Schomburg, A; Schilling, O S; Guenat, C; Schirmer, M; Le Bayon, R C; Brunner, P
2018-10-15
Ecosystem services provided by floodplains are strongly controlled by the structural stability of soils. The development of a stable structure in floodplain soils is affected by a complex and poorly understood interplay of hydrological, physico-chemical and biological processes. This paper aims at analysing relations between fluctuating groundwater levels, soil physico-chemical and biological parameters on soil structure stability in a restored floodplain. Water level fluctuations in the soil are modelled using a numerical surface-water-groundwater flow model and correlated to soil physico-chemical parameters and abundances of plants and earthworms. Causal relations and multiple interactions between the investigated parameters are tested through structural equation modelling (SEM). Fluctuating water levels in the soil did not directly affect the topsoil structure stability, but indirectly through affecting plant roots and soil parameters that in turn determine topsoil structure stability. These relations remain significant for mean annual days of complete and partial (>25%) water saturation. Ecosystem functioning of a restored floodplain might already be affected by the fluctuation of groundwater levels alone, and not only through complete flooding by surface water during a flood period. Surprisingly, abundances of earthworms did not show any relation to other variables in the SEM. These findings emphasise that earthworms have efficiently adapted to periodic stress and harsh environmental conditions. Variability of the topsoil structure stability is thus stronger driven by the influence of fluctuating water levels on plants than by the abundance of earthworms. This knowledge about the functional network of soil engineering organisms, soil parameters and fluctuating water levels and how they affect soil structural stability is of fundamental importance to define management strategies of near-natural or restored floodplains in the future. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Falconer, R.; Radoslow, P.; Grinev, D.; Otten, W.
2009-04-01
Fungi play a pivital role in soil ecosystems contributing to plant productivity. The underlying soil physical and biological processes responsible for community dynamics are interrelated and, at present, poorly understood. If these complex processes can be understood then this knowledge can be managed with an aim to providing more sustainable agriculture. Our understanding of microbial dynamics in soil has long been hampered by a lack of a theoretical framework and difficulties in observation and quantification. We will demonstrate how the spatial and temporal dynamics of fungi in soil can be understood by linking mathematical modelling with novel techniques that visualise the complex structure of the soil. The combination of these techniques and mathematical models opens up new possibilities to understand how the physical structure of soil affects fungal colony dynamics and also how fungal dynamics affect soil structure. We will quantify, using X ray tomography, soil structure for a range of artificially prepared microcosms. We characterise the soil structures using soil metrics such as porosity, fractal dimension, and the connectivity of the pore volume. Furthermore we will use the individual based fungal colony growth model of Falconer et al. 2005, which is based on the physiological processes of fungi, to assess the effect of soil structure on microbial dynamics by qualifying biomass abundances and distributions. We demonstrate how soil structure can critically affect fungal species interactions with consequences for biological control and fungal biodiversity.
Factors Affecting Soil Microbial Community Structure in Tomato Cropping Systems
USDA-ARS?s Scientific Manuscript database
Soil and rhizosphere microbial communities in agroecosystems may be affected by soil, climate, plant species, and management. We identified some of the most important factors controlling microbial biomass and community structure in an agroecosystem utilizing tomato plants with the following nine tre...
USDA-ARS?s Scientific Manuscript database
Soil-structural stability (expressed in terms of aggregate stability and pore size distribution) depends on (i) soil inherent properties, (ii) extrinsic condition prevailing in the soil that may vary temporally and spatially, and (iii) addition of soil amendments. Different soil management practices...
Zhang, Xinfang; Xu, Shijian; Li, Changming; Zhao, Lin; Feng, Huyuan; Yue, Guangyang; Ren, Zhengwei; Cheng, Guogdong
2014-01-01
In the Tibetan permafrost region, vegetation types and soil properties have been affected by permafrost degradation, but little is known about the corresponding patterns of their soil microbial communities. Thus, we analyzed the effects of vegetation types and their covariant soil properties on bacterial and fungal community structure and membership and bacterial community-level physiological patterns. Pyrosequencing and Biolog EcoPlates were used to analyze 19 permafrost-affected soil samples from four principal vegetation types: swamp meadow (SM), meadow (M), steppe (S) and desert steppe (DS). Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria dominated bacterial communities and the main fungal phyla were Ascomycota, Basidiomycota and Mucoromycotina. The ratios of Proteobacteria/Acidobacteria decreased in the order: SM>M>S>DS, whereas the Ascomycota/Basidiomycota ratios increased. The distributions of carbon and nitrogen cycling bacterial genera detected were related to soil properties. The bacterial communities in SM/M soils degraded amines/amino acids very rapidly, while polymers were degraded rapidly by S/DS communities. UniFrac analysis of bacterial communities detected differences among vegetation types. The fungal UniFrac community patterns of SM differed from the others. Redundancy analysis showed that the carbon/nitrogen ratio had the main effect on bacteria community structures and their diversity in alkaline soil, whereas soil moisture was mainly responsible for structuring fungal communities. Thus, microbial communities and their functioning are probably affected by soil environmental change in response to permafrost degradation. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Tischer, Alexander; Potthast, Karin; Hamer, Ute
2014-05-01
Global change phenomena, such as forest disturbance and land-use change, significantly affect elemental balances as well as the structure and function of terrestrial ecosystems. However, the importance of shifts in soil nutrient stoichiometry for the regulation of belowground biota and soil food webs have not been intensively studied for tropical ecosystems. In the present account, we examine the effects of land-use change and soil depth on soil and microbial stoichiometry along a land-use sequence (natural forest, pastures of different ages, secondary succession) in the tropical mountain rainforest region of southern Ecuador. Furthermore, we analyzed (PLFA-method) whether shifts in the microbial community structure were related to alterations in soil and microbial stoichiometry. Soil and microbial stoichiometry were affected by both land-use change and soil depth. After forest disturbance, significant decreases of soil C:N:P ratios at the pastures were followed by increases during secondary succession. Microbial C:N ratios varied slightly in response to land-use change, whereas no fixed microbial C:P and N:P ratios were observed. Shifts in microbial community composition were associated with soil and microbial stoichiometry. Strong positive relationships between PLFA-markers 18:2n6,9c (saprotrophic fungi) and 20:4 (animals) and negative associations between 20:4 and microbial N:P point to land-use change affecting the structure of soil food webs. Significant deviations from global soil and microbial C:N:P ratios indicated a major force of land-use change to alter stoichiometric relationships and to structure biological systems. Our results support the idea that soil biotic communities are stoichiometrically flexible in order to adapt to alterations in resource stoichiometry.
The effect of total carbon on microscopic soil properties and implications for crop production
USDA-ARS?s Scientific Manuscript database
Soil structure is a dynamic property affected by physical, chemical, and microbiological processes. Addition of organic matter to soils and the use of different management practices have been reported to impact soil structure and crop production. Moderation in soil temperature and increases in mic...
Land-use change and soil type are drivers of fungal and archaeal communities in the Pampa biome.
Lupatini, Manoeli; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Suleiman, Afnan Khalil Ahmad; Fulthorpe, Roberta R; Roesch, Luiz Fernando Würdig
2013-02-01
The current study aimed to test the hypothesis that both land-use change and soil type are responsible for the major changes in the fungal and archaeal community structure and functioning of the soil microbial community in Brazilian Pampa biome. Soil samples were collected at sites with different land-uses (native grassland, native forest, Eucalyptus and Acacia plantation, soybean and watermelon field) and in a typical toposequence in Pampa biome formed by Paleudult, Albaqualf and alluvial soils. The structure of soil microbial community (archaeal and fungal) was evaluated by ribosomal intergenic spacer analysis and soil functional capabilities were measured by microbial biomass carbon and metabolic quotient. We detected different patterns in microbial community driven by land-use change and soil type, showing that both factors are significant drivers of fungal and archaeal community structure and biomass and microbial activity. Fungal community structure was more affected by land-use and archaeal community was more affected by soil type. Irrespective of the land-use or soil type, a large percentage of operational taxonomic unit were shared among the soils. We accepted the hypothesis that both land-use change and soil type are drivers of archaeal and fungal community structure and soil functional capabilities. Moreover, we also suggest the existence of a soil microbial core.
Green roof soil system affected by soil structural changes: A project initiation
NASA Astrophysics Data System (ADS)
Jelínková, Vladimíra; Dohnal, Michal; Šácha, Jan; Šebestová, Jana; Sněhota, Michal
2014-05-01
Anthropogenic soil systems and structures such as green roofs, permeable or grassed pavements comprise appreciable part of the urban watersheds and are considered to be beneficial regarding to numerous aspects (e.g. carbon dioxide cycle, microclimate, reducing solar absorbance and storm water). Expected performance of these systems is significantly affected by water and heat regimes that are primarily defined by technology and materials used for system construction, local climate condition, amount of precipitation, the orientation and type of the vegetation cover. The benefits and potencies of anthropogenic soil systems could be considerably threatened in case when exposed to structural changes of thin top soil layer in time. Extensive green roof together with experimental green roof segment was established and advanced automated monitoring system of micrometeorological variables was set-up at the experimental site of University Centre for Energy Efficient Buildings as an interdisciplinary research facility of the Czech Technical University in Prague. The key objectives of the project are (i) to characterize hydraulic and thermal properties of soil substrate studied, (ii) to establish seasonal dynamics of water and heat in selected soil systems from continuous monitoring of relevant variables, (iii) to detect structural changes with the use of X-ray Computed Tomography, (iv) to identify with the help of numerical modeling and acquired datasets how water and heat dynamics in anthropogenic soil systems are affected by soil structural changes. Achievements of the objectives will advance understanding of the anthropogenic soil systems behavior in conurbations with the temperate climate.
Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity.
Gutiérrez, Carmen; Fernández, Carlos; Escuer, Miguel; Campos-Herrera, Raquel; Beltrán Rodríguez, Mª Eulalia; Carbonell, Gregoria; Rodríguez Martín, Jose Antonio
2016-06-01
Among soil organisms, nematodes are seen as the most promising candidates for bioindications of soil health. We hypothesized that the soil nematode community structure would differ in three land use areas (agricultural, forest and industrial soils), be modulated by soil parameters (N, P, K, pH, SOM, CaCO3, granulometric fraction, etc.), and strongly affected by high levels of heavy metals (Cd, Pb, Zn, Cr, Ni, Cu, and Hg) and emerging contaminants (pharmaceuticals and personal care products, PPCPs). Although these pollutants did not significantly affect the total number of free-living nematodes, diversity and structure community indices vastly altered. Our data showed that whereas nematodes with r-strategy were tolerant, genera with k-strategy were negatively affected by the selected pollutants. These effects diminished in soils with high levels of heavy metals given their adaptation to the historical pollution in this area, but not to emerging pollutants like PPCPs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lu, Shuang; Quan, Wang; Wang, Shao-Ming; Liu, Hong-Ling; Tan, Yong; Zeng, Guang-Ping; Zhang, Xia
2013-04-01
Microbial community structure and ecological functions are influenced by interactions between above and belowground biota. There is an urgent need for intensive monitoring of microbes feedback of soil micro-ecosystem for setting up a good agricultural practice. Recent researches have revealed that many soils characteristic can effect microbial community structure. In the present study factors affecting microbial community structure and soil in Carthamus tinctorius plantations in arid agricultural ecosystem of northern Xinjiang, China were identified. The result of the study revealed that soil type was the key factor in safflower yield; Unscientific field management resulted high fertility level (bacteria dominant) of soil to turn to low fertility level (fungi dominant), and Detruded Canonical Correspondence Analysis (DCCA) showed that soil water content, organic matter, available N, P and K were the dominant factors affecting distribution of microbial community. Soil water content showed a significant positive correlation with soil microbes quantity (P < 0.01), while others showed a significant quantity correlation with soil microbe quantity (P < 0.05).
Effect of Soil Washing for Lead and Zinc Removal on Soil Hydraulic Properties
NASA Astrophysics Data System (ADS)
Kammerer, Gerhard; Zupanc, Vesna; Gluhar, Simon; Lestan, Domen
2017-04-01
Soil washing as a metal pollution remediation process, especially part with intensive mixing of the soil slurry and soil compression after de-watering, significantly deteriorates physical properties of soil compared to those of non-remediated soil. Furthermore, changed physical characteristics of remediated soil influence interaction of plant roots with soil system and affect soil water regime. Remediated soils showed significant differences to their original state in water retention properties and changed structure due to the influence of artificial structure created during remediation process. Disturbed and undisturbed soil samples of remediated and original soils were analyzed. We evaluated soil hydraulic properties as a possible constraint for re-establishing soil structure and soil fertility after the remediation procedure.
Fertilization Shapes Bacterial Community Structure by Alteration of Soil pH.
Zhang, Yuting; Shen, Hong; He, Xinhua; Thomas, Ben W; Lupwayi, Newton Z; Hao, Xiying; Thomas, Matthew C; Shi, Xiaojun
2017-01-01
Application of chemical fertilizer or manure can affect soil microorganisms directly by supplying nutrients and indirectly by altering soil pH. However, it remains uncertain which effect mostly shapes microbial community structure. We determined soil bacterial diversity and community structure by 454 pyrosequencing the V1-V3 regions of 16S rRNA genes after 7-years (2007-2014) of applying chemical nitrogen, phosphorus and potassium (NPK) fertilizers, composted manure or their combination to acidic (pH 5.8), near-neutral (pH 6.8) or alkaline (pH 8.4) Eutric Regosol soil in a maize-vegetable rotation in southwest China. In alkaline soil, nutrient sources did not affect bacterial Operational Taxonomic Unit (OTU) richness or Shannon diversity index, despite higher available N, P, K, and soil organic carbon in fertilized than in unfertilized soil. In contrast, bacterial OTU richness and Shannon diversity index were significantly lower in acidic and near-neutral soils under NPK than under manure or their combination, which corresponded with changes in soil pH. Permutational multivariate analysis of variance showed that bacterial community structure was significantly affected across these three soils, but the PCoA ordination patterns indicated the effect was less distinct among nutrient sources in alkaline than in acidic and near-neural soils. Distance-based redundancy analysis showed that bacterial community structures were significantly altered by soil pH in acidic and near-neutral soils, but not by any soil chemical properties in alkaline soil. The relative abundance (%) of most bacterial phyla was higher in near-neutral than in acidic or alkaline soils. The most dominant phyla were Proteobacteria (24.6%), Actinobacteria (19.7%), Chloroflexi (15.3%) and Acidobacteria (12.6%); the medium dominant phyla were Bacterioidetes (5.3%), Planctomycetes (4.8%), Gemmatimonadetes (4.5%), Firmicutes (3.4%), Cyanobacteria (2.1%), Nitrospirae (1.8%), and candidate division TM7 (1.0%); the least abundant phyla were Verrucomicrobia (0.7%), Armatimonadetes (0.6%), candidate division WS3 (0.4%) and Fibrobacteres (0.3%). In addition, Cyanobacteria and candidate division TM7 were more abundant in acidic soil, whereas Gemmatimonadetes, Nitrospirae and candidate division WS3 were more abundant in alkaline soil. We conclude that after 7-years of fertilization, soil bacterial diversity and community structure were shaped more by changes in soil pH rather than the direct effect of nutrient addition.
NASA Astrophysics Data System (ADS)
Molla, Tegegne; Sisheber, Biniam
2017-01-01
Soil erosion is one of the major factors affecting sustainability of agricultural production in Ethiopia. The objective of this paper is to estimate soil erosion using the universal soil loss equation (RUSLE) model and to evaluate soil conservation practices in a data-scarce watershed region. For this purpose, soil data, rainfall, erosion control practices, satellite images and topographic maps were collected to determine the RUSLE factors. In addition, measurements of randomly selected soil and water conservation structures were done at three sub-watersheds (Asanat, Debreyakob and Rim). This study was conducted in Koga watershed at upper part of the Blue Nile basin which is affected by high soil erosion rates. The area is characterized by undulating topography caused by intensive agricultural practices with poor soil conservation practices. The soil loss rates were determined and conservation strategies have been evaluated under different slope classes and land uses. The results showed that the watershed is affected by high soil erosion rates (on average 42 t ha-1 yr-1), greater than the maximum tolerable soil loss (18 t ha-1 yr-1). The highest soil loss (456 t ha-1 yr-1) estimated from the upper watershed occurred on cultivated lands of steep slopes. As a result, soil erosion is mainly aggravated by land-use conflicts and topographic factors and the rugged topographic land forms of the area. The study also demonstrated that the contribution of existing soil conservation structures to erosion control is very small due to incorrect design and poor management. About 35 % out of the existing structures can reduce soil loss significantly since they were constructed correctly. Most of the existing structures were demolished due to the sediment overload, vulnerability to livestock damage and intense rainfall. Therefore, appropriate and standardized soil and water conservation measures for different erosion-prone land uses and land forms need to be implemented in Koga watershed.
NASA Astrophysics Data System (ADS)
Zaller, Johann; Buchholz, Jacob; Querner, Pascal; Paredes, Daniel; Kratschmer, Sophie; Schwantzer, Martina; Winter, Silvia; Strauss, Peter; Bauer, Thomas; Burel, Françoise; Guernion, Muriel; Scimia, Jennifer; Nicolai, Annegret; Cluzeau, Daniel
2017-04-01
Ecosystem services provided by viticultural landscapes result from interactions between management intensity, soil properties, organisms inhabiting these landscapes, and the diversity and structure of the surrounding landscape. However, there is actually very little known to what extent these different factors influence the abundance and diversity of various soil biota. In this study we examined (i) to what extent different soil management intensities of interrows affect the activity and diversity of soil biota (earthworms, Collembola, litter decomposition), (ii) the role of soil properties in influencing these effects and (iii) whether the surrounding landscape structure is altering these interactions. We collected data in 16 vineyards in Austria embedded in landscapes with varying structure (i.e. from structurally simple to complex) and assessed earthworms (hand sorting), Collembola (pitfall trapping and soil coring), litter decomposition (tea bag method). Additionally, soil physical (water infiltration, aggregate stability, porosity, bulk density, soil texture) and chemical (pH, soil carbon content, cation exchange capacity, potassium, phosphorus) parameters were assessed. The landscape surrounding our vineyards within a radius of 750 m was assessed by field mapping using a geographical information system. Results showed that different soil biota/processes are differently affected by soil cultivation intensity and soil properties. Parameters describing the surrounding landscape interacted more with the responses of Collembola to soil cultivation than with earthworms or litter decomposition. These investigations are part of the transdisciplinary BiodivERsA project VineDivers (www.vinedivers.eu) and will ultimately lead into management recommendations for various stakeholders.
Soil fungi colony growth and community dynamics
NASA Astrophysics Data System (ADS)
Falconer, Ruth E.; Kravchenko, Alexandra; Otten, Wilfred
2010-05-01
Fungi are a major player in soil functioning, they contribute to soil structure formation and shaping of plant communities through their role in nutrient cycling, pathogenesis and symbiosis. Theoretical approaches which have emerged over the years and improved considerably our understanding of above ground plant communities are still lacking below ground. A theoretical framework is needed, such that links soil physics, fungal biology and mathematical biology in order to understand fungal community dynamics and diversity in undisturbed soils. Such a framework is essential if we are to understand how environmental change or soil manipulation impacts biodiversity. Different land use and management practices significantly affect soil environmental characteristics crucial for fungal communities by contributing different quantities and qualities of biomass inputs, generating different levels of soil disturbance, influencing soil temperature and moisture regimes, and affecting structure and geometry of soil pore space. Differences in pore structures generated by long-term differences in land use and management are reflected in notable changes in soil physical and hydraulic properties, including soil porosity, hydraulic conductivity and water retention (Brye and Pirani, 2005). Changes in numbers, shapes, and distributions of soil macropores have been often observed (e.g., Pachepsky et al., 1996; Giménez et al., 1997; Udawatta et al., 2008). However, specific implications of these differences in pore structure and geometries for ability of pathogenic as well as non-pathogenic fungi to colonize soil have not yet been addressed. Recent advances in computed tomography and microscopy facilitate detailed examination of the inner pore structures of undisturbed soil samples as well as visualization of fungal mycelia. Such tools together with modelling generate a new level of understanding of the mechanisms governing fungal behaviour at microscopic scales, and for the first time allow us to examine species interactions in a 3D soil environment.
Assessment the effect of homogenized soil on soil hydraulic properties and soil water transport
NASA Astrophysics Data System (ADS)
Mohawesh, O.; Janssen, M.; Maaitah, O.; Lennartz, B.
2017-09-01
Soil hydraulic properties play a crucial role in simulating water flow and contaminant transport. Soil hydraulic properties are commonly measured using homogenized soil samples. However, soil structure has a significant effect on the soil ability to retain and to conduct water, particularly in aggregated soils. In order to determine the effect of soil homogenization on soil hydraulic properties and soil water transport, undisturbed soil samples were carefully collected. Five different soil structures were identified: Angular-blocky, Crumble, Angular-blocky (different soil texture), Granular, and subangular-blocky. The soil hydraulic properties were determined for undisturbed and homogenized soil samples for each soil structure. The soil hydraulic properties were used to model soil water transport using HYDRUS-1D.The homogenized soil samples showed a significant increase in wide pores (wCP) and a decrease in narrow pores (nCP). The wCP increased by 95.6, 141.2, 391.6, 3.9, 261.3%, and nCP decreased by 69.5, 10.5, 33.8, 72.7, and 39.3% for homogenized soil samples compared to undisturbed soil samples. The soil water retention curves exhibited a significant decrease in water holding capacity for homogenized soil samples compared with the undisturbed soil samples. The homogenized soil samples showed also a decrease in soil hydraulic conductivity. The simulated results showed that water movement and distribution were affected by soil homogenizing. Moreover, soil homogenizing affected soil hydraulic properties and soil water transport. However, field studies are being needed to find the effect of these differences on water, chemical, and pollutant transport under several scenarios.
SITE AMPLIFICATION OF EARTHQUAKE GROUND MOTION.
Hays, Walter W.
1986-01-01
When analyzing the patterns of damage in an earthquake, physical parameters of the total earthquake-site-structure system are correlated with the damage. Soil-structure interaction, the cause of damage in many earthquakes, involves the frequency-dependent response of both the soil-rock column and the structure. The response of the soil-rock column (called site amplification) is controversial because soil has strain-dependent properties that affect the way the soil column filters the input body and surface seismic waves, modifying the amplitude and phase spectra and the duration of the surface ground motion.
Responses of redwood soil microbial community structure and N transformations to climate change
Damon C. Bradbury; Mary K. Firestone
2012-01-01
Soil microorganisms perform critical ecosystem functions, including decomposition, nitrogen (N) mineralization and nitrification. Soil temperature and water availability can be critical determinants of the rates of these processes as well as microbial community composition and structure. This research examined how changes in climate affect bacterial and fungal...
Farm-scale variation of soil quality indices and association with edaphic properties
USDA-ARS?s Scientific Manuscript database
Soil organisms are indicators of dynamic soil quality because their community structure and population density are sensitive to management changes. However, edaphic properties can also affect soil organisms and high spatial variability can confound their utility for soil evaluation. In the present...
Lange, Markus; Habekost, Maike; Eisenhauer, Nico; Roscher, Christiane; Bessler, Holger; Engels, Christof; Oelmann, Yvonne; Scheu, Stefan; Wilcke, Wolfgang; Schulze, Ernst-Detlef; Gleixner, Gerd
2014-01-01
Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities. PMID:24816860
Effects of drought on forest soil structure and hydrological soil functions
NASA Astrophysics Data System (ADS)
Gimbel, K.; Puhlmann, H.; Weiler, M.
2012-04-01
Climate change is predicted to severely affect precipitation patterns across central Europe. Soil structure is closely linked to the activity of soil microbiota and plant roots, which modify flow pathways along roots, organic matter and water repellence of soils. Through shrinkage and fracturing of soil aggregates, soil structure is also responding to changing climate (in particular drought) conditions. We investigate the possible effects on biogeochemical and hydropedological processes in response to predicted future reduced precipitation, and the interaction of these processes with the biodiversity of the forest understorey and soil biota. The hypotheses of this study are: (i) drought causes a change in soil structure, which affects hydrological soil functions (water infiltration, uptake and redistribution); (ii) changes in rooting patterns and microbial community composition, in response to drought, influence the hydrological soil functions. To test our hypotheses, we built adaptive roofing systems on nine sites in Germany, which allow a flexible reduction of precipitation in order to achieve the long-term minimum precipitation of a site. Here we present first measurements of our repeated measuring/sampling campaign, which will be conducted over a period of three years. The aim of our experiments is to analyze soil pore architecture and related flow and transport behaviour with dye tracer sprinkling experiments, soil column experiments with stable isotope (deuterium, oxygen-18) enriched water, computed tomography at soil monoliths (~70 l) and multi-step outflow experiments with 100 ml soil cores. Finally, we sketch our idea how to relate the observed temporal changes of soil structure and hydrological soil functions to the observed dynamics of hydrometeorological site conditions, soil moisture and desiccation as well as changes in rooting patterns, herb layer and soil microbiotic communities. The results of this study may help to assess future behavior of the plant-soil-water-microbiology-system and may help to adjust models to predict future response to different precipitation patterns as well as help coping with existing and future emerging challenges in forest management.
Permafrost soils and carbon cycling
Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; ...
2014-10-30
Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon (OC) stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous OC stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global C cycle and the potential vulnerability of the region's soil OC stocks to changing climatic conditions. In this review,more » we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of OC stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this OC to permafrost thaw under a warming climate.« less
NASA Astrophysics Data System (ADS)
Van Stan, J. T., II; Rosier, C. L.; Schrom, J. O.; Wu, T.; Reichard, J. S.; Kan, J.
2014-12-01
Identifying spatiotemporal influences on soil microbial community (SMC) structure is critical to understanding of patterns in nutrient cycling and related ecological services. Since forest canopy structure alters the spatiotemporal patterning of precipitation water and solute supplies to soils (via the "throughfall" mechanism), is it possible changes in SMC structure variability could arise from modifications in canopy elements? Our study investigates this question by monitoring throughfall water and dissolved ion supply to soils beneath a continuum of canopy structure: from a large gap (0% cover) to heavy Tillandsia usneoides L. (Spanish moss) canopy (>90% cover). Throughfall water supply diminished with increasing canopy cover, yet increased washoff/leaching of Na+, Cl-, PO43-, and SO42- from the canopy to the soils (p < 0.01). Presence of T. usneoides diminished throughfall NO3-, but enhanced NH4+, concentrations supplied to subcanopy soils. The mineral soil horizon (0-10 cm) from canopy gaps, bare canopy, and T. usneoides-laden canopy significantly differed (p < 0.05) in soil chemistry parameters (pH, Ca2+, Mg2+, CEC). PCR-DGGE banding patterns beneath similar canopy covers (experiencing similar throughfall dynamics) also produced high similarities per ANalyses Of SIMilarity (ANO-SIM), and clustered together when analyzed by Nonmetric Multidimensional Scaling (NMDS). Correlation analysis of DGGE banding patterns, throughfall dynamics, and soil chemistry yielded significant correlations (p < 0.05) between fungal communities and soil chemical properties significantly differing between canopy cover types (pH: r2 = 0.50; H+ %-base saturation: r2 = 0.48; Ca2+ %-base saturation: r2 = 0.43). Bacterial community structure correlated with throughfall NO3-, NH4+, and Ca2+ concentrations (r2 = 0.37, p = 0.16). These results suggest that modifications of forest canopy structures are capable of affecting mineral-soil horizon SMC structure via the throughfall mechanism when canopies' biomass distribution is highly heterogeneous.
Gao, Zeyong; Niu, Fujun; Wang, Yibo; Luo, Jing; Lin, Zhanju
2017-01-01
The formation of thermokarst lakes can degrade alpine meadow ecosystems through changes in soil water and heat properties, which might have an effect on the regional surface water and groundwater processes. In this study, a typical thermokarst lake was selected in the Qinghai-Tibet Plateau (QTP), and the ecological index (S L ) was used to divide the affected areas into extremely affected, severely affected, medium-affected, lightly affected, and non-affected areas, and soil hydrological properties, including saturated hydraulic conductivity and soil water-holding capacity, were investigated. The results showed that the formation of a thermokarst lake can lead to the degradation of alpine meadows, accompanied by a change in the soil physiochemical and hydrological properties. Specifically, the soil structure turned towards loose soil and the soil nutrients decreased from non-affected areas to severely affected areas, but the soil organic matter and available potassium increased slightly in the extremely affected areas. Soil saturated hydraulic conductivity showed a 1.7- to 4.1-fold increase in the lake-surrounding areas, and the highest value (401.9cmd -1 ) was detected in the severely affected area. Soil water-holding capacity decreased gradually during the transition from the non-affected areas to the severely affected areas, but it increased slightly in the extremely affected areas. The principal component analysis showed that the plant biomass was vital to the changes in soil hydrological properties. Thus, the vegetation might serve as a link between the thermokarst lake and soil hydrological properties. In this particular case, it was concluded that the thermokarst lake adversely affected the regional hydrological services in the alpine ecosystem. These results would be useful for describing appropriate hydraulic parameters with the purpose of modeling soil water transportation more accurately in the Qinghai-Tibet Plateau. Copyright © 2016 Elsevier B.V. All rights reserved.
Permafrost soils and carbon cycling
Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; ...
2015-02-05
Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region's soil organic carbon (SOC) stocks to changing climatic conditions. Inmore » this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of organic carbon stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this organic carbon to permafrost thaw under a warming climate. Overall, frozen conditions and cryopedogenic processes, such as cryoturbation, have slowed decomposition and enhanced the sequestration of organic carbon in permafrost-affected soils over millennial timescales. Due to the low temperatures, the organic matter in permafrost soils is often less humified than in more temperate soils, making some portion of this stored organic carbon relatively vulnerable to mineralization upon thawing of permafrost.« less
Jennifer Moore-Kucera; Richard P. Dick
2008-01-01
The impact and frequency of forest harvesting could significantly affect soil microbial community (SMC) structure and functioning. The ability of soil microorganisms to perform biogeochemical processes is critical for sustaining forest productivity and has a direct impact on decomposition dynamics and carbon storage potential. The Wind River Canopy Crane Research...
Land-use changes influence soil bacterial communities in a meadow grassland in Northeast China
NASA Astrophysics Data System (ADS)
Cao, Chengyou; Zhang, Ying; Qian, Wei; Liang, Caiping; Wang, Congmin; Tao, Shuang
2017-10-01
The conversion of natural grassland into agricultural fields is an intensive anthropogenic perturbation commonly occurring in semiarid regions, and this perturbation strongly affects soil microbiota. In this study, the influences of land-use conversion on the soil properties and bacterial communities in the Horqin Grasslands in Northeast China were assessed. This study aimed to investigate (1) how the abundances of soil bacteria changed across land-use types, (2) how the structure of the soil bacterial community was altered in each land-use type, and (3) how these variations were correlated with soil physical and chemical properties. Variations in the diversities and compositions of bacterial communities and the relative abundances of dominant taxa were detected in four distinct land-use systems, namely, natural meadow grassland, paddy field, upland field, and poplar plantation, through the high-throughput Illumina MiSeq sequencing technique. The results indicated that land-use changes primarily affected the soil physical and chemical properties and bacterial community structure. Soil properties, namely, organic matter, pH, total N, total P, available N and P, and microbial biomass C, N, and P, influenced the bacterial community structure. The dominant phyla and genera were almost the same among the land-use types, but their relative abundances were significantly different. The effects of land-use changes on the structure of soil bacterial communities were more quantitative than qualitative.
Factors Affecting Performance of Soil Termiticides
USDA-ARS?s Scientific Manuscript database
Applying liquid insecticide to soil under and around structures is one of the most widely used methods of subterranean termite prevention and control. Failure of soil termiticide treatments is often related to factors other than the active ingredient. Efficacy and longevity of soil treatments vary g...
USDA-ARS?s Scientific Manuscript database
Here, we demonstrate how vineyard management practices influence shifts in soil resources, which in turn affects shifts in soil-borne bacterial communities. The objective is to determine the hierarchical effects of management practices, soil attributes and location factors on the structure of soil-b...
USDA-ARS?s Scientific Manuscript database
Soil microorganisms play essential roles in soil organic matter dynamics and nutrient cycling in agroecosystems and have been used as soil quality indicators. The response of soil microbial communities to land management is complex and the long-term impacts of cropping systems on soil microbes is l...
Berthrong, Sean T; Buckley, Daniel H; Drinkwater, Laurie E
2013-07-01
We investigated how conversion from conventional agriculture to organic management affected the structure and biogeochemical function of soil microbial communities. We hypothesized the following. (1) Changing agricultural management practices will alter soil microbial community structure driven by increasing microbial diversity in organic management. (2) Organically managed soil microbial communities will mineralize more N and will also mineralize more N in response to substrate addition than conventionally managed soil communities. (3) Microbial communities under organic management will be more efficient and respire less added C. Soils from organically and conventionally managed agroecosystems were incubated with and without glucose ((13)C) additions at constant soil moisture. We extracted soil genomic DNA before and after incubation for TRFLP community fingerprinting of soil bacteria and fungi. We measured soil C and N pools before and after incubation, and we tracked total C respired and N mineralized at several points during the incubation. Twenty years of organic management altered soil bacterial and fungal community structure compared to continuous conventional management with the bacterial differences caused primarily by a large increase in diversity. Organically managed soils mineralized twice as much NO3 (-) as conventionally managed ones (44 vs. 23 μg N/g soil, respectively) and increased mineralization when labile C was added. There was no difference in respiration, but organically managed soils had larger pools of C suggesting greater efficiency in terms of respiration per unit soil C. These results indicate that the organic management induced a change in community composition resulting in a more diverse community with enhanced activity towards labile substrates and greater capacity to mineralize N.
Improving Water Level and Soil Moisture Over Peatlands in a Global Land Modeling System
NASA Technical Reports Server (NTRS)
Bechtold, M.; De Lannoy, G. J. M.; Roose, D.; Reichle, R. H.; Koster, R. D.; Mahanama, S. P.
2017-01-01
New model structure for peatlands results in improved skill metrics (without any parameter calibration) Simulated surface soil moisture strongly affected by new model, but reliable soil moisture data lacking for validation.
NASA Astrophysics Data System (ADS)
Gu, Linlin; Zhang, Feng; Bao, Xiaohua; Shi, Zhenming; Ye, Guanlin; Ling, Xianzhang
2018-04-01
A large number of breakwaters have been constructed along coasts to protect humans and infrastructures from tsunamis. There is a risk that foundation soils of these structures may liquefy, or partially liquefy during the earthquake preceding a tsunami, which would greatly reduce the structures' capacity to resist the tsunami. It is necessary to consider not only the soil's liquefaction behavior due to earthquake motions but also its post-liquefaction behavior because this behavior will affect the breakwater's capacity to resist an incoming tsunami. In this study, numerical tests based on a sophisticated constitutive model and a soil-water coupled finite element method are used to predict the mechanical behavior of breakwaters and the surrounding soils. Two real breakwaters subjected to two different seismic excitations are examined through numerical simulation. The simulation results show that, earthquakes affect not only the immediate behavior of breakwaters and the surrounding soils but also their long-term settlements due to post-earthquake consolidation. A soil profile with thick clayey layers beneath liquefied soil is more vulnerable to tsunami than a soil profile with only sandy layers. Therefore, quantitatively evaluating the seismic behavior of breakwaters and surrounding soils is important for the design of breakwater structures to resist tsunamis.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of the tank system will be in contact with the soil or with water, a determination by a corrosion expert of: (1) Factors affecting the potential for corrosion, such as: (i) Soil moisture content. (ii) Soil pH. (iii) Soil sulfides level. (iv) Soil resistivity. (v) Structure to soil potential. (vi...
Code of Federal Regulations, 2010 CFR
2010-07-01
... of the tank system will be in contact with the soil or with water, a determination by a corrosion expert of: (1) Factors affecting the potential for corrosion, such as: (i) Soil moisture content. (ii) Soil pH. (iii) Soil sulfides level. (iv) Soil resistivity. (v) Structure to soil potential. (vi...
Code of Federal Regulations, 2012 CFR
2012-07-01
... of the tank system will be in contact with the soil or with water, a determination by a corrosion expert of: (1) Factors affecting the potential for corrosion, such as: (i) Soil moisture content. (ii) Soil pH. (iii) Soil sulfides level. (iv) Soil resistivity. (v) Structure to soil potential. (vi...
Code of Federal Regulations, 2013 CFR
2013-07-01
... of the tank system will be in contact with the soil or with water, a determination by a corrosion expert of: (1) Factors affecting the potential for corrosion, such as: (i) Soil moisture content. (ii) Soil pH. (iii) Soil sulfides level. (iv) Soil resistivity. (v) Structure to soil potential. (vi...
Code of Federal Regulations, 2011 CFR
2011-07-01
... of the tank system will be in contact with the soil or with water, a determination by a corrosion expert of: (1) Factors affecting the potential for corrosion, such as: (i) Soil moisture content. (ii) Soil pH. (iii) Soil sulfides level. (iv) Soil resistivity. (v) Structure to soil potential. (vi...
NASA Astrophysics Data System (ADS)
Porporato, A. M.
2013-05-01
We discuss the key processes by which hydrologic variability affects the probabilistic structure of soil moisture dynamics in water-controlled ecosystems. These in turn impact biogeochemical cycling and ecosystem structure through plant productivity and biodiversity as well as nitrogen availability and soil conditions. Once the long-term probabilistic structure of these processes is quantified, the results become useful to understand the impact of climatic changes and human activities on ecosystem services, and can be used to find optimal strategies of water and soil resources management under unpredictable hydro-climatic fluctuations. Particular applications regard soil salinization, phytoremediation and optimal stochastic irrigation.
The effect of row structure on soil moisture retrieval accuracy from passive microwave data.
Xingming, Zheng; Kai, Zhao; Yangyang, Li; Jianhua, Ren; Yanling, Ding
2014-01-01
Row structure causes the anisotropy of microwave brightness temperature (TB) of soil surface, and it also can affect soil moisture retrieval accuracy when its influence is ignored in the inversion model. To study the effect of typical row structure on the retrieved soil moisture and evaluate if there is a need to introduce this effect into the inversion model, two ground-based experiments were carried out in 2011. Based on the observed C-band TB, field soil and vegetation parameters, row structure rough surface assumption (Q p model and discrete model), including the effect of row structure, and flat rough surface assumption (Q p model), ignoring the effect of row structure, are used to model microwave TB of soil surface. Then, soil moisture can be retrieved, respectively, by minimizing the difference of the measured and modeled TB. The results show that soil moisture retrieval accuracy based on the row structure rough surface assumption is approximately 0.02 cm(3)/cm(3) better than the flat rough surface assumption for vegetated soil, as well as 0.015 cm(3)/cm(3) better for bare and wet soil. This result indicates that the effect of row structure cannot be ignored for accurately retrieving soil moisture of farmland surface when C-band is used.
Soils and public health: the vital nexus
NASA Astrophysics Data System (ADS)
Pachepsky, Yakov
2015-04-01
Soils sustain life. They affect human health via quantity, quality, and safety of available food and water, and via direct exposure of individuals to soils. Throughout the history of civilization, soil-health relationships have inspired spiritual movements, philosophical systems, cultural exchanges, and interdisciplinary interactions, and provided medicinal substances of paramount impact. Given the climate, resource, and population pressures, understanding and managing the soil-health interactions becomes a modern imperative. We are witnessing a paradigm shift from recognizing and yet disregarding the 'soil-health' nexus complexity to parameterizing this complexity and identifying reliable controls. This becomes possible with the advent of modern research tools as a source of 'big data' on multivariate nonlinear soil systems and the multiplicity of health metrics. The phenomenon of suppression of human pathogens in soils and plants presents a recent example of these developments. Evidence is growing about the dependence of pathogen suppression on the soil microbial community structure which, in turn, is affected by the soil-plant system management. Soil eutrophication appears to create favorable conditions for pathogen survival. Another example of promising information-rich research considers links and feedbacks between the soil microbial community structure and structure of soil physical pore space. The two structures are intertwined and involved in the intricate self-organization that controls soil services to public health. This, in particular, affects functioning of soils as a powerful water filter and the capacity of this filter with respect to emerging contaminants in both 'green' and 'blue' waters. To evaluate effects of soil services to public health, upscaling procedures are needed for relating the fine-scale mechanistic knowledge to available coarse-scale information on soil properties and management. More needs to be learned about health effects of soils in organic agriculture that are often used for soil quality comparison and benchmarking. The influence of soil degradation and rehabilitation on public health has to be assessed in quantitative terms. Some links between soils and public health regarding, for example, immune maturation, antibiotic resistance development, and mental well-being, have been long hypothesized but remain to be examined. The data on soil-health relationships are scarce and very much disjointed, and a concerted international effort appears to be needed to encompass various economic and geographical settings. Current definitions of healthy soil broadly include aspects that are conducive for human health, and functional evaluation of soil quality with a focus on public health will have useful applications in public policies and perception. The 'soil-health' connection is complex in character, global in manifestation, and applicable to every human being.
Temporal effects of post-fire check dam construction on soil functionality in SE Spain.
González-Romero, J; Lucas-Borja, M E; Plaza-Álvarez, P A; Sagra, J; Moya, D; De Las Heras, J
2018-06-09
Wildfire has historically been an alteration factor in Mediterranean basins. Despite Mediterranean ecosystems' high resilience, wildfire accelerates erosion and degradation processes, and also affects soil functionality by affecting nutrient cycles and soil structure. In semi-arid Mediterranean basins, check dams are usually built in gullies and channels after fire as a measure against soil erosion. Although check dams have proven efficient action to reduce erosion rates, studies about how they affect soil functionality are lacking. Our approach focuses on how soil functionality, defined as a combination of physico-chemical and biological indicators, is locally affected by check dam construction and the evolution of this effect over time. Soils were sampled in eight check dams in two semi-arid areas at SE Spain, which were affected by wildfire in 2012 and 2016. The study findings reveal that by altering sediments cycle and transport, check dams influence soil's main physico-chemical and biochemical characteristics. Significant differences were found between check dam-affected zones and the control ones for many indicators such as organic matter content, electrical conductivity or enzymatic activity. According to the ANOVA results, interaction between check dams influence and time after fire, was a crucial factor. PCA results clearly showed check-dams influence on soil functionality. Copyright © 2018. Published by Elsevier B.V.
USDA-ARS?s Scientific Manuscript database
Climate models predict increased variability in precipitation regimes, which will likely increase frequency/duration of drought. Reductions in soil moisture affect physical and chemical characteristics of the soil habitat and can influence soil organisms such as mites and nematodes. These organisms ...
Soil microbial community structure and target organisms under different fumigation treatments
USDA-ARS?s Scientific Manuscript database
Several high-value crop producers in California rely heavily on soil fumigants to control key diseases, nematodes, weeds and volunteer crops. Fumigants with broad biocidal activity can affect both target and non-target soil organisms. The ability of non-target soil organisms to recover after fumigat...
Influence of Precipitation Regime on Microbial Decomposition Patterns in Semi-Arid Ecosystems
NASA Astrophysics Data System (ADS)
Feris, K. P.; Jilek, C.; Huber, D. P.; Reinhardt, K.; deGraaff, M.; Lohse, K.; Germino, M.
2011-12-01
In water-limited semi-arid sagebrush steppe ecosystems predicted changes in climate may manifest as a shift from historically winter/snow-dominated precipitation regimes to one dominated by spring rains. In these ecosystems soil microorganisms play a vital role in linking the effects of water availability and plant productivity to biogeochemical cycling. Patterns of soil microbial catalyzed organic matter decomposition patters (i.e. patterns of extracellular enzyme activity (EEA)) are thought to depend upon the quantity and quality of soil organic matter (SOM), pH, and mean annual precipitation (Sinsabaugh, 2008), and less on the timing and magnitude of precipitation. However, sagebrush-steppe plant communities respond strongly to changes in the timing and magnitude of precipitation, and preliminary findings by our group suggest that corresponding changes in SOM quantity, quality, N-cycle dynamics, and soil structure are occurring. Therefore, we hypothesized: 1) Shifts in the timing and magnitude of precipitation would indirectly affect soil microbial decomposition patterns via responses in the plant community structure; and 2) Changes in precipitation patterns can directly affect soil microbial community structure and function, in effect uncoupling the interaction between plant community structure and soil community structure. We tested our hypotheses by determining the influence of experimentally manipulated timing and magnitude of precipitation on soil microbial EEA using standard flourometric assays in soils sampled under plant canopies and plant interspaces. We assessed this response in a mature (18 + years) ecohydrologic field experiment in eastern Idaho that annually imitates three possible post climatic-shift precipitation regimes (Ambient (AMB): no additional precipitation, ~200mm annually; Summer (SUMM): 200mm provisioned at 50mm bi-weekly starting in June; and Fall/Spring (F/S): 200mm provisioned over 1-2 weeks in October or April) (n=3). Within plant interspaces Beta glucosaminide activity increased by 18% in treatments receiving additional F/S precipitation, whereas alpha glucopyranoside activity was lower in the F/S and SUMM plots. Conversely, underplant canopies alpha glucopyranoside activity increased by 15% in the SUMM and F/S precipitation treatments. Across treatments and sampling types (i.e. plant canopy vs. interspace), cellobioside activity levels are consistently elevated in response to additional precipitation compared to those of the control plots. When coupled with recent preliminary findings by our group regarding changes in plant and microbial community structure and SOM, C-storage, and soil structural responses, these preliminary findings suggest that 1) microbial community structure and function respond both directly and indirectly to changes in climate, and 2) thus provide a mechanism for changes in plant community structure to feed-forward to affect soil carbon decomposition patterns and ultimately soil carbon storage potential.
Spurgeon, David J; Keith, Aidan M; Schmidt, Olaf; Lammertsma, Dennis R; Faber, Jack H
2013-12-01
Change in land use and management can impact massively on soil ecosystems. Ecosystem engineers and other functional biodiversity in soils can be influenced directly by such change and this in turn can affect key soil functions. Here, we employ meta-analysis to provide a quantitative assessment of the effects of changes in land use and land management across a range of successional/extensification transitions (conventional arable → no or reduced tillage → grassland → wooded land) on community metrics for two functionally important soil taxa, earthworms and fungi. An analysis of the relationships between community change and soil structural properties was also included. Meta-analysis highlighted a consistent trend of increased earthworm and fungal community abundances and complexity following transitions to lower intensity and later successional land uses. The greatest changes were seen for early stage transitions, such as introduction of reduced tillage regimes and conversion to grassland from arable land. Not all changes, however, result in positive effects on the assessed community metrics. For example, whether woodland conversion positively or negatively affects community size and complexity depends on woodland type and, potentially, the changes in soil properties, such as pH, that may occur during conversion. Alterations in soil communities tended to facilitate subsequent changes in soil structure and hydrology. For example, increasing earthworm abundances and functional group composition were shown to be positively correlated with water infiltration rate (dependent on tillage regime and habitat characteristics); while positive changes in fungal biomass measures were positively associated with soil microaggregate stability. These findings raise the potential to manage landscapes to increase ecosystem service provision from soil biota in relation to regulation of soil structure and water flow.
Fernandez, Adria L; Sheaffer, Craig C; Wyse, Donald L; Staley, Christopher; Gould, Trevor J; Sadowsky, Michael J
2016-10-01
Agricultural management practices can produce changes in soil microbial populations whose functions are crucial to crop production and may be detectable using high-throughput sequencing of bacterial 16S rRNA. To apply sequencing-derived bacterial community structure data to on-farm decision-making will require a better understanding of the complex associations between soil microbial community structure and soil function. Here 16S rRNA sequencing was used to profile soil bacterial communities following application of cover crops and organic fertilizer treatments in certified organic field cropping systems. Amendment treatments were hairy vetch (Vicia villosa), winter rye (Secale cereale), oilseed radish (Raphanus sativus), buckwheat (Fagopyrum esculentum), beef manure, pelleted poultry manure, Sustane(®) 8-2-4, and a no-amendment control. Enzyme activities, net N mineralization, soil respiration, and soil physicochemical properties including nutrient levels, organic matter (OM) and pH were measured. Relationships between these functional and physicochemical parameters and soil bacterial community structure were assessed using multivariate methods including redundancy analysis, discriminant analysis, and Bayesian inference. Several cover crops and fertilizers affected soil functions including N-acetyl-β-d-glucosaminidase and β-glucosidase activity. Effects, however, were not consistent across locations and sampling timepoints. Correlations were observed among functional parameters and relative abundances of individual bacterial families and phyla. Bayesian analysis inferred no directional relationships between functional activities, bacterial families, and physicochemical parameters. Soil functional profiles were more strongly predicted by location than by treatment, and differences were largely explained by soil physicochemical parameters. Composition of soil bacterial communities was predictive of soil functional profiles. Differences in soil function were better explained using both soil physicochemical test values and bacterial community structure data than using soil tests alone. Pursuing a better understanding of bacterial community composition and how it is affected by farming practices is a promising avenue for increasing our ability to predict the impact of management practices on important soil functions. Copyright © 2016. Published by Elsevier B.V.
Chemical structure of soil organic matter in slickspots as investigated by advanced solid-state NMR
USDA-ARS?s Scientific Manuscript database
Slickspot soils are saline, and knowledge of their humic chemistry would contribute to our limited understanding how salinity affects soil C and N stocks. We characterized humic acids (HAs) from slickspot soils with solid-state 13C nuclear magnetic resonance (NMR). Expanding on previous use of cross...
Microbial control over carbon cycling in soil
Schimel, Joshua P.; Schaeffer, Sean M.
2012-01-01
A major thrust of terrestrial microbial ecology is focused on understanding when and how the composition of the microbial community affects the functioning of biogeochemical processes at the ecosystem scale (meters-to-kilometers and days-to-years). While research has demonstrated these linkages for physiologically and phylogenetically “narrow” processes such as trace gas emissions and nitrification, there is less conclusive evidence that microbial community composition influences the “broad” processes of decomposition and organic matter (OM) turnover in soil. In this paper, we consider how soil microbial community structure influences C cycling. We consider the phylogenetic level at which microbes form meaningful guilds, based on overall life history strategies, and suggest that these are associated with deep evolutionary divergences, while much of the species-level diversity probably reflects functional redundancy. We then consider under what conditions it is possible for differences among microbes to affect process dynamics, and argue that while microbial community structure may be important in the rate of OM breakdown in the rhizosphere and in detritus, it is likely not important in the mineral soil. In mineral soil, physical access to occluded or sorbed substrates is the rate-limiting process. Microbial community influences on OM turnover in mineral soils are based on how organisms allocate the C they take up – not only do the fates of the molecules differ, but they can affect the soil system differently as well. For example, extracellular enzymes and extracellular polysaccharides can be key controls on soil structure and function. How microbes allocate C may also be particularly important for understanding the long-term fate of C in soil – is it sequestered or not? PMID:23055998
NASA Astrophysics Data System (ADS)
Camenzind, Tessa; Papathanasiou, Helena; Foerster, Antje; Dietrich, Karla; Hertel, Dietrich; Homeier, Juergen; Oelmann, Yvonne; Olsson, Pål Axel; Suárez, Juan; Rillig, Matthias
2015-12-01
Tropical ecosystems have an important role in global change scenarios, in part because they serve as a large terrestrial carbon pool. Carbon protection is mediated by soil aggregation processes, whereby biotic and abiotic factors influence the formation and stability of aggregates. Nutrient additions may affect soil structure indirectly by simultaneous shifts in biotic factors, mainly roots and fungal hyphae, but also via impacts on abiotic soil properties. Here, we tested the hypothesis that soil aggregation will be affected by nutrient additions primarily via changes in arbuscular mycorrhizal fungal (AMF) hyphae and root length in a pristine tropical forest system. Therefore, the percentage of water-stable macroaggregates (> 250µm) (WSA) and the soil mean weight diameter (MWD) was analyzed, as well as nutrient contents, pH, root length and AMF abundance. Phosphorus additions significantly increased the amount of WSA, which was consistent across two different sampling times. Despite a positive effect of phosphorus additions on extraradical AMF biomass, no relationship between WSA and extra-radical AMF nor roots was revealed by regression analyses, contrary to the proposed hypothesis. These findings emphasize the importance of analyzing soil structure in understudied tropical systems, since it might be affected by increasing nutrient deposition expected in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Zhifeng; Liu, Chongxuan; Todd-Brown, Katherine E.
The relationship between microbial respiration rate and soil moisture content is an important property for understanding and predicting soil organic carbon degradation, CO 2 production and emission, and their subsequent effects on climate change. This paper reports a pore-scale modeling study to investigate the response of heterotrophic respiration to moisture conditions in soils and to evaluate various factors that affect this response. X-ray computed tomography was used to derive soil pore structures, which were then used for pore-scale model investigation. The pore-scale results were then averaged to calculate the effective respiration rates as a function of water content in soils.more » The calculated effective respiration rate first increases and then decreases with increasing soil water content, showing a maximum respiration rate at water saturation degree of 0.75 that is consistent with field and laboratory observations. The relationship between the respiration rate and moisture content is affected by various factors, including pore-scale organic carbon bioavailability, the rate of oxygen delivery, soil pore structure and physical heterogeneity, soil clay content, and microbial drought resistivity. Simulations also illustrates that a larger fraction of CO 2 produced from microbial respiration can be accumulated inside soil cores under higher saturation conditions, implying that CO 2 flux measured on the top of soil cores may underestimate or overestimate true soil respiration rates under dynamic moisture conditions. Overall, this study provides mechanistic insights into the soil respiration response to the change in moisture conditions, and reveals a complex relationship between heterotrophic microbial respiration rate and moisture content in soils that is affected by various hydrological, geochemical, and biophysical factors.« less
Song, Yang; Bian, Yongrong; Wang, Fang; Xu, Min; Ni, Ni; Yang, Xinglun; Gu, Chenggang; Jiang, Xin
2017-08-16
Amending soil with biochar is an effective soil remediation strategy for organic contaminants. This study investigated the dynamic effects of wheat straw biochar on the bacterial community structure during remediation by high-throughput sequencing. The wheat straw biochar amended into the soil significantly reduced the bioavailability and toxicity of polycyclic aromatic hydrocarbons (PAHs). Biochar amendment helped to maintain the bacterial diversity in the PAH-contaminated soil. The relationship between the immobilization of PAHs and the soil bacterial diversity fit a quadratic model. Before week 12 of the incubation, the incubation time was the main factor contributing to the changes in the soil bacterial community structure. However, biochar greatly affected the bacterial community structure after 12 weeks of amendment, and the effects were dependent upon the biochar type. Amendment with biochar mainly facilitated the growth of rare bacterial genera (relative abundance of 0.01-1%) in the studied soil. Therefore, the application of wheat straw biochar into PAH-contaminated soil can reduce the environmental risks of PAHs and benefit the soil microbial ecology.
Shuhua Yi; A. David McGuire; Eric Kasischke; Jennifer Harden; Kristen Manies; Michelle Mack; Merritt Turetsky
2010-01-01
Ecosystem models have not comprehensively considered how interactions among fire disturbance, soil environmental conditions, and biogeochemical processes affect ecosystem dynamics in boreal forest ecosystems. In this study, we implemented a dynamic organic soil structure in the Terrestrial Ecosystem Model (DOS-TEM) to investigate the effects of fire on soil temperature...
USDA-ARS?s Scientific Manuscript database
Soil organic matter (SOM) contributes to soil processes and is found both in shallow and deep soil layers. Its activity can be affected by its chemical composition, yet knowledge is incomplete of how land use alters the structural composition of SOM throughout the profiles of different soil types. T...
A review of the impacts of degradation threats on soil properties in the UK.
Gregory, A S; Ritz, K; McGrath, S P; Quinton, J N; Goulding, K W T; Jones, R J A; Harris, J A; Bol, R; Wallace, P; Pilgrim, E S; Whitmore, A P
2015-10-01
National governments are becoming increasingly aware of the importance of their soil resources and are shaping strategies accordingly. Implicit in any such strategy is that degradation threats and their potential effect on important soil properties and functions are defined and understood. In this paper, we aimed to review the principal degradation threats on important soil properties in the UK, seeking quantitative data where possible. Soil erosion results in the removal of important topsoil and, with it, nutrients, C and porosity. A decline in soil organic matter principally affects soil biological and microbiological properties, but also impacts on soil physical properties because of the link with soil structure. Soil contamination affects soil chemical properties, affecting nutrient availability and degrading microbial properties, whilst soil compaction degrades the soil pore network. Soil sealing removes the link between the soil and most of the 'spheres', significantly affecting hydrological and microbial functions, and soils on re-developed brownfield sites are typically degraded in most soil properties. Having synthesized the literature on the impact on soil properties, we discuss potential subsequent impacts on the important soil functions, including food and fibre production, storage of water and C, support for biodiversity, and protection of cultural and archaeological heritage. Looking forward, we suggest a twin approach of field-based monitoring supported by controlled laboratory experimentation to improve our mechanistic understanding of soils. This would enable us to better predict future impacts of degradation processes, including climate change, on soil properties and functions so that we may manage soil resources sustainably.
Fernandez, Adria L; Sheaffer, Craig C; Wyse, Donald L; Staley, Christopher; Gould, Trevor J; Sadowsky, Michael J
2016-11-01
Incorporation of organic material into soils is an important element of organic farming practices that can affect the composition of the soil bacterial communities that carry out nutrient cycling and other functions crucial to crop health and growth. We conducted a field experiment to determine the effects of cover crops and fertilizers on bacterial community structure in agricultural soils under long-term organic management. Illumina sequencing of 16S rDNA revealed diverse communities comprising 45 bacterial phyla in corn rhizosphere and bulk field soil. Community structure was most affected by location and by the rhizosphere effect, followed by sampling time and amendment treatment. These effects were associated with soil physicochemical properties, including pH, moisture, organic matter, and nutrient levels. Treatment differences were apparent in bulk and rhizosphere soils at the time of peak corn growth in the season following cover crop and fertilizer application. Cover crop and fertilizer treatments tended to lower alpha diversity in early season samples. However, winter rye, oilseed radish, and buckwheat cover crop treatments increased alpha diversity in some later season samples compared to a no-amendment control. Fertilizer treatments and some cover crops decreased relative abundance of members of the ammonia-oxidizing family Nitrosomonadaceae. Pelleted poultry manure and Sustane® (a commercial fertilizer) decreased the relative abundance of Rhizobiales. Our data point to a need for future research exploring how (1) cover crops influence bacterial community structure and functions, (2) these effects differ with biomass composition and quantity, and (3) existing soil conditions and microbial community composition influence how soil microbial populations respond to agricultural management practices.
Cycoń, Mariusz; Piotrowska-Seget, Zofia
2015-01-01
The purpose of this experiment was to assess the effect of imidacloprid on the community structure of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in soil using the denaturing gradient gel electrophoresis (DGGE) approach. Analysis showed that AOA and AOB community members were affected by the insecticide treatment. However, the calculation of the richness (S) and the Shannon-Wiener index (H) values for soil treated with the field rate (FR) dosage of imidacloprid (1 mg/kg soil) showed no changes in measured indices for the AOA and AOB community members. In turn, the 10∗FR dosage of insecticide (10 mg/kg soil) negatively affected the AOA community, which was confirmed by the decrease of the S and H values in comparison with the values obtained for the control soil. In the case of AOB community, an initial decline followed by the increase of the S and H values was obtained. Imidacloprid decreased the nitrification rate while the ammonification process was stimulated by the addition of imidacloprid. Changes in the community structure of AOA and AOB could be due to an increase in the concentration of N-NH4 (+), known as the most important factor which determines the contribution of these microorganisms to soil nitrification.
Cycoń, Mariusz; Piotrowska-Seget, Zofia
2015-01-01
The purpose of this experiment was to assess the effect of imidacloprid on the community structure of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in soil using the denaturing gradient gel electrophoresis (DGGE) approach. Analysis showed that AOA and AOB community members were affected by the insecticide treatment. However, the calculation of the richness (S) and the Shannon-Wiener index (H) values for soil treated with the field rate (FR) dosage of imidacloprid (1 mg/kg soil) showed no changes in measured indices for the AOA and AOB community members. In turn, the 10∗FR dosage of insecticide (10 mg/kg soil) negatively affected the AOA community, which was confirmed by the decrease of the S and H values in comparison with the values obtained for the control soil. In the case of AOB community, an initial decline followed by the increase of the S and H values was obtained. Imidacloprid decreased the nitrification rate while the ammonification process was stimulated by the addition of imidacloprid. Changes in the community structure of AOA and AOB could be due to an increase in the concentration of N-NH4 +, known as the most important factor which determines the contribution of these microorganisms to soil nitrification. PMID:25705674
Zhao, Tian Xin; Mao, Xin Wei; Cheng, Min; Chen, Jun Hui; Qin, Hua; Li, Yong Chun; Liang, Chen Fei; Xu, Qiu Fang
2017-11-01
This study examined how soil bacterial and fungal communities responded to the cultivation history of Moso bamboo in Anji and Changxing counties, Huzhou, Zhejiang, China. Soil samples (0-20 and 20-40 cm) were taken from bamboo plantations subjected to different cultivation histories and analyzed the community structures of soil bacterial and fungal by PCR-DGGE methods. It was found that soil bacterial and fungal communities varied greatly with the development of bamboo plantations which converted from Masson pine forest or formed via invading adjacent broadleaf shrub forest. Soil bacterial community structures exhibited a greater response to bamboo cultivation time than fungal community, but bacteria structure of surface soil displayed an ability of resiliency to disturbance and the tendency to recover to the original state. The cultivation time, sampling site and soil layer significantly affected the biodiversity of soil bacteria and fungi, especially the latter two factors. Redundancy analysis (RDA) of soil properties and bacteria or fungi communities showed that there were no accordant factors to drive the alteration of microbial structure, and the first two axes explained less than 65.0% of variance for most of the sampling sites and soil layers, indicating there existed soil parameters besides the five examined that contributed to microbial community alteration.
Role of model structure on the response of soil biogeochemistry to hydro-climatic fluctuations
NASA Astrophysics Data System (ADS)
Manzoni, S.; Porporato, A.
2005-05-01
Soil carbon and nutrient cycles are strongly affected by hydro-climatic variability, which interacts with the internal ecosystem structure. Here we test the implications of biogeochemical model structure on such dynamics by extending an existing model by the authors and coworkers. When forced by hydro-climatic fluctuations, the different model structures induce specific preferential nutrient paths among the soil pools, which in turn affect nutrient distribution and availability to microbes and plants. In particular, if it is assumed that microbes can directly assimilate organic nitrogen, plants tend to be inferior competitors for nutrients even in well-watered conditions, while if a certain amount of organic nitrogen is assumed to be mineralized without being first incorporated into microbial cells, vegetation can be advantaged over a wide range of soil moisture values. We also investigate the intensification of competition for nutrients (e.g., nitrogen) between plant and soil microbial communities under extreme hydrologic conditions, such as droughts and intense storms. Frequent rainfall events may determine ideal soil moisture conditions for plant uptake, enhancing nitrogen leaching while lowering oxygen concentration and inhibiting microbial activity. During droughts, the soil water potential often drops to the point of hampering the plant nutrient uptake while still remaining high enough for microbial decomposition and nitrogen immobilization. The interplay of microbe and vegetation water stress is investigated in depth as it controls the ability of one community (e.g., plants or soil microbes) to establish competitive advantage on the other. The long-term effects of these dynamics of competition and nutrient allocation are explored under steady-state and stochastic soil moisture conditions to analyze the feedbacks between soil organic matter and vegetation dynamics.
The potential of cover crops for improving soil function
NASA Astrophysics Data System (ADS)
Stoate, Chris; Crotty, Felicity
2017-04-01
Cover crops can be grown over the autumn and winter ensuring green cover throughout the year. They have been described as improving soil structure, reducing soil erosion and potentially even a form of grass weed control. These crops retain nutrients within the plant, potentially making them available for future crops, as well as increasing soil organic matter. Over the last three years, we have investigated how different cover crop regimes affect soil quality. Three separate experiments over each autumn/winter period have investigated how different cover crops affect soil biology, physics and chemistry, with each experiment building on the previous one. There have been significant effects of cover crops on soil structure, as well as significantly lower weed biomass and increased yields in the following crop - in comparison to bare stubble. For example, the effect of drilling the cover crops on soil structure in comparison to a bare stubble control that had not been driven on by machinery was quantified, and over the winter period the soil structure of the cover crop treatments changed, with compaction reduced in the cover crop treatments, whilst the bare stubble control remained unchanged. Weeds were found in significantly lower biomass in the cover crop mixes in comparison to the bare stubble control, and significantly lower weed biomass continued to be found in the following spring oat crop where the cover crops had been, indicating a weed suppressive effect that has a continued legacy in the following crop. The following spring oats have shown similar results in the last two years, with higher yields in the previous cover crop areas compared to the bare stubble controls. Overall, these results are indicating that cover crops have the potential to provide improvements to soil quality, reduce weeds and improve yields. We discuss the economic implications.
Lebert, Matthias; Böken, Holger; Glante, Frank
2007-02-01
Soil compaction in agriculture induced by large-scale equipment is of growing concern. Heavy wheel loads used in arable cropping have the potential to cause irreversible damage to the subsoil structure and may lead to harmful soil compaction. In order to sustain or improve soil health or fitness on a sustainable basis, indicators are needed to assess the changes in the soil structure and the respective soil functions. This requires an adequate verification of methods for distinguishing between the impairment of soil structure and the disruption of soil functions, and for the respective subject of protection. In this article the link between existing models of soil physical prognosis, practical guidelines, and criteria for the identification of affected soil structure is demonstrated, and a viable concept to distinguish harmful changes to the soil is presented. The concept consists of methods for soil physical analysis such as "pre-compression stress" and "loading ratio", practical recommendations for best management practice, and an indicator-based model for the identification of harmful subsoil compaction derived from a research project for the German Federal Environmental Agency, making it possible to determine for a respective location the required level of action far beyond the common practice of precautions against harmful soil compaction.
USDA-ARS?s Scientific Manuscript database
Soil microorganisms have the potential to dramatically alter the nitrogen (N) availability in agricultural systems, and therefore affect the efficiency of fertilizer application. Data regarding the effects of cereal management systems on the soil microbiology functional to N cycling have yielded var...
Lasting effect of soil warming on organic matter decomposition depends on tillage practices
USDA-ARS?s Scientific Manuscript database
Global warming affects various parts of carbon (C) cycle including acceleration of soil organic matter (SOM) decomposition with strong feedback to atmospheric CO2 concentration. Despite many soil warming studies showed changes of microbial community structure, very few were focused on the effect of ...
Keeping your forest soils healthy and productive.
Ole T. Helgerson; Richard E. Miller
2008-01-01
Soils are an integral structural part of your woodland and the larger forest ecosystem. Important forest soil functions include:Providing water, nutrients, and physical support for the growth of trees and other forest plantsAllowing an exchange of carbon dioxide, oxygen, and other gasses that affect root growth and...
Impacts of soil moisture content on visual soil evaluation
NASA Astrophysics Data System (ADS)
Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Bondi, Giulia; Creamer, Rachel; Holden, Nick
2017-04-01
Visual Soil Examination and Evaluation (VSE) techniques offer tools for soil quality assessment. They involve the visual and tactile assessment of soil properties such as aggregate size and shape, porosity, redox morphology, soil colour and smell. An increasing body of research has demonstrated the reliability and utility of VSE techniques. However a number of limitations have been identified, including the potential impact of soil moisture variation during sampling. As part of a national survey of grassland soil quality in Ireland, an evaluation of the impact of soil moisture on two widely used VSE techniques was conducted. The techniques were Visual Evaluation of Soil Structure (VESS) (Guimarães et al., 2011) and Visual Soil Assessment (VSA) (Shepherd, 2009). Both generate summarising numeric scores that indicate soil structural quality, though employ different scoring mechanisms. The former requires the assessment of properties concurrently and the latter separately. Both methods were deployed on 20 sites across Ireland representing a range of soils. Additional samples were taken for soil volumetric water (θ) determination at 5-10 and 10-20 cm depth. No significant correlation was observed between θ 5-10 cm and either VSE technique. However, VESS scores were significantly related to θ 10-20 cm (rs = 0.40, sig = 0.02) while VSA scores were not (rs = -0.33, sig = 0.06). VESS and VSA scores can be grouped into quality classifications (good, moderate and poor). No significant mean difference was observed between θ 5-10 cm or θ 10-20 cm according to quality classification by either method. It was concluded that VESS scores may be affected by soil moisture variation while VSA appear unaffected. The different scoring mechanisms, where the separate assessment and scoring of individual properties employed by VSA, may limit soil moisture effects. However, moisture content appears not to affect overall structural quality classification by either method. References Guimarães, R.M.C., Ball, B.C. & Tormena, C.A. 2011. Improvements in the visual evaluation of soil structure, Soil Use and Management, 27, 3: 395-403 Shepherd, G.T. 2009. Visual Soil Assessment. Field guide for pastoral grazing and cropping on flat to rolling country. 2nd edn. Horizons regional council, New Zealand.
3D soil structure characterization of Biological Soil Crusts from Alpine Tarfala Valley
NASA Astrophysics Data System (ADS)
Mele, Giacomo; Gargiulo, Laura; Zucconi, Laura; D'Acqui, Luigi; Ventura, Stefano
2017-04-01
Cyanobacteria filaments, microfungal hyphae, lichen rhizinae and anchoring rhizoids of bryophytes all together contribute to induce formation of structure in the thin soil layer beneath the Biological Soil Crusts (BSCs). Quantitative assessment of the soil structure beneath the BSCs is primarily hindered by the fragile nature of the crusts. Therefore, the role of BSCs in affecting such soil physical property has been rarely addressed using direct measurements. In this work we applied non-destructive X-ray microtomography imaging on five different samples of BSCs collected in the Alpine Tarfala Valley (northern Sweden), which have already been characterized in terms of fungal biodiversity in a previous work. We obtained images of the 3D spatial organization of the soil underneath the BSCs and characterized its structure by applying procedures of image analysis allowing to determine pore size distribution, pore connectivity and aggregate size distribution. Results has then been correlated with the different fungal assemblages of the samples.
Means, Mary M.; Ahn, Changwoo; Noe, Gregory
2017-01-01
The resilience of constructed wetland ecosystems to severe disturbance, such as a mass herbivory eat-out or soil disturbance, remains poorly understood. In this study, we use a controlled mesocosm experiment to examine how original planting diversity affects the ability of constructed freshwater wetlands to recover structurally and functionally after a disturbance (i.e., aboveground harvesting and soil coring). We assessed if the planting richness of macrophyte species influences recovery of constructed wetlands one year after a disturbance. Mesocosms were planted in richness groups with various combinations of either 1, 2, 3, or 4 species (RG 1–4) to create a gradient of richness. Structural wetland traits measured include morphological regrowth of macrophytes, soil bulk density, soil moisture, soil %C, and soil %N. Functional wetland traits measured include above ground biomass production, soil potential denitrification, and soil potential microbial respiration. Total mesocosm cover increased along the gradient of plant richness (43.5% in RG 1 to 84.5% in RG 4) in the growing season after the disturbance, although not all planted individuals recovered. This was largely attributed to the dominance of the obligate annual species. The morphology of each species was affected negatively by the disturbance, producing shorter, and fewer stems than in the years prior to the disturbance, suggesting that the communities had not fully recovered one year after the disturbance. Soil characteristics were almost uniform across the planting richness gradient, but for a few exceptions (%C, C:N, and non-growing season soil moisture were higher slightly in RG 2). Denitrification potential (DEA) increased with increasing planting richness and was influenced by the abundance and quality of soil C. Increased open space in unplanted mesocosms and mesocosms with lower species richness increased labile C, leading to higher C mineralization rates.
NASA Astrophysics Data System (ADS)
Gaonkar, O. D.; Nambi, I. M.; G, S. K.
2016-12-01
The functional and morphological aspects of soil structure determine the soil quality. The dispersion of colloidal soil particles, especially the clay fraction and rupture of soil aggregates, both of which play an important role in soil structure development, lead to degradation of soil quality. The main objective of this work was to determine the effect of behaviour of soil colloids on the agricultural soil structure and quality. The effect of commercial humic acid, organophosphate pesticides and soil natural organic matter on the electrical and structural properties of the soil colloids was also studied. Agricultural soil, belonging to the sandy loam texture class from northern part of India was considered in this study. In order to understand the changes in the soil quality in the presence and absence of humic acids, the soil fabric and structure was analyzed by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscopy (SEM). Electrical properties of natural soil colloids in aqueous suspensions were assessed by zeta potential measurements at varying pH values with and without the presence of humic acids and pesticides. The influence of natural organic matter was analyzed by oxidizing the natural soil organic matter with hydrogen peroxide. The zeta potential of the soil colloids was found to be negative in the pH range studied. The results indicated that hydrogen peroxide treatment lead to deflocculation of colloidal soil particles. In addition, the humic acids undergoes effective adsorption onto the soil surface imparting more negative zeta potential to the colloidal soil particles. The soil hydrophilicity decreased in the presence of humic acids which was confirmed by surface free energy determination. Thus, it can be concluded that the presence of humic acids altered the soil fabric and structure, thereby affecting the soil quality. This study assumes significance in understanding the soil aggregation and the interactions at soil solid-liquid interface.
NASA Astrophysics Data System (ADS)
Karyati, K.; Ipor, I. B.; Jusoh, I.; Wasli, M. E.
2018-04-01
The tree growth is influenced by soil morphological and physicochemical properties in the site. The purpose of this study was to describe correlation between soil properties under various stage secondary forests and vegetation parameters, such as floristic structure parameters and floristic diversity indices. The vegetation surveys were conducted in 5, 10, and 20 years old at secondary tropical forests in Sarawak, Malaysia. Nine sub plots sized 20 m × 20 m were established within each study site. The Pearson analysis showed that soil physicochemical properties were significantly correlated to floristic structure parameters and floristic diversity indices. The result of PCA clarified the correlation among most important soil properties, floristic structure parameters, and floristic diversity indices. The PC1 represented cation retention capacity and soil texture which were little affected by the fallow age and its also were correlated by floristic structure and diversity. The PC2 was linked to the levels of soil acidity. This property reflected the remnant effects of ash addition and fallow duration, and the significant correlation were showed among pH (H2O), floristic structure and diversity. The PC3 represented the soil compactness. The soil hardness could be influenced by fallow period and it was also correlated by floristic structure.
Spore dispersal of a resupinate ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs
Erik A. Lilleskov; Thomas D. Bruns
2005-01-01
Patterns of fungal spore dispersal affect gene flow, population structure and fungal community structure. Many Basidiomycota produce resupinate (crust-like) basidiocarps buried in the soil. Although spores are actively discharged, they often do not appear to be well positioned for aerial dispersal. We investigated the potential spore dispersal mechanisms of one...
Guo, Chengyuan; Wang, Renzhong; Xiao, Chunwang
2012-01-01
Background Global climatic change is generally expected to stimulate net primary production, and consequently increase soil carbon (C) input. The enhanced C input together with potentially increased precipitation may affect soil microbial processes and plant growth. Methodology/Principal Findings To examine the effects of C and water additions on soil microbial properties and plant growth, we conducted an experiment lasting two years in a temperate steppe of northeastern China. We found that soil C and water additions significantly affected microbial properties and stimulated plant growth. Carbon addition significantly increased soil microbial biomass and activity but had a limited effect on microbial community structure. Water addition significantly increased soil microbial activity in the first year but the response to water decreased in the second year. The water-induced changes of microbial activity could be ascribed to decreased soil nitrogen (N) availability and to the shift in soil microbial community structure. However, no water effect on soil microbial activity was visible under C addition during the two years, likely because C addition alleviated nutrient limitation of soil microbes. In addition, C and water additions interacted to affect plant functional group composition. Water addition significantly increased the ratio of grass to forb biomass in C addition plots but showed only minor effects under ambient C levels. Our results suggest that soil microbial activity and plant growth are limited by nutrient (C and N) and water availability, and highlight the importance of nutrient availability in modulating the responses of soil microbes and plants to potentially increased precipitation in the temperate steppe. Conclusions/Significance Increased soil C input and precipitation would show significant effects on soil microbial properties and plant growth in the temperate steppe. These findings will improve our understanding of the responses of soil microbes and plants to the indirect and direct climate change effects. PMID:22496905
Escobar, Indra Elena C; Santos, Vilma M; da Silva, Danielle Karla A; Fernandes, Marcelo F; Cavalcante, Uided Maaze T; Maia, Leonor C
2015-06-01
The aim of this study was to describe the impact of re-vegetation on the restoration of microbial community structure and soil microbiological properties in sand dunes that had been affected by mining activity. Soil samples were collected during the dry and rainy seasons from a chronosequence (1, 9, 21 years) of re-vegetated dunes using a single preserved dune as a reference. The composition of the fatty acid methyl esters and soil microbial properties were evaluated. The results showed that the changes in microbial community structure were related to seasonal variations: biomarkers of Gram-positive bacteria were higher than Gram-negative bacteria during the dry season, showing that this group of organisms is more tolerant to these stressful conditions. The microbial community structure in the natural dune was less affected by seasonal variation compared to the re-vegetated areas, whereas the opposite was observed for microbiological properties. Thus, in general, the proportion of saprobic fungi was higher in the natural dune, whereas Gram-negative bacteria were proportionally more common in the younger areas. Although over time the re-vegetation allows the recovery of the microbial community and the soil functions, these communities and functions are different from those found in the undisturbed areas.
NASA Astrophysics Data System (ADS)
Mueller, Peter; Granse, Dirk; Thi Do, Hai; Weingartner, Magdalena; Nolte, Stefanie; Hoth, Stefan; Jensen, Kai
2016-04-01
The Wadden Sea (WS) region is Europe's largest wetland and home to approximately 20% of its salt marsh area. Mainland salt marshes of the WS are anthropogenically influenced systems and have traditionally been used for livestock grazing in wide parts. After foundation of WS National Parks in the late 1980s and early 1990s, artificial drainage has been abandoned; however, livestock grazing is still common in many areas of the National Parks and is under ongoing discussion as a habitat-management practice. While studies so far focused on effects of livestock grazing on biodiversity, little is known about how biogeochemical processes, element cycling, and particularly carbon sequestration are affected. Here, we present data from a recent field study focusing on grazing effects on soil properties, microbial exo-enzyme activity, microbial abundance and structure. Exo-enzyme activity was studied conducting digestive enzyme assays for various enzymes involved in C- and N cycling. Microbial abundance and structure was assessed measuring specific gene abundance of fungi and bacteria using quantitative PCR. Soil compaction induced by grazing led to higher bulk density and decreases in soil redox (Δ >100 mV). Soil pH was significantly lower in grazed parts. Further, the proportion of allochthonous organic matter (marine input) was significantly smaller in grazed vs. ungrazed sites, likely caused by a higher sediment trapping capacity of the taller vegetation in the ungrazed sites. Grazing induced changes in bulk density, pH and redox resulted in reduced activity of enzymes involved in microbial C acquisition; however, there was no grazing effect on enzymes involved in N acquisition. While changes in pH, bulk density or redox did not affect microbial abundance and structure, the relative amount of marine organic matter significantly reduced the relative abundance of fungi (F:B ratio). We conclude that livestock grazing directly affects microbial exo-enzyme activity, thus slowing down C turnover, and indirectly changes microbial structure, namely relative fungal abundance, by reducing high-quality marine organic matter inputs.
Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov
2016-06-15
The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling. Copyright © 2016 Elsevier B.V. All rights reserved.
Poli, Anna; Lazzari, Alexandra; Prigione, Valeria; Voyron, Samuele; Spadaro, Davide; Varese, Giovanna Cristina
2016-01-01
Rhizosphere and root-associated microbiota are crucial in determining plant health and in increasing productivity of agricultural crops. To date, research has mainly focused on the bacterial dimension of the microbiota. However, interest in the mycobiota is increasing, since fungi play a key role in soil ecosystems. We examined the effect of plant genotype, soil, and of Fusarium oxysporum f. sp. lycopersici (Fol) on the cultivable component of rhizosphere and root-associated mycobiota of tomato. Resistant and susceptible varieties were cultivated on two different soils (A and B), under glasshouse conditions. Isolated fungi were identified by morphological and molecular approaches. Differences were found between the rhizosphere and the roots, which in general displayed a lower number of species. The structure of the mycobiota was significantly affected by the soil type in the rhizosphere as well as by the plant genotype within the roots (NPERMANOVA, p < 0.05). The addition of Fol changed the community structure, particularly in soil A, where Penicillium spp. and Fusarium spp. were the dominant responding fungi. Overall, the results indicated that i) soil type and plant genotype affect the fungal communities; ii) plant roots select few species from the rhizosphere; and iii) the fungal community structure is influenced by Fol. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Soil Structure - A Neglected Component of Land-Surface Models
NASA Astrophysics Data System (ADS)
Fatichi, S.; Or, D.; Walko, R. L.; Vereecken, H.; Kollet, S. J.; Young, M.; Ghezzehei, T. A.; Hengl, T.; Agam, N.; Avissar, R.
2017-12-01
Soil structure is largely absent in most standard sampling and measurements and in the subsequent parameterization of soil hydraulic properties deduced from soil maps and used in Earth System Models. The apparent omission propagates into the pedotransfer functions that deduce parameters of soil hydraulic properties primarily from soil textural information. Such simple parameterization is an essential ingredient in the practical application of any land surface model. Despite the critical role of soil structure (biopores formed by decaying roots, aggregates, etc.) in defining soil hydraulic functions, only a few studies have attempted to incorporate soil structure into models. They mostly looked at the effects on preferential flow and solute transport pathways at the soil profile scale; yet, the role of soil structure in mediating large-scale fluxes remains understudied. Here, we focus on rectifying this gap and demonstrating potential impacts on surface and subsurface fluxes and system wide eco-hydrologic responses. The study proposes a systematic way for correcting the soil water retention and hydraulic conductivity functions—accounting for soil-structure—with major implications for near saturated hydraulic conductivity. Modification to the basic soil hydraulic parameterization is assumed as a function of biological activity summarized by Gross Primary Production. A land-surface model with dynamic vegetation is used to carry out numerical simulations with and without the role of soil-structure for 20 locations characterized by different climates and biomes across the globe. Including soil structure affects considerably the partition between infiltration and runoff and consequently leakage at the base of the soil profile (recharge). In several locations characterized by wet climates, a few hundreds of mm per year of surface runoff become deep-recharge accounting for soil-structure. Changes in energy fluxes, total evapotranspiration and vegetation productivity are less significant but they can reach up to 10% in specific locations. Significance for land-surface and hydrological modeling and implications for distributed domains are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisk, W.J.; Modera, M.P.; Sextro, R.G.
1992-02-01
We describe the experimental approach, structures, and instrumentation of a research project on radon generation and transport in soil and entry into basements. The overall approach is to construct small precisely-fabricated basements in areas of different geology and climate, to control the pressures and ventilation rates in the structures, and to monitor radon concentrations and other relevant parameters over a period of one year or more. Two nearly air-tight structures have been constructed at the first site. The floor of each structure contains adjustable-width slots that serve as the only significant pathway for advective entry of radon. A layer ofmore » gravel underlays the floor of one structure; otherwise they are identical. The structures are instrumented for continuous or periodic monitoring of soil, structural, and meteorological parameters that affect radon entry. The pressure difference that drives advective radon entry can be maintained constant or varied over time. Soil gas and radon entry rates and associated parameters, such as soil gas pressures and radon concentrations, have been monitored for a range of steady-state and time-varying pressure differences between the interior of the structure and the soil. Examples of the experimentally-measured pressure and permeability fields in the soil around a structure are presented and discussed.« less
Guo, Qingwei; Wan, Rui; Xie, Shuguang
2014-01-01
The objective of this study was to investigate the impact of exogenous urea nitrogen on ammonia-oxidizing bacteria (AOB) and other soil bacterial communities in soil bioaugmented for simazine remediation. The previously isolated simazine-degrading Arthrobacter sp. strain SD1 was used to degrade the herbicide. The effect of urea on the simazine degradation capacity of the soil bioaugmented with Arthrobacter strain SD1 was assessed using quantitative PCR targeting the s-triazine-degrading trzN and atzC genes. Structures of bacterial and AOB communities were characterized using terminal restriction fragment length polymorphism. Urea fertilizer could affect simazine biodegradation and decreased the proportion of its trzN and atzC genes in soil augmented with Arthrobacter strain SD1. Bioaugmentation process could significantly alter the structures of both bacterial and AOB communities, which were strongly affected by urea amendment, depending on the dosage. This study could provide some new insights towards s-triazine bioremediation and microbial ecology in a bioaugmented system. However, further studies are necessary in order to elucidate the impact of different types and levels of nitrogen sources on s-triazine-degraders and bacterial and AOB communities in bioaugmented soil.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-10
... property PINs listed above. The deletion of these two parcels from the Site affects all surface soils, subsurface soils, structures and groundwater within the boundaries of these parcels. In 2005, the ETA...
NUTRIENT DYNAMICS IN RELATION TO GEOMORPHOLOGY OF RIVERINE WETLANDS
Variation in water depth and soil properties associated with geomorphic structures can affect riverine wetland nutrient dynamics by altering biogeochemical processes. We examined the seasonal influence of soils and geomorphology on nutrient forms and concentrations in riverine we...
Understanding Cultivar-Specificity and Soil Determinants of the Cannabis Microbiome
Winston, Max E.; Hampton-Marcell, Jarrad; Zarraonaindia, Iratxe; ...
2014-06-16
Understanding microbial partnerships with the medicinally and economically important crop Cannabis has the potential to affect agricultural practice by improving plant fitness and production yield. Furthermore, Cannabis presents an interesting model to explore plant-microbiome interactions as it produces numerous secondary metabolic compounds. Here we present the first description of the endorhiza-, rhizosphere-, and bulk soil-associated microbiome of five distinct Cannabis cultivars. Bacterial communities of the endorhiza showed significant cultivar-specificity. When controlling cultivar and soil type the microbial community structure was significantly different between plant cultivars, soil types, and between the endorhiza, rhizosphere and soil. In conclusion, the influence of soilmore » type, plant cultivar and sample type differentiation on the microbial community structure provides support for a previously published two-tier selection model, whereby community composition across sample types is determined mainly by soil type, while community structure within endorhiza samples is determined mainly by host cultivar.« less
Understanding Cultivar-Specificity and Soil Determinants of the Cannabis Microbiome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winston, Max E.; Hampton-Marcell, Jarrad; Zarraonaindia, Iratxe
Understanding microbial partnerships with the medicinally and economically important crop Cannabis has the potential to affect agricultural practice by improving plant fitness and production yield. Furthermore, Cannabis presents an interesting model to explore plant-microbiome interactions as it produces numerous secondary metabolic compounds. Here we present the first description of the endorhiza-, rhizosphere-, and bulk soil-associated microbiome of five distinct Cannabis cultivars. Bacterial communities of the endorhiza showed significant cultivar-specificity. When controlling cultivar and soil type the microbial community structure was significantly different between plant cultivars, soil types, and between the endorhiza, rhizosphere and soil. In conclusion, the influence of soilmore » type, plant cultivar and sample type differentiation on the microbial community structure provides support for a previously published two-tier selection model, whereby community composition across sample types is determined mainly by soil type, while community structure within endorhiza samples is determined mainly by host cultivar.« less
Visual assessment of soil structure quality in an agroextractivist system in Southeastern Amazonia
NASA Astrophysics Data System (ADS)
Fernanda Simões da Silva, Laura; Stuchi Boschi, Raquel; Ortega Gomes, Matheus; Cooper, Miguel
2016-04-01
Soil structure is considered a key factor in the functioning of soil, affecting its ability to support plant and animal life, and moderate environmental quality. Numerous methods are available to evaluate soil structure based on physical, chemical and biological indicators. Among the physical indicators, the attributes most commonly used are soil bulk density, porosity, soil resistance to penetration, tensile strength of aggregates, soil water infiltration, and available water. However, these methods are expensive and generally time costly for sampling and laboratorial procedures. Recently, evaluations using qualitative and semi-quantitative indicators of soil structure quality have gained importance. Among these methods, the method known as Visual Evaluation of Soil Structure (VESS) (Ball et al., 2007; Guimarães et al., 2011) can supply this necessity in temperate and tropical regions. The study area is located in the Piranheira Praialta Agroextrativist Settlement Project in the county of Nova Ipixuna, Pará, Brazil. Two toposequences were chosen, one under native forest and the other under pasture. Pits were opened in different landscape positions (upslope, midslope and downslope) for soil morphological, micromorphological and physical characterization. The use of the soil visual evaluation method (SVE) consisted in collecting an undisturbed soil sample of approximately 25 cm in length, 20 cm in width and 10 cm in depth. 12 soil samples were taken for each land use. The samples were manually fragmented, respecting the fracture planes between the aggregates. The SVE was done comparing the fragmented sample with a visual chart and scores were given to the soil structure. The categories that define the soil structure quality (Qe) vary from 1 to 5. Lower scores mean better soil structure. The final score calculation was done using the classification key of Ball et al. (2007) adapted by Guimarães (2011). A change in soil structure was observed between forest and pasture. The presence of layers of different depths, and size and shape of aggregates resulted in a lower Qe in the forest soils (Qe= 2,04 ±0,4), followed by the pasture (Qe= 3,09 ± 1,3). These results indicate certain degradation in the soil structure in the pasture. The variability of the soil structure in the forest samples was lower. The pasture samples presented a worse soil structure when compared to the forest, although their Qe values can be considered good.
