300-FF-1 operable unit remedial investigation phase II report: Physical separation of soils treatability study

    SciTech Connect

    Not Available

    1994-04-01

    This report describes the approach and results of physical separations treatability tests conducted at the Hanford Site in the North Process Pond of the 300-FF-1 Operable Unit. Physical separation of soils was identified as a remediation alternative due to the potential to significantly reduce the amount of contaminated soils prior to disposal. Tests were conducted using a system developed at Hanford consisting of modified EPA equipment integrated with screens, hoppers, conveyors, tanks, and pumps from the Hanford Site. The treatability tests discussed in this report consisted of four parts, in which an estimated 84 tons of soil was processed: (1) a pre-test run to set up the system and adjust system parameters for soils to be processed; (2) a baseline run to establish the performance of the system - Test No. 1; (3) a final run in which the system was modified as a result of findings from the baseline run - Test No. 2; and (4) water treatment.

  3. Do soil Fe transformation and secretion of low-molecular-weight organic acids affect the availability of Cd to rice?

    PubMed

    Chen, Xue; Yang, Yazhou; Liu, Danqing; Zhang, Chunhua; Ge, Ying

    2015-12-01

    The bioavailability of cadmium (Cd) to rice may be complicated by chemical and biological factors in the rhizosphere. The aim of this work is to investigate how soil iron (Fe) redox transformations and low-molecular-weight organic acid (LMWOA) exudation from root affect Cd accumulation in rice. Two soils (a paddy soil and a saline soil) with different physicochemical properties were used in this study. Soil redox conditions were changed by flooding and addition of organic matter (OM). Two days after the soil treatments, rice seedlings were transplanted in a vermiculite-soil system and grown for 10 days. We measured pH and Eh, LMWOA, Fe and Cd contents in rice, and their fractions in the soils and vermiculite. Cadmium accumulation in rice declined in both soils upon the flooding and OM treatment. Iron dissolution in the paddy soil and its deposition in the rhizosphere significantly increased upon the OM addition, but the concentration of Fe plaque on the rice root significantly declined. Conversely, although Fe transformed into less active fractions in the saline soil, Fe accumulation on the surface and in the tissue of root was considerably enhanced. The secretion of LMWOA was remarkably induced when the OM was amended in the saline soil, but the same effect was not observed in the paddy soil. Reduction of Cd uptake by rice could be attributed to different factors in the two soils. For the paddy soil, the lowered Cd bioavailability was likely due to the competition of Fe and Cd for the binding sites on the vermiculite surface. For the saline soil, however, rice responded to the low Fe mobility through more LMWOA exudation and Fe plaque formation, and their increases could explain the decrease of rice Cd.

  4. Do soil Fe transformation and secretion of low-molecular-weight organic acids affect the availability of Cd to rice?

    PubMed

    Chen, Xue; Yang, Yazhou; Liu, Danqing; Zhang, Chunhua; Ge, Ying

    2015-12-01

    The bioavailability of cadmium (Cd) to rice may be complicated by chemical and biological factors in the rhizosphere. The aim of this work is to investigate how soil iron (Fe) redox transformations and low-molecular-weight organic acid (LMWOA) exudation from root affect Cd accumulation in rice. Two soils (a paddy soil and a saline soil) with different physicochemical properties were used in this study. Soil redox conditions were changed by flooding and addition of organic matter (OM). Two days after the soil treatments, rice seedlings were transplanted in a vermiculite-soil system and grown for 10 days. We measured pH and Eh, LMWOA, Fe and Cd contents in rice, and their fractions in the soils and vermiculite. Cadmium accumulation in rice declined in both soils upon the flooding and OM treatment. Iron dissolution in the paddy soil and its deposition in the rhizosphere significantly increased upon the OM addition, but the concentration of Fe plaque on the rice root significantly declined. Conversely, although Fe transformed into less active fractions in the saline soil, Fe accumulation on the surface and in the tissue of root was considerably enhanced. The secretion of LMWOA was remarkably induced when the OM was amended in the saline soil, but the same effect was not observed in the paddy soil. Reduction of Cd uptake by rice could be attributed to different factors in the two soils. For the paddy soil, the lowered Cd bioavailability was likely due to the competition of Fe and Cd for the binding sites on the vermiculite surface. For the saline soil, however, rice responded to the low Fe mobility through more LMWOA exudation and Fe plaque formation, and their increases could explain the decrease of rice Cd. PMID:26260840