Yuste, Jorge Curiel; Barba, Josep; Fernandez-Gonzalez, Antonio José; Fernandez-Lopez, Manuel; Mattana, Stefania; Martinez-Vilalta, Jordi; Nolis, Pau; Lloret, Francisco
2012-01-01
The aim of this study was to understand how drought-induced tree mortality and subsequent secondary succession would affect soil bacterial taxonomic composition as well as soil organic matter (SOM) quantity and quality in a mixed Mediterranean forest where the Scots pine (Pinus sylvestris) population, affected by climatic drought-induced die-off, is being replaced by Holm-oaks (HO; Quercus ilex). We apply a high throughput DNA pyrosequencing technique and 13C solid-state Nuclear Magnetic Resonance (CP-MAS 13C NMR) to soils within areas of influence (defined as an surface with 2-m radius around the trunk) of different trees: healthy and affected (defoliated) pines, pines that died a decade ago and healthy HOs. Soil respiration was also measured in the same spots during a spring campaign using a static close-chamber method (soda lime). A decade after death, and before aerial colonization by the more competitive HOs have even taken place, we could not find changes in soil C pools (quantity and/or quality) associated with tree mortality and secondary succession. Unlike C pools, bacterial diversity and community structure were strongly determined by tree mortality. Convergence between the most abundant taxa of soil bacterial communities under dead pines and colonizer trees (HOs) further suggests that physical gap colonization was occurring below-ground before above-ground colonization was taken place. Significantly higher soil respiration rates under dead trees, together with higher bacterial diversity and anomalously high representation of bacteria commonly associated with copiotrophic environments (r-strategic bacteria) further gives indications of how drought-induced tree mortality and secondary succession were influencing the structure of microbial communities and the metabolic activity of soils. PMID:23301169
Exotic cheatgrass and loss of soil biota decrease the performance of a native grass
Suzanne M. Owen; Carolyn Hull Sieg; Nancy Collins Johnson; Catherine A. Gehring
2013-01-01
Soil disturbances can alter microbial communities including arbuscular mycorrhizal (AM) fungi, which may in turn, affect plant community structure and the abundance of exotic species. We hypothesized that altered soil microbial populations owing to disturbance would contribute to invasion by cheatgrass (Bromus tectorum), an exotic annual grass, at the expense of the...
Effects of biochar on dechlorination of hexachlorobenzene and the bacterial community in paddy soil.
Song, Yang; Bian, Yongrong; Wang, Fang; Herzberger, Anna; Yang, Xinglun; Gu, Chenggang; Jiang, Xin
2017-11-01
Anaerobic reductive dechlorination is an important degradation pathway for chlorinated organic contaminants in paddy soil. This study investigated the effects of amending paddy soil with wheat straw biochar on both the dechlorination of hexachlorobenzene (HCB), a typical highly chlorinated contaminant, and on the structure of soil bacteria communities. Soil amendment of 0.1% biochar did not significantly affect the dechlorination of HCB in the soil. However, biochar amendment at higher application levels (5%) stimulated the dechlorination of HCB in the first month of anaerobic incubation and inhibited the dechlorination of HCB after that period. The stimulation effect may be ascribed to the graphite carbon and carbon-centered persistent radicals, which are redox active, in biochar. The inhibiting effect could be partly ascribed to the reduced bioavailability of HCB in biochar-amended soils. High-throughput sequencing revealed that the amendment of biochar changed the soil bacterial community structure but not the bacterial abundances and diversities. The relative abundance of Dehalococcoidaceae in the tested soils showed a significant relationship with the dechlorination percentages of HCB, indicating that Dehalococcoidaceae may be the main HCB-dechlorinating bacteria in the studied paddy soil. The results indicated that low application levels of biochar did not affect the dechlorination of HCB in the paddy soil, while high application levels of biochar mainly inhibited the dechlorination of HCB due to the reduced bioavailability of HCB and the reduced abundances of certain dechlorinating bacteria in the biochar-amended paddy soil. Copyright © 2017 Elsevier Ltd. All rights reserved.
Analysing Structure Dynamics in Arable Soils using X-ray Micro-Tomography
NASA Astrophysics Data System (ADS)
Schlüter, S.; Weller, U.; Vogel, H.-J.
2009-04-01
Structure is a dynamic property of soil. It interacts with many biotic and abiotic features and controls various soil functions. We analyzed soil structure within different plots of the ''Static Fertilisation Experiment'' at the agricultural research station in Bad Lauchstaedt (Germany) using X-ray micro tomography. The aim was to investigate in how far different levels of organic carbon, increased microbial activity and enhanced plant growth affects structural properties of an arable soil. Since 106 years one plot has experienced a constant application of farmyard manure and fertilisers, whereas the other has never been fertilised in this period. Intact soil cores from the chernozem soil at the two plots were taken from a depth of 5 to 15 cm (Ap-horizon) and 35 to 45 cm (Ah-horizon) to analyse structural changes with depth and in two different seasons (spring and summer) to investigate structure dynamics. The pore structure was analysed by quantifying the mean geometrical and topological characteristics of the pore network as a function of pore size. This was done by a combination of Minkowski functionals and morphological size distibution. For small structural features close to the image resolution the results clearly depend on the applied filtering technique and segmentation thresholds. Therefore the application of different image enhancement techniques is discussed. Furthermore, a new method for an automated determination of grey value thesholds for the segmentation of CT-images into pore space and solid is developed and evaluated. We highlight the relevance of image resolution for structure analysis. Results of the structure analysis reveal that the spring samples of the ploughed layer (Ap-horizon) from the fertilised plot have significantly higher macroporosities (P < 0.05) than those from the non-fertilised plot. The internal connectivity of the pore network is better in the fertilised plot and the pore size distribution was found to be different, too. The differences in porosity and pore connectivity increase from spring to summer. Both plots were compacted by a rolling machine in late winter. So the difference in structure dynamics is interpreted as an enhanced structure resiliency in the fertilised and carbon enriched plot after that compaction. A comparison with porosity features of a nearby reference profil under grassland demonstrates that the impact of tillage on pore structure is higher than the different contents in organic carbon. The carbon enriched horizon beneath the ploughed layer (Ah-horizon) shows no differences in pore size distribution and connectivity as a function of fertilisation. Thus, at that soil depth, no long-term effects of fertilization in terms of soil structure are detectable. Obviously, the highly different energy input during 106 years only affects the structure of the top soil.
Kim, Hye Min; Lee, Min Jin; Jung, Ji Young; Hwang, Chung Yeon; Kim, Mincheol; Ro, Hee-Myong; Chun, Jongsik; Lee, Yoo Kyung
2016-11-01
The increasing temperature in Arctic tundra deepens the active layer, which is the upper layer of permafrost soil that experiences repeated thawing and freezing. The increasing of soil temperature and the deepening of active layer seem to affect soil microbial communities. Therefore, information on soil microbial communities at various soil depths is essential to understand their potential responses to climate change in the active layer soil. We investigated the community structure of soil bacteria in the active layer from moist acidic tundra in Council, Alaska. We also interpreted their relationship with some relevant soil physicochemical characteristics along soil depth with a fine scale (5 cm depth interval). The bacterial community structure was found to change along soil depth. The relative abundances of Acidobacteria, Gammaproteobacteria, Planctomycetes, and candidate phylum WPS-2 rapidly decreased with soil depth, while those of Bacteroidetes, Chloroflexi, Gemmatimonadetes, and candidate AD3 rapidly increased. A structural shift was also found in the soil bacterial communities around 20 cm depth, where two organic (upper Oi and lower Oa) horizons are subdivided. The quality and the decomposition degree of organic matter might have influenced the bacterial community structure. Besides the organic matter quality, the vertical distribution of bacterial communities was also found to be related to soil pH and total phosphorus content. This study showed the vertical change of bacterial community in the active layer with a fine scale resolution and the possible influence of the quality of soil organic matter on shaping bacterial community structure.
NASA Astrophysics Data System (ADS)
Walmsley, Alena; Vachová, Pavla; Vach, Marek
2016-04-01
This research was investigating whether topographic features, which determine soil nutrient and moisture distribution, in combination with soil fauna (wireworm and earthworm) presence, affect plant community composition at a spontaneously revegetated post mining area with an undulating surface. Two sites of different age with 3 types of topographic features were selected, soil moisture and nutrient content were measured, plant community composition and soil macrofauna community was sampled at each position. Wireworms were present at all positions and were most abundant at bottoms of waves at the younger site; their presence was correlated with several plant species, but the direction of the interaction isn't clear. Earthworms were only present at the older site and had highest abundance at flat sections. Earthworm presence affected the amount of nitrogen in soil - the most nitrogen content was at the site with highest earthworm density and was followed by higher diversity of plant community. The plant community composition was generally correlated with plant available nutrient content - especially P and N. We infer that topographic features affect nutrient and soil fauna distribution, which consequently influences plant community composition.
Long, Xi-En; Chen, Chengrong; Xu, Zhihong; He, Ji-Zheng
2014-02-01
Fire shapes global biome distribution and promotes the terrestrial biogeochemical cycles. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) play a vital role in the biogeochemical cycling of nitrogen (N). However, behaviors of AOB and AOA under long-term prescribed burning remain unclear. This study was to examine how fire affected the abundances and communities of soil AOB and AOA. A long-term repeated forest fire experiment with three burning treatments (never burnt, B0; biennially burnt, B2; and quadrennially burnt, B4) was used in this study. The abundances and community structure of soil AOB and AOA were determined using quantitative PCR, restriction fragment length polymorphism and clone library. More frequent fires (B2) increased the abundance of bacterium amoA gene, but tended to decrease archaeal amoA genes. Fire also modified the composition of AOA and AOB communities. Canonical correspondence analysis showed soil pH and dissolved organic C (DOC) strongly affected AOB genotypes, while nitrate-N and DOC shaped the AOA distribution. The increased abundance of bacterium amoA gene by fires may imply an important role of AOB in nitrification in fire-affected soils. The fire-induced shift in the community composition of AOB and AOA demonstrates that fire can disturb nutrient cycles. © 2013.
Zhang, Yu-Lan; Sun, Cai-Xia; Chen, Zhen-Hua; Li, Dong-Po; Liu, Xing-Bin; Chen, Li-Jun; Wu, Zhi-Jie; Du, Jian-Xiong
2010-05-01
The infrared spectrum was used to discuss structure change of soil humus and components of chemical groups in soil humic acids (HA) and fulvic acids (FA) isolated from soils in different fertilization treatment after 26 year's fertilization. The result indicated that using the infrared spectroscopy method for the determination of humus, humus fractions (HA and FA) and their structure is feasible. Fertilization affected the structure and content of soil humus and aromatization degree. After 26 years' fertilization, the infrared spectrum shapes with different treatments are similar, but the characteristic peak intensity is obviously different, which reflects the effects of different fertilization treatments on the structure and amounts of soil humus or functional groups. Compared with no fertilization, little molecule saccharides decreased and aryl-groups increased under application of inorganic fertilizer or combined application of organic and chemical fertilizer. The effect was greater in Treatment NPK and M+NPK than in Treatment M1 N and M2 N. Organic and NPK fertilizer increased the development of soil and increased soil quality to a certain extent. Results showed that organic fertilization increased aromatization degree of soil humus and humus fractions distinctly. The authors could estimate soil humus evolvement of different fertilization with infrared spectroscopy.
Liu, Dongyan; Tago, Kanako; Hayatsu, Masahito; Tokida, Takeshi; Sakai, Hidemitsu; Nakamura, Hirofumi; Usui, Yasuhiro; Hasegawa, Toshihiro; Asakawa, Susumu
2016-01-01
Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions. PMID:27600710
Liu, Dongyan; Tago, Kanako; Hayatsu, Masahito; Tokida, Takeshi; Sakai, Hidemitsu; Nakamura, Hirofumi; Usui, Yasuhiro; Hasegawa, Toshihiro; Asakawa, Susumu
2016-09-29
Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions.
Luo, Da; Shi, Zuo-Min; Tang, Jing-Chao; Liu, Shi-Rong; Lu, Li-Hua
2014-09-01
The effects of three plantation stands, Erythrophleumf ordii (EF), Pinus massoniana (PM), and their mixed plantation (MP), on soil microbial biomass and microbial community structure in south subtropical China were studied by the method of phospholipid fatty acids (PLFAs) analysis. The results showed that the amounts of microbial total PLFAs and PLFAs of each microbial group in these three plantation stand soils were significantly higher in dry season than in rainy season. In dry season, the amounts of microbial total PLFAs, bacteria PLFAs, fungi PLFAs, and actinomycetes PLFAs were the highest in the PM soil, moderate in the MP soil, and the lowest in the EF soil. But in rainy season, the amounts of microbial total PLFAs, bacteria PLFAs, fungi PLFAs, and arbuscular mycorrhizal fungi (AMF) PLFAs in the EF soil were higher than in the MP soil, and were significantly higher than in the PM soil. Principal component analysis (PCA) indicated that the variations in soil microbial community structure composition were affected by both plantation types and seasons. Redundancy analysis (RDA) of soil microbial community structure and environmental factors showed that soil temperature and moisture, pH, total nitrogen content, and ammonium nitrogen content had significant correlations with PLFA signatures. In addition, the ratio of fungi PLFAs to bacteria PLFAs in the MP soil was the highest among the three stand soils within the whole year, indicating that mixed plantation stands could facilitate the stability of the soil ecosystem.
Let's Break it Down: A Study of Organic Decomposition Rates in Clay Soil
NASA Astrophysics Data System (ADS)
Weiss, E.
2016-12-01
In this experiment I will be testing if temperature affects the organic decomposition rates in clay soil. I will need to be able to clean and weigh each filter paper without disrupting my data damaging or brushing off additional paper material. From there I need to be able to analyze and interpret my data to factor anything else that may affect the decomposition rates in the soil. Soil decomposers include bacteria and fungi. They obtain energy from plant and animal detritus through aerobic decomposition, which is similar to how humans break down sugar. The formula is: C6H12O6 + O2 → CO2 + H2O + energy. Besides oxygen and sugar the organisms need nutrients such as water and sustainable temperatures. Decomposition is important to us because it helps regulate soil structure, moisture, temperature, and provides nutrients to soil organisms. This matters on a global scale since decomposers release a large amount of carbon when breaking down matter, which contributes to greenhouse gasses such as carbon dioxide and methane. These greenhouse gasses affect the earth's climate. People who care about decomposition are farmers and those in agriculture, as well as environmental scientists. Even national parks might care because decomposition may affect park safety, how the park looks, and the amount of plants and wildlife. Things that can affect decomposition are the decomposers in the soil, temperature, and water or moisture. My secondary research also showed that PH and chemical composition of the soil affect the rate of decomposition.Cold or freezing temperatures can help preserve organic material in soil because it freezes the soil and moisture, making it too dense for the organic decomposers to break down the organic matter. Soil also can be preserved by drying out and being stored at 4º Celsius (or 39º Fahrenheit) for 28 days. However, soil can degrade slowly in these conditions because it is not frozen and can be oxidized.
Penton, C. Ryan; Gupta, Vadakattu V. S. R.; Yu, Julian; Tiedje, James M.
2016-01-01
We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI) were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungal community structure, replicate dispersion and the number of operational taxonomic units (OTUs) retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation. PMID:27313569
Changes in the Bacterial Community Structure of Remediated Anthracene-Contaminated Soils
Delgado-Balbuena, Laura; Bello-López, Juan M.; Navarro-Noya, Yendi E.; Rodríguez-Valentín, Analine; Luna-Guido, Marco L.; Dendooven, Luc
2016-01-01
Mixing soil or adding earthworms (Eisenia fetida (Savigny, 1826)) accelerated the removal of anthracene, a polycyclic aromatic hydrocarbon, from a pasture and an arable soil, while a non-ionic surfactant (Surfynol® 485) inhibited the removal of the contaminant compared to the untreated soil. It was unclear if the treatments affected the soil bacterial community and consequently the removal of anthracene. Therefore, the bacterial community structure was monitored by means of 454 pyrosequencing of the 16S rRNA gene in the pasture and arable soil mixed weekly, amended with Surfynol® 485, E. fetida or organic material that served as food for the earthworms for 56 days. In both soils, the removal of anthracene was in the order: mixing soil weekly (100%) > earthworms applied (92%) > organic material applied (77%) > untreated soil (57%) > surfactant applied (34%) after 56 days. There was no clear link between removal of anthracene from soil and changes in the bacterial community structure. On the one hand, application of earthworms removed most of the contaminant from the arable soil and had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of the Acidobacteria, Chloroflexi and Gemmatimonadetes, and an increase in that of the Proteobacteria compared to the unamended soil. Mixing the soil weekly removed all anthracene from the arable soil, but had little or no effect on the bacterial community structure. On the other hand, application of the surfactant inhibited the removal of anthracene from the arable soil compared to the untreated soil, but had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of Cytophagia (Bacteroidetes), Chloroflexi, Gemmatimonadetes and Planctomycetes and an increase in that of the Flavobacteria (Bacteroidetes) and Proteobacteria. Additionally, the removal of anthracene was similar in the different treatments of both the arable and pasture soil, but the effect of application of carrot residue, earthworms or the surfactant on the bacterial community structure was more accentuated in the arable soil than in the pasture soil. It was found that removal of anthracene was not linked to changes in the bacterial community structure. PMID:27727277
NASA Astrophysics Data System (ADS)
Becker, Joscha; Gütlein, Adrian; Sierra Cornejo, Natalia; Kiese, Ralf; Hertel, Dietrich; Kuzyakov, Yakov
2015-04-01
The savannah biome is a hotspot for biodiversity and wildlife conservation in Africa and recently got in the focus of research on carbon sequestration. Savannah ecosystems are under strong pressure from climate and land-use change, especially around populous areas like the Mt. Kilimanjaro region. Savannah vegetation in this area consists of grassland with isolated trees and is therefore characterized by high spatial variation of canopy cover, aboveground biomass and root structure. Canopy structure is known to affect microclimate, throughfall and evapotranspiration and thereby controls soil moisture conditions. Consequently, the canopy structure is a major regulator for soil ecological parameters and soil-atmospheric trace gas exchange (CO2, N2O, CH4) in water limited environments. The spatial distribution of these parameters and the connection between above and belowground processes are important to understand and predict ecosystem changes and estimate its vulnerability. Our objective was to determine trends and changes of soil parameters and relate their spatial variability to the vegetation structure. We chose three trees from each of the two most dominant species (Acacia nilotica and Balanites aegyptiaca) in our research area. For each tree, we selected transects with nine sampling points of the same relative distances to the stem. Distances were calculated in relation to the crown radius. At these each sampling point a soil core was taken and separated in 0-10 cm and 10-30 cm depth. We measured soil carbon (C) and nitrogen (N) storage, microbial biomass carbon C and N, soil respiration as well as root biomass and -density, soil temperature and soil water content. Each tree was characterized by crown spread, leaf area index and basal area. Preliminary results show that C and N stocks decreased about 50% with depth independently of distance to the tree. Soil water content under the tree crown increased with depth while it decreased under grass cover. Microbial Biomass C and N in the upper 10 cm decreased with distance (C: r²=0.22, p<0.001; N: r²=0.3, p<0.001) as well as total soil respiration. This decrease was affected by tree size but independent from tree species. We conclude that savannah ecosystems exhibit a large spatial variability of soil parameters within the upper horizons which is strongly depend on the structure of aboveground biomass.
NASA Astrophysics Data System (ADS)
Bykova, Galina; Umarova, Aminat; Tyugai, Zemfira; Milanovskiy, Evgeny; Shein, Evgeny
2017-04-01
Intensive tillage affects the properties of soil: decrease in content of soil organic matter and in hydrophobicity of the soil's solid phase, the reduction of amount of water stable aggregates - all this leads to deterioration of the structure of the soil and affects the process of movement of moisture in the soil profile. One of the hypotheses of soil's structure formation ascribes the formation of water stable aggregates with the presence of hydrophobic organic substances on the surface of the soil's solid phase. The aim of this work is to study the effect of tillage on properties of typical chernozems (pachic Voronic Chernozems, Haplic Chernozems) (Russia, Kursk region), located under the forest and under the arable land. The determination of soil-water contact angle was performed by a Drop Shape Analyzer DSA100 (Krüss GmbH, Germany) by the static sessile drop method. For all samples the content of total and organic carbon by dry combustion in oxygen flow and the particle size distribution by the laser diffraction method on the device Analysette 22 comfort, FRITCH, Germany were determined. The estimation of aggregate composition was performed by dry sieving (AS 200, Retsch, Germany), the content of water stable aggregates was estimated by the Savvinov method. There was a positive correlation between the content of organic matter and soil's wettability in studied soils, a growth of contact angle with the increasing the content of organic matter. Under the forest the content of soil organic matter was changed from 6,41% on the surface up to 1,9% at the depth of 100 cm. In the Chernozem under the arable land the organic carbon content in arable horizon is almost two times less. The maximum of hydrophobicity (78.1o) was observed at the depth of 5 cm under the forest. In the profile under the arable land the contact angle value at the same depth was 50o. The results of the structure analysis has shown a decrease in the content of agronomically valuable and water stable aggregates in the profile under arable land. These data indicate the correlation between the wettability of soils with the content of organic matter and their influence on the formation of water stable structure, as well as the negative impact of tillage on the analyzed characteristics.
Ground-Water Levels and Soil Characteristics in a Forested Typic Glossaqualf
Peter L. Lorio
1977-01-01
The presence of impermeable layers can affect the development of a soil and its water regime. In a forested Typic Glossaqualf in southwest Louisiana, moisture, density, and piezometer measurements revealed an impermeable layer of soil between about 1.8 and 2.8 m below the surface. A high proportion of very fine sand and development of platy structure appeared related...
The influence of nitrogen fertilization on the magnitude of rhizosphere effects
NASA Astrophysics Data System (ADS)
Zhu, B.; Panke-Buisse, K.; Kao-Kniffin, J.
2012-12-01
The labile carbon released from roots to the rhizosphere enhances soil microbial activity and nutrient availability, but factors that regulate such "rhizosphere effects" are poorly understood. Nitrogen fertilization may suppress rhizosphere effects by reducing plant carbon allocation belowground. Here we investigated the impact of nitrogen fertilization (+100 mg NH4NO3-N kg soil-1) on the magnitude of rhizosphere effects of two grass species (Bermuda grass Cynodon dactylon and smooth crabgrass Digitaria ischaemum) grown in a nutrient-poor soil for 80-100 days inside a growth chamber. Rhizosphere effects were estimated by the percentage difference between the planted soil (rhizosphere soil) and the unplanted soil (bulk soil) for several assays. We found that the rhizosphere soil of both plants had higher pH (+ 0.5~0.7 units), similar microbial biomass carbon, but lower microbial biomass nitrogen (- 27~37%) compared to the bulk soil. The rate of net N mineralization and the activity of three soil enzymes that degrade chitin (NAG), protein (LAP) and lignin (peroxidase) and produce mineral nitrogen were generally enhanced by the rhizosphere effects (up to 80%). Although nitrogen fertilization significantly increased plant biomass, it generally affected microbial biomass, activity and net N mineralization rate to a similar extent between rhizosphere soil and bulk soil, and thus did not significantly impact the magnitude of rhizosphere effects. Moreover, the community structure of soil bacteria (indicated by T-RFLP) showed remarkable divergence between the planted and unplanted soils, but not between the control and fertilized soils. Collectively, these results suggest that grass roots affects soil microbial activity and community structure, but short-term nitrogen fertilization may not significantly influence these rhizosphere effects.
Ma, Zhiliang; Zhao, Wenqiang; Zhao, Chunzhang; Wang, Dong; Liu, Mei; Li, Dandan; Liu, Qing
2018-01-01
Information on how soil microbial communities respond to warming is still scarce for alpine scrub ecosystems. We conducted a field experiment with two plant treatments (plant removal or undisturbed) subjected to warmed or unwarmed conditions to examine the effects of warming and plant removal on soil microbial community structures during the growing season in a Sibiraea angustata scrubland of the eastern Qinghai-Tibetan Plateau. The results indicate that experimental warming significantly influenced soil microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN), but the warming effects were dependent on the plant treatments and sampling seasons. In the plant-removal plots, warming did not affect most of the microbial variables, while in the undisturbed plots, warming significantly increased the abundances of actinomycete and Gram-positive bacterial groups during the mid-growing season (July), but it did not affect the fungi groups. Plant removal significantly reduced fungal abundance throughout the growing season and significantly altered the soil microbial community structure in July. The interaction between warming and plant removal significantly influenced the soil MBC and MBN and the abundances of total microbes, bacteria and actinomycete throughout the growing season. Experimental warming significantly reduced the abundance of rare taxa, while the interaction between warming and plant removal tended to have strong effects on the abundant taxa. These findings suggest that the responses of soil microbial communities to warming are regulated by plant communities. These results provide new insights into how soil microbial community structure responds to climatic warming in alpine scrub ecosystems.
Ma, Zhiliang; Zhao, Wenqiang; Zhao, Chunzhang; Wang, Dong; Liu, Mei; Li, Dandan
2018-01-01
Information on how soil microbial communities respond to warming is still scarce for alpine scrub ecosystems. We conducted a field experiment with two plant treatments (plant removal or undisturbed) subjected to warmed or unwarmed conditions to examine the effects of warming and plant removal on soil microbial community structures during the growing season in a Sibiraea angustata scrubland of the eastern Qinghai–Tibetan Plateau. The results indicate that experimental warming significantly influenced soil microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN), but the warming effects were dependent on the plant treatments and sampling seasons. In the plant-removal plots, warming did not affect most of the microbial variables, while in the undisturbed plots, warming significantly increased the abundances of actinomycete and Gram-positive bacterial groups during the mid-growing season (July), but it did not affect the fungi groups. Plant removal significantly reduced fungal abundance throughout the growing season and significantly altered the soil microbial community structure in July. The interaction between warming and plant removal significantly influenced the soil MBC and MBN and the abundances of total microbes, bacteria and actinomycete throughout the growing season. Experimental warming significantly reduced the abundance of rare taxa, while the interaction between warming and plant removal tended to have strong effects on the abundant taxa. These findings suggest that the responses of soil microbial communities to warming are regulated by plant communities. These results provide new insights into how soil microbial community structure responds to climatic warming in alpine scrub ecosystems. PMID:29668711
Priha; Grayston; Pennanen; Smolander
1999-10-01
The aim of this study was to determine whether Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) and silver birch (Betula pendula Roth) seedlings have a selective influence on the soil microbial community structure and activity and whether this varies in different soils. Seedlings of pine, spruce and birch were planted into pots of two soil types: an organic soil and a mineral soil. Pots without seedlings were also included. After one growing season, microbial biomass C (C(mic)) and N (N(mic)), C mineralization, net ammonification, net nitrification, denitrification potential, phospholipid fatty acid (PLFA) patterns and community level physiological profiles (CLPPs) were measured in the rhizosphere soil of the seedlings. In the organic soil, C(mic) and N(mic) were higher in the birch rhizosphere than in pine and spruce rhizosphere. The C mineralization rate was not affected by tree species. Unplanted soil contained the highest amount of mineral N and birch rhizosphere the lowest, but rates of net N mineralization and net nitrification did not differ between treatments. The microbial community structure, measured by PLFAs, had changed in the rhizospheres of all tree species compared to the unplanted soil. Birch rhizosphere was most clearly separated from the others. There was more of the fungal specific fatty acid 18:2omega6,9 and more branched fatty acids, common in Gram-positive bacteria, in this soil. CLPPs, done with Biolog GN plates and 30 additional substrates, separated only birch rhizosphere from the others. In the mineral soil, roots of all tree species stimulated C mineralization in soil and prevented nitrification, but did not affect C(mic) and N(mic), PLFA patterns or CLPPs. The effects of different tree species did not vary in the mineral soil. Thus, in the mineral soil, the strongest effect on soil microbes was the presence of a plant, regardless of the tree species, but in the organic soil, different tree species varied in their influence on soil microbes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuperman, R.G.
Soil macroinvertebrate communities were studied in ecologically analogous oak-hickory forests across a three-state atmospheric pollution gradient in Illinois, Indiana, and Ohio. The goal was to investigate changes in the community structure of soil fauna in study sites receiving different amounts of acidic deposition for several decades and the possible relationships between these changes and physico-chemical properties of soil. The study revealed significant differences in the numbers of soil animals among the three study sites. The sharply differentiated pattern of soil macroinvertebrate fauna seems closely linked to soil chemistry. Significant correlations of the abundance of soil macroinvertebrates with soil parameters suggestmore » that their populations could have been affected by acidic deposition in the region. Abundance of total soil macroinvertebrates decreased with the increased cumulative loading of acidic deposition. Among the groups most sensitive to deposition were: earthworms gastropods, dipteran larvae, termites, and predatory beetles. The results of the study support the hypothesis that chronic long-term acidic deposition could aversely affect the soil decomposer community which could cause lower organic matter turnover rates leading to an increase in soil organic matter content in high deposition sites.« less
Plant diversity and root traits benefit physical properties key to soil function in grasslands.
Gould, Iain J; Quinton, John N; Weigelt, Alexandra; De Deyn, Gerlinde B; Bardgett, Richard D
2016-09-01
Plant diversity loss impairs ecosystem functioning, including important effects on soil. Most studies that have explored plant diversity effects belowground, however, have largely focused on biological processes. As such, our understanding of how plant diversity impacts the soil physical environment remains limited, despite the fundamental role soil physical structure plays in ensuring soil function and ecosystem service provision. Here, in both a glasshouse and a long-term field study, we show that high plant diversity in grassland systems increases soil aggregate stability, a vital structural property of soil, and that root traits play a major role in determining diversity effects. We also reveal that the presence of particular plant species within mixed communities affects an even wider range of soil physical processes, including hydrology and soil strength regimes. Our results indicate that alongside well-documented effects on ecosystem functioning, plant diversity and root traits also benefit essential soil physical properties. © 2016 The Authors Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Transport of four pharmaceuticals in different horizons of three soil types
NASA Astrophysics Data System (ADS)
Kodesova, Radka; Svatkova, Paula; Klement, Ales; Jaksik, Ondrej; Golovko, Oksana; Fer, Miroslav; Kocarek, Martin; Nikodem, Antonin; Grabic, Roman
2015-04-01
Soil structure, which varies in different soil types and the horizons of these soil types, has a significant impact on water flow and contaminant transport in soils. Transport of many contaminants is in addition strongly influenced by their sorption on soil particles. Transport of four pharmaceuticals (sulfamethoxazole, trimethoprim, atenolol and carbamazepine) was studied in soil columns (a diameter of 10.5 cm and a height of 13 cm) taken from all diagnostic horizons of three different soil types (Haplic Luvisol, Greyic Phaeozem and Haplic Cambisol). The irrigation by water contaminated by a mixture of all four compounds followed by ponding infiltration of distilled water was simulated and water outflow and solute concentrations from the bottom of the soil sample was monitored in time. The highest infiltration rates were observed for soil samples from the Bt horizons of the Greyic Phaeozem that exhibited prismatic structure, followed by rates observed in the Ap horizons of the Haplic Luvisol, Greyic Phaeozem and Haplic Cambisol (due to their granular soil structure and presence of root channels). The lowest infiltration rate was measured for the Bw horizon of the Haplic Cambisol, which had a poorly developed soil structure and a low fraction of macropores. Compound discharge was however also highly affected by their sorption on solids. The highest mobility was observed for sulfamethoxazole followed by carbamazepine atenolol and trimethoprim, which corresponds to measured sorption isotherms. Mobility of ionizable compounds in different soil samples was influenced by pH (i.e. degree and form of their ionization) and sites available for absorption. Mobility of sulfamethoxazole decreased with decreasing pH (i.e. the largest sorption measured in horizons of the Haplic Cambisol). While mobility of atenolol and trimethoprim decreased with increasing base cation saturation, and with increasing organic matter content for carbamazepine. As result of both affects (i.e. soil structure and compounds' sorption) the highest discharge of all compounds was observed from the Ap horizon of the Greyic Phaeozem followed by compound discharge from the C horizons of the Greyic Phaeozem and the C and Bt2 horizons of the Haplic Luvisol. Acknowledgement: The authors acknowledge the financial support of the Czech Science Foundation (Project No. 13-12477S, Transport of pharmaceuticals in soils). References: Kodesova, R., Grabic, R., Kocarek, M., Klement, A., Golovko, O., Fer, M., Nikodem, A., Jaksik, O., Pharmaceuticals' sorptions relative to properties of thirteen different soils. Science of the Total Environment 511 (2015) 435-443.
Response of soil microbial activities and microbial community structure to vanadium stress.
Xiao, Xi-Yuan; Wang, Ming-Wei; Zhu, Hui-Wen; Guo, Zhao-Hui; Han, Xiao-Qing; Zeng, Peng
2017-08-01
High levels of vanadium (V) have long-term, hazardous impacts on soil ecosystems and biological processes. In the present study, the effects of V on soil enzymatic activities, basal respiration (BR), microbial biomass carbon (MBC), and the microbial community structure were investigated through 12-week greenhouse incubation experiments. The results showed that V content affected soil dehydrogenase activity (DHA), BR, and MBC, while urease activity (UA) was less sensitive to V stress. The average median effective concentration (EC 50 ) thresholds of V were predicted using a log-logistic dose-response model, and they were 362mgV/kg soil for BR and 417mgV/kg soil for DHA. BR and DHA were more sensitive to V addition and could be used as biological indicators for soil V pollution. According to a polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis, the structural diversity of the microbial community decreased for soil V contents ranged between 254 and 1104mg/kg after 1 week of incubation. As the incubation time increased, the diversity of the soil microbial community structure increased for V contents ranged between 354 and 1104mg/kg, indicating that some new V-tolerant bacterial species might have replicated under these conditions. Copyright © 2017 Elsevier Inc. All rights reserved.
Elevated Air Humidity Changes Soil Bacterial Community Structure in the Silver Birch Stand.
Truu, Marika; Ostonen, Ivika; Preem, Jens-Konrad; Lõhmus, Krista; Nõlvak, Hiie; Ligi, Teele; Rosenvald, Katrin; Parts, Kaarin; Kupper, Priit; Truu, Jaak
2017-01-01
Soil microbes play a fundamental role in forest ecosystems and respond rapidly to changes in the environment. Simultaneously with the temperature increase the climate change scenarios also predict an intensified hydrological cycle for the Baltic Sea runoff region. The aim of this study was to assess the effect of elevated air humidity on the top soil microbial community structure of a silver birch ( Betula pendula Roth.) stand by using a free air humidity manipulation facility (FAHM). The bacterial community structures of bulk soil and birch rhizosphere were analyzed using high-throughput sequencing of bacteria-specific16S rRNA gene fragments and quantification of denitrification related genes. The increased air humidity altered both bulk soil and rhizosphere bacterial community structures, and changes in the bacterial communities initiated by elevated air humidity were related to modified soil abiotic and biotic variables. Network analysis revealed that variation in soil bacterial community structural units is explained by altered abiotic conditions such as increased pH value in bulk soil, while in rhizosphere the change in absorptive root morphology had a higher effect. Among root morphological traits, the absorptive root diameter was strongest related to the bacterial community structure. The changes in bacterial community structures under elevated air humidity are associated with shifts in C, N, and P turnover as well as mineral weathering processes in soil. Increased air humidity decreased the nir and nosZ gene abundance in the rhizosphere bacterial community. The potential contribution of the denitrification to the N 2 O emission was not affected by the elevated air humidity in birch stand soil. In addition, the study revealed a strong link between the bacterial community structure, abundance of denitrification related genes, and birch absorptive root morphology in the ecosystem system adaptation to elevated air humidity.
Elevated Air Humidity Changes Soil Bacterial Community Structure in the Silver Birch Stand
Truu, Marika; Ostonen, Ivika; Preem, Jens-Konrad; Lõhmus, Krista; Nõlvak, Hiie; Ligi, Teele; Rosenvald, Katrin; Parts, Kaarin; Kupper, Priit; Truu, Jaak
2017-01-01
Soil microbes play a fundamental role in forest ecosystems and respond rapidly to changes in the environment. Simultaneously with the temperature increase the climate change scenarios also predict an intensified hydrological cycle for the Baltic Sea runoff region. The aim of this study was to assess the effect of elevated air humidity on the top soil microbial community structure of a silver birch (Betula pendula Roth.) stand by using a free air humidity manipulation facility (FAHM). The bacterial community structures of bulk soil and birch rhizosphere were analyzed using high-throughput sequencing of bacteria-specific16S rRNA gene fragments and quantification of denitrification related genes. The increased air humidity altered both bulk soil and rhizosphere bacterial community structures, and changes in the bacterial communities initiated by elevated air humidity were related to modified soil abiotic and biotic variables. Network analysis revealed that variation in soil bacterial community structural units is explained by altered abiotic conditions such as increased pH value in bulk soil, while in rhizosphere the change in absorptive root morphology had a higher effect. Among root morphological traits, the absorptive root diameter was strongest related to the bacterial community structure. The changes in bacterial community structures under elevated air humidity are associated with shifts in C, N, and P turnover as well as mineral weathering processes in soil. Increased air humidity decreased the nir and nosZ gene abundance in the rhizosphere bacterial community. The potential contribution of the denitrification to the N2O emission was not affected by the elevated air humidity in birch stand soil. In addition, the study revealed a strong link between the bacterial community structure, abundance of denitrification related genes, and birch absorptive root morphology in the ecosystem system adaptation to elevated air humidity. PMID:28421053
NASA Astrophysics Data System (ADS)
Mettrop, I.; Cammeraat, L. H.; Verbeeten, E.
2009-04-01
Termites are important ecosystem-engineers in subtropical and tropical regions. The effect of termite activity affecting soil infiltration is well documented in the Sahelian region. Most studies find increased infiltration rates on surfaces that are affected by termite activity in comparison to crusted areas showing non-termite presence. Crusted agricultural fields in the Sanmatenga region in Burkina Faso with clear termite activity were compared to control fields without visual ground dwelling termite activity. Fine scale rainfall simulations were carried out on crusted termite affected and control sites. Furthermore soil moisture change, bulk density, soil organic matter as well as general soil characteristics were studied. The top soils in the study area were strongly crusted (structural crust) after the summer rainfall and harvest of millet. They have a loamy sand texture underlain by a shallow sandy loam Bt horizon. The initial soil moisture conditions were significantly higher on the termite plots when compared to control sites. It was found that the amount of runoff produced on the termite plots was significantly higher, and also the volumetric soil moisture content after the experiments was significantly lower if compared to the control plots. Bulk density showed no difference whereas soil organic matter was significantly higher under termite affected areas, in comparison to the control plots. Lab tests showed no significant difference in hydrophobic behavior of the topsoil and crust material. Micro and macro-structural properties of the topsoil did not differ significantly between the termite sites and the control sites. The texture of the top 5 cm of the soil was also found to be not significantly different. The infiltration results are contradictory to the general literature, which reports increased infiltration rates after prolonged termite activity although mostly under different initial conditions. The number of nest entrances was clearly higher in the termite areas, but apparently did not significantly affect infiltration. The increased soil organic matter contents in the termite affected areas however, are as expected from literature, but did not improve soil aggregation which would be expected given the importance of organic matter in soil aggregation in this type of soils. One of the explanations for the reduced infiltration rates might be that termites bring clay from the finer textured subsoil to the surface to build casts over the organic material on the surface (mainly millet stems). It is speculated that the excavated clay material could be involved in crust formation, only present is in the upper 0.5 cm of the soil crust, which is enough to block pores in the crust surface, hampering infiltration. The topsoil aggregates are slaking under the summer rainfall and the increase in fine textured material, excavated by the termites, could be incorporated into the crust and reduce infiltration. Furthermore this specific effect might also be related to the type of termite involved, as impacts from ecosystem engineers on their environment is highly dependent on the specific species involved.
NASA Astrophysics Data System (ADS)
Zaller, Johann G.; Winter, Silvia; Strauss, Peter; Querner, Pascal; Kriechbaum, Monika; Pachinger, Bärbel; Gómez, José A.; Campos, Mercedes; Landa, Blanca; Popescu, Daniela; Comsa, Maria; Iliescu, Maria; Tomoiaga, Liliana; Bunea, Claudiu-Ioan; Hoble, Adela; Marghitas, Liviu; Rusu, Teodor; Lora, Ángel; Guzmán, Gema; Bergmann, Holger
2015-04-01
Essential ecosystem services provided by viticultural landscapes result from diverse communities of above- and belowground organisms and their interactions. For centuries traditional viticulture was part of a multifunctional agricultural system including low-input grasslands and fruit trees resulting in a high functional biodiversity. However, in the last decades intensification and mechanisation of vineyard management caused a separation of production and conservation areas. As a result of management intensification including frequent tilling and/or use of pesticides several ecosystem services are affected leading to high rates of soil erosion, degradation of soil structure and fertility, contamination of groundwater and high levels of agricultural inputs. In this transdisciplinary BiodivERsA project we will examine to what extent differently intensive managed vineyards affect the activity and diversity of soil biota (e.g. earthworms, collembola, soil microorganisms) and how this feed back on aboveground biodiversity (e.g. weeds, pollinators). We will also investigate ecosystem services associated with soil faunal activity and biodiversity such as soil structure, the formation of stable soil aggregates, water infiltration, soil erosion as well as grape quality. These effects will become increasingly important as more extreme precipitation events are predicted with climate change. The socio-economic part of the project will investigate the role of diversely structured, species-rich viticultural landscapes as a cultural heritage providing aesthetic values for human well-being and recreation. The project objectives will be analysed at plot, field (vineyard) and landscape scales in vineyards located in Spain, France, Romania and Austria. A detailed engagement and dissemination plan for stakeholder at the different governance levels will accompany scientific research and will contribute to the implementation of best-practice recommendations for policy and farmers.
NASA Astrophysics Data System (ADS)
Yang, Fei; Zhang, Gan-Lin; Yang, Jin-Ling; Li, De-Cheng; Zhao, Yu-Guo; Liu, Feng; Yang, Ren-Min; Yang, Fan
2014-11-01
Soil water retention influences many soil properties and soil hydrological processes. The alpine meadows and steppes of the Qilian Mountains on the northeast border of the Qinghai-Tibetan Plateau form the source area of the Heihe River, the second largest inland river in China. The soils of this area therefore have a large effect on water movement and storage of the entire watershed. In order to understand the controlling factors of soil water retention and how they affect regional eco-hydrological processes in an alpine grassland, thirty-five pedogenic horizons in fourteen soil profiles along two facing hillslopes in typical watersheds of this area were selected for study. Results show that the extensively-accumulated soil organic matter plays a dominant role in controlling soil water retention in this alpine environment. We distinguished two mechanisms of this control. First, at high matric potentials soil organic matter affected soil water retention mainly through altering soil structural parameters and thereby soil bulk density. Second, at low matric potentials the water adsorbing capacity of soil organic matter directly affected water retention. To investigate the hydrological functions of soils at larger scales, soil water retention was compared by three generalized pedogenic horizons. Among these soil horizons, the mattic A horizon, a diagnostic surface horizon of Chinese Soil Taxonomy defined specially for alpine meadow soils, had the greatest soil water retention over the entire range of measured matric potentials. Hillslopes with soils having these horizons are expected to have low surface runoff. This study promotes the understanding of the critical role of alpine soils, especially the vegetated surface soils in controlling the eco-hydrological processes in source regions of the Heihe River watershed.
Effects of imidacloprid on soil microbial communities in different saline soils.
Zhang, Qingming; Xue, Changhui; Wang, Caixia
2015-12-01
The effects of imidacloprid in the soil environment are a worldwide concern. However, the impact of imidacloprid on soil microorganisms under salt stress is almost unknown. Therefore, an indoor incubation test was performed, and the denaturing gradient gel electrophoresis (DGGE) approach was used to determine the response of different saline soil bacterial and fungal community structures to the presence of imidacloprid (0.4, 2, 10 mg kg(-1)). The results showed that the soil bacterial diversity slightly declined with increasing imidacloprid concentration in soils with low salinity. In moderately saline soils, a new band in the DGGE profile suggested that imidacloprid could improve the soil bacterial diversity to some degree. An analysis of variance indicated that the measured soil bacterial diversity parameters were significantly affected by dose and incubation time. Compared with the control, the soil fungal community structure showed no obvious changes in low and moderately saline soils treated with imidacloprid. The results of these observations provide a basic understanding of the potential ecological effects of imidacloprid on different microorganisms in saline soils.
de Gannes, Vidya; Eudoxie, Gaius; Hickey, William J.
2014-01-01
Nitrification is a key process in soil nitrogen (N) dynamics, but relatively little is known about it in tropical soils. In this study, we examined soils from Trinidad to determine the edaphic drivers affecting nitrification levels and community structure of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in non-managed soils. The soils were naturally vegetated, ranged in texture from sands to clays and spanned pH 4 to 8. The AOA were detected by qPCR in all soils (ca. 105 to 106 copies archaeal amoA g−1 soil), but AOB levels were low and bacterial amoA was infrequently detected. AOA abundance showed a significant negative correlation (p<0.001) with levels of soil organic carbon, clay and ammonium, but was not correlated to pH. Structures of AOA and AOB communities, as determined by amoA terminal restriction fragment (TRF) analysis, differed significantly between soils (p<0.001). Variation in AOA TRF profiles was best explained by ammonium-N and either Kjeldahl N or total N (p<0.001) while variation in AOB TRF profiles was best explained by phosphorus, bulk density and iron (p<0.01). In clone libraries, phylotypes of archaeal amoA (predominantly Nitrososphaera) and bacterial amoA (predominanatly Nitrosospira) differed between soils, but variation was not correlated with pH. Nitrification potential was positively correlated with clay content and pH (p<0.001), but not to AOA or AOB abundance or community structure. Collectively, the study showed that AOA and AOB communities were affected by differing sets of edaphic factors, notably that soil N characteristics were significant for AOA, but not AOB, and that pH was not a major driver for either community. Thus, the effect of pH on nitrification appeared to mainly reflect impacts on AOA or AOB activity, rather than selection for AOA or AOB phylotypes differing in nitrifying capacity. PMID:24586878
NASA Astrophysics Data System (ADS)
Or, Dani; Ruiz, Siul; Schymanski, Stanlislaus
2015-04-01
Soil structure is the delicate arrangement of solids and voids that facilitate numerous hydrological and ecological soil functions ranging from water infiltration and retention to gaseous exchange and mechanical anchoring of plant roots. Many anthropogenic activities affect soil structure, e.g. via tillage and compaction, and by promotion or suppression of biological activity and soil carbon pools. Soil biological activity is critical to the generation and maintenance of favorable soil structure, primarily through bioturbation by earthworms and root proliferation. The study aims to quantify the mechanisms, rates, and energetics associated with soil bioturbation, using a new biomechanical model to estimate stresses required to penetrate and expand a cylindrical cavity in a soil under different hydration and mechanical conditions. The stresses and soil displacement involved are placed in their ecological context (typical sizes, population densities, burrowing rates and behavior) enabling estimation of mechanical energy requirements and impacts on soil organic carbon pool (in the case of earthworms). We consider steady state plastic cavity expansion to determine burrowing pressures of earthworms and plant roots, akin to models of cone penetration representing initial burrowing into soil volumes. Results show that with increasing water content the strain energy decreases and suggest trade-offs between cavity expansion pressures and energy investment for different root and earthworm geometries and soil hydration. The study provides a quantitative framework for estimating energy costs of bioturbation in terms of soil organic carbon or the mechanical costs of soil exploration by plant roots as well as mechanical and hydration limits to such activities.
You, Yeming; Wang, Juan; Huang, Xueman; Tang, Zuoxin; Liu, Shirong; Sun, Osbert J
2014-03-01
Forest soils store vast amounts of terrestrial carbon, but we are still limited in mechanistic understanding on how soil organic carbon (SOC) stabilization or turnover is controlled by biotic and abiotic factors in forest ecosystems. We used phospholipid fatty acids (PLFAs) as biomarker to study soil microbial community structure and measured activities of five extracellular enzymes involved in the degradation of cellulose (i.e., β-1,4-glucosidase and cellobiohydrolase), chitin (i.e., β-1,4-N-acetylglucosaminidase), and lignin (i.e., phenol oxidase and peroxidase) as indicators of soil microbial functioning in carbon transformation or turnover across varying biotic and abiotic conditions in a typical temperate forest ecosystem in central China. Redundancy analysis (RDA) was performed to determine the interrelationship between individual PFLAs and biotic and abiotic site factors as well as the linkage between soil microbial structure and function. Path analysis was further conducted to examine the controls of site factors on soil microbial community structure and the regulatory pathway of changes in SOC relating to microbial community structure and function. We found that soil microbial community structure is strongly influenced by water, temperature, SOC, fine root mass, clay content, and C/N ratio in soils and that the relative abundance of Gram-negative bacteria, saprophytic fungi, and actinomycetes explained most of the variations in the specific activities of soil enzymes involved in SOC transformation or turnover. The abundance of soil bacterial communities is strongly linked with the extracellular enzymes involved in carbon transformation, whereas the abundance of saprophytic fungi is associated with activities of extracellular enzymes driving carbon oxidation. Findings in this study demonstrate the complex interactions and linkage among plant traits, microenvironment, and soil physiochemical properties in affecting SOC via microbial regulations.
Carbon and nitrogen inputs affect soil microbial community structure and function
NASA Astrophysics Data System (ADS)
Liu, X. J. A.; Mau, R. L.; Hayer, M.; Finley, B. K.; Schwartz, E.; Dijkstra, P.; Hungate, B. A.
2016-12-01
Climate change has been projected to increase energy and nutrient inputs to soils, affecting soil organic matter (SOM) decomposition (priming effect) and microbial communities. However, many important questions remain: how do labile C and/or N inputs affect priming and microbial communities? What is the relationship between them? To address these questions, we applied N (NH4NO3 ; 100 µg N g-1 wk-1), C (13C glucose; 1000 µg C g-1 wk-1), C+N to four different soils for five weeks. We found: 1) N showed no effect, whereas C induced the greatest priming, and C+N had significantly lower priming than C. 2) C and C+N additions increased the relative abundance of actinobacteria, proteobacteria, and firmicutes, but reduced relative abundance of acidobacteria, chloroflexi, verrucomicrobia, planctomycetes, and gemmatimonadetes. 3) Actinobacteria and proteobacteria increased relative abundance over time, but most others decreased over time. 4) substrate additions (N, C, C+N) significantly reduced microbial alpha diversity, which also decreased over time. 5) For beta diversity, C and C+N formed significantly different communities compare to the control and N treatments. Overtime, microbial community structure significantly altered. Four soils have drastically different community structures. These results indicate amounts of substrate C were determinant factors in modulating the rate of SOM decomposition and microbial communities. Variable responses of different microbial communities to labile C and N inputs indicate that complex relationships between priming and microbial functions. In general, we demonstrate that energy inputs can quickly accelerate SOM decomposition whereas extra N input can slow this process, though both had similar microbial community responses.
Lu, Ping; Lin, Yin-Hua; Yang, Zhong-Qi; Xu, Yan-Peng; Tan, Fei; Jia, Xu-Dong; Wang, Miao; Xu, De-Rong; Wang, Xi-Zhuo
2015-01-01
This study investigated the influence of corn straw application on soil microbial communities and the relationship between such communities and soil properties in black soil. The crop used in this study was maize (Zea mays L.). The five treatments consisted of applying a gradient (50, 100, 150, and 200%) of shattered corn straw residue to the soil. Soil samples were taken from May through September during the 2012 maize growing season. The microbial community structure was determined using phospholipid fatty acid (PLFA) analysis. Our results revealed that the application of corn straw influenced the soil properties and increased the soil organic carbon and total nitrogen. Applying corn straw to fields also influenced the variation in soil microbial biomass and community composition, which is consistent with the variations found in soil total nitrogen (TN) and soil respiration (SR). However, the soil carbon-to-nitrogen ratio had no effect on soil microbial communities. The abundance of PLFAs, TN, and SR was higher in C1.5 than those in other treatments, suggesting that the soil properties and soil microbial community composition were affected positively by the application of corn straw to black soil. A Principal Component Analysis indicated that soil microbial communities were different in the straw decomposition processes. Moreover, the soil microbial communities from C1.5 were significantly different from those of CK (p < 0.05). We also found a high ratio of fungal-to-bacterial PLFAs in black soil and significant variations in the ratio of monounsaturated-to-branched fatty acids with different straw treatments that correlated with SR (p < 0.05). These results indicated that the application of corn straw positively influences soil properties and soil microbial communities and that these properties affect these communities. The individual PLFA signatures were sensitive indicators that reflected the changes in the soil environment condition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xiong, Wu; Zhao, Qingyun; Xue, Chao; Xun, Weibing; Zhao, Jun; Wu, Huasong; Li, Rong; Shen, Qirong
2016-01-01
Long-term vanilla monocropping often results in the occurrence of vanilla Fusarium wilt disease, seriously affecting its production all over the world. In the present study, vanilla exhibited significantly less Fusarium wilt disease in the soil of a long-term continuously cropped black pepper orchard. The entire fungal communities of bulk and rhizosphere soils between the black pepper-vanilla system (i.e., vanilla cropped in the soil of a continuously cropped black pepper orchard) and vanilla monoculture system were compared through the deep pyrosequencing. The results showed that the black pepper-vanilla system revealed a significantly higher fungal diversity than the vanilla monoculture system in both bulk and rhizosphere soils. The UniFrac-weighted PCoA analysis revealed significant differences in bulk soil fungal community structures between the two cropping systems, and fungal community structures were seriously affected by the vanilla root system. In summary, the black pepper-vanilla system harbored a lower abundance of Fusarium oxysporum in the vanilla rhizosphere soil and increased the putatively plant-beneficial fungal groups such as Trichoderma and Penicillium genus, which could explain the healthy growth of vanilla in the soil of the long-term continuously cropped black pepper field. Thus, cropping vanilla in the soil of continuously cropped black pepper fields for maintaining the vanilla industry is executable and meaningful as an agro-ecological system.
Xiong, Wu; Zhao, Qingyun; Xue, Chao; Xun, Weibing; Zhao, Jun; Wu, Huasong; Li, Rong; Shen, Qirong
2016-01-01
Long-term vanilla monocropping often results in the occurrence of vanilla Fusarium wilt disease, seriously affecting its production all over the world. In the present study, vanilla exhibited significantly less Fusarium wilt disease in the soil of a long-term continuously cropped black pepper orchard. The entire fungal communities of bulk and rhizosphere soils between the black pepper-vanilla system (i.e., vanilla cropped in the soil of a continuously cropped black pepper orchard) and vanilla monoculture system were compared through the deep pyrosequencing. The results showed that the black pepper-vanilla system revealed a significantly higher fungal diversity than the vanilla monoculture system in both bulk and rhizosphere soils. The UniFrac-weighted PCoA analysis revealed significant differences in bulk soil fungal community structures between the two cropping systems, and fungal community structures were seriously affected by the vanilla root system. In summary, the black pepper-vanilla system harbored a lower abundance of Fusarium oxysporum in the vanilla rhizosphere soil and increased the putatively plant-beneficial fungal groups such as Trichoderma and Penicillium genus, which could explain the healthy growth of vanilla in the soil of the long-term continuously cropped black pepper field. Thus, cropping vanilla in the soil of continuously cropped black pepper fields for maintaining the vanilla industry is executable and meaningful as an agro-ecological system. PMID:26903995
Crawford, John W.; Deacon, Lewis; Grinev, Dmitri; Harris, James A.; Ritz, Karl; Singh, Brajesh K.; Young, Iain
2012-01-01
Soils are complex ecosystems and the pore-scale physical structure regulates key processes that support terrestrial life. These include maintaining an appropriate mixture of air and water in soil, nutrient cycling and carbon sequestration. There is evidence that this structure is not random, although the organizing mechanism is not known. Using X-ray microtomography and controlled microcosms, we provide evidence that organization of pore-scale structure arises spontaneously out of the interaction between microbial activity, particle aggregation and resource flows in soil. A simple computational model shows that these interactions give rise to self-organization involving both physical particles and microbes that gives soil unique material properties. The consequence of self-organization for the functioning of soil is determined using lattice Boltzmann simulation of fluid flow through the observed structures, and predicts that the resultant micro-structural changes can significantly increase hydraulic conductivity. Manipulation of the diversity of the microbial community reveals a link between the measured change in micro-porosity and the ratio of fungal to bacterial biomass. We suggest that this behaviour may play an important role in the way that soil responds to management and climatic change, but that this capacity for self-organization has limits. PMID:22158839
Carbendazim induces a temporary change in soil bacterial community structure.
Wang, Xiuguo; Song, Min; Gao, Chunming; Dong, Bin; Zhang, Qun; Fang, Hua; Yu, Yunlong
2009-01-01
The effect of carbendazim applications on the diversity and structure of a soil bacterial community was studied under field conditions using temperature gradient gel electrophoresis (TGGE) and partial sequence analysis of PCR-amplified 16S rRNA gene. After four successive introductions of carbendazim at a level of 0.94 kg active ingredient (a.i.)/ha, the genetic diversity (expressed as Shannon index, H') decreased from 1.43 in the control to 1.29 in treated soil. This harmful effect seems to increase with the concentration of carbendazim. The value of H' in the soil treated with carbendazim at 4.70 kg a.i./ha was reduced to 1.05 (P < or = 0.05). The structure of soil bacterial community was also affected after four repeated applications of carbendazim at levels of 0.94, 1.88 and 4.70 kg a.i./ha, as seen in the relative intensities of the individual band. However, the bacterial community in carbendazim-treated soil recovered to that in the control 360 d after the first treatment. The results indicated that repeated applications of carbendazim could reduce soil microbial diversity and alter the bacterial community structure temporarily.
Activity, abundance and structure of ammonia-oxidizing microorganisms in plateau soils.
Dai, Yu; Wu, Zhen; Zhou, Qiheng; Zhao, Qun; Li, Ningning; Xie, Shuguang; Liu, Yong
2015-10-01
Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) can be involved in biotransformation of ammonia to nitrite in soil ecosystems. However, the distribution of AOA and AOB in plateau soils and influential factors remain largely unclear. In the present study, the activity, abundance and structure of ammonia oxidizers in different soils on the Yunnan Plateau were assessed using potential nitrification rates (PNRs), quantitative PCR assay and clone library analysis, respectively. Wide variation was found in both AOA and AOB communities in plateau soils. PNRs showed a significant positive correlation with AOB abundance. Both were determined by the ratio of organic carbon to nitrogen (C/N) and total phosphorous (TP). AOB could play a more important role in ammonia oxidation. AOB community diversity was likely affected by soil total nitrogen (TN) and total organic carbon (TOC) and was usually higher than AOA community diversity. Moreover, Nitrososphaera- and Nitrosospira-like organisms, respectively, were the dominant AOA and AOB in plateau soils. AOA community structure was likely shaped by TP and C/N, while AOB community structure was determined by pH. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Influences of Different Halophyte Vegetation on Soil Microbial Community at Temperate Salt Marsh.
Chaudhary, Doongar R; Kim, Jinhyun; Kang, Hojeong
2018-04-01
Salt marshes are transitional zone between terrestrial and aquatic ecosystems, occupied mainly by halophytic vegetation which provides numerous ecological services to coastal ecosystem. Halophyte-associated microbial community plays an important role in the adaptation of plants to adverse condition and also affected habitat characteristics. To explore the relationship between halophytes and soil microbial community, we studied the soil enzyme activities, soil microbial community structure, and functional gene abundance in halophytes- (Carex scabrifolia, Phragmites australis, and Suaeda japonica) covered and un-vegetated (mud flat) soils at Suncheon Bay, South Korea. Higher concentrations of total, Gram-positive, Gram-negative, total bacterial, and actinomycetes PLFAs (phospholipid fatty acids) were observed in the soil underneath the halophytes compared with mud flat soil and were highest in Carex soil. Halophyte-covered soils had different microbial community composition due to higher abundance of Gram-negative bacteria than mud flat soil. Similar to PLFA concentrations, the increased activities of β-glucosidase, cellulase, phosphatase, and sulfatase enzymes were observed under halophyte soil compared to mud flat soil and Carex exhibited highest activities. The abundance of archaeal 16S rRNA, fungal ITS, and denitrifying genes (nirK, nirS, and nosZ) were not influenced by the halophytes. Abundance bacterial 16S rRNA and dissimilatory (bi)sulfite (dsrA) genes were highest in Carex-covered soil. The abundance of functional genes involved in methane cycle (mcrA and pmoA) was not affected by the halophytes. However, the ratios of mcrA/pmoA and mcrA/dsrA increased in halophyte-covered soils which indicate higher methanogenesis activities. The finding of the study also suggests that halophytes had increased the microbial and enzyme activities, and played a pivotal role in shaping microbial community structure.
Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei
2017-01-01
Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, β-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils. PMID:28611747
Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei
2017-01-01
Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria , Chloroflexi , and Firmicutes increased whereas Cyanobacteria , β -proteobacteria , and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota , Thaumarchaeota , and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils.
NASA Astrophysics Data System (ADS)
Hardy, Brieuc; Cornelis, Jean-Thomas; Dufey, Joseph E.
2015-04-01
In the last decade, biochar has been increasingly investigated as a soil amendment for long-term soil carbon sequestration while improving soil fertility. On the short term, biochar application to soil generally increases soil respiration as well as microbial biomass and activity and affects significantly the microbial community structure. However, such effects are relatively short-term and tend to vanish over time. In our study, we investigated the long-term impact of charcoal accumulation and land-use on soil biota in temperate haplic Luvisols developed in the loess belt of Wallonia (Belgium). Charcoal-enriched soils were collected in the topsoil of pre-industrial (>150 years old) charcoal kilns in forest (4 sites) and cropland (5 sites). The topsoil of the adjacent charcoal-unaffected soils was sampled in a comparable way. Soils were characterized (pH, total, organic and inorganic C, total N, exchangeable Ca, Mg, K, Na, cation exchange capacity and available P) and natural soil organic matter (SOM) and black carbon (BC) contents were determined by differential scanning calorimetry. After rewetting at pF 2.5, soils were incubated during 140 days at 20 °C. At 70 days of incubation, 10 g of each soil were freeze dried in order to measure total microbial biomass and community structure by PLFA analysis. The PLFA dataset was analyzed by principal component analysis (PCA) while soil parameters were used as supplementary variables. For both agricultural and forest soils, the respiration rate is highly related to the total microbial biomass (R²=0.90). Both soil respiration and microbial biomass greatly depend on the SOM content, which indicates that the BC pool is relatively inert microbiologically. Land-use explains most of the variance in the PLFA dataset, largely governing the first principal component of the ACP. In forest soils, we observe a larger proportion of gram + bacteria, actinomycetes and an increased bacteria:fungi ratio compared to cropland, where gram - bacteria, arbuscular mycorrhizal fungi and 18:2 and 18:3 fungi are more present. BC is quite well represented (R=-0.765) by the third principal component of the PCA, representing 12.2 % of the total variance. It has limited impact on the community structure, particularly in cropland. However, in forest BC is negatively correlated (R=-0.785) with 18:1 fungi. The more pronounced effect of BC on community structure under forest could result from modified trophic conditions at kiln site (e.g. higher pH, lower available P content, …) while cultivation practices attenuated such differences over time in cropland. In conclusion, our survey tends to confirm that the influence of BC on the soil microbiological parameters is governed by indirect effects on trophic conditions. On the other hand, land-use affects dramatically soil microbial community structure.
Waldrop, Mark P.; Holloway, JoAnn M.; Smith, David; Goldhaber, Martin B.; Drenovsky, R.E.; Scow, K.M.; Dick, R.; Howard, Daniel M.; Wylie, Bruce K.; Grace, James B.
2017-01-01
Soil microbial communities control critical ecosystem processes such as decomposition, nutrient cycling, and soil organic matter formation. Continental scale patterns in the composition and functioning of microbial communities are related to climatic, biotic, and edaphic factors such as temperature and precipitation, plant community composition, and soil carbon, nitrogen, and pH. Although these relationships have been well explored individually, the examination of the factors that may act directly on microbial communities vs. those that may act indirectly through other ecosystem properties has not been well developed. To further such understanding, we utilized structural equation modeling (SEM) to evaluate a set of hypotheses about the direct and indirect effects of climatic, biotic, and edaphic variables on microbial communities across the continental United States. The primary goals of this work were to test our current understanding of the interactions among climate, soils, and plants in affecting microbial community composition, and to examine whether variation in the composition of the microbial community affects potential rates of soil enzymatic activities. A model of interacting factors created through SEM shows several expected patterns. Distal factors such as climate had indirect effects on microbial communities by influencing plant productivity, soil mineralogy, and soil pH, but factors related to soil organic matter chemistry had the most direct influence on community composition. We observed that both plant productivity and soil mineral composition were important indirect influences on community composition at the continental scale, both interacting to affect organic matter content and microbial biomass and ultimately community composition. Although soil hydrolytic enzymes were related to the moisture regime and soil carbon, oxidative enzymes were also affected by community composition, reflected in the abundance of soil fungi. These results highlight that soil microbial communities can be modeled within the context of multiple interacting ecosystem properties acting both directly and indirectly on their composition and function, and this provides a rich and informative context with which to examine communities. This work also highlights that variation in climate, microbial biomass, and microbial community composition can affect maximum rates of soil enzyme activities, potentially influencing rates of decomposition and nutrient mineralization in soils.
NASA Astrophysics Data System (ADS)
Hallett, Paul; Ogden, Mike
2015-04-01
Soil biology has a fascinating capacity to manipulate pore structure by altering or overcoming hydrological and mechanical properties of soil. Many have postulated, quite rightly, that this capacity of soil biology to 'engineer' its habitat drives its diversity, improves competitiveness and increases resilience to external stresses. A large body of observational research has quantified pore structure evolution accompanied by the growth of organisms in soil. Specific compounds that are exuded by organisms or the biological structures they create have been isolated and found to correlate well with observed changes to pore structure or soil stability. This presentation will provide an overview of basic mechanical and hydrological properties of soil that are affected by biology, and consider missing data that are essential to model how they impact soil structure evolution. Major knowledge gaps that prevent progress will be identified and suggestions will be made of how research in this area should progress. We call for more research to gain a process based understanding of structure formation by biology, to complement observational studies of soil structure before and after imposed biological activity. Significant advancement has already been made in modelling soil stabilisation by plant roots, by combining data on root biomechanics, root-soil interactions and soil mechanical properties. Approaches for this work were developed from earlier materials science and geotechnical engineering research, and the same ethos should be adopted to model the impacts of other biological compounds. Fungal hyphae likely reinforce soils in a similar way to plant roots, with successful biomechanical measurements of these micron diameter structures achieved with micromechanical test frames. Extending root reinforcement models to fungi would not be a straightforward exercise, however, as interparticle bonding and changes to pore water caused by fungal exudates could have a major impact on structure formation and stability. Biological exudates from fungi, bacteria or roots have been found to decrease surface tension and increase viscosity of pore water, with observed impacts to soil strength and water retention. Modelling approaches developed in granular mechanics and geotechnical engineering could be built upon to incorporate biological transformations of hydrological and mechanical properties of soil. With new testing approaches, adapted from materials science, pore scale hydromechanical impacts from biological exudates can be quantified. The research can be complemented with model organisms with differences in biological structures (e.g. root hair mutants), exudation or other properties. Coupled with technological advances that provide 4D imaging of soil structure at relatively rapid capture rates, the potential opportunities to disentangle and model how biology drives soil structure evolution and stability are vast. By quantifying basic soil hydrological and mechanical processes that are driven by soil biology, unknown unknowns may also emerge, providing new insight into how soils function.
NASA Astrophysics Data System (ADS)
Lozano, Elena; Grayston, Sue J.; Mataix-Solera, Jorge; Arcenegui, Victoria; Jimenez-Pinilla, Patricia; Mataix-Beneyto, Jorge
2015-04-01
Soil water repellency (SWR) is a property commonly observed in forest areas showing wettable and water repellent patches with high spatial variability. SWR can greatly influence the hydrology and the ecology of forest soils. The capacity of soil microorganisms to degrade different organic compounds depends upon species composition, so this may affect changes in SWR on the microsite scale (such as the presence of soil water repellent patches; Mülleret al., 2010). In the Mediterranean forest context, SWR has been found to be related to microbial community composition. The accumulation of different hydrophobic compounds might be causing the shifts in microbial community structure (Lozano et al., 2014). In this study we investigated the effects of SWR persistence on soil microbial community structure and enzyme activity under Pinus halepensis forest in three different sites: Petrer, Gorga and Jávea (Alicante, E Spain). Soil samples were classified into three different water repellency classes (wettable, slight or strongly water repellent samples) depending on the SWR persistence. The soil microbial community was determined through phospholipid fatty acids (PLFAs). Enzyme activities chosen for this study were cellulase, β-glucosidase and N-acetyl-β-glucosaminide (NAG). The relationships between microbiological community structure and some soil properties such as pH, Glomalin Related Soil Protein, soil organic matter content and soil respiration were also studied. Redundancy analyses and decomposition of the variances were performed to clarify how microbial community composition and enzyme activities are affected by SWR and soil properties. The effect of SWR on microbial community composition differed between locations. This effect was clearer in the Petrer site. Enzyme activity varied considerably depending on SWR persistence. The highest activities were found in slightly SWR samples and the lowest mostly in the strongly water repellent ones. These preliminary results suggest a possible influence of SWR on microbial structure and its activity in soils. References: Lozano, E., García-Orenes, F., Bárcenas-Moreno, G., Jiménez-Pinilla, P., Mataix-Solera, J., Arcenegui, V., Morugán-Coronado, A., Mataix-Beneyto, J., 2014. Relationships between soil water repellency and microbial community composition under different plant species in a Mediterranean semiarid forest. J. Hydrol. Hydromech., 62, 101-107 Müller, K., Deurer, M., Newton, P.C.D., 2010. Is there a link between elevated atmospheric carbon dioxide concentration, soil water repellency and soil carbon mineralization? Agric. Ecosyst. Environ., 139, 98-109. Acknowledgements: to the "Ministerio de Economía and Competitividad" of Spanish Government for finance the POSTFIRE project (CGL2013- 47862-C2-1-R), Generalitat Valenciana for PhD grant, and Spanish Soil Science Society and FUEGORED for their support.
Lim, Hyoun Soo; Hong, Soon Gyu; Kim, Ji Hee; Lee, Joohan; Choi, Taejin; Ahn, Tae Seok; Kim, Ok-Sun
2015-01-01
Given the diminished role of biotic interactions in soils of continental Antarctica, abiotic factors are believed to play a dominant role in structuring of microbial communities. However, many ice-free regions remain unexplored, and it is unclear which environmental gradients are primarily responsible for the variations among bacterial communities. In this study, we investigated the soil bacterial community around Terra Nova Bay of Victoria Land by pyrosequencing and determined which environmental variables govern the bacterial community structure at the local scale. Six bacterial phyla, Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, Cyanobacteria, and Bacteroidetes, were dominant, but their relative abundance varied greatly across locations. Bacterial community structures were affected little by spatial distance, but structured more strongly by site, which was in accordance with the soil physicochemical compositions. At both the phylum and species levels, bacterial community structure was explained primarily by pH and water content, while certain earth elements and trace metals also played important roles in shaping community variation. The higher heterogeneity of the bacterial community structure found at this site indicates how soil bacterial communities have adapted to different compositions of edaphic variables under extreme environmental conditions. Taken together, these findings greatly advance our understanding of the adaption of soil bacterial populations to this harsh environment. PMID:25799273
Visual soil evaluation - future research requirements
NASA Astrophysics Data System (ADS)
Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Ball, Bruce; Holden, Nick
2017-04-01
A review of Visual Soil Evaluation (VSE) techniques (Emmet-Booth et al., 2016) highlighted their established utility for soil quality assessment, though some limitations were identified; (1) The examination of aggregate size, visible intra-porosity and shape forms a key assessment criterion in almost all methods, thus limiting evaluation to structural form. The addition of criteria that holistically examine structure may be desirable. For example, structural stability can be indicated using dispersion tests or examining soil surface crusting, while the assessment of soil colour may indirectly indicate soil organic matter content, a contributor to stability. Organic matter assessment may also indicate structural resilience, along with rooting, earthworm numbers or shrinkage cracking. (2) Soil texture may influence results or impeded method deployment. Modification of procedures to account for extreme texture variation is desirable. For example, evidence of compaction in sandy or single grain soils greatly differs to that in clayey soils. Some procedures incorporate separate classification systems or adjust deployment based on texture. (3) Research into impacts of soil moisture content on VSE evaluation criteria is required. Criteria such as rupture resistance and shape may be affected by moisture content. It is generally recommended that methods are deployed on moist soils and quantification of influences of moisture variation on results is necessary. (4) Robust sampling strategies for method deployment are required. Dealing with spatial variation differs between methods, but where methods can be deployed over large areas, clear instruction on sampling is required. Additionally, as emphasis has been placed on the agricultural production of soil, so the ability of VSE for exploring structural quality in terms of carbon storage, water purification and biodiversity support also requires research. References Emmet-Booth, J.P., Forristal. P.D., Fenton, O., Ball, B.C. & Holden, N.M. 2016. A review of visual soil evaluation techniques for soil structure. Soil Use and Management, 32, 623-634.
Effect of simulated tillage on microbial autotrophic CO2 fixation in paddy and upland soils
Ge, Tida; Wu, Xiaohong; Liu, Qiong; Zhu, Zhenke; Yuan, Hongzhao; Wang, Wei; Whiteley, A. S.; Wu, Jinshui
2016-01-01
Tillage is a common agricultural practice affecting soil structure and biogeochemistry. To evaluate how tillage affects soil microbial CO2 fixation, we incubated and continuously labelled samples from two paddy soils and two upland soils subjected to simulated conventional tillage (CT) and no-tillage (NT) treatments. Results showed that CO2 fixation (14C-SOC) in CT soils was significantly higher than in NT soils. We also observed a significant, soil type- and depth-dependent effect of tillage on the incorporation rates of labelled C to the labile carbon pool. Concentrations of labelled C in the carbon pool significantly decreased with soil depth, irrespective of tillage. Additionally, quantitative PCR assays revealed that for most soils, total bacteria and cbbL-carrying bacteria were less abundant in CT versus NT treatments, and tended to decrease in abundance with increasing depth. However, specific CO2 fixation activity was significantly higher in CT than in NT soils, suggesting that the abundance of cbbL-containing bacteria may not always reflect their functional activity. This study highlights the positive effect of tillage on soil microbial CO2 fixation, and the results can be readily applied to the development of sustainable agricultural management. PMID:26795428
NASA Astrophysics Data System (ADS)
Van Stan, John; Rosier, Carl; Moore, Leslie; Gay, Trent; Reichard, James; Wu, Tiehang; Kan, Jinjun
2015-04-01
Identifying spatiotemporal influences on soil microbial community (SMC) structure is critical to our understanding of patterns in biogeochemical cycling and related ecological services (e.g., plant community structure, water quality, response to environmental change). Since forest canopy structure alters the spatiotemporal patterning of precipitation water and solute supplies to soils (via "throughfall"), is it possible that changes in SMC structure could arise from modifications in canopy elements? Our study investigates this question by monitoring throughfall water and dissolved ion supply to soils beneath a continuum of canopy structure: from large gaps (0% cover), to bare Quercus virginiana Mill. (southern live oak) canopy (~50-70%), to heavy Tillandsia usneoides L. (Spanish moss) canopy (>90% cover). Throughfall water supply diminished with increasing canopy cover, yet increased washoff/leaching of Na+, Cl-, PO43-, and SO42- from the canopy to the soils. Presence of T. usneoides diminished throughfall NO3-, but enhanced NH4+, concentrations supplied to subcanopy soils. The mineral soil horizon (0-10 cm) sampled in triplicate from locations receiving throughfall water and solutes from canopy gaps, bare canopy, and T. usneoides-laden canopy significantly differed in soil chemistry parameters (pH, Ca2+, Mg2+, CEC). Polymerase Chain Reaction-Denaturant Gradient Gel Electrophoresis (PCR-DGGE) banding patterns beneath similar canopy covers (experiencing similar throughfall dynamics) also produced high similarities per ANalyses Of SIMilarity (ANO-SIM), and clustered together when analyzed by Nonmetric Multidimensional Scaling (NMDS). These results suggest that modifications of forest canopy structures are capable of affecting mineral-soil horizon SMC structure via throughfall when canopies' biomass distribution is highly heterogeneous. As SMC structure, in many instances, relates to functional diversity, we suggest that future research seek to identify functional diversity shifts (e.g., nitrogen transformation) in response to canopy structural alterations of throughfall water/solute concentration
Simazine biodegradation in soil: analysis of bacterial community structure by in situ hybridization.
Caracciolo, Anna Barra; Grenni, Paola; Ciccoli, Roberto; Di Landa, Giuseppe; Cremisini, Carlo
2005-09-01
Pesticide and nitrate contamination of soil and groundwater from agriculture is an environmental and public health concern worldwide. Simazine, 6-chloro-N2,N4-diethyl-1,3,5-triazine-2,4-diamine, is a triazine herbicide used in agriculture for selective weed control with several types of crops and it is frequently applied to soils receiving N-fertilizers. Degradation experiments were performed in the laboratory to assess whether the biodegradation of simazine in soil may be influenced by the presence of urea. Simazine degradation rates under different experimental conditions (presence/absence of urea, microbiologically active/sterilized soil) were assessed together with the formation, degradation and transformation of its main metabolites in soil. Simazine degradation was affected by the presence of urea, in terms both of a smaller half-life (t(1/2)) and of a higher amount of desethyl-simazine formed. The soil bacterial community was also studied. Microbial abundances were determined by epifluorescence direct counting. Moreover in situ hybridization with rRNA-targeted fluorescent oligonucleotide probes was used to analyze the bacterial community structure. Fluorescent in situ hybridization (FISH) was used to detect specific groups of bacteria such as the alpha,beta,gamma-subdivisions of Proteobacteria, Gram-positive bacteria with a high G + C DNA content, Planctomycetes, Betaproteobacterial ammonia-oxidizing bacteria and nitrifying bacteria. The presence of the herbicide and/or urea affected the bacterial community structure, showing that FISH is a valuable tool for determining the response of bacterial populations to different environmental conditions. Copyright 2005 Society of Chemical Industry
Soil compaction: Evaluation of stress transmission and resulting soil structure
NASA Astrophysics Data System (ADS)
Naveed, Muhammad; Schjønning, Per; Keller, Thomas; Lamande, Mathieu
2016-04-01
Accurate estimation of stress transmission and resultant deformation in soil profiles is a prerequisite for the development of predictive models and decision support tools for preventing soil compaction. Numerous studies have been carried out on the effects of soil compaction, whilst relatively few studies have focused on the cause (mode of stress transmission in the soil). We have coupled both cause and effects together in the present study by carrying out partially confined compression tests on (1) wet aggregates, (2) air dry aggregates, and (3) intact soils to quantify stress transmission and compaction-resulted soil structure at the same time. Stress transmission was quantified using both X-ray CT and Tactilus sensor mat, and soil-pore structure was quantified using X-ray CT. Our results imply that stress transmission through soil highly depends on the magnitude of applied load and aggregate strength. As soon as the applied load is lower than the aggregate strength, the mode of stress transmission is discrete as stresses were mainly transmitted through chain of aggregates. With increasing applied load soil aggregates start deforming that transformed heterogeneous soil into homogenous, as a result stress transmission mode was shifted from discrete towards more like a continuum. Continuum-like stress transmission mode was better simulated with Boussinesq (1885) model based on theory of elasticity compared to discrete. The soil-pore structure was greatly affected by increasing applied stresses. Total porosity was reduced 5-16% and macroporosity 50-85% at 620 kPa applied stress for the intact soils. Similarly, significant changes in the morphological indices of the macropore space were also observed with increasing applied stresses.
Elevated enzyme activities in soils under the invasive nitrogen-fixing tree Falcataria moluccana
Steven D. Allison; Caroline Nielsen; R. Flint Hughes
2006-01-01
Like other N-fixing invasive species in Hawaii, Falcataria moluccana dramatically alters forest structure, litterfall quality and quantity, and nutrient dynamics. We hypothesized that these biogeochemical changes would also affect the soil microbial community and the extracellular enzymes responsible for carbon and nutrient mineralization. Across...
Prescribed fire, soil nitrogen dynamics, and plant responses in a semiarid grassland
USDA-ARS?s Scientific Manuscript database
Fire is a key driver of the structure and function of grassland ecosystems. In arid and semiarid ecosystems, where moisture limits plant production more than light, fire can potentially affect ecosystem dynamics through changes in soil moisture, temperature, and nitrogen cycling, as well as through ...
Penton, C. Ryan; Gupta, Vadakattu V. S. R.; Yu, Julian; ...
2016-06-02
We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI) were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungalmore » community structure, replicate dispersion and the number of operational taxonomic units (OTUs) retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penton, C. Ryan; Gupta, Vadakattu V. S. R.; Yu, Julian
We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI) were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungalmore » community structure, replicate dispersion and the number of operational taxonomic units (OTUs) retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation.« less
Liu, Yuan; Liu, Yongzhuo; Ding, Yuanjun; Zheng, Jinwei; Zhou, Tong; Pan, Genxing; Crowley, David; Li, Lianqing; Zheng, Jufeng; Zhang, Xuhui; Yu, Xinyan; Wang, Jiafang
2014-01-01
While microbial nitrogen transformations in soils had been known to be affected by heavy metal pollution, changes in abundance and community structure of the mediating microbial populations had been not yet well characterized in polluted rice soils. Here, by using the prevailing molecular fingerprinting and enzyme activity assays and comparisons to adjacent non-polluted soils, we examined changes in the abundance and activity of ammonia oxidizing and denitrifying communities of rice paddies in two sites with different metal accumulation situation under long-term pollution from metal mining and smelter activities. Potential nitrifying activity was significantly reduced in polluted paddies in both sites while potential denitrifying activity reduced only in the soils with high Cu accumulation up to 1300 mg kg−1. Copy numbers of amoA (AOA and AOB genes) were lower in both polluted paddies, following the trend with the enzyme assays, whereas that of nirK was not significantly affected. Analysis of the DGGE profiles revealed a shift in the community structure of AOA, and to a lesser extent, differences in the community structure of AOB and denitrifier between soils from the two sites with different pollution intensity and metal composition. All of the retrieved AOB sequences belonged to the genus Nitrosospira, among which species Cluster 4 appeared more sensitive to metal pollution. In contrast, nirK genes were widely distributed among different bacterial genera that were represented differentially between the polluted and unpolluted paddies. This could suggest either a possible non-specific target of the primers conventionally used in soil study or complex interactions between soil properties and metal contents on the observed community and activity changes, and thus on the N transformation in the polluted rice soils. PMID:25058658
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folts, D.D.
1972-11-01
Oribatid mites make up approximately 40 to 50% of the total microarthropods in the litter and soil. They are saprophagous, primary consumers in the litter and soil, and as a group could be considered to be on one trophic level. It has been suggested that oribatid mites could affect soil structure and formation by aiding in humification and mineralization, by enhancing the formation of soil structure, and by increasing the depth of the humus (02) horizon. Nutrient cycling and the breakdown of organic matter is believed to be an important function of oribatids. The mites influence nutrient cycling indirectly throughmore » the control of fungal and bacterial populations. It is possible that pesticides affect nutrient cycling as an indirect result of changes in oribatid populations. The pesticide DDT, although it has been banned throughout the entire country, is still produced for foreign markets and is in widespread use in many developing countries. The persistance of DDT in soil has been verified by a number of workers. This persistance is of potential danger to the balance of soil microarthropod populations long after the initial effect of the pesticide has disappeared. The objectives of this study were: (1) to determine quantitative changes in numbers of individuals of oribatids as a whole and changes in numbers of individualson the specific level; (2) to determine changes in the structure of the oribatid community that occurred as a result of DDT treatment; and (3) to compare the effect of the DDT on the oribatids of the upper three cm of soil with the oribatids from the fourth cm of soil.« less
NASA Astrophysics Data System (ADS)
Rosier, C. L.; Van Stan, J. T., II; Trammell, T. L.
2017-12-01
Urbanization alters environmental conditions such as temperature, moisture, carbon (C) and nitrogen (N) deposition affecting critical soil processes (e.g., C storage). Urban soils experience elevated N deposition (e.g., transportation, industry) and decreased soil moisture via urban heat island that can subsequently alter soil microbial community structure and activity. However, there is a critical gap in understanding how increased temperatures and pollutant deposition influences soil microbial community structure and soil C/N cycling in urban forests. Furthermore, canopy structural differences between individual tree species is a potentially important mechanism facilitating the deposition of pollutants to the soil. The overarching goal of this study is to investigate the influence of urbanization and tree species structural differences on the bacterial and fungal community and C and N content of soils experiencing a gradient of urbanization pressures (i.e., forest edge to interior; 150-m). Soil cores (1-m depth) were collected near the stem (< 0.5 meter) of two tree species with contrasting canopy and bark structure (Fagus grandifolia, vs. Liriodendron tulipifera), and evaluated for soil microbial structure via metagenomic analysis and soil C/N content. We hypothesize that soil moisture constraints coupled with increases in recalcitrant C will decrease gram negative bacteria (i.e., dependent on labile C) while increasing saprophytic fungal community abundance (i.e., specialist consuming recalcitrant C) within both surface and subsurface soils experiencing the greatest urban pressure (i.e., forest edge). We further expect trees located on the edge of forest fragments will maintain greater surface soil (< 20 cm) C concentrations due to decreased soil moisture constraining microbial activity (e.g., slower decay), and increased capture of recalcitrant C stocks from industrial/vehicle emission sources (e.g., black C). Our initial results support our hypotheses that urbanization alters soil microbial community composition via reduced soil moisture and carbon storage potential via deposition gradients. Further analyses will answer important questions regarding how individual tree species alters urban soil C storage, N retention, and microbial dynamics.
G. Gonzalez; F.J. Rivera-Figueroa; W. Gould; S.A. Cantrell; J.R. Pérez-Jiménez
2014-01-01
In this study, we determine differences in total biomass of soil microorganisms and community structure (using the most probable number of bacteria (MPN) and the number of fungal genera) in patterned ground features (PGF) and adjacent vegetated soils (AVS) in mesic sites from three High Arctic islands in order to characterize microbial dynamics as affected by...
NASA Astrophysics Data System (ADS)
Gonzalez-Meler, M. A.; Sturchio, N. C.; Sanchez-de Leon, Y.; Blanc-Betes, E.; Taneva, L.; Poghosyan, A.; Norby, R. J.; Filley, T. R.; Guilderson, T. P.; Welker, J. M.
2010-12-01
Biogeochemical carbon-cycle feedbacks to climate are apparent but uncertain, primarily because of gaps in mechanistic understanding on the ecosystem processes that drive carbon cycling and storage in terrestrial ecosystems, particularly in soils. Recent findings are increasingly recognizing the interaction between soil biota and the soil physical environment. Soil carbon turnover is partly determined by burial of organic matter and its physical and chemical protection. These factors are potentially affected by changes in climate (freezing-thawing or wet-drying cycles) or ecosystem structure including biological invasions. A major impediment to understanding dynamics of soil C in terrestrial systems is our inability to measure soil physical processes such as soil mixing rates or turnover of soil structures, including aggregates. Here we present a multiple radioisotope tracer approach (naturally occurring and man-made) to measure soil mixing rates in response to global change. We will present evidence of soil mixing rate changes in a temperate forest exposed to increased levels of atmospheric CO2 and in a tundra ecosystem exposed to increased thermal insulation. In both cases, radioisotope tracers proved to be an effective way to measure effects of global change on pedoturbation. Results also provided insights into the specific mechanisms involved in the responses. Elevated CO2 resulted in deeper soil mixing cells (increased by about 5cm on average) when compared to control soils as a consequence of changes in biota (increased root growth, higher earthworm density). In the tundra, soil warming induced higher rates of cryoturbation, resulting in what appears to be a net uplift of organic matter to the surface thereby exposing deeper C to decomposers. In both cases, global change factors affected the vertical distribution of C and changed the amount of bulk soil actively involved in soil processes. As a consequence, comparisons of C budgets to a given soil depth in response to global change factors may be misleading if they do not account for the depth change in the soil mixing cells.
Unsaturated flow processes in structurally-variable pathways in wildfire-affected soils and ash
NASA Astrophysics Data System (ADS)
Ebel, B. A.
2016-12-01
Prediction of flash flood and debris flow generation in wildfire-affected soils and ash hinges on understanding unsaturated flow processes. Water resources issues, such as groundwater recharge, also rely on our ability to quantify subsurface flow. Soil-hydraulic property data provide insight into unsaturated flow processes and timescales. A literature review and synthesis of existing data from the literature for wildfire-affected soils, including ash and unburned soils, facilitated calculating metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and the Green-Ampt wetting front parameter (Ψf) were significantly lower in burned soils compared to unburned soils, while field-saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity was substantially reduced in burned soils, leading to faster ponding times in response to rainfall. Ash had large values of S and Kfs compared to unburned and burned soils but intermediate values of Ψf, suggesting that ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant ( 100 mm) for unburned soils, but was more variable in burned soils. Post-wildfire changes in this ratio suggested that unburned soils had a balance between gravity and capillarity contributions to infiltration, which may depend on soil organic matter, while burning shifted infiltration more towards gravity contributions by reducing S. Taken together, the changes in post-wildfire soil-hydraulic properties increased the propensity for surface runoff generation and may have enhanced subsurface preferential flow through pathways altered by wildfire.
Tan, Wenbing; Xi, Beidou; Wang, Guoan; Jiang, Jie; He, Xiaosong; Mao, Xuhui; Gao, Rutai; Huang, Caihong; Zhang, Hui; Li, Dan; Jia, Yufu; Yuan, Ying; Zhao, Xinyu
2017-03-21
The electron transfer capacities (ETCs) of soil humic substances (HSs) are linked to the type and abundance of redox-active functional moieties in their structure. Natural temperature can affect the chemical structure of natural organic matter by regulating their oxidative transformation and degradation in soil. However, it is unclear if there is a direct correlation between ETC of soil HS and mean annual temperature. In this study, we assess the response of the electron-accepting and -donating capacities (EAC and EDC) of soil HSs to temperature by analyzing HSs extracted from soil set along glacial-interglacial cycles through loess-palaeosol sequences and along natural temperature gradients through latitude and altitude transects. We show that the EAC and EDC of soil HSs increase and decrease, respectively, with increasing temperature. Increased temperature facilitates the prevalence of oxidative degradation and transformation of HS in soils, thus potentially promoting the preferentially oxidative degradation of phenol moieties of HS or the oxidative transformation of electron-donating phenol moieties to electron-accepting quinone moieties in the HS structure. Consequently, the EAC and EDC of HSs in soil increase and decrease, respectively. The results of this study could help to understand biogeochemical processes, wherein the redox functionality of soil organic matter is involved in the context of increasing temperature.
NASA Astrophysics Data System (ADS)
Cheng, X.; Wu, J.
2016-12-01
Global change greatly alters the quality and quantity of plant litter inputs to soils, and further impacts soil organic matter (SOM) dynamics and soil respiration. However, the process-based understanding of how soil respiration may change with future shift in litter input is not fully understood. The Detritus Input and Removal Treatment (DIRT) experiment was conducted in coniferous forest (Platycladus orientalis (Linn.) Franco) ecosystem of central China to investigate the impact of above- and belowground litter input on soil respiration and the carbon-isotopic signature of soil respired CO2. Short-term (1-2 years) litter input manipulation significantly affected soil respiration, based on annual flux values, soil respiration was 31.9%, 20.5% and 37.2% lower in no litter (NL), no root (NR) and no input (NRNL), respectively, compared to control (CK). Whereas double litter (DL) treatment increased soil respiration by 9.1% compared to CK. The recalcitrance index of carbon (RIC) and the relative abundance of fungi increased under litter removal or root exclusion treatment (NL, NR and NRNL) compared to CK. Basal soil respiration was positively related to liable C and microbial biomass and negatively related to RIC and fungi to bacteria (F: B) ratio. The carbon-isotopic signature of soil respired CO2 enriched under litter removal and no input treatment, and slightly depleted under litter addition treatment compared to CK. Our results suggest that short-term litter input manipulation can affect the soil respiration by altering substrate availability and microbial community structure, and also impact the carbon-isotopic signature of soil respired CO2 possibly duo to change in the component of soil respiration and soil microclimate.
NASA Astrophysics Data System (ADS)
McGuire, K. J.; Bailey, S. W.; Ross, D. S.
2017-12-01
Heterogeneity in biophysical properties within catchments challenges how we quantify and characterize biogeochemical processes and interpret catchment outputs. Interactions between the spatiotemporal variability of hydrological states and fluxes and soil development can spatially structure catchments, leading to a framework for understanding patterns in biogeochemical processes. In an upland, glaciated landscape at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, USA, we are embracing the structure and organization of soils to understand the spatial relations between runoff production zones, distinct soil-biogeochemical environments, and solute retention and release. This presentation will use observations from the HBEF to demonstrate that a soil-landscape framework is essential in understanding the spatial and temporal variability of biogeochemical processes in this catchment. Specific examples will include how laterally developed soils reveal the location of active runoff production zones and lead to gradients in primary mineral dissolution and the distribution of weathering products along hillslopes. Soil development patterns also highlight potential carbon and nitrogen cycling hotspots, differentiate acidic conditions, and affect the regulation of surface water quality. Overall, this work demonstrates the importance of understanding the landscape-level structural organization of soils in characterizing the variation and extent of biogeochemical processes that occur in catchments.
[Community structure of soil fauna in Eucalyptus grandis plantations at different slope locations].
Zhao, Yu; Zhong, Yu; Zhang, Jian; Yang, Wan-qin
2010-09-01
To understand the effects of slope location on the community structure of soil fauna in Eucalyptus grandis plantation, an investigation was made on the soil fauna in 3 E. grandis plantations at different slope locations in the hilly area of Sichuan Province from January to October 2009. A total of 39,2762 individuals were observed, belonging to 146 groups, 7 phyla, 16 classes, and 31 orders. The community composition, trophic group, diversity, and seasonal dynamics of soil fauna in the plantations all varied with slope. The abundance of macro-fauna, xeric meso- and micro-fauna, saprophagous macro-fauna, and omnivorous xeric meso- and micro-fauna increased with the decrease of slope, indicating that soil fauna had sensitive responses to the soil environmental factors affected by slope. Significant differences in the diversity of soil saprophagous macro-fauna and hygrophilous meso- and micro-fauna were observed at different slope locations, suggesting that these two faunal groups could be used as the indicators of the habitat heterogeneity of E. grandis plantations at different slope. Overall, slope location had definite effects on the community structure and distribution of soil fauna in the E. grandis plantations, but the effects were not statistically significant.
Coal mining activities change plant community structure due to air pollution and soil degradation.
Pandey, Bhanu; Agrawal, Madhoolika; Singh, Siddharth
2014-10-01
The aim of this study was to investigate the effects of coal mining activities on the community structures of woody and herbaceous plants. The response of individual plants of community to defilement caused by coal mining was also assessed. Air monitoring, soil physico-chemical and phytosociological analyses were carried around Jharia coalfield (JCF) and Raniganj coalfield. The importance value index of sensitive species minified and those of tolerant species enhanced with increasing pollution load and altered soil quality around coal mining areas. Although the species richness of woody and herbaceous plants decreased with higher pollution load, a large number of species acclimatized to the stress caused by the coal mining activities. Woody plant community at JCF was more affected by coal mining than herbaceous community. Canonical correspondence analysis revealed that structure of herbaceous community was mainly driven by soil total organic carbon, soil nitrogen, whereas woody layer community was influenced by sulphur dioxide in ambient air, soil sulphate and soil phosphorus. The changes in species diversity observed at mining areas indicated an increase in the proportion of resistant herbs and grasses showing a tendency towards a definite selection strategy of ecosystem in response to air pollution and altered soil characteristics.
Water regime history drives responses of soil Namib Desert microbial communities to wetting events
NASA Astrophysics Data System (ADS)
Frossard, Aline; Ramond, Jean-Baptiste; Seely, Mary; Cowan, Don A.
2015-07-01
Despite the dominance of microorganisms in arid soils, the structures and functional dynamics of microbial communities in hot deserts remain largely unresolved. The effects of wetting event frequency and intensity on Namib Desert microbial communities from two soils with different water-regime histories were tested over 36 days. A total of 168 soil microcosms received wetting events mimicking fog, light rain and heavy rainfall, with a parallel “dry condition” control. T-RFLP data showed that the different wetting events affected desert microbial community structures, but these effects were attenuated by the effects related to the long-term adaptation of both fungal and bacterial communities to soil origins (i.e. soil water regime histories). The intensity of the water pulses (i.e. the amount of water added) rather than the frequency of wetting events had greatest effect in shaping bacterial and fungal community structures. In contrast to microbial diversity, microbial activities (enzyme activities) showed very little response to the wetting events and were mainly driven by soil origin. This experiment clearly demonstrates the complexity of microbial community responses to wetting events in hyperarid hot desert soil ecosystems and underlines the dynamism of their indigenous microbial communities.
Water regime history drives responses of soil Namib Desert microbial communities to wetting events.
Frossard, Aline; Ramond, Jean-Baptiste; Seely, Mary; Cowan, Don A
2015-07-21
Despite the dominance of microorganisms in arid soils, the structures and functional dynamics of microbial communities in hot deserts remain largely unresolved. The effects of wetting event frequency and intensity on Namib Desert microbial communities from two soils with different water-regime histories were tested over 36 days. A total of 168 soil microcosms received wetting events mimicking fog, light rain and heavy rainfall, with a parallel "dry condition" control. T-RFLP data showed that the different wetting events affected desert microbial community structures, but these effects were attenuated by the effects related to the long-term adaptation of both fungal and bacterial communities to soil origins (i.e. soil water regime histories). The intensity of the water pulses (i.e. the amount of water added) rather than the frequency of wetting events had greatest effect in shaping bacterial and fungal community structures. In contrast to microbial diversity, microbial activities (enzyme activities) showed very little response to the wetting events and were mainly driven by soil origin. This experiment clearly demonstrates the complexity of microbial community responses to wetting events in hyperarid hot desert soil ecosystems and underlines the dynamism of their indigenous microbial communities.
NASA Astrophysics Data System (ADS)
Keller, Thomas; Colombi, Tino; Ruiz, Siul; Grahm, Lina; Reiser, René; Rek, Jan; Oberholzer, Hans-Rudolf; Schymanski, Stanislaus; Walter, Achim; Or, Dani
2016-04-01
Soil compaction due to agricultural vehicular traffic alters the geometrical arrangement of soil constituents, thereby modifying mechanical properties and pore spaces that affect a range of soil hydro-ecological functions. The ecological and economic costs of soil compaction are dependent on the immediate impact on soil functions during the compaction event, and a function of the recovery time. In contrast to a wealth of soil compaction information, mechanisms and rates of soil structure recovery remain largely unknown. A long-term (>10-yr) soil structure observatory (SSO) was established in 2014 on a loamy soil in Zurich, Switzerland, to quantify rates and mechanisms of structure recovery of compacted arable soil under different post-compaction management treatments. We implemented three initial compaction treatments (using a two-axle agricultural vehicle with 8 Mg wheel load): compaction of the entire plot area (i.e. track-by-track), compaction in wheel tracks, and no compaction. After compaction, we implemented four post-compaction soil management systems: bare soil (BS), permanent grass (PG), crop rotation without mechanical loosening (NT), and crop rotation under conventional tillage (CT). BS and PG provide insights into uninterrupted natural processes of soil structure regeneration under reduced (BS) and normal biological activity (PG). The two cropping systems (NT and CT) enable insights into soil structure recovery under common agricultural practices with minimal (NT) and conventional mechanical soil disturbance (CT). Observations include periodic sampling and measurements of soil physical properties, earthworm abundance, crop measures, electrical resistivity and ground penetrating radar imaging, and continuous monitoring of state variables - soil moisture, temperature, CO2 and O2 concentrations, redox potential and oxygen diffusion rates - for which a network of sensors was installed at various depths (0-1 m). Initial compaction increased soil bulk density to about half a metre, decreased gas and water transport functions (air permeability, gas diffusivity, saturated hydraulic conductivity), and increased mechanical impedance. Water infiltration at the soil surface was initially reduced by three orders of magnitude, but significantly recovered within a year. However, within the soil profile, recovery of transport properties is much smaller. Air permeability tended to recover more than gas diffusivity, suggesting that initial post-compaction recovery is initiated by new macropores (e.g. biopores). Tillage recovered topsoil bulk density but not topsoil transport functions. Compaction changed grass species composition in PG, and significantly reduced grass biomass in PG and crop yields in NT and CT.
Assessing the fate of radioactive nickel in cultivated soil cores.
Denys, Sébastien; Echevarria, Guillaume; Florentin, Louis; Leclerc, Elisabeth; Morel, Jean-Louis
2009-10-01
Parameters regarding fate of (63)Ni in the soil-plant system (soil: solution distribution coefficient, K(d) and soil plant concentration ratio, CR) are mostly determined in controlled pot experiments or from simple models involving a limited set of soil parameters. However, as migration of pollutants in soil is strongly linked to the water migration, variation of soil structure in the field and seasonal variation of evapotranspiration will affect these two parameters. The aim of this work was to explore to what extent the downward transfer of (63)Ni and its uptake by plants from surface-contaminated undisturbed soil cores under cultivation can be explained by isotopic dilution of this radionuclide in the pool of stable Ni of soils. Undisturbed soil cores (50 cm x 50 cm) were sampled from a brown rendzina (Rendzic Leptosol), a colluvial brown soil (Fluvic Cambisol) and an acidic brown soil (Dystric Cambisol) using PVC lysimeter tubes (three lysimeters sampled per soil type). Each core was equipped with a leachate collector. Cores were placed in a greenhouse and maize (DEA, Pioneer) was sown. After 44 days, an irrigation was simulated at the core surfaces to supply 10 000 Bq (63)NiCl(2). Maize was harvested 135 days after (63)Ni input and radioactivity determined in both vegetal and water samples. Effective uptake of (63)Ni by maize was calculated for leaves and kernels. Water drainage and leaching of (63)Ni were monitored over the course of the experiment. Values of K(d) in surface soil samples were calculated from measured parameters of isotopic exchange kinetics. Results confirmed that (63)Ni was strongly retained at the soil surface. Prediction of the (63)Ni downward transfer could not be reliably assessed using the K(d) values, since the soil structure, which controls local water fluxes, also affected both water and Ni transport. In terms of (63)Ni plant uptake, the effective uptake in undisturbed soil cores is controlled by isotope dilution as previously shown at the pot experiment scale.
Lekfeldt, Jonas Duus Stevens; Kjaergaard, Charlotte; Magid, Jakob
2017-07-01
Organic waste fertilizers have previously been observed to significantly affect soil organic carbon (SOC) content and soil structure. However, the effect of organic waste fertilizers on colloid dispersibility and leaching of colloids from topsoil has not yet been studied extensively. We investigated how the repeated application of different types of agricultural (liquid cattle slurry and solid cattle manure) and urban waste fertilizers (sewage sludge and composted organic household waste) affected soil physical properties, colloid dispersion from aggregates, tracer transport, and colloid leaching from intact soil cores. Total porosity was positively correlated with SOC content. Yearly applications of sewage sludge increased absolute microporosity (pores <30 μm) and decreased relative macroporosity (pores >30 μm) compared with the unfertilized control, whereas organic household waste compost fertilization increased both total porosity and the absolute porosity in all pore size classes (though not significant for 100-600 μm). Treatments receiving large amounts of organic fertilizers exhibited significantly lower levels of dispersible colloids compared with an unfertilized control and a treatment that had received moderate applications of cattle slurry. The content of water-dispersible colloids could not be explained by a single factor, but differences in SOC content, electrical conductivity, and sodium adsorption ratio were important factors. Moreover, we found that the fertilizer treatments did not significantly affect the solute transport properties of the topsoil. Finally, we found that the leaching of soil colloids was significantly decreased in treatments that had received large amounts of organic waste fertilizers, and we ascribe this primarily to treatment-induced differences in effluent electrical conductivity during leaching. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Bitterlich, Michael; Franken, Philipp; Graefe, Jan
2018-01-01
Arbuscular mycorrhizal fungi (AMF) proliferate in soils and are known to affect soil structure. Although their contribution to structure is extensively investigated, the consequences of those processes for soil water extractability and transport has, so far, gained surprisingly little attention. Therefore we asked, whether AMF can affect water retention and unsaturated hydraulic conductivity under exclusion of root ingrowth, in order to minimize plant driven effects. We carried out experiments with tomato inoculated with Rhizoglomus irregulare in a soil substrate with sand and vermiculite that created variation in colonization by mixed pots with wild type (WT) plants and mycorrhiza resistant (RMC) mutants. Sampling cores were introduced and used to assess substrate moisture retention dynamics and modeling of substrate water retention and hydraulic conductivity. AMF reduced the saturated water content and total porosity, but maintained air filled porosity in soil spheres that excluded root ingrowth. The water content between field capacity and the permanent wilting point (6-1500 kPa) was only reduced in mycorrhizal substrates that contained at least one RMC mutant. Plant available water contents correlated positively with soil protein contents. Soil protein contents were highest in pots that possessed the strongest hyphal colonization, but not significantly affected. Substrate conductivity increased up to 50% in colonized substrates in the physiologically important water potential range between 6 and 10 kPa. The improvements in hydraulic conductivity are restricted to substrates where at least one WT plant was available for the fungus, indicating a necessity of a functional symbiosis for this effect. We conclude that functional mycorrhiza alleviates the resistance to water movement through the substrate in substrate areas outside of the root zone.
NASA Astrophysics Data System (ADS)
Udawatta, Ranjith P.; Gantzer, Clark J.; Anderson, Stephen H.; Assouline, Shmuel
2016-05-01
Soil compaction degrades soil structure and affects water, heat, and gas exchange as well as root penetration and crop production. The objective of this study was to use X-ray computed microtomography (CMT) techniques to compare differences in geometrical soil pore parameters as influenced by compaction of two different aggregate size classes. Sieved (diameter < 2 mm and < 0.5 mm) and repacked (1.51 and 1.72 Mg m-3) Hamra soil cores of 5 by 5 mm (average porosities were 0.44 and 0.35) were imaged at 9.6 μm resolution at the Argonne Advanced Photon Source (synchrotron facility) using X-ray CMT. Images of 58.9 mm3 volume were analyzed using 3-Dimensional Medial Axis (3-DMA) software. Geometrical characteristics of the spatial distributions of pore structures (pore radii, volume, connectivity, path length, and tortuosity) were numerically investigated. Results show that the coordination number (CN) distribution and path length (PL) measured from the medial axis were reasonably fit by exponential relationships P(CN) = 10-CN/Co and P(PL) = 10-PL/PLo, respectively, where Co and PLo are the corresponding characteristic constants. Compaction reduced porosity, average pore size, number of pores, and characteristic constants. The average pore radii (63.7 and 61 µm; p < 0.04), largest pore volume (1.58 and 0.58 mm3; p = 0.06), number of pores (55 and 50; p = 0.09), and characteristic coordination number (3.74 and 3.94; p = 0.02) were significantly different between the low-density than the high-density treatment. Aggregate size also influenced measured geometrical pore parameters. This analytical technique provides a tool for assessing changes in soil pores that affect hydraulic properties and thereby provides information to assist in assessment of soil management systems.
Niedrée, Bastian; Vereecken, Harry; Burauel, Peter
2012-07-01
After the explosion of reactor 4 in the nuclear power plant near Chernobyl, huge agricultural areas became contaminated with radionuclides. In this study, we want to elucidate whether (137)Cs and (90)Sr affect microorganisms and their community structure and functions in agricultural soil. For this purpose, the mineralization of radiolabeled wheat straw was examined in lab-scale microcosms. Native soils and autoclaved and reinoculated soils were incubated for 70 days at 20 °C. After incubation, the microbial community structure was compared via 16S and 18S rDNA denaturing gradient gel electrophoresis (DGGE). The radioactive contamination with (137)Cs and (90)Sr was found to have little effect on community structure and no effect on the straw mineralization. The autoclaving and reinoculation of soil had a strong influence on the mineralization and the community structure. Additionally we analyzed the effect of soil treatment on mineralization and community composition. It can be concluded that other environmental factors (such as changing content of dissolved organic carbon) are much stronger regulating factors in the mineralization of wheat straw and that low-level radiation only plays a minor role. Copyright © 2011 Elsevier Ltd. All rights reserved.
Effect of soil sieving on respiration induced by low-molecular-weight substrates
NASA Astrophysics Data System (ADS)
Datta, Rahul; Vranová, Valerie; Pavelka, Marian; Rejšek, Klement; Formánek, Pavel
2014-03-01
The mesh size of sieves has a significant impact upon soil disturbance, affecting pore structure, fungal hyphae, proportion of fungi to bacteria, and organic matter fractions. The effects are dependent upon soil type and plant coverage. Sieving through a 2 mm mesh increases mineralization of exogenously supplied carbohydrates and phenolics compared to a 5 mm mesh and the effect is significant (p<0.05), especially in organic horizons, due to increased microbial metabolism and alteration of other soil properties. Finer mesh size particularly increases arabinose, mannose, galactose, ferulic and pthalic acid metabolism, whereas maltose mineralization is less affected. Sieving through a 5 mm mesh size is suggested for all type of experiments where enhanced mineralization of low-molecular-weight organic compounds needs to be minimalized.
Leiva, Diego; Clavero-León, Claudia; Carú, Margarita; Orlando, Julieta
2016-11-01
Definition of lichens has evolved from bi(tri)partite associations to multi-species symbioses, where bacteria would play essential roles. Besides, although soil bacterial communities are known to be affected by edaphic factors, when lichens grow upon them these could become less preponderant. We hypothesized that the structure of both the lichen microbiota and the microbiota in the soil underneath lichens is shaped by lichen intrinsic and extrinsic factors. In this work, intrinsic factors corresponded to mycobiont and cyanobiont identities of Peltigera lichens, metabolite diversity and phenoloxidase activity and extrinsic factors involved the site of the forest where lichens grow. Likewise, the genetic and metabolic structure of the lichen and soil bacterial communities were analyzed by fingerprinting. Among the results, metabolite diversity was inversely related to the genetic structure of bacterial communities of lichens and soils, highlighting the far-reaching effect of these substances; while phenoloxidase activity was inversely related to the metabolic structure only of the lichen bacterial microbiota, presuming a more limited effect of the products of these enzymes. Soil bacterial microbiota was different depending on the site and, strikingly, according to the cyanobiont present in the lichen over them, which could indicate an influence of the photobiont metabolism on the availability of soil nutrients. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Remigi, P.; Faye, A.; Kane, A.; Deruaz, M.; Thioulouse, J.; Cissoko, M.; Prin, Y.; Galiana, A.; Dreyfus, B.; Duponnois, R.
2008-01-01
The response of microbial functional diversity as well as its resistance to stress or disturbances caused by the introduction of an exotic tree species, Acacia holosericea, ectomycorrhized or not with Pisolithus albus, was examined. The results show that this ectomycorrhizal fungus promotes drastically the growth of this fast-growing tree species in field conditions after 7 years of plantation. Compared to the crop soil surrounding the A. holosericea plantation, this exotic tree species, associated or not with the ectomycorrhizal symbiont, induced strong modifications in soil microbial functionalities (assessed by measuring the patterns of in situ catabolic potential of microbial communities) and reduced soil resistance in response to increasing stress or disturbance (salinity, temperature, and freeze-thaw and wet-dry cycles). In addition, A. holosericea strongly modified the structure of arbuscular mycorrhizal fungus communities. These results show clearly that exotic plants may be responsible for important changes in soil microbiota affecting the structure and functions of microbial communities. PMID:18203858
NASA Astrophysics Data System (ADS)
Lakew, Walle; Baartman, Jantiene; Fleskens, Luuk; Selassie, Yihenew; Ritsema, Coen
2017-04-01
Prolonged soil drying and severe moisture stress during the dry season, and soil saturation and erosion during the short rainy season are critical problems in the Ethiopian highlands. Large-scale implementation of bund structures has been used as soil and water management (SWM) strategy to fight these problems and establish a sustainable land management (SLM) system. However, many SWM practices are implemented with design flaws or without proper design and maintenance, and do not match conservation requirements. The quality of implementation and effects of bund structures on soil physical properties is not yet documented. Therefore, in this study, field investigations and laboratory analysis were carried out to evaluate the variation in bund structure design and its impact on soil-water retention, bulk density, porosity and soil depth. Results show that the dimensions and stability of bund structures, and consequently, the impacts of bunds varied widely. The widths and heights of bunds, and slope gradients were significantly correlated with infiltration rate and available soil-water content. Water holding capacity was 24% higher compared to that on untreated farms. Bunds with larger dimensions of top width (>85 cm) and height (>75 cm) showed 17 and 18% higher water holding capacity compared to fields with bunds having lower dimensions. In addition, results exhibited that the porosity and soil depth were significantly affected by the dimensions of bund structures and increased with increasing widths and heights of bunds. A 14.2% increase in porosity; a 41.2% increase in infiltration rate; and a 17.5% decrease in bulk density was found in soils of treated farms compared to those of untreated farm plots. Differences in particle size distribution and soil erodibility among widths of the bunds were low. It can be concluded that bund structure design varied substantially throughout the study area, which had impacted soil-water storage and soil physical properties. Bund structure design should be adapted to local biophysical settings at catchment level to enhance on- and offsite impacts.
Organic nitrogen rearranges both structure and activity of the soil-borne microbial seedbank
Leite, Márcio F. A.; Pan, Yao; Bloem, Jaap; Berge, Hein ten; Kuramae, Eiko E.
2017-01-01
Use of organic amendments is a valuable strategy for crop production. However, it remains unclear how organic amendments shape both soil microbial community structure and activity, and how these changes impact nutrient mineralization rates. We evaluated the effect of various organic amendments, which range in Carbon/Nitrogen (C/N) ratio and degradability, on the soil microbiome in a mesocosm study at 32, 69 and 132 days. Soil samples were collected to determine community structure (assessed by 16S and 18S rRNA gene sequences), microbial biomass (fungi and bacteria), microbial activity (leucine incorporation and active hyphal length), and carbon and nitrogen mineralization rates. We considered the microbial soil DNA as the microbial seedbank. High C/N ratio favored fungal presence, while low C/N favored dominance of bacterial populations. Our results suggest that organic amendments shape the soil microbial community structure through a feedback mechanism by which microbial activity responds to changing organic inputs and rearranges composition of the microbial seedbank. We hypothesize that the microbial seedbank composition responds to changing organic inputs according to the resistance and resilience of individual species, while changes in microbial activity may result in increases or decreases in availability of various soil nutrients that affect plant nutrient uptake. PMID:28198425
Organic nitrogen rearranges both structure and activity of the soil-borne microbial seedbank.
Leite, Márcio F A; Pan, Yao; Bloem, Jaap; Berge, Hein Ten; Kuramae, Eiko E
2017-02-15
Use of organic amendments is a valuable strategy for crop production. However, it remains unclear how organic amendments shape both soil microbial community structure and activity, and how these changes impact nutrient mineralization rates. We evaluated the effect of various organic amendments, which range in Carbon/Nitrogen (C/N) ratio and degradability, on the soil microbiome in a mesocosm study at 32, 69 and 132 days. Soil samples were collected to determine community structure (assessed by 16S and 18S rRNA gene sequences), microbial biomass (fungi and bacteria), microbial activity (leucine incorporation and active hyphal length), and carbon and nitrogen mineralization rates. We considered the microbial soil DNA as the microbial seedbank. High C/N ratio favored fungal presence, while low C/N favored dominance of bacterial populations. Our results suggest that organic amendments shape the soil microbial community structure through a feedback mechanism by which microbial activity responds to changing organic inputs and rearranges composition of the microbial seedbank. We hypothesize that the microbial seedbank composition responds to changing organic inputs according to the resistance and resilience of individual species, while changes in microbial activity may result in increases or decreases in availability of various soil nutrients that affect plant nutrient uptake.
Nutrient Exchange through Hyphae in Intercropping Systems Affects Yields
ERIC Educational Resources Information Center
Thun, Tim Von
2013-01-01
Arbuscular mycorrhizae fungi (AMF) play a large role in the current understanding of the soil ecosystem. They increase nutrient and water uptake, improve soil structure, and form complex hyphal networks that transfer nutrients between plants within an ecosystem. Factors such as species present, the physiological balance between the plants in the…
NASA Astrophysics Data System (ADS)
Jamiołkowska, Agnieszka; Księżniak, Andrzej; Gałązka, Anna; Hetman, Beata; Kopacki, Marek; Skwaryło-Bednarz, Barbara
2018-01-01
Arbuscular mycorrhizal fungi inhabiting soil play an important role for vascular plants. Interaction between arbuscular mycorrhizal fungi, plants and soil microorganisms leads to many mutual advantages. However, the effectiveness of mycorrhizal fungi depends not only on biotic, but also abiotic factors such as physico-chemical properties of the soil, availability of water and biogenic elements, agricultural practices, and climatic conditions. First of all, it is important to adapt the arbuscular mycorrhizal fungi species to changing environmental conditions. The compactness of the soil and its structure have a huge impact on its biological activity. Soil pH reaction has a substantial impact on the mobility of ions in soil dilutions and their uptake by plants and soil microflora. Water excess can be a factor negatively affecting arbuscular mycorrhizal fungi because these microorganisms are sensitive to a lower availability of oxygen. Mechanical cultivation of the soil has a marginal impact on the arbuscular mycorrhizal fungi spores. However, soil translocation can cause changes to the population of the arbuscular mycorrhizal fungi abundance in the soil profile. The geographical location and topographic differentiation of cultivated soils, as well as the variability of climatic factors affect the population of the arbuscular mycorrhizal fungi in the soils and their symbiotic activity.
He, Ruoyang; Yang, Kaijun; Li, Zhijie; Schädler, Martin; Yang, Wanqin; Wu, Fuzhong; Tan, Bo; Zhang, Li; Xu, Zhenfeng
2017-01-01
Forest land-use changes have long been suggested to profoundly affect soil microbial communities. However, how forest type conversion influences soil microbial properties remains unclear in Tibetan boreal forests. The aim of this study was to explore variations of soil microbial profiles in the surface organic layer and subsurface mineral soil among three contrasting forests (natural coniferous forest, NF; secondary birch forest, SF and spruce plantation, PT). Soil microbial biomass, activity and community structure of the two layers were investigated by chloroform fumigation, substrate respiration and phospholipid fatty acid analysis (PLFA), respectively. In the organic layer, both NF and SF exhibited higher soil nutrient levels (carbon, nitrogen and phosphorus), microbial biomass carbon and nitrogen, microbial respiration, PLFA contents as compared to PT. However, the measured parameters in the mineral soils often did not differ following forest type conversion. Irrespective of forest types, the microbial indexes generally were greater in the organic layer than in the mineral soil. PLFAs biomarkers were significantly correlated with soil substrate pools. Taken together, forest land-use change remarkably altered microbial community in the organic layer but often did not affect them in the mineral soil. The microbial responses to forest land-use change depend on soil layer, with organic horizons being more sensitive to forest conversion.
Hazardous E-waste and its impact on soil structure
NASA Astrophysics Data System (ADS)
Dharini, K.; Cynthia, J. Bernadette; Kamalambikai, B.; Sudar Celestina, J. P. Arul; Muthu, D.
2017-07-01
E-waste disposal has been a significant issue over the past few decades with the development of technology and the plethora of electronic products produced. The inclusive term E-Waste encapsulates various forms of electrical and electronical equipment which provides no value to the current owners and it is one among the fastest growing waste streams. E-Waste is a complex, non-biodegradable waste which is generally dumped in mountain like heaps. These wastes are said to have a large quantities of lead, cadmium, arsenic etc.it is mandatory to dispose such scrupulously since they have the ability to affect the soil and water parameters. Solid waste management is a blooming field which strives to reduce the accumulation of used electronic gadgets. Rainwater gets infiltrated through the e-waste landfill and it leaches through the soil which in turn reaches the groundwater directly thereby affecting the water intended for drinking and domestic purposes. This study focuses on the consequences of toxic waste by comparing the difference in properties of the soil structure prior to and after the e-waste landfill at various concentrations.
Val-Moraes, Silvana Pompeia; de Macedo, Helena Suleiman; Kishi, Luciano Takeshi; Pereira, Rodrigo Matheus; Navarrete, Acacio Aparecido; Mendes, Lucas William; de Figueiredo, Eduardo Barretto; La Scala, Newton; Tsai, Siu Mui; de Macedo Lemos, Eliana Gertrudes; Alves, Lúcia Maria Carareto
2016-12-01
Here we show that both liming the burnt sugarcane and the green harvest practice alter bacterial community structure, diversity and composition in sugarcane fields in northeastern São Paulo state, Brazil. Terminal restriction fragment length polymorphism fingerprinting and 16S rRNA gene cloning and sequencing were used to analyze changes in soil bacterial communities. The field experiment consisted of sugarcane-cultivated soils under different regimes: green sugarcane (GS), burnt sugarcane (BS), BS in soil amended with lime applied to increase soil pH (BSL), and native forest (NF) as control soil. The bacterial community structures revealed disparate patterns in sugarcane-cultivated soils and forest soil (R = 0.786, P = 0.002), and overlapping patterns were shown for the bacterial community structure among the different management regimes applied to sugarcane (R = 0.194, P = 0.002). The numbers of operational taxonomic units (OTUs) found in the libraries were 117, 185, 173 and 166 for NF, BS, BSL and GS, respectively. Sugarcane-cultivated soils revealed higher bacterial diversity than NF soil, with BS soil accounting for a higher richness of unique OTUs (101 unique OTUs) than NF soil (23 unique OTUs). Cluster analysis based on OTUs revealed similar bacterial communities in NF and GS soils, while the bacterial community from BS soil was most distinct from the others. Acidobacteria and Alphaproteobacteria were the most abundant bacterial phyla across the different soils with Acidobacteria Gp1 accounting for a higher abundance in NF and GS soils than burnt sugarcane-cultivated soils (BS and BSL). In turn, Acidobacteria Gp4 abundance was higher in BS soils than in other soils. These differential responses in soil bacterial community structure, diversity and composition can be associated with the agricultural management, mainly liming practices, and harvest methods in the sugarcane-cultivated soils, and they can be detected shortly after harvest.
Combinational effects of sulfomethoxazole and copper on soil microbial community and function.
Liu, Aiju; Cao, Huansheng; Yang, Yan; Ma, Xiaoxuan; Liu, Xiao
2016-03-01
Sulfonamides and Cu are largely used feed additives in poultry farm. Subsequently, they are spread onto agricultural soils together with contaminated manure used as fertilizer. Both sulfonamides and Cu affect the soil microbial community. However, an interactive effect of sulfonamides and Cu on soil microorganisms is not well understood. Therefore, a short-time microcosm experiment was conducted to investigate the interaction of veterinary antibiotic sulfomethoxazole (SMX) and Cu on soil microbial structure composition and functions. To this end, selected concentrations of SMX (0, 5, and 50 mg kg(-1)) and Cu (0, 300, and 500 mg kg(-1)) were combined, respectively. Clear dose-dependent effects of SMX on microbial biomass and basal respiration were determined, and these effects were amplified in the presence of additional Cu. For activities of soil enzymes including β-glucosidase, urease, and protease, clear reducing effects were determined in soil samples containing 5 or 50 mg kg(-1) of SMX, and the interaction of SMX and Cu was significant, particularly in soil samples containing 50 mg kg(-1) SMX or 500 mg kg(-1) Cu. SMX amendments, particularly in combination with Cu, significantly reduced amounts of the total, bacterial, and fungal phospholipid fatty acids (PLFAs) in soil. Moreover, the derived ratio of bacteria to fungi decreased significantly with incremental SMX and Cu, and principal component analysis of the PLFAs showed that soil microbial composition was significantly affected by SMX interacted with Cu at 500 mg kg(-1). All of these results indicated that the interaction of SMX and Cu was synergistic to amplify the negative effect of SMX on soil microbial biomass, structural composition, and even the enzymatic function.
NASA Astrophysics Data System (ADS)
Cornell, C. R.; Peterson, B.; Zhou, J.; Xiao, X.; Wawrik, B.
2017-12-01
Greenhouse gases (GHG) emissions from soils are primarily the consequence of microbial processes. Agricultural management of soils is known to affect the structure of microbial communities, and it is likely that dominant GHG emitting microbial activities are impacted via requisite practices. To gain better insight into the impact of seasonal forcing and management practices on the microbiome structure in Oklahoma agricultural soils, a seasonal study was conducted. Over a year period, samples were collected bi-weekly during wet months, and monthly during dry months from two grassland and two managed agricultural sites in El Reno, Oklahoma. Microbial community structure was determined in quadruplicate for each site and time point via 16S rRNA gene sequencing. Measures of soil water content, subsoil nitrate, ammonium, organic matter, total nitrogen, and biomass were also taken for each time point. Data analysis revealed several important trends, indicating greater microbial diversity in native grassland and distinct microbial community changes in response to management practices. The native grassland soils also contained greater microbial biomass than managed soils and both varied in response to rainfall events. Native grassland soils harbor more diverse microbial communities, with the diversity and biomass decreasing along a gradient of agricultural management intensity. These data indicate that microbial community structure in El Reno soils occurs along a continuum in which native grasslands and highly managed agricultural soils (tilling and manure application) form end members. Integration with measurements from eddy flux towers into modelling efforts using the DeNitrification-DeComposition (DNDC) model is currently being explored to improve predictions of GHG emissions from grassland soils.
Song, Mengke; Cheng, Zhineng; Luo, Chunling; Jiang, Longfei; Zhang, Dayi; Yin, Hua; Zhang, Gan
2018-04-01
We performed the study of rhizospheric effects on soil microbial community structure, including bacteria, fungi, actinomycete, and archaea, at an electronic waste (e-waste) recycling site by analyzing the phospholipid fatty acid (PLFA) and isoprenoid glycerol dialkyl glycerol tetraether (GDGT) contents. By comparing PLFA and isoprenoid GDGT profiles of rhizospheric and surrounding bulk soils of 11 crop species, we observed distinct microbial community structures. The total PLFA concentration was significantly higher in rhizospheric soils than in non-rhizospheric soils, whereas no obvious difference was found in the total isoprenoid GDGT concentrations. The microbial community structure was also different, with higher ratios of fungal-to-bacterial PLFAs (F/B) and lower relative abundance of Gram-positive bacteria in rhizospheric soils. The extent of rhizospheric effects varied among plant species, and Colocasia esculenta L. had the greatest positive effects on the total microbial biomass. Dissolved organic carbon and pH were the main environmental factors affecting the microbial community represented by PLFAs, while the archaeal community was influenced by copper and zinc in all soils. These results offer a comprehensive view of rhizospheric effects on microbes in heavy metal and persistent organic pollutant co-contaminated soil, and provide fundamental knowledge regarding microbial ecology in e-waste-contaminated soils.
Soil Tillage as a Factor of Soil Conservation
NASA Astrophysics Data System (ADS)
Sherer, D. V.; Chumanova, N. N.
2017-05-01
The work describes the question of the soil treatment system influence on agro-physical and microbiological properties of gray forest soils, and yield of barley in Western Siberia. Research works were carried out in 2013-2014 in Yaya region of the Kemerovo region. Tillage affects soil structure. The water stability in zero tillage conditions was poor (15.7%). Soil density corresponding to the optimum rate for barley is formed by the zonal processing system, while at the zero tillage soil remains solid. The best indicators of phosphataze, catalysis and amylase activity are formed with minimum processing system. In the experiment the highest yield of barley was obtained with minimum tillage - 12.1 c/ha.
Sall, Saïdou Nourou; Ndour, Ndèye Yacine Badiane; Diédhiou-Sall, Siré; Dick, Richard; Chotte, Jean-Luc
2015-09-15
Soil degradation and salinization caused by inappropriate cultivation practices and high levels of saltwater intrusion are having an adverse effect on agriculture in Central Senegal. The residues of Piliostigma reticulatum, a local shrub that coexists with crops, were recently shown to increase particulate organic matter and improve soil quality and may be a promising means of alleviating the effects of salinization. This study compared the effects of inorganic fertilizer and P. reticulatum residues on microbial properties and the ability of soil to withstand salinity stress. We hypothesized that soils amended with P. reticulatum would be less affected by salinity stress than soils amended with inorganic fertilizer and control soil. Salinity stress was applied to soil from a field site that had been cultivated for 5 years under a millet/peanut crop rotation when microbial biomass, phospholipid fatty acid (PLFA) community profile, catabolic diversity, microbial activities were determined. Microbial biomass, nitrification potential and dehydrogenase activity were higher by 20%, 56% and 69% respectively in soil with the organic amendment. With salinity stress, the structure and activities of the microbial community were significantly affected. Although the biomass of actinobacteria community increased with salinity stress, there was a substantial reduction in microbial activity in all soils. The soil organically amended was, however, less affected by salinity stress than the control or inorganic fertilizer treatment. This suggests that amendment using P. reticulatum residues may improve the ability of soils to respond to saline conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Schnecker, Jörg; Wild, Birgit; Čapek, Petr; Kaiser, Christina; Torsvik, Vigdis L.; Richter, Andreas; Schleper, Christa; Urich, Tim
2014-01-01
Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation (“buried topsoils”), resulting from a decrease in fungal abundance compared to recent (“unburied”) topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation. PMID:25360132
Effect of soil structure on the growth of bacteria in soil quantified using CARD-FISH
NASA Astrophysics Data System (ADS)
Juyal, Archana; Eickhorst, Thilo; Falconer, Ruth; Otten, Wilfred
2014-05-01
It has been reported that compaction of soil due to use of heavy machinery has resulted in the reduction of crop yield. Compaction affects the physical properties of soil such as bulk density, soil strength and porosity. This causes an alteration in the soil structure which limits the mobility of nutrients, water and air infiltration and root penetration in soil. Several studies have been conducted to explore the effect of soil compaction on plant growth and development. However, there is scant information on the effect of soil compaction on the microbial community and its activities in soil. Understanding the effect of soil compaction on microbial community is essential as microbial activities are very sensitive to abrupt environmental changes in soil. Therefore, the aim of this work was to investigate the effect of soil structure on growth of bacteria in soil. The bulk density of soil was used as a soil physical parameter to quantify the effect of soil compaction. To detect and quantify bacteria in soil the method of catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) was used. This technique results in high intensity fluorescent signals which make it easy to quantify bacteria against high levels of autofluorescence emitted by soil particles and organic matter. In this study, bacterial strains Pseudomonas fluorescens SBW25 and Bacillus subtilis DSM10 were used. Soils of aggregate size 2-1mm were packed at five different bulk densities in polyethylene rings (4.25 cm3).The soil rings were sampled at four different days. Results showed that the total number of bacteria counts was reduced significantly (P
Site condition, structure, and growth of baldcypress along tidal/non-tidal salinity gradients
Krauss, K.W.; Duberstein, J.A.; Doyle, T.W.; Conner, W.H.; Day, Richard H.; Inabinette, L.W.; Whitbeck, J.L.
2009-01-01
This report documents changes in forest structure and growth potential of dominant trees in salt-impacted tidal and non-tidal baldcypress wetlands of the southeastern United States. We inventoried basal area and tree height, and monitored incremental growth (in basal area) of codominant baldcypress (Taxodium distichum) trees monthly, for over four years, to examine the inter-relationships among growth, site fertility, and soil physico-chemical characteristics. We found that salinity, soil total nitrogen (TN), flood duration, and flood frequency affected forest structure and growth the greatest. While mean annual site salinity ranged from 0.1 to 3.4 ppt, sites with salinity concentrations of 1.3 ppt or greater supported a basal area of less than 40 m2/ha. Where salinity was < 0.7 ppt, basal area was as high as 87 m2/ha. Stand height was also negatively affected by higher salinity. However, salinity related only to soil TN concentrations or to the relative balance between soil TN and total phosphorus (TP), which reached a maximum concentration between 1.2 and 2.0 ppt salinity. As estuarine influence shifts inland with sea-level rise, forest growth may become more strongly linked to salinity, not only due to salt effects but also as a consequence of site nitrogen imbalance.
Carrino-Kyker, Sarah R.; Kluber, Laurel A.; Petersen, Sheryl M.; ...
2016-02-04
Many forests are affected by chronic acid deposition, which can lower soil pH and limit the availability of nutrients such as phosphorus (P), but the response of mycorrhizal fungi to changes in soil pH and P availability and how this affects tree acquisition of nutrients is not well understood. Here, we describe an ecosystem-level manipulation in 72 plots, which increased pH and/or P availability across six forests in Ohio, USA. Two years after treatment initiation, mycorrhizal fungi on roots were examined with molecular techniques, including 454-pyrosequencing. Elevating pH significantly increased arbuscular mycorrhizal (AM) fungal colonization and total fungal biomass, andmore » affected community structure of AM and ectomycorrhizal (EcM) fungi, suggesting that raising soil pH altered both mycorrhizal fungal communities and fungal growth. AM fungal taxa were generally negatively correlated with recalcitrant P pools and soil enzyme activity, whereas EcM fungal taxa displayed variable responses, suggesting that these groups respond differently to P availability. Additionally, the production of extracellular phosphatase enzymes in soil decreased under elevated pH, suggesting a shift in functional activity of soil microbes with pH alteration. Furthermore, our findings suggest that elevating pH increased soil P availability, which may partly underlie the mycorrhizal fungal responses we observed.« less
Carrino-Kyker, Sarah R; Kluber, Laurel A; Petersen, Sheryl M; Coyle, Kaitlin P; Hewins, Charlotte R; DeForest, Jared L; Smemo, Kurt A; Burke, David J
2016-03-01
Many forests are affected by chronic acid deposition, which can lower soil pH and limit the availability of nutrients such as phosphorus (P), but the response of mycorrhizal fungi to changes in soil pH and P availability and how this affects tree acquisition of nutrients is not well understood. Here, we describe an ecosystem-level manipulation in 72 plots, which increased pH and/or P availability across six forests in Ohio, USA. Two years after treatment initiation, mycorrhizal fungi on roots were examined with molecular techniques, including 454-pyrosequencing. Elevating pH significantly increased arbuscular mycorrhizal (AM) fungal colonization and total fungal biomass, and affected community structure of AM and ectomycorrhizal (EcM) fungi, suggesting that raising soil pH altered both mycorrhizal fungal communities and fungal growth. AM fungal taxa were generally negatively correlated with recalcitrant P pools and soil enzyme activity, whereas EcM fungal taxa displayed variable responses, suggesting that these groups respond differently to P availability. Additionally, the production of extracellular phosphatase enzymes in soil decreased under elevated pH, suggesting a shift in functional activity of soil microbes with pH alteration. Thus, our findings suggest that elevating pH increased soil P availability, which may partly underlie the mycorrhizal fungal responses we observed. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrino-Kyker, Sarah R.; Kluber, Laurel A.; Petersen, Sheryl M.
Many forests are affected by chronic acid deposition, which can lower soil pH and limit the availability of nutrients such as phosphorus (P), but the response of mycorrhizal fungi to changes in soil pH and P availability and how this affects tree acquisition of nutrients is not well understood. Here, we describe an ecosystem-level manipulation in 72 plots, which increased pH and/or P availability across six forests in Ohio, USA. Two years after treatment initiation, mycorrhizal fungi on roots were examined with molecular techniques, including 454-pyrosequencing. Elevating pH significantly increased arbuscular mycorrhizal (AM) fungal colonization and total fungal biomass, andmore » affected community structure of AM and ectomycorrhizal (EcM) fungi, suggesting that raising soil pH altered both mycorrhizal fungal communities and fungal growth. AM fungal taxa were generally negatively correlated with recalcitrant P pools and soil enzyme activity, whereas EcM fungal taxa displayed variable responses, suggesting that these groups respond differently to P availability. Additionally, the production of extracellular phosphatase enzymes in soil decreased under elevated pH, suggesting a shift in functional activity of soil microbes with pH alteration. Furthermore, our findings suggest that elevating pH increased soil P availability, which may partly underlie the mycorrhizal fungal responses we observed.« less
Barrier island community change: What controls it?
NASA Astrophysics Data System (ADS)
Dows, B.; Young, D.; Zinnert, J.
2014-12-01
Conversion from grassland to woody dominated communities has been observed globally. In recent decades, this pattern has been observed in coastal communities along the mid-Atlantic U.S. In coastal environments, a suite of biotic and abiotic factors interact as filters to determine plant community structure and distribution. Microclimatic conditions: soil and air temperature, soil moisture and salinity, and light attenuation under grass cover were measured across a grassland-woody encroachment gradient on a Virginia barrier island; to identify the primary factors that mediate this change. Woody establishment was associated with moderately dense (2200 shoots/m2) grass cover, but reduced at high (> 6200 shoots/ m2) and low (< 1250 shoots/ m2) densities. Moderately dense grass cover reduced light attenuation (82.50 % reduction) to sufficiently reduce soil temperature thereby limiting soil moisture evaporation. However, high grass density reduced light attenuation (98.7 % reduction) enough to inhibit establishment of woody species; whereas low grass density attenuated much less light (48.7 % reduction) which allowed for greater soil moisture evaporation. Soil salinity was dynamic as rainfall, tidal inundation, and sea spray produce spatiotemporal variation throughout the barrier island landscape. The importance of light and temperature were compounded as they also indirectly affect soil salinity via their affects on soil moisture. Determining how these biotic and abiotic factors relate to sea level rise and climate change will improve understanding coastal community response as global changes proceed. Understanding how community shifts affect ecosystem function and their potential to affect adjacent systems will also improve predictive ability of coastal ecosystem responses.
Chen, Yuexing; Wen, Xiaoxia; Sun, Yulin; Zhang, Junli; Lin, Xiaoli; Liao, Yuncheng
2015-07-04
We studied the changes in soil bacterial communities induced by ground mulch managements at different apple growth periods. We adopted the denaturing gradient gel electrophoresis (DGGE) with PCR-amplified 16S rRNA fragments to determine soil bacterial community structure and diversity. Soil bacterial community structure with different ground mulch managements were significantly different. Both the mulch management strategies and apple growth periods affected the predominant groups and their abundance in soil bacterial communities. Grass mulch and cornstalk mulch treatments had higher bacterial diversity and richness than the control at young fruit period and fruit expanding period, whereas film mulch treatment had no significant difference compared with the control. During mature period, bacterial diversity in the control reached its maximum, which may be ascribed to the rapid growth and reproduction of the r-selection bacteria. The clustering and detrended correspondence analysis revealed that differences in soil bacterial communities were closely correlated to apple growth periods and ground mulch managements. Soil samples from the grass mulch and cornstalk mulch treatments clustered together while those mulched with plastic film treatment were similar to the control. The most abundant phylum in soil bacterial community was Proteobacteria followed by Bacteroidetes. Some other phyla were also detected, such as Acidobacteria, Firmicutes, Actinobacteria and Chloroflexi. Mulching with plant (Grass/Cornstalk) had great effects on soil bacterial community structure and enhanced the diversity while film mulch management had no significant effects.
Microbial biodiversity in arable soils is affected by agricultural practices
NASA Astrophysics Data System (ADS)
Wolińska, Agnieszka; Górniak, Dorota; Zielenkiewicz, Urszula; Goryluk-Salmonowicz, Agata; Kuźniar, Agnieszka; Stępniewska, Zofia; Błaszczyk, Mieczysław
2017-04-01
The aim of the study was to examine the differences in microbial community structure as a result of agricultural practices. Sixteen samples of cultivated and the same number of non-cultivated soils were selected. Gel bands were identified using the GelCompar software to create the presence-absence matrix, where each band represented a bacterial operational taxonomic unit. The data were used for principal-component analysis and additionally, the Shannon- Weaver index of general diversity, Simpson index of dominance and Simpson index of diversity were calculated. Denaturing gradient gel electrophoresis profiles clearly indicated differentiation of tested samples into two clusters: cultivated and non-cultivated soils. Greater numbers of dominant operational taxonomic units (65) in non-cultivated soils were noted compared to cultivated soils (47 operational taxonomic units). This implies that there was a reduction of dominant bacterial operational taxonomic units by nearly 30% in cultivated soils. Simpson dominance index expressing the number of species weighted by their abundance amounted to 1.22 in cultivated soils, whereas a 3-fold higher value (3.38) was observed in non-cultivated soils. Land-use practices seemed to be a important factors affected on biodiversity, because more than soil type determined the clustering into groups.
NASA Astrophysics Data System (ADS)
Florentino, A.; Torres, D.; Ospina, A.; Contreras, J.; Palma, Z.; Silvera, J.
2012-04-01
Soil degradation in natural ecosystem of arid and semi-arid zones of Venezuela due to livestock treading (goats) it is an important problem that affect their environment functions; increase soil erodibility, bulk density, water losses and reduce porosity, water infiltration rate and soil structural stability. The presence of biological crust (BSC) in this type of soil it is very common. The objective of this study was to evaluate the soil surface physical quality through the use of selected indicators, mainly some of that related to structural stability, infiltrability and the prediction of soil erosion risk in two zones of Lara state: 1) Quíbor (QUI) and 2) Humocaro Bajo (HB). The study was conducted on two selected plots (30 m x 20 m) in each zone, with natural vegetation and BSC cover, with areas affected by different degree of compaction due to treading in the paths where the goats are moving. Five sites per plot (50 cm x 50 cm) under vegetation cover and five sites over the path with bare soil were sampled (0-7,5 and 7,5-15 cm depth). The results showed that soil macroaggregate stability (equivalent diameter of aggregates >0,25 mm) was significantly higher (p<0,05 %) in soil with vegetation cover and BSC compared with bare soil. Sealing index, as a measure of aggregate stability, determined in laboratory under simulated rain and expressed as hydraulic conductivity of soil surface sealing (Kse), decreased with decreasing soil vegetation cover and the presence of BSC. However, Ksei (i: inicial) and Ksef (f: final) were significantly greater in soil with more than 75 % of BSC in comparison to bare soils. The sealing index it is used to for to estimate changes in soil water losses. As the sealing index increases, the susceptibility of the soil to undergo surface sealing or slaking decrease. These results suggested that soil physical properties are potential indicators of soil quality with regard to soil erodibility and showed that soils under vegetation cover had higher quality level than bare soils. Some predictive regression equation had a high R2 value and was a useful tool for to evaluate the risk of extreme climatic changes and to mitigate their detrimental effects. We conclude that the global climatic change (CCG) will have a negative effect on these agroecosystems functions, mainly in soil and water conservation, carbon sequestration, and productivity. Natural recovery of soil physical properties from treading damage of pastoral soils will be possible in the future with the implementation of soil management strategies, mainly through re-vegetation and recuperation of the BSC. Key word: Soil structure; aggregate stability; soil sealing index; hydraulic conductivity of surface sealing.
Simulating root-induced rhizosphere deformation and its effect on water flow
NASA Astrophysics Data System (ADS)
Aravena, J. E.; Ruiz, S.; Mandava, A.; Regentova, E. E.; Ghezzehei, T.; Berli, M.; Tyler, S. W.
2011-12-01
Soil structure in the rhizosphere is influenced by root activities, such as mucilage production, microbial activity and root growth. Root growth alters soil structure by moving and deforming soil aggregates, affecting water and nutrient flow from the bulk soil to the root surface. In this study, we utilized synchrotron X-ray micro-tomography (XMT) and finite element analysis to quantify the effect of root-induced compaction on water flow through the rhizosphere to the root surface. In a first step, finite element meshes of structured soil around the root were created by processing rhizosphere XMT images. Then, soil deformation by root expansion was simulated using COMSOL Multiphysics° (Version 4.2) considering the soil an elasto-plastic porous material. Finally, fluid flow simulations were carried out on the deformed mesh to quantify the effect of root-induced compaction on water flow to the root surface. We found a 31% increase in water flow from the bulk soil to the root due to a 56% increase in root diameter. Simulations also show that the increase of root-soil contact area was the dominating factor with respect to the calculated increase in water flow. Increase of inter-aggregate contacts in size and number were observed within a couple of root diameters away from the root surface. But their influence on water flow was, in this case, rather limited compared to the immediate soil-root contact.
Fall, S; Nazaret, S; Chotte, J L; Brauman, A
2004-08-01
The building and foraging activities of termites are known to modify soil characteristics such as the heterogeneity. In tropical savannas the impact of the activity of soil-feeding termites ( Cubitermes niokoloensis) has been shown to affect the properties of the soil at the aggregate level by creating new soil microenvironments (aggregate size fractions) [13]. These changes were investigated in greater depth by looking at the microbial density (AODC) and the genetic structure (automated rRNA intergenic spacer analysis: ARISA) of the communities in the different aggregate size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, and dispersible clays) separated from compartments (internal and external wall) of three Cubitermes niokoloensis mounds. The bacterial density of the mounds was significantly higher (1.5 to 3 times) than that of the surrounding soil. Within the aggregate size fractions, the termite building activity resulted in a significant increase in bacterial density within the coarser fractions (>20 mum). Multivariate analysis of the ARISA profiles revealed that the bacterial genetic structures of unfractionated soil and soil aggregate size fractions of the three mounds was noticeably different from the savanna soil used as a reference. Moreover, the microbial community associated with the different microenvironments in the three termite mounds revealed three distinct clusters formed by the aggregate size fractions of each mound. Except for the 2-20 mum fraction, these results suggest that the mound microbial genetic structure is more dependent upon microbial pool affiliation (the termite mound) than on the soil location (aggregate size fraction). The causes of the specificity of the microbial community structure of termite mound aggregate size fractions are discussed.
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Raychowdhury, Prishati; Gundlapalli, Prabhakar
2015-06-01
Design of critical facilities such as nuclear power plant requires an accurate and precise evaluation of seismic demands, as any failure of these facilities poses immense threat to the community. Design complexity of these structures reinforces the necessity of a robust 3D modeling and analysis of the structure and the soil-foundation interface. Moreover, it is important to consider the multiple components of ground motion during time history analysis for a realistic simulation. Present study is focused on investigating the seismic response of a nuclear containment structure considering nonlinear Winkler-based approach to model the soil-foundation interface using a distributed array of inelastic springs, dashpots and gap elements. It is observed from this study that the natural period of the structure increases about 10 %, whereas the force demands decreases up to 24 % by considering the soil-structure interaction. Further, it is observed that foundation deformations, such as rotation and sliding are affected by the embedment ratio, indicating an increase of up to 56 % in these responses for a reduction of embedment from 0.5 to 0.05× the width of the footing.
40 CFR 264.192 - Design and installation of new tank systems or components.
Code of Federal Regulations, 2010 CFR
2010-07-01
... structural strength, compatibility with the waste(s) to be stored or treated, and corrosion protection to... component of the tank system will be in contact with the soil or with water, a determination by a corrosion expert of: (i) Factors affecting the potential for corrosion, including but not limited to: (A) Soil...
Impact of fomesafen on the soil microbial communities in soybean fields in Northeastern China.
Wu, Xiao-Hu; Zhang, Ying; Du, Peng-Qiang; Xu, Jun; Dong, Feng-Shou; Liu, Xin-Gang; Zheng, Yong-Quan
2018-02-01
Fomesafen, a widely adopted residual herbicide, is used throughout the soybean region of northern China for the spring planting. However, the ecological risks of using fomesafen in soil remain unknown. The aim of this work was to evaluate the impact of fomesafen on the microbial community structure of soil using laboratory and field experiments. Under laboratory conditions, the application of fomesafen at concentrations of 3.75 and 37.5mg/kg decreased the basal respiration (R B ) and microbial biomass carbon (MBC). In contrast, treatment with 375mg/kg of fomesafen resulted in a significant decrease in the R B , MBC, abundance of both Gram+ and Gram- bacteria, and fungal biomass. Analysis of variance showed that the treatment accounted for most of the variance (38.3%) observed in the soil microbial communities. Furthermore, the field experiment showed that long-term fomesafen application in continuously cropped soybean fields affected the soil bacterial community composition by increasing the relative average abundance of Proteobacteria and Actinobacteria species and decreasing the abundance of Verrucomicrobia species. In addition, Acidobacteria and Chloroflexi species showed a pattern of activation-inhibition. Taken together, our results suggest that the application of fomesafen can affect the community structure of soil bacteria in the spring planting soybean region of northern China. Copyright © 2017 Elsevier Inc. All rights reserved.
Klabi, Rim; Bell, Terrence H; Hamel, Chantal; Iwaasa, Alan; Schellenberg, Mike; Raies, Aly; St-Arnaud, Marc
2015-01-01
Adding inorganic P- and N-fixing legumes to semi-arid grasslands can increase forage yield, but soil nutrient concentrations and plant cover may also interact to modify soil fungal populations, impacting short- and long-term forage production. We tested the effect of plant assemblage (seven native grasses, seven native grasses + the domesticated N-fixing legume Medicago sativa, seven native grasses + the native N-fixing legume Dalea purpurea or the introduced grass Bromus biebersteinii + M. sativa) and soil P concentration (addition of 0 or 200 P2O5 kg ha(-1) at sowing) on the diversity and community structure of arbuscular mycorrhizal (AM) fungi and total fungi over two consecutive years, using 454-pyrosequencing of 18S rDNA and ITS amplicons. Treatment effects were stronger in the wet year (2008) than the dry year (2009). The presence of an N-fixing legume with native grasses generally increased AM fungal diversity, while the interaction between soil P concentration and plant assemblage modified total fungal community structure in 2008. Excluding interannual variations, which are likely driven by moisture and plant productivity, AM fungal communities in semi-arid grasslands appear to be primarily affected by plant assemblage composition, while the composition of other fungi is more closely linked to soil P. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Geomys bursars burrowing patterns: influence of season and food patch structure
Andersen, Douglas C.
1987-01-01
The relationship between belowground food resources and the pattern and pace of soil excavation by Geomys bursarius, the plains pocket gopher, was assessed during spring and autumn using replicated 18 x 18 m enclosures containing uniform arrays of food plants (Daucus carota) at spacings assumed to result in burrowing being energetically profitable (25 and 50 cm) or unprofitable (100 cm and empty). Soil excavation rate, measured in terms of either daily additions to tunnel length or volume, or the maximum volume excavated during a 3-d interval, varied greatly among individuals. No significant effect due to season or density of belowground plant biomass was detected when burrowing was profitable. Individuals readily initiated aboveground travel in unprofitable treatments. Soil bulk density was negatively related and animal body mass positively related to excavation rate. Individuals deposited from 41 to 87% of excavated soil on the ground surface; the remainder was used to backfill previously created tunnels or chambers. Plant size, but not plant spacing, affected the ratio of the volumes deposited aboveground and belowground. There was no evidence that animals in enclosures disturbed soil in a manner quantitatively or qualitatively different from free-ranging adults. The large proportions and absolute quantities (up to 30 L/d) of soil involved suggest that backfilling may affect ecosystem structure and functioning as much as surface mound-building.
Patel, Vrutika; Sharma, Anukriti; Lal, Rup; Al-Dhabi, Naif Abdullah; Madamwar, Datta
2016-03-22
Gauging the microbial community structures and functions become imperative to understand the ecological processes. To understand the impact of long-term oil contamination on microbial community structure soil samples were taken from oil fields located in different industrial regions across Kadi, near Ahmedabad, India. Soil collected was hence used for metagenomic DNA extraction to study the capabilities of intrinsic microbial community in tolerating the oil perturbation. Taxonomic profiling was carried out by two different complementary approaches i.e. 16S rDNA and lowest common ancestor. The community profiling revealed the enrichment of phylum "Proteobacteria" and genus "Chromobacterium," respectively for polluted soil sample. Our results indicated that soil microbial diversity (Shannon diversity index) decreased significantly with contamination. Further, assignment of obtained metagenome reads to Clusters of Orthologous Groups (COG) of protein and Kyoto Encyclopedia of Genes and Genomes (KEGG) hits revealed metabolic potential of indigenous microbial community. Enzymes were mapped on fatty acid biosynthesis pathway to elucidate their roles in possible catalytic reactions. To the best of our knowledge this is first study for influence of edible oil on soil microbial communities via shotgun sequencing. The results indicated that long-term oil contamination significantly affects soil microbial community structure by acting as an environmental filter to decrease the regional differences distinguishing soil microbial communities.
Zhen, Zhen; Liu, Haitao; Wang, Na; Guo, Liyue; Meng, Jie; Ding, Na; Wu, Guanglei; Jiang, Gaoming
2014-01-01
The long-term application of excessive chemical fertilizers has resulted in the degeneration of soil quality parameters such as soil microbial biomass, communities, and nutrient content, which in turn affects crop health, productivity, and soil sustainable productivity. The objective of this study was to develop a rapid and efficient solution for rehabilitating degraded cropland soils by precisely quantifying soil quality parameters through the application of manure compost and bacteria fertilizers or its combination during maize growth. We investigated dynamic impacts on soil microbial count, biomass, basal respiration, community structure diversity, and enzyme activity using six different treatments [no fertilizer (CK), N fertilizer (N), N fertilizer + bacterial fertilizer (NB), manure compost (M), manure compost + bacterial fertilizer (MB), and bacterial fertilizer (B)] in the plowed layer (0–20 cm) of potted soil during various maize growth stages in a temperate cropland of eastern China. Denaturing gradient electrophoresis (DGGE) fingerprinting analysis showed that the structure and composition of bacterial and fungi communities in the six fertilizer treatments varied at different levels. The Shannon index of bacterial and fungi communities displayed the highest value in the MB treatments and the lowest in the N treatment at the maize mature stage. Changes in soil microorganism community structure and diversity after different fertilizer treatments resulted in different microbial properties. Adding manure compost significantly increased the amount of cultivable microorganisms and microbial biomass, thus enhancing soil respiration and enzyme activities (p<0.01), whereas N treatment showed the opposite results (p<0.01). However, B and NB treatments minimally increased the amount of cultivable microorganisms and microbial biomass, with no obvious influence on community structure and soil enzymes. Our findings indicate that the application of manure compost plus bacterial fertilizers can immediately improve the microbial community structure and diversity of degraded cropland soils. PMID:25302996
NASA Astrophysics Data System (ADS)
Piccoli, Ilaria; Camarotto, Carlo; Lazzaro, Barbara; Furlan, Lorenzo; Morari, Francesco
2017-04-01
Soil structure plays a pivotal role in soil functioning and can inform of the degradation of the soil ecosystem. Intensive and repeated tillage operations have been known to negatively affect the soil structure characteristics while conservation agriculture (CA) practices were demonstrated to improve soil structure and related ecosystem services. The aim of this study is to evaluate the effect of conservation agriculture practices on total porosity, pore size distribution, pore architecture and morphology on silty soils of Veneto low-lying plain (North-Eastern Italy). Experimental design was established in 2010 on 4 farms in North-Eastern Italy to compare conventional intensive tillage system "IT" versus conservation agriculture "CA" (no-tillage, cover-crop and residue retention). 96 samples were collected in 2015 at four depths down to 50 cm depth, and investigated for porosity from micro to macro by coupling mercury intrusion porosimetry (MIP) (0.0074-100 µm) and x-ray computed microtomography (µCT) (>26 µm). Pore morphology and architecture were studied from 3D images analysis and MIP pore size curve. Ultramicroporosity class (0.1-5 μm) positively responded to CA after 5-yr of practices adoption while no significant effects were observed in the x-ray µCT domain (> 26 µm). Silty soils of Veneto plain showed a slow reaction to conservation agriculture because of the low soil organic carbon content and poor aggregate stability. Nevertheless the positive influence of CA on ultramicroporosity, which is strictly linked to soil organic carbon (SOC) stabilization, indicated that a virtuous cycle was initiated between SOC and porosity, hopefully leading to well-developed macropore systems and, in turn, enhanced soil functions and ecosystem services.
NASA Astrophysics Data System (ADS)
Zhou, H.; Yu, X.; Chen, C.; Zeng, L.; Lu, S.; Wu, L.
2016-12-01
In this research, we combined synchrotron-based X-ray micro-computed tomography (SR-mCT), with three-dimensional lattice Bolzmann (LB) method, to quantify how the change in pore space architecture affected macroscopic hydraulic of two clayey soils amended with biochar. SR-mCT was used to characterize pore structures of the soils before and after biochar addition. The high-resolution soil pore structures were then directly used as internal boundary conditions for three-dimensional water flow simulations with the LB method, which was accelerated by graphics processing unit (GPU) parallel computing. It was shown that, due to the changes in soil pore geometry, the application of biochar increased the soil permeability by at least 1 order of magnitude, and decreased the tortuosity by 20-30%. This work was the first physics based modeling study on the effect of biochar amendment on soil hydraulic properties. The developed theories and techniques have promising potential in understanding the mechanisms of water and nutrient transport in soil at the pore scale.
Chemical migration during soil water retention curve evaluation.
Pires, Luiz F; Villanueva, Felipe C A; Dias, Nivea M P; Bacchi, Osny O Santos; Reichardt, Klaus
2011-09-01
Wetting and drying (W-D) cycles can induce important elemental migrations in soils. The main purpose of this work was to study the possible existence of soil chemical elemental migrations in samples submitted to repeated W-D cycles during evaluations of soil water retention curve (SWRC). The experimental measurements were carried out by Atomic Absorption Spectrometry (AAS) for Ca(2+), Mg(2+) and K(+) on samples of three different Brazilian tropical soils (Geric Ferralsol, Eutric Nitosol and Rhodic Ferralsol). Results demonstrate an increase in the electrical conductivity of the water extracted from the samples and significant losses of Ca(2+), Mg(2+) and K(+) during the applications of up to nine W-D cycles. It was also observed differences in SWRC for all soils when samples submitted to the application of several W-D cycles were compared with samples not submitted to it. These differences occurred at the region of both structural and textural pores. A possible explanation for these results could be the soil chemical migration during the sequences of W-D cycles, which can affect the soil structure development.
Liang, Jianfang; Yang, Jiangke; Yang, Yang; Chao, Qunfang; Yin, Yalan; Zhao, Yaguan
2016-08-04
This study aimed to study the phylogenetic diversity and community structure of bacteria in petroleum contaminated soils from Karamay oil field, and to analyze the relationship between the community variation and the environment parameters, to provide a reference for bioremediation of petroleum contaminated soils. We collected samples from petroleum contaminated soils in 5 cm, 20 cm and 50 cm depth layers, and measured the environment parameters subsequently. We constructed three 16S rRNA gene clone libraries of these soil samples, and then determined the operation taxonomy units (OTUs) restriction fragment length polymorphism method, and finally sequenced the representative clones of every OUT. The diversity, richness and evenness index of the bacteria communities were calculated by using Biodap software. Neighbor-Joining phylogenetic tree was constructed based on 16S rRNA gene sequences of bacteria from Karamay oil field and the references from related environments. Canonial correspondence analysis (CCA) was used to analyze the relationship between environment parameters and species by using CANOCO 4.5 software. Environment parameters showed that 50 cm deep soil contained the highest amount of total nitrogen (TN) and total phosphorus (TP), whereas the 20 cm depth soil contained the lowest amount. The 5 cm depth soil contained the highest amount of total organic carbon (TOC), whereas the 50 cm depth soil contained the lowest amount. Among the 3 layers, 20 cm depth had the highest diversity and richness of bacteria, whereas the bacteria in 50 cm depth was the lowest. Phylogenic analyses suggested that the bacteria in Karamay oil field could be distributed into five groups at the level of phylum, Cluster I to V, respectively belong to Proteobacteria, Actinobacteria, Firmicute, Bacteroidetes, Planctomycetes. Cluster I accounts for 78.57% of all tested communities. CCA results showed that TN, TP, TOC significantly affected the bacteria community structure. Especially, TOC content is significantly related to the distribution of Pseudomonas. The petroleum-contaminated soil inhabited abundant of bacteria. The diversity index and spatial distribution of these communities were affected by the environment parameters in the soil.
Dynamics of organic matter and microbial populations in amended soil: a multidisciplinary approach
NASA Astrophysics Data System (ADS)
Gigliotti, Giovanni; Pezzolla, Daniela; Zadra, Claudia; Albertini, Emidio; Marconi, Gianpiero; Turchetti, Benedetta; Buzzini, Pietro
2013-04-01
The application of organic amendments to soils, such as pig slurry, sewage sludge and compost is considered a tool for improving soil fertility and enhancing C stock. The addition of these different organic materials allows a good supply of nutrients for plants but also contributes to C sequestration, affects the microbial activity and the transformation of soil organic matter (SOM). Moreover, the addition of organic amendment has gained importance as a source of greenhouse gas (GHG) emissions and then as a cause of the "Global Warming". Therefore, it is important to investigate the factors controlling the SOM mineralization in order to improve soil C sequestration and decreasing at the same time the GHG emissions. The quality of organic matter added to the soil will play an important role in these dynamics, affecting the microbial activity and the changes in microbial community structure. A laboratory, multidisciplinary experiment was carried out to test the effect of the amendment by anaerobic digested livestock-derived organic materials on labile organic matter evolution and on dynamics of microbial population, this latter both in terms of consistence of microbial biomass, as well as in terms of microbial biodiversity. Different approaches were used to study the microbial community structure: chemical (CO2 fluxes, WEOC, C-biomass, PLFA), microbiological (microbial enumeration) and molecular (DNA extraction and Roche 454, Next Generation Sequencing, NGS). The application of fresh digestate, derived from the anaerobic treatment of animal wastes, affected the short-term dynamics of microbial community, as reflected by the increase of CO2 emissions immediately after the amendment compared to the control soil. This is probably due to the addition of easily available C added with the digestate, demonstrating that this organic material was only partially stabilized by the anaerobic process. In fact, the digestate contained a high amounts of available C, which led to increase WEOC concentration in digestate treated soil compared to the control soil. The depletion of C, likely due to the microbial activity, was confirmed by the gradual decrease of WEOC concentration in soils amended with digestate. The SUVA254 measurement showed an influence of digestate on the quality of soil WEOM, with higher values in the control rather than in the digestate amended soil, indicating a great amount of aromatic compounds in native SOM. The results of the PLFAs showed that the addition of digestate did not lead overall changes in the microbial community structure compared to the control, except for a shallow decrease of fungi. This probably suggests that the slow rate of mineralization of the organic matter added with digestate does not induce to a rapid shift of microbial community structure. The NGS showed the most important bacterial phyla and fungi species that were involved in the SOM turnover. Furthermore, this approach might be useful to trace the residence time of microbial pathogens supplied with digestates.
Du, Baoguo; Kreuzwieser, Jürgen; Dannenmann, Michael; Junker, Laura Verena; Kleiber, Anita; Hess, Moritz; Jansen, Kirstin; Eiblmeier, Monika; Gessler, Arthur; Kohnle, Ulrich; Ensminger, Ingo; Rennenberg, Heinz; Wildhagen, Henning
2018-01-01
The coniferous forest tree Douglas-fir (Pseudotsuga menziesii) is native to the pacific North America, and is increasingly planted in temperate regions worldwide. Nitrogen (N) metabolism is of great importance for growth, resistance and resilience of trees. In the present study, foliar N metabolism of adult trees of three coastal and one interior provenance of Douglas-fir grown at two common gardens in southwestern Germany (Wiesloch, W; Schluchsee, S) were characterized in two subsequent years. Both the native North American habitats of the seed sources and the common garden sites in Germany differ in climate conditions. Total and mineral soil N as well as soil water content were higher in S compared to W. We hypothesized that i) provenances differ constitutively in N pool sizes and composition, ii) N pools are affected by environmental conditions, and iii) that effects of environmental factors on N pools differ among interior and coastal provenances. Soil water content strongly affected the concentrations of total N, soluble protein, total amino acids (TAA), arginine and glutamate. Foliar concentrations of total N, soluble protein, structural N and TAA of trees grown at W were much higher than in trees at S. Provenance effects were small but significant for total N and soluble protein content (interior provenance showed lowest concentrations), as well as arginine, asparagine and glutamate. Our data suggest that needle N status of adult Douglas-fir is independent from soil N availability and that low soil water availability induces a re-allocation of N from structural N to metabolic N pools. Small provenance effects on N pools suggest that local adaptation of Douglas-fir is not dominated by N conditions at the native habitats.
Du, Baoguo; Kreuzwieser, Jürgen; Dannenmann, Michael; Junker, Laura Verena; Kleiber, Anita; Hess, Moritz; Jansen, Kirstin; Eiblmeier, Monika; Gessler, Arthur; Kohnle, Ulrich; Ensminger, Ingo; Rennenberg, Heinz
2018-01-01
The coniferous forest tree Douglas-fir (Pseudotsuga menziesii) is native to the pacific North America, and is increasingly planted in temperate regions worldwide. Nitrogen (N) metabolism is of great importance for growth, resistance and resilience of trees. In the present study, foliar N metabolism of adult trees of three coastal and one interior provenance of Douglas-fir grown at two common gardens in southwestern Germany (Wiesloch, W; Schluchsee, S) were characterized in two subsequent years. Both the native North American habitats of the seed sources and the common garden sites in Germany differ in climate conditions. Total and mineral soil N as well as soil water content were higher in S compared to W. We hypothesized that i) provenances differ constitutively in N pool sizes and composition, ii) N pools are affected by environmental conditions, and iii) that effects of environmental factors on N pools differ among interior and coastal provenances. Soil water content strongly affected the concentrations of total N, soluble protein, total amino acids (TAA), arginine and glutamate. Foliar concentrations of total N, soluble protein, structural N and TAA of trees grown at W were much higher than in trees at S. Provenance effects were small but significant for total N and soluble protein content (interior provenance showed lowest concentrations), as well as arginine, asparagine and glutamate. Our data suggest that needle N status of adult Douglas-fir is independent from soil N availability and that low soil water availability induces a re-allocation of N from structural N to metabolic N pools. Small provenance effects on N pools suggest that local adaptation of Douglas-fir is not dominated by N conditions at the native habitats. PMID:29566035
NASA Astrophysics Data System (ADS)
Huang, Xinjun; Zhang, Qingwen; Chen, Shanghong; Dong, Yuequn; Xiao, Meijia; Hamed, Lamy Mamdoh Mohamed
2017-04-01
Soil thickness is basic limiting condition for purple soil, not only due to its effect on crop production, but also its effect on soil structure. Steady-state of soil thickness will be achieved over time, as result the soil aggregate which the key factor of soil erodibility can be enhanced as well. However, the effect of soil thickness on aggregates stability and the characteristics of soil erodibility in sloping land have not yet fully understood.A field survey was conducted in hilly area of Sichuan region located in southeast China to study the relationship between soil aggregate stability and soil erodibility on sloping farmland under different four thickness (100cm, 80cm, 60cm, 30cm) of purple soil. Based on two different sieving methods (Dry and Wet sieving), we analyzed soil aggregate stability and its effect on soil erodibility within depth of 0-30cm soil layers. The results indicated that: Water stable aggregate on sloping farmland was ranged between 37.9% to 58.6%, where it increased with increasing the soil thickness. Moreover, fractal dimension calculated from dry-sieving and wet-sieving was 2.06-2.49 and 2.70-2.85 respectively, where it decreased with decreasing the soil thickness. The overall soil erodibility was 0.05-1.00 and a negative significant correlation was found between soil aggregate stability and erodibility(P<0.01). Moreover, farmland with thick soil profile tended to be high in soil erodibility within the top soil layer (0-30cm). The results reveal that soil thickness can affect soil aggregate stability as well as erodibility. As soil thickness increased, the top soil became more stable and less erodible. Keywords:purple soil; soil thickness; soil aggregate;soil erodibility
Chen, Ya; Yang, Wan Qin; Wu, Fu Zhong; Yang, Fan; Lan, Li Ying; Liu, Yu Wei; Guo, Cai Hong; Tan, Bo
2017-10-01
In order to understand the diversity of soil nematodes in the subalpine/alpine forests of the eastern Qinghai-Tibet Plateau, soil nematodes in the primary forest, mixed forest and secondary forest of Abies faxoniana were extracted by elutriation and sugar-centrifugation method in July 2015, and the composition and structure characteristics of soil nematode communities were studied in the three forests at different altitudes. A total of 37950 soil nematodes were collected, which belonged to 20 families and 27 genera, and the mean density was 4217 ind·100 g -1 dry soil. Filenchus was the dominant genus in the primary forest, and Filenchus and Pararotylenchus in the mixed forest and secondary forest, respectively. The individual number of each dominant genus was significantly affected by forest type. All nematode individuals were classified into the four trophic groups of bacterivores, fungivores, plant-parasites and omnivore-predators. The fungivores were dominant in the primary and secondary forest and the bacterivores in the mixed forest. The number of soil nematode c-p (colonizer-persister) groups of c-p 1, c-p 2, c-p 3 and c-p 4 accounted for 6.1%, 51.1%, 30.0% and 12.7% of the total nematode abundance, respectively. The maturity index (MI), the total maturity index (∑MI) and the plant parasitic index (PPI) of soil nematodes decreased gradually with the increase of altitude. The nematode channel ratio in the mixed forest was higher than 0.5, but that in the primary forest and secondary forest was below 0.5. The forest type significantly affected the soil nematode maturity index and channel ratio, but the forest type, soil layer and their interaction had no significant effect on the diversity index. There were obvious diffe-rences in the composition, nutrient structure and energy flow channel of soil nematodes in the subalpine/alpine forests of western Sichuan, providing an important reference for understanding the function of soil nematodes in soil processes of this region.
He, Ruoyang; Yang, Kaijun; Li, Zhijie; Schädler, Martin; Yang, Wanqin; Wu, Fuzhong; Tan, Bo; Zhang, Li
2017-01-01
Forest land-use changes have long been suggested to profoundly affect soil microbial communities. However, how forest type conversion influences soil microbial properties remains unclear in Tibetan boreal forests. The aim of this study was to explore variations of soil microbial profiles in the surface organic layer and subsurface mineral soil among three contrasting forests (natural coniferous forest, NF; secondary birch forest, SF and spruce plantation, PT). Soil microbial biomass, activity and community structure of the two layers were investigated by chloroform fumigation, substrate respiration and phospholipid fatty acid analysis (PLFA), respectively. In the organic layer, both NF and SF exhibited higher soil nutrient levels (carbon, nitrogen and phosphorus), microbial biomass carbon and nitrogen, microbial respiration, PLFA contents as compared to PT. However, the measured parameters in the mineral soils often did not differ following forest type conversion. Irrespective of forest types, the microbial indexes generally were greater in the organic layer than in the mineral soil. PLFAs biomarkers were significantly correlated with soil substrate pools. Taken together, forest land-use change remarkably altered microbial community in the organic layer but often did not affect them in the mineral soil. The microbial responses to forest land-use change depend on soil layer, with organic horizons being more sensitive to forest conversion. PMID:28982191
Failure modes for pipelines in landslide areas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruschi, R.; Spinazze, M.; Tomassini, D.
1995-12-31
In recent years a number of incidences of pipelines affected by slow soil movements have been reported in the relevant literature. Further related issues such as soil-pipe interaction have been studied both theoretically and through experimental surveys, along with the environmental conditions which are responsible for hazard to the pipeline integrity. A suitable design criteria under these circumstances has been discussed by several authors, in particular in relation to a limit state approach and hence a strain based criteria. The scope of this paper is to describe the failure mechanisms which may affect the pipeline in the presence of slowmore » soil movements impacting on the pipeline, both in the longitudinal and transverse direction. Particular attention is paid to environmental, geometric and structural parameters which steer the process towards one or other failure mechanism. Criteria for deciding upon remedial measures required to guarantee the structural integrity of the pipeline, both in the short and in the long term, are discussed.« less
Chi, Xiang-Qun; Liu, Kun; Zhou, Ning-Yi
2015-07-01
Pseudomonas sp. strain WBC-3 mineralizes the priority pollutant para-nitrophenol (PNP) and releases nitrite (NO2 (-)), which is probably involved in the nitrification. In this study, the rate of PNP removal in soil bioaugmented with strain WBC-3 was more accelerated with more NO2 (-) accumulation than in uninoculated soils. Strain WBC-3 survived well and remained stable throughout the entire period. Real-time polymerase chain reaction (real-time PCR) indicated a higher abundance of ammonia-oxidizing bacteria (AOB) than ammonia-oxidizing archaea (AOA), suggesting that AOB played a greater role in nitrification in the original sampled soil. Real-time PCR and multivariate analysis based on the denaturing gradient gel electrophoresis showed that PNP contamination did not significantly alter the abundance and community structure of ammonia oxidizers except for inhibiting the AOB abundance. Bioaugmentation of PNP-contaminated soil showed a significant effect on AOB populations and community structure as well as AOA populations. In addition, ammonium (NH4 (+)) variation was found to be the primary factor affecting the AOB community structure, as determined by the correlation between the community structures of ammonia oxidizers and environmental factors. It is here proposed that the balance between archaeal and bacterial ammonia oxidation could be influenced significantly by the variation in NH4 (+) levels as caused by bioaugmentation of contaminated soil by a pollutant containing nitrogen.
Walvekar, Varsha Ashok; Bajaj, Swati; Singh, Dileep K; Sharma, Shilpi
2017-07-01
India is one of the leading countries in production and indiscriminate consumption of pesticides. Owing to their xenobiotic nature, pesticides affect soil microorganisms that serve as mediators in plant growth promotion. Our study aimed to deliver a comprehensive picture, by comparing the effects of synthetic pesticides (chlorpyriphos, cypermethrin, and a combination of both) with a biopesticide (azadirachtin) at their recommended field application level (L), and three times the recommended dosage (H) on structure and function of microbial community in rhizosphere of Vigna radiata. Effect on culturable fraction was assessed by enumeration on selective media, while PCR-denaturing gradient gel electrophoresis (DGGE) was employed to capture total bacterial community diversity. This was followed by a metabolic sketch using community-level physiological profiling (CLPP), to obtain a broader picture of the non-target effects on rhizospheric microbial community. Although plant parameters were not significantly affected by pesticide application, the microbial community structure experienced an undesirable impact as compared to control devoid of pesticide treatment. Examination of DGGE banding patterns through cluster analysis revealed that microbial community structure of pesticide-treated soils had only 70% resemblance to control rhizospheric soil even at 45 days post application. Drastic changes in the metabolic profiles of pesticide-treated soils were also detected in terms of substrate utilization, rhizospheric diversity, and evenness. It is noteworthy that the effects exacerbated by biopesticide were comparable to that of synthetic pesticides, thus emphasizing the significance of ecotoxicological assessments before tagging biopesticides as "safe alternatives."