  5. Effect of fire on soil physical and chemical properties in a Mediterranean area of Sardinia.

    NASA Astrophysics Data System (ADS)

    Canu, Annalisa; Motroni, Andrea; Arca, Bachisio; Pellizzaro, Grazia; Ventura, Andrea; Secci, Romina; Robichaud, Peter

    2014-05-01

    Wildfires are one of the most widespread factors of ecosystem degradation around the world. The degree of change in both chemical and biological properties of soil inducted by forest fires is related to temperature and persistence of the fire as well as to moisture content of soil and of fuel. The present note reports the first experimental results of a wider-scale research project, whose aim is to develop methods for analysis and collection of field data by using a multidisciplinary approach in order to evaluate land erosion hazard. Specific objectives of this study are: i) to compare burned and unburned soil in order to evaluate the effect of fire on physical and chemical soil properties; ii) to measure soil erosion after fire in relation to different slopes. The experimental site is located in Mediterranean basin, on a steep slope in a hilly area of north-western Sardinia (Municipality of Ittiri, Italy), where a human caused fire occurred in august 2013. The area is mainly covered by the typical Mediterranean vegetation. Immediately after fire, several soil samples were collected from 0-10 cm depth, both in burned and in unburned plots. The soil organic matter, N, and P contents, pH, and soil texture were then determined in laboratory. Soil erosion rates from experimental plots were measured and estimated by silt fences technique taking into account different slopes and vegetation distribution.

  6. Changes in physical properties of sandy soil after long-term compost treatment

    NASA Astrophysics Data System (ADS)

    Aranyos, József Tibor; Tomócsik, Attila; Makádi, Marianna; Mészáros, József; Blaskó, Lajos

    2016-07-01

    Studying the long-term effect of composted sewage sludge application on chemical, physical and biological properties of soil, an experiment was established in 2003 at the Research Institute of Nyíregyháza in Hungary. The applied compost was prepared from sewage sludge (40%), straw (25%), bentonite (5%) and rhyolite (30%). The compost was ploughed into the 0-25 cm soil layer every 3rd year in the following amounts: 0, 9, 18 and 27 Mg ha-1 of dry matter. As expected, the compost application improved the structure of sandy soil, which is related with an increase in the organic matter content of soil. The infiltration into soil was improved significantly, reducing the water erosion under simulated high intensity rainfall. The soil compaction level was reduced in the first year after compost re-treatment. In accordance with the decrease in bulk density, the air permeability of soil increased tendentially. However, in the second year the positive effects of compost application were observed only in the plots treated with the highest compost dose because of quick degradation of the organic matter. According to the results, the sewage sludge compost seems to be an effective soil improving material for acidic sandy soils, but the beneficial effect of application lasts only for two years.

  7. Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils

    PubMed Central

    Zornoza, R.; Guerrero, C.; Mataix-Solera, J.; Scow, K.M.; Arcenegui, V.; Mataix-Beneyto, J.