Cretoiu, Mariana Silvia; Korthals, Gerard W; Visser, Johnny H M; van Elsas, Jan Dirk
2013-09-01
A long-term experiment on the effect of chitin addition to soil on the suppression of soilborne pathogens was set up and monitored for 8 years in an experimental field, Vredepeel, The Netherlands. Chitinous matter obtained from shrimps was added to soil top layers on two different occasions, and the suppressiveness of soil toward Verticillium dahliae, as well as plant-pathogenic nematodes, was assessed, in addition to analyses of the abundances and community structures of members of the soil microbiota. The data revealed that chitin amendment had raised the suppressiveness of soil, in particular toward Verticillium dahliae, 9 months after the (second) treatment, extending to 2 years following treatment. Moreover, major effects of the added chitin on the soil microbial communities were detected. First, shifts in both the abundances and structures of the chitin-treated soil microbial communities, both of total soil bacteria and fungi, were found. In addition, the abundances and structures of soil actinobacteria and the Oxalobacteraceae were affected by chitin. At the functional gene level, the abundance of specific (family-18 glycoside hydrolase) chitinase genes carried by the soil bacteria also revealed upshifts as a result of the added chitin. The effects of chitin noted for the Oxalobacteraceae were specifically related to significant upshifts in the abundances of the species Duganella violaceinigra and Massilia plicata. These effects of chitin persisted over the time of the experiment.
Cretoiu, Mariana Silvia; Korthals, Gerard W.; Visser, Johnny H. M.
2013-01-01
A long-term experiment on the effect of chitin addition to soil on the suppression of soilborne pathogens was set up and monitored for 8 years in an experimental field, Vredepeel, The Netherlands. Chitinous matter obtained from shrimps was added to soil top layers on two different occasions, and the suppressiveness of soil toward Verticillium dahliae, as well as plant-pathogenic nematodes, was assessed, in addition to analyses of the abundances and community structures of members of the soil microbiota. The data revealed that chitin amendment had raised the suppressiveness of soil, in particular toward Verticillium dahliae, 9 months after the (second) treatment, extending to 2 years following treatment. Moreover, major effects of the added chitin on the soil microbial communities were detected. First, shifts in both the abundances and structures of the chitin-treated soil microbial communities, both of total soil bacteria and fungi, were found. In addition, the abundances and structures of soil actinobacteria and the Oxalobacteraceae were affected by chitin. At the functional gene level, the abundance of specific (family-18 glycoside hydrolase) chitinase genes carried by the soil bacteria also revealed upshifts as a result of the added chitin. The effects of chitin noted for the Oxalobacteraceae were specifically related to significant upshifts in the abundances of the species Duganella violaceinigra and Massilia plicata. These effects of chitin persisted over the time of the experiment. PMID:23811512
Su, Jian-Qiang; Ding, Long-Jun; Xue, Kai; Yao, Huai-Ying; Quensen, John; Bai, Shi-Jie; Wei, Wen-Xue; Wu, Jin-Shui; Zhou, Jizhong; Tiedje, James M; Zhu, Yong-Guan
2015-01-01
The influence of long-term chemical fertilization on soil microbial communities has been one of the frontier topics of agricultural and environmental sciences and is critical for linking soil microbial flora with soil functions. In this study, 16S rRNA gene pyrosequencing and a functional gene array, geochip 4.0, were used to investigate the shifts in microbial composition and functional gene structure in paddy soils with different fertilization treatments over a 22-year period. These included a control without fertilizers; chemical nitrogen fertilizer (N); N and phosphate (NP); N and potassium (NK); and N, P and K (NPK). Based on 16S rRNA gene data, both species evenness and key genera were affected by P fertilization. Functional gene array-based analysis revealed that long-term fertilization significantly changed the overall microbial functional structures. Chemical fertilization significantly increased the diversity and abundance of most genes involved in C, N, P and S cycling, especially for the treatments NK and NPK. Significant correlations were found among functional gene structure and abundance, related soil enzymatic activities and rice yield, suggesting that a fertilizer-induced shift in the microbial community may accelerate the nutrient turnover in soil, which in turn influenced rice growth. The effect of N fertilization on soil microbial functional genes was mitigated by the addition of P fertilizer in this P-limited paddy soil, suggesting that balanced chemical fertilization is beneficial to the soil microbial community and its functions. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Ebrahimi, Ali; Or, Dani
2017-04-01
The sensitivity of the Earth's polar regions to raising global temperatures is reflected in rapidly changing hydrological processes with pronounced seasonal thawing of permafrost soil and increased biological activity. Of particular concern is the potential release of large amounts of soil carbon and the stimulation of other soil-borne GHG emissions such as methane. Soil methanotrophic and methanogenic microbial communities rapidly adjust their activity and spatial organization in response to permafrost thawing and a host of other environmental factors. Soil structural elements such as aggregates and layering and hydration status affect oxygen and nutrient diffusion processes thereby contributing to methanogenic activity within temporal anoxic niches (hotspots or hot-layers). We developed a mechanistic individual based model to quantify microbial activity dynamics within soil pore networks considering, hydration, temperature, transport processes and enzymatic activity associated with methane production in soil. The model was the upscaled from single aggregates (or hotspots) to quantifying emissions from soil profiles in which freezing/thawing processes provide macroscopic boundary conditions for microbial activity at different soil depths. The model distinguishes microbial activity in aerate bulk soil from aggregates (or submerged parts of the profile) for resolving methane production and oxidation rates. Methane transport pathways through soil by diffusion and ebullition of bubbles vary with hydration dynamics and affect emission patterns. The model links seasonal thermal and hydrologic dynamics with evolution of microbial community composition and function affecting net methane emissions in good agreement with experimental data. The mechanistic model enables systematic evaluation of key controlling factors in thawing permafrost and microbial response (e.g., nutrient availability, enzyme activity, PH) on long term methane emissions and carbon decomposition rates in the rapidly changing polar regions.
Effects of sewage sludge amendment on the properties of two Brazilian oxisols and their humic acids.
Bertoncini, E I; D'Orazio, V; Senesi, N; Mattiazzo, M E
2008-07-01
The effect of sewage sludge (SS) amendment on the general properties of the top layers of a sandy and a clayey oxisols and on the nature of their humic acid (HA) fractions was evaluated by chemical and physico-chemical techniques. The amended soils, especially the sandy soil, benefited of SS amendment by increasing their pH to above neutrality and enhancing the contents of C, N, P, and Ca and cation exchange capacity. The SS-HA-like sample showed larger H and N contents and a greater aliphatic character and humification degree than the HAs isolated from non-amended soils. The composition and structure of amended soil HAs were affected by SS application as a function of soil type and layer. In particular, N-containing groups and aliphatic structures of SS-HA-like sample appears to be partially incorporated in the amended soil HAs, and these effects were more evident in the HAs from the sandy oxisol.
Shirima, Deo D; Pfeifer, Marion; Platts, Philip J; Totland, Ørjan; Moe, Stein R
2015-01-01
We have limited understanding of how tropical canopy foliage varies along environmental gradients, and how this may in turn affect forest processes and functions. Here, we analyse the relationships between canopy leaf area index (LAI) and above ground herbaceous biomass (AGBH) along environmental gradients in a moist forest and miombo woodland in Tanzania. We recorded canopy structure and herbaceous biomass in 100 permanent vegetation plots (20 m × 40 m), stratified by elevation. We quantified tree species richness, evenness, Shannon diversity and predominant height as measures of structural variability, and disturbance (tree stumps), soil nutrients and elevation as indicators of environmental variability. Moist forest and miombo woodland differed substantially with respect to nearly all variables tested. Both structural and environmental variables were found to affect LAI and AGBH, the latter being additionally dependent on LAI in moist forest but not in miombo, where other factors are limiting. Combining structural and environmental predictors yielded the most powerful models. In moist forest, they explained 76% and 25% of deviance in LAI and AGBH, respectively. In miombo woodland, they explained 82% and 45% of deviance in LAI and AGBH. In moist forest, LAI increased non-linearly with predominant height and linearly with tree richness, and decreased with soil nitrogen except under high disturbance. Miombo woodland LAI increased linearly with stem density, soil phosphorous and nitrogen, and decreased linearly with tree species evenness. AGBH in moist forest decreased with LAI at lower elevations whilst increasing slightly at higher elevations. AGBH in miombo woodland increased linearly with soil nitrogen and soil pH. Overall, moist forest plots had denser canopies and lower AGBH compared with miombo plots. Further field studies are encouraged, to disentangle the direct influence of LAI on AGBH from complex interrelationships between stand structure, environmental gradients and disturbance in African forests and woodlands.
Short and Long-Term Soil Moisture Effects of Liana Removal in a Seasonally Moist Tropical Forest
Reid, Joseph Pignatello; Schnitzer, Stefan A.; Powers, Jennifer S.
2015-01-01
Lianas (woody vines) are particularly abundant in tropical forests, and their abundance is increasing in the neotropics. Lianas can compete intensely with trees for above- and belowground resources, including water. As tropical forests experience longer and more intense dry seasons, competition for water is likely to intensify. However, we lack an understanding of how liana abundance affects soil moisture and hence competition with trees for water in tropical forests. To address this critical knowledge gap, we conducted a large-scale liana removal experiment in a seasonal tropical moist forest in central Panama. We monitored shallow and deep soil moisture over the course of three years to assess the effects of lianas in eight 0.64 ha removal plots and eight control plots. Liana removal caused short-term effects in surface soils. Surface soils (10 cm depth) in removal plots dried more slowly during dry periods and accumulated water more slowly after rainfall events. These effects disappeared within four months of the removal treatment. In deeper soils (40 cm depth), liana removal resulted in a multi-year trend towards 5–25% higher soil moisture during the dry seasons with the largest significant effects occurring in the dry season of the third year following treatment. Liana removal did not affect surface soil temperature. Multiple and mutually occurring mechanisms may be responsible for the effects of liana removal on soil moisture, including competition with trees, and altered microclimate, and soil structure. These results indicate that lianas influence hydrologic processes, which may affect tree community dynamics and forest carbon cycling. PMID:26545205
NASA Astrophysics Data System (ADS)
Yanardaǧ, Ibrahim H.; Zornoza, Raúl; Bastida, Felipe; Büyükkiliç-Yanardaǧ, Asuman; Acosta, Jose A.; García, Carlos; Faz, Ángel; Mermut, Ahmet R.
2017-04-01
The response of soil microbial communities from soils with different soil organic matter (SOM) content to organic inputs with different stability is still poorly understood. Thus, an incubation experiment was designed to study how the addition of pig slurry (PS), its manure (M) and its biochar (BC) affect soil microbial community and activity in three soils differing in SOM content (Regosol, Luvisol and Kastanozem). The evolution of different C and N fractions, microbial biomass C and N, enzyme activities and microbial community structure by the use of phospholipid fatty acid (PLFA) analysis was assessed for 60 days. Results showed that the different amendments had different effect on microbial properties depending on the soil type. The addition of M caused the highest increase in all microbial properties in the three soils, followed by PS. These changes were more intense in the soil with the lowest SOM (Regosol). The addition of M and PS caused changes in the microbial community structure in all soils, which were more related to the presence of available sources of N than to the labile fractions of C. The addition of BC was followed by increases in the proportions of fungi and Gram positive bacteria in the Regosol, while enhanced the proportion of actinobacteria in all soil types, related to increments in pH and soil C recalcitrance. Thus, native SOM determined the response of microbial communities to external inputs with different stability, soils with low SOM being more prone to increase microbial biomass and activity and change microbial community structure.
Hernández-Hernández, R M; Roldán, A; Caravaca, F; Rodriguez-Caballero, G; Torres, M P; Maestre, F T; Alguacil, M M
2017-01-01
Knowledge of the arbuscular mycorrhizal fungal assemblages in the Trachypogon savanna ecosystems is very important to a better understanding of the ecological processes mediated by this soil microbial group that affects multiple ecosystem functions. Considering the hypothesis that the biocrusts can be linked to vegetation through the arbuscular fungi mycelial network, the objectives proposed in this study were to determine (i) whether there are arbuscular mycorrhizal fungi (AMF) in the biocrusts (ii) whether arbuscular mycorrhizal fungal assemblages are linked to the Trachypogon patches, and (iii) whether the composition of the assemblages is related to soil properties affected by microbiological activity. The community structure of the AMF was investigated in three habitats: rhizospheric soil and roots of Trachypogon vestitus, biological soil crusts, and bare soil. The canonical correspondence analysis showed that two soil properties related to enzymatic activity (protease and β-glucosidase) significantly affected the community composition of the AMF. The biocrusts in the Venezuelan savanna are colonized by an AM fungal community linked to that of the bare soil and significantly different from that hosted by the roots of the surrounding T. vestitus, suggesting that assemblages of AMF in biocrusts might be related more closely to those of annual plant species appearing in favorable conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Soil biodiversity and human health
NASA Astrophysics Data System (ADS)
Six, Johan; Pereg, Lily; Brevik, Eric
2017-04-01
Biodiversity is important for the maintenance of soil quality. Healthy, biodiverse soils are crucial for human health and wellbeing from several reasons, for example: biodiversity has been shown to be important in controlling populations of pathogens; healthy, well-covered soils can reduce disease outbreaks; carbon-rich soils may also reduce outbreaks of human and animal parasites; exposure to soil microbes can reduce allergies; soils have provided many of our current antibiotics; soil organisms can provide biological disease and pest control agents, healthy soils mean healthier and more abundant foods; soil microbes can enhance crop plant resilience; healthy soils promote good clean air quality, less prone to wind and water erosion; and healthy soils provide clean and safe water through filtration, decontamination by microbes and removal of pollutants. Soil microbes and other biota provide many benefits to human health. Soil microbes are a source of medicines, such as antibiotics, anticancer drugs and many more. Organisms that affect soil health and thus human health include those involved in nutrient cycling, decomposition of organic matter and determining soil structure (e.g. aggregation). Again these are related to food security but also affect human health in other ways. Many beneficial organisms have been isolated from soil - plant growth promoting and disease suppressive microbes used as inoculants, foliar inoculants for improvement of ruminant digestion systems and inoculants used in bioremediation of toxic compounds in the environment. Soil biodiversity is highly recognised now as an important feature of healthy soil and imbalances have been shown to give advantage to harmful over beneficial organisms. This presentation will highlight the many connections of biodiversity to soil quality and human health.
Soil erosion-runoff relationships: insights from laboratory studies
NASA Astrophysics Data System (ADS)
Mamedov, Amrakh; Warrington, David; Levy, Guy
2016-04-01
Understanding the processes and mechanisms affecting runoff generation and subsequent soil erosion in semi-arid regions is essential for the development of improved soil and water conservation management practices. Using a drip type laboratory rain simulator, we studied runoff and soil erosion, and the relationships between them, in 60 semi-arid region soils varying in their intrinsic properties (e.g., texture, organic matter) under differing extrinsic conditions (e.g., rain properties, and conditions prevailing in the field soil). Both runoff and soil erosion were significantly affected by the intrinsic soil and rain properties, and soil conditions within agricultural fields or watersheds. The relationship between soil erosion and runoff was stronger when the rain kinetic energy was higher rather than lower, and could be expressed either as a linear or exponential function. Linear functions applied to certain limited cases associated with conditions that enhanced soil structure stability, (e.g., slow wetting, amending with soil stabilizers, minimum tillage in clay soils, and short duration exposure to rain). Exponential functions applied to most of the cases under conditions that tended to harm soil stability (e.g., fast wetting of soils, a wide range of antecedent soil water contents and rain kinetic energies, conventional tillage, following biosolid applications, irrigation with water of poor quality, consecutive rain simulations). The established relationships between runoff and soil erosion contributed to a better understanding of the mechanisms governing overland flow and soil loss, and could assist in (i) further development of soil erosion models and research techniques, and (ii) the design of more suitable management practices for soil and water conservation.
Shi, Leilei; Zhang, Hongzhi; Liu, Tao; Mao, Peng; Zhang, Weixin; Shao, Yuanhu; Fu, Shenglei
2018-04-01
World soils are subjected to a number of anthropogenic global change factors. Although many previous studies contributed to understand how single global change factors affect soil properties, there have been few studies aimed at understanding how two naturally co-occurring global change drivers, nitrogen (N) deposition and increased precipitation, affect critical soil properties. In addition, most atmospheric N deposition and precipitation increase studies have been simulated by directly adding N solution or water to the forest floor, and thus largely neglect some key canopy processes in natural conditions. These previous studies, therefore, may not realistically simulate natural atmospheric N deposition and precipitation increase in forest ecosystems. In a field experiment, we used novel canopy applications to investigate the effects of N deposition, increased precipitation, and their combination on soil chemical properties and the microbial community in a temperate deciduous forest. We found that both soil chemistry and microorganisms were sensitive to these global change factors, especially when they were simultaneously applied. These effects were evident within 2 years of treatment initiation. Canopy N deposition immediately accelerated soil acidification, base cation depletion, and toxic metal accumulation. Although increased precipitation only promoted base cation leaching, this exacerbated the effects of N deposition. Increased precipitation decreased soil fungal biomass, possible due to wetting/re-drying stress or to the depletion of Na. When N deposition and increased precipitation occurred together, soil gram-negative bacteria decreased significantly, and the community structure of soil bacteria was altered. The reduction of gram-negative bacterial biomass was closely linked to the accumulation of the toxic metals Al and Fe. These results suggested that short-term responses in soil cations following N deposition and increased precipitation could change microbial biomass and community structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Daniela F. Cusack; Whendee L. Silver; Margaret S. Torn; Sarah D. Burton; Mary K. Firestone
2011-01-01
Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of...
The effect of nutrient deposition on bacterial communities in Arctic tundra soil
Barbara J. Campbell; Shawn W. Polson; Thomas E. Hanson; Michelle C. Mack; Edward A.G. Schuur
2010-01-01
The microbial communities of high-latitude ecosystems are expected to experience rapid changes over the next century due to climate warming and increased deposition of reactive nitrogen, changes that will likely affect microbial community structure and function. In moist acidic tundra (MAT) soils on the North Slope of the Brooks Range, Alaska, substantial losses of C...
Nicholas J. Bouskill; Hsiao Chien Lim; Sharon Borglin; Rohit Salve; Tana Wood; Whendee L. Silver; Eoin L. Brodie
2013-01-01
Global climate models project a decrease in the magnitude of precipitation in tropical regions. Changes in rainfall patterns have important implications for the moisture content and redox status of tropical soils, yet little is known about how these changes may affect microbial community structure. Specifically, does exposure to prior stress confer increased resistance...
Pánková, Hana; Lepinay, Clémentine; Rydlová, Jana; Voříšková, Alena; Janoušková, Martina; Dostálek, Tomáš; Münzbergová, Zuzana
2018-03-01
After abandonment of agricultural fields, some grassland plant species colonize these sites with a frequency equivalent to dry grasslands (generalists) while others are missing or underrepresented in abandoned fields (specialists). We aimed to understand the inability of specialists to spread on abandoned fields by exploring whether performance of generalists and specialists depended on soil abiotic and/or biotic legacy. We performed a greenhouse experiment with 12 species, six specialists and six generalists. The plants were grown in sterile soil from dry grassland or abandoned field inoculated with microbial communities from one or the other site. Plant growth, abundance of mycorrhizal structures and plant response to inoculation were evaluated. We focused on arbuscular mycorrhizal fungi (AMF), one of the most important parts of soil communities affecting plant performance. The abandoned field soil negatively affected plant growth, but positively affected plant response to inoculation. The AMF community from both sites differed in infectivity and taxa frequencies. The lower AMF taxa frequency in the dry grassland soil suggested a lack of functional complementarity. Despite the fact that dry grassland AMF produced more arbuscules, the dry grassland inoculum did not improve phosphorus nutrition of specialists contrary to the abandoned field inoculum. Inoculum origin did not affect phosphorus nutrition of generalists. The lower effectiveness of the dry grassland microbial community toward plant performance excludes its inoculation in the abandoned field soil as a solution to allow settlement of specialists. Still, the distinct response of specialists and generalists to inoculation suggested that they differ in AMF responsiveness.
Chiri, Eleonora; Nauer, Philipp A.; Rainer, Edda-Marie; Zeyer, Josef
2017-01-01
ABSTRACT Glacier forefield soils can provide a substantial sink for atmospheric CH4, facilitated by aerobic methane-oxidizing bacteria (MOB). However, MOB activity, abundance, and community structure may be affected by soil age, MOB location in different forefield landforms, and temporal fluctuations in soil physical parameters. We assessed the spatial and temporal variability of atmospheric-CH4 oxidation in an Alpine glacier forefield during the snow-free season of 2013. We quantified CH4 flux in soils of increasing age and in different landforms (sandhill, terrace, and floodplain forms) by using soil gas profile and static flux chamber methods. To determine MOB abundance and community structure, we employed pmoA gene-based quantitative PCR and targeted amplicon sequencing. Uptake of CH4 increased in magnitude and decreased in variability with increasing soil age. Sandhill soils exhibited CH4 uptake rates ranging from −3.7 to −0.03 mg CH4 m−2 day−1. Floodplain and terrace soils exhibited lower uptake rates and even intermittent CH4 emissions. Linear mixed-effects models indicated that soil age and landform were the dominating factors shaping CH4 flux, followed by cumulative rainfall (weighted sum ≤4 days prior to sampling). Of 31 MOB operational taxonomic units retrieved, ∼30% were potentially novel, and ∼50% were affiliated with upland soil clusters gamma and alpha. The MOB community structures in floodplain and terrace soils were nearly identical but differed significantly from the highly variable sandhill soil communities. We concluded that soil age and landform modulate the soil CH4 sink strength in glacier forefields and that recent rainfall affects its short-term variability. This should be taken into account when including this environment in future CH4 inventories. IMPORTANCE Oxidation of methane (CH4) in well-drained, “upland” soils is an important mechanism for the removal of this potent greenhouse gas from the atmosphere. It is largely mediated by aerobic, methane-oxidizing bacteria (MOB). Whereas there is abundant information on atmospheric-CH4 oxidation in mature upland soils, little is known about this important function in young, developing soils, such as those found in glacier forefields, where new sediments are continuously exposed to the atmosphere as a result of glacial retreat. In this field-based study, we investigated the spatial and temporal variability of atmospheric-CH4 oxidation and associated MOB communities in Alpine glacier forefield soils, aiming at better understanding the factors that shape the sink for atmospheric CH4 in this young soil ecosystem. This study contributes to the knowledge on the dynamics of atmospheric-CH4 oxidation in developing upland soils and represents a further step toward the inclusion of Alpine glacier forefield soils in global CH4 inventories. PMID:28687652
Chiri, Eleonora; Nauer, Philipp A; Rainer, Edda-Marie; Zeyer, Josef; Schroth, Martin H
2017-07-07
Glacier-forefield soils can provide a substantial sink for atmospheric CH 4 , facilitated by aerobic methane-oxidizing bacteria (MOB). However, MOB activity, abundance, and community structure may be affected by soil age, location in different forefield landforms, and temporal fluctuations in soil-physical parameters. We assessed spatial and temporal variability of atmospheric CH 4 oxidation in an Alpine glacier forefield during the snow-free season 2013. We quantified CH 4 flux in soils of increasing age and in different landforms (sandhill, terrace, floodplain) using soil-gas-profile and static flux-chamber methods. To determine MOB abundance and community structure, we employed pmoA -gene-based quantitative PCR and targeted-amplicon sequencing. Uptake of CH 4 increased in magnitude and decreased in variability with increasing soil age. Sandhill soils exhibited CH 4 uptake ranging from -0.03- -3.7 mg CH 4 m -2 d -1 Floodplain and terrace soils exhibited smaller uptake and even intermittent CH 4 emissions. Linear mixed-effect models indicated that soil age and landform were dominating factors shaping CH 4 flux, followed by cumulative rainfall (weighted sum ≤ 4 d prior to sampling). Of 31 MOB operational taxonomic units retrieved, ∼30% were potentially novel, and ∼50% were affiliated with Upland Soil Clusters gamma and alpha. The MOB community structures in floodplain and terrace soils were nearly identical, but differed significantly from highly variable sandhill-soil communities. We conclude that soil age and landform modulate the soil CH 4 sink strength in glacier forefields, and recent rainfall affects its short-term variability. This should be taken into account when including this environment in future CH 4 inventories. Importance Oxidation of methane (CH 4 ) in well-drained, "upland" soils is an important mechanism for the removal of this potent greenhouse gas from the atmosphere. It is largely mediated by aerobic, methane-oxidizing bacteria (MOB). Whereas there is abundant information on atmospheric CH 4 oxidation in mature upland soils, little is known about this important function in young, developing soils such as those found in glacier forefields, where new sediments are continuously exposed to the atmosphere as a result of glacial retreat.In this field-based study we investigated spatial and temporal variability of atmospheric CH 4 oxidation and associated MOB communities in Alpine glacier-forefield soils, aiming at better understanding factors that shape the sink for atmospheric CH 4 in this young soil ecosystem. The study contributes to the knowledge on the dynamics of atmospheric CH 4 oxidation in developing upland soils, and represents a further step towards the inclusion of Alpine glacier-forefield soils in global CH 4 inventories. Copyright © 2017 American Society for Microbiology.
Can landscape memory affect vegetation recovery in drylands?
NASA Astrophysics Data System (ADS)
Baartman, Jantiene; Garcia Mayor, Angeles; Temme, Arnaud; Rietkerk, Max
2016-04-01
Dryland ecosystems are water-limited and therefore vegetation typically forms banded or patchy patterns with high vegetation cover, interspersed with bare soil areas. In these systems, a runoff-runon system is often observed with bare areas acting as sources and vegetation patches acting as sinks of water, sediment and other transported substances. These fragile ecosystems are easily disturbed by overgrazing, removing above-ground vegetation. To avoid desertification, vegetation recovery after a disturbance is crucial. This poster discusses the potential of 'landscape memory' to affect the vegetation recovery potential. Landscape memory, originating in geomorphology, is the concept that a landscape is the result of its past history, which it 'remembers' through imprints left in the landscape. For example, a past heavy rainstorm may leave an erosion gully. These imprints affect the landscape's contemporary functioning, for example through faster removal of water from the landscape. In dryland ecosystems vegetation is known to affect the soil properties of the soil they grow in, e.g. increasing porosity, infiltration, organic matter content and soil structure. After a disturbance of the banded ecosystem, e.g. by overgrazing, this pattern of soil properties - favourable for regrowth, stays in the landscape. However, removal of the above-ground vegetation also leads to longer runoff pathways and increased rill and gully erosion, which may hamper vegetation regrowth. I hypothesize that vegetation recovery after a disturbance, depends on the balance between these two contrasting types of landscape memory (i.e. favourable soil properties and erosion rills/gullies).
NASA Astrophysics Data System (ADS)
Bicalho, E. S.; Teixeira, D. B.; Panosso, A. R.; Perillo, L. I.; Iamaguti, J. L.; Pereira, G. T.; La Scala, N., Jr.
2012-04-01
Soil CO2 emission (FCO2) is influenced by chemical, physical and biological factors that affect the production of CO2 in the soil and its transport to the atmosphere, varying in time and space depending on environmental conditions, including the management of agricultural area. The aim of this study was to investigate the structure of spatial variability of FCO2 and soil properties by using fractal dimension (DF), derived from isotropic variograms at different scales, and construction of fractograms. The experimental area consisted of a regular grid of 60 × 60 m on sugarcane area under green management, containing 141 points spaced at minimum distances ranging from 0.5 to 10 m. Soil CO2 emission, soil temperature and soil moisture were evaluated over a period of 7 days, and soil chemical and physical properties were determined by sampling at a depth of 0.0 to 0.1 m. FCO2 showed an overall average of 1.51 µmol m-2 s-1, correlated significantly (p < 0.05) with soil physical factors such as soil bulk density, air-filled pore space, macroporosity and microporosity. Significant DF values were obtained in the characterization of FCO2 in medium and large scales (from 20 m). Variations in DF with the scale, which is the fractogram, indicate that the structure of FCO2 variability is similar to that observed for the soil temperature and total pore volume, and reverse for the other soil properties, except for macroporosity, sand content, soil organic matter, carbon stock, C/N ratio and CEC, which fractograms were not significantly correlated to the FCO2 fractogram. Thus, the structure of spatial variability for most soil properties, characterized by fractogram, presents a significant relationship with the structure of spatial variability of FCO2, generally with similar or dissimilar behavior, indicating the possibility of using the fractogram as tool to better observe the behavior of the spatial dependence of the variables along the scale.
Lamarche, Josyanne; Stefani, Franck O P; Séguin, Armand; Hamelin, Richard C
2011-05-01
Chitinase genes isolated from plants, bacteria or fungi have been widely used in genetic engineering to enhance the resistance of crops and trees to fungal pathogens. However, there are concerns about the possible effect of chitinase-transformed plants on nontarget fungi. This study aimed at evaluating the impact of endochitinase-transformed white spruce on soil fungal communities. Endochitinase-expressing white spruce and untransformed controls were transplanted in soils from two natural forests and grown for 8 months in a greenhouse. Soil fungal biomass and diversity, estimated through species richness and Shannon and Rao diversity indices, were not different between transgenic and control tree rhizospheres. The fungal phylogenetic community structure was the same in soil samples from control and transgenic white spruces after 8 months. Soil type and presence of seedlings had a much more significant impact on fungal community structure than the insertion and expression of the ech42 transgene within the white spruce genome. The results suggest that the insertion and constitutive expression of the ech42 gene in white spruce did not significantly affect soil fungal biomass, diversity and community structure. © 2011 Her Majesty the Queen in Right of Canada FEMS Microbiology Ecology © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Ilieva-Makulec, K.; Bjarnadottir, B.; Sigurdsson, B. D.
2014-10-01
The soil nematode fauna can give important insights into soil development and other habitat changes that occur during primary succession. We investigated the generic composition, density, distribution and community structure of nematodes 50 years after the formation of a pristine volcanic island, Surtsey, Iceland. Part of the island has received additional nutrient inputs from seagulls breeding there since 1985, while the reminder has been much less affected and is at present found at a different successional sere. In total, 25 genera of nematodes were identified, of which 14 were reported on Surtsey for the first time. Nematode communities were more diverse in the more infertile area outside the gull colony, where 24 genera were found, compared to 18 inside. The trophic structure of the nematode communities showed relatively higher abundance of fungal feeders in the infertile areas, but relatively more bacterial- and plant-feeders inside the colony. Nematode abundance in surface soil was, however, significantly higher within the gull colony, with 16.7 ind. cm-2 compared to 3.6 ind. cm-2 outside. A multivariate analysis indicated that the nematode abundance and distribution on Surtsey were most strongly related to the soil C : N ratio, soil acidity, plant cover and biomass, soil temperature and soil depth.
Sugarcane trash levels in soil affects the fungi but not bacteria in a short-term field experiment.
Rachid, C T C C; Pires, C A; Leite, D C A; Coutinho, H L C; Peixoto, R S; Rosado, A S; Salton, J; Zanatta, J A; Mercante, F M; Angelini, G A R; Balieiro, Fabiano de Carvalho
2016-01-01
The sugarcane in Brazil is passing through a management transition that is leading to the abolition of pre-harvest burning. Without burning, large amounts of sugarcane trash is generated, and there is a discussion regarding the utilization of this biomass in the industry versus keeping it in the field to improve soil quality. To study the effects of the trash removal on soil quality, we established an experimental sugarcane plantation with different levels of trash over the soil (0%, 50% and 100% of the original trash deposition) and analyzed the structure of the bacterial and fungal community as the bioindicators of impacts. The soil DNA was extracted, and the microbial community was screened by denaturing gradient gel electrophoresis in two different seasons. Our results suggest that there are no effects from the different levels of trash on the soil chemistry and soil bacterial community. However, the fungal community was significantly impacted, and after twelve months, the community presented different structures among the treatments. Copyright © 2016. Published by Elsevier Editora Ltda.
Krishnamoorthy, Ramasamy; Kim, Chang-Gi; Subramanian, Parthiban; Kim, Ki-Yoon; Selvakumar, Gopal; Sa, Tong-Min
2015-01-01
Arbuscular Mycorrhizal Fungi (AMF) play major roles in ecosystem functioning such as carbon sequestration, nutrient cycling, and plant growth promotion. It is important to know how this ecologically important soil microbial player is affected by soil abiotic factors particularly heavy metal and metalloid (HMM). The objective of this study was to understand the impact of soil HMM concentration on AMF abundance and community structure in the contaminated sites of South Korea. Soil samples were collected from the vicinity of an abandoned smelter and the samples were subjected to three complementary methods such as spore morphology, terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE) for diversity analysis. Spore density was found to be significantly higher in highly contaminated soil compared to less contaminated soil. Spore morphological study revealed that Glomeraceae family was more abundant followed by Acaulosporaceae and Gigasporaceae in the vicinity of the smelter. T-RFLP and DGGE analysis confirmed the dominance of Funneliformis mosseae and Rhizophagus intraradices in all the study sites. Claroideoglomus claroideum, Funneliformis caledonium, Rhizophagus clarus and Funneliformis constrictum were found to be sensitive to high concentration of soil HMM. Richness and diversity of Glomeraceae family increased with significant increase in soil arsenic, cadmium and zinc concentrations. Our results revealed that the soil HMM has a vital impact on AMF community structure, especially with Glomeraceae family abundance, richness and diversity. PMID:26035444
Cheng, Zhibo; Zhang, Fenghua; Gale, William Jeffrey; Wang, Weichao; Sang, Wen; Yang, Haichang
2018-01-01
The objective of this study was to evaluate bacterial community structure and diversity in soil aggregate fractions when salinized farmland was reclaimed after >27 years of abandonment and then farmed again for 1, 5, 10, and 15 years. Illumina MiSeq high-throughput sequencing was performed to characterize the soil bacterial communities in 5 aggregate size classes in each treatment. The results indicated that reclamation significantly increased macro-aggregation (>0.25 mm), as well as soil organic C, available N, and available P. The 10-year field had the largest proportion (93.9%) of soil in the macro-aggregate size classes (i.e., >0.25 mm) and the highest soil electrical conductivity. The 5 most dominant phyla in the soil samples were Proteobacteria, Actinobacteria, Gemmatimonadetes, Acidobacteria, and Bacteroidetes. The phylogenetic diversity, Chao1, and Shannon indices increased after the abandoned land was reclaimed for farming, reaching maximums in the 15-year field. Among aggregate size classes, the 1-0.25 mm aggregates generally had the highest phylogenetic diversity, Chao1, and Shannon indices. Soil organic C and soil electrical conductivity were the main environmental factors affecting the soil bacterial communities. The composition and structure of the bacterial communities also varied significantly depending on soil aggregate size and time since reclamation.
NASA Astrophysics Data System (ADS)
Román-Sánchez, Andrea; Cáceres, Francisco; Pédèches, Remi; Giráldez Cervera, Juan Vicente; Vanwalleghem, Tom
2016-04-01
The Mediterranean oak-grassland ecosystem is very important for the rural economy and for the biodiversity of south-western European countries like Spain and Portugal. Nevertheless these ecosystems are not well characterized especially their soils. In this report soil carbon has been evaluated and related to other properties. The principal factors controlling the structure, productivity and evolution of forest ecosystems are bedrock, climate, relief, vegetation and time. Soil carbon has an important influence in the soil and ecosystem structures. The purpose of this study is to determine the relationship between relief, soil properties, spatial distribution of soil carbon and their influence in soil formation and geomorphology. This work is part of another study which aims to elucidate the processes involved in the soil formation and to examine their behaviour on long-term with a modelling. In our study area, located in oak-grassland of Sierra Morena, in Cordoba, S Spain, have been studied 67 points at 6 depths in 262 hectares in order to determine carbon content varying between 0-6%, soil properties such as soil depth between 0-4 m, horizon depth and the rocks amount in surface. The relationship between the soil carbon, soil properties and the relief characteristic like slope, aspect, curvature can shed light the processes that affect the mechanisms of bedrock weathering and their interrelationship with geomorphological processes.
Simonin, Marie; Nunan, Naoise; Bloor, Juliette M G; Pouteau, Valérie; Niboyet, Audrey
2017-05-01
Nitrogen (N) addition is known to affect soil microbial communities, but the interactive effects of N addition with other drivers of global change remain unclear. The impacts of multiple global changes on the structure of microbial communities may be mediated by specific microbial groups with different life-history strategies. Here, we investigated the combined effects of elevated CO2 and N addition on soil microbial communities using PLFA profiling in a short-term grassland mesocosm experiment. We also examined the linkages between the relative abundance of r- and K-strategist microorganisms and resistance of the microbial community structure to experimental treatments. N addition had a significant effect on microbial community structure, likely driven by concurrent increases in plant biomass and in soil labile C and N. In contrast, microbial community structure did not change under elevated CO2 or show significant CO2 × N interactions. Resistance of soil microbial community structure decreased with increasing fungal/bacterial ratio, but showed a positive relationship with the Gram-positive/Gram-negative bacterial ratio. Our findings suggest that the Gram-positive/Gram-negative bacteria ratio may be a useful indicator of microbial community resistance and that K-strategist abundance may play a role in the short-term stability of microbial communities under global change. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Wee, J.; Lee, Y. S.; Son, J.; Kim, Y.; Nam, T. H.; Cho, K.
2017-12-01
Glyphosate is the most widely used herbicide because of its broad spectrum activity and effectiveness, however, little is known about adverse effects on non-target species and their interactions. Therefore, in this study, we investigated the effects of glyphosate on interactions between Collembola and soil microbial community and the effect of Collembola on degradation of glyphosate. The experiment carried out in PS container filled with 30g of soil according to OECD 232 guidelines. Investigating the effects of soil microbial community and Collembola on degradation of glyphosate, we prepared defaunated field soil (only maintaining soil microbial community, sampling in May and September, 2016.) and autoclaved soil with 0, 10, 30 adults of Paronychiurus kimi (Collembola) respectively. Survived adults and hatched juveniles of P. kimi were counted after 28-day exposures in both soils spiked with 100 mg/kg of glyphosate. Glyphosate in soil of 7, 14, 21, 28 days after spiking of glyphosate based herbicide was analyzed by spectrophotometer (Jan et al., 2009). Also soil microbial community structure was investigated using phospholipid fatty acids (PLFAs) composition analysis of soils following the procedures given by the Sherlock Microbial Identification System (MIDI Inc., Newark, DE). Glyphosate (100mg/kg soil) has no effects on reproduction and survival of P. kimi in any soils. Also, glyphosate in soils with Collembola was more rapidly degraded. Rapid increase of soil microbial biomass(PLFAs) was shown in soil with Collembola addition. This result showed that glyphosate affected interactions between Collembola and soil microorganisms, and also soil microbial community affected by Collembola changed degradation of glyphosate.
NASA Astrophysics Data System (ADS)
Udawatta, Ranjith; Gantzer, Clark; Anderson, Stephen; Assouline, Shmuel
2015-04-01
Soil compaction degrades soil structure and affects water, heat, and gas exchange as well as root penetration and crop production. The objective of this study was to use X-ray computed microtomography (CMT) techniques to compare differences in geometrical soil pore parameters as influenced by compaction of two different aggregate size classes. Sieved (diam. < 2mm and < 0.5mm) and repacked (1.51 and 1.72 Mg m-3) Hamra soil cores of 5- by 5-mm (average porosities were 0.44 and 0.35) were imaged at 9.6-micrometer resolution at the Argonne Advanced Photon Source (synchrotron facility) using X-ray computed microtomography. Images of 58.9 mm3 volume were analyzed using 3-Dimensional Medial Axis (3DMA) software. Geometrical characteristics of the spatial distributions of pore structures (pore radii, volume, connectivity, path length, and tortuosity) were numerically investigated. Results show that the coordination number (CN) distribution and path length (PL) measured from the medial axis were reasonably fit by exponential relationships P(CN)=10-CN/Co and P(PL)=10-PL/PLo, respectively, where Co and PLo are the corresponding characteristic constants. Compaction reduced porosity, average pore size, number of pores, and characteristic constants. The average pore radii (64 and 61 μm; p<0.04), largest pore volume (1.6 and 0.6 mm3; p=0.06), number of pores (55 and 50; p=0.09), characteristic coordination number (6.3 and 6.0; p=0.09), and characteristic path length number (116 and 105; p=0.001) were significantly greater in the low density than the high density treatment. Aggregate size also influenced measured geometrical pore parameters. This analytical technique provides a tool for assessing changes in soil pores that affect hydraulic properties and thereby provides information to assist in assessment of soil management systems.
NASA Astrophysics Data System (ADS)
Udawatta, R. P.; Gantzer, C. J.; Anderson, S. H.; Assouline, S.
2015-07-01
Soil compaction degrades soil structure and affects water, heat, and gas exchange as well as root penetration and crop production. The objective of this study was to use X-ray computed microtomography (CMT) techniques to compare differences in geometrical soil pore parameters as influenced by compaction of two different aggregate size classes. Sieved (diam. < 2 mm and < 0.5 mm) and repacked (1.51 and 1.72 Mg m-3) Hamra soil cores of 5- by 5 mm (average porosities were 0.44 and 0.35) were imaged at 9.6-micrometer resolution at the Argonne Advanced Photon Source (synchrotron facility) using X-ray computed microtomography. Images of 58.9 mm3 volume were analyzed using 3-Dimensional Medial Axis (3DMA) software. Geometrical characteristics of the spatial distributions of pore structures (pore radii, volume, connectivity, path length, and tortuosity) were numerically investigated. Results show that the coordination number (CN) distribution and path length (PL) measured from the medial axis were reasonably fit by exponential relationships P(CN) = 10-CN/Co and P(PL) = 10-PL/PLo, respectively, where Co and PLo are the corresponding characteristic constants. Compaction reduced porosity, average pore size, number of pores, and characteristic constants. The average pore radii (63.7 and 61 μm; p < 0.04), largest pore volume (1.58 and 0.58 mm3; p = 0.06), number of pores (55 and 50; p = 0.09), characteristic coordination number (6.32 and 5.94; p = 0.09), and characteristic path length number (116 and 105; p = 0.001) were significantly greater in the low density than the high density treatment. Aggregate size also influenced measured geometrical pore parameters. This analytical technique provides a tool for assessing changes in soil pores that affect hydraulic properties and thereby provides information to assist in assessment of soil management systems.
Gao, Guang-Lei; Ding, Guo-Dong; Wu, Bin; Zhang, Yu-Qing; Qin, Shu-Gao; Zhao, Yuan-Yuan; Bao, Yan-Feng; Liu, Yun-Dong; Wan, Li; Deng, Ji-Feng
2014-01-01
Background Biological soil crusts are common components of desert ecosystem; they cover ground surface and interact with topsoil that contribute to desertification control and degraded land restoration in arid and semiarid regions. Methodology/Principal Findings To distinguish the changes in topsoil affected by biological soil crusts, we compared topsoil properties across three types of successional biological soil crusts (algae, lichens, and mosses crust), as well as the referenced sandland in the Mu Us Desert, Northern China. Relationships between fractal dimensions of soil particle size distribution and selected soil properties were discussed as well. The results indicated that biological soil crusts had significant positive effects on soil physical structure (P<0.05); and soil organic carbon and nutrients showed an upward trend across the successional stages of biological soil crusts. Fractal dimensions ranged from 2.1477 to 2.3032, and significantly linear correlated with selected soil properties (R2 = 0.494∼0.955, P<0.01). Conclusions/Significance Biological soil crusts cause an important increase in soil fertility, and are beneficial to sand fixation, although the process is rather slow. Fractal dimension proves to be a sensitive and useful index for quantifying changes in soil properties that additionally implies desertification. This study will be essential to provide a firm basis for future policy-making on optimal solutions regarding desertification control and assessment, as well as degraded ecosystem restoration in arid and semiarid regions. PMID:24516668
Nematodes as bioindicators of soil degradation due to heavy metals.
Šalamún, Peter; Renčo, Marek; Kucanová, Eva; Brázová, Tímea; Papajová, Ingrid; Miklisová, Dana; Hanzelová, Vladimíra
2012-11-01
The effect of distance from a heavy metal pollution source on the soil nematode community was investigated on four sampling sites along an 4 km transect originating at the Kovohuty a.s. Krompachy (pollution source). The soil nematode communities were exposed to heavy metal influence directly and through soil properties changes. We quantified the relative effects of total and mobile fraction of metals (As, Cd, Cr, Cu, Pb, and Zn) on soil ecosystem using the nematode community structure (trophic and c-p groups,) and ecological indices (Richness of genera, H', MI2-5, etc.). Pollution effects on the community structure of soil free living nematodes was found to be the highest near the pollution source, with relatively low population density and domination of insensitive taxa. A decrease in heavy metals contents along the transect was linked with an increase in complexity of nematode community. The majority of used indices (MI2-5, SI, H') negatively correlated (P < 0.05 or P < 0.01) with heavy metals content and were sensitive to soil ecosystem disturbance. Contamination by heavy metals has negatively affected the soil environment, which resulted in nematode community structure and ecological indices changes. Results showed that the free-living nematodes are useful tools for bioindication of contamination and could be used as an alternative to the common approaches based on chemical methods.
NASA Astrophysics Data System (ADS)
Otten, Wilfred; Juyal, Archana; Eickhorst, Thilo; Falconer, Ruth; Spiers, Andrew; Baveye, Philippe
2017-04-01
The way micro-organisms access C and interact with each other in heterogeneous environments is key to our understanding of soil processes. Growth and mobility of bacteria is crucial aspect of these processes in particular how this is affected by complicated pathways of water and air-filled pores. Simplified experimental systems, often referred to with the term microcosms, have played a central role in the development of modern ecological thinking ranging from competitive exclusion to examination of spatial resources and competitive mechanisms, with important model driven insights to the field. However, in the majority of cases these do not include detailed description of the soil physical conditions and hence there is still little insight in how soil structure affects these processes. Recent advances in the use of Xray CT now allow for a different approach to this as we can obtain quantitative insight in to the pathways of interaction and how these are controlled in microcosms. In the current presentation we therefor ask the following questions: - To what extent can we control the pore geometry in microcosm studies through manipulation of common variables such as density and aggregate size? Are replicated microcosms really replicated at the microscale? - What is the effect of pore geometry on the growth dynamics of bacteria following introduction into soil? - What is the effect of pore geometry on the rate and extent of spread of bacteria in soil? We focus on Pseudomonas sp. and Bacillus sp. Both species are abundantly present in the rhizosphere and bulk-soil, frequently studied for their growth promoting ability, yet there is still very little knowledge available on how the growth and spread is affected by soil physical conditions such as pore geometry and wetness. We show how pore geometry, connectivity and interface areas are affected by the way soil is packed into microcosms and how this affects growth and spread of both species. We emphasize that microscopic heterogeneity has significant impact on bacterial dynamics and that soil physical conditions need to be considered in greater detail in microcosm studies to ensure generalisation of results.
Hardwood biochar and manure co-application to a calcareous soil.
Ippolito, J A; Stromberger, M E; Lentz, R D; Dungan, R S
2016-01-01
Biochar may affect the mineralization rate of labile organic C sources such as manures via microbial community shifts, and subsequently affect nutrient release. In order to ascertain the positive or negative priming effect of biochar on manure, dairy manure (2% by wt.) and a hardwood-based, fast pyrolysis biochar were applied (0%, 1%, 2%, and 10% by wt.) to a calcareous soil. Destructive sampling occurred at 1, 2, 3, 4, 6 and 12 months to monitor for changes in soil chemistry, water content, microbial respiration, bacterial populations, and microbial community structure. Overall results showed that increasing biochar application rate improved the soil water content, which may be beneficial in limited irrigation or rainfall areas. Biochar application increased soil organic C content and plant-available Fe and Mn, while a synergistic biochar-manure effect increased plant-available Zn. Compared to the other rates, the 10% biochar application lowered concentrations of NO3-N; effects appeared masked at lower biochar rates due to manure application. Over time, soil NO3-N increased likely due to manure N mineralization, yet soil NO3-N in the 10% biochar rate remained lower as compared to other treatments. In the presence of manure, only the 10% biochar application caused subtle microbial community structure shifts by increasing the relative amounts of two fatty acids associated with Gram-negative bacteria and decreasing Gram-positive bacterial fatty acids, each by ∼1%. Our previous findings with biochar alone suggested an overall negative priming effect with increasing biochar application rates, yet when co-applied with manure the negative priming effect was eliminated. Published by Elsevier Ltd.
Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E.; Ellerbrock, Ruth; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas
2015-01-01
Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season. PMID:25875835
Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E; Ellerbrock, Ruth; Bruelheide, Helge; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas
2015-01-01
Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season.
NASA Astrophysics Data System (ADS)
Antinoro, Chiara; Arnone, Elisa; Noto, Leonardo V.
2015-04-01
The mechanisms of rainwater infiltration causing slope instability had been analyzed and reviewed in many scientific works. Rainwater infiltration into unsaturated soil increases the degree of saturation, hence affecting the shear strength properties and thus the probability of slope failure. It has been widely proved that the shear strength properties change with the soil water suction in unsaturated soils; therefore, the accuracy to predict the relationship between soil water content and soil water suction, parameterized by the soil-water characteristic curve, has significant effects on the slope stability analysis. The aim of this study is to investigate how the characterization of SWRC of differently structured unsaturated soils affects the slope stability on a simple infinite slope. In particular, the unimodal and bimodal distributions of the soil pore size were compared. Samples of 40 soils, highly different in terms of structure and texture, were collected and used to calibrate two bimodal SWRCs, i.e. Ross and Smettem (1993) and Dexter et al., (2008). The traditional unimodal van Genuchten (1980) model was also applied for comparison. Slope stability analysis was conducted in terms of Factor of Safety (FS) by applying the infinite slope model for unsaturated soils. In the used formulation, the contribution of the suction effect is tuned by a parameter 'chi' in a rate proportional to the saturation conditions. Different parameterizations of this term were also compared and analyzed. Results indicated that all three SWRC models showed good overall performance in fitting the sperimental SWRCs. Both the RS and DE models described adequately the water retention data for soils with a bimodal behavior confirmed from the analysis of pore size distribution, but the best performance was obtained by DE model confirmed. In terms of FS, the tree models showed very similar results as soil moisture approached to the saturated condition; however, within the residual zone, the DE model denoted an anomalous behavior depending on the used formulation for the 'chi' parameter, with decreasing FS as soil moisture decreases.
NASA Astrophysics Data System (ADS)
Melillos, George; Themistocleous, Kyriacos; Prodromou, Maria; Hadjimitsis, Diofantos G.
2017-10-01
The purpose of this paper is to present the results obtained from unmanned aerial vehicle (UAV) and field spectroscopy campaigns for detecting underground structures. Underground structures can affect their surrounding landscapes in different ways, such as soil moisture content, soil composition and vegetation vigor. The last is often observed on the ground as a crop mark; a phenomenon which can be used as a proxy to denote the presence of underground non-visible structures. A number of vegetation indices such as the Normalized Difference Vegetation Index (NDVI), Simple Ratio (SR), Difference Vegetation Index (DVI) and Soil Adjusted Vegetation Index (SAVI) were utilized for the development of a vegetation index-based procedure aiming at the detection of underground military structures by using existing vegetation indices or other in-band algorithms. The measurements were taken at the following test areas such as: (a) vegetation area covered with the vegetation (barley), in the presence of an underground military structure (b) vegetation area covered with the vegetation (barley), in the absence of an underground military structure.
Waldrop, M.P.; Harden, J.W.
2008-01-01
Boreal forests contain significant quantities of soil carbon that may be oxidized to CO2 given future increases in climate warming and wildfire behavior. At the ecosystem scale, decomposition and heterotrophic respiration are strongly controlled by temperature and moisture, but we questioned whether changes in microbial biomass, activity, or community structure induced by fire might also affect these processes. We particularly wanted to understand whether postfire reductions in microbial biomass could affect rates of decomposition. Additionally, we compared the short-term effects of wildfire to the long-term effects of climate warming and permafrost decline. We compared soil microbial communities between control and recently burned soils that were located in areas with and without permafrost near Delta Junction, AK. In addition to soil physical variables, we quantified changes in microbial biomass, fungal biomass, fungal community composition, and C cycling processes (phenol oxidase enzyme activity, lignin decomposition, and microbial respiration). Five years following fire, organic surface horizons had lower microbial biomass, fungal biomass, and dissolved organic carbon (DOC) concentrations compared with control soils. Reductions in soil fungi were associated with reductions in phenol oxidase activity and lignin decomposition. Effects of wildfire on microbial biomass and activity in the mineral soil were minor. Microbial community composition was affected by wildfire, but the effect was greater in nonpermafrost soils. Although the presence of permafrost increased soil moisture contents, effects on microbial biomass and activity were limited to mineral soils that showed lower fungal biomass but higher activity compared with soils without permafrost. Fungal abundance and moisture were strong predictors of phenol oxidase enzyme activity in soil. Phenol oxidase enzyme activity, in turn, was linearly related to both 13C lignin decomposition and microbial respiration in incubation studies. Taken together, these results indicate that reductions in fungal biomass in postfire soils and lower soil moisture in nonpermafrost soils reduced the potential of soil heterotrophs to decompose soil carbon. Although in the field increased rates of microbial respiration can be observed in postfire soils due to warmer soil conditions, reductions in fungal biomass and activity may limit rates of decomposition. ?? 2008 The Authors Journal compilation ?? 2008 Blackwell Publishing.
Stenchly, Kathrin; Dao, Juliane; Lompo, Désiré Jean-Pascal; Buerkert, Andreas
2017-03-01
The usage of inadequately processed industrial waste water (WW) can lead to strong soil alkalinity and soil salinization of agricultural fields with negative consequences on soil properties and biota. Gypsum as a soil amendment to saline-sodic soils is widely used in agricultural fields to improve their soil physical, chemical and hence biological properties. This study aimed at analysing the effects of intensive WW irrigation on the structure and composition of soil-dwelling arthropods on spinach fields (Spinacia oleracea L.) in a West African urban vegetable production system. We used gypsum as a soil amendment with the potential to alleviate soil chemical stress resulting in a potentially positive impact on soil arthropods. A total of 32 plots were established that showed a gradient in soil pH ranging from slight to strong soil alkalinity and that were irrigated with WW (n = 12) or clean water (CW; n = 20), including eight plots into which gypsum was incorporated. Our study revealed a high tolerance of soil-dwelling arthropods for alkaline soils, but spinach fields with increased soil electrical conductivity (EC) showed a reduced abundance of Hymenoptera, Diptera and Auchenorrhyncha. Arthropod abundance was positively related to a dense spinach cover that in turn was not affected by WW irrigation or soil properties. Gypsum application reduced soil pH but increased soil EC. WW irrigation and related soil pH affected arthropod composition in the investigated spinach fields which may lead to negative effects on agronomical important arthropod groups such as pollinators and predators. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bacterial diversity and community structure in lettuce soil are shifted by cultivation time
NASA Astrophysics Data System (ADS)
Liu, Yiqian; Chang, Qing; Guo, Xu; Yi, Xinxin
2017-08-01
Compared with cereal production, vegetable production usually requires a greater degree of management and larger input of nutrients and irrigation, but these systems are not sustainable in the long term. This study aimed to what extent lettuce determine the bacterial community composition in the soil, during lettuce cultivation, pesticides and fertilizers were not apply to soil. Soil samples were collected from depths of 0-20cm and 20-40cm. A highthroughput sequencing approach was employed to investigate bacterial communities in lettuce-cultivated soil samples in a time-dependent manner. The dominant bacteria in the lettuce soil samples were mainly Proteobacteria, Actinobacteria, Chloroflexi, Nitrospirae, Firmicutes, Acidobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, Gemmatimo nadetes, Cyanobacteria. Proteobacteria was the most abundant phylum in the 6 soil samples. The relative abundance of Acidobacteria, Firmicutes, Bacteroidetes, Verrucomicrobia and Cyanobacteria decreased through time of lettuce cultivation, but the relative abundance of Proteobacteria, Actinobacteria, Gemmatimonadetes, Chloroflexi, Planctomycetes and Nitrospirae increased over time. In the 0-20cm depth group and the 20-40cm depth soil, a similar pattern was observed that the percentage number of only shared OTUs between the early and late stage was lower than that between the early and middle stage soil, the result showed that lettuce growth can affect structure of soil bacterial communities.
Effect of rice husk biochar application to soil insect diversity on potato cultivation
NASA Astrophysics Data System (ADS)
Meilin, A.; Rubiana, R.
2018-02-01
High intensity of disease infection and the intensive use of fertilizers and pesticidescause saturated fertilizer and pesticide to the land. Remediation using biochar rice husk is one of the technology to decrease fertilizer and pesticide residue. The diversity of soil insects can be used as bioindicators because of their existence dependsg on soil structure and condition. This study was aimed to study the diversity and structure communities of soil insect in potatoes on difference husk rice biochar application. The sampling of soil insects was done on potato farmer’s land with four treatments i.e control (farmers’ technique), trichokompos without biochar, trichokompos + biochar with dose 1 ton/ha, and trichokompos + biochar with dose 2 ton / ha. At each point a single pitfall trap was installed for two nights and then it was taken for identification. The results showed that biochar application had significant effect on the number of soil insect species (P = 0.037). The soil insect species composition pattern also showed significant differences between the four treatments (R: 0.2306, Pvalue = 0.001). This mean that the application of biochar affects the number of insects species and plays a role in the formation of soil insect diversity beta patterns.
The Influence of Heating Mains on Yeast Communities in Urban Soils
NASA Astrophysics Data System (ADS)
Tepeeva, A. N.; Glushakova, A. M.; Kachalkin, A. V.
2018-04-01
The number and species diversity of yeasts in urban soils (urbanozems) affected by heating mains and in epiphytic yeast complexes of grasses growing above them were studied. The number of yeasts in the soil reached 103-104 CFU/g; on the plants, 107 CFU/g. Significant (by an order of magnitude) increase in the total number of soil yeasts in the zone of heating mains in comparison with the surrounding soil was found in winter period. Overall, 25 species of yeasts were isolated in our study. Yeast community of studied urbanozems was dominated by the Candida sake, an eurybiont of the temperate zone and other natural ecotopes with relatively low temperatures, but its share was minimal in the zone of heating mains. In general, the structure of soil and epiphytic yeast complexes in the zones of heating mains differed from that in the surrounding area by higher species diversity and a lower share of pigmented species among the epiphytic yeasts. The study demonstrated that the number and species structure of soil yeast communities in urban soils change significantly under the influence of the temperature factor and acquire a mosaic distribution pattern.
NASA Astrophysics Data System (ADS)
Prosdocimi, Massimo; Pradetto Sordo, Nicoletta; Burguet, Maria; Di Prima, Simone; Terol Esparza, Enric; Tarolli, Paolo; Cerdà, Artemi
2016-04-01
Throughout the world, soil erosion by water is a serious problem, especially in semi-arid and semi-humid areas (Cerdà et al., 2009; Cerdan et al., 2010; García-Ruiz, 2010). Although soil erosion by water consists of physical processes that vary significantly in severity and frequency according to when and where they occur, they are also strongly influenced by anthropic factors such as land-use changes on large scales and unsustainable farming practices (Boardman et al., 1990; Cerdà 1994; Montgomery, 2007). Tillage operations, combined with weather conditions, are recognized to primarily influence soil erosion rates. If, on one hand, tillage operations cause uniform changes based on the tool used, on the other, weather conditions, such as rainfalls, produce more random changes, less easily traceable (Snapir et al., 2014). Within this context, remote-sensing technologies can facilitate the detection and quantification of these topographic changes. In particular, a real opportunity and challenge is offered by the low-cost and flexible photogrammetric technique, called 'Structure-from-Motion' (SfM), combined with the use of smartphones (Micheletti et al., 2014; Prosdocimi et al., 2015). This represents a significant advance compared with more expensive technologies and applications (e.g. Terrestrial Laser Scanner - TLS) (Tarolli, 2014). This work wants to test the Structure from Motion to obtain high-resolution topography for the detection of topographic changes in agricultural lands affected by erosion processes. Two case studies were selected: i) a tilled plot characterized by bare soil and affected by rill erosion located in the hilly countryside of Marche region (central Italy), and ii) a Mediterranean vineyard located within the province of Valencia (south eastern Spain) where rainfall simulation experiments were carried out. Extensive photosets were obtained by using one standalone reflex digital camera and one smartphone built-in digital camera. Digital Terrain Models (DTMs) derived from the smartphone reveled to be comparable to DTMs derived from the reflex camera. The results underlined the effectiveness of SfM for detecting topographic changes in agricultural lands affected by erosion processes, even when pictures are taken from a smartphone. This methodology could be very useful for farmers and/or technician for post-event analyses of erosion processes to implement technical measures to mitigate the problem of soil erosion by water. Acknowledgements The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603498 (RECARE project) References Boardman, J., Foster, I.D.L., Dearing, J.A., 1990. Soil Erosion on Agricultural Land. John Wiley and Sons Ltd., Chichester. Cerdà, A., 1994. The response of abandoned terraces to simulated rain, in: Rickson, R.J., (Ed.), Conserving Soil Resources: European Perspective, CAB International, Wallingford, pp. 44-55. Cerdà, A., Flanagan, D.C., Le Bissonnais, Y., Boardman, J., 2009. Soil erosion and agriculture. Soil & Tillage Research 106, 107-108. Cerdan, O., Govers, G., Le Bissonnais, Y., Van Oost, K., Poesen, J., Saby, N., Gobin, A., Vacca, A., Quinton, J., Auerwald, K., Klik, A., Kwaad, F.J.P.M., Raclot, D., Ionita, I., Rejman, J., Rousseva, S., Muxart, T., Roxo, M.J., Dostal, T., 2010. Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology 122, 167-177. Garcìa-Ruiz, J.M., 2010. The effects of land uses on soil erosion in Spain: A review. Catena 81, 1-11. Micheletti, N., Chandler, J.H., Lane, S.N., 2014. Investigating the geomorphological potential of freely available and accessible Structure-from-Motion photogrammetry using a smartphone. Earth Surface Processes and Landforms 40(4), 473-486. DOI: 10.1002/esp.3648 Montgomery, D.R., 2007. Soil erosion and agricultural sustainability. PNAS 104, 13268-13272. Prosdocimi, M., Calligaro, S., Sofia, G., Dalla Fontana, G., Tarolli, P., 2015. Bank rosion in agricultural drainage networks: new challenges from structure-from-motion photogrammetry for post-event analysis. Earth Surface Prosses and Landform 40(14), 1891-1906. DOI: 10.1002/esp.3767. Snapir, B., Hobbs, S., Waine, T.W., 2014. Roughness measurements over an agricultural soil surface with Structure from Motion. ISPRS Journal of Photogrammetry and Remote Sensing 96, 210-223. Tarolli, P., 2014. High-resolution topography for understanding Earth surface processes: opportunities and challenges. Geomorphology 216, 295-312.
NASA Astrophysics Data System (ADS)
Xin, Pei; Zhou, Tingzhang; Lu, Chunhui; Shen, Chengji; Zhang, Chenming; D'Alpaos, Andrea; Li, Ling
2017-05-01
Salt marshes, distributed globally at the land-ocean interface, are a highly productive eco-system with valuable ecological functions. While salt marshes are affected by various eco-geo-hydrological processes and factors, soil moisture and salinity affect plant growth and play a key role in determining the structure and functions of the marsh ecosystem. To examine the variations of both soil parameters, we simulated pore-water flow and salt transport in a creek-marsh system subjected to spring-neap tides, evaporation and rainfall. The results demonstrated that within a sandy-loam marsh, the tide-induced pore-water circulation averted salt build-up due to evaporation in the near-creek area. In the marsh interior where the horizontal drainage was weak, density-driven flow was responsible for dissipating salt accumulation in the shallow soil layer. In the sandy-loam marsh, the combined influences of spring-neap tides, rainfall and evaporation led to the formation of three characteristic zones, c.f., a near-creek zone with low soil water saturation (i.e., well-aerated) and low pore-water salinity as affected by the semi-diurnal spring tides, a less well-aerated zone with increased salinity where drainage occurred during the neap tides, and an interior zone where evaporation and rainfall infiltration regulated the soil conditions. These characteristics, however, varied with the soil type. In low-permeability silt-loam and clay-loam marshes, the tide-induced drainage weakened and the soil conditions over a large area became dominated by evaporation and rainfall. Sea level rise was found to worsen the soil aeration condition but inhibit salt accumulation due to evaporation. These findings shed lights on the soil conditions underpinned by various hydrogeological processes, and have important implications for further investigations on marsh plant growth and ecosystem functions.
NASA Astrophysics Data System (ADS)
Jafarzadeh-Haghighi, Amir Hossein; Shamshuddin, Jusop; Hamdan, Jol; Zainuddin, Norhazlin
2016-09-01
Information on structural composition of organic matter (OM) in particle-size fractions of soils along a climo-biosequence is sparse. The objective of this study was to examine structural composition and morphological characteristics of OM in particle-size fractions of soils along a climo-biosequence in order to better understand the factors and processes affecting structural composition of soil organic matter. To explore changes in structural composition of OM in soils with different pedogenesis, the A-horizon was considered for further analyses including particle-size fractionation, solid-state 13C nuclear magnetic resonance (NMR) spectroscopy and scanning electron microscopy (SEM). Due to the increase in the thickness of organic layer with increasing elevation, the A-horizon was situated at greater depth in soils of higher elevation. The relationship between relative abundances of carbon (C) structures and particle-size fractions was examined using principal component analysis (PCA). It was found that alkyl C (20.1-73.4%) and O-alkyl C (16.8-67.7%) dominated particle-size fractions. The proportion of alkyl C increased with increasing elevation, while O-alkyl C showed an opposite trend. Results of PCA confirmed this finding and showed the relative enrichment of alkyl C in soils of higher elevation. Increase in the proportion of alkyl C in 250-2000 μm fraction is linked to selective preservation of aliphatic compounds derived from root litter. SEM results showed an increase in root contribution to the 250-2000 μm fraction with increasing elevation. For the <53 μm fraction, pedogenic process of podzolization is responsible for the relative enrichment of alkyl C. This study demonstrates that changes in structural composition of OM in particle-size fractions of soils along the studied climo-biosequence are attributed to site-specific differences in pedogenesis as a function of climate and vegetation.
NASA Astrophysics Data System (ADS)
Badorreck, Annika; Gerke, Horst H.; Weller, Ulrich; Vontobel, Peter
2010-05-01
An artificial catchment was constructed to study initial soil and ecosystem development. As a key process, the pore structure dynamics in the soil at the surface strongly influences erosion, infiltration, matter dynamics, and vegetation establishment. Little is known, however, about the first macropore formation in the very early stage. This presentation focuses on observations of soil pore geometry and its effect on water flow at the surface comparing samples from three sites in the catchment and in an adjacent "younger" site composed of comparable sediments. The surface soil was sampled in cylindrical plastic rings (10 cm³) down to 2 cm depth in three replicates each site and six where caves from pioneering ground-dwelling beetles Cicindelidae were found. The samples were scanned with micro-X-ray computed tomography (at UFZ-Halle, Germany) with a resolution of 0.084 mm. The infiltration dynamics were visualized with neutronradiography (at Paul-Scherer-Institute, Switzerland) on slab-type soil samples in 2D. The micro-tomographies exhibit formation of surface sealing whose thickness and intensity vary with silt and clay content. The CT images show several coarser- and finer-textured micro-layers at the sample surfaces that were formed as a consequence of repeated washing in of finer particles in underlying coarser sediment. In micro-depressions, the uppermost layers consist of sorted fine sand and silt due to wind erosion. Similar as for desert pavements, a vesicular pore structure developed in these sediments on top, but also scattered in fine sand- and silt-enriched micro-layers. The ground-dwelling activity of Cicindelidae beetles greatly modifies the soil structure through forming caves in the first centimetres of the soil. Older collapsed caves, which form isolated pores within mixed zones, were also found. The infiltration rates were severely affected both, by surface crusts and activity of ground-dwelling beetles. The observations demonstrate relatively high abiotic and biotic dynamics of soil pore structure in the soil surface even during the very early development stages. The structure formation has potentially great effects on changing runoff and infiltration by forming sealing layers or preferential flow paths.
Xiong, Wu; Zhao, Qingyun; Zhao, Jun; Xun, Weibing; Li, Rong; Zhang, Ruifu; Wu, Huasong; Shen, Qirong
2015-07-01
In the present study, soil bacterial and fungal communities across vanilla continuous cropping time-series fields were assessed through deep pyrosequencing of 16S ribosomal RNA (rRNA) genes and internal transcribed spacer (ITS) regions. The results demonstrated that the long-term monoculture of vanilla significantly altered soil microbial communities. Soil fungal diversity index increased with consecutive cropping years, whereas soil bacterial diversity was relatively stable. Bray-Curtis dissimilarity cluster and UniFrac-weighted principal coordinate analysis (PCoA) revealed that monoculture time was the major determinant for fungal community structure, but not for bacterial community structure. The relative abundances (RAs) of the Firmicutes, Actinobacteria, Bacteroidetes, and Basidiomycota phyla were depleted along the years of vanilla monoculture. Pearson correlations at the phyla level demonstrated that Actinobacteria, Armatimonadetes, Bacteroidetes, Verrucomicrobia, and Firmicutes had significant negative correlations with vanilla disease index (DI), while no significant correlation for fungal phyla was observed. In addition, the amount of the pathogen Fusarium oxysporum accumulated with increasing years and was significantly positively correlated with vanilla DI. By contrast, the abundance of beneficial bacteria, including Bradyrhizobium and Bacillus, significantly decreased over time. In sum, soil weakness and vanilla stem wilt disease after long-term continuous cropping can be attributed to the alteration of the soil microbial community membership and structure, i.e., the reduction of the beneficial microbes and the accumulation of the fungal pathogen.
Howell, Christopher C.; Hilton, Sally; Semple, Kirk T.; Bending, Gary D.
2014-01-01
The application of plant protection products has the potential to significantly affect soil microbial community structure and function. However, the extent to which soil microbial communities from different trophic levels exhibit resistance and resilience to such compounds remains poorly understood. The resistance and resilience responses of a range of microbial communities (bacteria, fungi, archaea, pseudomonads, and nematodes) to different concentrations of the strobilurin fungicide, azoxystrobin were studied. A significant concentration-dependent decrease, and subsequent recovery in soil dehydrogenase activity was recorded, but no significant impact on total microbial biomass was observed. Impacts on specific microbial communities were studied using small subunit (SSU) rRNA terminal restriction fragment length polymorphism (T-RFLP) profiling using soil DNA and RNA. The application of azoxystrobin significantly affected fungal and nematode community structure and diversity but had no impact on other communities. Community impacts were more pronounced in the RNA-derived T-RFLP profiles than in the DNA-derived profiles. qPCR confirmed that azoxystrobin application significantly reduced fungal, but not bacterial, SSU rRNA gene copy number. Azoxystrobin application reduced the prevalence of ascomycete fungi, but increased the relative abundance of zygomycetes. Azoxystrobin amendment also reduced the relative abundance of nematodes in the order Enoplia, but stimulated a large increase in the relative abundance of nematodes from the order Araeolaimida. PMID:25048906
Howell, Christopher C; Hilton, Sally; Semple, Kirk T; Bending, Gary D
2014-10-01
The application of plant protection products has the potential to significantly affect soil microbial community structure and function. However, the extent to which soil microbial communities from different trophic levels exhibit resistance and resilience to such compounds remains poorly understood. The resistance and resilience responses of a range of microbial communities (bacteria, fungi, archaea, pseudomonads, and nematodes) to different concentrations of the strobilurin fungicide, azoxystrobin were studied. A significant concentration-dependent decrease, and subsequent recovery in soil dehydrogenase activity was recorded, but no significant impact on total microbial biomass was observed. Impacts on specific microbial communities were studied using small subunit (SSU) rRNA terminal restriction fragment length polymorphism (T-RFLP) profiling using soil DNA and RNA. The application of azoxystrobin significantly affected fungal and nematode community structure and diversity but had no impact on other communities. Community impacts were more pronounced in the RNA-derived T-RFLP profiles than in the DNA-derived profiles. qPCR confirmed that azoxystrobin application significantly reduced fungal, but not bacterial, SSU rRNA gene copy number. Azoxystrobin application reduced the prevalence of ascomycete fungi, but increased the relative abundance of zygomycetes. Azoxystrobin amendment also reduced the relative abundance of nematodes in the order Enoplia, but stimulated a large increase in the relative abundance of nematodes from the order Araeolaimida. Copyright © 2014. Published by Elsevier Ltd.
Dominant forest tree mycorrhizal type mediates understory plant invasions
Insu Jo; Kevin M. Potter; Grant M. Domke; Songlin Fei
2017-01-01
Forest mycorrhizal type mediates nutrient dynamics, which in turn can influence forest community structure and processes. Using forest inventory data, we explored how dominant forest tree mycorrhizal type affects understory plant invasions with consideration of forest structure and soil properties. We found that arbuscular mycorrhizal (AM) dominant forests, which are...
Soil organic matter as sole indicator of soil degradation.
Obalum, S E; Chibuike, G U; Peth, S; Ouyang, Y
2017-04-01
Soil organic matter (SOM) is known to play vital roles in the maintenance and improvement of many soil properties and processes. These roles, which largely influence soil functions, are a pool of specific contributions of different components of SOM. The soil functions, in turn, normally define the level of soil degradation, viewed as quantifiable temporal changes in a soil that impairs its quality. This paper aims at providing a generalized assessment of the current state of knowledge on the usefulness of SOM in monitoring soil degradation, based on its influence on the physical, chemical and biological properties and processes of soils. Emphasis is placed particularly on the effect of SOM on soil structure and availability of plant nutrients. Although these properties are discussed separately, the soil system is of dynamic and interactive nature, and changes in one property will likely affect other soil properties as well. Thus, functions of SOM almost always affect various soil properties and processes and engage in multiple reactions. In view of its role in soil aggregation and erosion control, in availability of plant nutrients and in ameliorating other forms of soil degradation than erosion, SOM has proven to be an important indicator of soil degradation. It has been suggested, however, that rather than the absolute amount, temporal change and potential amount of SOM be considered in its use as indicator of soil degradation, and that SOM may not be an all-purpose indicator. Whilst SOM remains a candidate without substitute as long as a one-parameter indicator of soil degradation is needed, narrowing down to the use of its labile and microbial components could be more appropriate, since early detection is important in the control and management of soil degradation.
Lynn, Tin Mar; Liu, Qiong; Hu, Yajun; Yuan, Hongzhao; Wu, Xiaohong; Khai, Aye Aye; Wu, Jinshui; Ge, Tida
2017-07-01
Studying shifts in microbial communities under different land use can help in determining the impact of land use on microbial diversity. In this study, we analyzed four different land-use types to determine their bacterial and archaeal diversity and abundance. Three natural ecosystems, that is, wetland (WL), grassland (GL), and forest (FR) soils, and one agricultural soil, that is, tea plantation (TP) soil, were investigated to determine how land use shapes bacterial and archaeal diversity. For this purpose, molecular analyses, such as quantitative polymerase chain reaction (Q-PCR), 16S rRNA gene sequencing, and terminal restriction fragment length polymorphism (T-RFLP), were used. Soil physicochemical properties were determined, and statistical analyses were performed to identify the key factors affecting microbial diversity in these soils. Phylogenetic affiliations determined using the Ribosomal Database Project (RDP) database and T-RFLP revealed that the soils had differing bacterial diversity. WL soil was rich in only Proteobacteria, whereas GR soil was rich in Proteobacteria, followed by Actinobacteria. FR soil had higher abundance of Chloroflexi species than these soils. TP soil was rich in Actinobacteria, followed by Chloroflexi, Acidobacteria, Proteobacteria, and Firmicutes. The archaeal diversity of GL and FR soils was similar in that most of their sequences were closely related to Nitrososphaerales (Thaumarchaeota phylum). In contrast, WL soil, followed by TP soil, had greater archaeal diversity than other soils. Eight different archaeal classes were found in WL soil, and Pacearchaeota class was the richest one. The abundance of bacterial and archaeal 16S rRNA gene copies in WL and GL soils was significantly higher than that in FR and TP soils. Redundancy analysis showed that bacterial diversity was influenced by abiotic factors, e.g., total organic carbon and pH, whereas total nitrogen, pH, and cation exchange capacity (CEC) significantly affected archaeal community composition. Pearson correlation analysis showed that bacterial and archaeal 16S rRNA gene abundance had the highest correlation with clay content (r > 0.905, P < 0.01), followed by total-P, CEC, pH, and silt (%). These results will lead to more comprehensive understanding of how land use affects microbial distribution.
Walker, Jennifer K M; Egger, Keith N; Henry, Gregory H R
2008-09-01
Arctic air temperatures are expected to rise significantly over the next century. Experimental warming of arctic tundra has been shown to increase plant productivity and cause community shifts and may also alter microbial community structure. Hence, the objective of this study was to determine whether experimental warming caused shifts in soil microbial communities by measuring changes in the frequency, relative abundance and/or richness of nosZ and nifH genotypes. Five sites at a high arctic coastal lowland were subjected to a 13-year warming experiment using open-top chambers (OTCs). Sites differed by dominant plant community, soil parent material and/or moisture regimen. Six soil cores were collected from each of four replicate OTC and ambient plots at each site and subdivided into upper and lower samples. Differences in frequency and relative abundance of terminal restriction fragments were assessed graphically by two-way cluster analysis and tested statistically with permutational multivariate analysis of variance (ANOVA). Genotypic richness was compared using factorial ANOVA. The genotype frequency, relative abundance and genotype richness of both nosZ and nifH communities differed significantly by site, and by OTC treatment and/or depth at some sites. The site that showed the most pronounced treatment effect was a wet sedge meadow, where community structure and genotype richness of both nosZ and nifH were significantly affected by warming. Although warming was an important factor affecting these communities at some sites at this high arctic lowland, overall, site factors were the main determinants of community structure.
Energy Transformations of Soil Organic Matter in a Changing World
NASA Astrophysics Data System (ADS)
Herrmann, A. M.; Coucheney, E.; Grice, S. M.; Ritz, K.; Harris, J.
2011-12-01
The role of soils in governing the terrestrial carbon balance is acknowledged as being important but remains poorly understood within the context of climate change. Soils exchange energy with their surroundings and are therefore open systems thermodynamically, but little is known how energy transformations of decomposition processes are affected by temperature. Soil organic matter and the soil biomass can be conceptualised as analogous to the 'fuel' and 'biological engine' of the earth, respectively, and are pivotal in driving the belowground carbon cycle. Thermodynamic principles of soil organic matter decomposition were evaluated by means of isothermal microcalorimetry (TAM Air, TA Instruments, Sollentuna Sweden: (i) Mineral forest soils from the Flakaliden long-term nitrogen fertilisation experiment (Sweden) were amended with a range of different substrates representing structurally simple to complex, ecologically pertinent organic matter and heat signatures were determined at temperatures between 5 and 25°C. (ii) Thermodynamic and resource-use efficiencies of the biomass were determined in arable soils which received contrasting long-term management regimes with respect to organic matter and nitrogen since 1956. The work showed that (i) structurally labile components have higher activation energy and temperature dependence than structurally more complex organic components. This is, however, in contrast to the thermodynamic argument which suggests the opposite that reactions metabolising structurally complex, aromatic components have higher temperature dependence than reactions metabolising structurally more labile components. (ii) Microbial communities exposed to long-term stress by heavy metal and low pH were less thermodynamic efficient and showed a decrease in resource-use efficiency in comparison with conventional input regimes. Differences in efficiencies were mirrored in both the phenotypic and functional profiles of the communities. We will present our findings illustrating the capacity of isothermal microcalorimetry to evaluate temperature dependencies of soil organic matter decomposition, associated energy transformations and thermodynamic principles in soil ecosystems.
Chen, Qunying; Yang, Bing; Liu, Xianghui; Chen, Fajun; Ge, Feng
2017-12-31
The uncertainty of ecological risks and the effects of growing transgenic Bt rice on the environment hamper its commercial production. Here, soil nematode communities were used as an indicator of soil health and soil food web structure to evaluate the potential effects of growing Bt rice without chemical insecticides for 3years in the paddy field. The nematodes and soil physicochemical properties of Bt rice fields were compared to the near-isogenic control, non-Bt rice fields. A total of 108,363 specimens belonging to 28 different genera were enumerated. The Hirschmanniella, Tobrilus, Dorylaimus and Filenchus were dominant genera. A three-year paddy rice cultivation of Bt rice (Huahui 1) negatively affected the abundance of phytoparasitic nematodes but did not affect the total number of nematodes, the abundance and relative abundance of free-living nematodes, genera richness, diversity indices, soil food web conditions, or community compositions. However, apparent seasonal and inter-annual changes in these variables were observed, indicating that the impact of environmental factors was more stronger than that of the Bt toxin. In conclusion, the potential ecological risks of Bt rice on soil health and sustainability warrant further research to disentangle the impacts from various confounding environmental factors. Copyright © 2017 Elsevier B.V. All rights reserved.
The potential roles of biological soil crusts in dryland hydrologic cycles
Belnap, J.
2006-01-01
Biological soil crusts (BSCs) are the dominant living cover in many drylands of the world. They possess many features that can influence different aspects of local hydrologic cycles, including soil porosity, absorptivity, roughness, aggregate stability, texture, pore formation, and water retention. The influence of biological soil crusts on these factors depends on their internal and external structure, which varies with climate, soil, and disturbance history. This paper presents the different types of biological soil crusts, discusses how crust type likely influences various aspects of the hydrologic cycle, and reviews what is known and not known about the influence of biological crusts on sediment production and water infiltration versus runoff in various drylands around the world. Most studies examining the effect of biological soil crusts on local hydrology are done by comparing undisturbed sites with those recently disturbed by the researchers. Unfortunately, this greatly complicates interpretation of the results. Applied disturbances alter many soil features such as soil texture, roughness, aggregate stability, physical crusting, porosity, and bulk density in ways that would not necessarily be the same if crusts were not naturally present. Combined, these studies show little agreement on how biological crusts affect water infiltration or runoff. However, when studies are separated by biological crust type and utilize naturally occurring differences among these types, results indicate that biological crusts in hyperarid regions reduce infiltration and increase runoff, have mixed effects in and regions, and increase infiltration and reduce runoff in semiarid cool and cold drylands. However, more studies are needed before broad generalizations can be made on how biological crusts affect infiltration and runoff. We especially need studies that control for sub-surface soil features such as bulk density, micro- and macropores, and biological crust structure. Unlike the mixed effects of biological crusts on infiltration and runoff among regions, almost all studies show that biological crusts reduce sediment production, regardless of crust or dryland type.
Functional diversity of soil invertebrates: a potential tool to explain N2O emission?
NASA Astrophysics Data System (ADS)
Lubbers, Ingrid; De Deyn, Gerlinde; Drake, Harold; Hunger, Sindy; Oppermann, Timo; van Groenigen, Jan Willem
2017-04-01
Soil biota play a crucial role in the mineralization of nutrients from organic material. However, they can thereby increase emissions of the potent greenhouse gas nitrous oxide (N2O). Our current lack of understanding of the factors controlling N2O production and emission is impeding the development of effective mitigation strategies. It is the challenge to control N2O emissions from production systems without reducing crop yield, and diversity of soil fauna may play a key role. A high functional diversity of soil invertebrates is known to stimulate nitrogen mineralization and thereby plant growth, however, it is unknown whether a high functional diversity of soil invertebrates can concurrently diminish N2O emissions. We hypothesized that increased functional diversity of soil invertebrates reduces faunal-induced N2O emissions by facilitating more complete denitrification through (i) stimulating the activity of denitrifying microbes, and (ii) affecting the distribution of micro and macro pores, creating more anaerobic reaction sites. Using state-of-the-art X-ray tomography and next-generation sequencing, we studied effects of functional diversity on soil structural properties and the diversity of the microbial community (16S rRNA genes and 16S rRNA), and linked these to soil N2O emissions. In a 120-day study we found that the functional composition of the soil invertebrate community determined N2O emissions: earthworm activity was key to faunal-induced N2O emissions (a 32-fold increase after 120 days, P<0.001). No proof was found to explain faunal-induced N2O emissions through differences in stimulated microbial activity. On the other hand, soil structural properties (mean pore size, pore size distribution) were found to be radically altered by earthworm activity. We conclude that the presence of a few functional groups (ecosystem engineers) is more important than overall increased functional diversity in explaining faunal-affected N2O emissions.
The potential roles of biological soil crusts in dryland hydrologic cycles
NASA Astrophysics Data System (ADS)
Belnap, Jayne
2006-10-01
Biological soil crusts (BSCs) are the dominant living cover in many drylands of the world. They possess many features that can influence different aspects of local hydrologic cycles, including soil porosity, absorptivity, roughness, aggregate stability, texture, pore formation, and water retention. The influence of biological soil crusts on these factors depends on their internal and external structure, which varies with climate, soil, and disturbance history. This paper presents the different types of biological soil crusts, discusses how crust type likely influences various aspects of the hydrologic cycle, and reviews what is known and not known about the influence of biological crusts on sediment production and water infiltration versus runoff in various drylands around the world. Most studies examining the effect of biological soil crusts on local hydrology are done by comparing undisturbed sites with those recently disturbed by the researchers. Unfortunately, this greatly complicates interpretation of the results. Applied disturbances alter many soil features such as soil texture, roughness, aggregate stability, physical crusting, porosity, and bulk density in ways that would not necessarily be the same if crusts were not naturally present. Combined, these studies show little agreement on how biological crusts affect water infiltration or runoff. However, when studies are separated by biological crust type and utilize naturally occurring differences among these types, results indicate that biological crusts in hyperarid regions reduce infiltration and increase runoff, have mixed effects in arid regions, and increase infiltration and reduce runoff in semiarid cool and cold drylands. However, more studies are needed before broad generalizations can be made on how biological crusts affect infiltration and runoff. We especially need studies that control for sub-surface soil features such as bulk density, micro- and macropores, and biological crust structure. Unlike the mixed effects of biological crusts on infiltration and runoff among regions, almost all studies show that biological crusts reduce sediment production, regardless of crust or dryland type.
Soils as Sediment database: closing a gap between soil science and geomorphology
NASA Astrophysics Data System (ADS)
Kuhn, Nikolaus J.
2016-04-01
Soils are an interface between the Earth's spheres and shaped by the nature of the interaction between them. The relevance of soil properties for the nature of the interaction between atmosphere, hydrosphere and biosphere is well-studied and accepted, on point- or ecotone-scale. However, this understanding of the largely vertical connections between spheres is not matched by a similar recognition of soil properties affecting processes acting largely in a lateral way across the land surface, such as erosion, transport and deposition of soil. Key areas where such an understanding is essential are all issues related to the lateral movement of soil-bound substances that affect the nature of soils itself, as well as water or vegetation downslope from the source area. The redistribution of eroded soil falls several disciplines, most notably soil science, agronomy, hydrology and geomorphology. Accordingly, the way sediment is described differs: in soil science, aggregation and structure are essential properties, while most process-based soil erosion models treat soil as a mixture of individual mineral grains, based on concepts derived in fluvial geomorphology or civil engineering. The actual behavior of aggregated sediment is not reflected by either approach and difficult to capture due to the dynamic nature of aggregation, especially in an environment such as running water. Still, a proxy to assess the uncertainties introduced by aggregation on the behavior of soil as sediment would represent a step forward. To develop such a proxy, a database collating relevant soil and sediment properties could serve as an initial step to identify which soil types and erosion scenarios are prone to generate a high uncertainty compared to the use of soil texture in erosion models. Furthermore, it could serve to develop standardized analytical procedures for appropriate description of soil as sediment.
NASA Astrophysics Data System (ADS)
Xi, Min; Zi, Yuanyuan; Wang, Qinggai; Wang, Sen; Cui, Guolu; Kong, Fanlong
2018-02-01
The contents and the spectral analysis of dissolved organic matter (DOM) in four typical wetlands, such as naked tidal, suaeda salsa, reed and spartina, were conducted to investigate the content, structure, and source of DOM in coastal wetland soil. The soil samples were obtained from Jiaozhou Bay in January, April, July, and October of 2014. Results showed that the DOM contents in soil of four typical wetland were in order of spartina wetland > naked tidal > suaeda salsa wetland > reed wetland in horizontal direction, and decreased with the increase of soil depth on vertical section. In addition, the DOM contents changed with the seasons, in order of spring > summer > autumn > winter. The structural characteristics of DOM in Jiaozhou Bay wetland, such as aromaticity, hydrophobicity, molecular weight, polymerization degree of benzene ring carbon frame structure and so on were in order of spartina wetland > naked tidal > suaeda salsa wetland > reed wetland in the horizontal direction. On the vertical direction, they showed a decreasing trend with the increase of soil depth. The results of three dimensional fluorescence spectra and fluorescence spectrum parameters (FI, HIX, and BIX) indicated that the DOM in Jiaozhou Bay was mainly derived from the biological activities. The contents and structure of DOM had certain relevance, but the contents and source as well as the structure and source of DOM had no significant correlation. The external pollution including domestic sewage, industrial wastewater, and aquaculture sewage affected the correlation among the content, structure and source of DOM by influencing the percentage of non-fluorescent substance in DOM and disturbing the determination of protein-like fluorescence.
Sopeña, Fatima; Bending, Gary D
2013-06-01
There is great interest in using biochar (BC) as a soil amendment to provide a long-term repository of carbon to mitigate climate change. BC can have major impacts on soil biogeochemical cycling processes, largely by the sorption and protection of organic matter from microbial turnover. Application of BC to agricultural soil could also affect the efficacy, fate and environmental impact of pesticides. In the current study we investigated the effect of BC on bioavailability of the fungicide azoxystrobin in soil. We found that application of BC had no effect on sorption or degradation of azoxystrobin, even at a rate of 2% w/w. While azoxystrobin reduced dehydrogenase activity, BC addition greatly increased dehydrogenase, although the inhibitory effect of azoxystrobin was still evident in BC amended soil. Using Terminal Restriction Fragment Length Polymorphism of fungal SSU rRNA gene ITS regions it was found that azoxystrobin altered the structure of the soil fungal community, although this effect was dampened by BC addition. BC application had minor effects on fungal community structure. We conclude that measurement of the effect of BC on pesticide bioavailability by analysis of biodegradation rate and non-target effects on fungal community structure gave contrasting conclusions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ruiz-González, Clara; Archambault, Esther; Laforest-Lapointe, Isabelle; Del Giorgio, Paul A; Kembel, Steven W; Messier, Christian; Nock, Charles A; Beisner, Beatrix E
2018-06-14
Freshwater bacterioplankton communities are influenced by the inputs of material and bacteria from the surrounding landscape, yet few studies have investigated how different terrestrial inputs affect bacterioplankton. We examined whether the addition of soils collected under various tree species combinations differentially influences lake bacterial communities. Lake water was incubated for 6 days following addition of five different soils. We assessed the taxonomic composition (16S rRNA gene sequencing) and metabolic activity (Biolog Ecoplates) of lake bacteria with and without soil addition, and compared these to initial soil communities. Soil bacterial assemblages showed a strong influence of tree composition, but such community differences were not reflected in the structure of lake communities that developed during the experiment. Bacterial taxa showing the largest abundance increases during incubation were initially present in both lake water and across most soils, and were related to Cytophagales, Burkholderiales and Rhizobiales. No clear metabolic profiles based on inoculum source were found, yet soil-amended communities used 60% more substrate than non-inoculated communities. Overall, we show that terrestrial inputs influence aquatic communities by stimulating the growth and activity of certain ubiquitous taxa distributed across the terrestrial-aquatic continuum, yet different forest soils did not cause predictable changes in lake bacterioplankton assemblages.
Harden, J.W.
1982-01-01
A soil development index has been developed in order to quantitatively measure the degree of soil profile development. This index, which combines eight soil field properties with soil thickness, is designed from field descriptions of the Merced River chronosequence in central California. These eight properties are: clay films, texture plus wet consistence, rubification (color hue and chroma), structure, dry consistence, moist consistence, color value, and pH. Other properties described in the field can be added when more soils are studied. Most of the properties change systematically within the 3 m.y. age span of the Merced River chronosequence. The absence of properties on occasion does not significantly affect the index. Individual quantified field properties, as well as the integrated index, are examined and compared as functions of soil depth and age. ?? 1982.
Impact of Amendments on the Physical Properties of Soil under Tropical Long-Term No Till Conditions.
Carmeis Filho, Antonio C A; Crusciol, Carlos A C; Guimarães, Tiara M; Calonego, Juliano C; Mooney, Sacha J
2016-01-01
Tropical regions have been considered the world's primary agricultural frontier; however, some physico-chemical deficiencies, such as low soil organic matter content, poor soil structure, high erodibility, soil acidity, and aluminum toxicity, have affected their productive capacity. Lime and gypsum are commonly used to improve soil chemical fertility, but no information exists about the long-term effects of these products on the physical attributes and C protection mechanisms of highly weathered Oxisols. A field trial was conducted in a sandy clay loam (kaolinitic, thermic Typic Haplorthox) under a no-tillage system for 12 years. The trial consisted of four treatments: a control with no soil amendment application, the application of 2.1 Mg ha-1 phosphogypsum, the application of 2.0 Mg ha-1 lime, and the application of lime + phosphogypsum (2.0 + 2.1 Mg ha-1, respectively). Since the experiment was established in 2002, the rates have been applied three times (2002, 2004, and 2010). Surface liming effectively increased water-stable aggregates > 2.0 mm at a depth of up to 0.2 m; however, the association with phosphogypsum was considered a good strategy to improve the macroaggregate stability in subsoil layers (0.20 to 0.40 m). Consequently, both soil amendments applied together increased the mean weight diameter (MWD) and geometric mean diameter (GMD) in all soil layers, with increases of up to 118 and 89%, respectively, according to the soil layer. The formation and stabilization of larger aggregates contributed to a higher accumulation of total organic carbon (TOC) on these structures. In addition to TOC, the MWD and aggregate stability index were positively correlated with Ca2+ and Mg2+ levels and base saturation. Consequently, the increase observed in the aggregate size class resulted in a better organization of soil particles, increasing the macroporosity and reducing the soil bulk density and penetration resistance. Therefore, adequate soil chemical management plays a fundamental role in improving the soil's physical attributes in tropical areas under conservative management and highly affected by compaction caused by intensive farming.
Invasion of Impatiens glandulifera affects terrestrial gastropods by altering microclimate
NASA Astrophysics Data System (ADS)
Ruckli, Regina; Rusterholz, Hans-Peter; Baur, Bruno
2013-02-01
Invasive species can have far-reaching impacts on ecosystems. Invasive plants may be able to change habitat structure and quality. We conducted a field experiment to examine whether the invasive plant Impatiens glandulifera affects native terrestrial gastropods. We also evaluated whether the invasive plant alters forest soil characteristics and microclimate which in turn may influence gastropod abundance. We sampled gastropods in plots installed in patches of I. glandulifera, in plots in which I. glandulifera was regularly removed by hand, and in control plots which were not yet colonized by the invasive plant. The three types of plots were equally distributed over three mixed deciduous forest areas that were slightly, moderately or heavily affected by a wind throw 11 years ago. A total of 33 gastropod species were recorded. Gastropod species richness was not affected by delayed effects of the wind throw, but it was significantly higher in invaded plots than in uninvaded plots. Similarly, gastropod abundance was higher in invaded plots than in the two types of control plots. Canonical correspondence analysis revealed marginally significant shifts of gastropod communities between the three types of plots and indicated that soil moisture, presence of I. glandulifera and cover of woody debris affected gastropod species composition. Field measurements showed that soil moisture was higher and daily soil temperature was more damped in patches of I. glandulifera than in the native ground vegetation. The changed microclimatic conditions may favour certain gastropod species. In particular, ubiquitous species and species with a high inundation tolerance increased in abundance in plots invaded by I. glandulifera. Our field experiment demonstrated that an invasive plant can indirectly affect native organisms by changing soil characteristics and microclimate.
NASA Astrophysics Data System (ADS)
Andrews, Sarah Elizabeth
Part I of this dissertation describes two research projects I undertook to understand how structure influences function in freshwater wetlands. In the first study I tested the hypothesis that wetland structure (created versus natural) would influence function (methane cycling). Created wetlands had reduced rates of potential methane production and potential methane oxidation compared to natural wetlands; this was most likely explained by differences in edaphic factors that characterized each wetland, particularly soil moisture and soil organic matter. In the second study (Andrews et al. 2013), I tested the hypothesis that plant community structure (functional group composition, richness, presence/absence) would influence function (methane and iron cycling) in wetland mesocosms. Plant functional group richness was less important than the type of vegetation present: the presence of perennial vegetation (reeds or tussocks) led to increased rates of potential iron reduction compared to when only annual vegetation was present. Part II of this dissertation describes research I undertook to understand how structure influences function in an undergraduate soil science course. In the first study I tested the hypothesis that course structure (traditional versus studio) would influence function (student performance) in the course. Students in the studio course outperformed students in the traditional course; there was also a decrease in the fail rate. In the second study I looked at students' perspectives on their learning and experiences (function) in the studio course and asked whether students' epistemological development influenced this function. Interviews with students revealed that active learning, the integrated nature of the course, community, and variety of learning and assessment methods helped student learning. Students' epistemological development (interpreted from the Measure of Epistemological Reflection) permeated much of what they spoke about during the interviews. There was also evidence that the studio structure may help promote epistemological growth via "sneaky learning" and an expanded role of peers. The studies in Part I show that differences in structure affect function in freshwater wetland systems and the studies in Part II show that structure affects function in an undergraduate introductory soil science course. Thus, system structure matters whether you are in a wetland or a college classroom.
Zhao, Jun; Ni, Tian; Li, Yong; Xiong, Wu; Ran, Wei; Shen, Biao; Shen, Qirong; Zhang, Ruifu
2014-01-01
Soil physicochemical properties, soil microbial biomass and bacterial community structures in a rice-wheat cropping system subjected to different fertilizer regimes were investigated in two seasons (June and October). All fertilizer regimes increased the soil microbial biomass carbon and nitrogen. Both fertilizer regime and time had a significant effect on soil physicochemical properties and bacterial community structure. The combined application of inorganic fertilizer and manure organic-inorganic fertilizer significantly enhanced the bacterial diversity in both seasons. The bacterial communities across all samples were dominated by Proteobacteria, Acidobacteria and Chloroflexi at the phylum level. Permutational multivariate analysis confirmed that both fertilizer treatment and season were significant factors in the variation of the composition of the bacterial community. Hierarchical cluster analysis based on Bray-Curtis distances further revealed that bacterial communities were separated primarily by season. The effect of fertilizer treatment is significant (P = 0.005) and accounts for 7.43% of the total variation in bacterial community. Soil nutrients (e.g., available K, total N, total P and organic matter) rather than pH showed significant correlation with the majority of abundant taxa. In conclusion, both fertilizer treatment and seasonal changes affect soil properties, microbial biomass and bacterial community structure. The application of NPK plus manure organic-inorganic fertilizer may be a sound fertilizer practice for sustainable food production. PMID:24465530
Structure of peat soils and implications for biogeochemical processes and hydrological flow
NASA Astrophysics Data System (ADS)
Rezanezhad, F.; McCarter, C. P. R.; Gharedaghloo, B.; Kleimeier, C.; Milojevic, T.; Liu, H.; Weber, T. K. D.; Price, J. S.; Quinton, W. L.; Lenartz, B.; Van Cappellen, P.
2017-12-01
Permafrost peatlands contain globally important amounts of soil organic carbon and play major roles in global water, nutrient and biogeochemical cycles. The structure of peatland soils (i.e., peat) are highly complex with unique physical and hydraulic properties; where significant, and only partially reversible, shrinkage occurs during dewatering (including water table fluctuations), compression and/or decomposition. These distinct physical and hydraulic properties controls water flow, which in turn affect reactive and non-reactive solute transport (such as, sorption or degradation) and biogeochemical functions. Additionally, peat further attenuates solute migration through molecular diffusion into the inactive pores of Sphagnum dominated peat. These slow, diffusion-limited solute exchanges between the pore regions may give rise to pore-scale chemical gradients and heterogeneous distributions of microbial habitats and activity in peat soils. Permafrost peat plateaus have the same essential subsurface characteristics as other widely organic soil-covered peatlands, where the hydraulic conductivity is related to the degree of decomposition and soil compression. Increasing levels of decomposition correspond with a reduction of effective pore diameter and consequently restrict water and solute flow (by several orders of magnitude in hydraulic conductivity between the ground surface and a depth of 50 cm). In this presentation, we present the current knowledge of key physical and hydraulic properties related to the structure of globally available peat soils and discuss their implications for water storage, flow and the migration of solutes.
Do drying and rewetting cycles modulate effects of sulfadiazine spiked manure in soil?
Jechalke, Sven; Radl, Viviane; Schloter, Michael; Heuer, Holger; Smalla, Kornelia
2016-05-01
Naturally occurring drying-rewetting events in soil have been shown to affect the dissipation of veterinary antibiotics entering soil by manure fertilization. However, knowledge of effects on the soil microbial community structure and resistome is scarce. Here, consequences of drying-rewetting cycles on effects of sulfadiazine (SDZ) in soil planted with Dactylis glomerata L. were investigated in microcosms. Manure containing SDZ or not was applied to the pregrown grass and incubated for 56 days in a climate chamber. Water was either added daily or reduced during two drying events of 7 days, each followed by a recovery phase. Total community DNA was analyzed to reveal the effects on the bacterial community structure and on the abundance of sul1, sul2, intI1 ,intI2, qacE+qacEΔ1, traN and korB genes relative to 16S rRNA genes. 16S rRNA gene-based DGGE fingerprints indicated that drying-rewetting cycles modulated the effects of SDZ on the bacterial community structure in the soil. Furthermore, the SDZ treatment increased the relative abundance of sulfonamide resistance and integrase genes compared to the control. However, this increase was not different between moisture regimes, indicating that drying-rewetting had only a negligible effect on the selection of the resistome by SDZ in the manured soil. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Filipović, Vilim; Coquet, Yves; Pot, Valérie; Houot, Sabine; Benoit, Pierre
2014-11-15
Transport processes in soils are strongly affected by heterogeneity of soil hydraulic properties. Tillage practices and compost amendments can modify soil structure and create heterogeneity at the local scale within agricultural fields. The long-term field experiment QualiAgro (INRA-Veolia partnership 1998-2013) explores the impact of heterogeneity in soil structure created by tillage practices and compost application on transport processes. A modeling study was performed to evaluate how the presence of heterogeneity due to soil tillage and compost application affects water flow and pesticide dynamics in soil during a long-term period. The study was done on a plot receiving a co-compost of green wastes and sewage sludge (SGW) applied once every 2 years since 1998. The plot was cultivated with a biannual rotation of winter wheat-maize (except 1 year of barley) and a four-furrow moldboard plow was used for tillage. In each plot, wick lysimeter outflow and TDR probe data were collected at different depths from 2004, while tensiometer measurements were also conducted during 2007/2008. Isoproturon concentration was measured in lysimeter outflow since 2004. Detailed profile description was used to locate different soil structures in the profile, which was then implemented in the HYDRUS-2D model. Four zones were identified in the plowed layer: compacted clods with no visible macropores (Δ), non-compacted soil with visible macroporosity (Γ), interfurrows created by moldboard plowing containing crop residues and applied compost (IF), and the plow pan (PP) created by plowing repeatedly to the same depth. Isoproturon retention and degradation parameters were estimated from laboratory batch sorption and incubation experiments, respectively, for each structure independently. Water retention parameters were estimated from pressure plate laboratory measurements and hydraulic conductivity parameters were obtained from field tension infiltrometer experiments. Soil hydraulic properties were optimized on one calibration year (2007/08) using pressure head, water content and lysimeter outflow data, and then tested on the whole 2004/2010 period. Lysimeter outflow and water content dynamics in the soil profile were correctly described for the whole period (model efficiency coefficient: 0.99) after some correction of LAI estimates for wheat (2005/06) and barley (2006/07). Using laboratory-measured degradation rates and assuming degradation only in the liquid phase caused large overestimation of simulated isoproturon losses in lysimeter outflow. A proper order of magnitude of isoproturon losses was obtained after considering that degradation occurred in solid (sorbed) phase at a rate 75% of that in liquid phase. Isoproturon concentrations were found to be highly sensitive to degradation rates. Neither the laboratory-measured isoproturon fate parameters nor the independently-derived soil hydraulic parameters could describe the actual multiannual field dynamics of water and isoproturon without calibration. However, once calibrated on a limited period of time (9 months), HYDRUS-2D was able to simulate the whole 6-year time series with good accuracy. Copyright © 2014 Elsevier B.V. All rights reserved.
Tree Death Leading To Ecosystem Renewal? Forecasting Carbon Storage As Eastern Forests Age
NASA Astrophysics Data System (ADS)
Curtis, P.; Gough, C. M.; Bohrer, G.; Nadelhoffer, K. J.; Ivanov, V. Y.
2013-12-01
The future trajectory of North American carbon (C) stocks remains uncertain as a subset of maturing trees die in mixed deciduous forests of the U.S. Midwest and East transitioning from early to middle and late succession. We are studying disturbance-structure-function relationships of aging forests in northern Michigan using long-term ecological and meteorological C cycling studies, a large-scale disturbance experiment, a 200-year forest chronosequence, and flux comparisons across three tower sites. We find that ecosystem responses to mortality are characterized by several processes that affect structure-function relationships and alter the way ecosystem functioning interacts with meteorological forcing. We subjected 39 ha of forest to moderate experimental disturbance, similar to that of age-related or climatically induced tree mortality. We found that the mortality of a third of all canopy trees minimally altered the balance between forest C uptake and release, as growth-limiting light and nitrogen resources were rapidly reallocated from dead and dying trees to undisturbed trees. Although disturbance-induced mortality increased soil N mineralization rates, nitrification, and denitrification, N exports from soils remained low. Upper canopy gap formation and a rise in structural complexity allowed increased photosynthetic contribution of sub-canopy vegetation to compensate for the death of canopy dominant trees. However, we found large differences between the transpirational response of maples and oaks to VPD and soil moisture, which led to relative declines in maple transpiration post-disturbance. These hydrologic differences may affect a species' ability to compete for resources following such a disturbance. Changes to canopy structure had a relatively small effect on roughness length and the turbulence forcing of fluxes from the canopy. We currently are studying how tree mortality driven changes in canopy structure affects within-canopy resource distribution and subsequent changes in leaf morphological, physiological and biochemical traits, how disturbance severity relates to the magnitude of C storage resilience, the impacts of clouds and aerosols on surface diffuse light and how they interact with canopy structure to modify C uptake, and how these processes change overall C assimilation given different forest age and disturbance histories. Along a conceptual continuum from structural to functional attributes, our results show that leaf area distribution and its heterogeneity, canopy light, water and nutrient use efficiency, canopy roughness length and turbulent mixing of canopy air, and the coupling between soil moisture and canopy density, all change with successional and disturbance processes and affect ecosystem C fluxes. Patchy mortality and related increases in structural complexity could, against expectations, enhance the C storage of some forests. Our finding that increases in canopy structural complexity improve resource-use efficiency provides a mechanism for maintaining high rates of C storage in aging forests.
NASA Astrophysics Data System (ADS)
Quarfeld, Jamie; Brook, Anna; Keestra, Saskia; Wittenberg, Lea
2016-04-01
Soil water repellency (WR) and aggregate stability (AS) are two soil properties that are typically modified after burning and impose significant influence on subsequent hydrological and geomorphological dynamics. The response of AS and soil WR to fire depends upon how fire has influenced other key soil properties (e.g. soil OM, mineralogy). Meanwhile, routine thinning of trees and woody vegetation may alter soil properties (e.g. structure and porosity, wettability) by use of heavy machinery and species selection. The study area is situated along a north-facing slope of Mount Carmel national park (Israel). The selected sites are presented as a continuum of management intensity and fire histories. To date, the natural baseline of soil WR has yet to be thoroughly assessed and must be investigated alongside associated soil aggregating parameters in order to understand its overall impact. This study examines (i) the natural baseline of soil WR and physical properties compared to those of disturbed sites in the immediate (controlled burn) and long-term (10-years), and (ii) the interactions of soil properties with different control factors (management, surface cover, seasonal-temporal, burn temperature, soil organic carbon (OC) and mineralogy) in Mediterranean calcareous soils. Analysis of surface soil samples before and after destruction of WR by heating (200-600°C) was implemented using a combination of traditional methods and infrared (IR) spectroscopy. Management and surface cover type conditioned the wettability, soil structure and porosity of soils in the field, although this largely did not affect the heat-induced changes observed in the lab. A positive correlation was observed along an increasing temperature gradient, with relative maxima of MWD and BD reached by most soils at the threshold of 400-500°C. Preliminary analyses of soil OC (MIR) and mineralogical composition (VIS-NIR) support existing research regarding: (i) the importance of soil OC quality and composition in determining wettability rather than quantity, as evidenced both by the high variation observed in the field and the strong presence of aliphatic functional groups in the absence of WR; and (ii) commonly proposed mechanisms affecting soil aggregate properties - albeit with differing temperature thresholds and longer exposure times employed in this study. Namely, these mechanisms tend to involve: (i) soil OM and WR reduction at low to moderate temperatures, and (ii) thermal fusion of particles within moderate to high temperatures. Overall, results suggest a positive influence of management on soil properties as well as high soil resilience to moderate severity fire disturbance in the studied areas. However, the specific changes in soil OM and mineral composition that are responsible for destruction of WR and subsequent changes in AS remain poorly understood. Based on these results, a key next step within this study will entail a closer examination of OC ratios and their potential links with certain mineral species known to influence soil aggregation and soil WR. Noting the importance of soil OM-mineralogical interactions on run-off and erosion processes, results may contribute to better prediction of post-fire responses in the future and improve the ability to fine-tune site specific management approaches accordingly.
Zhou, Hong Yang; Zhang, Dan Ju; Zhang, Jie; Zhao, Yan Bo; Zhao, Bo; Wei, Da Ping; Zhang, Jian
2017-06-18
In order to understand the effects of canopy density on the functional group characteristics of soil macrofauna in Pinus massoniana plantations, we divided the captured soil fauna into five types including xylophages, predators, saprophages, omnivores and fungal feeders. The results showed that 1) Saprozoic feeders had the highest percentage of total individuals, and the omnivores and xylophages occupied higher percentages of total taxa. 2) The individual and group number of the predators, and the group number of xylophages did not change significantly under 0.5-0.6 and then decreased significantly under 0.6-0.9 canopy density. 3) With the increasing canopy density, the individual an dgroup number of predators in litter layer decreased significantly, the saprozoic individual number in 5-10 cm soil layer represented irregular trends. The individual number of xylophage increased with the depth of soil, and the group number in litter layer, the individual and group number in 5-10 cm soil layer decreased significantly. 4) Pielou evenness of xylophage had no significant changes with the canopy density, all the other diversity index of xylophage and saprophage were various with the increasing canopy density. The predatory Simpson index was stable under 0.5-0.8, and then decreased significantly under 0.8-0.9 canopy density. 5) The CCA (canonical correlation analysis) indicated that soil bulk density and moisture content were the main environmental factors affecting functional groups of soil macro fauna. Moisture content greatly impacted on the number of saprophagous individuals. But xylophage and predators were mostly affected by soil bulk density, and the predatory Simpson index was mainly affected by soil pH value and total phosphorus. Our research indicated that the structure of soil macro faunal functional group under 0.7 canopy density was comparatively stable, which would facilitate the maintenance of soil fertility and ecological function in Pinus massoniana plantation.
NASA Astrophysics Data System (ADS)
Bernhard, Nadine; Moskwa, Lisa-Marie; Kühn, Peter; Mueller, Carsten W.; Wagner, Dirk; Scholten, Thomas
2017-04-01
It is well-known that the land surface resistance against erosion is largely controlled by the structure stability of the soil given by its inherent properties. Microbial activity plays a vital role in soil structure development, and thus affecting soil physical parameters. Accordingly the influence of biota shaping the earth's surface has been described through mechanisms such as mineral weathering, formation of ions and biofilms controlling land surface resistance against erosion. However the role of microorganisms for the development of soil stabilizing properties is still unclear and a precise quantitative understanding of the mechanisms under different climate conditions is widely missing. The objectives of our study are to examine to which extend microbiological processes control soil structure formation and stability and whether this is influenced by climate and topographic position. Soil samples were taken along a climate gradient and from different topographic positions of hillslopes in the Chilean Coastal Cordillera in austral autumn 2016. The variables of lithology, human disturbances and relief were held as far as possible constant whereas climate varies along the transect. We implemented 10 wet-dry cycles on air dried and sieved natural and sterile samples to enhance particle aggregation and increase structure stability. Throughout the entire experiment temperature is held constant at 20 °C to avoid changes in microbial activity. Samples are moistened and dried and each kept at the same respective pF-values for the same duration to add the same stress to each sample. Aggregate stability will be measured using wet sieving, ultrasonic dispersion and simulated rainfall. The results will be compared with on-site rainfall simulation experiments on hillslopes in the Chilean Coastal Cordillera to link laboratory results with natural field conditions. The experiment gives first insight into the aggregate formation process over time with and without microorganisms (sterilized samples). Furthermore it allows to qualify and quantify the contribution of biota to soil structure formation and stability.
Influence of biochar on the physical, chemical and retention properties of an amended sandy soil
NASA Astrophysics Data System (ADS)
Baiamonte, Giorgio; De Pasquale, Claudio; Parrino, Francesco; Crescimanno, Giuseppina
2017-04-01
Soil porosity plays an important role in soil-water retention and water availability to crops, potentially affecting both agricultural practices and environmental sustainability. The pore structure controls fluid flow and transport through the soil, as well as the relationship between the properties of individual minerals and plants. Moreover, the anthropogenic pressure on soil properties has produced numerous sites with extensive desertification process close to residential areas. Biochar (biologically derived charcoal) is produced by pyrolysis of biomasses under low oxygen conditions, and it can be applied for recycling organic waste in soils and increase soil fertility, improving soil structure and enhancing soil water storage and soil water movement. Soil application of biochar might have agricultural, environmental and sustainability advantages over the use of organic manures or compost, as it is a porous material with a high inner surface area. The main objectives of the present study were to investigate the possible application of biochar from forest residues, derived from mechanically chipped trunks and large branches of Abies alba M., Larix decidua Mill., Picea excelsa L., Pinus nigra A. and Pinus sylvestris L. pyrolysed at 450 °C for 48h, to improve soil structural and hydraulic properties (achieving a stabilization of soil). Different amount of biochar were added to a desertic sandy soil, and the effect on soil porosity water retention and water available to crops were investigated. The High Energy Moisture Characteristic (HEMC) technique was applied to investigate soil-water retention at high-pressure head levels. The adsorption and desorption isotherms of N2 on external surfaces were also determined in order to investigate micro and macro porosity ratio. Both the described model of studies on adsorption-desorption experiments with the applied isotherms model explain the increasing substrate porosity with a particular attention to the macro and micro porosity, respectively.
Doornbos, Rogier F; Geraats, Bart P J; Kuramae, Eiko E; Van Loon, L C; Bakker, Peter A H M
2011-04-01
Systemically induced resistance is a promising strategy to control plant diseases, as it affects numerous pathogens. However, since induced resistance reduces one or both growth and activity of plant pathogens, the indigenous microflora may also be affected by an enhanced defensive state of the plant. The aim of this study was to elucidate how much the bacterial rhizosphere microflora of Arabidopsis is affected by induced systemic resistance (ISR) or systemic acquired resistance (SAR). Therefore, the bacterial microflora of wild-type plants and plants affected in their defense signaling was compared. Additionally, ISR was induced by application of methyl jasmonate and SAR by treatment with salicylic acid or benzothiadiazole. As a comparative model, we also used wild type and ethylene-insensitive tobacco. Some of the Arabidopsis genotypes affected in defense signaling showed altered numbers of culturable bacteria in their rhizospheres; however, effects were dependent on soil type. Effects of plant genotype on rhizosphere bacterial community structure could not be related to plant defense because chemical activation of ISR or SAR had no significant effects on density and structure of the rhizosphere bacterial community. These findings support the notion that control of plant diseases by elicitation of systemic resistance will not significantly affect the resident soil bacterial microflora.
Zaller, Johann G; Wechselberger, Katharina F; Gorfer, Markus; Hann, Patrick; Frank, Thomas; Wanek, Wolfgang; Drapela, Thomas
Earthworms (Annelida: Oligochaeta) deposit several tons per hectare of casts enriched in nutrients and/or arbuscular mycorrhizal fungi (AMF) and create a spatial and temporal soil heterogeneity that can play a role in structuring plant communities. However, while we begin to understand the role of surface casts, it is still unclear to what extent plants utilize subsurface casts. We conducted a greenhouse experiment using large mesocosms (volume 45 l) to test whether (1) soil microsites consisting of earthworm casts with or without AMF (four Glomus taxa) affect the biomass production of 11 grassland plant species comprising the three functional groups grasses, forbs, and legumes, (2) different ecological groups of earthworms (soil dwellers- Aporrectodea caliginosa vs. vertical burrowers- Lumbricus terrestris ) alter potential influences of soil microsites (i.e., four earthworms × two subsurface microsites × two AMF treatments). Soil microsites were artificially inserted in a 25-cm depth, and afterwards, plant species were sown in a regular pattern; the experiment ran for 6 months. Our results show that minute amounts of subsurface casts (0.89 g kg -1 soil) decreased the shoot and root production of forbs and legumes, but not that of grasses. The presence of earthworms reduced root biomass of grasses only. Our data also suggest that subsurface casts provide microsites from which root AMF colonization can start. Ecological groups of earthworms did not differ in their effects on plant production or AMF distribution. Taken together, these findings suggest that subsurface earthworm casts might play a role in structuring plant communities by specifically affecting the growth of certain functional groups of plants.
Do shrubs reduce the adverse effects of grazing on soil properties?
Eldridge, David J.; Beecham, Genevieve; Grace, James B.
2015-01-01
Increases in the density of woody plants are a global phenomenon in drylands, and large aggregations of shrubs, in particular, are regarded as being indicative of dysfunctional ecosystems. There is increasing evidence that overgrazing by livestock reduces ecosystem functions in shrublands, but that shrubs may buffer the negative effects of increasing grazing. We examined changes in water infiltration and nutrient concentrations in soils under shrubs and in their interspaces in shrublands in eastern Australia that varied in the intensity of livestock grazing. We used structural equation modelling to test whether shrubs might reduce the negative effects of overgrazing on infiltration and soil carbon and nitrogen (henceforth ‘soil nutrients’). Soils under shrubs and subject to low levels of grazing were more stable and had greater levels of soil nutrients. Shrubs had a direct positive effect on soil nutrients; but, grazing negatively affected nutrients by increasing soil bulk density. Structural equation modelling showed that shrubs had a direct positive effect on water flow under ponded conditions but also enhanced water flow, indirectly, through increased litter cover. Any positive effects of shrubs on water flow under low levels of grazing waned at high levels of grazing. Our results indicate that shrubs may reduce the adverse effects of grazing on soil properties. Specifically, shrubs could restrict access to livestock and therefore protect soils and plants beneath their canopies. Low levels of grazing are likely to ensure the retention of soil water and soil carbon and nitrogen in shrubland soils.
Dominant forest tree mycorrhizal type mediates understory plant invasions
Insu Jo; Kevin M. Potter; Grant M. Domke; Songlin Fei
2018-01-01
Forest mycorrhizal type mediates nutrient dynamics, which in turn can influence forest community structure and processes. Using forest inventory data, we explored how dominant forest tree myc- orrhizal type affects understory plant invasions with consideration of forest structure and soil properties. We found that arbuscular mycorrhizal (AM) dominant forests, which are...
USDA-ARS?s Scientific Manuscript database
The structure and composition of the oocyst wall are primary factors determining the survival of Cryptosporidium parvum oocysts outside the host. An external polymer matrix (glycocalyx) may mediate interactions with environmental surfaces and, thus, affect the transport of oocysts in water, soil, an...
Spatial structure and scaling of macropores in hydrological process at small catchment scale
NASA Astrophysics Data System (ADS)
Silasari, Rasmiaditya; Broer, Martine; Blöschl, Günter
2013-04-01
During rainfall events, the formation of overland flow can occur under the circumstances of saturation excess and/or infiltration excess. These conditions are affected by the soil moisture state which represents the soil water content in micropores and macropores. Macropores act as pathway for the preferential flows and have been widely studied locally. However, very little is known about their spatial structure and conductivity of macropores and other flow characteristic at the catchment scale. This study will analyze these characteristics to better understand its importance in hydrological processes. The research will be conducted in Petzenkirchen Hydrological Open Air Laboratory (HOAL), a 64 ha catchment located 100 km west of Vienna. The land use is divided between arable land (87%), pasture (5%), forest (6%) and paved surfaces (2%). Video cameras will be installed on an agricultural field to monitor the overland flow pattern during rainfall events. A wireless soil moisture network is also installed within the monitored area. These field data will be combined to analyze the soil moisture state and the responding surface runoff occurrence. The variability of the macropores spatial structure of the observed area (field scale) then will be assessed based on the topography and soil data. Soil characteristics will be supported with laboratory experiments on soil matrix flow to obtain proper definitions of the spatial structure of macropores and its variability. A coupled physically based distributed model of surface and subsurface flow will be used to simulate the variability of macropores spatial structure and its effect on the flow behaviour. This model will be validated by simulating the observed rainfall events. Upscaling from field scale to catchment scale will be done to understand the effect of macropores variability on larger scales by applying spatial stochastic methods. The first phase in this study is the installation and monitoring configuration of video cameras and soil moisture monitoring equipment to obtain the initial data of overland flow occurrence and soil moisture state relationships.
Andreolli, Marco; Albertarelli, Nicola; Lampis, Silvia; Brignoli, Pierlorenzo; Khoei, Nazaninalsadat Seyed; Vallini, Giovanni
2016-01-01
The present study reports on a real case of contamination due to the chronic leakage of diesel fuel from an underground tank at a dismissed service station. Speciation of the microbial community according to both lateral and vertical gradients from the origin of the contaminant release was analyzed by means of the PCR-DGGE technique. Moreover, the effects of a landfarming treatment on both the microbial community structure and the abatement of contamination were analyzed. The concentration of total petrol hydrocarbons (TPHs) decreased along the horizontal gradient (from 7042.2 ± 521.9 to 112.2 ± 24.3 mg kg(-1)), while increased downwards from the position of the tank (from 502.6 ± 43.7 to 4972.5 ± 275.3 mg kg(-1)). PCR-DGGE analyses and further statistical treatment of the data indicated a correlation between structure of the bacterial communities and amount of diesel fuel contamination. On the other hand, level of contamination, soil texture and depth were shown to affect the fungal community. Chloroflexi and Ascomycota were the most abundant microbes ascertained through culture-independent procedures. Landfarming promoted 91.6 % reduction of TPHs in 75 days. Furthermore, PCR-DGGE analyses evidenced that both bacterial and fungal communities of the treated soil were restored to the pristine conditions of uncontaminated topsoil. The present study demonstrated that bacterial and fungal communities were affected differently by soil factors such as level of hydrocarbon contamination as well as soil depth and texture. This report shows that a well-planned landfarming treatment can drive the restoration of the soil in terms of both abatement of the contaminants and resilience of the microbial community structure.
Litter quality versus soil microbial community controls over decomposition: a quantitative analysis
Cleveland, Cory C.; Reed, Sasha C.; Keller, Adrienne B.; Nemergut, Diana R.; O'Neill, Sean P.; Ostertag, Rebecca; Vitousek, Peter M.
2014-01-01
The possible effects of soil microbial community structure on organic matter decomposition rates have been widely acknowledged, but are poorly understood. Understanding these relationships is complicated by the fact that microbial community structure and function are likely to both affect and be affected by organic matter quality and chemistry, thus it is difficult to draw mechanistic conclusions from field studies. We conducted a reciprocal soil inoculum × litter transplant laboratory incubation experiment using samples collected from a set of sites that have similar climate and plant species composition but vary significantly in bacterial community structure and litter quality. The results showed that litter quality explained the majority of variation in decomposition rates under controlled laboratory conditions: over the course of the 162-day incubation, litter quality explained nearly two-thirds (64 %) of variation in decomposition rates, and a smaller proportion (25 %) was explained by variation in the inoculum type. In addition, the relative importance of inoculum type on soil respiration increased over the course of the experiment, and was significantly higher in microcosms with lower litter quality relative to those with higher quality litter. We also used molecular phylogenetics to examine the relationships between bacterial community composition and soil respiration in samples through time. Pyrosequencing revealed that bacterial community composition explained 32 % of the variation in respiration rates. However, equal portions (i.e., 16 %) of the variation in bacterial community composition were explained by inoculum type and litter quality, reflecting the importance of both the meta-community and the environment in bacterial assembly. Taken together, these results indicate that the effects of changing microbial community composition on decomposition are likely to be smaller than the potential effects of climate change and/or litter quality changes in response to increasing atmospheric CO2 concentrations or atmospheric nutrient deposition.
Escolar, Cristina; Martínez, Isabel; Bowker, Matthew A.; Maestre, Fernando T.
2012-01-01
Biological soil crusts (BSCs) are key biotic components of dryland ecosystems worldwide that control many functional processes, including carbon and nitrogen cycling, soil stabilization and infiltration. Regardless of their ecological importance and prevalence in drylands, very few studies have explicitly evaluated how climate change will affect the structure and composition of BSCs, and the functioning of their constituents. Using a manipulative experiment conducted over 3 years in a semi-arid site from central Spain, we evaluated how the composition, structure and performance of lichen-dominated BSCs respond to a 2.4°C increase in temperature, and to an approximately 30 per cent reduction of total annual rainfall. In areas with well-developed BSCs, warming promoted a significant decrease in the richness and diversity of the whole BSC community. This was accompanied by important compositional changes, as the cover of lichens suffered a substantial decrease with warming (from 70 to 40% on average), while that of mosses increased slightly (from 0.3 to 7% on average). The physiological performance of the BSC community, evaluated using chlorophyll fluorescence, increased with warming during the first year of the experiment, but did not respond to rainfall reduction. Our results indicate that ongoing climate change will strongly affect the diversity and composition of BSC communities, as well as their recovery after disturbances. The expected changes in richness and composition under warming could reduce or even reverse the positive effects of BSCs on important soil processes. Thus, these changes are likely to promote an overall reduction in ecosystem processes that sustain and control nutrient cycling, soil stabilization and water dynamics. PMID:23045707
NASA Astrophysics Data System (ADS)
Kaneda, Shogo; Hayashi, Kazuhiro; Hachimori, Wataru; Tamura, Shuji; Saito, Taiki
2017-10-01
In past earthquake disasters, numerous building structure piles were damaged by soil liquefaction occurring during the earthquake. Damage to these piles, because they are underground, is difficult to find. The authors aim to develop a monitoring method of pile damage based on superstructure dynamic response. This paper investigated the relationship between the damage of large cross section cementitious piles and the dynamic response of the super structure using a centrifuge test apparatus. A dynamic specimen used simple cross section pile models consisting of aluminum rod and mortar, a saturated soil (Toyoura sand) of a relative density of 40% and a super structure model of a natural period of 0.63sec. In the shaking table test under a 50G field (length scale of 1/50), excitation was a total of 3 motions scaled from the Rinkai wave at different amplitudes. The maximum acceleration of each of the excitations was 602gal, 336gal and 299gal. The centrifuge test demonstrated the liquefaction of saturated soil and the failure behavior of piles. In the test result, the damage of piles affected the predominant period of acceleration response spectrum on the footing of the superstructure.
Hou, Lin; Hou, Sijia
2017-01-01
Restoration of degraded forest ecosystem is crucial for regional sustainable development. To protect the country's fragile and fragmented environment, the Chinese government initiated an ecological engineering project, the Natural Forest Protection Program, in seventeen provinces in China beginning in 1998. Fully hillside-closed forest protection (vegetation restoration naturally without any artificial disturbance) was one of vital measures of the Natural Forest Protection Program applied nation wide. Whether plant diversity, biomass and age structure of dominant tree species and soil nutrients in protected stands may become better with increase of protected period are still open problems. We investigated community diversity, biomass of dominant tree species, age structures, and analyzed soil chemical properties of a Pinus tabulaeformis population at protected sites representing different protected ages at Huanglongshan Forest Bureau on the Loess Plateau, Shaanxi, China. Plant species richness of Pinus tabulaeformis community was significantly affected ( p < 0.05) by forest protection and the effect attenuated with protection age. Shannon evenness index of plant species generally increased with protection age. Stands protected for 45 years had the highest tree biomass and considerable natural regeneration capacity. Contents of organic carbon, available phosphorus and available potassium in top soil increased in protected stands less than 45 years, however decreased significantly thereafter. Long-term forest protection also decreased the content of mineral nitrogen in top soil. We found that the richness of shrubs and herbs was significantly affected by forest protection, and evenness indices of tree, shrub and herb increased inconsistently with protected ages. Forest protection created more complex age structures and tree densities with increasing age of protection. Content of soil mineral nitrogen at 0-20 cm soil depth showed a decreasing trend in stands of up to 30 years. Soil available phosphorus and potassium contents were higher in stands with greater proportions of big and medium trees. Long-term protection (>45 years) of Pinus tabulaeformis stands in southeast Loess Plateau, China, may be associated with decreasing plant species richness, proportion of medium to large trees, dominant biomass of Pinus tabulaeformis and soil nutrients.
Chen, Hongmei; Oram, Natalie J; Barry, Kathryn E; Mommer, Liesje; van Ruijven, Jasper; de Kroon, Hans; Ebeling, Anne; Eisenhauer, Nico; Fischer, Christine; Gleixner, Gerd; Gessler, Arthur; González Macé, Odette; Hacker, Nina; Hildebrandt, Anke; Lange, Markus; Scherer-Lorenzen, Michael; Scheu, Stefan; Oelmann, Yvonne; Wagg, Cameron; Wilcke, Wolfgang; Wirth, Christian; Weigelt, Alexandra
2017-11-01
Plant diversity influences many ecosystem functions including root decomposition. However, due to the presence of multiple pathways via which plant diversity may affect root decomposition, our mechanistic understanding of their relationships is limited. In a grassland biodiversity experiment, we simultaneously assessed the effects of three pathways-root litter quality, soil biota, and soil abiotic conditions-on the relationships between plant diversity (in terms of species richness and the presence/absence of grasses and legumes) and root decomposition using structural equation modeling. Our final structural equation model explained 70% of the variation in root mass loss. However, different measures of plant diversity included in our model operated via different pathways to alter root mass loss. Plant species richness had a negative effect on root mass loss. This was partially due to increased Oribatida abundance, but was weakened by enhanced root potassium (K) concentration in more diverse mixtures. Equally, grass presence negatively affected root mass loss. This effect of grasses was mostly mediated via increased root lignin concentration and supported via increased Oribatida abundance and decreased root K concentration. In contrast, legume presence showed a net positive effect on root mass loss via decreased root lignin concentration and increased root magnesium concentration, both of which led to enhanced root mass loss. Overall, the different measures of plant diversity had contrasting effects on root decomposition. Furthermore, we found that root chemistry and soil biota but not root morphology or soil abiotic conditions mediated these effects of plant diversity on root decomposition.
Impact of Amendments on the Physical Properties of Soil under Tropical Long-Term No Till Conditions
Mooney, Sacha J.
2016-01-01
Tropical regions have been considered the world’s primary agricultural frontier; however, some physico-chemical deficiencies, such as low soil organic matter content, poor soil structure, high erodibility, soil acidity, and aluminum toxicity, have affected their productive capacity. Lime and gypsum are commonly used to improve soil chemical fertility, but no information exists about the long-term effects of these products on the physical attributes and C protection mechanisms of highly weathered Oxisols. A field trial was conducted in a sandy clay loam (kaolinitic, thermic Typic Haplorthox) under a no-tillage system for 12 years. The trial consisted of four treatments: a control with no soil amendment application, the application of 2.1 Mg ha-1 phosphogypsum, the application of 2.0 Mg ha-1 lime, and the application of lime + phosphogypsum (2.0 + 2.1 Mg ha-1, respectively). Since the experiment was established in 2002, the rates have been applied three times (2002, 2004, and 2010). Surface liming effectively increased water-stable aggregates > 2.0 mm at a depth of up to 0.2 m; however, the association with phosphogypsum was considered a good strategy to improve the macroaggregate stability in subsoil layers (0.20 to 0.40 m). Consequently, both soil amendments applied together increased the mean weight diameter (MWD) and geometric mean diameter (GMD) in all soil layers, with increases of up to 118 and 89%, respectively, according to the soil layer. The formation and stabilization of larger aggregates contributed to a higher accumulation of total organic carbon (TOC) on these structures. In addition to TOC, the MWD and aggregate stability index were positively correlated with Ca2+ and Mg2+ levels and base saturation. Consequently, the increase observed in the aggregate size class resulted in a better organization of soil particles, increasing the macroporosity and reducing the soil bulk density and penetration resistance. Therefore, adequate soil chemical management plays a fundamental role in improving the soil’s physical attributes in tropical areas under conservative management and highly affected by compaction caused by intensive farming. PMID:27959897
Climate change effects on soil microarthropod abundance and community structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kardol, Paul; Reynolds, W. Nicholas; Norby, Richard J
2011-01-01
Long-term ecosystem responses to climate change strongly depend on how the soil subsystem and its inhabitants respond to these perturbations. Using open-top chambers, we studied the response of soil microarthropods to single and combined effects of ambient and elevated atmospheric [CO{sub 2}], ambient and elevated temperatures and changes in precipitation in constructed old-fields in Tennessee, USA. Microarthropods were assessed five years after treatments were initiated and samples were collected in both November and June. Across treatments, mites and collembola were the most dominant microarthropod groups collected. We did not detect any treatment effects on microarthropod abundance. In November, but notmore » in June, microarthropod richness, however, was affected by the climate change treatments. In November, total microarthropod richness was lower in dry than in wet treatments, and in ambient temperature treatments, richness was higher under elevated [CO{sub 2}] than under ambient [CO{sub 2}]. Differential responses of individual taxa to the climate change treatments resulted in shifts in community composition. In general, the precipitation and warming treatments explained most of the variation in community composition. Across treatments, we found that collembola abundance and richness were positively related to soil moisture content, and that negative relationships between collembola abundance and richness and soil temperature could be explained by temperature-related shifts in soil moisture content. Our data demonstrate how simultaneously acting climate change factors can affect the structure of soil microarthropod communities in old-field ecosystems. Overall, changes in soil moisture content, either as direct effect of changes in precipitation or as indirect effect of warming or elevated [CO{sub 2}], had a larger impact on microarthropod communities than did the direct effects of the warming and elevated [CO{sub 2}] treatments. Moisture-induced shifts in soil microarthropod abundance and community composition may have important impacts on ecosystem functions, such as decomposition, under future climatic change.« less
Mark Ibekwe, A; Ors, Selda; Ferreira, Jorge F S; Liu, Xuan; Suarez, Donald L
2017-02-01
Salinity is a common problem under irrigated agriculture, especially in low rainfall and high evaporative demand areas of southwestern United States and other semi-arid regions around the world. However, studies on salinity effects on soil microbial communities are relatively few while the effects of irrigation-induced salinity on soil chemical and physical properties and plant growth are well documented. In this study, we examined the effects of salinity, temperature, and temporal variability on soil and rhizosphere microbial communities in sand tanks irrigated with prepared solutions designed to simulate saline wastewater. Three sets of experiments with spinach (Spinacia oleracea L., cv. Racoon) were conducted under saline water during different time periods (early winter, late spring, and early summer). Bacterial 16S V4 rDNA region was amplified utilizing fusion primers designed against the surrounding conserved regions using MiSeq® Illumina sequencing platform. Across the two sample types, bacteria were relatively dominant among three phyla-the Proteobacteria, Cyanobacteria, and Bacteroidetes-accounted for 77.1% of taxa detected in the rhizosphere, while Proteobacteria, Bacteroidetes, and Actinobacteria accounted for 55.1% of taxa detected in soil. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity, abundance, community structure, and specific bacterial groups in soil and rhizosphere samples. Permutational analysis of variance (PERMANOVA) analysis showed that soil temperature (P=0.001), rhizosphere temperature (P=0.001), rhizosphere salinity (P=0.032), and evapotranspiration (P=0.002) significantly affected beta diversity of soil and rhizosphere microbial communities. Furthermore, salinity had marginal effects (P=0.078) on soil beta diversity. However, temporal variability differentially affected rhizosphere microbial communities irrigated with saline wastewater. Therefore, microbial communities in soils impacted by saline irrigation water respond differently to irrigation water quality and season of application due to temporal effects associated with temperature. Published by Elsevier B.V.
Elgersma, Kenneth J; Ehrenfeld, Joan G; Yu, Shen; Vor, Torsten
2011-11-01
Plant invasions can have substantial consequences for the soil ecosystem, altering microbial community structure and nutrient cycling. However, relatively little is known about what drives these changes, making it difficult to predict the effects of future invasions. In addition, because most studies compare soils from uninvaded areas to long-established dense invasions, little is known about the temporal dependence of invasion impacts. We experimentally manipulated forest understory vegetation in replicated sites dominated either by exotic Japanese barberry (Berberis thunbergii), native Viburnums, or native Vacciniums, so that each vegetation type was present in each site-type. We compared the short-term effect of vegetation changes to the lingering legacy effects of the previous vegetation type by measuring soil microbial community structure (phospholipid fatty acids) and function (extracellular enzymes and nitrogen mineralization). We also replaced the aboveground litter in half of each plot with an inert substitute to determine if changes in the soil microbial community were driven by aboveground or belowground plant inputs. We found that after 2 years, the microbial community structure and function was largely determined by the legacy effect of the previous vegetation type, and was not affected by the current vegetation. Aboveground litter removal had only weak effects, suggesting that changes in the soil microbial community and nutrient cycling were driven largely by belowground processes. These results suggest that changes in the soil following either invasion or restoration do not occur quickly, but rather exhibit long-lasting legacy effects from previous belowground plant inputs.
Distinct microbial communities associated with buried soils in the Siberian tundra
Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Mikutta, Robert; Owens, Sarah; Gilbert, Jack; Schnecker, Jörg; Wild, Birgit; Hannisdal, Bjarte; Maerz, Joeran; Lashchinskiy, Nikolay; Čapek, Petr; Šantrůčková, Hana; Gentsch, Norman; Shibistova, Olga; Guggenberger, Georg; Richter, Andreas; Torsvik, Vigdis L; Schleper, Christa; Urich, Tim
2014-01-01
Cryoturbation, the burial of topsoil material into deeper soil horizons by repeated freeze–thaw events, is an important storage mechanism for soil organic matter (SOM) in permafrost-affected soils. Besides abiotic conditions, microbial community structure and the accessibility of SOM to the decomposer community are hypothesized to control SOM decomposition and thus have a crucial role in SOM accumulation in buried soils. We surveyed the microbial community structure in cryoturbated soils from nine soil profiles in the northeastern Siberian tundra using high-throughput sequencing and quantification of bacterial, archaeal and fungal marker genes. We found that bacterial abundances in buried topsoils were as high as in unburied topsoils. In contrast, fungal abundances decreased with depth and were significantly lower in buried than in unburied topsoils resulting in remarkably low fungal to bacterial ratios in buried topsoils. Fungal community profiling revealed an associated decrease in presumably ectomycorrhizal (ECM) fungi. The abiotic conditions (low to subzero temperatures, anoxia) and the reduced abundance of fungi likely provide a niche for bacterial, facultative anaerobic decomposers of SOM such as members of the Actinobacteria, which were found in significantly higher relative abundances in buried than in unburied topsoils. Our study expands the knowledge on the microbial community structure in soils of Northern latitude permafrost regions, and attributes the delayed decomposition of SOM in buried soils to specific microbial taxa, and particularly to a decrease in abundance and activity of ECM fungi, and to the extent to which bacterial decomposers are able to act as their functional substitutes. PMID:24335828
Yu, Xuan; Liu, Xu; Zhao, Zhong; Liu, Jinliang; Zhang, Shunxiang
2015-01-01
This study aims to evaluate the effect of different afforestation models on soil microbial composition in the Loess Plateau in China. In particular, we determined soil physicochemical properties, enzyme activities, and microbial community structures in the top 0 cm to 10 cm soil underneath a pure Hippophae rhamnoides (SS) stand and three mixed stands, namely, H. rhamnoides and Robinia pseucdoacacia (SC), H. rhamnoides and Pinus tabulaeformis (SY), and H. rhamnoides and Platycladus orientalis (SB). Results showed that total organic carbon (TOC), total nitrogen, and ammonium (NH4(+)) contents were higher in SY and SB than in SS. The total microbial biomass, bacterial biomass, and Gram+ biomass of the three mixed stands were significantly higher than those of the pure stand. However, no significant difference was found in fungal biomass. Correlation analysis suggested that soil microbial communities are significantly and positively correlated with some chemical parameters of soil, such as TOC, total phosphorus, total potassium, available phosphorus, NH4(+) content, nitrate content (NH3(-)), and the enzyme activities of urease, peroxidase, and phosphatase. Principal component analysis showed that the microbial community structures of SB and SS could clearly be discriminated from each other and from the others, whereas SY and SC were similar. In conclusion, tree species indirectly but significantly affect soil microbial communities and enzyme activities through soil physicochemical properties. In addition, mixing P. tabulaeformis or P. orientalis in H. rhamnoides plantations is a suitable afforestation model in the Loess Plateau, because of significant positive effects on soil nutrient conditions, microbial community, and enzyme activities over pure plantations.
Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest.
Schilling, Erik M; Waring, Bonnie G; Schilling, Jonathan S; Powers, Jennifer S
2016-09-01
We investigated how forest composition, litter quality, and rainfall interact to affect leaf litter decomposition across three successional tropical dry forests in Costa Rica. We monitored litter stocks and bulk litter turnover in 18 plots that exhibit substantial variation in soil characteristics, tree community structure, fungal communities (including forests dominated by ecto- or arbuscular mycorrhizal host trees), and forest age. Simultaneously, we decomposed three standard litter substrates over a 6-month period spanning an unusually intense drought. Decay rates of standard substrates depended on the interaction between litter identity and forest type. Decomposition rates were correlated with tree and soil fungal community composition as well as soil fertility, but these relationships differed among litter types. In low fertility soils dominated by ectomycorrhizal oak trees, bulk litter turnover rates were low, regardless of soil moisture. By contrast, in higher fertility soils that supported mostly arbuscular mycorrhizal trees, bulk litter decay rates were strongly dependent on seasonal water availability. Both measures of decomposition increased with forest age, as did the frequency of termite-mediated wood decay. Taken together, our results demonstrate that soils and forest age exert strong control over decomposition dynamics in these tropical dry forests, either directly through effects on microclimate and nutrients, or indirectly by affecting tree and microbial community composition and traits, such as litter quality.
Vegetation, soil, and flooding relationships in a blackwater floodplain forest
Burke, M.K.; King, S.L.; Gartner, D.; Eisenbies, M.H.
2003-01-01
Hydroperiod is considered the primary determinant of plant species distribution in temperate floodplain forests, but most studies have focused on alluvial (sediment-laden) river systems. Few studies have evaluated plant community relationships in blackwater river systems of the South Atlantic Coastal Plain of North America. In this study, we characterized the soils, hydroperiod, and vegetation communities and evaluated relationships between the physical and chemical environment and plant community structure on the floodplain of the Coosawhatchie River, a blackwater river in South Carolina, USA. The soils were similar to previous descriptions of blackwater floodplain soils but had greater soil N and P availability, substantially greater clay content, and lower soil silt content than was previously reported for other blackwater river floodplains. Results of a cluster analysis showed there were five forest communities on the site, and both short-term (4 years) and long-term (50 years) flooding records documented a flooding gradient: water tupelo community > swamp tupelo > laurel oak = overcup oak > mixed oak. The long-term hydrologic record showed that the floodplain has flooded less frequently from 1994 to present than in previous decades. Detrended correspondence analysis of environmental and relative basal area values showed that 27% of the variation in overstory community structure could be explained by the first two axes; however, fitting the species distributions to the DCA axes using Gaussian regression explained 67% of the variation. Axes were correlated with elevation (flooding intensity) and soil characteristics related to rooting volume and cation nutrient availability. Our study suggests that flooding is the major factor affecting community structure, but soil characteristics also may be factors in community structure in blackwater systems. ?? 2003, The Society of Wetland Scientists.
Evolving soils and hydrologic connectivity in semiarid hillslopes
NASA Astrophysics Data System (ADS)
Saco, Patricia M.
2015-04-01
Soil moisture availability is essential for the stability and resilience of semiarid ecosystems. In these ecosystems the amount of soil moisture available for vegetation growth and survival is intrinsically related to the way water is redistributed, that is from source to sink areas, and therefore prescribed by the hydrologic connectivity of the landscape. Recent studies have shown that hydrologic connectivity is highly dynamic and linked to the coevolution of geomorphic, soil and vegetation structures at a variety of spatial and temporal scales. This study investigates the effect of evolving soil depths on hydrologic connectivity using a modelling framework. The focus is on Australian semiarid hillslopes with patterned vegetation that result from coevolving landforms, soils, water redistribution, and vegetation patterns. We present and analyse results from simulations using a coupled landform evolution-dynamic vegetation model, which includes a soil depth evolution module and accounts for soil production and sediment erosion and deposition processes. We analyse the effect of soils depths on surface connectivity for a range of biotic (plant functional type strategies) and abiotic (slope and erodibility) conditions. The analysis shows that different plant functional types, through their varying facilitation strategies, have a profound effect on soils depths and therefore affect hydrologic connectivity and soil moisture patterns. This interplay becomes particularly important for systems that coevolve to have very shallow soils. In this case soil depth becomes the key factor prescribing surface connectivity and available soil moisture for plants, which affect the recovery of the system after disturbance. Conditions for the existence of threshold behaviour for which small perturbations can trigger a sudden increase in hydrologic connectivity, reduced soil moisture availability and decrease in productivity leading to degraded states are investigated. Critical implications for effective restoration efforts are discussed.
Ogura, Tatsuki; Date, Yasuhiro; Masukujane, Masego; Coetzee, Tidimalo; Akashi, Kinya; Kikuchi, Jun
2016-01-01
Effective use of agricultural residual biomass may be beneficial for both local and global ecosystems. Recently, biochar has received attention as a soil enhancer, and its effects on plant growth and soil microbiota have been investigated. However, there is little information on how the physical, chemical, and biological properties of soil amended with biochar are affected. In this study, we evaluated the effects of the incorporation of torrefied plant biomass on physical and structural properties, elemental profiles, initial plant growth, and metabolic and microbial dynamics in aridisol from Botswana. Hemicellulose in the biomass was degraded while cellulose and lignin were not, owing to the relatively low-temperature treatment in the torrefaction preparation. Water retentivity and mineral availability for plants were improved in soils with torrefied biomass. Furthermore, fertilization with 3% and 5% of torrefied biomass enhanced initial plant growth and elemental uptake. Although the metabolic and microbial dynamics of the control soil were dominantly associated with a C1 metabolism, those of the 3% and 5% torrefied biomass soils were dominantly associated with an organic acid metabolism. Torrefied biomass was shown to be an effective soil amendment by enhancing water retentivity, structural stability, and plant growth and controlling soil metabolites and microbiota. PMID:27313139
NASA Astrophysics Data System (ADS)
Ogura, Tatsuki; Date, Yasuhiro; Masukujane, Masego; Coetzee, Tidimalo; Akashi, Kinya; Kikuchi, Jun
2016-06-01
Effective use of agricultural residual biomass may be beneficial for both local and global ecosystems. Recently, biochar has received attention as a soil enhancer, and its effects on plant growth and soil microbiota have been investigated. However, there is little information on how the physical, chemical, and biological properties of soil amended with biochar are affected. In this study, we evaluated the effects of the incorporation of torrefied plant biomass on physical and structural properties, elemental profiles, initial plant growth, and metabolic and microbial dynamics in aridisol from Botswana. Hemicellulose in the biomass was degraded while cellulose and lignin were not, owing to the relatively low-temperature treatment in the torrefaction preparation. Water retentivity and mineral availability for plants were improved in soils with torrefied biomass. Furthermore, fertilization with 3% and 5% of torrefied biomass enhanced initial plant growth and elemental uptake. Although the metabolic and microbial dynamics of the control soil were dominantly associated with a C1 metabolism, those of the 3% and 5% torrefied biomass soils were dominantly associated with an organic acid metabolism. Torrefied biomass was shown to be an effective soil amendment by enhancing water retentivity, structural stability, and plant growth and controlling soil metabolites and microbiota.
Minerals in soil select distinct bacterial communities in their microhabitats.
Carson, Jennifer K; Campbell, Louise; Rooney, Deirdre; Clipson, Nicholas; Gleeson, Deirdre B
2009-03-01
We tested the hypothesis that different minerals in soil select distinct bacterial communities in their microhabitats. Mica (M), basalt (B) and rock phosphate (RP) were incubated separately in soil planted with Trifolium subterraneum, Lolium rigidum or left unplanted. After 70 days, the mineral and soil fractions were separated by sieving. Automated ribosomal intergenic spacer analysis was used to determine whether the bacterial community structure was affected by the mineral, fraction and plant treatments. Principal coordinate plots showed clustering of bacterial communities from different fraction and mineral treatments, but not from different plant treatments. Permutational multivariate anova (permanova) showed that the microhabitats of M, B and RP selected bacterial communities different from each other in unplanted and L. rigidum, and in T. subterraneum, bacterial communities from M and B differed (P<0.046). permanova also showed that each mineral fraction selected bacterial communities different from the surrounding soil fraction (P<0.05). This study shows that the structure of bacterial communities in soil is influenced by the mineral substrates in their microhabitat and that minerals in soil play a greater role in bacterial ecology than simply providing an inert matrix for bacterial growth. This study suggests that mineral heterogeneity in soil contributes to the spatial variation in bacterial communities.
Zhou, Jing; Jiang, Xin; Wei, Dan; Zhao, Baisuo; Ma, Mingchao; Chen, Sanfeng; Cao, Fengming; Shen, Delong; Guan, Dawei; Li, Jun
2017-06-12
Long-term use of inorganic nitrogen (N) fertilization has greatly influenced the bacterial community in black soil of northeast China. It is unclear how N affects the bacterial community in two successive crop seasons in the same field for this soil type. We sampled soils from a long-term fertilizer experimental field in Harbin city with three N gradients. We applied sequencing and quantitative PCR targeting at the 16S rRNA gene to examine shifts in bacterial communities and test consistent shifts and driving-factors bacterial responses to elevated N additions. N addition decreased soil pH and bacterial 16S rDNA copy numbers, and increased soil N and crop yield. N addition consistently decreased bacterial diversity and altered bacterial community composition, by increasing the relative abundance of Proteobacteria, and decreasing that of Acidobacteria and Nitrospirae in both seasons. Consistent changes in the abundant classes and genera, and the structure of the bacterial communities across both seasons were observed. Our results suggest that increases in N inputs had consistent effects on the richness, diversity and composition of soil bacterial communities across the crop seasons in two continuous years, and the N addition and the subsequent edaphic changes were important factors in shaping bacterial community structures.
Spatial and Temporal Variation of Archaeal, Bacterial and Fungal Communities in Agricultural Soils
Pereira e Silva, Michele C.; Dias, Armando Cavalcante Franco; van Elsas, Jan Dirk; Salles, Joana Falcão
2012-01-01
Background Soil microbial communities are in constant change at many different temporal and spatial scales. However, the importance of these changes to the turnover of the soil microbial communities has been rarely studied simultaneously in space and time. Methodology/Principal Findings In this study, we explored the temporal and spatial responses of soil bacterial, archaeal and fungal β-diversities to abiotic parameters. Taking into account data from a 3-year sampling period, we analyzed the abundances and community structures of Archaea, Bacteria and Fungi along with key soil chemical parameters. We questioned how these abiotic variables influence the turnover of bacterial, archaeal and fungal communities and how they impact the long-term patterns of changes of the aforementioned soil communities. Interestingly, we found that the bacterial and fungal β-diversities are quite stable over time, whereas archaeal diversity showed significantly higher fluctuations. These fluctuations were reflected in temporal turnover caused by soil management through addition of N-fertilizers. Conclusions Our study showed that management practices applied to agricultural soils might not significantly affect the bacterial and fungal communities, but cause slow and long-term changes in the abundance and structure of the archaeal community. Moreover, the results suggest that, to different extents, abiotic and biotic factors determine the community assembly of archaeal, bacterial and fungal communities. PMID:23284712
Wu, Manli; Ye, Xiqiong; Chen, Kaili; Li, Wei; Yuan, Jing; Jiang, Xin
2017-04-01
A laboratory study was conducted to evaluate the impact of bioaugmentation plus biostimulation (BR, added both nutrients and bacterial consortia), and natural attenuation (NA) on hydrocarbon degradation efficiency and microflora characterization during remediation of a freshly contaminated soil. After 112 days of remediation, the initial level of total petroleum hydrocarbon (TPH) (61,000 mg/kg soil) was reduced by 4.5% and 5.0% in the NA and BR treatments, respectively. Bioremediation did not significantly enhance TPH biodegradation compared to natural attenuation. The degradation of the aliphatic fraction was the most active with the degradation rate of 30.3 and 28.7 mg/kg/day by the NA and BR treatments, respectively. Soil microbial activities and counts in soil were generally greater for bioremediation than for natural attenuation. MiSeq sequencing indicated that the diversity and structure of microbial communities were affected greatly by bioremediation. In response to bioremediation treatment, Promicromonospora, Pseudomonas, Microcella, Mycobacterium, Alkanibacter, and Altererythrobacter became dominant genera in the soil. The result indicated that combining bioaugmentation with biostimulation did not improve TPH degradation, but soil microbial activities and structure of microbial communities are sensitive to bioremediation in short-term and heavily oil-contaminated soil. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ogura, Tatsuki; Date, Yasuhiro; Masukujane, Masego; Coetzee, Tidimalo; Akashi, Kinya; Kikuchi, Jun
2016-06-17
Effective use of agricultural residual biomass may be beneficial for both local and global ecosystems. Recently, biochar has received attention as a soil enhancer, and its effects on plant growth and soil microbiota have been investigated. However, there is little information on how the physical, chemical, and biological properties of soil amended with biochar are affected. In this study, we evaluated the effects of the incorporation of torrefied plant biomass on physical and structural properties, elemental profiles, initial plant growth, and metabolic and microbial dynamics in aridisol from Botswana. Hemicellulose in the biomass was degraded while cellulose and lignin were not, owing to the relatively low-temperature treatment in the torrefaction preparation. Water retentivity and mineral availability for plants were improved in soils with torrefied biomass. Furthermore, fertilization with 3% and 5% of torrefied biomass enhanced initial plant growth and elemental uptake. Although the metabolic and microbial dynamics of the control soil were dominantly associated with a C1 metabolism, those of the 3% and 5% torrefied biomass soils were dominantly associated with an organic acid metabolism. Torrefied biomass was shown to be an effective soil amendment by enhancing water retentivity, structural stability, and plant growth and controlling soil metabolites and microbiota.
Nutrient addition dramatically accelerates microbial community succession.
Knelman, Joseph E; Schmidt, Steven K; Lynch, Ryan C; Darcy, John L; Castle, Sarah C; Cleveland, Cory C; Nemergut, Diana R
2014-01-01
The ecological mechanisms driving community succession are widely debated, particularly for microorganisms. While successional soil microbial communities are known to undergo predictable changes in structure concomitant with shifts in a variety of edaphic properties, the causal mechanisms underlying these patterns are poorly understood. Thus, to specifically isolate how nutrients--important drivers of plant succession--affect soil microbial succession, we established a full factorial nitrogen (N) and phosphorus (P) fertilization plot experiment in recently deglaciated (∼3 years since exposure), unvegetated soils of the Puca Glacier forefield in Southeastern Peru. We evaluated soil properties and examined bacterial community composition in plots before and one year after fertilization. Fertilized soils were then compared to samples from three reference successional transects representing advancing stages of soil development ranging from 5 years to 85 years since exposure. We found that a single application of +NP fertilizer caused the soil bacterial community structure of the three-year old soils to most resemble the 85-year old soils after one year. Despite differences in a variety of soil edaphic properties between fertilizer plots and late successional soils, bacterial community composition of +NP plots converged with late successional communities. Thus, our work suggests a mechanism for microbial succession whereby changes in resource availability drive shifts in community composition, supporting a role for nutrient colimitation in primary succession. These results suggest that nutrients alone, independent of other edaphic factors that change with succession, act as an important control over soil microbial community development, greatly accelerating the rate of succession.
Nutrient Addition Dramatically Accelerates Microbial Community Succession
Knelman, Joseph E.; Schmidt, Steven K.; Lynch, Ryan C.; Darcy, John L.; Castle, Sarah C.; Cleveland, Cory C.; Nemergut, Diana R.
2014-01-01
The ecological mechanisms driving community succession are widely debated, particularly for microorganisms. While successional soil microbial communities are known to undergo predictable changes in structure concomitant with shifts in a variety of edaphic properties, the causal mechanisms underlying these patterns are poorly understood. Thus, to specifically isolate how nutrients – important drivers of plant succession – affect soil microbial succession, we established a full factorial nitrogen (N) and phosphorus (P) fertilization plot experiment in recently deglaciated (∼3 years since exposure), unvegetated soils of the Puca Glacier forefield in Southeastern Peru. We evaluated soil properties and examined bacterial community composition in plots before and one year after fertilization. Fertilized soils were then compared to samples from three reference successional transects representing advancing stages of soil development ranging from 5 years to 85 years since exposure. We found that a single application of +NP fertilizer caused the soil bacterial community structure of the three-year old soils to most resemble the 85-year old soils after one year. Despite differences in a variety of soil edaphic properties between fertilizer plots and late successional soils, bacterial community composition of +NP plots converged with late successional communities. Thus, our work suggests a mechanism for microbial succession whereby changes in resource availability drive shifts in community composition, supporting a role for nutrient colimitation in primary succession. These results suggest that nutrients alone, independent of other edaphic factors that change with succession, act as an important control over soil microbial community development, greatly accelerating the rate of succession. PMID:25050551
Nematode Community Response to Green Infrastructure Design in a Semiarid City.
Pavao-Zuckerman, Mitchell A; Sookhdeo, Christine
2017-05-01
Urbanization affects ecosystem function and environmental quality through shifts in ecosystem fluxes that are brought on by features of the built environment. Green infrastructure (GI) has been suggested as a best management practice (BMP) to address urban hydrologic and ecological impacts of the built environment, but GI practice has only been studied from a limited set of climatic conditions and disciplinary approaches. Here, we evaluate GI features in a semiarid city from the perspective of soil ecology through the application of soil nematode community analysis. This study was conducted to investigate soil ecological interactions in small-scale GI as a means of assessing curb-cut rain garden basin design in a semiarid city. We looked at the choice of mulching approaches (organic vs. rock) and how this design choice affects the soil ecology of rain basins in Tucson, AZ. We sampled soils during the monsoon rain season and assessed the soil nematode community as a bioindicator of soil quality and biogeochemical processes. We found that the use of organic mulch in GI basins promotes enhanced soil organic matter contents and larger nematode populations. Nematode community indices point to enhanced food web structure in streetscape rain garden basins that are mulched with organic material. Results from this study suggest that soil management practices for GI can help promote ecological interactions and ecosystem services in urban ecosystems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Ancona, Valeria; Barra Caracciolo, Anna; Grenni, Paola; Di Lenola, Martina; Calabrese, Angelantonio; Campanale, Claudia; Felice Uricchio, Vito
2014-05-01
Soil quality is defined as the capacity of a soil to function as a vital system, within natural or managed ecosystem boundaries, sustain plant and animal health and productivity, maintain or enhance air and water environment quality and support human health and habitation. Soil organisms are extremely diverse and contribute to a wide range of ecosystem services that are essential to the sustainable functioning of natural and managed ecosystems. In particular, microbial communities provide several ecosystem services, which ensure soil quality and fertility. In fact, they adapt promptly to environmental changes by varying their activity and by increasing the reproduction of populations that have favourable skills. The structure (e.g. cell abundance) and functioning (e.g. viability and activity) of natural microbial communities and changes in them under different environmental conditions can be considered useful indicators of soil quality state. In this work we studied the quality state of three different soils, located in Taranto Province (Southern Italy), affected by land degradation processes, such as organic matter depletion, desertification and contamination (PCB and metals). Moreover, compost, produced from selected organic waste, was added to the soils studied in order to improve their quality state. Soil samples were collected before and after compost addition and both microbial and chemical analyses were performed in order to evaluate the soil quality state at each site at different times. For this purpose, the microbiological indicators evaluated were bacterial abundance (DAPI counts), cell viability (Live/Dead method), dehydrogenase activity (DHA) and soil respiration. At the same time, the main physico-chemical soil characteristics (organic carbon, available phosphorous, total nitrogen, carbonate and water content, texture and pH) were also measured. Moreover, in the contaminated soil samples PCB and inorganic (e.g. Pb, Se, Sn, Zn) contaminants were analysed respectively by GC-MS and ICP-MS. The overall results showed that the bacterial structure and functioning were affected in different ways by the organic carbon availability and quality, and contaminant occurrence (organic or inorganic compounds). The compost treatment contributed to improve soil fertility and to increase cell number and activity after 7 months in the two low organic carbon content soils. At the polluted site a general increase in bacterial activity after compost addition was also observed and this might be related to a decrease in inorganic and organic contamination levels.
Soil microbial toxicity assessment of a copper-based fungicide in two contrasting soils
NASA Astrophysics Data System (ADS)
Dober, Melanie; Deltedesco, Evi; Jöchlinger, Lisa; Schneider, Martin; Gorfer, Markus; Bruckner, Alexander; Zechmeister-Boltenstern, Sophie; Soja, Gerhard; Zehetner, Franz; Keiblinger, Katharina Maria
2016-04-01
The infestation with the fungus downy mildew (Plasmopara viticola) causes dramatic losses in wine production. Copper (Cu) based fungicides have been used in viticulture since the end of the 19th century, and until today both conventional and organic viticulture strongly rely on Cu to prevent and reduce fungal diseases. Consequently, Cu has built up in many vineyard soils and it is still unclear how this affects soil functioning. The aim of the present study is the evaluation of the soil microbial toxicity of Cu contamination. Two contrasting agricultural soils, an acidic sandy soil and a calcareous loamy soil, were sampled to conduct an eco-toxicological greenhouse pot experiment. The soils were spiked with a commonly used fungicide based on copper hydroxid in seven concentrations (0, 50, 100, 200, 500, 1500 and 5000 mg Cu kg-1 soil) and Lucerne (Medicago sativa L. cultivar. Plato) was grown in the pots for 3 months. Sampling was conducted at the beginning and at the end of the study period to test copper's soil microbial toxicity in total microbial biomass and basal respiration, as well as enzyme activities, such as exoglucanase, β-glucosidase, exochitinase, phosphatase, protease, phenol-, peroxidase and urease. Additionally, DOC, TN, Cmic, Nmic, NO3 and NH4 were determined to provide further insight into the carbon and nitrogen cycle. Microbial community structure was analysed by phospholipid fatty acids (PLFAs), and ergosterol as a fungal biomarker. In addition, molecular tools were applied by extracting soil DNA and performing real time quantitative polymerase chain reaction (qPCR) and a metagenomic approach using 16S and ITS amplification and sequencing with MiSeq platform for the second sampling. Hydrolytic extracellular enzymes were not clearly affected by rising Cu concentrations, while a trend of increasing activity of oxidative enzymes (phenol- and peroxidase) was observed. Microbial respiration rate as well as the amount of Cmic and Nmic decreased with increasing Cu concentrations. Ergosterol was especially sensitive to Cu and started to decline at even lower concentrations. A shift in the microbial community structure with rising Cu was observed using PLFA. The metagenomics approach enables us to investigate these changes at even finer taxonomic resolution and possible effects on the soil nutrient cycles will be discussed. In summary, our results showed distinct Cu toxicity effects on soil microbial biomass with a larger sensitivity of the loamy soil.
NASA Technical Reports Server (NTRS)
Cullings, Ken; Raleigh, Christopher; New, Michael H.; Henson, Joan
2005-01-01
Loss of photosynthetic area can affect soil microbial communities by altering the availability of fixed carbon. We used denaturing gradient gel electrophoresis (DGGE) and Biolog filamentous-fungus plates to determine the effects of artificial defoliation of pines in a mixed pine-spruce forest on the composition of the fungal community in a forest soil. As measured by DGGE, two fungal species were affected significantly by the defoliation of pines (P < 0.001); the frequency of members of the ectomycorrhizal fungus genus Cenococcum decreased significantly, while the frequency of organisms of an unidentified soil fungus increased. The decrease in the amount of Cenococcum organisms may have occurred because of the formation of extensive hyphal networks by species of this genus, which require more of the carbon fixed by their host, or because this fungus is dependent upon quantitative differences in spruce root exudates. The defoliation of pines did not affect the overall composition of the soil fungal community or fungal-species richness (number of species per core). Biolog filamentous-fungus plate assays indicated a significant increase (P < 0.001) in the number of carbon substrates utilized by the soil fungi and the rate at which these substrates were used, which could indicate an increase in fungal-species richness. Thus, either small changes in the soil fungal community give rise to significant increases in physiological capabilities or PCR bias limits the reliability of the DGGE results. These data indicate that combined genetic and physiological assessments of the soil fungal community are needed to accurately assess the effect of disturbance on indigenous microbial systems.
Does natural variation in diversity affect biotic resistance?
Harrison, Susan; Cornell, Howard; Grace, James B.
2015-01-01
Theories linking diversity to ecosystem function have been challenged by the widespread observation of more exotic species in more diverse native communities. Few studies have addressed the key underlying process by dissecting how community diversity is shaped by the same environmental gradients that determine biotic and abiotic resistance to new invaders. In grasslands on highly heterogeneous soils, we used addition of a recent invader, competitor removal and structural equation modelling (SEM) to analyse soil influences on community diversity, biotic and abiotic resistance and invader success. Biotic resistance, measured by reduction in invader success in the presence of the resident community, was negatively correlated with species richness and functional diversity. However, in the multivariate SEM framework, biotic resistance was independent of all forms of diversity and was positively affected by soil fertility via community biomass. Abiotic resistance, measured by invader success in the absence of the resident community, peaked on infertile soils with low biomass and high community diversity. Net invader success was determined by biotic resistance, consistent with this invader's better performance on infertile soils in unmanipulated conditions. Seed predation added slightly to biotic resistance without qualitatively changing the results. Soil-related genotypic variation in the invader also did not affect the results. Synthesis. In natural systems, diversity may be correlated with invasibility and yet have no effect on either biotic or abiotic resistance to invasion. More generally, the environmental causes of variation in diversity should not be overlooked when considering the potential functional consequences of diversity.
NASA Astrophysics Data System (ADS)
Cui, Junfang; Tang, Xiangyu; Zhang, Wei
2017-04-01
In southwest China, a grand hydraulic engineering called Three Gorges Dam (TGD) was completed and under full power run since 2009, making a total area of 349 km2 along Yangtze River exposing the dry-wet cycles by its impounding of water step by step from the elevations of 135 m in summer season to 175 m in winter season at each year. As populated area, the environmental issues aroused by the TGR have centered on water quality, biodiversity, sedimentation, downstream riverbed erosion and pollutants (both heavy metals and organic pollutants) transportation. All these are regulated or affected by soil structure and pore network, directly or indirectly. Thus, the study of soil physical quality changed induced by these seasonal dry-wet cycles is crucial. The objective of this study is: (1) to describe soil structural status in WLF zone of TGR by combination of laboratory measures and visual evaluation method; (2) to describe the pore system in this zone by both SWRC and CT images; and (3) to address the changes of soil physical quality changed by seasonal dry-wet cycles. Our results showed a deterioration of soil structure (indicated by a high Sq score in VESS) and soil aggregate stability (indicated by low MWD and the mass fractal dimension Dm) in lower land of TGR. The data from both soil water retention curve and micro-CT image demonstrates a going -worse of soil physical quality by decreasing of soil pore number and porosity as well as a shift of drainable micro-pores (0.1 < r < 125 µm) to non-drainable micro-pores (r < 0.1 µm) in the lower land of TGR.
Transport and fate of estrogenic hormones in slurry-treated soil monoliths.
Laegdsmand, Mette; Andersen, Henrik; Jacobsen, Ole Hørbye; Halling-Sørensen, Bent
2009-01-01
The naturally occurring hormones, such as 17-beta-estradiol, 17-alpha-estradiol, and estrone, present in livestock manure may have detrimental environmental effects if released into surface waters. In areas where manure application is intensive, estrogens have been found in surface waters in concentrations known to affect the endocrine system of fish and amphibians. How the estrogens reach the surface waters is unclear. To investigate whether leaching through the soil profile plays a significant role, we conducted leaching experiments on intact soil cores. Lysimeter soil monoliths (60 cm in diameter and 100 cm long) were excavated from two sites in Denmark (one loamy and one sandy soil). The soil monoliths were treated with pig slurry containing estrogenic hormones and amended with an estrogen tracer (17-alpha-ethinylestradiol) and a conservative tracer (bromide). 17-alpha-ethinylestradiol is a synthetic analog of 17-beta-estradiol with sorption characteristics and molecular structure similar to those of the naturally occurring estrogens in slurry. The monoliths were exposed to a short-term irrigation event (12 h) followed by a long-term semi-field experiment (16 wk), during which leaching of natural estrogens and tracers was followed. Estrogens from slurry were transported to a depth of 1 m in loamy soil and sandy soil. The estrogen concentrations in the leachate were at a level known to affect the endocrine system of aquatic organisms.
Omirou, Michalis; Rousidou, Constantina; Bekris, Fotios; Papadopoulou, Kalliope K; Menkissoglou-Spiroudi, Urania; Ehaliotis, Constantinos; Karpouzas, Dimitrios G
2011-01-01
Biofumigation (BIOF) is carried out mainly by the incorporation of brassica plant parts into the soil, and this fumigation activity has been linked to their high glucosinolate (GSL) content. GSLs are hydrolyzed by the endogenous enzyme myrosinase to release isothiocyanates (ITCs). A microcosm study was conducted to investigate the effects induced on the soil microbial community by the incorporation of broccoli residues into soil either with (BM) or without (B) added myrosinase and of chemical fumigation, either as soil application of 2-phenylethyl ITC (PITC) or metham sodium (MS). Soil microbial activity was evaluated by measuring fluorescein diacetate hydrolysis and soil respiration. Effects on the structure of the total microbial community were assessed by phospholipid fatty acid analysis, while the impact on important fungal (ascomycetes (ASC)) and bacterial (ammonia-oxidizing bacteria (AOB)) guilds was evaluated by denaturating gradient gel electrophoresis (DGGE). Overall, B, and to a lesser extent BM, stimulated microbial activity and biomass. The diminished effect of BM compared to B was particularly evident in fungi and Gram-negative bacteria and was attributed to rapid ITC release following the myrosinase treatment. PITC did not have a significant effect, whereas an inhibitory effect was observed in the MS-treated soil. DGGE analysis showed that the ASC community was temporarily altered by BIOF treatments and more persistently by the MS treatment, while the structure of the AOB community was not affected by the treatments. Cloning of the ASC community showed that MS application had a deleterious effect on potential plant pathogens like Fusarium, Nectria, and Cladosporium compared to BIOF treatments which did not appear to inhibit them. Our findings indicate that BIOF induces changes on the structure and function of the soil microbial community that are mostly related to microbial substrate availability changes derived from the soil amendment with fresh organic materials.
Phoresy of the entomopathogenic nematode Steinernema feltiae by the earthworm Eisenia fetida.
Campos-Herrera, Raquel; Trigo, Dolores; Gutiérrez, Carmen
2006-05-01
The free-living stage of entomopathogenic nematodes occurs in soil, and is an environmental-friendly alternative for biological control. However, their dispersal capability is limited. Earthworms improve soil characteristics, changing soil structure and influencing many edaphic organisms. Thus, earthworms could be used as vectors to introduce/disperse beneficial organisms. Nevertheless this interaction has not been studied in detail. This study presents the infectivity results of Steinernema feltiae after passing through the Eisenia fetida gut. Although entomopathogenic nematodes have no deleterious effects on earthworms, their passage through E. fetida gut seriously affected their mobility and virulence.
Bezemer, T M; Fountain, M T; Barea, J M; Christensen, S; Dekker, S C; Duyts, H; van Hal, R; Harvey, J A; Hedlund, K; Maraun, M; Mikola, J; Mladenov, A G; Robin, C; de Ruiter, P C; Scheu, S; Setälä, H; Smilauer, P; van der Putten, W H
2010-10-01
Soils are extremely rich in biodiversity, and soil organisms play pivotal roles in supporting terrestrial life, but the role that individual plants and plant communities play in influencing the diversity and functioning of soil food webs remains highly debated. Plants, as primary producers and providers of resources to the soil food web, are of vital importance for the composition, structure, and functioning of soil communities. However, whether natural soil food webs that are completely open to immigration and emigration differ underneath individual plants remains unknown. In a biodiversity restoration experiment we first compared the soil nematode communities of 228 individual plants belonging to eight herbaceous species. We included grass, leguminous, and non-leguminous species. Each individual plant grew intermingled with other species, but all plant species had a different nematode community. Moreover, nematode communities were more similar when plant individuals were growing in the same as compared to different plant communities, and these effects were most apparent for the groups of bacterivorous, carnivorous, and omnivorous nematodes. Subsequently, we analyzed the composition, structure, and functioning of the complete soil food webs of 58 individual plants, belonging to two of the plant species, Lotus corniculatus (Fabaceae) and Plantago lanceolata (Plantaginaceae). We isolated and identified more than 150 taxa/groups of soil organisms. The soil community composition and structure of the entire food webs were influenced both by the species identity of the plant individual and the surrounding plant community. Unexpectedly, plant identity had the strongest effects on decomposing soil organisms, widely believed to be generalist feeders. In contrast, quantitative food web modeling showed that the composition of the plant community influenced nitrogen mineralization under individual plants, but that plant species identity did not affect nitrogen or carbon mineralization or food web stability. Hence, the composition and structure of entire soil food webs vary at the scale of individual plants and are strongly influenced by the species identity of the plant. However, the ecosystem functions these food webs provide are determined by the identity of the entire plant community.