    2012-01-01

    The potential of near infrared (NIR) reflectance spectroscopy to predict various physical, chemical and biochemical properties in Mediterranean soils from SE Spain was evaluated. Soil samples (n=393) were obtained by sampling thirteen locations during three years (2003-2005 period). These samples had a wide range of soil characteristics due to variations in land use, vegetation cover and specific climatic conditions. Biochemical properties also included microbial biomarkers based on phospholipid fatty acids (PLFA). Partial least squares (PLS) regression with cross validation was used to establish relationships between the NIR spectra and the reference data from physical, chemical and biochemical analyses. Based on the values of coefficient of determination (r2) and the ratio of standard deviation of validation set to root mean square error of cross validation (RPD), predicted results were evaluated as excellent (r2>0.90 and RPD>3) for soil organic carbon, Kjeldahl nitrogen, soil moisture, cation exchange capacity, microbial biomass carbon, basal soil respiration, acid phosphatase activity, β-glucosidase activity and PLFA biomarkers for total bacteria, Gram positive bacteria, actinomycetes, vesicular-arbuscular mycorrhizal fungi and total PLFA biomass. Good predictions (0.81physical, chemical and biochemical soil properties for

  8. Physical and chemical characterization of actinides in soil from Johnston Atoll

    SciTech Connect

    Wolf, S.F.; Bates, J.K.; Buck, E.C.; Dietz, N.L.; Fortner, J.A.; Brown, N.R.

    1997-02-01

    Characterization of the actinide content of a sample of contaminated coral soil from Johnston Atoll, the site of three non-nuclear destructs of nuclear warhead-carrying THOR missiles in 1962, revealed that >99% of the total actinide content is associated with discrete bomb fragments. After removal of these fragments, there was an inverse correlation between actinide content and soil particle size in particles from 43 to 0.4 {mu}m diameter. Detailed analyses of this remaining soil revealed no discrete actinide phase in these soil particles, despite measurable actinide content. Observations indicate that exposure to the environment has caused the conversion of relatively insoluble actinide oxides to the more soluble actinyl oxides and actinyl carbonate coordinated complexes. This process has led to dissolution of actinides from discrete particles and migration to the surrounding soil surfaces, resulting in a dispersion greater than would be expected by physical transport of discrete particles alone. 26 refs., 4 figs., 1 tab.

  9. Influence of Robinia pseudoacacia short rotation coppice on soil physical properties

    NASA Astrophysics Data System (ADS)

    Xavier, Morvan; Isabelle, Bertrand; Gwenaelle, Gibaud

    2015-04-01

    Human activities can lead to the degradation of soil physical properties. For instance, machinery traffic across the land can induce the development of compacted areas at the wheel tracks. It leads to a decrease in porosity which results in a decrease of the hydraulic conductivity, and therefore, prevents water infiltration and promotes surface runoff. Land use, soil management and soil cover also have a significant influence on soil physical properties (Kodesova et al., 2011). In the arable land, surface runoff and soil erosion are enhanced by the absence of soil cover for part of the year and by the decrease of aggregate stability due to a decline of soil organic matter. In that context, few studies focused on the effects of a Robinia pseudoacacia short rotation coppice (SRC) on soil physical properties. Therefore, this study aims to determine the effect of the conversion of a grassland in a SRC on soil physical properties. These properties have also been compared to those of arable land and natural forest. For that, in several plots of the experimental farm of Grignon (30 km west of Paris, France), different measurements were performed: i) soil water retention on a pressure plate apparatus for 7 water potential between 0 and 1500 kPa, ii) bulk density using the method for gravelly and rocky soil recommended by the USDA, iii) aggregate stability using the method described in Le Bissonnais (1996), and iv) soil hydraulic conductivity using a Guelph permeameter. All these measurements were performed on the same soil type and on different land uses: arable land (AL), grassland (GL), natural forest (NF) and short rotation coppice (SRC) of Robinia pseudoacacia planted 5 years ago. Soil water retention measurements are still under progress and will be presented in congress. Bulk density measurements of the AL, GL and SRC are not significantly different. They ranged from 1.32 to 1.42. Only the NF measurements are significantly lower than the other (0.97). Aggregate

  10. Comparison of effects of cold-region soil/snow processes and the uncertainties from model forcing data on permafrost physical characteristics