Structural changes of green roof growing substrate layer studied by X-ray CT
NASA Astrophysics Data System (ADS)
Jelinkova, Vladimira; Sacha, Jan; Dohnal, Michal; Snehota, Michal
2017-04-01
Increasing interest in green infrastructure linked with newly implemented legislation/rules/laws worldwide opens up research potential for field of soil hydrology. A better understanding of function of engineered soils involved in green infrastructure solutions such as green roofs or rain garden is needed. A soil layer is considered as a highly significant component of the aforesaid systems. In comparison with a natural soil, the engineered soil is assumed to be the more challenging case due to rapid structure changes early stages after its build-up. The green infrastructure efficiency depends on the physical and chemical properties of the soil, which are, in the case of engineered soils, a function of its initial composition and subsequent soil formation processes. The project presented in this paper is focused on fundamental processes in the relatively thick layer of engineered soil. The initial structure development, during which the pore geometry is altered by the growth of plant roots, water influx, solid particles translocation and other soil formation processes, is investigated with the help of noninvasive imaging technique X-ray computed tomography. The soil development has been studied on undisturbed soil samples taken periodically from green roof test system during early stages of its life cycle. Two approaches and sample sizes were employed. In the first approach, undisturbed samples (volume of about 63 cm3) were taken each time from the test site and scanned by X-ray CT. In the second approach, samples (volume of about 630 cm3) were permanently installed at the test site and has been repeatedly removed to perform X-ray CT imaging. CT-derived macroporosity profiles reveal significant temporal changes of soil structure. Clogging of pores by fine particles and fissures development are two most significant changes that would affect the green roof system efficiency. This work has been supported by the Ministry of Education, Youth and Sports within National Sustainability Programme I, project number LO1605 and with financial support from the Czech Science Foundation under project number GAČR 17-21011S.
NASA Astrophysics Data System (ADS)
Ditommaso, Rocco; Auletta, Gianluca; Iacovino, Chiara; Nigro, Antonella; Carlo Ponzo, Felice
2017-04-01
In this paper, several nonlinear numerical models of reinforced concrete framed structures have been defined in order to evaluate the effects of non-structural elements and soil-structure interaction on the elastic dynamic behaviour of buildings. In the last few years, many and various studies have highlighted the significant effects derived from the interaction between structural and non-structural components on the main dynamic characteristics of a building. Usually, structural and non-structural elements act together, adding both masses and stiffness. The presence of infill panels is generally neglected in the design process of structural elements, although these elements can significantly increase the lateral stiffness of a structure leading to a modification in the dynamic properties. Particularly, at the Damage Limit State (where an elastic behaviour is expected), soil-structure interaction effects and non-structural elements may further affect the elastic natural period of buildings, changing the spectral accelerations compared with those provided by seismic codes in case of static analyses. In this work, a parametric study has been performed in order to evaluate the elastic fundamental period of vibration of buildings as a function of structural morphology (height, plan area, ratio between plan dimensions), infills presence and distribution and soil characteristics. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and health monitoring'' and by the "Centre of Integrated Geomorphology for the Mediterranean Area - CGIAM" within the Framework Agreement with the University of Basilicata "Study, Research and Experimentation in the Field of Analysis and Monitoring of Seismic Vulnerability of Strategic and Relevant Buildings for the purposes of Civil Protection and Development of Innovative Strategies of Seismic Reinforcement".
Zhou, Yang; Zhu, Honghui; Fu, Shenglei; Yao, Qing
2017-01-01
Plants are the essential factors shaping soil microbial community (SMC) structure. When most studies focus on the difference in the SMC structure associated different plant species, the variation in the SMC structure associated with phylogenetically close species is less investigated. Legume (Fabaceae) and grass (Poaceae) are functionally important plant groups; however, their influences on the SMC structure are seldom compared, and the variation in the SMC structure among legume or grass species is largely unknown. In this study, we grew three legume species vs. three grass species in mesocosms, and monitored the soil chemical property, quantified the abundance of bacteria and fungi. The SMC structure was also characterized using PCR-DGGE and Miseq sequencing. Results showed that legume and grass differentially affected soil pH, dissolved organic C, total N content, and available P content, and that legume enriched fungi more greatly than grass. Both DGGE profiling and Miseq-sequencing indicated that the bacterial diversity associated with legume was higher than that associated with grass. When legume increased the abundance of Verrucomicrobia, grass decreased it, and furthermore, linear discriminant analysis identified some group-specific microbial taxa as potential biomarkers of legume or grass. These data suggest that legume and grass differentially select for the SMC. More importantly, clustering analysis based on both DGGE profiling and Miseq-sequencing demonstrated that the variation in the SMC structure associated with three legume species was greater than that associated with three grass species. PMID:28620371
NASA Astrophysics Data System (ADS)
Fan, Linfeng; Lehmann, Peter; Or, Dani
2015-04-01
Naturally-occurring spatial variations in soil properties (e.g., soil depth, moisture, and texture) affect key hydrological processes and potentially the mechanical response of soil to hydromechanical loading (relative to the commonly-assumed uniform soil mantle). We quantified the effects of soil spatial variability on the triggering of rainfall-induced shallow landslides at the hillslope- and catchment-scales, using a physically-based landslide triggering model that considers interacting soil columns with mechanical strength thresholds (represented by the Fiber Bundle Model). The spatial variations in soil properties are represented as Gaussian random distributions and the level of variation is characterized by the coefficient of variation and correlation lengths of soil properties (i.e., soil depth, soil texture and initial water content in this study). The impacts of these spatial variations on landslide triggering characteristics were measured by comparing the times to triggering and landslide volumes for heterogeneous soil properties and homogeneous cases. Results at hillslope scale indicate that for spatial variations of an individual property (without cross correlation), the increasing of coefficient of variation introduces weak spots where mechanical damage is accelerated and leads to earlier onset of landslide triggering and smaller volumes. Increasing spatial correlation length of soil texture and initial water content also induces early landslide triggering and small released volumes due to the transition of failure mode from brittle to ductile failure. In contrast, increasing spatial correlation length of soil depth "reduces" local steepness and postpones landslide triggering. Cross-correlated soil properties generally promote landslide initiation, but depending on the internal structure of spatial distribution of each soil property, landslide triggering may be reduced. The effects of cross-correlation between initial water content and soil texture were investigated in detail at the catchment scale by incorporating correlations of both variables with topography. Results indicate that the internal structure of the spatial distribution of each soil property together with their interplays determine the overall performance of the coupled spatial variability. This study emphasizes the importance of both the randomness and spatial structure of soil properties on landslide triggering and characteristics.
Soils are sensitive reactors - do we need a paradigm change towards a more sustainable soil use?
NASA Astrophysics Data System (ADS)
Horn, Rainer; Holthusen, Dörthe
2015-04-01
The aim of the lecture is to clarify the effect of soil management and the consequences of physical degradation on processes like soil aggregation and changes in the accessibility and functionality of structured soils. If due to soil management strategies the internal soil strength will be exceeded by external stresses applied not only the available pore space is reduced while the solid mass is increased but especially the pore continuity and the accessibility of exchange places for nutrients or heavy metals are altered. In addition, the root distribution in soils becomes not only reduced but also unevenly distributed which again hinders the possibility to evenly uptake plant available water and nutrient out of the pores. The applied stresses also create an anisotropic arrangement of the pores and their functions and also result in a more pronounced lateral mass transport by surface runoff including soil erosion by water and wind. Thus, also the water balance on all scales (from the pedon to the catchment) shows an increased water loss by evaporation and surface water while the groundwater recharge and the transpiration rates are reduced. If we analyze the scale dependency of nutrient adsorption and desorption phenomena it has to be stated, that the accessibility of exchange places within soil aggregates are the better the more structured and the more rigid these aggregates are, while with increasing mechanical stress applied aggregates are deformed and as a consequences they become less porous with a severe differentiation between the outer and the inner part of the aggregate volume. On the bulk soil scale, we can analyze the platy structure as a visible hint for anthropogenic soil degradation which affects amongst others also the ion exchange processes. Furthermore an uneven aeration within such degraded soils results in a very pronounced anoxia on all scales (from the aggregate to the hectare scale) which can be quantified not only by corresponding measurements of the spatial distribution of redox potential values. In recent studies under "normal" wheeling conditions in arable fields and also in harvested forest sites it was proofed that Eh values close to 0 mV or even a methane emission have to be expected (with consequences for the global warming). Finally anoxic conditions also affect the redox induced mobilization of Fe and Mn which even results in a more rapid soil development with consequences also for yield and further soil functions. Consequently a shift to a more sustainable landuse or soil management strategy is urgently requested in order to prevent a further soil degradation. The scenario of peak soil must and can be prevented by a more site specific soil management. In the lecture, these effects will be discussed as well as a soil protection guide line (based on the German soil protection law) will be presented in order to prevent further irreversible soil degradation phenomena. Keywords: mechanical strength, mechanical stress and strain effects soil degradation, pore functions, ad-/desorption processes, redox potential, anoxia;, global change
Eckert, Sandra; Tesfay Ghebremicael, Selamawit; Hurni, Hans; Kohler, Thomas
2017-05-15
Land degradation affects large areas of land around the globe, with grave consequences for those living off the land. Major efforts are being made to implement soil and water conservation measures that counteract soil erosion and help secure vital ecosystem services. However, where and to what extent such measures have been implemented is often not well documented. Knowledge about this could help to identify areas where soil and water conservation measures are successfully supporting sustainable land management, as well as areas requiring urgent rehabilitation of conservation structures such as terraces and bunds. This study explores the potential of the latest satellite-based remote sensing technology for use in assessing and monitoring the extent of existing soil and water conservation structures. We used a set of very high resolution stereo Geoeye-1 satellite data, from which we derived a detailed digital surface model as well as a set of other spectral, terrain, texture, and filtered information layers. We developed and applied an object-based classification approach, working on two segmentation levels. On the coarser level, the aim was to delimit certain landscape zones. Information about these landscape zones is useful in distinguishing different types of soil and water conservation structures, as each zone contains certain specific types of structures. On the finer level, the goal was to extract and identify different types of linear soil and water conservation structures. The classification rules were based mainly on spectral, textural, shape, and topographic properties, and included object relationships. This approach enabled us to identify and separate from other classes the majority (78.5%) of terraces and bunds, as well as most hillside terraces (81.25%). Omission and commission errors are similar to those obtained by the few existing studies focusing on the same research objective but using different types of remotely sensed data. Based on our results, we estimate that the construction of the conservation structures in our study area in Eritrea required over 300,000 person-days of work, which underlines the huge efforts involved in soil and water conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhou, Xingang; Wu, Fengzhi
2012-01-01
Background Autotoxicity of cucumber root exudates or decaying residues may be the cause of the soil sickness of cucumber. However, how autotoxins affect soil microbial communities is not yet fully understood. Methodology/Principal Findings The aims of this study were to study the effects of an artificially applied autotoxin of cucumber, p-coumaric acid, on cucumber seedling growth, rhizosphere soil microbial communities, and Fusarium oxysporum f.sp. cucumerinum Owen (a soil-borne pathogen of cucumber) growth. Abundance, structure and composition of rhizosphere bacterial and fungal communities were analyzed with real-time PCR, PCR-denaturing gradient gel electrophoresis (DGGE) and clone library methods. Soil dehydrogenase activity and microbial biomass C (MBC) were determined to indicate the activity and size of the soil microflora. Results showed that p-coumaric acid (0.1–1.0 µmol/g soil) decreased cucumber leaf area, and increased soil dehydrogenase activity, MBC and rhizosphere bacterial and fungal community abundances. p-Coumaric acid also changed the structure and composition of rhizosphere bacterial and fungal communities, with increases in the relative abundances of bacterial taxa Firmicutes, Betaproteobacteria, Gammaproteobacteria and fungal taxa Sordariomycete, Zygomycota, and decreases in the relative abundances of bacterial taxa Bacteroidetes, Deltaproteobacteria, Planctomycetes, Verrucomicrobia and fungal taxon Pezizomycete. In addition, p-coumaric acid increased Fusarium oxysporum population densities in soil. Conclusions/Significance These results indicate that p-coumaric acid may play a role in the autotoxicity of cucumber via influencing soil microbial communities. PMID:23118972
Zhou, Xingang; Wu, Fengzhi
2012-01-01
Autotoxicity of cucumber root exudates or decaying residues may be the cause of the soil sickness of cucumber. However, how autotoxins affect soil microbial communities is not yet fully understood. The aims of this study were to study the effects of an artificially applied autotoxin of cucumber, p-coumaric acid, on cucumber seedling growth, rhizosphere soil microbial communities, and Fusarium oxysporum f.sp. cucumerinum Owen (a soil-borne pathogen of cucumber) growth. Abundance, structure and composition of rhizosphere bacterial and fungal communities were analyzed with real-time PCR, PCR-denaturing gradient gel electrophoresis (DGGE) and clone library methods. Soil dehydrogenase activity and microbial biomass C (MBC) were determined to indicate the activity and size of the soil microflora. Results showed that p-coumaric acid (0.1-1.0 µmol/g soil) decreased cucumber leaf area, and increased soil dehydrogenase activity, MBC and rhizosphere bacterial and fungal community abundances. p-Coumaric acid also changed the structure and composition of rhizosphere bacterial and fungal communities, with increases in the relative abundances of bacterial taxa Firmicutes, Betaproteobacteria, Gammaproteobacteria and fungal taxa Sordariomycete, Zygomycota, and decreases in the relative abundances of bacterial taxa Bacteroidetes, Deltaproteobacteria, Planctomycetes, Verrucomicrobia and fungal taxon Pezizomycete. In addition, p-coumaric acid increased Fusarium oxysporum population densities in soil. These results indicate that p-coumaric acid may play a role in the autotoxicity of cucumber via influencing soil microbial communities.
Microbial Community Structure in the Rhizosphere of Rice Plants
Breidenbach, Björn; Pump, Judith; Dumont, Marc G.
2016-01-01
The microbial community in the rhizosphere environment is critical for the health of land plants and the processing of soil organic matter. The objective of this study was to determine the extent to which rice plants shape the microbial community in rice field soil over the course of a growing season. Rice (Oryza sativa) was cultivated under greenhouse conditions in rice field soil from Vercelli, Italy and the microbial community in the rhizosphere of planted soil microcosms was characterized at four plant growth stages using quantitative PCR and 16S rRNA gene pyrotag analysis and compared to that of unplanted bulk soil. The abundances of 16S rRNA genes in the rice rhizosphere were on average twice that of unplanted bulk soil, indicating a stimulation of microbial growth in the rhizosphere. Soil environment type (i.e., rhizosphere versus bulk soil) had a greater effect on the community structure than did time (e.g., plant growth stage). Numerous phyla were affected by the presence of rice plants, but the strongest effects were observed for Gemmatimonadetes, Proteobacteria, and Verrucomicrobia. With respect to functional groups of microorganisms, potential iron reducers (e.g., Geobacter, Anaeromyxobacter) and fermenters (e.g., Clostridiaceae, Opitutaceae) were notably enriched in the rhizosphere environment. A Herbaspirillum species was always more abundant in the rhizosphere than bulk soil and was enriched in the rhizosphere during the early stage of plant growth. PMID:26793175
The response of arid soil communities to climate change: Chapter 8
Steven, Blaire; McHugh, Theresa Ann; Reed, Sasha C.
2017-01-01
Arid and semiarid ecosystems cover approximately 40% of Earth’s terrestrial surface and are present on each of the planet’s continents [1]. Drylands are characterized by their aridity, but there is substantial geographic, edaphic, and climatic variability among these vast ecosystems, and these differences underscore substantial variation in dryland soil microbial communities, as well as in the future climates predicted among arid and semiarid systems globally. Furthermore, arid ecosystems are commonly patchy at a variety of spatial scales [2,3]. Vascular plants are widely interspersed in drylands and bare soil, or soil that is covered with biological soil crusts, fill these spaces. The variability acts to further enhance spatial heterogeneity, as these different zones within dryland ecosystems differ in characteristics such as water retention, albedo, and nutrient cycling [4–6]. Importantly, the various soil patches of an arid landscape may be differentially sensitive to climate change. Soil communities are only active when enough moisture is available, and drylands show large spatial variability in soil moisture, with potentially long dry periods followed by pulses of moisture. The pulse dynamics associated with this wetting and drying affect the composition, structure, and function of dryland soil communities, and integrate biotic and abiotic processes via pulse-driven exchanges, interactions, transitions, and transfers. Climate change will likely alter the size, frequency, and intensity of future precipitation pulses, as well as influence non-rainfall sources of soil moisture, and aridland ecosystems are known to be highly sensitive to such climate variability. Despite great heterogeneity, arid ecosystems are united by a key parameter: a limitation in water availability. This characteristic may help to uncover unifying aspects of dryland soil responses to global change. The dryness of an ecosystem can be described by its aridity index (AI). Several AIs have been proposed, but the most widely used metrics determine the difference between average precipitation and potential evapotranspiration, where evapotranspiration is the sum of evaporation and plant transpiration, both of which move water from the ecosystem to the atmosphere [7–9]. Because evapotranspiration can be affected by various environmental factors such as temperature and incident radiation (Fig. 10.1), regions that receive the same average precipitation may have significantly different AI values [10,11]. Multiple studies have documented that mean annual precipitation, and thus AI, is highly correlated with biological diversity and net primary productivity [12–15]. Accordingly, AI is considered to be a central regulator of the diversity, structure, and productivity of an ecosystem, playing an especially influential role in arid ecosystems. Thus, the climate parameters that drive alterations in the AI of a region are likely to play an disproportionate role in shaping the response of arid soil communities to a changing climate. In this chapter we consider climate parameters that have been shown to be altered through climate change, with a focus on how these parameters are likely to affect dryland soil communities, including microorganisms and invertebrates. In particular, our goal is to highlight dryland soil community structure and function in the context of climate change, and we will focus on community relationships with increased atmospheric CO2 concentrations (a primary driver of climate change), temperature, and sources of soil moisture.
Soil physical land degradation processes
NASA Astrophysics Data System (ADS)
Horn, Rainer
2017-04-01
According to the European Soil Framework Directive (2006) soil compaction is besides water and wind erosion one of the main physical reasons and threats of soil degradation. It is estimated, that 32% of the subsoils in Europe are highly degraded and 18% moderately vulnerable to compaction. The problem is not limited to crop land or forest areas (especially because of non-site adjusted harvesting machines) but is also prevalent in rangelands and grassland, and even in so called natural non-disturbed systems. The main reasons for an intense increase in compacted agricultural or forested regions are the still increasing masses of the machines as well the increased frequency of wheeling under non favorable site conditions. Shear and vibration induced soil deformation enhances the deterioration of soil properties especially if the soil water content is very high and the internal soil strength very low. The same is true for animal trampling in combination with overgrazing of moist to wet pastures which subsequently causes a denser (i.e. reduced proportion of coarse pores with smaller continuity) but still structured soil horizons and will finally end in a compacted platy structure. In combination with high water content and shearing due to trampling therefore results in a complete muddy homogeneous soil with no structure at all. (Krümmelbein et al. 2013) Site managements of arable, forestry or horticulture soils requires a sufficiently rigid pore system which guarantees water, gas and heat exchange, nutrient transport and adsorption as well as an optimal rootability in order to avoid subsoil compaction. Such pore system also guarantees a sufficient microbial activity and composition in order to also decompose the plant etc. debris. It is therefore essential that well structured horizons dominate in soils with at best subangular blocky structure or in the top A- horizons a crumbly structure due to biological activity. In contrast defines the formation of a platy structure down to deeper depth and/or in combination with the deterioration of a continuous pore system an intensely degraded soil. A dominating anisotropy of pore functions causes a lateral soil and water movement. Doerner and Horn (2006), documented the increasing effect of stress and shear affected horizontal anisotropy on the hydraulic and gas permeability which coincides with a retarded gas exchange and an increased proportion of e.g. CO2 or even CH4 in soil pores and hinders the normal population growth. If the internal soil strength is exceeded the microbial composition and activity is converted to anoxia and even results in the emission of CH4 (Haas et al. 2016). Furthermore, the accessibility of nutrient adsorption places as well as connection between the pores within the compacted soils is decreased and results in a retarded ion mass flow and diffusion within the plats and /or in between the soil horizons. How to overcome these negative effects and how to deal with soils adequately according to their internal strength will be presented in the lecture - we need to improve the food production at an preserved land area for growing population. Literature Haas,C., Holthusen,D., Mordhorst,A., Lipiec,J., Horn, R. 2016. Elastic and plastic soil deformation and its influence on emission of greenhouse gases. Int. Agrophys., 30, 173-184 Krümmelbein, J., R.Horn 2013: Cycle of Soil Structure. Soil Degradation 183-198, Advances in Geoecology, 42, Catena Verlag, ISBN: 978-3-923381-59-3
Xu, Wumei; Ci, Xiuqin; Song, Caiyun; He, Tianhua; Zhang, Wenfu; Li, Qiaoming; Li, Jie
2016-12-01
The niche theory predicts that environmental heterogeneity and species diversity are positively correlated in tropical forests, whereas the neutral theory suggests that stochastic processes are more important in determining species diversity. This study sought to investigate the effects of soil nutrient (nitrogen and phosphorus) heterogeneity on tree species diversity in the Xishuangbanna tropical seasonal rainforest in southwestern China. Thirty-nine plots of 400 m 2 (20 × 20 m) were randomly located in the Xishuangbanna tropical seasonal rainforest. Within each plot, soil nutrient (nitrogen and phosphorus) availability and heterogeneity, tree species diversity, and community phylogenetic structure were measured. Soil phosphorus heterogeneity and tree species diversity in each plot were positively correlated, while phosphorus availability and tree species diversity were not. The trees in plots with low soil phosphorus heterogeneity were phylogenetically overdispersed, while the phylogenetic structure of trees within the plots became clustered as heterogeneity increased. Neither nitrogen availability nor its heterogeneity was correlated to tree species diversity or the phylogenetic structure of trees within the plots. The interspecific competition in the forest plots with low soil phosphorus heterogeneity could lead to an overdispersed community. However, as heterogeneity increase, more closely related species may be able to coexist together and lead to a clustered community. Our results indicate that soil phosphorus heterogeneity significantly affects tree diversity in the Xishuangbanna tropical seasonal rainforest, suggesting that deterministic processes are dominant in this tropical forest assembly.
Daebeler, Anne; Abell, Guy C. J.; Bodelier, Paul L. E.; Bodrossy, Levente; Frampton, Dion M. F.; Hefting, Mariet M.; Laanbroek, Hendrikus J.
2012-01-01
The contribution of ammonia-oxidizing bacteria and archaea (AOB and AOA, respectively) to the net oxidation of ammonia varies greatly between terrestrial environments. To better understand, predict and possibly manage terrestrial nitrogen turnover, we need to develop a conceptual understanding of ammonia oxidation as a function of environmental conditions including the ecophysiology of associated organisms. We examined the discrete and combined effects of mineral nitrogen deposition and geothermal heating on ammonia-oxidizing communities by sampling soils from a long-term fertilization site along a temperature gradient in Icelandic grasslands. Microarray, clone library and quantitative PCR analyses of the ammonia monooxygenase subunit A (amoA) gene accompanied by physico-chemical measurements of the soil properties were conducted. In contrast to most other terrestrial environments, the ammonia-oxidizing communities consisted almost exclusively of archaea. Their bacterial counterparts proved to be undetectable by quantitative polymerase chain reaction suggesting AOB are only of minor relevance for ammonia oxidation in these soils. Our results show that fertilization and local, geothermal warming affected detectable ammonia-oxidizing communities, but not soil chemistry: only a subset of the detected AOA phylotypes was present in higher temperature soils and AOA abundance was increased in the fertilized soils, while soil physio-chemical properties remained unchanged. Differences in distribution and structure of AOA communities were best explained by soil pH and clay content irrespective of temperature or fertilizer treatment in these grassland soils, suggesting that these factors have a greater potential for ecological niche-differentiation of AOA in soil than temperature and N fertilization. PMID:23060870
Daebeler, Anne; Abell, Guy C J; Bodelier, Paul L E; Bodrossy, Levente; Frampton, Dion M F; Hefting, Mariet M; Laanbroek, Hendrikus J
2012-01-01
The contribution of ammonia-oxidizing bacteria and archaea (AOB and AOA, respectively) to the net oxidation of ammonia varies greatly between terrestrial environments. To better understand, predict and possibly manage terrestrial nitrogen turnover, we need to develop a conceptual understanding of ammonia oxidation as a function of environmental conditions including the ecophysiology of associated organisms. We examined the discrete and combined effects of mineral nitrogen deposition and geothermal heating on ammonia-oxidizing communities by sampling soils from a long-term fertilization site along a temperature gradient in Icelandic grasslands. Microarray, clone library and quantitative PCR analyses of the ammonia monooxygenase subunit A (amoA) gene accompanied by physico-chemical measurements of the soil properties were conducted. In contrast to most other terrestrial environments, the ammonia-oxidizing communities consisted almost exclusively of archaea. Their bacterial counterparts proved to be undetectable by quantitative polymerase chain reaction suggesting AOB are only of minor relevance for ammonia oxidation in these soils. Our results show that fertilization and local, geothermal warming affected detectable ammonia-oxidizing communities, but not soil chemistry: only a subset of the detected AOA phylotypes was present in higher temperature soils and AOA abundance was increased in the fertilized soils, while soil physio-chemical properties remained unchanged. Differences in distribution and structure of AOA communities were best explained by soil pH and clay content irrespective of temperature or fertilizer treatment in these grassland soils, suggesting that these factors have a greater potential for ecological niche-differentiation of AOA in soil than temperature and N fertilization.
An Assessment of the Impact of Urbanization on Soil Erosion in Inner Mongolia.
Wang, Li-Yan; Xiao, Yi; Rao, En-Ming; Jiang, Ling; Xiao, Yang; Ouyang, Zhi-Yun
2018-03-19
Inner Mongolia, an autonomous region of the People's Republic of China, has experienced severe soil erosion following a period of rapid economic development and urbanization. To investigate how urbanization has influenced the extent of soil erosion in Inner Mongolia, we used urbanization and soil erosion data from 2000 through 2010 to determine the relationship between urbanization and soil erosion patterns. Two empirical equations-the Revised Universal Soil Loss Equation (RUSLE) and the Revised Wind Erosion Equation (RWEQ)-were used to estimate the intensity of soil erosion, and we performed backward linear regression to model how it changed with greater urbanization. There was an apparent increase in the rate of urbanization and a decrease in the area affected by soil erosion in 2010 compared to the corresponding values for 2000. The urban population stood at 11.32 million in 2010, which represented a 16.47% increase over that in 2000. The area affected by soil erosion in 2000 totaled 704,817 km², yet it had decreased to 674,135 km² by 2010. However, a path of modest urban development (rural-urban mitigation) and reasonable industrial structuring (the development of GDP-2) may partially reduce urbanization's ecological pressure and thus indirectly reduce the threat of soil erosion to human security. Therefore, to better control soil erosion in Inner Mongolia during the process of urbanization, the current model of economic development should be modified to improve the eco-efficiency of urbanization, while also promoting new modes of urbanization that are environmentally sustainable, cost-effective, and conserve limited resources.
NASA Astrophysics Data System (ADS)
Ebrahimi, Ali; Or, Dani
2017-05-01
The sensitivity of polar regions to raising global temperatures is reflected in rapidly changing hydrological processes associated with pronounced seasonal thawing of permafrost soil and increased biological activity. Of particular concern is the potential release of large amounts of soil carbon and stimulation of other soil-borne greenhouse gas emissions such as methane. Soil methanotrophic and methanogenic microbial communities rapidly adjust their activity and spatial organization in response to permafrost thawing and other environmental factors. Soil structural elements such as aggregates and layering affect oxygen and nutrient diffusion processes thereby contributing to methanogenic activity within temporal anoxic niches (hot spots). We developed a mechanistic individual-based model to quantify microbial activity dynamics in soil pore networks considering transport processes and enzymatic activity associated with methane production in soil. The model was upscaled from single aggregates to the soil profile where freezing/thawing provides macroscopic boundary conditions for microbial activity at different soil depths. The model distinguishes microbial activity in aerate bulk soil from aggregates (or submerged profile) for resolving methane production and oxidation rates. Methane transport pathways by diffusion and ebullition of bubbles vary with hydration dynamics. The model links seasonal thermal and hydrologic dynamics with evolution of microbial community composition and function affecting net methane emissions in good agreement with experimental data. The mechanistic model enables systematic evaluation of key controlling factors in thawing permafrost and microbial response (e.g., nutrient availability and enzyme activity) on long-term methane emissions and carbon decomposition rates in the rapidly changing polar regions.
An Assessment of the Impact of Urbanization on Soil Erosion in Inner Mongolia
Xiao, Yi; Rao, En-Ming; Jiang, Ling; Xiao, Yang; Ouyang, Zhi-Yun
2018-01-01
Inner Mongolia, an autonomous region of the People’s Republic of China, has experienced severe soil erosion following a period of rapid economic development and urbanization. To investigate how urbanization has influenced the extent of soil erosion in Inner Mongolia, we used urbanization and soil erosion data from 2000 through 2010 to determine the relationship between urbanization and soil erosion patterns. Two empirical equations—the Revised Universal Soil Loss Equation (RUSLE) and the Revised Wind Erosion Equation (RWEQ)—were used to estimate the intensity of soil erosion, and we performed backward linear regression to model how it changed with greater urbanization. There was an apparent increase in the rate of urbanization and a decrease in the area affected by soil erosion in 2010 compared to the corresponding values for 2000. The urban population stood at 11.32 million in 2010, which represented a 16.47% increase over that in 2000. The area affected by soil erosion in 2000 totaled 704,817 km2, yet it had decreased to 674,135 km2 by 2010. However, a path of modest urban development (rural–urban mitigation) and reasonable industrial structuring (the development of GDP-2) may partially reduce urbanization’s ecological pressure and thus indirectly reduce the threat of soil erosion to human security. Therefore, to better control soil erosion in Inner Mongolia during the process of urbanization, the current model of economic development should be modified to improve the eco-efficiency of urbanization, while also promoting new modes of urbanization that are environmentally sustainable, cost-effective, and conserve limited resources. PMID:29562707
NASA Astrophysics Data System (ADS)
Yan, Ruirui; Tang, Huajun; Xin, Xiaoping; Chen, Baorui; Murray, Philip J.; Yan, Yunchun; Wang, Xu; Yang, Guixia
2016-05-01
In this study, the effects of cattle grazing intensity on soil nitrous oxide (N2O) fluxes were examined in the Hulunber meadow steppe of north-eastern China. Six stocking-rate treatments (0, 0.23, 0.34, 0.46, 0.69, and 0.92 AU ha-1) with three replicates were established, and observations were conducted from 2010 to 2014. Our results showed that substantial temporal fluctuations in N2O flux occurred amongst the different grazing intensities, with peak N2O fluxes after natural rainfall. Grazing had a long-term effect on the soil N2O flux in the grasslands. After 4-5 years of grazing, the N2O fluxes under increased levels of grazing intensity began to decrease significantly by 31.4%-60.2% in 2013 and 32.5%-50.5% in 2014 compared to the non-grazing treatment. We observed a significant negative linear relationship between the soil N2O fluxes and grazing intensity for the five-year mean. The soil N2O flux was significantly affected each year in all of the treatments. Over the five years, the temporal coefficient of variation (CVs) of the soil N2O flux generally declined significantly with increasing grazing intensity. The soil N2O emission rate was significantly positively correlated with soil moisture (SM), soil available phosphorus (SAP), soil {{{{NH}}}4}+-N, soil {{{{NO}}}3}--N, above-ground biomass (AGB), plant ground cover and height and was negatively correlated with total soil nitrogen (TN). Stepwise regressions showed that the N2O flux was primarily explained by SM, plant height, TN, soil pH, and soil {{{{NH}}}4}+-N. Using structural equation modelling, we show that grazing significantly directly influenced the plant community and the soil environment, which then influenced the soil N2O fluxes. Our findings provide an important reference for better understanding of the mechanisms and identifying the pathways of grazing effects on soil N2O emission rates, and the key drivers plant community and soil environment within the nitrogen cycle that are mostly likely to affect N2O emissions in the Inner Mongolian meadow steppes.
Flores-Rentería, Dulce; Curiel Yuste, Jorge; Rincón, Ana; Brearley, Francis Q; García-Gil, Juan Carlos; Valladares, Fernando
2015-05-01
Ecological transformations derived from habitat fragmentation have led to increased threats to above-ground biodiversity. However, the impacts of forest fragmentation on soils and their microbial communities are not well understood. We examined the effects of contrasting fragment sizes on the structure and functioning of soil microbial communities from holm oak forest patches in two bioclimatically different regions of Spain. We used a microcosm approach to simulate the annual summer drought cycle and first autumn rainfall (rewetting), evaluating the functional response of a plant-soil-microbial system. Forest fragment size had a significant effect on physicochemical characteristics and microbial functioning of soils, although the diversity and structure of microbial communities were not affected. The response of our plant-soil-microbial systems to drought was strongly modulated by the bioclimatic conditions and the fragment size from where the soils were obtained. Decreasing fragment size modulated the effects of drought by improving local environmental conditions with higher water and nutrient availability. However, this modulation was stronger for plant-soil-microbial systems built with soils from the northern region (colder and wetter) than for those built with soils from the southern region (warmer and drier) suggesting that the responsiveness of the soil-plant-microbial system to habitat fragmentation was strongly dependent on both the physicochemical characteristics of soils and the historical adaptation of soil microbial communities to specific bioclimatic conditions. This interaction challenges our understanding of future global change scenarios in Mediterranean ecosystems involving drier conditions and increased frequency of forest fragmentation.
NASA Astrophysics Data System (ADS)
Chaplot, Vincent; Walter, Christian; Curmi, Pierre; Hollier-Larousse, Alain; Robain, Henri
2004-04-01
Geophysical methods have already shown their interest for the continuous characterisation of soils over landscapes, rapidly and, non-intrusively. But in bottomland areas, difficulties are encountered in relating geophysical properties to soil spatial distribution due to large variations in the depth, texture and/or water content of soils. Indeed, respective variations of these parameters can result in ambiguous geophysical responses. For example, a decrease in soil water content, which causes an increase in electrical resistivity, may be offset by an increase in soil clay content, inducing a decrease in resistivity. The objective of this study was to improve the continuous characterisation of soils affected by an excess of water by using a combination of geophysical techniques. Three techniques, the radio-magnetotelluric (RMT), the ground penetrating radar (GPR) and the electrostatic quadrupole (ESQP) were implemented along eight representative transects where soils were extensively described. The soil cover shows a succession from downslope to upslope consisting in fibric Fluvisols, gleyic Fluvisols, and Albefluvisols. None of the geophysical methods allows us to distinguish all soil limits and to estimate the geometry of soil horizons. The ESQP discriminates Fluvisols from Albefluvisols, whereas the RMT above all reveals differences in soil material thickness, which do not permit to discriminate between these soils. In complement, the GPR allows the estimation of the geometry of organic horizons and anthropic structures, such as ditches. Finally, the combination of these three techniques allows us to assess the main features of soil spatial distribution in bottomlands. To cite this article: V. Chaplot et al., C. R. Geoscience 336 (2004).
Lee, Seung-Hoon; Kang, Hojeong
2016-02-01
The distribution of soil microorganisms often shows variations along soil depth, and even in the same soil layer, each microbial group has a specific niche. In particular, the estuary soil is intermittently flooded, and the characteristics of the surface soil layer are different from those of other terrestrial soils. We investigated the microbial community structure and activity across soil depths and biological gradients composed of invasive and native plants in the shallow surface layer of an estuary ecosystem by using molecular approaches. Our results showed that the total and denitrifying bacterial community structures of the estuarine wetland soil differed according to the short depth gradient. In growing season, gene copy number of 16S rRNA were 1.52(±0.23) × 10(11), 1.10(±0.06) × 10(11), and 4.33(±0.16) × 10(10) g(-1) soil; nirS were 5.41(±1.25) × 10(8), 4.93(±0.94) × 10(8), and 2.61(±0.28) × 10(8) g(-1) soil; and nirK were 9.67(±2.37) × 10(6), 3.42(±0.55) × 10(6), and 2.12(±0.19) × 10(6) g(-1) soil in 0 cm, 5 cm, and 10 cm depth layer, respectively. The depth-based difference was distinct in the vegetated sample and in the growing season, evidencing the important role of plants in structuring the microbial community. In comparison with other studies, we observed differences in the microbial community and functions even across very short depth gradients. In conclusion, our results suggested that (i) in the estuary ecosystem, the denitrifying bacterial community could maintain its abundance and function within shallow surface soil layers through facultative anaerobiosis, while the total bacterial community would be both quantitatively and qualitatively affected by the soil depth, (ii) the nirS gene community, rather than the nirK one, should be the first candidate used as an indicator of the microbial denitrification process in the estuary system, and (iii) as the microbial community is distributed and plays a certain niche role according to biogeochemical factors, the study of the microbial community even in surface soil should be performed in detail by considering the soil depth.
Changes in soil bacterial community structure with increasing disturbance frequency.
Kim, Mincheol; Heo, Eunjung; Kang, Hojeong; Adams, Jonathan
2013-07-01
Little is known of the responsiveness of soil bacterial community structure to disturbance. In this study, we subjected a soil microcosm to physical disturbance, sterilizing 90 % of the soil volume each time, at a range of frequencies. We analysed the bacterial community structure using 454 pyrosequencing of the 16S rRNA gene. Bacterial diversity was found to decline with the increasing disturbance frequencies. Total bacterial abundance was, however, higher at intermediate and high disturbance frequencies, compared to low and no-disturbance treatments. Changing disturbance frequency also led to changes in community composition, with changes in overall species composition and some groups becoming abundant at the expense of others. Some phylogenetic groups were found to be relatively more disturbance-sensitive or tolerant than others. With increasing disturbance frequency, phylogenetic species variability (an index of community composition) itself became more variable from one sample to another, suggesting a greater role of chance in community composition. Compared to the tightly clustered community of the original undisturbed soil, in all the aged disturbed soils the lists of most abundant operational taxonomic units (OTUs) in each replicate were very different, suggesting a possible role of stochasticity in resource colonization and exploitation in the aged and disturbed soils. For example, colonization may be affected by whichever localized concentrations of bacterial populations happen to survive the last disturbance and be reincorporated in abundance into each pot. Overall, it appears that the soil bacterial community is very sensitive to physical disturbance, losing diversity, and that certain groups have identifiable 'high disturbance' vs. 'low disturbance' niches.
Synthesis of soil-hydraulic properties and infiltration timescales in wildfire-affected soils
Ebel, Brian A.; Moody, John A.
2017-01-01
We collected soil-hydraulic property data from the literature for wildfire-affected soils, ash, and unburned soils. These data were used to calculate metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and wetting front potential (Ψf) were significantly different (lower) in burned soils compared with unburned soils, whereas field-saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity during infiltration was greatly reduced in burned soils, causing faster ponding times in response to rainfall. Ash had large values of S and Kfs but moderate values of Ψf, compared with unburned and burned soils, indicating ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant (~100 mm) for unburned soils but more variable in burned soils, suggesting that unburned soils have a balance between gravity and capillarity contributions to infiltration that may depend on soil organic matter, whereas in burned soils the gravity contribution to infiltration is greater. Changes in S and Kfs in burned soils act synergistically to reduce infiltration and accelerate and amplify surface runoff generation. Synthesis of these findings identifies three key areas for future research. First, short timescales of capillary influences on infiltration indicate the need for better measurements of infiltration at times less than 1 min to accurately characterize S in burned soils. Second, using parameter values, such as Ψf, from unburned areas could produce substantial errors in hydrologic modeling when used without adjustment for wildfire effects, causing parameter compensation and resulting underestimation of Kfs. Third, more thorough measurement campaigns that capture soil-structural changes, organic matter impacts, quantitative water repellency trends, and soil-water content along with soil-hydraulic properties could drive the development of better techniques for numerically simulating infiltration in burned areas.
NASA Astrophysics Data System (ADS)
Cavender-Bares, J.; Schweiger, A. K.; Madritch, M. D.; Gamon, J. A.; Hobbie, S. E.; Montgomery, R.; Townsend, P. A.
2017-12-01
Above-and below-ground plant traits are important for substrate input to the rhizosphere. The substrate composition of the rhizosphere, in turn, affects the diversity of soil organisms, influences soil biochemistry, and water content, and resource availability for plant growth. This has substantial consequences for ecosystem functions, such as above-ground productivity and stability. Above-ground plant chemical and structural traits can be linked to the characteristics of other plant organs, including roots. Airborne imaging spectroscopy has been successfully used to model and predict chemical and structural traits of the above-ground vegetation. However, remotely sensed images capture, almost exclusively, signals from the top of the canopy, providing limited direct information about understory vegetation. Here, we use a data set collected in a savanna ecosystem consisting of spectral measurements gathered at the leaf, the whole plant, and vegetation canopy level to test for hypothesized linkages between above- and below-ground processes that influence root biomass, soil biochemistry, and the diversity of the soil community. In this environment, consisting of herbaceous vegetation intermixed with shrubs and trees growing at variable densities, we investigate the contribution of different vegetation strata to soil characteristics and test the ability of imaging spectroscopy to detect these in plant communities with contrasting vertical structure.
Microbial community dynamics in the rhizosphere of a cadmium hyper-accumulator
NASA Astrophysics Data System (ADS)
Wood, J. L.; Zhang, C.; Mathews, E. R.; Tang, C.; Franks, A. E.
2016-11-01
Phytoextraction is influenced by the indigenous soil microbial communities during the remediation of heavy metal contaminated soils. Soil microbial communities can affect plant growth, metal availability and the performance of phytoextraction-assisting inocula. Understanding the basic ecology of indigenous soil communities associated with the phytoextraction process, including the interplay between selective pressures upon the communities, is an important step towards phytoextraction optimization. This study investigated the impact of cadmium (Cd), and the presence of a Cd-accumulating plant, Carpobrotus rossii (Haw.) Schwantes, on the structure of soil-bacterial and fungal communities using automated ribosomal intergenic spacer analysis (ARISA) and quantitative PCR (qPCR). Whilst Cd had no detectable influence upon fungal communities, bacterial communities underwent significant structural changes with no reduction in 16S rRNA copy number. The presence of C. rossii influenced the structure of all communities and increased ITS copy number. Suites of operational taxonomic units (OTUs) changed in abundance in response to either Cd or C. rossii, however we found little evidence to suggest that the two selective pressures were acting synergistically. The Cd-induced turnover in bacterial OTUs suggests that Cd alters competition dynamics within the community. Further work to understand how competition is altered could provide a deeper understanding of the microbiome-plant-environment and aid phytoextraction optimization.
Microbial community dynamics in the rhizosphere of a cadmium hyper-accumulator
Wood, J. L.; Zhang, C.; Mathews, E. R.; Tang, C.; Franks, A. E.
2016-01-01
Phytoextraction is influenced by the indigenous soil microbial communities during the remediation of heavy metal contaminated soils. Soil microbial communities can affect plant growth, metal availability and the performance of phytoextraction-assisting inocula. Understanding the basic ecology of indigenous soil communities associated with the phytoextraction process, including the interplay between selective pressures upon the communities, is an important step towards phytoextraction optimization. This study investigated the impact of cadmium (Cd), and the presence of a Cd-accumulating plant, Carpobrotus rossii (Haw.) Schwantes, on the structure of soil-bacterial and fungal communities using automated ribosomal intergenic spacer analysis (ARISA) and quantitative PCR (qPCR). Whilst Cd had no detectable influence upon fungal communities, bacterial communities underwent significant structural changes with no reduction in 16S rRNA copy number. The presence of C. rossii influenced the structure of all communities and increased ITS copy number. Suites of operational taxonomic units (OTUs) changed in abundance in response to either Cd or C. rossii, however we found little evidence to suggest that the two selective pressures were acting synergistically. The Cd-induced turnover in bacterial OTUs suggests that Cd alters competition dynamics within the community. Further work to understand how competition is altered could provide a deeper understanding of the microbiome-plant-environment and aid phytoextraction optimization. PMID:27805014
NASA Astrophysics Data System (ADS)
Ivanova, E. A.; Kutovaya, O. V.; Tkhakakhova, A. K.; Chernov, T. I.; Pershina, E. V.; Markina, L. G.; Andronov, E. E.; Kogut, B. M.
2015-11-01
The taxonomic structure of microbiomes in aggregates of different sizes from typical chernozems was investigated using sequencing of the 16S rRNA gene. The aggregate fractions of <0.25, 2-5, and >7 mm obtained by sieving of the soil samples at natural moisture were used for analysis. The highest prokaryote biomass (bacteria, archaea) was determined in the fractions <0.25 and aggregates 2-5 mm; the bacterial and archaeal biomass decreased in the following series: fallow > permanent black fallow > permanent winter wheat. The greatest number of fungi was recorded in the fraction <0.25 mm from the soils of the permanent black fallow and in all the studied aggregate fractions in the variant with permanent wheat. The system of agricultural use affected more significantly the structure of the prokaryote community in the chernozem than the size of aggregate fractions did. The most diverse microbial community was recorded in the soil samples of the fallow; the statistically significant maximums of the Shannon diversity indices and indices of phylogenetic diversity (PD) were recorded in the fractions <0.25 and 2-5 mm from the fallow soil. On the whole, the fine soil fractions (<0.25 mm) were characterized by higher diversity indices in comparison with those of the coarser aggregate fractions.
Latz, Ellen; Eisenhauer, Nico; Rall, Björn Christian; Scheu, Stefan; Jousset, Alexandre
2016-01-01
Plant diseases cause dramatic yield losses worldwide. Current disease control practices can be deleterious for the environment and human health, calling for alternative and sustainable management regimes. Soils harbour microorganisms that can efficiently suppress pathogens. Uncovering mediators driving their functioning in the field still remains challenging, but represents an essential step in order to develop strategies for increased soil health. We set up plant communities of varying richness to experimentally test the potential of soils differing in plant community history to suppress the pathogen Rhizoctonia solani. The results indicate that plant communities shape soil-disease suppression via changes in abiotic soil properties and the abundance of bacterial groups including species of the genera Actinomyces, Bacillus and Pseudomonas. Further, the results suggest that pairwise interactions between specific plant species strongly affect soil suppressiveness. Using structural equation modelling, we provide a pathway orientated framework showing how the complex interactions between plants, soil and microorganisms jointly shape soil suppressiveness. Our results stress the importance of plant community composition as a determinant of soil functioning, such as the disease suppressive potential of soils. PMID:27021053
Moyo, Francis; Tandlich, Roman; Wilhelmi, Brendan S.; Balaz, Stefan
2014-01-01
Renewed focus on the sorption of hydrophobic organic chemicals (HOCs) onto mineral surfaces and soil components is required due to the increased and wider range of organic pollutants being released into the environment. This mini-review examines the possibility of the contribution and mechanism of HOC sorption onto clay mineral sorbents such as kaolinite, and soil organic matter and the possible role of both in the prevention of environmental contamination by HOCs. Literature data indicates that certain siloxane surfaces can be hydrophobic. Therefore soils can retain HOCs even at low soil organic levels and the extent will depend on the structure of the pollutant and the type and concentration of clay minerals in the sorbent. Clay minerals are wettable by nonpolar solvents and so sorption of HOCs onto them from aqueous and non-aqueous solutions is possible. This is important for two reasons: firstly, the movement and remediation of soil environments will be a function of the concentration and type of clay minerals in the soil. Secondly, low-cost sorbents such as kaolinite and expandable clays can be added to soils or contaminated environments as temporary retention barriers for HOCs. Inorganic cations sorbed onto the kaolinite have a strong influence on the rate and extent of sorption of hydrophobic organic pollutants onto kaolinite. Structural sorbate classes that can be retained by the kaolinite matrix are limited by hydrogen bonding between hydroxyl groups of the octahedral alumosilicate sheet and the tetrahedral sheet with silicon. Soil organic carbon plays a key role in the sorption of HOCs onto soils, but the extent will be strongly affected by the structure of the organic soil matter and the presence of soot. Structural characterisation of soil organic matter in a particular soil should be conducted during a particular contamination event. Contamination by mining extractants and antibiotics will require renewed focus on the use of the QSAR approaches in the context of the sorption of HOCs onto clay minerals from aqueous and non-aqueous solutions. PMID:24821385
NASA Astrophysics Data System (ADS)
Palm, Juliane; Klaus, Julian; van Schaik, Loes; Zehe, Erwin; Schröder, Boris
2010-05-01
Soils provide central ecosystem functions in recycling nutrients, detoxifying harmful chemicals as well as regulating microclimate and local hydrological processes. The internal regulation of these functions and therefore the development of healthy and fertile soils mainly depend on the functional diversity of plants and animals. Soil organisms drive essential processes such as litter decomposition, nutrient cycling, water dynamics, and soil structure formation. Disturbances by different soil management practices (e.g., soil tillage, fertilization, pesticide application) affect the distribution and abundance of soil organisms and hence influence regulating processes. The strong relationship between environmental conditions and soil organisms gives us the opportunity to link spatiotemporal distribution patterns of indicator species with the potential provision of essential soil processes on different scales. Earthworms are key organisms for soil function and affect, among other things, water dynamics and solute transport in soils. Through their burrowing activity, earthworms increase the number of macropores by building semi-permanent burrow systems. In the unsaturated zone, earthworm burrows act as preferential flow pathways and affect water infiltration, surface-, subsurface- and matrix flow as well as the transport of water and solutes into deeper soil layers. Thereby different ecological earthworm types have different importance. Deep burrowing anecic earthworm species (e.g., Lumbricus terrestris) affect the vertical flow and thus increase the risk of potential contamination of ground water with agrochemicals. In contrast, horizontal burrowing endogeic (e.g., Aporrectodea caliginosa) and epigeic species (e.g., Lumbricus rubellus) increase water conductivity and the diffuse distribution of water and solutes in the upper soil layers. The question which processes are more relevant is pivotal for soil management and risk assessment. Thus, finding relevant environmental predictors which explain the distribution and dynamics of different ecological earthworm types can help us to understand where or when these processes are relevant in the landscape. Therefore, we develop species distribution models which are a useful tool to predict spatiotemporal distributions of earthworm occurrence and abundance under changing environmental conditions. On field scale, geostatistical distribution maps have shown that the spatial distribution of earthworms depends on soil parameters such as food supply, soil moisture, bulk density but with different patterns for earthworm stages (adult, juvenile) and ecological types (anecic, endogeic, epigeic). On landscape scales, earthworm distribution seems to be strongly controlled by management/disturbance-related factors. Our study shows different modelling approaches for predicting distribution patterns of earthworms in the Weiherbach area, an agricultural site in Kraichtal (Baden-Württemberg, Germany). We carried out field studies on arable fields differing in soil management practices (conventional, conservational), soil properties (organic matter content, texture, soil moisture), and topography (slope, elevation) in order to identify predictors for earthworm occurrence, abundance and biomass. Our earthworm distribution models consider all ecological groups as well as different life stages, accounting for the fact that the activity of juveniles is sometimes different from those of adults. Within our BIOPORE-project it is our final goal to couple our distribution models with population dynamic models and a preferential flow model to an integrated ecohydrological model to analyse feedbacks between earthworm engineering and transport characteristics affecting the functioning of (agro-) ecosystems.
Rice Cluster I, an Important Group of Archaea Producing Methane in Rice Fields
NASA Astrophysics Data System (ADS)
Conrad, R.
2006-12-01
Rice fields are an important source for the greenhouse gas methane. Methane is a major degradation product of organic matter in the anoxic soil, is partially oxidized in the rhizosphere and is emitted into the atmosphere through the aerenchyma system of the plants. Anaerobic degradation of organic matter by fermenting bacteria eventually results in the production of acetate and hydrogen, the two major substrates for microbial methanogenesis. The community of methanogenic archaea consists of several major orders or families including hydrogen-utilizing Rice Cluster-I (RC-I). Environmental conditions affect the methanogenic degradation process and the community structure of the methanogenic archaea in soil and rhizosphere. For example, populations of acetoclastic Methanosaetaceae and Methanosarcinaceae are enhanced by low and high acetate concentrations, respectively. Stable isotope probing of 16S rRNA showed that RC-I methanogens are mainly active on rice roots and at low H2 concentrations. Growth and population size is largely consistent with energetic conditions. RC-I methanogens on roots seem to be responsible for methane production from plant photosynthates that account for a major part of the emitted methane. Populations of RC-I methanogens in rice field soil are also enhanced at elevated temperatures (40-50°C). Moderately thermophilic members of RC-I methanogens or other methanogenic families were found to be ubiquitously present in soils from rice fields and river marshes. The genome of a RC-I methanogen was completely sequenced out of an enrichment culture using a metagenome approach. Genes found are consistent with life in the rhizosphere and in temporarily drained, oxic soil. We found that the methanogenic community structure on the rice roots is mainly determined by the respective community structure of the soil, but is in addition affected by the rice cultivar. Rice microcosms in which soil and rice roots are mainly colonized by RC-I methanogens produce and emit more methane than when inhabited by Methanomicrobiales, indicating that the methanogenic archaeal community is an important factor for methane emission from rice fields.
Yurkov, Andrey M; Röhl, Oliver; Pontes, Ana; Carvalho, Cláudia; Maldonado, Cristina; Sampaio, José Paulo
2016-02-01
Soil yeasts represent a poorly known fraction of the soil microbiome due to limited ecological surveys. Here, we provide the first comprehensive inventory of cultivable soil yeasts in a Mediterranean ecosystem, which is the leading biodiversity hotspot for vascular plants and vertebrates in Europe. We isolated and identified soil yeasts from forested sites of Serra da Arrábida Natural Park (Portugal), representing the Mediterranean forests, woodlands and scrub biome. Both cultivation experiments and the subsequent species richness estimations suggest the highest species richness values reported to date, resulting in a total of 57 and 80 yeast taxa, respectively. These values far exceed those reported for other forest soils in Europe. Furthermore, we assessed the response of yeast diversity to microclimatic environmental factors in biotopes composed of the same plant species but showing a gradual change from humid broadleaf forests to dry maquis. We observed that forest properties constrained by precipitation level had strong impact on yeast diversity and on community structure and lower precipitation resulted in an increased number of rare species and decreased evenness values. In conclusion, the structure of soil yeast communities mirrors the environmental factors that affect aboveground phytocenoses, aboveground biomass and plant projective cover. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Li, Min; Wu, Feng-zhi
2014-12-01
Effects of different catch modes on soil enzyme activities and bacterial community in the rhizosphere of cucumber (Cucumis sativus) were analyzed by conventional chemical method, PCR-denaturing gradient gel electrophoresis (DGGE) and real-time PCR methods. Pot experiment was carried out in the greenhouse for three consecutive years with cucumber as the main crop, and scallion (Allium fistulosum), wheat (Triticum aestivum) and oilseed rape (Brassica campestri) as catch crops. Results showed that, with the increase of crop planting times, soil urease, neutral phosphatase and invertase activities in the wheat treatment were significantly) higher than in the scallion and oilseed rape treatments, and these enzyme activities in the oilseed rape treatment were significantly higher than in the scallion treatment. PCR-DGGR analysis showed that cucumber rhizosphere bacterial community structures were different among treatments. Scallion and wheat treatments maintained relatively higher diversity indices of bacterial community structure. qPCR results showed that the abundance of soil bacterial community in the wheat treatment was significantly higher than in the scallion and oilseed rape treatments. In conclusion, different catch treatments affected soil enzyme activities and bacteria community and changed the soil environment. Wheat used as summer catch crop could maintain relatively higher soil enzyme activities, bacterial community diversity and abundance.
Effect of Increasing Nitrogen Deposition on Soil Microbial Communities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Shengmu; Xue, Kai; He, Zhili
2010-05-17
Increasing nitrogen deposition, increasing atmospheric CO2, and decreasing biodiversity are three main environmental changes occurring on a global scale. The BioCON (Biodiversity, CO2, and Nitrogen) ecological experiment site at the University of Minnesota's Cedar Creek Ecosystem Science Reserve started in 1997, to better understand how these changes would affect soil systems. To understand how increasing nitrogen deposition affects the microbial community diversity, heterogeneity, and functional structure impact soil microbial communities, 12 samples were collected from the BioCON plots in which nitrogenous fertilizer was added to simulate the effect of increasing nitrogen deposition and 12 samples from without added fertilizer. DNAmore » from the 24 samples was extracted using a freeze-grind protocol, amplified, labeled with a fluorescent dye, and then hybridized to GeoChip, a functional gene array containing probes for genes involved in N, S and C cycling, metal resistance and organic contaminant degradation. Detrended correspondence analysis (DCA) of all genes detected was performed to analyze microbial community patterns. The first two axes accounted for 23.5percent of the total variation. The samples fell into two major groups: fertilized and non-fertilized, suggesting that nitrogenous fertilizer had a significant impact on soil microbial community structure and diversity. The functional gene numbers detected in fertilized samples was less that detected in non-fertilizer samples. Functional genes involving in the N cycling were mainly discussed.« less
Penton, Christopher R.; St. Louis, Derek; Pham, Amanda; ...
2015-07-21
Increasing temperatures have been shown to impact soil biogeochemical processes, although the corresponding changes to the underlying microbial functional communities are not well understood. Alterations in the nitrogen (N) cycling functional component are particularly important as N availability can affect microbial decomposition rates of soil organic matter and influence plant productivity. To assess changes in the microbial component responsible for these changes, the composition of the N-fixing (nifH), and denitrifying (nirS, nirK, nosZ) soil microbial communities was assessed by targeted pyrosequencing of functional genes involved in N cycling in two major biomes where the experimental effect of climate warming ismore » under investigation, a tallgrass prairie in Oklahoma (OK) and the active layer above permafrost in Alaska (AK). Raw reads were processed for quality, translated with frameshift correction, and a total of 313,842 amino acid sequences were clustered and linked to a nearest neighbor using reference datasets. The number of OTUs recovered ranged from 231 (NifH) to 862 (NirK). The N functional microbial communities of the prairie, which had experienced a decade of experimental warming were the most affected with changes in the richness and/or overall structure of NifH, NirS, NirK and NosZ. In contrast, the AK permafrost communities, which had experienced only 1 year of warming, showed decreased richness and a structural change only with the nirK-harboring bacterial community. A highly divergent nirK-harboring bacterial community was identified in the permafrost soils, suggesting much novelty, while other N functional communities exhibited similar relatedness to the reference databases, regardless of site. Lastly, prairie and permafrost soils also harbored highly divergent communities due mostly to differing major populations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penton, Christopher R.; St. Louis, Derek; Pham, Amanda
Increasing temperatures have been shown to impact soil biogeochemical processes, although the corresponding changes to the underlying microbial functional communities are not well understood. Alterations in the nitrogen (N) cycling functional component are particularly important as N availability can affect microbial decomposition rates of soil organic matter and influence plant productivity. To assess changes in the microbial component responsible for these changes, the composition of the N-fixing (nifH), and denitrifying (nirS, nirK, nosZ) soil microbial communities was assessed by targeted pyrosequencing of functional genes involved in N cycling in two major biomes where the experimental effect of climate warming ismore » under investigation, a tallgrass prairie in Oklahoma (OK) and the active layer above permafrost in Alaska (AK). Raw reads were processed for quality, translated with frameshift correction, and a total of 313,842 amino acid sequences were clustered and linked to a nearest neighbor using reference datasets. The number of OTUs recovered ranged from 231 (NifH) to 862 (NirK). The N functional microbial communities of the prairie, which had experienced a decade of experimental warming were the most affected with changes in the richness and/or overall structure of NifH, NirS, NirK and NosZ. In contrast, the AK permafrost communities, which had experienced only 1 year of warming, showed decreased richness and a structural change only with the nirK-harboring bacterial community. A highly divergent nirK-harboring bacterial community was identified in the permafrost soils, suggesting much novelty, while other N functional communities exhibited similar relatedness to the reference databases, regardless of site. Lastly, prairie and permafrost soils also harbored highly divergent communities due mostly to differing major populations.« less
NASA Astrophysics Data System (ADS)
Moore, L. D.; Van Stan, J. T., II; Rosier, C. L.; Gay, T. E.; Wu, T.
2014-12-01
Forest canopy structure controls the timing, amount and chemical character of precipitation supply to soils through interception and drainage along crown surfaces. Yet, few studies have examined forest canopy structural connections to soil microbial communities (SMCs), and none have measured how this affects SMC N functions. The maritime Quercus virginiana Mill. (southern live oak) forests of St Catherine's Island, GA, USA provide an ideal opportunity to examine canopy structural alterations to SMCs and their functioning, as their throughfall varies substantially across space due to dense Tillandsia usneoides L. (spanish moss) mats bestrewn throughout. To examine the impact of throughfall variability on SMC N functions, we examined points along the canopy coverage continuum: large canopy gaps (0%), bare canopy (50-60%), and canopy of heavy T. usneoides coverage (>=85%). Five sites beneath each of the canopy cover types were monitored for throughfall water/ions and soil leachates chemistry for one storm each month over the growing period (7 months, Mar-2014 to Sep-2014) to compare with soil chemistry and SMC communities sampled every two months throughout that same period (Mar, May, Jul, Sep). DGGE and QPCR analysis of the N functioning genes (NFGs) to characterize the ammonia oxidizing bacterial (AOB-amoA), archaea (AOA-amoA), and ammonification (chiA) communities were used to determine the nitrification and decomposition potential of these microbial communities. PRS™-probes (Western Ag Innovations Inc., Saskatoon, Canada) were then used to determine the availability of NO3-N and NH4+N in the soils over a 6-week period to evaluate whether the differing NFG abundance and community structures resulted in altered N cycling.
Xi, Ruijiao; Long, Xi-En; Huang, Sha; Yao, Huaiying
2017-12-01
Nitrification inhibitors and urease inhibitors, such as nitrapyrin and N-(n-butyl) thiophosphoric triamide (NBPT), can improve the efficiencies of nitrogen fertilizers in cropland. However, their effects on ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) across different soil pH levels are still unclear. In the present work, vegetable soils at four pH levels were tested to determine the impacts of nitrification and urease inhibitors on the nitrification activities, abundances and diversities of ammonia oxidizers at different pHs by real-time PCR, terminal restriction fragment length polymorphism (T-RFLP) and clone sequence analysis. The analyses of the abundance of ammonia oxidizers and net nitrification rate suggested that AOA was the dominate ammonia oxidizer and the key driver of nitrification in acidic soil. The relationships between pH and ammonia oxidizer abundance indicated that soil pH dominantly controlled the abundance of AOA but not that of AOB. The T-RFLP results suggested that soil pH could significantly affect the AOA and AOB community structure. Nitrapyrin decreased the net nitrification rate and inhibited the abundance of bacterial amoA genes in this vegetable soil, but exhibited no effect on that of the archaeal amoA genes. In contrast, NBPT just lagged the hydrolysis of urea and kept low NH 4 + -N levels in the soil at the early stage. It exhibited no or slight effects on the abundance and community structure of ammonia oxidizers. These results indicated that soil pH, rather than the application of urea, nitrapyrin and NBPT, was a critical factor influencing the abundance and community structure of AOA and AOB.
Yu, Xuan; Liu, Xu; Zhao, Zhong; Liu, Jinliang; Zhang, Shunxiang
2015-01-01
This study aims to evaluate the effect of different afforestation models on soil microbial composition in the Loess Plateau in China. In particular, we determined soil physicochemical properties, enzyme activities, and microbial community structures in the top 0 cm to 10 cm soil underneath a pure Hippophae rhamnoides (SS) stand and three mixed stands, namely, H. rhamnoides and Robinia pseucdoacacia (SC), H. rhamnoides and Pinus tabulaeformis (SY), and H. rhamnoides and Platycladus orientalis (SB). Results showed that total organic carbon (TOC), total nitrogen, and ammonium (NH4 +) contents were higher in SY and SB than in SS. The total microbial biomass, bacterial biomass, and Gram+ biomass of the three mixed stands were significantly higher than those of the pure stand. However, no significant difference was found in fungal biomass. Correlation analysis suggested that soil microbial communities are significantly and positively correlated with some chemical parameters of soil, such as TOC, total phosphorus, total potassium, available phosphorus, NH4 + content, nitrate content (NH3 −), and the enzyme activities of urease, peroxidase, and phosphatase. Principal component analysis showed that the microbial community structures of SB and SS could clearly be discriminated from each other and from the others, whereas SY and SC were similar. In conclusion, tree species indirectly but significantly affect soil microbial communities and enzyme activities through soil physicochemical properties. In addition, mixing P. tabulaeformis or P. orientalis in H. rhamnoides plantations is a suitable afforestation model in the Loess Plateau, because of significant positive effects on soil nutrient conditions, microbial community, and enzyme activities over pure plantations. PMID:25658843
NASA Astrophysics Data System (ADS)
Potter, T.; Bowman, W. D.
2016-12-01
Despite the known importance of soil microbes and their influence on soil processes, a mechanistic understanding is still needed to predict how plants and soil microbes interact at scales that are relevant to community and ecosystem-scale processes. Closely related plant species have similar traits aboveground, but we don't know whether this is also true for belowground traits that affect soil microbial community structure and function. Determining how tightly plant phylogeny and plant functional traits are linked to soil microbial communities is a useful approach for discovering plant-microbe associations that are generalizable across plant species (a limitation of studies that employ a single or few plant species). Using this approach, we conducted a greenhouse study with seven congeneric grasses (genus Poa) and their native soils to examine whether plants' influences on microbial community structure were consistent with plant phylogenetic relatedness and/or plant functional traits. Seeds of each Poa species were planted in native soil (from the seed source population) as well as a homogenized soil from all seven populations. Additionally, a nitrogen treatment was added to address how an environmental change (such as nitrogen deposition) alters plant-microbe associations. Rhizosphere community composition of bacteria and fungi was obtained via marker gene sequencing to compare community composition across plant species. Patterns in plant-microbe associations across plant species reveal plant control on nutrient cycling via plant species' influence on microbial community structure. These results determine if we are ready to generalize about plant-microbe interactions at the genus level, an important stepping-stone to applying knowledge of plant-microbe interactions to larger ecological scales.
Climate change-driven treeline advances in the Urals alter soil microbial communities
NASA Astrophysics Data System (ADS)
Djukic, Ika; Moiseev, Pavel; Hagedorn, Frank
2016-04-01
Climatic warming may affect microbial communities and their functions either directly through increased temperatures or indirectly by changes in vegetation. Treelines are temperature-limited vegetation boundaries from tundra to forests. In unmanaged regions of the Ural mountains, there is evidence that the forest-tundra ecotone has shifted upward in response to climate warming during the 20th century. Little is known about the effects of the treeline advances on the microbial structure and function and hence they feedbacks on the belowground carbon and nitrogen cycling In our study, we aimed to estimate how ongoing upward shifts of the treeline ecotone might affect soil biodiversity and its function and hence soil carbon (C) and nitrogen (N) dynamics in the Southern and Polar Ural mountains. Along altitudinal gradients reaching from the tundra to forests, we determined the soil microbial community composition (using Phospholipid Fatty Acids method) and quantified the activity of several extracellular enzymes involved in the C and nutrient cycling. In addition, we measured C pools in biomass and soils and quantified C and N mineralization. The results for the top soils, both in South Urals and in the Polar Ural, indicate a close link between climate change driven vegetation changes and soil microbial communities. The observed changes in microbial structure are induced through the resulting more favorable conditions than due to a shift in litter quality. The activities of chitinase were significantly higher under trees than under herbaceous plants, while activities of cellulase and protease declined with altitude from the tundra to the closed forest. In contrast to enzymatic activities, soil carbon stocks did not change significantly with altitude very likely as a result of a balancing out of increased C inputs from vegetation by an enhanced C output through mineralization with forest expansion. The accelerated organic matter turnover in the forest than in the tundra leads to higher contents of mineral N and net nitrification rates. In turn, the increasing N availability may stimulate plant growth and hence, induce a positive feedback between treeline advances and soil nitrogen cycling through soil microbial communities.
NASA Astrophysics Data System (ADS)
Augeard, Bénédicte; Kao, Cyril; Chaumont, Cédric; Vauclin, Michel
Artificial drainage has been subject to widespread criticism because of its impact on water quality and because there is suspicion that it may have detrimental effects on flood genesis. The present work aims at a better understanding of the mechanisms controlling infiltration and surface runoff genesis, particularly in soils with artificial drainage and affected by surface crusting. A field experiment was conducted during one drainage season (November 2003-March 2004) in the Brie region (80 km east of Paris, France) on a subsurface drained silty soil. Water table elevation and surface runoff were monitored above the drain and at midpoint between drains. Soil water pressure head was measured at various depths and locations between the midpoint and the drain. Soil surface characteristics (microtopography and degree of structural and sedimentary crust development) were recorded regularly on the experimental site and on other plots of various drainage intensities. The results show that the first surface runoff events were induced by high water table. However, runoff was higher at midpoint between the drains because water table reached the soil surface at that point, thus considerably reducing infiltration capacity compared to that above the drain. Comparing different plots, the area with older drainage installation (1948) yielded the most surface runoff. Wider drain spacing, smaller drain depth and possible plugging may have led to a greater area of saturated soil between drains. During the winter period, the impact of raindrops induced the formation of a structural crust on the soil surface. Furthermore, the development of the sedimentary crust, which was favored by water actually flowing on the soil surface during the high water table periods could be correlated with surface runoff volume. The formation of this crust had a significant impact on runoff occurrence at the end of the winter. Therefore, poorly drained fields presented more favorable conditions for both Horton type runoff and saturation excess runoff. Drainage effectively reduces surface runoff occurrences not only by lowering the water table in winter but also by limiting soil surface sealing.
Katsumi, Naoya; Yonebayashi, Koyo; Okazaki, Masanori
2016-01-15
Wildfires and prescribed burning can affect both the quality and the quantity of organic matter in soils. In this study, we investigated qualitative and quantitative changes of soil humic substances in two different soils (an Entisol from a paddy field and an Inceptisol from a cedar forest) under several controlled heating conditions. Soil samples were heated in a muffle furnace at 200, 250, or 300 °C for 1, 3, 5, or 12h. The humic acid and fulvic acid contents of the soil samples prior to and after heating were determined. The degree of darkness, elemental composition, carbon and nitrogen stable isotope ratios, (13)C nuclear magnetic resonance spectra, and X-ray diffraction patterns of humic acids extracted from the soils before and after heating were measured. The proportion of humic acids in total carbon decreased with increasing heating time at high temperature (300 °C), but increased with increasing heating time at ≤ 250 °C. The degree of darkness of the humic acids increased with increasing heating time and temperature. During darkening, the H/C atomic ratios, the proportion of aromatic C, and the carbon and nitrogen stable isotope ratios increased, whereas the proportions of alkyl C and O-alkyl C decreased. X-ray diffraction analysis verified that a stacking nanostructure developed by heating. Changes in the chemical structure of the humic acids from the heated soils depended on the type of soil. The major structural components of the humic acids from the heated Entisol were aromatic C and carboxylic C, whereas aliphatic C, aromatic C, and carboxylic C structural components were found in the humic acids from the heated Inceptisol. These results suggest that the heat-induced changes in the chemical structure of the humic acids depended on the source plant. Copyright © 2015 Elsevier B.V. All rights reserved.
Soil Microbial Community Responses to Long-Term Global Change Factors in a California Grassland
NASA Astrophysics Data System (ADS)
Qin, K.; Peay, K.
2015-12-01
Soil fungal and bacterial communities act as mediators of terrestrial carbon and nutrient cycling, and interact with the aboveground plant community as both pathogens and mutualists. However, these soil microbial communities are sensitive to changes in their environment. A better understanding of the response of soil microbial communities to global change may help to predict future soil microbial diversity, and assist in creating more comprehensive models of terrestrial carbon and nutrient cycles. This study examines the effects of four global change factors (increased temperature, increased variability in precipitation, nitrogen deposition, and CO2 enrichment) on soil microbial communities at the Jasper Ridge Global Change Experiment (JRGCE), a full-factorial global change manipulative experiment on three hectares of California grassland. While similar studies have examined the effects of global change on soil microbial communities, few have manipulated more factors or been longer in duration than the JRGCE, which began field treatments in 1998. We find that nitrogen deposition, CO2 enrichment, and increased variability in precipitation significantly affect the structure of both fungal and bacterial communities, and explain more of the variation in the community structures than do local soil chemistry or aboveground plant community. Fungal richness is correlated positively with soil nitrogen content and negatively with soil water content. Arbuscular mycorrhizal fungi (AMF), which associate closely with herbaceous plants' roots and assist in nutrient uptake, decrease in both richness and relative abundance in elevated CO2 treatments.
NASA Astrophysics Data System (ADS)
Stoppe, N.; Horn, R.
2017-01-01
A basic understanding of soil behavior on the mesoscale resp. macroscale (i.e. soil aggregates resp. bulk soil) requires knowledge of the processes at the microscale (i.e. particle scale), therefore rheological investigations of natural soils receive growing attention. In the present research homogenized and sieved (< 2 mm) samples from Marshland soils of the riparian zone of the River Elbe (North Germany) were analyzed with a modular compact rheometer MCR 300 (Anton Paar, Ostfildern, Germany) with a profiled parallel-plate measuring system. Amplitude sweep tests (AST) with controlled shear deformation were conducted to investigate the viscoelastic properties of the studied soils under oszillatory stress. The gradual depletion of microstructural stiffness during AST cannot only be characterized by the well-known rheological parameters G, G″ and tan δ but also by the dimensionless area parameter integral z, which quantifies the elasticity of microstructure. To discover the physicochemical parameters, which influences the microstructural stiffness, statistical tests were used taking the combined effects of these parameters into account. Although the influence of the individual factors varies depending on soil texture, the physicochemical features significantly affecting soil micro structure were identified. Based on the determined statistical relationships between rheological and physicochemical parameters, pedotransfer functions (PTF) have been developed, which allow a mathematical estimation of the rheological target value integral z. Thus, stabilizing factors are: soil organic matter, concentration of Ca2+, content of CaCO3 and pedogenic iron oxides; whereas the concentration of Na+ and water content represent structurally unfavorable factors.
[Soil infiltration characteristics under main vegetation types in Anji County of Zhejiang Province].
Liu, Dao-Ping; Chen, San-Xiong; Zhang, Jin-Chi; Xie, Li; Jiang, Jiang
2007-03-01
The study on the soil infiltration under different main vegetation types in Anji County of Zhejiang Province showed that the characteristics of soil infiltration differed significantly with land use type, and the test eight vegetation types could be classified into four groups, based on soil infiltration capability. The first group, deciduous broadleaved forest, had the strongest soil infiltration capability, and the second group with a stronger soil infiltration capability was composed of grass, pine forest, shrub community and tea bush. Bamboo and evergreen broadleaved forest were classified into the third group with a relatively strong soil infiltration capability, while bare land belonged to the fourth group because of the bad soil structure and poorest soil infiltration capability. The comprehensive parameters of soil infiltration (alpha) and root (beta) were obtained by principal component analysis, and the regression model of alpha and beta could be described as alpha = 0. 1708ebeta -0. 3122. Soil infiltration capability was greatly affected by soil physical and chemical characteristics and root system. Fine roots (< or = 1 mm in diameter) played effective roles on the improvement of soil physical and chemical properties, and the increase of soil infiltration capability was closely related to the amount of the fine roots.
NASA Astrophysics Data System (ADS)
Wardani, A. K.; Purqon, A.
2016-08-01
Thermal conductivity is one of thermal properties of soil in seed germination and plants growth. Different soil types have different thermal conductivity. One of soft-computing promising method to predict thermal conductivity of soil types is Artificial Neural Network (ANN). In this study, we estimate the thermal conductivity of soil prediction in a soil-plant complex systems using ANN. With a feed-forward multilayer trained with back-propagation with 4, 10 and 1 on the input, hidden and output layers respectively. Our input are heating time, temperature and thermal resistance with thermal conductivity of soil as a target. ANN prediction demonstrates a good agreement with Mean Squared Error-testing (MSEte) of 9.56 x 10-7 for soils with green beans and those of bare soils is 7.00 × 10-7 respectively Green beans grow only on black-clay soil with a thermal conductivity of 0.7 W/m K with a sufficient water content. Our results demonstrate that temperature, moisture content, colour, texture and structure of soil are greatly affect to the thermal conductivity of soil in seed germination and plant growth. In future, it is potentially applied to estimate more complex compositions of plant-soil systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parmelee, R.W.; Phillips, C.T.; Checkai, R.T.
1997-06-01
The authors used a refined microcosm technique to investigate the toxicity of copper, cadmium, malathion, and the polychlorinated biphenyl, to trophic groups of soil nematodes and to the microarthropod community. Comparisons of changes in nematode abundance in control soils through time indicated that day 7 was the most appropriate time to sample the microcosms after chemical application. Nematode abundance was reduced after exposure to copper at 100 {micro}g/g, with fungivore, bacterivore, and omnivore-predator nematodes being the most sensitive groups. Cadmium did not affect the nematode or microarthropod communities. Microarthropods were far more sensitive to malathion than were nematodes, and totalmore » microarthropod abundance was lower than controls at 400 {micro}g/g. Prostigmatid mites and other arthropods were the most affected groups. PCB also had a greater negative impact on microarthropods than on nematodes. Total microarthropod abundance declined at 2,500 {micro}g/g, with prostigmatid and oribatid mites exhibiting the highest susceptibility. Strong differential sensitivity between nematode and microarthropod communities indicates that both groups should be examined to fully evaluate the biological impact of chemicals on soils. The authors conclude that microcosms with field-collected soil microfaunal communities offer high resolution of the ecotoxicologic effects of chemicals in complex soil systems.« less
NASA Astrophysics Data System (ADS)
Murugan, Rajasekaran; Kumar, Sanjay
2015-04-01
Soil aggregate stability is a crucial soil property that affects soil biota, biogeochemical processes and C sequestration. The relationship between soil aggregate stability and soil C cycling is well known but the influence of specific fungal community structure on this relationship is largely unknown in paddy soils. The aim of the present study was to evaluate the long-term fertilisation (mineral fertiliser-MIN; farmyard manure-FYM; groundnut oil cake-GOC) effects on soil fungal community shifts associated with soil aggregates under rice-monoculture (RRR) and rice-legume-rice (RLR) systems. Fungal and bacterial communities were characterized using phospholipid fatty acids, and glucosamine and muramic acid were used as biomarkers for fungal and bacterial residues, respectively. Microbial biomass C and N, fungal biomass and residues were significantly higher in the organic fertiliser treatments than in the MIN treatment, for all aggregate sizes under both crop rotation systems. In general, fungal/bacterial biomass ratio and fungal residue C/bacterial residue C ratio were significantly higher in macroaggregate fractions (> 2000 and 250-2000 μm) than in microaggregate fractions (53-250 and <53 μm). In both crop rotation systems, the long-term application of FYM and GOC led to increased accumulation of saprotrophic fungi (SF) in aggregate fractions > 2000 μm. In contrast, we found that arbuscular mycorrhizal fungi (AMF) was surprisingly higher in aggregate fractions > 2000 μm than in aggregate fraction 250-2000 μm under MIN treatment. The RLR system showed significantly higher AMF biomass and fungal residue C/ bacterial residue C ratio in both macroaggregate fractions compared to the RRR system. The strong relationships between SF, AMF and water stable aggregates shows the specific contribution of fungi community on soil aggregate stability. Our results highlight the fact that changes within fungal community structure play an important role in shaping the soil aggregate stability and C sequestration in tropical agricultural ecosystems.
Yu, Shen; Ehrenfeld, Joan G.
2010-01-01
Background and Aims Understanding the role of different components of hydrology in structuring wetland communities is not well developed. A sequence of adjacent wetlands located on a catenary sequence of soils and receiving the same sources and qualities of water is used to examine specifically the role of water-table median position and variability in affecting plant and microbial community composition and soil properties. Methods Two replicates of three types of wetland found adjacent to each other along a hydrological gradient in the New Jersey Pinelands (USA) were studied. Plant-community and water-table data were obtained within a 100-m2 plot in each community (pine swamp, maple swamp and Atlantic-white-cedar swamp). Monthly soil samples from each plot were analysed for soil moisture, organic matter, extractable nitrogen fractions, N mineralization rate and microbial community composition. Multivariate ordination methods were used to compare patterns among sites within and between data sets. Key Results The maple and pine wetlands were more similar to each other in plant community composition, soil properties and microbial community composition than either was to the cedar swamps. However, maple and pine wetlands differed from each other in water-table descriptors as much as they differed from the cedar swamps. All microbial communities were dominated by Gram-positive bacteria despite hydrologic differences among the sites. Water-table variability was as important as water-table level in affecting microbial communities. Conclusions Water tables affect wetland communities through both median level and variability. Differentiation of both plant and microbial communities are not simple transforms of differences in water-table position, even when other hydrologic factors are kept constant. Rather, soil genesis, a result of both water-table position and geologic history, appears to be the main factor affecting plant and microbial community similarities. PMID:19643908
Sułowicz, Sławomir; Cycoń, Mariusz; Piotrowska-Seget, Zofia
2016-08-01
Effect of the fungicide tetraconazole on microbial community in silt loam soils from orchard with long history of triazole application and from grassland with no known history of fungicide usage was investigated. Triazole tetraconazole that had never been used on these soils before was applied at the field rate and at tenfold the FR. Response of microbial communities to tetraconazole was investigated during 28-day laboratory experiment by determination of changes in their biomass and structure (phospholipid fatty acids method-PLFA), activity (fluorescein diacetate hydrolysis-FDA) as well as changes in genetic (DGGE) and functional (Biolog) diversity. Obtained results indicated that the response of soil microorganisms to tetraconazole depended on the management of the soils. DGGE patterns revealed that both dosages of fungicide affected the structure of bacterial community and the impact on genetic diversity and richness was more prominent in orchard soil. Values of stress indices-the saturated/monounsaturated PLFAs ratio and the cyclo/monounsaturated precursors ratio, were almost twice as high and the Gram-negative/Gram-positive ratio was significantly lower in the orchard soil compared with the grassland soil. Results of principal component analysis of PLFA and Biolog profiles revealed significant impact of tetraconazole in orchard soil on day 28, whereas changes in these profiles obtained for grassland soil were insignificant or transient. Obtained results indicated that orchards soil seems to be more vulnerable to tetraconazole application compared to grassland soil. History of pesticide application and agricultural management should be taken into account in assessing of environmental impact of studied pesticides.
Evaluating three trace metal contaminated sites: a field and laboratory investigation.
Murray, P; Ge, Y; Hendershot, W H
2000-01-01
Selecting guidelines to evaluate elevated metals in urban brownfields is hindered by the lack of information for these sites on ecosystem structure and function. A study was performed to compare three trace metal-contaminated sites in the metropolitan Montreal area. The goal was to obtain an idea of the organisms that may be present on urban brownfields and to measure if elevated metals alter the presence and activity of the indigenous biota. Field and laboratory studies were conducted using simple methodologies to determine the extent to which microbial activity affected by trace metal content, to assess diversity of plant and soil invertebrate communities and to measure phytoaccumulation of trace metals. It was found that microbial activity, as measured by substrate-induced respiration (SIR) and nitrification, was not affected by the levels of soil Cd, Cu, Ni, Pb and Zn recorded on the sites. Seven of the 12 invertebrate groups collected were sampled on soils with similar Cd, Cu, Ni, Pb and Zn concentrations. Diversity of plant species increased as a function of the length of time the sites had been inactive. Levels of metals in plant tissue were influenced by soil characteristics and not by total soil Cd, Cu, Ni, Pb and Zn.
El Mehdawi, Ali F; Lindblom, Stormy D; Cappa, Jennifer J; Fakra, Sirine C; Pilon-Smits, Elizabeth A H
2015-01-01
Neighbors of Se hyperaccumulators Stanleya pinnata and Astragalus bisulcatus were found earlier to have elevated Se levels. Here we investigate whether Se hyperaccumulators affect Se localization and speciation in surrounding soil and neighboring plants. X-ray fluorescence mapping and X-ray absorption near-edge structure spectroscopy were used to analyze Se localization and speciation in leaves of Artemisia ludoviciana, Symphyotrichum ericoides and Chenopodium album growing next to Se hyperaccumulators or non-accumulators at a seleniferous site. Regardless of neighbors, A. ludoviciana, S. ericoides and C. album accumulated predominantly (73-92%) reduced selenocompounds with XANES spectra similar to the C-Se-C compounds selenomethionine and methyl-selenocysteine. Preliminary data indicate that the largest Se fraction (65-75%), both in soil next to hyperaccumulator S. pinnata and next to nonaccumulator species was reduced Se with spectra similar to C-Se-C standards. These same C-Se-C forms are found in hyperaccumulators. Thus, hyperaccumulator litter may be a source of organic soil Se, but soil microorganisms may also contribute. These findings are relevant for phytoremediation and biofortification since organic Se is more readily accumulated by plants, and more effective for dietary Se supplementation.
NASA Astrophysics Data System (ADS)
López-Merino, Lourdes; Serrano, Oscar; Adame, María Fernanda; Mateo, Miguel Ángel; Martínez Cortizas, Antonio
2015-10-01
Arbuscular mycorrhizal fungi (AMF), symbionts with most terrestrial plants, produce glomalin-related soil protein (GRSP), which plays a major role in soil structure and quality. Both fungi hyphae and protein production in soils are affected by perturbations related to land-use changes, implying that GRSP is a sensitive indicator of soil quality. Unfortunately, GRSP degrades within years to decades in oxic environments, preventing its use as palaeoecological proxy. However, GRSP is transported to marine, near-shore anoxic sediments, where it accumulates and remains non-degraded, enabling the assessment of its potential as a palaeoecological proxy for soil ecosystem's health. Exploiting this fact, we have obtained for the first time a long-term record (c. 1250 years) of GRSP content using a Posidonia oceanica seagrass mat sediment core from the Western Mediterranean (Portlligat Bay, Spain). The trends in GRSP content matched well with land-use changes related to agrarian activities reconstructed by pollen analysis. In periods of cultivation, GRSP accumulation in the mat decreased. Given the role played by GRSP, the results suggest that agrarian intensification may have resulted in perturbations to soil quality. Thus, GRSP in seagrass mat sediments can be used to assess long-term trends in continental soil quality induced by human activities. These findings open new possibilities in long-term ecology research, as other anoxic environments could be potentially valid too. Testing them would open the possibility to identify long-term patterns in soil quality and other environmental stressors that could also affect AMF and GRSP production in soils.
Temperature effects on protein depolymerization and amino acid immobilization rates in soils.
NASA Astrophysics Data System (ADS)
Noll, Lisa; Hu, Yuntao; Zhang, Shasha; Zheng, Qing; Wanek, Wolfgang
2017-04-01
Increasing N deposition, land use change, elevated atmospheric CO2 concentrations and global warming have altered soil nitrogen (N) cycling during the last decades. Those changes affected ecosystem services, such as C and N sequestration in soils, which calls for a better understanding of soil N transformation processes. The cleavage of macromolecular organic N by extracellular enzymes maintains an ongoing flow of new bioavailable organic N into biotic systems and is considered to be the bottle neck of terrestrial N cycling in litter and soils. Recent studies showed that protein depolymerization is susceptible to changes in C and N availabilities. Based on general biological observations the temperature sensitivity of soil organic N processes is expected to depend on whether they are rather enzyme limited (i.e. Q10=2) or diffusion limited (i.e. Q10= 1.0 - 1.3). However, temperature sensitivities of protein depolymerization and amino acid immobilization are still unknown. We therefore here report short-term temperature effects on organic N transformation rates in soils differing in physicochemical parameters but not in climate. Soil samples were collected from two geologically distinct sites close to the LFZ Raumberg-Gumpenstein, Styria, Austria, each from three different management types (arable land, grassland, forest). Four replicates of mineral soil were taken from every site and management type. The area provides a unique opportunity to study geological and management controls in soils without confounding effects of climate and elevation. The soils differ in several soil chemical parameters, such as soil pH, base saturation, soil C: N ratio and SOM content as well as in soil physical parameters, such as soil texture, bulk density and water holding capacity. Soils were pre-incubated at 5, 15 and 25˚ C for one day. Protein depolymerization rates and amino acid immobilization rates were assessed by an isotope pool dilution assay with 15N labeled amino acids at the three different temperatures. Amino acid concentrations and at% 15N of amino acids were measured in soil extracts at two time points by a novel approach based on the conversion of α-amino groups to N2O and purge-and-trap isotope ratio mass spectrometry. Protein availability was measured by extraction in solvents of increasing extraction efficiency (water, salt, metaphosphate, hydroxide), followed by acid hydrolysis to free amino acids and reaction with orthophthaldialdehyde. Peptidase activity was also measured at 5, 15 and 25˚ C using fluorescence probes. We expect that soil texture (clay content) and pH will affect protein sorption and availability and thereby affect depolymerization rates. Soil C:N ratios may control the N demand of microorganisms and thus affect enzyme production and amino acid immobilization rates. Moreover, soil pH is a major control on microbial community structure and may thereby affect the production of extracellular enzymes involved in protein and peptide decomposition. Due to the differences in temperature sensitivity of diffusion and enzymatic processes we expect higher temperature sensitivities given that protein decomposition is enzyme- rather than substrate-limited. This study will therefore greatly advance our understanding of major controls of the soil N cycle and provide highly important data for refining soil N cycle models.
Deepika, Sharma; Kothamasi, David
2015-01-01
Multiple species of arbuscular mycorrhizal fungi (AMF) can colonize roots of an individual plant species but factors which determine the selection of a particular AMF species in a plant root are largely unknown. The present work analysed the effects of drought, flooding and optimal soil moisture (15-20 %) on AMF community composition and structure in Sorghum vulgare roots, using PCR-RFLP. Rhizophagus irregularis (isolate BEG 21), and rhizosphere soil (mixed inoculum) of Heteropogon contortus, a perennial C4 grass, collected from the semi-arid Delhi ridge, were used as AMF inocula. Soil moisture functioned as an abiotic filter and affected AMF community assembly inside plant roots by regulating AMF colonization and phylotype diversity. Roots of plants in flooded soils had lowest AMF diversity whilst root AMF diversity was highest under the soil moisture regime of 15-20 %. Although plant biomass was not affected, root P uptake was significantly influenced by soil moisture. Plants colonized with R. irregularis or mixed AMF inoculum showed higher root P uptake than non-mycorrhizal plants in drought and control treatments. No differences in root P levels were found in the flooded treatment between plants colonized with R. irregularis and non-mycorrhizal plants, whilst under the same treatment, root P uptake was lower in plants colonized with mixed AMF inoculum than in non-mycorrhizal plants.
Species-specific effects of soil fauna on fungal foraging and decomposition.
Crowther, Thomas W; Boddy, Lynne; Jones, T Hefin
2011-10-01
Decomposer fungi are primary decomposing agents in terrestrial soils. Their mycelial networks play an important role in nutrient mineralisation and distribution, but are also nutritious resources for various soil invertebrates. Global climate change is predicted to alter the diversity and community composition of these soil fauna. To understand whether changes in invertebrate species diversity are likely to affect fungal-mediated decomposition, this study compared the grazing potentials of different invertebrate taxa and functional groups. Specifically, the grazing impacts of seven invertebrate taxa on the growth and spatial distribution of six basidiomycete fungi growing from beech wood blocks in soil microcosms were explored. Wood decay rates by fungi were also compared. The consequences of grazing were both taxon- and species-specific. Generally, macro-invertebrates caused the greatest damage, while meso- and micro-invertebrates often stimulated mycelial growth. Invertebrate size, preferences and population dynamics are likely to influence grazing potentials. Effects of grazing varied between fungi, with mycelial morphology and biochemistry possibly influencing susceptibility. Heavy grazing indirectly increased fungal-mediated wood decomposition. Changes in invertebrate community composition are predicted to have consequences for fungal growth, activity and community structure in woodland soils. Abiotic climate change factors including CO(2) and temperature affect mycelial productivity directly, but the indirect effects, mediated through changes in the soil invertebrate community, may be equally important in controlling ecosystem functioning.
Bitterlich, Michael; Sandmann, Martin; Graefe, Jan
2018-01-01
Arbuscular mycorrhizal fungi (AMF) proliferate in soil pores, on the surface of soil particles and affect soil structure. Although modifications in substrate moisture retention depend on structure and could influence plant water extraction, mycorrhizal impacts on water retention and hydraulic conductivity were rarely quantified. Hence, we asked whether inoculation with AMF affects substrate water retention, water transport properties and at which drought intensity those factors become limiting for plant transpiration. Solanum lycopersicum plants were set up in the glasshouse, inoculated or not with Funneliformis mosseae , and grown for 35 days under ample water supply. After mycorrhizal establishment, we harvested three sets of plants, one before (36 days after inoculation) and the second (day 42) and third (day 47) within a sequential drying episode. Sampling cores were introduced into pots before planting. After harvest, moisture retention and substrate conductivity properties were assessed and water retention and hydraulic conductivity models were fitted. A root water uptake model was adopted in order to identify the critical substrate moisture that induces soil derived transpiration limitation. Neither substrate porosity nor saturated water contents were affected by inoculation, but both declined after substrates dried. Drying also caused a decline in pot water capacity and hydraulic conductivity. Plant available water contents under wet (pF 1.8-4.2) and dry (pF 2.5-4.2) conditions increased in mycorrhizal substrates and were conserved after drying. Substrate hydraulic conductivity was higher in mycorrhizal pots before and during drought exposure. After withholding water from pots, higher substrate drying rates and lower substrate water potentials were found in mycorrhizal substrates. Mycorrhiza neither affected leaf area nor root weight or length. Consistently with higher substrate drying rates, AMF restored the plant hydraulic status, and increased plant transpiration when soil moisture declined. The water potential at the root surface and the resistance to water flow in the rhizosphere were restored in mycorrhizal pots although the bulk substrate dried more. Finally, substrates colonized by AMF can be more desiccated before substrate water flux quantitatively limits transpiration. This is most pronounced under high transpiration demands and complies with a difference of over 1,000 hPa in substrate water potential.
Biological Remediation of Petroleum Contaminants
NASA Astrophysics Data System (ADS)
Kuhad, Ramesh Chander; Gupta, Rishi
Large volumes of hazardous wastes are generated in the form of oily sludges and contaminated soils during crude oil transportation and processing. Although many physical, chemical and biological treatment technologies are available for petroleum contaminants petroleum contaminants in soil, biological methods have been considered the most cost-effective. Practical biological remediation methods typically involve direct use of the microbes naturally occurring in the contaminated environment and/or cultured indigenous or modified microorganisms. Environmental and nutritional factors, including the properties of the soil, the chemical structure of the hydrocarbon(s), oxygen, water, nutrient availability, pH, temperature, and contaminant bioavailability, can significantly affect the rate and the extent of hydrocarbon biodegradation hydrocarbon biodegradation by microorganisms in contaminated soils. This chapter concisely discusses the major aspects of bioremediation of petroleum contaminants.
Frenk, Sammy; Ben-Moshe, Tal; Dror, Ishai; Berkowitz, Brian; Minz, Dror
2013-01-01
Increased availability of nanoparticle-based products will, inevitably, expose the environment to these materials. Engineered nanoparticles (ENPs) may thus find their way into the soil environment via wastewater, dumpsters and other anthropogenic sources; metallic oxide nanoparticles comprise one group of ENPs that could potentially be hazardous for the environment. Because the soil bacterial community is a major service provider for the ecosystem and humankind, it is critical to study the effects of ENP exposure on soil bacteria. These effects were evaluated by measuring bacterial community activity, composition and size following exposure to copper oxide (CuO) and magnetite (Fe3O4) nanosized (<50 nm) particles. Two different soil types were examined: a sandy loam (Bet-Dagan) and a sandy clay loam (Yatir), under two ENP concentrations (1%, 0.1%). Results indicate that the bacterial community in Bet-Dagan soil was more susceptible to change due to exposure to these ENPs, relative to Yatir soil. More specifically, CuO had a strong effect on bacterial hydrolytic activity, oxidative potential, community composition and size in Bet-Dagan soil. Few effects were noted in the Yatir soil, although 1% CuO exposure did cause a significant decreased oxidative potential and changes to community composition. Fe3O4 changed the hydrolytic activity and bacterial community composition in Bet-Dagan soil but did not affect the Yatir soil bacterial community. Furthermore, in Bet-Dagan soil, abundance of bacteria annotated to OTUs from the Bacilli class decreased after addition of 0.1% CuO but increased with 1% CuO, while in Yatir soil their abundance was reduced with 1% CuO. Other important soil bacterial groups, including Rhizobiales and Sphingobacteriaceae, were negatively affected by CuO addition to soil. These results indicate that both ENPs are potentially harmful to soil environments. Furthermore, it is suggested that the clay fraction and organic matter in different soils interact with the ENPs and reduce their toxicity. PMID:24349575
NASA Astrophysics Data System (ADS)
Lu, Peng; Lin, Wenpeng; Niu, Zheng; Su, Yirong; Wu, Jinshui
2006-10-01
Nitrogen (N) is one of the main factors affecting environmental pollution. In recent years, non-point source pollution and water body eutrophication have become increasing concerns for both scientists and the policy-makers. In order to assess the environmental hazard of soil total N pollution, a typical ecological unit was selected as the experimental site. This paper showed that Box-Cox transformation achieved normality in the data set, and dampened the effect of outliers. The best theoretical model of soil total N was a Gaussian model. Spatial variability of soil total N at NE60° and NE150° directions showed that it had a strip anisotropic structure. The ordinary kriging estimate of soil total N concentration was mapped. The spatial distribution pattern of soil total N in the direction of NE150° displayed a strip-shaped structure. Kriging standard deviations (KSD) provided valuable information that will increase the accuracy of total N mapping. The probability kriging method is useful to assess the hazard of N pollution by providing the conditional probability of N concentration exceeding the threshold value, where we found soil total N>2.0g/kg. The probability distribution of soil total N will be helpful to conduct hazard assessment, optimal fertilization, and develop management practices to control the non-point sources of N pollution.
Effects of Cover Crops on Pratylenchus penetrans and the Nematode Community in Carrot Production
Grabau, Zane J.; Zar Maung, Zin Thu; Noyes, D. Corey; Baas, Dean G.; Werling, Benjamin P.; Brainard, Daniel C.; Melakeberhan, Haddish
2017-01-01
Cover cropping is a common practice in U.S. Midwest carrot production for soil conservation, and may affect soil ecology and plant-parasitic nematodes—to which carrots are very susceptible. This study assessed the impact of cover crops—oats (Avena sativa), radish (Raphanus sativus) cv. Defender, rape (Brassica napus) cv. Dwarf Essex, and a mixture of oats and radish—on plant-parasitic nematodes and soil ecology based on the nematode community in Michigan carrot production systems. Research was conducted at two field sites where cover crops were grown in Fall 2014 preceding Summer 2015 carrot production. At Site 1, root-lesion (Pratylenchus penetrans) and stunt (Tylenchorhynchus sp.) nematodes were present at low population densities (less than 25 nematodes/100 cm3 soil), but were not significantly affected (P > 0.05) by cover crops. At Site 2, P. penetrans population densities were increased (P ≤ 0.05) by ‘Defender’ radish compared to other cover crops or fallow control during cover crop growth and midseason carrot production. At both sites, there were few short-term impacts of cover cropping on soil ecology based on the nematode community. At Site 1, only at carrot harvest, radish-oats mixture and ‘Dwarf Essex’ rape alone enriched the soil food web based on the enrichment index (P ≤ 0.05) while rape and radish increased structure index values. At Site 2, bacterivore abundance was increased by oats or radish cover crops compared to control, but only during carrot production. In general, cover crops did not affect the nematode community until nearly a year after cover crop growth suggesting that changes in the soil community following cover cropping may be gradual. PMID:28512383
Ishaq, Suzanne L; Johnson, Stephen P; Miller, Zach J; Lehnhoff, Erik A; Olivo, Sarah; Yeoman, Carl J; Menalled, Fabian D
2017-02-01
Farming practices affect the soil microbial community, which in turn impacts crop growth and crop-weed interactions. This study assessed the modification of soil bacterial community structure by organic or conventional cropping systems, weed species identity [Amaranthus retroflexus L. (redroot pigweed) or Avena fatua L. (wild oat)], and living or sterilized inoculum. Soil from eight paired USDA-certified organic and conventional farms in north-central Montana was used as living or autoclave-sterilized inoculant into steam-pasteurized potting soil, planted with Am. retroflexus or Av. fatua and grown for two consecutive 8-week periods to condition soil nutrients and biota. Subsequently, the V3-V4 regions of the microbial 16S rRNA gene were sequenced by Illumina MiSeq. Treatments clustered significantly, with living or sterilized inoculum being the strongest delineating factor, followed by organic or conventional cropping system, then individual farm. Living inoculum-treated soil had greater species richness and was more diverse than sterile inoculum-treated soil (observed OTUs, Chao, inverse Simpson, Shannon, P < 0.001) and had more discriminant taxa delineating groups (linear discriminant analysis). Living inoculum soil contained more Chloroflexi and Acidobacteria, while the sterile inoculum soil had more Bacteroidetes, Firmicutes, Gemmatimonadetes, and Verrucomicrobia. Organically farmed inoculum-treated soil had greater species richness, more diversity (observed OTUs, Chao, Shannon, P < 0.05), and more discriminant taxa than conventionally farmed inoculum-treated soil. Cyanobacteria were higher in pots growing Am. retroflexus, regardless of inoculum type, for three of the four organic farms. Results highlight the potential of cropping systems and species identity to modify soil bacterial communities, subsequently modifying plant growth and crop-weed competition.
de Boer, Tjalf E; Taş, Neslihan; Braster, Martin; Temminghoff, Erwin J M; Röling, Wilfred F M; Roelofs, Dick
2012-01-03
Copper has long been applied for agricultural practises. Like other metals, copper is highly persistent in the environment and biologically active long after its use has ceased. Here we present a unique study on the long-term effects (27 years) of copper and pH on soil microbial communities and on the springtail Folsomia candida an important representative of the soil macrofauna, in an experiment with a full factorial, random block design. Bacterial communities were mostly affected by pH. These effects were prominent in Acidobacteria, while Actinobacteria and Gammaroteobacteria communities were affected by original and bioavailable copper. Reproduction and survival of the collembolan F. candida was not affected by the studied copper concentrations. However, the transcriptomic responses to copper reflected a mechanism of copper transport and detoxification, while pH exerted effects on nucleotide and protein metabolism and (acute) inflammatory response. We conclude that microbial community structure reflected the history of copper contamination, while gene expression analysis of F. candida is associated with the current level of bioavailable copper. The study is a first step in the development of a molecular strategy aiming at a more comprehensive assessment of various aspects of soil quality and ecotoxicology.
Effective Suppression of Methane Emission by 2-Bromoethanesulfonate during Rice Cultivation.
Waghmode, Tatoba R; Haque, Md Mozammel; Kim, Sang Yoon; Kim, Pil Joo
2015-01-01
2-bromoethanesulfonate (BES) is a structural analogue of coenzyme M (Co-M) and potent inhibitor of methanogenesis. Several studies confirmed, BES can inhibit CH4 prodcution in rice soil, but the suppressing effectiveness of BES application on CH4 emission under rice cultivation has not been studied. In this pot experiment, different levels of BES (0, 20, 40 and 80 mg kg-1) were applied to study its effect on CH4 emission and plant growth during rice cultivation. Application of BES effectively suppressed CH4 emission when compared with control soil during rice cultivation. The CH4 emission rates were significantly (P<0.001) decreased by BES application possibly due to significant (P<0.001) reduction of methnaogenic biomarkers like Co-M concentration and mcrA gene copy number (i.e. methanogenic abunadance). BES significantly (P<0.001) reduced methanogen activity, while it did not affect soil dehydrogenase activity during rice cultivation. A rice plant growth and yield parameters were not affected by BES application. The maximum CH4 reduction (49% reduction over control) was found at 80 mg kg-1 BES application during rice cultivation. It is, therefore, concluded that BES could be a suitable soil amendment for reducing CH4 emission without affecting rice plant growth and productivity during rice cultivation.
[Ozone effects on soil microbial community of rice investigated by 13C isotope labeling].
Chen, Zhan; Wang, Xiao-Ke; Shang, He
2014-10-01
This study was initiated to explore the effects of dynamic ozone (O3) exposure on soil microbial biomass and phospholipid fatty acids (PLFAs) under potted rice. A pulse-chase labeling experiment was designed to expose potted rice with 13CO2 for 6 h after one and two months, the rice were fumigated by elevated O3 concentration with an 8 h mean of 110 nL · L(-1) (O3). The allocation of the assimilated 13C to soil microorganisms was estimated by analyzing the 13C profile of microbial phospholipid fatty acids (PLFAs). After one month O3 exposure, the soil microbial biomass carbon was not affected, while the 13C-microbial biomass was significantly decreased with elevated O3. Both the total and 13C microbial biomass carbon was remarkably lower than that of control treatment after two months O3 exposure. Principal components analysis of 13C-PLFA data showed that elevated O3 significantly changed soil microbial structure after two month exposures, while there was no difference of 13C-PLFA structure between control and elevated O3 treatments after one month exposure. Δδ13C per hundred thousand of individual PLFA was significantly affected by O3 after both one and two month exposures. Only did ozone change the relative abundance of individual 13C-PLFA (13C%) of bacterial fatty acids after one month exposure, while after two month exposures, the 13C% of fungal and actinomycetic fatty acids were markedly changed by elevated O3.
NASA Astrophysics Data System (ADS)
Karki, A.; Kargel, J. S.
2017-12-01
Landslides and ice avalanches kill >5000 people annually (D. Petley, 2012, Geology http://dx.doi.org/10.1130/G33217.1); destroy or damage homes and infrastructure; and create secondary hazards, such as flooding due to blocked rivers. Critical roles of surface slope, earthquake shaking, soil characteristics and saturation, river erosional undercutting, rainfall intensity, snow loading, permafrost thaw, freeze-thaw and frost shattering, debuttressing of unstable masses due to glacier thinning, and vegetation burn or removal are well-known factors affecting landslides and avalanches. Lithology-dependent bedrock physicochemical-mechanical properties—especially brittle elastic and shear strength, and chemical weathering properties that affect rock strength, are also recognized controls on landsliding and avalanching, but are not commonly considered in detail in landslide susceptibility assessment. Lithology controls the formation of weakened, weathered bedrock; the formation and accumulation of soils; soil saturation-related properties of grain size distribution, porosity, and permeability; and soil creep related to soil wetting-drying and freeze-thaw. Lithology controls bedrock abrasion and glacial erosion and debris production rates, the formation of rough or smoothed bedrock surface by glaciation, fluvial, and freeze-thaw processes. Lithologic variability (e.g., bedding; fault and joint structure) affects contrasts in chemical weathering rates, porosity, and susceptibility to frost shattering and chemical weathering, hence formation of overhanging outcrops and weakened slip planes. The sudden failure of bedrock or sudden slip of ice on bedrock, and many other processes depend on rock lithology, microstructure (porosity and permeability), and macrostructure (bedding; faults). These properties are sometimes considered in gross terms for landslide susceptibility assessment, but in detailed applications to specific development projects, and in detailed mapping over large areas, the details of rock lithology, weathering state, and structure are rarely considered. We have initiated a geological and rock mechanical properties approach to landslide susceptibility assessments in areas of high concern for human and infrastructure safety.
NASA Astrophysics Data System (ADS)
Bottos, E. M.; Bramer, L.; Kim, Y. M.; Fansler, S.; Nicora, C.; Zink, E.; Chu, R. K.; Tfaily, M. M.; Metz, T. O.; Jansson, J.; Stegen, J.
2016-12-01
Permafrost-affected soils contain enormous stocks of carbon, which are becoming increasingly available to microbial transformation as permafrost regions warm; however, how this warming will influence the permafrost microbiome and the transformation of soil carbon remains unclear. We hypothesize that the redox conditions that arise following permafrost thaw will dictate the structure and function of the microbial community, and strongly influence the nature of carbon transformations. To examine this, permafrost-affected soils from Caribou Poker Creek Research Watershed, Alaska were incubated at 4 °C under aerobic and anaerobic conditions for periods of 9 and 94 days. Over the incubation period, rates of CO2 and CH4 production were measured by gas chromatography, shifts in microbial community structure were characterized by 16S rRNA gene sequencing, and changes in metabolite and organic matter composition were analyzed by GC-MS and ESI-FTICR MS, respectively. CO2 production rates were significantly higher in aerobic treatments in 9-day and 94-day incubations, by 3-times and 12-times, respectively. Rates of CH4 production were not significantly different between treatments in 9-day incubations, but were 1.6-times higher in anaerobic treatments in 94-day incubations. The community composition remained largely unchanged in the incubated samples, with the exception of the 94-day aerobic incubations, which shifted strongly to become dominated by a single OTU, Rhodoferax ferrireducens. Metabolite profiles also shifted most strongly in the 94-day aerobic incubations, with the abundance of phosphorylated carbon compounds overrepresented in these samples. This work suggests that the redox conditions that arise following permafrost thaw will be a strong determinant of community composition and will govern the ultimate fate of carbon stocks in permafrost-affected soils. Our results are currently being integrated with numerical models aimed at predicting the coupled microbiome-ecosystem response to thaw.
Defoliating Insect Mass Outbreak Affects Soil N Fluxes and Tree N Nutrition in Scots Pine Forests.
Grüning, Maren M; Simon, Judy; Rennenberg, Heinz; L-M-Arnold, Anne
2017-01-01
Biotic stress by mass outbreaks of defoliating pest insects does not only affect tree performance by reducing its photosynthetic capacity, but also changes N cycling in the soil of forest ecosystems. However, how insect induced defoliation affects soil N fluxes and, in turn, tree N nutrition is not well-studied. In the present study, we quantified N input and output fluxes via dry matter input, throughfall, and soil leachates. Furthermore, we investigated the effects of mass insect herbivory on tree N acquisition (i.e., organic and inorganic 15 N net uptake capacity of fine roots) as well as N pools in fine roots and needles in a Scots pine ( Pinus sylvestris L.) forest over an entire vegetation period. Plots were either infested by the nun moth ( Lymantria monacha L.) or served as controls. Our results show an increased N input by insect feces, litter, and throughfall at the infested plots compared to controls, as well as increased leaching of nitrate. However, the additional N input into the soil did not increase, but reduce inorganic and organic net N uptake capacity of Scots pine roots. N pools in the fine roots and needles of infested trees showed an accumulation of total N, amino acid-N, protein-N, and structural N in the roots and the remaining needles as a compensatory response triggered by defoliation. Thus, although soil N availability was increased via surplus N input, trees did not respond with an increased N acquisition, but rather invested resources into defense by accumulation of amino acid-N and protein-N as a survival strategy.
[Effects of biochar on microbial ecology in agriculture soil: a review].
Ding, Yan-Li; Liu, Jie; Wang, Ying-Ying
2013-11-01
Biochar, as a new type of soil amendment, has been obtained considerable attention in the research field of environmental sciences worldwide. The studies on the effects of biochar in improving soil physical and chemical properties started quite earlier, and already covered the field of soil microbial ecology. However, most of the studies considered the soil physical and chemical properties and the microbial ecology separately, with less consideration of their interactions. This paper summarized and analyzed the interrelationships between the changes of soil physical and chemical properties and of soil microbial community after the addition of biochar. Biochar can not only improve soil pH value, strengthen soil water-holding capacity, increase soil organic matter content, but also affect soil microbial community structure, and alter the abundance of soil bacteria and fungi. After the addition of biochar, the soil environment and soil microorganisms are interacted each other, and promote the improvement of soil microbial ecological system together. This review was to provide a novel perspective for the in-depth studies of the effects of biochar on soil microbial ecology, and to promote the researches on the beneficial effects of biochar to the environment from ecological aspect. The methods to improve the effectiveness of biochar application were discussed, and the potential applications of biochar in soil bioremediation were further analyzed.
Zu, Qianhui; Fang, Huan; Zhou, Hu; Zhang, Jianwei; Peng, Xinhua; Lin, Xiangui; Feng, Youzhi
2016-01-04
X-ray micro-computed tomography (micro-CT) technology, as used in the in situ and nondestructive analysis of soil physical structure, provides the opportunity of associating soil physical and biological assays. Due to the high heterogeneity of the soil matrix, X-ray micro-CT scanning and soil microbial assays should be conducted on the same soil sample. This raises the question whether X-ray micro-CT influences microbial function and diversity of the sample soil to be analyzed. To address this question, we used plate counting, microcalorimetry and pyrosequencing approaches to evaluate the effect of X-ray--at doses typically used in micro-CT--on soil microorganisms in a typical soil of North China Plain, Fluvo-aquic soil and in a typical soil of subtropical China, Ultisol soil, respectively. In both soils radiation decreased the number of viable soil bacteria and disturbed their thermogenic profiles. At DNA level, pyrosequencing revealed that alpha diversities of two soils biota were influenced in opposite ways, while beta diversity was not affected although the relative abundances of some guilds were changed. These findings indicate that the metabolically active aspects of soil biota are not compatible with X-ray micro-CT; while the beta molecular diversity based on pyrosequencing could be compatible.
Effects of Pedogenic Fe Oxides on Soil Aggregate-Associated Carbon
NASA Astrophysics Data System (ADS)
Asefaw Berhe, A.; Jin, L.
2017-12-01
Carbon sequestration is intimately related to the soil structure, mainly soil aggregate dynamics. Carbon storage in soil aggregates has been recognized as an important carbon stabilization mechanism in soils. Organic matter and pedogenic Fe oxides are major binding agents that facilitate soil aggregate formation and stability. However, few studies have investigated how different forms of pedogenic Fe oxides can affect soil carbon distribution in different aggregate-size fractions. We investigated sequentially extracted pedogenic Fe oxides (in the order of organically complexed Fe extracted with sodium pyrophosphate, poorly-crystalline Fe oxides extracted with hydroxylamine hydrochloride, and crystalline Fe oxides extracted with dithionite hydrochloride) and determined the amount and nature of C in macroaggregates (2-0.25mm), microaggregates (0.25-0.053mm), and two silt and clay fractions (0.053-0.02mm, and <0.02mm) in Musick soil from Sierra Nevada mountain in California. We also determined how pedogenic Fe oxides affect soil carbon distribution along soil depth gradients. Findings of our study revealed that the proportion of organic matter complexed Fe decreased, but the proportion of crystalline Fe increased with increasing soil depths. Poorly crystalline Fe oxides (e.g. ferrihydrite) was identified as a major Fe oxide in surface soil, whereas crystalline Fe oxides (e.g. goethite) were found in deeper soil layers. These results suggest that high concentration of organic matter in surface soil suppressed Fe crystallization. Calcium cation was closely related to the pyrophosphate extractable Fe and C, which indicates that calcium may be a major cation that contribute to the organic matter complexed Fe and C pool. Increasing concentrations of extractable Fe and C with decreasing aggregate size fractions also suggests that Fe oxides play an important role in formation and stability of silt and clay fractions, and leading to further stabilization of carbon in soil. Our findings provide mechanistic understanding of how pedogenic Fe oxides play important role in carbon stabilization in different aggregate-size fractions in soil.
Intensive agriculture reduces soil biodiversity across Europe.
Tsiafouli, Maria A; Thébault, Elisa; Sgardelis, Stefanos P; de Ruiter, Peter C; van der Putten, Wim H; Birkhofer, Klaus; Hemerik, Lia; de Vries, Franciska T; Bardgett, Richard D; Brady, Mark Vincent; Bjornlund, Lisa; Jørgensen, Helene Bracht; Christensen, Sören; Hertefeldt, Tina D'; Hotes, Stefan; Gera Hol, W H; Frouz, Jan; Liiri, Mira; Mortimer, Simon R; Setälä, Heikki; Tzanopoulos, Joseph; Uteseny, Karoline; Pižl, Václav; Stary, Josef; Wolters, Volkmar; Hedlund, Katarina
2015-02-01
Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects biodiversity of the soil food web as a whole, and whether or not these effects may be generalized across regions. We examined biodiversity in soil food webs from grasslands, extensive, and intensive rotations in four agricultural regions across Europe: in Sweden, the UK, the Czech Republic and Greece. Effects of land-use intensity were quantified based on structure and diversity among functional groups in the soil food web, as well as on community-weighted mean body mass of soil fauna. We also elucidate land-use intensity effects on diversity of taxonomic units within taxonomic groups of soil fauna. We found that between regions soil food web diversity measures were variable, but that increasing land-use intensity caused highly consistent responses. In particular, land-use intensification reduced the complexity in the soil food webs, as well as the community-weighted mean body mass of soil fauna. In all regions across Europe, species richness of earthworms, Collembolans, and oribatid mites was negatively affected by increased land-use intensity. The taxonomic distinctness, which is a measure of taxonomic relatedness of species in a community that is independent of species richness, was also reduced by land-use intensification. We conclude that intensive agriculture reduces soil biodiversity, making soil food webs less diverse and composed of smaller bodied organisms. Land-use intensification results in fewer functional groups of soil biota with fewer and taxonomically more closely related species. We discuss how these changes in soil biodiversity due to land-use intensification may threaten the functioning of soil in agricultural production systems. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
A, Y.; Wang, G.
2017-12-01
Water shortage is the main limiting factor for semi-arid grassland development. However, the grassland are gradually degraded represented by species conversion, biomass decrease and ecosystem structure simplification under the influence of human activity. Soil water characteristics such as moisture, infiltration and conductivity are critical variables affecting the interactions between soil parameters and vegetation. In this study, Cover, Height, Shannon-Wiener diversity index, Pielou evenness index and Richness index are served as indexes of vegetation productivity and community structure. And saturated hydraulic conductivity (Ks) and soil moisture content are served as indexes of soil water characters. The interaction between vegetation and soil water is investigated through other soil parameters, such as soil organic matter content at different vertical depths and in different degradation area (e.g., initial, transition and degraded plots). The results show that Ks significantly controlled by soil texture other than soil organic matter content. So the influence of vegetation on Ks through increasing soil organic content (SOM) might be slight. However, soil moisture content (SMC) appeared significantly positive relationship with SOM and silt content and negative relationship with sand content at all depth, significantly. This indicated that capacity of soil water storage was influenced both by soil texture and organic matter. In addition, the highest correlation coefficient of SMC was with SOM at the sub-surficial soil layer (20 40 cm). At the depth of 20 40 cm, the soil water content was relatively steady which slightly influenced by precipitation and evaporation. But it significantly influenced by soil organic matter content which related to vegetation. The correlation coefficient between SOM and SMC at topsoil layer (0 20 cm) was lowest (R2=0.36, p<0.01), which indicated the influence of vegetation on soil water content not only by soil organic matter content but also the other influential factors, such as the root water uptake, precipitation and evaporation.
Phosphorous bioavailability along a soil chronosequence
NASA Astrophysics Data System (ADS)
Roberts, K.; Vokhshoori, N. L.; Rosenthanl, A.; Turner, B. L.; Condron, L.; Paytan, A.
2011-12-01
In humid environments, as soils age nutrient loss through leaching and chemical trasformations affect the succession and composition of the biological communities. In particular phosphorus (P), often a limiting nutrient in terrestrial systems, tends to evolve into less bio-available forms over time, compounding loss through leaching. Thus P availability has the potential to strongly affect community productivity and structure. Low standing stock of P may not necessarily imply P limitation as the bio-available P pool is continuously recycled and re-utilized. Thus extensive recycling can reduce to varying extents the effect of P limitation. The bio-availability and recycling rates of P are difficult to measure; multiple sequential extraction processes have been developed to try to define and quantify the bio-availability of both inorganic and organic forms of P. In this preliminary study, we will present results of P concentrations in different soil fractions and oxygen isotopes in phosphate. These data together increase our understanding of P dynamics as soils age. The work is being done with a well characterized and dated chronosequence from the west coast of the South Island of New Zealand near the Haast River.
Ni, Ni; Shi, Renyong; Liu, Zongtang; Bian, Yongrong; Wang, Fang; Song, Yang; Jiang, Xin
2018-01-01
The immobilization of co-contaminants of organic and inorganic pollutants by biochar is an efficient remediation strategy. However, the effect of biochar amendments on the bioaccessibility of the co-contaminants in dry versus flooded soils has rarely been compared. In batch experiments, bamboo-derived biochar (BB) had a higher sorption capacity for phenanthrene (Phe)/pyrene (Pyr)/zinc (Zn) than corn straw-derived biochar (CB), while CB had a higher sorption capacity for lead (Pb) than BB. After 150days of incubation, the amendments of 2% CB, 0.5% BB and 2% BB effectively suppressed the dissipation and reduced the bioaccessibility of Phe/Pyr by 15.65%/18.02%, 17.07%/18.31% and 25.43%/27.11%, respectively, in the aerobic soils. This effectiveness was more significant than that in the anaerobic soils. The accessible Zn/Pb concentrations were also significantly lower in the aerobic soils than in the anaerobic soils, regardless of treatments. The Gram-negative bacterial biomass and the Shannon-Weaver index in the aerobic soil amended with 2% CB were the highest. The soil microbial community structure was jointly affected by changes in the bioaccessibility of the co-contaminants and the soil physiochemical properties caused by biochar amendments under the two conditions. Therefore, dry land farming may be more reliable than paddy soil cultivation at reducing the bioaccessibility of Phe/Pyr/Zn/Pb and enhancing the soil microbial diversity in the short term. Copyright © 2017. Published by Elsevier B.V.
Biochar application for the remediation of salt-affected soils: Challenges and opportunities.
Saifullah; Dahlawi, Saad; Naeem, Asif; Rengel, Zed; Naidu, Ravi
2018-06-01
Soil salinization and sodification are two commonly occurring major threats to soil productivity in arable croplands. Salt-affected soils are found in >100 countries, and their distribution is extensive and widespread in arid and semi-arid regions of the world. In order to meet the challenges of global food security, it is imperative to bring barren salt-affected soils under cultivation. Various inorganic and organic amendments are used to reclaim the salt-affected lands. The selection of a sustainable ameliorant is largely determined by the site-specific geographical and soil physicochemical parameters. Recently, biochar (solid carbonaceous residue, produced under oxygen-free or oxygen-limited conditions at temperatures ranging from 300 to 1000°C) has attracted considerable attention as a soil amendment. An emerging pool of knowledge shows that biochar addition is effective in improving physical, chemical and biological properties of salt-affected soils. However, some studies have also found an increase in soil salinity and sodicity with biochar application at high rates. Further, the high cost associated with production of biochar and high application rates remains a significant challenge to its widespread use in areas affected by salinity and sodicity. Moreover, there is relatively limited information on the long-term behavior of salt-affected soils subjected to biochar applications. The main objective of the present paper was to review, analyze and discuss the recent studies investigating a role of biochar in improving soil properties and plant growth in salt-affected soils. This review emphasizes that using biochar as an organic amendment for sustainable and profitable use of salt-affected soils would not be practicable as long as low-cost methods for the production of biochar are not devised. Copyright © 2017 Elsevier B.V. All rights reserved.
Rachid, Caio T. C. C.; Balieiro, Fabiano C.; Fonseca, Eduardo S.; Peixoto, Raquel Silva; Chaer, Guilherme M.; Tiedje, James M.; Rosado, Alexandre S.
2015-01-01
Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species) could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments: monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that. PMID:25706388
Rachid, Caio T C C; Balieiro, Fabiano C; Fonseca, Eduardo S; Peixoto, Raquel Silva; Chaer, Guilherme M; Tiedje, James M; Rosado, Alexandre S
2015-01-01
Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species) could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments: monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that.
Caio T.C.C. Rachid; Balieiro, Fabiano C.; Fonseca, Eduardo S.; ...
2015-02-23
Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species) could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments:more » monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that.« less
Microbial biomass, community structure and metal tolerance of a naturally Pb-enriched forest soil.
Bååth, E; Díaz-Raviña, M; Bakken, L R
2005-11-01
The effect of long-term elevated soil Pb levels on soil microbiota was studied at a forest site in Norway, where the soil has been severely contaminated with Pb since the last period of glaciation (several thousand years). Up to 10% Pb (total amount, w/w) has been found in the top layer. The microbial community was drastically affected, as judged from changes in the phospholipid fatty acid (PLFA) pattern. Specific PLFAs that were high in Pb-enriched soil were branched (especially br17:0 and br18:0), whereas PLFAs common in eukaryotic organisms such as fungi (18:2omega6,9 and 20:4) were low compared with levels at adjacent, uncontaminated sites. Congruent changes in the PLFA pattern were found upon analyzing the culturable part of the bacterial community. The high Pb concentrations in the soil resulted in increased tolerance to Pb of the bacterial community, measured using both thymidine incorporation and plate counts. Furthermore, changes in tolerance were correlated to changes in the community structure. The bacterial community of the most contaminated soils showed higher specific activity (thymidine and leucine incorporation rates) and higher culturability than that of control soils. Fungal colony forming units (CFUs) were 10 times lower in the most Pb-enriched soils, the species composition was widely different from that in control soils, and the isolated fungi had high Pb tolerance. The most commonly isolated fungus in Pb-enriched soils was Tolypocladium inflatum. Comparison of isolates from Pb-enriched soil and isolates from unpolluted soils showed that T. inflatum was intrinsically Pb-tolerant, and that the prolonged conditions with high Pb had not selected for any increased tolerance.
Jia, Jin Tian; Fu, Zhi Yong; Chen, Hong Song; Wang, Ke Lin; Zhou, Wei Jun
2016-06-01
Based on three manually excavated trenches (projection length of 21 m, width of 1 m) along a typical Karst hillslope, the changing trends for soil-bedrock structure, average water content of soil profile and soil-bedrock interface water content along each individual trench were studied. The effect of irregular bedrock topography on soil moisture distribution was discussed. The results showed that the surface topography was inconsistent with the bedrock topography in the Karst hill-slopes. The bedrock topography was highly irregular with a maximum variation coefficient of 82%. The distribution pattern of soil profile of moisture was significantly affected by the underlying undulant bedrock. The soil water content was related to slope position when the fluctuation was gentle, and displayed a linear increase from upslope to downslope. When the bedrock fluctuation increased, the downslope linear increasing trend for soil water content became unapparent, and the spatial continuity of soil moisture was weakened. The soil moisture was converged in rock dents and cracks. The average water content of soil profile was significantly positively correlated with the soil-bedrock interface water content, while the latter responded more sensitively to the bedrock fluctuation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.
The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy numbermore » of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below -10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface.« less
NASA Astrophysics Data System (ADS)
Wang, Y.; Liang, X.; Zhuang, J.; Radosevich, M.
2016-12-01
Anaerobic bioremediation is widely applied to create anaerobic subsurface conditions designed to stimulate microorganisms that degrade organic contaminants and immobilize toxic metals in situ. Anaerobic conditions that accompany such techniques also promotes microbially mediated Fe(III)-oxide mineral reduction. The reduction of Fe(III) could potentially cause soil structure breakdown, formation of clay colloids, and alternation of soil surface chemical properties. These processes could then affect bioremediation and the migration of contaminants. Column experiments were conducted to investigate the impact of anaerobic bioreduction on soil structure, hydraulic properties, colloid formation, and transport of three tracers (bromide, DFBA, and silica shelled silver nanoparticles). Columns packed with inoculated water stable soil aggregates were placed in anaerobic glovebox, and artificial groundwater media was pumped into the columns to simulate anaerobic bioreduction process for four weeks. Decent amount of soluble Fe(II) accompanied by colloids were detected in the effluent from bioreduction columns a week after initiation of bioreduction treatment, which demonstrated bioreduction of Fe(III) and formation of colloids. Transport experiments were performed in the columns before and after bioreduction process to assess the changes of hydraulic and surface chemical properties through bioreduction treatment. Earlier breakthrough of bromide and DFBA after treatment indicated alterations in flow paths (formation of preferential flow paths). Less dispersion of bromide and DFBA, and less tailing of DFBA after treatment implied breakdown of soil aggregates. Dramatically enhanced transport and early breakthrough of silica shelled silver nanoparticles after treatment supported the above conclusion of alterations in flow paths, and indicated changes of soil surface chemical properties.
Sun, Hui; Terhonen, Eeva; Kovalchuk, Andriy; Tuovila, Hanna; Chen, Hongxin; Oghenekaro, Abbot O; Heinonsalo, Jussi; Kohler, Annegret; Kasanen, Risto; Vasander, Harri; Asiegbu, Fred O
2016-05-01
Boreal peatlands play a crucial role in global carbon cycling, acting as an important carbon reservoir. However, little information is available on how peatland microbial communities are influenced by natural variability or human-induced disturbances. In this study, we have investigated the fungal diversity and community structure of both the organic soil layer and buried wood in boreal forest soils using high-throughput sequencing of the internal transcribed spacer (ITS) region. We have also compared the fungal communities during the primary colonization of wood with those of the surrounding soils. A permutational multivariate analysis of variance (PERMANOVA) confirmed that the community composition significantly differed between soil types (P< 0.001) and tree species (P< 0.001). The distance-based linear models analysis showed that environmental variables were significantly correlated with community structure (P< 0.04). The availability of soil nutrients (Ca [P= 0.002], Fe [P= 0.003], and P [P= 0.003]) within the site was an important factor in the fungal community composition. The species richness in wood was significantly lower than in the corresponding soil (P< 0.004). The results of the molecular identification were supplemented by fruiting body surveys. Seven of the genera of Agaricomycotina identified in our surveys were among the top 20 genera observed in pyrosequencing data. Our study is the first, to our knowledge, fungal high-throughput next-generation sequencing study performed on peatlands; it further provides a baseline for the investigation of the dynamics of the fungal community in the boreal peatlands. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Rachid, Caio T. C. C.; Santos, Adriana L.; Piccolo, Marisa C.; Balieiro, Fabiano C.; Coutinho, Heitor L. C.; Peixoto, Raquel S.; Tiedje, James M.; Rosado, Alexandre S.
2013-01-01
Background The Brazilian Cerrado is one of the most important biodiversity reservoirs in the world. The sugarcane cultivation is expanding in this biome and necessitates the study of how it may impact the soil properties of the Cerrado. There is a lack of information especially about the impacts of different sugarcane management on the native bacterial communities of Cerrado soil. Therefore, our objective was to evaluate and compare the soil bacterial community structure of the Cerrado vegetation with two sugarcane systems. Methods We evaluated samples under native vegetation and the impact of the two most commonly used management strategies for sugarcane cultivation (burnt cane and green cane) on this diversity using pyrosequencing and quantitative PCR of the rrs gene (16S rRNA). Results and Conclusions Nineteen different phyla were identified, with Acidobacteria (≈35%), Proteobacteria (≈24%) and Actinobacteria (≈21%) being the most abundant. Many of the sequences were represented by few operational taxonomic units (OTUs, 3% of dissimilarity), which were found in all treatments. In contrast, there were very strong patterns of local selection, with many OTUs occurring only in one sample. Our results reveal a complex bacterial diversity, with a large fraction of microorganisms not yet described, reinforcing the importance of this biome. As possible sign of threat, the qPCR detected a reduction of the bacterial population in agricultural soils compared with native Cerrado soil communities. We conclude that sugarcane cultivation promoted significant structural changes in the soil bacterial community, with Firmicutes phylum and Acidobacteria classes being the groups most affected. PMID:23533619
Terhonen, Eeva; Kovalchuk, Andriy; Tuovila, Hanna; Chen, Hongxin; Oghenekaro, Abbot O.; Heinonsalo, Jussi; Kohler, Annegret; Kasanen, Risto; Vasander, Harri; Asiegbu, Fred O.
2016-01-01
Boreal peatlands play a crucial role in global carbon cycling, acting as an important carbon reservoir. However, little information is available on how peatland microbial communities are influenced by natural variability or human-induced disturbances. In this study, we have investigated the fungal diversity and community structure of both the organic soil layer and buried wood in boreal forest soils using high-throughput sequencing of the internal transcribed spacer (ITS) region. We have also compared the fungal communities during the primary colonization of wood with those of the surrounding soils. A permutational multivariate analysis of variance (PERMANOVA) confirmed that the community composition significantly differed between soil types (P < 0.001) and tree species (P < 0.001). The distance-based linear models analysis showed that environmental variables were significantly correlated with community structure (P < 0.04). The availability of soil nutrients (Ca [P = 0.002], Fe [P = 0.003], and P [P = 0.003]) within the site was an important factor in the fungal community composition. The species richness in wood was significantly lower than in the corresponding soil (P < 0.004). The results of the molecular identification were supplemented by fruiting body surveys. Seven of the genera of Agaricomycotina identified in our surveys were among the top 20 genera observed in pyrosequencing data. Our study is the first, to our knowledge, fungal high-throughput next-generation sequencing study performed on peatlands; it further provides a baseline for the investigation of the dynamics of the fungal community in the boreal peatlands. PMID:26896139
Ding, Long-Jun; Su, Jian-Qiang; Sun, Guo-Xin; Wu, Jin-Shui; Wei, Wen-Xue
2018-02-01
Microbes play key roles in diverse biogeochemical processes including nutrient cycling. However, responses of soil microbial community and functional genes to long-term integrated fertilization (chemical combined with organic fertilization) remain unclear. Here, we used pyrosequencing and a microarray-based GeoChip to explore the shifts of microbial community and functional genes in a paddy soil which received over 21-year fertilization with various regimes, including control (no fertilizer), rice straw (R), rice straw plus chemical fertilizer nitrogen (NR), N and phosphorus (NPR), NP and potassium (NPKR), and reduced rice straw plus reduced NPK (L-NPKR). Significant shifts of the overall soil bacterial composition only occurred in the NPKR and L-NPKR treatments, with enrichment of certain groups including Bradyrhizobiaceae and Rhodospirillaceae families that benefit higher productivity. All fertilization treatments significantly altered the soil microbial functional structure with increased diversity and abundances of genes for carbon and nitrogen cycling, in which NPKR and L-NPKR exhibited the strongest effect, while R exhibited the least. Functional gene structure and abundance were significantly correlated with corresponding soil enzymatic activities and rice yield, respectively, suggesting that the structural shift of the microbial functional community under fertilization might promote soil nutrient turnover and thereby affect yield. Overall, this study indicates that the combined application of rice straw and balanced chemical fertilizers was more pronounced in shifting the bacterial composition and improving the functional diversity toward higher productivity, providing a microbial point of view on applying a cost-effective integrated fertilization regime with rice straw plus reduced chemical fertilizers for sustainable nutrient management.
Rachid, Caio T C C; Santos, Adriana L; Piccolo, Marisa C; Balieiro, Fabiano C; Coutinho, Heitor L C; Peixoto, Raquel S; Tiedje, James M; Rosado, Alexandre S
2013-01-01
The Brazilian Cerrado is one of the most important biodiversity reservoirs in the world. The sugarcane cultivation is expanding in this biome and necessitates the study of how it may impact the soil properties of the Cerrado. There is a lack of information especially about the impacts of different sugarcane management on the native bacterial communities of Cerrado soil. Therefore, our objective was to evaluate and compare the soil bacterial community structure of the Cerrado vegetation with two sugarcane systems. We evaluated samples under native vegetation and the impact of the two most commonly used management strategies for sugarcane cultivation (burnt cane and green cane) on this diversity using pyrosequencing and quantitative PCR of the rrs gene (16S rRNA). Nineteen different phyla were identified, with Acidobacteria (≈35%), Proteobacteria (≈24%) and Actinobacteria (≈21%) being the most abundant. Many of the sequences were represented by few operational taxonomic units (OTUs, 3% of dissimilarity), which were found in all treatments. In contrast, there were very strong patterns of local selection, with many OTUs occurring only in one sample. Our results reveal a complex bacterial diversity, with a large fraction of microorganisms not yet described, reinforcing the importance of this biome. As possible sign of threat, the qPCR detected a reduction of the bacterial population in agricultural soils compared with native Cerrado soil communities. We conclude that sugarcane cultivation promoted significant structural changes in the soil bacterial community, with Firmicutes phylum and Acidobacteria classes being the groups most affected.
[Environmental behavior and effect of biomass-derived black carbon in soil: a review].
Liu, Yu-Xue; Liu, Wei; Wu, Wei-Xiang; Zhong, Zhe-Ke; Chen, Ying-Xu
2009-04-01
Biomass-derived black carbon, also named biochar, has the characteristics of high stability against decay and high capability of adsorption, and can affect the environment through its interactions with climate and geology, playing a significant role in global climate change, carbon biogeochemical cycle, and environmental system. In recent years, more and more researchers in the fields of atmospheric sciences, geology, and environmental science focused on the environmental behavior and effect of biochar. As one possible source of the components with high aromatic structure in soil humus, biochar is of great importance in increasing soil carbon storage and improving soil fertility, and in maintaining the balance of soil ecosystem. This paper offered the latest information regarding the characteristics and biotic and abiotic oxidation mechanisms of biochar, its effects on global climate change, and the environmental effect of biochar in soil. Research prospects were briefly discussed on the environmental behavior and effect of biochar in soil ecosystem.
NASA Astrophysics Data System (ADS)
Weber, Jerzy; Jerzykiewicz, Maria; Jamroz, Elżbieta; Kocowicz, Andrzej; Dębicka, Magdalena; Ćwieląg-Piasecka, Irmina
2017-04-01
Literature on fly-ash influence on the environment report mainly on alkalization effect on vegetation and changes in chemistry of forest floor. As far as now soils were examined only for changes in pH in surface horizons, physical properties and heavy metal solubility. Soil properties strongly depend on soil organic matter content and humic substances properties, thus their modification plays a crucial role in soil forming processes and changes in the environment. From the other side, the alkalization effects on podzolization processes and particularly on humic substances have not been recognized. The aim of this paper was to characterize changes in properties of humic substances in ectohumus horizons of Podzols affected by alkali blown out from fly-ash dumping site of power station Bełchatów, central Poland. The objects of the investigation were Podzols derived from loose quartz sand, developed under pine forest. They surround the dumping site, which was established to store wastes from lignite combustion in Bełchatów power station. The samples were collected from ectohumus horizons in direct vicinity of the dumping site (50 m) as well as in the control area (7.3 km away) in five replications. Determination of elemental composition and spectroscopic analysis (EPR, FT-IR, ICP-OES and UV-Vis) were performed for humic acids, fulvic acids and humines extracted with standard IHSS procedure. An increase of pH in ectohumus horizons caused by the influence of fly-ash leads to change in humic substances structure. Obtained results showed that humic and fulvic acids from fly-ash affected Podzols indicated higher contents of nitrogen and sulphur, as well as higher O/C and lower C/N ratios. This points out a higher degree of their humification. Also EPR analyses of humic acids and humins affected by fly-ash indicated higher metal ions concentrations. However, the increase of Mn and Fe ions concentration did not affect the Fe(III) and Mn(II) band intensities of EPR spectra. This may suggest the presence of other forms (other oxidation state) of Mn and Fe ions, that are diamagnetic and hence EPR silent. Lower g-factors values of radicals built-in humic substances extracted from fly-ash affected soils are associated with more condensed structures with lower content of oxygen functional groups. Decrease of free radicals concentration in Podzols affected by fly-ash is correlated with an increase of the transition metal ions, such as Mn(II) and Fe(III), which interact (antiferromagnetically) with semiquinone radicals built-in humic substances macromolecules. Humic acids from fly-ash affected site indicated lower values of E4/E6 ratio, which confirmed higher molecular weight of the molecules. Thus the humic fractions from ectohumus horizon of the fly-ash affected area could be described as having heavier, more complex structure then those from control area. Above mentioned modification of humic substances may contribute to restriction of the podzolization processes, and transformation of underlying eluvial horizons into transitional AE horizons. Furthermore, due to transformation and translocation of organic components, illuvial Bhs horizons can be transformed into Bs horizons.
Effect of periodic fluctuation of soil particle rotation resistance on interface shear behaviour
NASA Astrophysics Data System (ADS)
Ebrahimian, Babak; Noorzad, Asadollah
2010-06-01
The interface behaviour between infinite extended narrow granular layer and bounding structure is numerically investigated using finite element method. The micro-polar (Cosserat) continuum approach within the framework of elasto-plasticity is employed to remove the numerical difficulties caused by strain-softening of materials in classical continuum mechanics. Mechanical properties of cohesionless granular soil are described with Lade's model enhanced with polar terms including Cosserat rotations, curvatures and couple stresses via mean grain diameter as the internal length. The main attention of paper is laid on the influence of spatial periodic fluctuation of rotation resistance of soil particles interlocked with the surface of bounding structure on evolution and location of shear band developed inside granular body. The finite element results demonstrate that the location and evolution of shear localization in granular body is strongly affected by prescribed non-uniform micro-polar kinematic boundary conditions along the interface.
Wu, Wenyong; Yin, Shiyang; Liu, Honglu; Niu, Yong; Bao, Zhe
2014-10-01
The purpose of this study was to determine and evaluate the spatial changes in soil salinity by using geostatistical methods. The study focused on the suburb area of Beijing, where urban development led to water shortage and accelerated wastewater reuse to farm irrigation for more than 30 years. The data were then processed by GIS using three different interpolation techniques of ordinary kriging (OK), disjunctive kriging (DK), and universal kriging (UK). The normality test and overall trend analysis were applied for each interpolation technique to select the best fitted model for soil parameters. Results showed that OK was suitable for soil sodium adsorption ratio (SAR) and Na(+) interpolation; UK was suitable for soil Cl(-) and pH; DK was suitable for soil Ca(2+). The nugget-to-sill ratio was applied to evaluate the effects of structural and stochastic factors. The maps showed that the areas of non-saline soil and slight salinity soil accounted for 6.39 and 93.61%, respectively. The spatial distribution and accumulation of soil salt were significantly affected by the irrigation probabilities and drainage situation under long-term wastewater irrigation.
Rain water transport and storage in a model sandy soil with hydrogel particle additives.
Wei, Y; Durian, D J
2014-10-01
We study rain water infiltration and drainage in a dry model sandy soil with superabsorbent hydrogel particle additives by measuring the mass of retained water for non-ponding rainfall using a self-built 3D laboratory set-up. In the pure model sandy soil, the retained water curve measurements indicate that instead of a stable horizontal wetting front that grows downward uniformly, a narrow fingered flow forms under the top layer of water-saturated soil. This rain water channelization phenomenon not only further reduces the available rain water in the plant root zone, but also affects the efficiency of soil additives, such as superabsorbent hydrogel particles. Our studies show that the shape of the retained water curve for a soil packing with hydrogel particle additives strongly depends on the location and the concentration of the hydrogel particles in the model sandy soil. By carefully choosing the particle size and distribution methods, we may use the swollen hydrogel particles to modify the soil pore structure, to clog or extend the water channels in sandy soils, or to build water reservoirs in the plant root zone.
Rampelotto, Pabulo Henrique; de Siqueira Ferreira, Adão; Barboza, Anthony Diego Muller; Roesch, Luiz Fernando Wurdig
2013-10-01
The Brazilian Savanna, also known as "Cerrado", is the richest and most diverse savanna in the world and has been ranked as one of the main hotspots of biodiversity. The Cerrado is a representative biome in Central Brazil and the second largest biome in species diversity of South America. Nevertheless, large areas of native vegetation have been converted to agricultural land including grain production, livestock, and forestry. In this view, understanding how land use affects microbial communities is fundamental for the sustainable management of agricultural ecosystems. The aim of this work was to analyze and compare the soil bacterial communities from the Brazilian Cerrado associated with different land use systems using high throughput pyrosequencing of 16S rRNA genes. Relevant differences were observed in the abundance and structure of bacterial communities in soils under different land use systems. On the other hand, the diversity of bacterial communities was not relevantly changed among the sites studied. Land use systems had also an important impact on specific bacterial groups in soil, which might change the soil function and the ecological processes. Acidobacteria, Proteobacteria, and Actinobacteria were the most abundant groups in the Brazilian Cerrado. These findings suggest that more important than analyzing the general diversity is to analyze the composition of the communities. Since soil type was the same among the sites, we might assume that land use was the main factor defining the abundance and structure of bacterial communities.
Hill, Richard; Saetnan, Eli R; Scullion, John; Gwynn-Jones, Dylan; Ostle, Nick; Edwards, Arwyn
2016-06-01
Microbial responses to Arctic climate change could radically alter the stability of major stores of soil carbon. However, the sensitivity of plot-scale experiments simulating climate change effects on Arctic heathland soils to potential confounding effects of spatial and temporal changes in soil microbial communities is unknown. Here, the variation in heathland soil bacterial communities at two survey sites in Sweden between spring and summer 2013 and at scales between 0-1 m and, 1-100 m and between sites (> 100 m) were investigated in parallel using 16S rRNA gene T-RFLP and amplicon sequencing. T-RFLP did not reveal spatial structuring of communities at scales < 100 m in any site or season. However, temporal changes were striking. Amplicon sequencing corroborated shifts from r- to K-selected taxon-dominated communities, influencing in silico predictions of functional potential. Network analyses reveal temporal keystone taxa, with a spring betaproteobacterial sub-network centred upon a Burkholderia operational taxonomic unit (OTU) and a reconfiguration to a summer sub-network centred upon an alphaproteobacterial OTU. Although spatial structuring effects may not confound comparison between plot-scale treatments, temporal change is a significant influence. Moreover, the prominence of two temporally exclusive keystone taxa suggests that the stability of Arctic heathland soil bacterial communities could be disproportionally influenced by seasonal perturbations affecting individual taxa. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Community structure of grassland ground-dwelling arthropods along increasing soil salinities.
Pan, Chengchen; Feng, Qi; Liu, Jiliang; Li, Yulin; Li, Yuqiang; Yu, Xiaoya
2018-03-01
Ground-dwelling arthropod communities are influenced by numerous biotic and abiotic factors. Little is known, however, about the relative importance of vegetation structure and abiotic environmental factors on the patterns of ground-dwelling arthropod community across a wide range of soil salinities. Here, a field survey was conducted to assess the driving forces controlling ground-dwelling arthropod community in the salinized grasslands in the Hexi Corridor, Gansu Province, China. The data were analyzed by variance partitioning with canonical correspondence analysis (CCA). We found that vegetation structure and edaphic factors were at least of similar importance to the pattern of the whole ground-dwelling arthropod community. However, when all collected ground-dwelling arthropods were categorized into three trophic guilds (predators, herbivores, and decomposers), as these groups use different food sources, their populations were controlled by different driving forces. Predators and decomposers were mainly determined by biotic factors such as vegetation cover and aboveground plant biomass and herbivores by plant density and vegetation cover. Abiotic factors were also major determinants for the variation occurring in these guilds, with predators strongly affected by soil electrical conductivity (EC) and the content of fine particles (silt + clay, CS), herbivores by soil N:P, EC, and CS, and decomposers by soil EC and organic matter content (SOM). Since plant cover, density, and aboveground biomass can indicate resource availability, which are mainly constrained by soil N:P, EC, CS, and SOM, we consider that the ground-dwelling arthropod community in the salinized grasslands was mainly influenced by resource availability.
NASA Astrophysics Data System (ADS)
Akgün, Mustafa; Gönenç, Tolga; Tunçel, Aykut; Pamukçu, Oya
2013-08-01
An earthquake is a natural disaster which cannot be predicted beforehand. The economic losses and casualties induced by earthquakes badly influence human life. In order to reduce these negative effects, buildings and structures should be designed to be earthquake resistant. In the design stage of earthquake-resistant structures, models of soil under dynamic conditions are used. The parameters that are required to account for soil dynamic models are shear wave velocity (Vs) values, stiffness, thickness, the number of layers, attenuation, rigidity and the depth to bedrock. These parameters are used to calculate an empirical transfer function, the bearing capacity of the soil and liquefaction. Within this context, these soil dynamic parameters should be obtained with the help of geophysical methods in situ, in the İzmir-Güzelbahçe region and its surrounds. The İzmir-Güzelbahçe region and its surrounds are located at the intersection point of two major faults (the İzmir fault and the Seferihisar fault). For this reason, soil dynamic parameters are variable in the lateral and vertical directions. These changes affect the soil Vs profiles. To identify the shear wave velocity (Vs) profile, common mid-point cross-correlation analysis of multi-channel surface-wave data (CMPCC MASW method), microtremor and microgravity methods can be used in common. As a result, when these three methods were evaluated together, it was concluded that the aforementioned region shows sudden lateral structure changes. Relying on these changes, the dynamic analyses that would be carried out to determine soil behavior at a possible earthquake site should be taken into consideration.
Tree root dynamics in montane and sub-alpine mixed forest patches.
Wang, Y; Kim, J H; Mao, Z; Ramel, M; Pailler, F; Perez, J; Rey, H; Tron, S; Jourdan, C; Stokes, A
2018-02-28
The structure of heterogeneous forests has consequences for their biophysical environment. Variations in the local climate significantly affect tree physiological processes. We hypothesize that forest structure also alters tree root elongation and longevity through temporal and spatial variations in soil temperature and water potential. We installed rhizotrons in paired vegetation communities of closed forest (tree islands) and open patches (canopy gaps), along a soil temperature gradient (elevations of 1400, 1700 and 2000 m) in a heterogeneous mixed forest. We measured the number of growing tree roots, elongation and mortality every month over 4 years. The results showed that the mean daily root elongation rate (RER) was not correlated with soil water potential but was significantly and positively correlated with soil temperature between 0 and 8 °C only. The RER peaked in spring, and a smaller peak was usually observed in the autumn. Root longevity was dependent on altitude and the season in which roots were initiated, and root diameter was a significant factor explaining much of the variability observed. The finest roots usually grew faster and had a higher risk of mortality in gaps than in closed forest. At 2000 m, the finest roots had a higher risk of mortality compared with the lower altitudes. The RER was largely driven by soil temperature and was lower in cold soils. At the treeline, ephemeral fine roots were more numerous, probably in order to compensate for the shorter growing season. Differences in soil climate and root dynamics between gaps and closed forest were marked at 1400 and 1700 m, but not at 2000 m, where canopy cover was more sparse. Therefore, heterogeneous forest structure and situation play a significant role in determining root demography in temperate, montane forests, mostly through impacts on soil temperature.
NASA Astrophysics Data System (ADS)
Kravchenko, Alexandra; Grandy, Stuart A.
2014-05-01
Understanding chemical structure of soil organic matter (SOM) and factors that affect it are vital for gaining understanding of mechanisms of C sequestration by soil. Physical protection of C by adsorption to mineral particles and physical disconnection between C sources and microbial decomposers is now regarded as the key component of soil C sequestration. Both of the processes are greatly influenced by micro-scale structure and distribution of soil pores. However, because SOM chemical structure is typically studied in disturbed (ground and sieved) soil samples the experimental evidence of the relationships between soil pore structure and chemical structure of SOM are still scarce. Our study takes advantage of the X-ray computed micro-tomography (µ-CT) tools that enable non-destructive analysis of pore structure in intact soil samples. The objective of this study is to examine the relationship between SOM chemical structure and pore-characteristics in intact soil macro-aggregates from two contrasting long-term land uses. The two studied land use treatments are a conventionally tilled corn-soybean-wheat rotation treatment and a native succession vegetation treatment removed from agricultural use >20 years ago. The study is located in southwest Michigan, USA, on sandy-loam Typic Hapludalfs. For this study we used soil macro-aggregates 4-6 mm in size collected at 0-15 cm depth. The aggregate size was selected so as both to enable high resolution of µ-CT and to provide sufficient amount of soil for C measurements. X-ray µ-CT scanning was conducted at APS Argonne at a scanning resolution of 14 µm. Two scanned aggregates (1 per treatment) were used in this preliminary study. Each aggregate was cut into 7 "geo-referenced" sections. Analyses of pore characteristics in each section were conducted using 3DMA and ImageJ image analysis tools. SOM chemistry was analyzed using pyrolysis/gas chromatography-mass spectroscopy. Results demonstrated that the relationships between SOM chemical structure and pore characteristics differed in the aggregates of the two treatments. For example, in the agricultural treatment, the aggregate sections with prevalence of small pores had lower relative lignin abundance, while higher lignin abundances occurred in aggregate sections with more large pores. This relationship could be reflecting the low accessibility of the sections dominated by small pores to plant roots. It is interesting to note that no relationship between pores and lignin were observed in the aggregate from the native succession treatment. In the native succession aggregate we found that a larger presence of protein and N-bearing compounds was associated with sections with greater presence of 35-90 µm pores. This could be a result of fungal activities, as pores of this size constitute a primary fungal habitat and fungi are known for secreting proteins. Fewer fungi in the soil under agricultural management are likely the reason that no such relationship was observed in the aggregate from the agricultural treatment. Our preliminary results indicate that substantial spatial variability patterns in SOM chemical structure can exist even within a single macro-aggregate and that pores are likely a main driver of intra-aggregate SOM chemistry.
Lin, Yongming; Deng, Haojun; Du, Kun; Rafay, Loretta; Zhang, Guang-Shuai; Li, Jian; Chen, Can; Wu, Chengzhen; Lin, Han; Yu, Wei; Fan, Hailan; Ge, Yonggang
2017-10-15
The MS 8.0Wenchuan Earthquake in 2008 caused huge damage to land cover in the northwest of China's Sichuan province. In order to determine the nutrient loss and short term characteristics of change in soil chemical properties, we established an experiment with three treatments ('undestroyed', 'destroyed and treated', and 'destroyed and untreated'), two climate types (semi-arid hot climate and subtropical monsoon climate), and three slope positions (upslope, mid-slope, and bottom-slope) in 2011. Ten soil properties-including pH, organic carbon, total nitrogen, total phosphorus, total potassium, Ca 2+ , Mg 2+ , alkaline hydrolysable nitrogen, available phosphorus, and available potassium-were measured in surface soil samples in December 2014. Analyses were performed to compare the characteristics of 3-year change in soil chemical properties in two climate zones. This study revealed that soil organic carbon, total nitrogen, Ca 2+ content, alkaline hydrolysable nitrogen, available phosphorus, and available potassium were significantly higher in subtropical monsoon climate zones than in semi-arid hot climate zones. However, subtropical monsoon climate zones had a higher decrease in soil organic carbon, total nitrogen, total phosphorus, total potassium, and alkaline hydrolysable nitrogen in 'destroyed and untreated' sites than in semi-arid hot climate zones. Most soil chemical properties exhibited significant interactions, indicating that they may degrade or develop concomitantly. 'Destroyed and treated' sites in both climate types had lower C:P and N:P ratios than 'destroyed and untreated' sites. Principal component analysis (PCA) showed that the first, second, and third principal components explained 76.53% of the variation and might be interpreted as structural integrity, nutrient supply availability, and efficiency of soil; the difference of soil parent material; as well as weathering and leaching effects. Our study indicated that the characteristics of short term change in soil properties were affected by climate types and treatments, but not slope positions. Our results provide useful information for the selection of restoration countermeasures in different climate types to facilitate ecological restoration and reconstruction strategies in earthquake-affected areas. Copyright © 2017 Elsevier B.V. All rights reserved.
Tree Regeneration Under Different Land-Use Mosaics in the Brazilian Amazon's "Arc of Deforestation".
Do Vale, Igor; Miranda, Izildinha Souza; Mitja, Danielle; Grimaldi, Michel; Nelson, Bruce Walker; Desjardins, Thierry; Costa, Luiz Gonzaga Silva
2015-08-01
We studied the tree-regeneration patterns in three distinct agricultural settlements in the Eastern Amazon to test the influence of land-use mosaics. The following questions are addressed: are the floristic structure and composition of regenerating trees affected by the various land-use types applied in the agricultural settlements? Do tree-regeneration patterns respond similarly to distinct land-use mosaics? Is there a relationship between tree regeneration and soil characteristics among the land-use types? The regeneration was inventoried at 45 sampling points in each settlement. At each sampling point, fourteen soil variables were analyzed. Nine different land-use types were considered. The floristic structure and composition of the settlements showed differences in the density of individuals and species and high species heterogeneity among the land-use types. The maximum Jaccard similarity coefficient found between land-use types was only 29%. Shade-tolerant species were the most diverse functional group in most land-use types, including pasture and annual crops, ranging from 91% of the number of species in the conserved and exploited forests of Travessão 338-S to 53% in the invaded pastures of Maçaranduba. The land-use types influenced significantly the floristic structure and composition of regenerating trees in two agricultural settlements, but not in third the settlement, which had greater forest cover. This finding demonstrates that the composition of each land-use mosaic, established by different management approaches, affects regeneration patterns. Tree regeneration was related to soil characteristics in all mosaics. Preparation of the area by burning was most likely the determining factor in the differences in soil characteristics between forests and agricultural areas.
McIntosh, Janice; McDonnell, Jeffrey J.; Peters, Norman E.
1999-01-01
We studied the temporal patterns of tracer throughput in the outflow of large (30 cm diameter by 38 cm long) undisturbed cores from the Panola Mountain Research Watershed, Georgia. Tracer breakthrough was affected by soil structure and rainfall intensity. Two rainfall intensities (20 and 40 mm hr-1) for separate Cl- and Br- amended solutions were applied to two cores (one extracted from a hillslope soil and one extracted from a residual clay soil on the ridge). For both low and high rainfall intensity experiments, preferential flow occurred in the clay core, but not in the hillslope core. The preferential flow is attributed to well-developed interpedal macrochannels that are commonly found in structured clay soils, characteristic of the ridge site. However, each rainfall intensity exceeded the matrix infiltration capacity at the top of the hillslope core, but did not exceed the matrix infiltration capacity at the middle and bottom of the hillslope core and at all levels in the clay core. Localized zones of saturation created when rainfall intensity exceeds the matrix infiltration capacity may cause water and tracer to overflow from the matrix into macrochannels, where preferential flow occurs to depth in otherwise unsaturated soil. Copyright © 1999 John Wiley & Sons, Ltd.
Soil bacterial diversity in degraded and restored lands of Northeast Brazil.
Araújo, Ademir Sérgio Ferreira; Borges, Clovis Daniel; Tsai, Siu Mui; Cesarz, Simone; Eisenhauer, Nico
2014-11-01
Land degradation deteriorates biological productivity and affects environmental, social, and economic sustainability, particularly so in the semi-arid region of Northeast Brazil. Although some studies exist reporting gross measures of soil microbial parameters and processes, limited information is available on how land degradation and restoration strategies influence the diversity and composition of soil microbial communities. In this study we compare the structure and diversity of bacterial communities in degraded and restored lands in Northeast Brazil and determine the soil biological and chemical properties influencing bacterial communities. We found that land degradation decreased the diversity of soil bacteria as indicated by both reduced operational taxonomic unit (OTU) richness and Shannon index. Soils under native vegetation and restoration had significantly higher bacterial richness and diversity than degraded soils. Redundancy analysis revealed that low soil bacterial diversity correlated with a high respiratory quotient, indicating stressed microbial communities. By contrast, soil bacterial communities in restored land positively correlated with high soil P levels. Importantly, however, we found significant differences in the soil bacterial community composition under native vegetation and in restored land, which may indicate differences in their functioning despite equal levels of bacterial diversity.
Inubushi, Kazuyuki; Liang, Jian; Zhu, Sipin; Wei, Zhenya; Guo, Xiaobin; Luo, Xianping
2018-01-01
Long-term unregulated mining of ion-adsorption clays (IAC) in China has resulted in severe ecological destruction and created large areas of wasteland in dire need of rehabilitation. Soil amendment and revegetation are two important means of rehabilitation of IAC mining wasteland. In this study, we used sludge biochar prepared by pyrolysis of municipal sewage sludge as a soil ameliorant, selected alfalfa as a revegetation plant, and conducted pot trials in a climate-controlled chamber. We investigated the effects of alfalfa revegetation, sludge biochar amendment, and their combined amendment on soil physicochemical properties in soil from an IAC mining wasteland as well as the impact of sludge biochar on plant growth. At the same time, we also assessed the impacts of these amendments on the soil microbial community by means of the Illumina Miseq sequences method. Results showed that alfalfa revegetation and sludge biochar both improved soil physicochemical properties and microbial community structure. When alfalfa revegetation and sludge biochar amendment were combined, we detected additive effects on the improvement of soil physicochemical properties as well as increases in the richness and diversity of bacterial and fungal communities. Redundancy analyses suggested that alfalfa revegetation and sludge biochar amendment significantly affected soil microbial community structure. Critical environmental factors consisted of soil available K, pH, organic matter, carbon–nitrogen ratio, bulk density, and total porosity. Sludge biochar amendment significantly promoted the growth of alfalfa and changed its root morphology. Combining alfalfa the revegetation with sludge biochar amendment may serve to not only achieve the revegetation of IAC mining wasteland, but also address the challenge of municipal sludge disposal by making the waste profitable. PMID:29751652
Luo, Caigui; Deng, Yangwu; Inubushi, Kazuyuki; Liang, Jian; Zhu, Sipin; Wei, Zhenya; Guo, Xiaobin; Luo, Xianping
2018-05-11
Long-term unregulated mining of ion-adsorption clays (IAC) in China has resulted in severe ecological destruction and created large areas of wasteland in dire need of rehabilitation. Soil amendment and revegetation are two important means of rehabilitation of IAC mining wasteland. In this study, we used sludge biochar prepared by pyrolysis of municipal sewage sludge as a soil ameliorant, selected alfalfa as a revegetation plant, and conducted pot trials in a climate-controlled chamber. We investigated the effects of alfalfa revegetation, sludge biochar amendment, and their combined amendment on soil physicochemical properties in soil from an IAC mining wasteland as well as the impact of sludge biochar on plant growth. At the same time, we also assessed the impacts of these amendments on the soil microbial community by means of the Illumina Miseq sequences method. Results showed that alfalfa revegetation and sludge biochar both improved soil physicochemical properties and microbial community structure. When alfalfa revegetation and sludge biochar amendment were combined, we detected additive effects on the improvement of soil physicochemical properties as well as increases in the richness and diversity of bacterial and fungal communities. Redundancy analyses suggested that alfalfa revegetation and sludge biochar amendment significantly affected soil microbial community structure. Critical environmental factors consisted of soil available K, pH, organic matter, carbon⁻nitrogen ratio, bulk density, and total porosity. Sludge biochar amendment significantly promoted the growth of alfalfa and changed its root morphology. Combining alfalfa the revegetation with sludge biochar amendment may serve to not only achieve the revegetation of IAC mining wasteland, but also address the challenge of municipal sludge disposal by making the waste profitable.
NASA Astrophysics Data System (ADS)
Börjesson, G.; Kätterer, T.; Kirchmann, H.
2012-04-01
Soil organic matter is a key attribute of soil fertility. The pool of soil organic C can be increased, either by mineral fertilisers or by adding organic amendments such as sewage sludge. Sewage sludge has positive effects on agricultural soils through the supply of organic matter and essential plant nutrients, but sludge may also contain unwanted heavy metals, xenobiotic substances and pathogens. One obvious effect of long-term sewage sludge addition is a decrease in soil pH, caused by N mineralisation followed by nitrification, sulphate formation and presence of organic acids with the organic matter added. The objective of this study was to investigate the effect of sewage sludge on the microbial biomass and community structure. Materials and methods We analysed soil samples from four sites where sewage sludge has been repeatedly applied in long-term field experiments situated in different parts of Sweden; Ultuna (59°49'N, 17°39'E, started 1956), Lanna (58°21'N, 13°06'E, started 1997-98), Petersborg (55°32'N, 13°00'E, started 1981) and Igelösa (55°45'N, 13°18'E, started 1981). In these four experiments, at least one sewage sludge treatment is included in the experimental design. In the Ultuna experiment, all organic fertilisers, including sewage sludge, are applied every second year, corresponding to 4 ton C ha-1. The Lanna experiment has a similar design, with 8 ton dry matter ha-1 applied every second year. Lanna also has an additional treatment in which metal salts (Cd, Cu, Ni and Zn) are added together with sewage sludge. At Petersborg and Igelösa, two levels of sewage sludge (4 or 12 ton dry matter ha-1 every 4th year) are compared with three levels of NPK fertiliser (0 N, ½ normal N and normal N). Topsoil samples (0-20 cm depth) from the four sites were analysed for total C, total N, pH and PLFAs (phospholipid fatty acids). In addition, crop yields were recorded. Results At all four sites, sewage sludge has had a positive effect on crop yields and soil organic matter levels. Correlations between soil organic matter and total PLFA contents showed highly positive correlations at all sites (with R-values between 0.72 and 0.88). To find out whether sewage sludge through its metal impurities could impose stress on the microbial biomass, we compared the correlations between all different fertilisers used and PLFAs. The slopes of these comparisons revealed that sludge did not differ from other fertiliser treatments, which means that our results contrast earlier reports on negative effects of metals in sludge on soil microbes. The microbial community structure, studied with principal component analysis of individual PLFAs, was strongly affected by changes in soil pH, and at those sites where sewage sludge had caused a low pH, Gram-positive bacteria were more dominant than in the other treatments. However, differences in community structure were larger between sites than between the treatments investigated in this study, thus indicating that the original soil properties were more important for the microbial community structure than the fertiliser treatments.
Collins, Courtney G; Stajich, Jason E; Weber, Sören E; Pombubpa, Nuttapon; Diez, Jeffrey M
2018-04-19
Global climate and land use change are altering plant and soil microbial communities worldwide, particularly in arctic and alpine biomes where warming is accelerated. The widespread expansion of woody shrubs into historically herbaceous alpine plant zones is likely to interact with climate to affect soil microbial community structure and function; however, our understanding of alpine soil ecology remains limited. This study aimed to (i) determine whether the diversity and community composition of soil fungi vary across elevation gradients and to (ii) assess the impact of woody shrub expansion on these patterns. In the White Mountains of California, sagebrush (Artemisia rothrockii) shrubs have been expanding upwards into alpine areas since 1960. In this study, we combined observational field data with a manipulative shrub removal experiment along an elevation transect of alpine shrub expansion. We utilized next-generation sequencing of the ITS1 region for fungi and joint distribution modelling to tease apart effects of the environment and intracommunity interactions on soil fungi. We found that soil fungal diversity declines and community composition changes with increasing elevation. Both abiotic factors (primarily soil moisture and soil organic C) and woody sagebrush range expansion had significant effects on these patterns. However, fungal diversity and relative abundance had high spatial variation, overwhelming the predictive power of vegetation type, elevation and abiotic soil conditions at the landscape scale. Finally, we observed positive and negative associations among fungal taxa which may be important in structuring community responses to global change. © 2018 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jesus, Ederson da C.; Liang, Chao; Quensen, John F.
Because soil microbes drive many of the processes underpinning ecosystem services provided by soils, understanding how cropping systems affect soil microbial communities is important for productive and sustainable management. We characterized and compared soil microbial communities under restored prairie and three potential cellulosic biomass crops (corn, switchgrass, and mixed prairie grasses) in two spatial experimental designs – side-by-side plots where plant communities were in their second year since establishment (i.e., intensive sites) and regionally distributed fields where plant communities had been in place for at least 10 years (i.e., extensive sites). We assessed microbial community structure and composition using lipidmore » analysis, pyrosequencing of rRNA genes (targeting fungi, bacteria, archaea, and lower eukaryotes), and targeted metagenomics of nifH genes. For the more recently established intensive sites, soil type was more important than plant community in determining microbial community structure, while plant community was the more important driver of soil microbial communities for the older extensive sites where microbial communities under corn were clearly differentiated from those under switchgrass and restored prairie. Here, bacterial and fungal biomasses, especially biomass of arbuscular mycorrhizal fungi, were higher under perennial grasses and restored prairie, suggesting a more active carbon pool and greater microbial processing potential, which should be beneficial for plant acquisition and ecosystem retention of carbon, water, and nutrients.« less
Jesus, Ederson da C.; Liang, Chao; Quensen, John F.; ...
2015-06-28
Because soil microbes drive many of the processes underpinning ecosystem services provided by soils, understanding how cropping systems affect soil microbial communities is important for productive and sustainable management. We characterized and compared soil microbial communities under restored prairie and three potential cellulosic biomass crops (corn, switchgrass, and mixed prairie grasses) in two spatial experimental designs – side-by-side plots where plant communities were in their second year since establishment (i.e., intensive sites) and regionally distributed fields where plant communities had been in place for at least 10 years (i.e., extensive sites). We assessed microbial community structure and composition using lipidmore » analysis, pyrosequencing of rRNA genes (targeting fungi, bacteria, archaea, and lower eukaryotes), and targeted metagenomics of nifH genes. For the more recently established intensive sites, soil type was more important than plant community in determining microbial community structure, while plant community was the more important driver of soil microbial communities for the older extensive sites where microbial communities under corn were clearly differentiated from those under switchgrass and restored prairie. Here, bacterial and fungal biomasses, especially biomass of arbuscular mycorrhizal fungi, were higher under perennial grasses and restored prairie, suggesting a more active carbon pool and greater microbial processing potential, which should be beneficial for plant acquisition and ecosystem retention of carbon, water, and nutrients.« less
NASA Astrophysics Data System (ADS)
Wahsha, Mohammad; Al-Rousan, Saber; Al-Jawasreh, Raid
2016-04-01
Soils are the major sink for potentially toxic substances (PTSs) such as heavy metals released into the environment by emissions from the quickly increasing of human impact including industrial mine tailings, disposal of high metal wastes, land misuse, wastewater irrigation, spillage of petrochemicals, and atmospheric deposition. The present study concerns the properties variability and soil biological health status in abandoned salt transportation port site in the Jordanian coast of the Gulf of Aqaba, Red Sea. Seven sites were selected according to different morphological and pedological conditions, anthropogenic impact and the same climate conditions. Successively, all locations were sampled for topsoil in the period between spring-summer 2014. Field observations as well as laboratory analysis including heavy metal concentrations (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn); soil chemo-physical parameters (pH, soil dry mass, carbonate, water holding, organic carbon content, soil particle size distribution), and quality of soil's biological community were determined. The anthropogenic influence related to former port activity on soils of the studied area is evident. Soils in the studied area site are highly contaminated by PTSs, mainly Cu and Zn, by 648, 298.6 mgKg-1respectively. Former activities proved to affect the microarthropods community altering both quantity and quality of soil and the chemo-physical structure of the microhabitats. The evaluation of soil biological quality index (QBS-ar) of the surface horizons from the study area is demonstrated that the area is "sufferings" since it is affected by PTSs contamination resulting in a failure in the ecological success of secondary recolonization after abandonment. However, there is an increasing need for further research in the soils of Aqaba focusing on soil health management , combining QBS-ar index with soil chemo-physical properties. Key words: Potentially Toxic Substances, Heavy Metals, Soil Quality.
Alele, Peter O; Sheil, Douglas; Surget-Groba, Yann; Lingling, Shi; Cannon, Charles H
2014-01-01
Uganda's forests are globally important for their conservation values but are under pressure from increasing human population and consumption. In this study, we examine how conversion of natural forest affects soil bacterial and fungal communities. Comparisons in paired natural forest and human-converted sites among four locations indicated that natural forest soils consistently had higher pH, organic carbon, nitrogen, and calcium, although variation among sites was large. Despite these differences, no effect on the diversity of dominant taxa for either bacterial or fungal communities was detected, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Composition of fungal communities did generally appear different in converted sites, but surprisingly, we did not observe a consistent pattern among sites. The spatial distribution of some taxa and community composition was associated with soil pH, organic carbon, phosphorus and sodium, suggesting that changes in soil communities were nuanced and require more robust metagenomic methods to understand the various components of the community. Given the close geographic proximity of the paired sampling sites, the similarity between natural and converted sites might be due to continued dispersal between treatments. Fungal communities showed greater environmental differentiation than bacterial communities, particularly according to soil pH. We detected biotic homogenization in converted ecosystems and substantial contribution of β-diversity to total diversity, indicating considerable geographic structure in soil biota in these forest communities. Overall, our results suggest that soil microbial communities are relatively resilient to forest conversion and despite a substantial and consistent change in the soil environment, the effects of conversion differed widely among sites. The substantial difference in soil chemistry, with generally lower nutrient quantity in converted sites, does bring into question, how long this resilience will last.
Alele, Peter O.; Sheil, Douglas; Surget-Groba, Yann; Lingling, Shi; Cannon, Charles H.
2014-01-01
Uganda's forests are globally important for their conservation values but are under pressure from increasing human population and consumption. In this study, we examine how conversion of natural forest affects soil bacterial and fungal communities. Comparisons in paired natural forest and human-converted sites among four locations indicated that natural forest soils consistently had higher pH, organic carbon, nitrogen, and calcium, although variation among sites was large. Despite these differences, no effect on the diversity of dominant taxa for either bacterial or fungal communities was detected, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Composition of fungal communities did generally appear different in converted sites, but surprisingly, we did not observe a consistent pattern among sites. The spatial distribution of some taxa and community composition was associated with soil pH, organic carbon, phosphorus and sodium, suggesting that changes in soil communities were nuanced and require more robust metagenomic methods to understand the various components of the community. Given the close geographic proximity of the paired sampling sites, the similarity between natural and converted sites might be due to continued dispersal between treatments. Fungal communities showed greater environmental differentiation than bacterial communities, particularly according to soil pH. We detected biotic homogenization in converted ecosystems and substantial contribution of β-diversity to total diversity, indicating considerable geographic structure in soil biota in these forest communities. Overall, our results suggest that soil microbial communities are relatively resilient to forest conversion and despite a substantial and consistent change in the soil environment, the effects of conversion differed widely among sites. The substantial difference in soil chemistry, with generally lower nutrient quantity in converted sites, does bring into question, how long this resilience will last. PMID:25118069
Biochemical and microbial soil functioning after application of the insecticide imidacloprid.
Cycoń, Mariusz; Piotrowska-Seget, Zofia
2015-01-01
Imidacloprid is one of the most commonly used insecticides in agricultural practice, and its application poses a potential risk for soil microorganisms. The objective of this study was to assess whether changes in the structure of the soil microbial community after imidacloprid application at the field rate (FR, 1mg/kg soil) and 10 times the FR (10× FR, 10mg/kg soil) may also have an impact on biochemical and microbial soil functioning. The obtained data showed a negative effect by imidacloprid applied at the FR dosage for substrate-induced respiration (SIR), the number of total bacteria, dehydrogenase (DHA), both phosphatases (PHOS-H and PHOS-OH), and urease (URE) at the beginning of the experiment. In 10× FR treated soil, decreased activity of SIR, DHA, PHOS-OH and PHOS-H was observed over the experimental period. Nitrifying and N2-fixing bacteria were the most sensitive to imidacloprid. The concentration of NO3(-) decreased in both imidacloprid-treated soils, whereas the concentration of NH4(+) in soil with 10× FR was higher than in the control. Analysis of the bacterial growth strategy revealed that imidacloprid affected the r- or K-type bacterial classes as indicated also by the decreased eco-physiological (EP) index. Imidacloprid affected the physiological state of culturable bacteria and caused a reduction in the rate of colony formation as well as a prolonged time for growth. Principal component analysis showed that imidacloprid application significantly shifted the measured parameters, and the application of imidacloprid may pose a potential risk to the biochemical and microbial activity of soils. Copyright © 2014. Published by Elsevier B.V.
Heathlands confronting global change: drivers of biodiversity loss from past to future scenarios
Fagúndez, Jaime
2013-01-01
Background Heathlands are dynamic plant communities characterized by a high cover of sclerophyllous, ericoid shrubs that develop over nutrient-poor soils. Interest in the preservation of these habitats in Europe has increased over the last decades, but over this time there has been a general decline in habitat quality, affecting community structure, ecosystem functions and biodiversity. Negative drivers that trigger these changes include land-use changes (i.e. habitat destruction and fragmentation), pollution, climate change, natural succession and human management, as well as the presence of invasive exotic species. Scope Based on recent scientific literature, the effect of each of these potential drivers on a wide set of factors, including physiological traits, species richness and diversity, community structure, ecosystem functions and soil conditions, is reviewed. The effects of these drivers are generally understood, but the direction and magnitude of factor interactions, whenever studied, have shown high variability. Conclusions Habitat loss and fragmentation affect sensitive species and ecosystem functions. The nature of the surrounding area will condition the quality of the heathland remnants by, for example, propagule pressure from invasive species. The dominant ericoid shrubs can be out-competed by vigorous perennial grasses with increased atmospheric nitrogen deposition, although interactions with climate and management practices may either counteract or enhance this process. Grazing or periodic burning promotes heath loss but site-specific combined treatments maintain species diversity and community structure. Climate change alone moderately affects plant diversity, community structure and ecosystem functions. Combined with other factors, climatic changes will condition heath development, mainly with regard to key aspects such as seed set and seedling establishment, rare species occurrence and nutrient cycling in the soil. It is essential to address the effects of not only individual factors, but their interactions, together with land-use history, on heathland development and conservation in order to predict habitat response to future scenarios. PMID:23223202
Heathlands confronting global change: drivers of biodiversity loss from past to future scenarios.
Fagúndez, Jaime
2013-02-01
Heathlands are dynamic plant communities characterized by a high cover of sclerophyllous, ericoid shrubs that develop over nutrient-poor soils. Interest in the preservation of these habitats in Europe has increased over the last decades, but over this time there has been a general decline in habitat quality, affecting community structure, ecosystem functions and biodiversity. Negative drivers that trigger these changes include land-use changes (i.e. habitat destruction and fragmentation), pollution, climate change, natural succession and human management, as well as the presence of invasive exotic species. Based on recent scientific literature, the effect of each of these potential drivers on a wide set of factors, including physiological traits, species richness and diversity, community structure, ecosystem functions and soil conditions, is reviewed. The effects of these drivers are generally understood, but the direction and magnitude of factor interactions, whenever studied, have shown high variability. Habitat loss and fragmentation affect sensitive species and ecosystem functions. The nature of the surrounding area will condition the quality of the heathland remnants by, for example, propagule pressure from invasive species. The dominant ericoid shrubs can be out-competed by vigorous perennial grasses with increased atmospheric nitrogen deposition, although interactions with climate and management practices may either counteract or enhance this process. Grazing or periodic burning promotes heath loss but site-specific combined treatments maintain species diversity and community structure. Climate change alone moderately affects plant diversity, community structure and ecosystem functions. Combined with other factors, climatic changes will condition heath development, mainly with regard to key aspects such as seed set and seedling establishment, rare species occurrence and nutrient cycling in the soil. It is essential to address the effects of not only individual factors, but their interactions, together with land-use history, on heathland development and conservation in order to predict habitat response to future scenarios.
NASA Astrophysics Data System (ADS)
López-Martín, María; Velasco-Molina, Marta; Knicker, Heike
2014-05-01
Input of charcoal after forest fires can lead to considerable changes of the quality and quantity of organic matter in soils (SOM). This affects not only its organic C pool but also shifts its organic N composition from peptideous to N-heterocyclic structures (Knicker et al., 1996). In the present study we sought to understand how this alteration is affecting the N availability in fire affected soils. Therefore, we performed a medium-term pot experiment in which grass material (Lolium perenne) was grown on soil material (Cambisols) of a fire-affected and a fire-unaffected forest. The soils were topped with mixtures of ground fresh grass residues and KNO3 or charred grass material (pyrogenic organic matter; PyOM) with KNO3. Here, either the organic N or the inorganic N was isotopically enriched with 15N. Following the 15N concentration in the soil matrix and the growing plants as a function of incubation time (up to 16 months) by isotopic ratio mass spectrometry allowed us to indentify which N-source is most efficiently stabilized and how PyOM is affecting this process. Preliminary data indicated that only after the germination of the seeds, the concentration of the added inorganic 15N in the soil decreased considerably most likely due to its uptake by the growing plants but also due to N-losses by leaching and volatilization. Additional addition of plant residues or PyOM had no major effect on this behavior. Covering the soil with 15N-grass residues which simulates a litter layer led to a slow increase of the 15N concentration in the mineral soil during the first month. This is best explained by the ongoing incorporation of the litter into the soil matrix. After that a small decrease was observed, showing that the organic N was only slowly mobilized. Addition of 15N-PyOM showed a comparable behavior but with 15N concentration in the soil corresponding to twice of those of the pots amended with 15N-grass residues. After that the 15N concentrations decrease quickly and approached those of the pots with fresh grass litter supporting the mobilization of black nitrogen and its uptake by plants. Our results point to the suggestion that N in PyOM and humified SOM have comparable biochemical stability. In order to test this hypothesis, a further experiment was set up mixtures of soil and humified 15N grass residues or aged 15N grass char to which fresh PyOM or fresh grass residues, respectively, were added. In addition solid-state 15N NMR spectroscopy was applied to disclose the nature of the sequestered N. REFERENCES Knicker, H., Almendros, G., González-Vila, F.J., Martín, F., Lüdemann, H.-D., 1996. 13C- and 15N-NMR spectroscopic examination of the transformation of organic nitrogen in plant biomass during thermal treatment. Soil Biology and Biochemistry, 28, 1053-1060.
Soil type-depending effect of paddy management: composition and distribution of soil organic matter
NASA Astrophysics Data System (ADS)
Urbanski, Livia; Kölbl, Angelika; Lehndorff, Eva; Houtermans, Miriam; Schad, Peter; Zhang, Gang-Lin; Rahayu Utami, Sri; Kögel-Knabner, Ingrid
2016-04-01
Paddy soil management is assumed to promote soil organic matter accumulation and specifically lignin caused by the resistance of the aromatic lignin structure against biodegradation under anaerobic conditions during inundation of paddy fields. The present study investigates the effect of paddy soil management on soil organic matter composition compared to agricultural soils which are not used for rice production (non-paddy soils). A variety of major soil types, were chosen in Indonesia (Java), including Alisol, Andosol and Vertisol sites (humid tropical climate of Java, Indonesia) and in China Alisol sites (humid subtropical climate, Nanjing). This soils are typically used for rice cultivation and represent a large range of soil properties to be expected in Asian paddy fields. All topsoils were analysed for their soil organic matter composition by solid-state 13C nuclear magnetic resonance spectroscopy and lignin-derived phenols by CuO oxidation method. The soil organic matter composition, revealed by solid-state 13C nuclear magnetic resonance, was similar for the above named different parent soil types (non-paddy soils) and was also not affected by the specific paddy soil management. The contribution of lignin-related carbon groups to total SOM was similar in the investigated paddy and non-paddy soils. A significant proportion of the total aromatic carbon in some paddy and non-paddy soils was attributed to the application of charcoal as a common management practise. The extraction of lignin-derived phenols revealed low VSC (vanillyl, syringyl, cinnamyl) values for all investigated soils, being typical for agricultural soils. An inherent accumulation of lignin-derived phenols due to paddy management was not found. Lignin-derived phenols seem to be soil type-dependent, shown by different VSC concentrations between the parent soil types. The specific paddy management only affects the lignin-derived phenols in Andosol-derived paddy soils which are characterized by significantly higher VSC values compared to their parent soil types. However, the higher organic carbon concentrations in Andosol and Alisol (China)-derived paddy soils compared to their parent soil types, could not be explained by an enrichment of lignin-derived phenols. It seems that site specific incorporation of crop residues and properties of the parent soil types are likely more important for organic carbon contents and soil organic matter composition than the effect of paddy management itself.
Zhang, Cui-Jing; Delgado-Baquerizo, Manuel; Drake, John E; Reich, Peter B; Tjoelker, Mark G; Tissue, David T; Wang, Jun-Tao; He, Ji-Zheng; Singh, Brajesh K
2018-04-01
Plant characteristics in different provenances within a single species may vary in response to climate change, which might alter soil microbial communities and ecosystem functions. We conducted a glasshouse experiment and grew seedlings of three provenances (temperate, subtropical and tropical origins) of a tree species (i.e., Eucalyptus tereticornis) at different growth temperatures (18, 21.5, 25, 28.5, 32 and 35.5°C) for 54 days. At the end of the experiment, bacterial and fungal community composition, diversity and abundance were characterized. Measured soil functions included surrogates of microbial respiration, enzyme activities and nutrient cycling. Using Permutation multivariate analysis of variance (PerMANOVA) and network analysis, we found that the identity of tree provenances regulated both structure and function of soil microbiomes. In some cases, tree provenances substantially affected the response of microbial communities to the temperature treatments. For example, we found significant interactions of temperature and tree provenance on bacterial community and relative abundances of Chloroflexi and Zygomycota, and inorganic nitrogen. Microbial abundance was altered in response to increasing temperature, but was not affected by tree provenances. Our study provides novel evidence that even a small variation in biotic components (i.e., intraspecies tree variation) can significantly influence the response of soil microbial community composition and specific soil functions to global warming. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Nowak, Agnieszka; Mrozik, Agnieszka
2018-06-01
Soil contamination with chlorophenols is a serious problem all over the world due to their common use in different branches of industry and agriculture. The objective of this study was to determine whether bioaugmenting soil with single Pseudomonas sp. CF600 and Stenotrophomonas maltophilia KB2 and additional carbon sources such as phenol (P) and sodium benzoate (SB) could enhance the degradation of 4-chlorophenol (4-CP). During the degradation experiment, the number of bacteria as well as the structural and functional diversity of the soil microbial communities were determined. It was found that the most effective degradation of 4-CP in the soil was observed after it was inoculated with CF600 and the addition of SB. The biodegradation of five doses of 4-CP in this soil proceeded within 100 days. At the same time, the rate of the disappearance of 4-CP in the soil that had been bioaugmented with CF600 and contaminated with 4-CP and P was 5-6.5 times lower compared to its rate of disappearance in the soil that had been contaminated with 4-CP. The biodegradation of 4-CP in all of the treated and untreated soils was accompanied by a systematic decrease in the number of heterotrophic bacteria (THB) ranging between 13 and 40%. It was also proven that the tested aromatic compounds affected the soil microbial community structure through an increase in the marker fatty acids for Gram-negative bacteria (BG-) and fungi (F). The essential changes in the patterns of the fatty acid methyl esters (FAMEs) for the polluted soil included an increase in the fatty acid saturation and hydroxy fatty acid abundance. The obtained results also indicated that the introduction of CF600 into the soil contaminated with 4-CP and SB or P caused an increase in the functional diversity of the soil microorganisms. In contrast, in the soil that had been inoculated with KB2 and in the non-inoculated soil, the addition of 4-CP and P decreased the microbial activity. In conclusion, the inoculation of both strains into contaminated soil with aromatic compounds caused irreversible changes in the functional and structural diversity of the soil microbial communities. Copyright © 2018 Elsevier Ltd. All rights reserved.
Riber, Leise; Poulsen, Pernille H B; Al-Soud, Waleed A; Skov Hansen, Lea B; Bergmark, Lasse; Brejnrod, Asker; Norman, Anders; Hansen, Lars H; Magid, Jakob; Sørensen, Søren J
2014-10-01
We investigated immediate and long-term effects on bacterial populations of soil amended with cattle manure, sewage sludge or municipal solid waste compost in an ongoing agricultural field trial. Soils were sampled in weeks 0, 3, 9 and 29 after fertilizer application. Pseudomonas isolates were enumerated, and the impact on soil bacterial community structure was investigated using 16S rRNA amplicon pyrosequencing. Bacterial community structure at phylum level remained mostly unaffected. Actinobacteria, Proteobacteria and Chloroflexi were the most prevalent phyla significantly responding to sampling time. Seasonal changes seemed to prevail with decreasing bacterial richness in week 9 followed by a significant increase in week 29 (springtime). The Pseudomonas population richness seemed temporarily affected by fertilizer treatments, especially in sludge- and compost-amended soils. To explain these changes, prevalence of antibiotic- and mercury-resistant pseudomonads was investigated. Fertilizer amendment had a transient impact on the resistance profile of the soil community; abundance of resistant isolates decreased with time after fertilizer application, but persistent strains appeared multiresistant, also in unfertilized soil. Finally, the ability of a P. putida strain to take up resistance genes from indigenous soil bacteria by horizontal gene transfer was present only in week 0, indicating a temporary increase in prevalence of transferable antibiotic resistance genes. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Micromorphological characteristics of sandy forest soils recently impacted by wildfires in Russia
NASA Astrophysics Data System (ADS)
Maksimova, Ekaterina; Abakumov, Evgeny
2017-04-01
Two fire-affected soils were studied using micromorphological methods. The objective of the paper is to assess and compare fire effects on the micropedological organisation of soils in a forest-steppe zone of central Russia (Volga Basin, Togliatti city). Samples were collected in the green zone of Togliatti city. The results showed that both soils were rich in quartz and feldspar. Mica was highly present in soils affected by surface fires, while calcium carbonates were identified in the soils affected by crown fires. The type of plasma is humus-clay, but the soil assemblage is plasma-silt with a prevalence of silt. Angular and subangular grains are the most dominant soil particulates. No evidence of intensive weathering was detected. There was a decrease in the porosity of soils affected by fires as a consequence of soil pores filled with ash and charcoal.
Ren, Wenjie; Ren, Gaidi; Teng, Ying; Li, Zhengao; Li, Lina
2015-10-30
The increased application of graphene raises concerns about its environmental impact, but little information is available on the effect of graphene on the soil microbial community. This study evaluated the impact of graphene on the structure, abundance and function of the soil bacterial community based on quantitative real-time polymerase chain reaction (qPCR), pyrosequencing and soil enzyme activities. The results show that the enzyme activities of dehydrogenase and fluorescein diacetate (FDA) esterase and the biomass of the bacterial populations were transiently promoted by the presence of graphene after 4 days of exposure, but these parameters recovered completely after 21 days. Pyrosequencing analysis suggested a significant shift in some bacterial populations after 4 days, and the shift became weaker or disappeared as the exposure time increased to 60 days. During the entire exposure process, the majority of bacterial phylotypes remained unaffected. Some bacterial populations involved in nitrogen biogeochemical cycles and the degradation of organic compounds can be affected by the presence of graphene. Copyright © 2015 Elsevier B.V. All rights reserved.
Study of microarthopod communities to assess soil quality in different managed vineyards
NASA Astrophysics Data System (ADS)
Gagnarli, E.; Goggioli, D.; Tarchi, F.; Guidi, S.; Nannelli, R.; Vignozzi, N.; Valboa, G.; Lottero, M. R.; Corino, L.; Simoni, S.
2015-01-01
Land use influences the abundance and diversity of soil arthropods. The evaluation of the impact of different management strategies on soil quality is increasingly requested. The determination of communities' structures of edaphic fauna can represent an efficient tool. In this study, in some vineyards in Piedmont (Italy), the effects of two different management systems, organic and integrated pest management (IPM), on soil biota were evaluated. As microarthropods living in soil surface are an important component of soil ecosystem interacting with all the other system components, a multi disciplinary approach was adopted by characterizing also some soil physical and chemical characteristics (soil texture, soil pH, total organic carbon, total nitrogen, calcium carbonate). Soil samplings were carried out on Winter 2011 and Spring 2012. All specimens were counted and determined up to the order level. The biological quality of the soil was defined through the determination of ecological indices, such as QBS-ar, species richness and indices of Shannon-Weaver, Pielou, Margalef and Simpson. The mesofauna abundance was affected by both the type of management and the soil texture. The analysis of microarthropod communities by QBS-ar showed higher values in organic than in IPM managed vineyards; in particular, the values registered in organic vineyards were similar to those characteristic of preserved soils.
Burke, David J
2015-06-01
Seasonal and interannual variability in temperature, precipitation and chemical resources may regulate fungal community structure in forests but the effect of such variability is still poorly understood. In this study, I examined changes in fungal communities over two years and how these changes were correlated to natural variation in soil conditions. Soil cores were collected every month for three years from permanent plots established in an old-growth hardwood forest, and molecular methods were used to detect fungal species. Species richness and diversity were not consistent between years with richness and diversity significantly affected by season in one year but significantly affected by depth in the other year. These differences were associated with variation in late winter snow cover. Fungal communities significantly varied by plot location, season and depth and differences were consistent between years but fungal species within the community were not consistent in their seasonality or in their preference for certain soil depths. Some fungal species, however, were found to be consistently correlated with soil chemistry across sampled years. These results suggest that fungal community changes reflect the behavior of the individual species within the community pool and how those species respond to local resource availability. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Phenolic acid sorption to biochars from mixtures of feedstock materials
USDA-ARS?s Scientific Manuscript database
In an effort to customize biochars for soil amendments, multiple feedstocks have been combined in various ratios prior to pyrolysis. The resulting variation in the chemistry and structure can affect a biochar’s adsorption capacity, which influences the bioavailability of many chemical compounds in t...
Feng, Y.; Stoeckel, D.M.; Van Santen, E.; Walker, R.H.
2002-01-01
The sensitivity of creeping bentgrass (Agrostis palustris Huds.) to the extreme heat found in the southeastern United States has led to the development of new greens-management methods. The purpose of this study was to examine the effects of subsurface aeration and growth regulator applications on soil microbial communities and mycorrhizal colonization rates in a creeping bentgrass putting green. Two cultivars (Crenshaw and Penncross), a growth regulator (trinexapacethyl), and subsurface aeration were evaluated in cool and warm seasons. Total bacterial counts were higher in whole (unsieved) soils than in sieved soils, indicating a richer rhizosphere soil environment. Mycorrhizal infection rates were higher in trinexapac-ethyl (TE) treated plants. High levels of hyphal colonization and relatively low arbuscule and vesicle occurrence were observed. Principal components analysis of whole-soil fatty acid methyl ester (FAME) profiles indicated that warm-season microbial populations in whole and sieved soils had similar constituents, but the populations differed in the cool season. FAME profiles did not indicate that subsurface aeration and TE application affected soil microbial community structure. This is the first reported study investigating the influences of subsurface aeration and TE application on soil microorganisms in a turfgrass putting green soil.
Tedersoo, Leho; Bahram, Mohammad; Cajthaml, Tomáš; Põlme, Sergei; Hiiesalu, Indrek; Anslan, Sten; Harend, Helery; Buegger, Franz; Pritsch, Karin; Koricheva, Julia; Abarenkov, Kessy
2016-01-01
Plant species richness and the presence of certain influential species (sampling effect) drive the stability and functionality of ecosystems as well as primary production and biomass of consumers. However, little is known about these floristic effects on richness and community composition of soil biota in forest habitats owing to methodological constraints. We developed a DNA metabarcoding approach to identify the major eukaryote groups directly from soil with roughly species-level resolution. Using this method, we examined the effects of tree diversity and individual tree species on soil microbial biomass and taxonomic richness of soil biota in two experimental study systems in Finland and Estonia and accounted for edaphic variables and spatial autocorrelation. Our analyses revealed that the effects of tree diversity and individual species on soil biota are largely context dependent. Multiple regression and structural equation modelling suggested that biomass, soil pH, nutrients and tree species directly affect richness of different taxonomic groups. The community composition of most soil organisms was strongly correlated due to similar response to environmental predictors rather than causal relationships. On a local scale, soil resources and tree species have stronger effect on diversity of soil biota than tree species richness per se. PMID:26172210
Tedersoo, Leho; Bahram, Mohammad; Cajthaml, Tomáš; Põlme, Sergei; Hiiesalu, Indrek; Anslan, Sten; Harend, Helery; Buegger, Franz; Pritsch, Karin; Koricheva, Julia; Abarenkov, Kessy
2016-02-01
Plant species richness and the presence of certain influential species (sampling effect) drive the stability and functionality of ecosystems as well as primary production and biomass of consumers. However, little is known about these floristic effects on richness and community composition of soil biota in forest habitats owing to methodological constraints. We developed a DNA metabarcoding approach to identify the major eukaryote groups directly from soil with roughly species-level resolution. Using this method, we examined the effects of tree diversity and individual tree species on soil microbial biomass and taxonomic richness of soil biota in two experimental study systems in Finland and Estonia and accounted for edaphic variables and spatial autocorrelation. Our analyses revealed that the effects of tree diversity and individual species on soil biota are largely context dependent. Multiple regression and structural equation modelling suggested that biomass, soil pH, nutrients and tree species directly affect richness of different taxonomic groups. The community composition of most soil organisms was strongly correlated due to similar response to environmental predictors rather than causal relationships. On a local scale, soil resources and tree species have stronger effect on diversity of soil biota than tree species richness per se.
Defoliating Insect Mass Outbreak Affects Soil N Fluxes and Tree N Nutrition in Scots Pine Forests
Grüning, Maren M.; Simon, Judy; Rennenberg, Heinz; l-M-Arnold, Anne
2017-01-01
Biotic stress by mass outbreaks of defoliating pest insects does not only affect tree performance by reducing its photosynthetic capacity, but also changes N cycling in the soil of forest ecosystems. However, how insect induced defoliation affects soil N fluxes and, in turn, tree N nutrition is not well-studied. In the present study, we quantified N input and output fluxes via dry matter input, throughfall, and soil leachates. Furthermore, we investigated the effects of mass insect herbivory on tree N acquisition (i.e., organic and inorganic 15N net uptake capacity of fine roots) as well as N pools in fine roots and needles in a Scots pine (Pinus sylvestris L.) forest over an entire vegetation period. Plots were either infested by the nun moth (Lymantria monacha L.) or served as controls. Our results show an increased N input by insect feces, litter, and throughfall at the infested plots compared to controls, as well as increased leaching of nitrate. However, the additional N input into the soil did not increase, but reduce inorganic and organic net N uptake capacity of Scots pine roots. N pools in the fine roots and needles of infested trees showed an accumulation of total N, amino acid-N, protein-N, and structural N in the roots and the remaining needles as a compensatory response triggered by defoliation. Thus, although soil N availability was increased via surplus N input, trees did not respond with an increased N acquisition, but rather invested resources into defense by accumulation of amino acid-N and protein-N as a survival strategy. PMID:28638396
Effect of different kinds of crop residues on aggregate-protected soil organic matter fractions.
NASA Astrophysics Data System (ADS)
Huisz, A.
2009-04-01
Organic matter content of soils determines many important soil properties, such as soil structure, fertility and water-management. To improve its fertility and quality, returning different kinds of organic matter to soil has a long historical tradition. Ameliorating of soil and enhancing its fertility by enhancing its carbon stock with organic matter incorporation (like farmyard manure, crop residues or green manure) are general practices, but the extent of the amelioration depends much on several factors such as quantity, quality of the used organic matters. Quality of soil organic matters is affected by their chemical build-up, which differs by their origin (i.e. plant species); and their decomposability is affected by particle-size, protection by soil aggregates and the extent of their association to mineral surfaces. In our paper we investigated the effect of three different kinds of organic matter incorporation on aggregate-protected organic matter fractions: (1) Maize stem (M), (2) Wheat straw (W), and (3) Maize stem & Wheat straw (MW). Our samples were originated from Keszthely, Western Hungary, where the texture of the investigated soil is Sandy loam, the type of soil is Eutric Cambisol (soil type FAO), or Alfisol (soil type USDA). SOM fractions might be isolated and measured by physical fractionation of soil (Cambardella and Elliott (1992), Jensen et al. (1992)). Firstly, microaggregates were separated according to their particle-size with physical fractionation (i.e. wet sieving) (Six et al. (2000a)). Each sample was pre-treated by capillary wetting and was sieved for 2 min in an analytic sieve shaker machine with the following aperture sizes: 2 mm, 250 μm, 53 μm. Therefore 4 fractions were resulted: (1) the >2000 μm large macro-, (2) the 250-2000 μm small macro-, (3) the 53-250 μm microaggregates, and (4) the
NASA Astrophysics Data System (ADS)
Demelash, Nigus; Flagler, Jared; Renschler, Chris; Strohmeier, Stefan; Holzmann, Hubert; Feras, Ziadat; Addis, Hailu; Zucca, Claudio; Bayu, Wondimu; Klik, Andreas
2017-04-01
Soil degradation is a major issue in the Ethiopian highlands which are most suitable for agriculture and, therefore, support a major part of human population and livestock. Heavy rainstorms during the rainy season in summer create soil erosion and runoff processes which affect soil fertility and food security. In the last years programs for soil conservation and afforestation were initiated by the Ethiopian government to reduce erosion risk, retain water in the landscape and improve crop yields. The study was done in two adjacent watersheds in the Northwestern highlands of Ethiopia. One of the watersheds is developed by soil and water conservation structures (stone bunds) in 2011 and the other one is without soil and water conservation structures. Spatial distribution of soil textures and other soil properties were determined in the field and in the laboratory and a soil map was derived. A land use map was evaluated based on satellite images and ground truth data. A Digital Elevation Model of the watershed was developed based on conventional terrestrial surveying using a total station. At the outlet of the watersheds weirs with cameras were installed to measure surface runoff. During each event runoff samples were collected and sediment concentration was analyzed. The objective of this study is 1) to assess the impact of stone bunds on runoff and erosion processes by using simulation models, and 2) to compare the performance of two soil erosion models in predicting the measurements. The selected erosion models were the Soil and Water Assessment Tool (SWAT) and the Geospatial Interface to the Water Erosion Prediction Project (GeoWEPP). The simulation models were calibrated/verified for the 2011-2013 periods and validated with 2014-2015 data. Results of this comparison will be presented.
pH regulates ammonia-oxidizing bacteria and archaea in paddy soils in Southern China.
Li, Hu; Weng, Bo-Sen; Huang, Fu-Yi; Su, Jian-Qiang; Yang, Xiao-Ru
2015-07-01
Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in nitrogen cycling. However, the effects of environmental factors on the activity, abundance, and diversity of AOA and AOB and the relative contributions of these two groups to nitrification in paddy soils are not well explained. In this study, potential nitrification activity (PNA), abundance, and diversity of amoA genes from 12 paddy soils in Southern China were determined by potential nitrification assay, quantitative PCR, and cloning. The results showed that PNA was highly variable between paddy soils, ranging from 4.05 ± 0.21 to 9.81 ± 1.09 mg NOx-N kg(-1) dry soil day(-1), and no significant correlation with soil parameters was found. The abundance of AOA was predominant over AOB, indicating that AOA may be the major members in aerobic ammonia oxidation in these paddy soils. Community compositions of AOA and AOB were highly variable among samples, but the variations were best explained by pH. AOA sequences were affiliated to the Nitrosopumilus cluster and Nitrososphaera cluster, and AOB were classified into the lineages of Nitrosospira and Nitrosomonas, with Nitrosospira being predominant over Nitrosomonas, accounting for 83.6 % of the AOB community. Moreover, the majority of Nitrosomonas was determined in neutral soils. Canonical correspondence analysis (CCA) analysis further demonstrated that AOA and AOB community structures were significantly affected by pH, soil total organic carbon, total nitrogen, and C/N ratio, suggesting that these factors exert strong effects on the distribution of AOB and AOA in paddy soils in Southern China. In conclusion, our results imply that soil pH was a key explanatory variable for both AOA and AOB community structure and nitrification activity.
Effects of Recurring Droughts on Extracellular Enzyme Activity in Mountain Grassland
NASA Astrophysics Data System (ADS)
Fuchslueger, L.; Bahn, M.; Kienzl, S.; Hofhansl, F.; Schnecker, J.; Richter, A.
2015-12-01
Water availability is a key factor for biogeochemical processes and determines microbial activity and functioning, and thereby organic matter decomposition in soils by affecting the osmotic potential, soil pore connectivity, substrate diffusion and nutrient availability. Low water availability during drought periods therefore directly affects microbial activity. Recurring drought periods likely induce shifts in microbial structure that might be reflected in altered responses of microbial turnover of organic matter by extracellular enzymes. To study this we measured a set of potential extracellular enzyme activity rates (cellobiohydrolase CBH; leucine-amino-peptidase LAP; phosphatase PHOS; phenoloxidase POX), in grassland soils that were exposed to extreme experimental droughts during the growing seasons of up to five subsequent years. During the first drought period after eight weeks of rain exclusion all measured potential enzyme activities were significantly decreased. In parallel, soil extractable organic carbon and nitrogen concentrations increased and microbial community structure, determined by phospholipid fatty acid analysis, changed. In soils that were exposed to two and three drought periods only PHOS decreased. After four years of drought again CBH, PHOS and POX decreased, while LAP was unaffected; after five years of drought PHOS and POX decreased and CBH and LAP remained stable. Thus, our results suggest that recurring extreme drought events can cause different responses of extracellular enzyme activities and that the responses change over time. We will discuss whether and to what degree these changes were related to shifts in microbial community composition. However, independent of whether a solitary or a recurrent drought was imposed, in cases when enzyme activity rates were altered during drought, they quickly recovered after rewetting. Overall, our data suggest that microbial functioning in mountain grassland is sensitive to drought, but highly resilient even after five years of drought.
Long-term forest soil warming alters microbial communities in temperate forest soils
DeAngelis, Kristen M.; Pold, Grace; Topçuoğlu, Begüm D.; van Diepen, Linda T. A.; Varney, Rebecca M.; Blanchard, Jeffrey L.; Melillo, Jerry; Frey, Serita D.
2015-01-01
Soil microbes are major drivers of soil carbon cycling, yet we lack an understanding of how climate warming will affect microbial communities. Three ongoing field studies at the Harvard Forest Long-term Ecological Research (LTER) site (Petersham, MA) have warmed soils 5°C above ambient temperatures for 5, 8, and 20 years. We used this chronosequence to test the hypothesis that soil microbial communities have changed in response to chronic warming. Bacterial community composition was studied using Illumina sequencing of the 16S ribosomal RNA gene, and bacterial and fungal abundance were assessed using quantitative PCR. Only the 20-year warmed site exhibited significant change in bacterial community structure in the organic soil horizon, with no significant changes in the mineral soil. The dominant taxa, abundant at 0.1% or greater, represented 0.3% of the richness but nearly 50% of the observations (sequences). Individual members of the Actinobacteria, Alphaproteobacteria and Acidobacteria showed strong warming responses, with one Actinomycete decreasing from 4.5 to 1% relative abundance with warming. Ribosomal RNA copy number can obfuscate community profiles, but is also correlated with maximum growth rate or trophic strategy among bacteria. Ribosomal RNA copy number correction did not affect community profiles, but rRNA copy number was significantly decreased in warming plots compared to controls. Increased bacterial evenness, shifting beta diversity, decreased fungal abundance and increased abundance of bacteria with low rRNA operon copy number, including Alphaproteobacteria and Acidobacteria, together suggest that more or alternative niche space is being created over the course of long-term warming. PMID:25762989
Tuo, Xiaxia; Gu, Jie; Wang, Xiaojuan; Sun, YiXin; Duan, Manli; Sun, Wei; Yin, Yanan; Guo, Aiyun; Zhang, Li
2018-04-01
The presence of high concentrations of residual antibiotics and antibiotic resistance genes (ARGs) in soil may pose potential health and environmental risks. This study investigated the prevalence of plasmid-mediated quinolone resistance (PMQR) genes, copper resistance genes (CRGs), and the bacterial communities in a soil-ryegrass pot system co-polluted with copper and ciprofloxacin (CIP; 0, 20, or 80 mg kg -1 dry soil). Compared with the samples on day 0, the total relative abundances of the PMQR genes and mobile genetic elements (MGEs) were reduced significantly by 80-89% in the ryegrass and soil by the cutting stage (after 75 days). The abundances of PMQR genes and MGEs were reduced by 63-81% in soil treated with 20 mg kg -1 CIP compared with the other treatments, but the abundances of CRGs increased by 18-42%. The presence of 80 mg kg -1 CIP affected the microbial community structure in the soil by increasing the abundances of Acidobacteria and Thaumarchaeota, but decreasing those of Firmicutes. Redundancy analysis indicated that the pH and microbial composition were the main factors that affected the variations in PMQR genes, MGEs, and CRGs, where they could explain 42.2% and 33.3% of the variation, respectively. Furthermore, intI2 may play an important role in the transfer of ARGs. We found that 80 mg kg -1 CIP could increase the abundances of ARGs and CRGs in a soil-ryegrass pot system. Copyright © 2018 Elsevier Ltd. All rights reserved.
Role of organic matter on aggregate stability and related mechanisms through organic amendments
NASA Astrophysics Data System (ADS)
Zaher, Hafida
2010-05-01
To date, only a few studies have tried to simultaneously compare the role of neutral and uronic sugars and lipids on soil structural stability. Moreover, evidence for the mechanisms involved has often been established following wetting of moist aggregates after various pre-treatments thus altering aggregate structure and resulting in manipulations on altered aggregates on which the rapid wetting process may not be involved anymore. To the best of our knowledge, the objective of this work was to study the role of neutral and uronic sugars and lipids in affecting key mechanisms (swelling rate, pressure evolution) involved in the stabilization of soil structure. A long-term incubation study (48-wk) was performed on a clay loam and a silty-clay loam amended with de-inking-secondary sludge mix at three rates (8, 16 and 24 Mg dry matter ha-1), primary-secondary sludge mix at one rate (18 Mg oven-dry ha-1) and composted de-inking sludge at one rate (24 Mg ha-1). Different structural stability indices (stability of moist and dry aggregates, the amount of dispersible clay and loss of soil material following sudden wetting) were measured on a regular basis during the incubation, along with CO2 evolved, neutral and uronic sugar, and lipid contents. During the course of the incubations, significant increases in all stability indices were measured for both soil types. In general, the improvements in stability were proportional to the amount of C added as organic amendments. These improvements were linked to a very intense phase of C mineralization and associated with increases in neutral and uronic sugars as well as lipid contents. The statistical relationships found between the different carbonaceous fractions and stability indices were all highly significant and indicated no clear superiority of one fraction over another. Paper sludge amendments also resulted in significant decreases in maximum internal pressure of aggregate and aggregate swelling following immersion in water, two mechanisms affecting structural stability. Overall, the results suggest that reduction in maximum internal pressure induced by organic amendments most likely resulted from increases in pore surface roughness and pore occlusion rather than by increase in surface wetting angles. This study also supports the view of a non specific action of the lipids, neutral and uronic sugars on aggregate stability to rapid wetting. Key words: soil aggregate stability, polysaccharides, lipids, mechanisms, organic matter
Delgado-Moreno, Laura; Almendros, Gonzalo; Peña, Aránzazu
2007-02-07
Raw olive-mill waste and soil amendments obtained from their traditional composting or vermicomposting were added, at rates equivalent to 200 Mg ha-1, to a calcareous silty clay loam soil in a laboratory test, in order to improve its fertility and physicochemical characteristics. In particular, the effects on the sorption-desorption processes of four triazine herbicides have been examined. We found that comparatively hydrophobic herbicides terbuthylazine and prometryn increased their retention on amended soil whereas the more polar herbicides simazine and cyanazine were less affected. Soil application of olive cake, without transformation, resulted in the highest herbicide retention. Its relatively high content in aliphatic fractions and lipids could explain the increased herbicide retention through hydrophobic bonding and herbicide diffusion favored by poorly condensed macromolecular structures. On the other hand, the condensed aromatic structure of the compost and vermicompost from olive cake could hinder diffusion processes, resulting in lower herbicide sorption. In fact, the progressive humification in soil of olive-mill solid waste led to a decrease of sorption capacity, which suggested important changes in organic matter quality and interactions during the mineralization process. When soil amended with vermicompost was incubated for different periods of time, the enhanced herbicide sorption capacity persisted for 2 months. Pesticide desorption was reduced by the addition of fresh amendments but was enhanced during the transformation process of amendments in soil. Our results indicate the potential of soil amendments based on olive-mill wastes in the controlled, selective release of triazine herbicides, which varies depending on the maturity achieved by their biological transformation.
Using SMAP to identify structural errors in hydrologic models
NASA Astrophysics Data System (ADS)
Crow, W. T.; Reichle, R. H.; Chen, F.; Xia, Y.; Liu, Q.
2017-12-01
Despite decades of effort, and the development of progressively more complex models, there continues to be underlying uncertainty regarding the representation of basic water and energy balance processes in land surface models. Soil moisture occupies a central conceptual position between atmosphere forcing of the land surface and resulting surface water fluxes. As such, direct observations of soil moisture are potentially of great value for identifying and correcting fundamental structural problems affecting these models. However, to date, this potential has not yet been realized using satellite-based retrieval products. Using soil moisture data sets produced by the NASA Soil Moisture Active/Passive mission, this presentation will explore the use of the remotely-sensed soil moisture data products as a constraint to reject certain types of surface runoff parameterizations within a land surface model. Results will demonstrate that the precision of the SMAP Level 4 Surface and Root-Zone soil moisture product allows for the robust sampling of correlation statistics describing the true strength of the relationship between pre-storm soil moisture and subsequent storm-scale runoff efficiency (i.e., total storm flow divided by total rainfall both in units of depth). For a set of 16 basins located in the South-Central United States, we will use these sampled correlations to demonstrate that so-called "infiltration-excess" runoff parameterizations under predict the importance of pre-storm soil moisture for determining storm-scale runoff efficiency. To conclude, we will discuss prospects for leveraging this insight to improve short-term hydrologic forecasting and additional avenues for SMAP soil moisture products to provide process-level insight for hydrologic modelers.
Bourceret, Amélia; Cébron, Aurélie; Tisserant, Emilie; Poupin, Pascal; Bauda, Pascale; Beguiristain, Thierry; Leyval, Corinne
2016-04-01
Industrial wasteland soils with aged PAH and heavy metal contaminations are environments where pollutant toxicity has been maintained for decades. Although the communities may be well adapted to the presence of stressors, knowledge about microbial diversity in such soils is scarce. Soil microbial community dynamics can be driven by the presence of plants, but the impact of plant development on selection or diversification of microorganisms in these soils has not been established yet. To test these hypotheses, aged-contaminated soil samples from a field trial were collected. Plots planted with alfalfa were compared to bare soil plots, and bacterial and fungal diversity and abundance were assessed after 2 and 6 years. Using pyrosequencing of 16S rRNA gene and ITS amplicons, we showed that the bacterial community was dominated by Proteobacteria, Actinobacteria, and Bacteroidetes and was characterized by low Acidobacteria abundance, while the fungal community was mainly represented by members of the Ascomycota. The short-term toxic impact of pollutants usually reduces the microbial diversity, yet in our samples bacterial and fungal species richness and diversity was high suggesting that the community structure and diversity adapted to the contaminated soil over decades. The presence of plants induced higher bacterial and fungal diversity than in bare soil. It also increased the relative abundance of bacterial members of the Actinomycetales, Rhizobiales, and Xanthomonadales orders and of most fungal orders. Multivariate analysis showed correlations between microbial community structure and heavy metal and PAH concentrations over time, but also with edaphic parameters (C/N, pH, phosphorus, and nitrogen concentrations).
NASA Astrophysics Data System (ADS)
Le Bissonnais, Yves; Chenu, Claire; Darboux, Frédéric; Duval, Odile; Legout, Cédric; Leguédois, Sophie; Gumiere, Silvio
2010-05-01
Aggregate breakdown due to water and rain action may cause surface crusting, slumping, a reduction of infiltration and interrill erosion. Aggregate stability determines the capacity of aggregates to resist the effects of water and rainfall. In this paper, we evaluated and reviewed the relevance of an aggregate stability measurement to characterize soil physical properties as well as to analyse the processes involved in these properties. Stability measurement assesses the sensitivity of soil aggregates to various basic disaggregation mechanisms such as slaking, differential swelling, dispersion and mechanical breakdown. It has been showed that aggregate size distributions of structural stability tests matched the size distributions of eroded aggregates under rainfall simulations and that erosion amount was well predicted using aggregate stability indexes. It means stability tests could be used to estimate both the erodibility and the size fractions that are available for crust formation and erosion processes. Several studies showed that organic matter was one of the main soil properties affecting soil stability. However, it has also been showed that aggregate stability of a given soil could vary within a year or between years. The factors controlling such changes have still to be specified. Aggregate stability appears therefore as a complex property, depending both on permanent soil characteristics and on dynamic factors such as the crusting stage, the climate and the biological activity. Despite, and may be, because of this complexity, aggregate stability seems an integrative and powerful indicator of soil physical quality. Future research efforts should look at the causes of short-term changes of structural stability, in order to fully understand all its aspects.
NASA Astrophysics Data System (ADS)
Waldrop, M. P.; Harden, J. W.; Turetsky, M. R.; Petersen, D. G.; McGuire, A. D.; Briones, M. J.; Churchill, A. C.; Doctor, D. H.; Pruett, L. E.
2010-12-01
Boreal landscapes are characterized by a mosaic of uplands and lowlands, which differ in plant species composition, litter biochemistry, and biogeochemical cycling rates. Boreal ecosystems, from upland black spruce stands to lowland fens, are structured largely by water table position and contain quantitatively and qualitatively different forms of soil organic matter. Differences in carbon (C) availability among ecosystems likely translate to differences in the structure of soil microbial communities, which in turn could affect rates of organic matter decomposition and turnover. We examined relationships between microbial communities and soil C turnover in near-surface soils along a topographic soil moisture and vegetation gradient in interior Alaska. We tested the hypothesis that upland black spruce sites would be dominated by soil fungi and have slow rates of C turnover, whereas lowland ecosystems would be dominated by bacteria and mesofauna (enchytraeids) and have more rapid rates of C turnover. We utilized several isotopic measures of soil C turnover including bomb radiocarbon techniques, the δ15N of SOM, and the difference between δ13C of SOM, DOC, and respired CO2. All three measures indicated greater C turnover rates in the surface soils of the lowland fen sites compared to the more upland locations. Quantitative PCR analyses of soil bacteria and archaea, combined with enchytraed counts, confirmed that surface soils from the lowland fen ecosystems had the highest abundances of these functional groups. Fungal biomass was highly variable and tended to be more abundant in the upland forest sites. Soil enzymatic results were mixed: potential cellulase activities were higher in the more upland soils even though rates of microbial activity were generally lower. Oxidative enzyme activities were higher in fens, even though these ecosystems are saturated and partly anaerobic. Overall our data support soil food web theory which argues that rapidly cycling systems are bacterial dominated with mesofaunal grazing, whereas slowly cycling systems have characteristic higher fungal:bacterial ratios.
NASA Astrophysics Data System (ADS)
Zornoza, Raúl; Acosta, José A.; Martínez-Martínez, Silvia; Faz, Ángel; Bååth, Erland
2015-04-01
Reclamation on bare tailing ponds has the potential to represent soil genesis in Technosols favoring the understanding of the changes of microbial communities and function. In this study we used phytostabilization aided with calcium carbonate and pig slurry/manure to reclaim an acidic bare tailing pond with the aim of investigating the effect of amending and different species on microbial community structure and function. We sampled after two years of amending and planting: unamended tailing soil (UTS), non-rhizospheric amended tailing soil (ATS), rhizospheric soil from four species, and non-rhizospheric native forest soil (NS), which acted as reference. The application of amendments increased pH up to neutrality, organic carbon (Corg), C/N and aggregate stability, while decreased salinity and heavy metals availability. No effect of rhizosphere was observed on physicochemical properties, metals immobilization and microbial community structure and function. To account for confounding effects due to soil organic matter, microbial properties were expressed per Corg. The high increments in pH and Corg have been the main factors driving changes in microbial community structure and function. Bacterial biomass was higher in UTS, without significant differences among the rest of soils. Fungal biomass followed the trend UTS < ATS = rhizospheric soils < NS. Bacterial growth increased and fungal growth decreased with increasing pH, despite the high availability of metals at low pH. Enzyme activities were lower in UTS, being β-glucosidase and β-glucosaminidase activities highly correlated with bacterial growth. Microbial activities were not correlated with the exchangeable fraction of heavy metals, indicating that microbial function is not strongly affected by these metals, likely due to the efficiency of the reclamation procedure to reduce metals toxicity. Changes in microbial community composition were largely explained by changes in pH, heavy metals availability and Corg, with increments in fungal and actinobacterial proportions with soil amending. Acknowledgements R. Zornoza acknowledges the financial support to Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia (Spain).
Lazzaro, Anna; Gauer, Andreas; Zeyer, Josef
2011-01-01
Studies on the effect of environmental conditions on plants and microorganisms are a central issue in ecology, and they require an adequate experimental setup. A strategy often applied in geobotanical studies is based on the reciprocal transplantation of plant species at different sites. We adopted a similar approach as a field-based tool to investigate the relationships of soil bacterial communities with the environment. Soil samples from two different (calcareous and siliceous) unvegetated glacier forefields were reciprocally transplanted and incubated for 15 months between 2009 and 2010. Controls containing local soils were included. The sites were characterized over time in terms of geographical (bedrock, exposition, sunlight, temperature, and precipitation) and physicochemical (texture, water content, soluble and nutrients) features. The incubating local (“home”) and transplanted (“away”) soils were monitored for changes in extractable nutrients and in the bacterial community structure, defined through terminal restriction fragment length polymorphism (T-RFLP) of the 16S rRNA gene. Concentrations of soluble ions in most samples were more significantly affected by seasons than by the transplantation. For example, NO3− showed a seasonal pattern, increasing from 1 to 3 μg NO3− (g soil dry weight)−1 after the melting of snow but decreasing to <1 μg NO3− (g soil dry weight)−1 in autumn. Seasons, and in particular strong precipitation events occurring in the summer of 2010 (200 to 300 mm of rain monthly), were also related to changes of bacterial community structures. Our results show the suitability of this approach to compare responses of bacterial communities to different environmental conditions directly in the field. PMID:21965395
Denitrification in Agricultural Soils: Integrated control and Modelling at various scales (DASIM)
NASA Astrophysics Data System (ADS)
Müller, Christoph; Well, Reinhard; Böttcher, Jürgen; Butterbach-Bahl, Klaus; Dannenmann, Michael; Deppe, Marianna; Dittert, Klaus; Dörsch, Peter; Horn, Marcus; Ippisch, Olaf; Mikutta, Robert; Senbayram, Mehmet; Vogel, Hans-Jörg; Wrage-Mönnig, Nicole; Müller, Carsten
2016-04-01
The new research unit DASIM brings together the expertise of 11 working groups to study the process of denitrification at unprecedented spatial and temporal resolution. Based on state-of-the art analytical techniques our aim is to develop improved denitrification models ranging from the microscale to the field/plot scale. Denitrification, the process of nitrate reduction allowing microbes to sustain respiration under anaerobic conditions, is the key process returning reactive nitrogen as N2to the atmosphere. Actively denitrifying communities in soil show distinct regulatory phenotypes (DRP) with characteristic controls on the single reaction steps and end-products. It is unresolved whether DRPs are anchored in the taxonomic composition of denitrifier communities and how environmental conditions shape them. Despite being intensively studied for more than 100 years, denitrification rates and emissions of its gaseous products can still not be satisfactorily predicted. While the impact of single environmental parameters is well understood, the complexity of the process itself with its intricate cellular regulation in response to highly variable factors in the soil matrix prevents robust prediction of gaseous emissions. Key parameters in soil are pO2, organic matter content and quality, pH and the microbial community structure, which in turn are affected by the soil structure, chemistry and soil-plant interactions. In the DASIM research unit, we aim at the quantitative prediction of denitrification rates as a function of microscale soil structure, organic matter quality, DRPs and atmospheric boundary conditions via a combination of state-of-the-art experimental and analytical tools (X-ray μCT, 15N tracing, NanoSIMS, microsensors, advanced flux detection, NMR spectroscopy, and molecular methods including next generation sequencing of functional gene transcripts). We actively seek collaboration with researchers working in the field of denitrification.
Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; ...
2015-04-30
The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy numbermore » of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below -10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface.« less
NASA Astrophysics Data System (ADS)
Matosziuk, L.; Hatten, J. A.
2016-12-01
Soil carbon represents a significant component of the global carbon cycle. While fire-based disturbance of forest ecosystems acts as a carbon source, the increased temperatures can initiate molecular changes to forest biomass that convert fast cycling organic carbon into more stable forms such as black carbon (BC), a product of incomplete combustion that contains highly-condensed aromatic structures and very low hydrogen and oxygen content. Such forms of carbon can remain in the soil for hundred to thousands of years, effectively creating a long-term carbon sink. The goal of this project is to understand how specific characteristics of prescribed burns, specifically the season of burn and the interval between burns, affect the formation, structure, and retention of these slowly degrading forms of carbon in the soil. Both O-horizon (forest floor) and mineral soil (0-15 cm cores) samples were collected from a season and interval of burn study in Malheur National Forest. The study area is divided into six replicate units, each of which is sub-divided into four treatment areas and a control. Beginning in 1997, each treatment area was subjected to: i) spring burns at five-year intervals, ii) fall burns at five-year intervals, iii) spring burns at 15-year intervals, or iv) fall burns at 15-year intervals. The bulk density, pH, and C/N content of each soil were measured to assess the effect of the burn treatments on the soil. Additionally, the amount and molecular structure of BC in each sample was quantified using the distribution of specific molecular markers (benzene polycarboxylic acids or BPCAs) that are present in the soil following acid digestion.
Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Bælum, Jacob; Taş, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Philipp; Priemé, Anders
2015-01-01
The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below −10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface. PMID:25983731
Processes Affecting the Annual Surface Energy Budget at High-Latitude Terrestrial Sites
NASA Astrophysics Data System (ADS)
Persson, P. O. G.; Stone, R. S.; Grachev, A.; Matrosova, L.
2012-04-01
Instrumentation at four Study of Environmental Arctic Change (SEARCH) sites (Barrow, Eureka, Alert, and Tiksi) have been enhanced in the past 6 years, including during the 2007-2008 IPY. Data from these sites are used to investigate the annual cycle of the surface energy budget (SEB), its coupling to atmospheric processes, and for Alert, its interannual variability. The comprehensive data sets are useful for showing interactions between the atmosphere, surface, and soil at high temporal resolution throughout the annual cycle. Processes that govern the SEB variability at each site are identified, and their impacts on the SEB are quantified. For example, mesoscale modulation of the SEB caused by forcing from the local terrain (downslope wind events) and coastlines (sea and land breezes) are significant at Alert and Eureka, with these processes affecting both radiative, turbulent, and ground heat flux terms in the SEB. Sub-seasonal and interannual variations in atmospheric processes and SEB impact soil thermal structures, such as the depth and timing of the summer active layer. These analyses provide an improved understanding of the processes producing changes in surface and soil temperature, linking them through the SEB as affected by atmospheric processes.
Partitioning of habitable pore space in earthworm burrows.
Gorres, Josef H; Amador, Jose A
2010-03-01
Earthworms affect macro-pore structure of soils. However, some studies suggest that earthworm burrow walls and casts themselves differ greatly in structure from surrounding soils, potentially creating habitat for microbivorours nematodes which accelerate the decomposition and C and N mineralization. In this study aggregates were sampled from the burrow walls of the anecic earthworm Lumbricus terrestris and bulk soil (not altered by earthworms) from mesocosm incubated in the lab for 0, 1, 3, 5 and 16 weeks. Pore volumes and pore sizes were measured in triplicate with Mercury Intrusion Porosimetry (MIP). This method is well suited to establish pore size structure in the context of habitat, because it measures the stepwise intrusion of mercury from the outside of the aggregate into ever smaller pores. The progress of mercury into the aggregate interior thus resembles potential paths of a nematode into accessible habitable pore spaces residing in an aggregate. Total specific pore volume, V(s), varied between 0.13 and 0.18 mL/g and increased from 3 to 16 weeks in both burrow and bulk soil. Differences between total V(s) of bulk and burrow samples were not significant on any sampling date. However, differences were significant for pore size fractions at the scale of nematode body diameter.
Partitioning of habitable pore space in earthworm burrows
Amador, Jose A.
2010-01-01
Earthworms affect macro-pore structure of soils. However, some studies suggest that earthworm burrow walls and casts themselves differ greatly in structure from surrounding soils, potentially creating habitat for microbivorours nematodes which accelerate the decomposition and C and N mineralization. In this study aggregates were sampled from the burrow walls of the anecic earthworm Lumbricus terrestris and bulk soil (not altered by earthworms) from mesocosm incubated in the lab for 0, 1, 3, 5 and 16 weeks. Pore volumes and pore sizes were measured in triplicate with Mercury Intrusion Porosimetry (MIP). This method is well suited to establish pore size structure in the context of habitat, because it measures the stepwise intrusion of mercury from the outside of the aggregate into ever smaller pores. The progress of mercury into the aggregate interior thus resembles potential paths of a nematode into accessible habitable pore spaces residing in an aggregate. Total specific pore volume, Vs, varied between 0.13 and 0.18 mL/g and increased from 3 to 16 weeks in both burrow and bulk soil. Differences between total Vs of bulk and burrow samples were not significant on any sampling date. However, differences were significant for pore size fractions at the scale of nematode body diameter. PMID:22736839
Pent, Mari; Põldmaa, Kadri; Bahram, Mohammad
2017-01-01
Despite recent advances in understanding the microbiome of eukaryotes, little is known about microbial communities in fungi. Here we investigate the structure of bacterial communities in mushrooms, including common edible ones, with respect to biotic and abiotic factors in the boreal forest. Using a combination of culture-based and Illumina high-throughput sequencing, we characterized the bacterial communities in fruitbodies of fungi from eight genera spanning four orders of the class Agaricomycetes (Basidiomycota). Our results revealed that soil pH followed by fungal identity are the main determinants of the structure of bacterial communities in mushrooms. While almost half of fruitbody bacteria were also detected from soil, the abundance of several bacterial taxa differed considerably between the two environments. The effect of host identity was significant at the fungal genus and order level and could to some extent be ascribed to the distinct bacterial community of the chanterelle, representing Cantharellales—the earliest diverged group of mushroom-forming basidiomycetes. These data suggest that besides the substantial contribution of soil as a major taxa source of bacterial communities in mushrooms, the structure of these communities is also affected by the identity of the host. Thus, bacteria inhabiting fungal fruitbodies may be non-randomly selected from environment based on their symbiotic functions and/or habitat requirements. PMID:28539921
NASA Astrophysics Data System (ADS)
Fischer, Christine; Hohenbrink, Tobias; Leimer, Sophia; Roscher, Christiane; Ravenek, Janneke; de Kroon, Hans; Kreutziger, Yvonne; Wirth, Christian; Eisenhauer, Nico; Gleixner, Gerd; Weigelt, Alexandra; Mommer, Liesje; Beßler, Holger; Schröder, Boris; Hildebrandt, Anke
2015-04-01
Soil moisture is the dynamic link between climate, soil and vegetation and the dynamics and variation are affected by several often interrelated factors such as soil texture, soil structural parameters (soil organic carbon) and vegetation parameters (belowground- and aboveground biomass). For the characterization and estimation of soil moisture and its variability and the resulting water fluxes and solute transports, the knowledge of the relative importance of these factors is of major challenge for hydrology and bioclimatology. Because of the heterogeneity of these factors, soil moisture varies strongly over time and space. Our objective was to assess the spatio-temporal variability of soil moisture and factors which could explain that variability, like soil properties and vegetation cover, in in a long term biodiversity experiment (Jena Experiment). The Jena Experiment consist 86 plots on which plant species richness (0, 1, 2, 4, 8, 16, and 60) and functional groups (legumes, grasses, tall herbs, and small herbs) were manipulated in a factorial design Soil moisture measurements were performed weekly April to September 2003-2005 and 2008-2013 using Delta T theta probe. Measurements were integrated to three depth intervals: 0.0 - 0.20, 0.20 - 0.40 and 0.40 - 0.70 m. We analyze the spatio-temporal patterns of soil water content on (i) the normalized time series and (ii) the first components obtained from a principal component analysis (PCA). Both were correlated with the design variables of the Jena Experiment (plant species richness and plant functional groups) and other influencing factors such as soil texture, soil structural variables and vegetation parameters. For the time stability of soil water content, the analysis showed that plots containing grasses was consistently drier than average at the soil surface in all observed years while plots containing legumes comparatively moister, but only up to the year 2008. In 0.40 - 0.70 m soil deep plots presence of small herbs led to higher than average soil moisture in some years (2008, 2012, 2013). Interestingly, plant species richness led to moister than average subsoil at the beginning of the experiment (2003 and 2004), which changed to lower than average up to the year 2010 in all depths. There was no effect of species diversity in the years since 2010, although species diversity generally increases leaf area index and aboveground biomass. The first component from the PCA analysis described the mean behavior in time of all soil moisture time series. The second component reflected the impact of soil depth. The first two components explained 76% of the data set total variance. The third component is linked to plant species richness and explained about 4 % of the total variance of soil moisture data. The fourth component, which explained 2.4 %, showed a high correlation to soil texture. Within this study we investigate the dominant factors controlling spatio-temporal patterns of soil moisture at several soil depths. Although climate and soil depths were the most important drivers, other factors like plant species richness and soil texture affected the temporal variation while certain plant functional groups were important for the spatial variability.
NASA Astrophysics Data System (ADS)
Ángel Gabarrón-Galeote, Miguel; Damián Ruiz-Sinoga, Jose; Francisco Martinez-Murillo, Juan; Lavee, Hanoch
2013-04-01
Soil aggregation is a key factor determining the soil structure. The presence of stable aggregates is essential to maintain a good soil structure, that in turn plays an important role in sustaining agricultural productivity and preserving environmental quality. A wide range of physical and biological soil components are involved in the aggregate formation and stabilization, namely clay mineral content; the quantity and quality of organic matter, that can be derived from plants, fungal hyphae, microorganism and soil animals; and the soil water content. Climatic conditions, through their effect on soil water content, vegetation cover and organic matter content, are supposed to affect soil aggregation. Thus the main objective of this research is to analyse the effect of organic matter, clay content and soil water content on aggregate stability along a climatic transect in Southern Spain. This study was conducted in four catchments along a pluviometric gradient in the South of Spain (rainfall depth decreases from west to east from more than 1000 mm year-1 to less than 300 mm year-1) and was based on a methodology approximating the climatic gradient in Mediterranean conditions. The selected sites shared similar conditions of geology, topography and soil use, which allowed making comparisons among them and relating the differences to the pluviometric conditions. In February 2007, 250 disturbed and undisturbed samples from the first 5cm of the soil were collected along the transect. We measured the aggregate stability, organic matter, clay content and bulk density of every sample. In the field we measured rainfall, air temperature, relative humidity, wind speed, wind direction, solar radiation, potential evapotranspiration, soil water content, vegetation cover and presence of litter. Our results suggest that aggregate stability is a property determined by a great number of highly variable factors, which can make extremely difficult to predict its behavior taking in account only a few of them. The climate exerted a great influence in aggregate stability and could determine by itself the soil structure along the climate transect. As a result, properties unrelated in a specific point of the climate transect became highly associated if we took it into account completely. Along the climate transect analyzed could be defined two areas, separated by a threshold located between 573.6 mm y-1 and 335.9 mm y-1. In the wettest part soil structure was mainly determined by biotic factors and in the driest part was highly probable that abiotic factors play a key role determining aggregate stability.
Influence of geogenic factors on microbial communities in metallogenic Australian soils
Reith, Frank; Brugger, Joel; Zammit, Carla M; Gregg, Adrienne L; Goldfarb, Katherine C; Andersen, Gary L; DeSantis, Todd Z; Piceno, Yvette M; Brodie, Eoin L; Lu, Zhenmei; He, Zhili; Zhou, Jizhong; Wakelin, Steven A
2012-01-01
Links between microbial community assemblages and geogenic factors were assessed in 187 soil samples collected from four metal-rich provinces across Australia. Field-fresh soils and soils incubated with soluble Au(III) complexes were analysed using three-domain multiplex-terminal restriction fragment length polymorphism, and phylogenetic (PhyloChip) and functional (GeoChip) microarrays. Geogenic factors of soils were determined using lithological-, geomorphological- and soil-mapping combined with analyses of 51 geochemical parameters. Microbial communities differed significantly between landforms, soil horizons, lithologies and also with the occurrence of underlying Au deposits. The strongest responses to these factors, and to amendment with soluble Au(III) complexes, was observed in bacterial communities. PhyloChip analyses revealed a greater abundance and diversity of Alphaproteobacteria (especially Sphingomonas spp.), and Firmicutes (Bacillus spp.) in Au-containing and Au(III)-amended soils. Analyses of potential function (GeoChip) revealed higher abundances of metal-resistance genes in metal-rich soils. For example, genes that hybridised with metal-resistance genes copA, chrA and czcA of a prevalent aurophillic bacterium, Cupriavidus metallidurans CH34, occurred only in auriferous soils. These data help establish key links between geogenic factors and the phylogeny and function within soil microbial communities. In particular, the landform, which is a crucial factor in determining soil geochemistry, strongly affected microbial community structures. PMID:22673626
Influence of geogenic factors on microbial communities in metallogenic Australian soils.
Reith, Frank; Brugger, Joel; Zammit, Carla M; Gregg, Adrienne L; Goldfarb, Katherine C; Andersen, Gary L; DeSantis, Todd Z; Piceno, Yvette M; Brodie, Eoin L; Lu, Zhenmei; He, Zhili; Zhou, Jizhong; Wakelin, Steven A
2012-11-01
Links between microbial community assemblages and geogenic factors were assessed in 187 soil samples collected from four metal-rich provinces across Australia. Field-fresh soils and soils incubated with soluble Au(III) complexes were analysed using three-domain multiplex-terminal restriction fragment length polymorphism, and phylogenetic (PhyloChip) and functional (GeoChip) microarrays. Geogenic factors of soils were determined using lithological-, geomorphological- and soil-mapping combined with analyses of 51 geochemical parameters. Microbial communities differed significantly between landforms, soil horizons, lithologies and also with the occurrence of underlying Au deposits. The strongest responses to these factors, and to amendment with soluble Au(III) complexes, was observed in bacterial communities. PhyloChip analyses revealed a greater abundance and diversity of Alphaproteobacteria (especially Sphingomonas spp.), and Firmicutes (Bacillus spp.) in Au-containing and Au(III)-amended soils. Analyses of potential function (GeoChip) revealed higher abundances of metal-resistance genes in metal-rich soils. For example, genes that hybridised with metal-resistance genes copA, chrA and czcA of a prevalent aurophillic bacterium, Cupriavidus metallidurans CH34, occurred only in auriferous soils. These data help establish key links between geogenic factors and the phylogeny and function within soil microbial communities. In particular, the landform, which is a crucial factor in determining soil geochemistry, strongly affected microbial community structures.
Land use alters the resistance and resilience of soil food webs to drought
de Vries, Franciska T.; Liiri, Mira E.; Bjørnlund, Lisa; Bowker, Matthew A.; Christensen, Søren; Setälä, Heikki; Bardgett, Richard D.
2012-01-01
Soils deliver several ecosystem services including carbon sequestration and nutrient cycling, which are of central importance to climate mitigation and sustainable food production. Soil biota play an important role in carbon and nitrogen cycling, and, although the effects of land use on soil food webs are well documented the consequences for their resistance and resilience to climate change are not known. We compared the resistance and resilience to drought--which is predicted to increase under climate change of soil food webs of two common land-use systems: intensively managed wheat with a bacterial-based soil food web and extensively managed grassland with a fungal-based soil food web. We found that the fungal-based food web, and the processes of C and N loss it governs, of grassland soil was more resistant, although not resilient, and better able to adapt to drought than the bacterial-based food web of wheat soil. Structural equation modelling revealed that fungal-based soil food webs and greater microbial evenness mitigated C and N loss. Our findings show that land use strongly affects the resistance and resilience of soil food webs to climate change, and that extensively managed grassland promotes more resistant, and adaptable, fungal-based soil food webs.
[Effects of global change on soil fauna diversity: A review].
Wu, Ting-Juan
2013-02-01
Terrestrial ecosystem consists of aboveground and belowground components, whose interaction affects the ecosystem processes and functions. Soil fauna plays an important role in biogeochemical cycles. With the recognizing of the significance of soil fauna in ecosystem processes, increasing evidences demonstrated that global change has profound effects on soil faunima diversity. The alternation of land use type, the increasing temperature, and the changes in precipitation pattern can directly affect soil fauna diversity, while the increase of atmospheric CO2 concentration and nitrogen deposition can indirectly affect the soil fauna diversity by altering plant community composition, diversity, and nutrient contents. The interactions of different environmental factors can co-affect the soil fauna diversity. To understand the effects of different driving factors on soil fauna diversity under the background of climate change would facilitate us better predicting how the soil fauna diversity and related ecological processes changed in the future.
Smith, A Peyton; Marín-Spiotta, Erika; Balser, Teri
2015-09-01
Soil microorganisms regulate fundamental biochemical processes in plant litter decomposition and soil organic matter (SOM) transformations. Understanding how microbial communities respond to changes in vegetation is critical for improving predictions of how land-cover change affects belowground carbon storage and nutrient availability. We measured intra- and interannual variability in soil and forest litter microbial community composition and activity via phospholipid fatty acid analysis (PLFA) and extracellular enzyme activity across a well-replicated, long-term chronosequence of secondary forests growing on abandoned pastures in the wet subtropical forest life zone of Puerto Rico. Microbial community PLFA structure differed between young secondary forests and older secondary and primary forests, following successional shifts in tree species composition. These successional patterns held across seasons, but the microbial groups driving these patterns differed over time. Microbial community composition from the forest litter differed greatly from those in the soil, but did not show the same successional trends. Extracellular enzyme activity did not differ with forest succession, but varied by season with greater rates of potential activity in the dry seasons. We found few robust significant relationships among microbial community parameters and soil pH, moisture, carbon, and nitrogen concentrations. Observed inter- and intrannual variability in microbial community structure and activity reveal the importance of a multiple, temporal sampling strategy when investigating microbial community dynamics with land-use change. Successional control over microbial composition with forest recovery suggests strong links between above and belowground communities. © 2015 John Wiley & Sons Ltd.
Fire affects root decomposition, soil food web structure, and carbon flow in tallgrass prairie
NASA Astrophysics Data System (ADS)
Shaw, E. Ashley; Denef, Karolien; Milano de Tomasel, Cecilia; Cotrufo, M. Francesca; Wall, Diana H.
2016-05-01
Root litter decomposition is a major component of carbon (C) cycling in grasslands, where it provides energy and nutrients for soil microbes and fauna. This is especially important in grasslands where fire is common and removes aboveground litter accumulation. In this study, we investigated whether fire affects root decomposition and C flow through the belowground food web. In a greenhouse experiment, we applied 13C-enriched big bluestem (Andropogon gerardii) root litter to intact tallgrass prairie soil cores collected from annually burned (AB) and infrequently burned (IB) treatments at the Konza Prairie Long Term Ecological Research (LTER) site. Incorporation of 13C into microbial phospholipid fatty acids and nematode trophic groups was measured on six occasions during a 180-day decomposition study to determine how C was translocated through the soil food web. Results showed significantly different soil communities between treatments and higher microbial abundance for IB. Root decomposition occurred rapidly and was significantly greater for AB. Microbes and their nematode consumers immediately assimilated root litter C in both treatments. Root litter C was preferentially incorporated in a few groups of microbes and nematodes, but depended on burn treatment: fungi, Gram-negative bacteria, Gram-positive bacteria, and fungivore nematodes for AB and only omnivore nematodes for IB. The overall microbial pool of root-litter-derived C significantly increased over time but was not significantly different between burn treatments. The nematode pool of root-litter-derived C also significantly increased over time, and was significantly higher for the AB treatment at 35 and 90 days after litter addition. In conclusion, the C flow from root litter to microbes to nematodes is not only measurable but also significant, indicating that higher nematode trophic levels are critical components of C flow during root decomposition, which, in turn, is significantly affected by fire. Not only does fire affect the soil community and root decomposition, but the lower microbial abundance, greater root turnover, and the increased incorporation of root litter C by microbes and nematodes for AB suggests that annual burning increases root-litter-derived C flow through the soil food web of the tallgrass prairie.
USDA-ARS?s Scientific Manuscript database
Increasing atmospheric CO2 will have significant effects on belowground processes which will affect forest structure and function. A model regenerating longleaf pine-wiregrass community [consisting of longleaf pine (Pinus palustris), wiregrass (Aristida stricta), sand post oak (Quescus margaretta),...
Analysis the configuration of earthing system based on high-low and low-high soil structure
NASA Astrophysics Data System (ADS)
Ramani, A. N.; Ahmad, Abdul Rahman; Sulaima, M. F.; Nasir, M. N. M.; Ahmad, Arfah
2015-05-01
Each TNB transmission tower requires a tower footing resistance (TFR) with a lower grounding resistance value that depends on the transmission line voltage. For 132kV and 275kV tower, the TFR must less than 10Ω and 500kV tower must less than 5Ω. The TFR is changeable with variable factors such as soil resistivity. Low TFR provides essential protection to the fault such as lightning strike that may occur at any time. The fault current flow to the lowest resistance path and easily disperses to earth. Back flashover voltage across the insulator of transmission lines may occur when the TFR is high. The TFR is influenced by soil resistivity. There are three parameters affecting the soil resistivity; moisture content, salt content and temperature of the soil. High moisture content in soil will reduce the soil resistivity and resultant low TFR. Small scale moisture control by using Micro Reservoir (MR) irrigation with semi-permeable membranes have the power to offer the stable moisture in soil. By using osmosis concept, it is the process of net movement of water molecules from high potential water to lower potential water though a semi permeable membrane. The MR can withstand for 3 to 5 days without continuous water supply. The MR installed in the centre of the tower that contains a multiple parallel of electrode rods. The concentrated of electrode rods grounding configuration with a combination of MR will improve the TFR even at multilayer soil. As a result, MR gives a little improvement to TFR. The MR in area of concentrated electrode rod configuration to ensure the soil always wet and moist at all times. The changes in soil affect the tower-footing-resistance. The tower-footing-resistance measurement at afternoon is higher than at evening because of the temperature and moisture content in soil is change due to sun radiation.
NASA Astrophysics Data System (ADS)
Ancona, Valeria; Matarrese, Raffaella; Salvatori, Rosamaria; Salzano, Roberto; Regano, Simona; Calabrese, Angelantonio; Campanale, Claudia; Felice Uricchio, Vito
2014-05-01
Land degradation processes like organic matter impoverishment and contamination are growing increasingly all over the world due to a non-rational and often sustainable spread of human activities on the territory. Consequently the need to characterize and monitor degraded sites is becoming very important, with the aim to hinder such main threats, which could compromise drastically, soil quality. Visible and infrared spectroscopy is a well-known technique/tool to study soil properties. Vis-NIR spectral reflectance, in fact, can be used to characterize spatial and temporal variation in soil constituents (Brown et al., 2006; Viscarra Rossel et al., 2006), and potentially its surface structure (Chappell et al., 2006, 2007). It is a rapid, non-destructive, reproducible and cost-effective analytical method to analyse soil properties and therefore, it can be a useful method to study land degradation phenomena. In this work, we present the results of proximal sensing investigations of three degraded sites (one affected by organic and inorganic contamination and two affected by soil organic matter decline) situated southern Italy close to Taranto city (in Apulia Region). A portable spectroradiometer (ASD-FieldSpec) was used to measure the reflectance properties in the spectral range between 350-2500 nm of the soil, in the selected sites, before and after a recovery treatment by using compost (organic fertilizer). For each measurement point the soil was sampled in order to perform chemical analyses to evaluate soil quality status. Three in-situ campaigns have been carried out (September 2012, June 2013, and September 2013), collecting about 20 soil samples for each site and for each campaign. Chemical and spectral analyses have been focused on investigating soil organic carbon, carbonate content, texture and, in the case of polluted site, heavy metals and organic toxic compounds. Statistical analyses have been carried out to test a prediction model of different soil quality indicators based on the spectral signatures behaviour of each sample ranging.
Analysis the configuration of earthing system based on high-low and low-high soil structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramani, A. N.; Ahmad, Abdul Rahman; Sulaima, M. F.
2015-05-15
Each TNB transmission tower requires a tower footing resistance (TFR) with a lower grounding resistance value that depends on the transmission line voltage. For 132kV and 275kV tower, the TFR must less than 10Ω and 500kV tower must less than 5Ω. The TFR is changeable with variable factors such as soil resistivity. Low TFR provides essential protection to the fault such as lightning strike that may occur at any time. The fault current flow to the lowest resistance path and easily disperses to earth. Back flashover voltage across the insulator of transmission lines may occur when the TFR is high.more » The TFR is influenced by soil resistivity. There are three parameters affecting the soil resistivity; moisture content, salt content and temperature of the soil. High moisture content in soil will reduce the soil resistivity and resultant low TFR. Small scale moisture control by using Micro Reservoir (MR) irrigation with semi-permeable membranes have the power to offer the stable moisture in soil. By using osmosis concept, it is the process of net movement of water molecules from high potential water to lower potential water though a semi permeable membrane. The MR can withstand for 3 to 5 days without continuous water supply. The MR installed in the centre of the tower that contains a multiple parallel of electrode rods. The concentrated of electrode rods grounding configuration with a combination of MR will improve the TFR even at multilayer soil. As a result, MR gives a little improvement to TFR. The MR in area of concentrated electrode rod configuration to ensure the soil always wet and moist at all times. The changes in soil affect the tower-footing-resistance. The tower-footing-resistance measurement at afternoon is higher than at evening because of the temperature and moisture content in soil is change due to sun radiation.« less
Vadose zone process that control landslide initiation and debris flow propagation
NASA Astrophysics Data System (ADS)
Sidle, Roy C.
2015-04-01
Advances in the areas of geotechnical engineering, hydrology, mineralogy, geomorphology, geology, and biology have individually advanced our understanding of factors affecting slope stability; however, the interactions among these processes and attributes as they affect the initiation and propagation of landslides and debris flows are not well understood. Here the importance of interactive vadose zone processes is emphasized related to the mechanisms, initiation, mode, and timing of rainfall-initiated landslides that are triggered by positive pore water accretion, loss of soil suction and increase in overburden weight, and long-term cumulative rain water infiltration. Both large- and small-scale preferential flow pathways can both contribute to and mitigate instability, by respectively concentrating and dispersing subsurface flow. These mechanisms are influenced by soil structure, lithology, landforms, and biota. Conditions conducive to landslide initiation by infiltration versus exfiltration are discussed relative to bedrock structure and joints. The effects of rhizosphere processes on slope stability are examined, including root reinforcement of soil mantles, evapotranspiration, and how root structures affect preferential flow paths. At a larger scale, the nexus between hillslope landslides and in-channel debris flows is examined with emphasis on understanding the timing of debris flows relative to chronic and episodic infilling processes, as well as the episodic nature of large rainfall and related stormflow generation in headwater streams. The hydrogeomorphic processes and conditions that determine whether or not landslides immediately mobilize into debris flows is important for predicting the timing and extent of devastating debris flow runout in steep terrain. Given the spatial footprint of individual landslides, it is necessary to assess vadose zone processes at appropriate scales to ascertain impacts on mass wasting phenomena. Articulating the appropriate level of detail of small-scale vadose zone processes into landslide models is a particular challenge. As such, understanding flow pathways in regoliths susceptible to mass movement is critical, including distinguishing between conditions conducive to vertical recharge of water through relatively homogeneous soil mantles and conditions where preferential flow dominates - either by rapid infiltration and lateral flow through interconnected preferential flow networks or via exfiltration through bedrock fractures. These different hydrologic scenarios have major implications for the occurrence, timing, and mode of slope failures.
Bringing life to soil physical processes
NASA Astrophysics Data System (ADS)
Hallett, P. D.
2013-12-01
When Oklahoma's native prairie grass roots were replaced by corn, the greatest environmental (and social) disaster ever to hit America ensued. The soils lost structure, physical binding by roots was annihilated and when drought came the Great Dust Bowl commenced. This form of environmental disaster has repeated over history and although not always apparent, similar processes drive the degradation of seemingly productive farmland and forests. But just as negative impacts on biology are deleterious to soil physical properties, positive impacts could reverse these trends. In finding solutions to soil sustainability and food security, we should be able to exploit biological processes to improve soil physical properties. This talk will focus on a quantitative understanding of how biology changes soil physical behaviour. Like the Great Dust Bowl, it starts with reinforcement mechanisms by plant roots. We found that binding of soil by cereal (barley) roots within 5 weeks of planting can more than double soil shear strength, with greater plant density causing greater reinforcement. With time, however, the relative impact of root reinforcement diminishes due to root turnover and aging of the seedbed. From mechanical tests of individual roots, reasonable predictions of reinforcement by tree roots are possible with fibre bundle models. With herbaceous plants like cereals, however, the same parameters (root strength, stiffness, size and distribution) result in a poor prediction. We found that root type, root age and abiotic factors such as compaction and waterlogging affect mechanical behaviour, further complicating the understanding and prediction of root reinforcement. For soil physical stability, the interface between root and soil is an extremely important zone in terms of resistance of roots to pull-out and rhizosphere formation. Compounds analogous to root exudates have been found with rheological tests to initially decrease the shear stress where wet soils flow, but after decomposition of these exudates by microbes the shear stress increases. This suggests an initial dispersion, followed by aggregation of the soil, which explains the structural arrangement of soil particles in the rhizosphere observed by microscopy. Dispersion of soil minerals in the root zone is important to release bound nutrients from mineral surfaces. Using fracture mechanics we measured large impacts of biological exudates on the toughness and interparticle bond energy of soils. Now novel tests are being developed to quantify interparticle bonding by biological exudates on single and multiple particle contacts, including mechanical test specimens that can be inoculated with specific bacteria or fungi. This will allow for clay mineralogy, water potential and solution chemistry impacts on interparticle bonding to be quantified directly. Wettability experiments with the same samples measure hydrological properties such as contact angle. Basic information from these tests will help explain biological processes that drive soil structure formation and stabilisation, providing data for models of soil structure dynamics.
Assessing quality in volcanic ash soils
Terry L. Craigg; Steven W. Howes
2007-01-01
Forest managers must understand how changes in soil quality resulting from project implementation affect long-term productivity and watershed health. Volcanic ash soils have unique properties that affect their quality and function; and which may warrant soil quality standards and assessment techniques that are different from other soils. We discuss the concept of soil...
NASA Astrophysics Data System (ADS)
Croft, H.; Anderson, K.
2012-04-01
Soils can experience rapid structural degradation in response to land cover changes, resulting in reduced soil productivity, increased erodibility and a loss of soil organic matter (SOM). The breakdown of soil aggregates through slaking and raindrop impact is linked to organic matter turnover, with subsequently eroded material often displaying proportionally more SOM. A reduction in aggregate stability is reflected in a decline in soil surface roughness (SSR), indicating that a soil structural change can be used to highlight soil vulnerability to SOM loss through mineralisation or erosion. Accurate, spatially-continuous measurements of SSR are therefore needed at a variety of spatial and temporal scales to understand the spatial nature of SOM erosion and deposition. Remotely-sensed data can provide a cost-effective means of monitoring changes in soil surface condition over broad spatial extents. Previous work has demonstrated the ability of directional reflectance factors to monitor soil crusting within a controlled laboratory experiment, due to changes in the levels of self-shadowing effects by soil aggregates. However, further research is needed to test this approach in situ, where other soil variables may affect measured reflectance factors and to investigate the use of directional reflectance factors for monitoring soil erosion processes. This experiment assesses the potential of using directional reflectance factors to monitor changes in SSR, aggregate stability and soil organic carbon (SOC) content for two agricultural conditions. Five soil plots representing tilled and seedbed soils were subjected to different durations of natural rainfall, producing a range of different levels of SSR. Directional reflectance factors were measured concomitantly with sampling for soil structural and biochemical tests at each soil plot. Soil samples were taken to measure aggregate stability (wet sieving), SOC (loss on ignition) and soil moisture (gravimetric method). SSM values varied from 8.70 to 20.05% and SOC from 1.33 to 1.05%, across all soil plots. Each plot was characterised using a close-range laser scanning device with a 2 mm sampling interval. The point laser data were geostatistically analysed to provide a spatially-distributed measure of SSR, giving sill variance values from 3.15 to 22.99. Reflectance factors from the soil states were measured using a ground-based hyperspectral spectroradiometer (400-2500 nm) attached to an A-frame device. This method allowed measurement at a range of viewing zenith angles from extreme forwardscatter (-60°) to extreme backscatter (+60°) at a 10° sampling resolution in the solar principal plane. Reflectance measurements were compared to geostatistically-derived indicators of SSR from the laser profile data. Forward-scattered reflectance factors exhibited a very strong relationship to SSR (R2 = 0.84 at -60°; p< 0.05), demonstrating the operational potential of directional reflectance for providing SSR measurements, despite conflicting variation in SSM. SSM also presented an interesting directional signal (R2 = 0.99 at +20°; p< 0.01). Furthermore, the results showed an important link between SRR decline as measured using directional reflectance, with a decline in aggregate stability and SOC content. These findings provide an empirical and theoretical basis for the future retrieval of spatially-continuous assessments of soil surface structure and carbon turnover within a landscape context.
NASA Astrophysics Data System (ADS)
Costantini, E. A. C.; Agnelli, A. E.; Fabiani, A.; Gagnarli, E.; Mocali, S.; Priori, S.; Simoni, S.; Valboa, G.
2015-06-01
Deep earthwork activities carried out before vineyard plantation can severely affect soil profile properties. As a result, soil features in the root environment are often much more similar to those of the underlying substratum than those of the original profile. The time needed to recover the original soil functions is ecologically relevant and may strongly affect vine phenology and grape yield, particularly under organic viticulture. The general aim of this work was to investigate soil resilience after vineyard pre-planting earthworks. In particular, an old and a new vineyard, established on the same soil type, were compared over a 5-year period for soil chemical, physical, micro- and mesobiological properties. The investigated vineyards (Vitis vinifera L., cv. Sangiovese) were located in the Chianti Classico district (central Italy), on stony and calcareous soils, and were not irrigated. The older vineyard was planted in 2000, after slope reshaping by bulldozing and back-hoe ploughing down to about 0.8-1.0 m. The new vineyard was planted in 2011, after equivalent earthwork practices carried out in the summer of 2009. Both vineyards were organically managed, and they were fertilized with compost only every autumn (1000 kg ha-1 per year). The new vineyard was cultivated by periodic tillage, while the old vineyard was managed with alternating grass-covered and tilled inter-rows. Soil samples were collected at 0-15 cm depth from fixed locations in each vineyard every spring from 2010 to 2014. The old vineyard was sampled in both tilled and grass-covered inter-rows. According to the results from physical and chemical analyses, the new vineyard, during the whole 2010-2014 period, showed lower total organic carbon, total nitrogen, carbon to nitrogen ratio and electrical conductivity, along with higher silt and total CaCO3 contents than the old vineyard, suggesting still-evolving equilibrium conditions. The microarthropod analysis showed significantly different abundances and community structures, in relation to both vineyard and time. Rainfall appeared to have an enhancing effect on microarthropod abundance, but only in the old vineyard, where the biota was more structured than in the new one. The euedaphic forms, well adapted to soil life, were always rare. Microbiological analysis revealed a different structure of eubacterial communities between the old and the new vineyard in the whole period. However, the DGGE similarity values of these communities increased by about 2.5% per year, suggesting that at least 3 years more are needed to compare intra- and inter-specific diversity of the two vineyards. In conclusion, the consequences of deep earthworks on soil chemical, micro- and mesobiological properties were still evident 4 years after planting, indicating that more time is necessary for the recovery of soil functions, probably longer than the time needed to reach a state of economically viable grape production.
Improving quality of textile wastewater with organic materials as multi soil layering
NASA Astrophysics Data System (ADS)
Supriyadi; Widijanto, H.; Pranoto; Dewi, AK
2016-02-01
On agricultural land, fresh water is needed especially for irrigation. Alternative ways to fulfill needs of fresh water is by utilizing wastewater from industry. Wastewater that produced in the industry in Surakarta is over flowing especially textile wastewater. Wastewater that produced from industry has many pollutants that affected decreasing fresh water quality for irrigation. Multi Soil Layering (MSL) is one of method that utilize the soil ability as main media by increasing its function of soil structure to purify wastewater, so it does not contaminate the environment and reusable. This research was purposed to know affectivity of organic materials (such as rice straw, baggase, sawdust, coconut fibre, and corncob) and dosage (5%, 10% and 25%) in MSL, also get alternative purification ways with easy and cheaper price as natural adsorbent. This study using field and laboratory experiment. The result shows that MSL can be an alternative method of purification of wastewater. The appropriate composition of organic materials that can be used as adsorbent is MSL with wood sawdust 10% dosage because it can increase pH, decrease the number of Cr, ammonia, and phosphate but less effective to decrease BOD and COD.
Ci, Zhijia; Peng, Fei; Xue, Xian; Zhang, Xiaoshan
2018-07-01
Soils represent the single largest mercury (Hg) reservoir in the global environment, indicating that a tiny change of Hg behavior in soil ecosystem could greatly affect the global Hg cycle. Climate warming is strongly altering the structure and functions of permafrost and then would influence the Hg cycle in permafrost soils. However, Hg biogeochemistry in climate-sensitive permafrost is poorly investigated. Here we report a data set of soil Hg (0) concentrations in four different depths of the active layer in the Qinghai-Tibet Plateau permafrost. We find that soil Hg (0) concentrations exhibited a strongly positive and exponential relationship with temperature and showed different temperature sensitivity under the frozen and unfrozen condition. We conservatively estimate that temperature increases following latest temperature scenarios of the IPCC could result in up to a 54.9% increase in Hg (0) concentrations in surface permafrost soils by 2100. Combining the simultaneous measurement of air-soil Hg (0) exchange, we find that enhanced Hg (0) concentrations in upper soils could favor Hg (0) emissions from surface soil. Our findings indicate that Hg (0) emission could be stimulated by permafrost thawing in a warmer world. Copyright © 2018 Elsevier Ltd. All rights reserved.
Castillo Diaz, Jean Manuel; Martin-Laurent, Fabrice; Beguet, Jérèmie; Nogales, Rogelio; Romero, Esperanza
2017-02-01
The fate and impact of pesticide on soil depend partly on the agricultural practices, such as prior treatment with pesticide and/or organic amendments. As a means of determining how the previous soil conditions can affect the fate of imidacloprid (IMI) and its effect on soil functions, experiments were made with soil samples, double-amended or not with either vine-shoot (W) or olive cake (O) vermicompost or contaminated or not with IMI. These soil samples, incubated for 3months, were placed in two microcosms (M1 with the pre-amended soils and M2 with the pre-exposed soils), treated with IMI and amended with vermicomposts and then incubated for 3months. The IMI distribution on soil fractions, sorption processes, dissipation kinetics, and biochemical as well as genetic structure and bacterial abundance were determined to assess the fate and impact of IMI on the soil. The addition of W vermicompost to the soil reduced the IMI availability. The dissipation kinetic in soils from M1 and M2 followed, respectively, a single first-order and a double first-order in parallel models. The lowest IMI persistence corresponded to the soil from M2 amended with O-vermicompost with DT50 and DT90 values of 67d and 265d, while in the other soils 90% dissipation required >512d. The vermicomposts-amended contaminated soils increased the dehydrogenase activity by 2- and 4-fold respect the control soils. However, the urease activity decreased due to the IMI influence. The changes in the bacterial community in the contaminated soil amended with O-vermicompost during incubation were correlated with the dissipation rate constant of IMI, suggesting a better tolerance of microorganisms to IMI. Thus, in the soil contaminated with IMI, the amendment with the vermicompost from olive cake can mitigate the impact of this insecticide on soil functions and promote its depuration capability while minimizing environmental risks. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ort, Michael H.; Elson, Mark D.; Anderson, Kirk C.; Duffield, Wendell A.; Samples, Terry L.
2008-10-01
Two ˜ 900 BP cinder-cone eruptions in the American Southwest affected prehistoric human populations in different ways, mostly because of differences in the eruption styles and area affected. Primary pre-eruption cultural factors that may have led to successful adaptation to the eruptions include decision-making at the family or household level, low investment in site structures, dispersion of agricultural sites in varied environments, and settlement spread over a large area so that those who were less affected could shelter and feed evacuees. Sunset Crater, near Flagstaff, Arizona, produced about 8 km 2 lava flow fields and a ˜ 2300-km 2 tephra blanket in an area that had been settled by prehistoric groups for at least 1000 years. Local subsistence relied on agriculture, primarily maize, and > 30 cm tephra cover rendered 265 km 2 of prime land unfarmable. This area was apparently abandoned for at least several generations. A > 500-km 2 area was probably marked by collapsed roofs and other structural damage from the fallout. If the eruption occurred during the agricultural season, the fallout would also have significantly damaged crops. The eruption did have some benefits to local groups because lower elevation land, which had previously been too dry to farm, became agriculturally productive due to 3-8 cm of tephra 'mulch' and some temporary soil nutrient improvements. This previously uninhabited land became the site of significant year-round settlement and farming, eventually containing some of the largest pueblo structures ever built in the region. New agricultural techniques were developed to manage the fallout mulch. The eruption also affected ceramic production and trading patterns, and volcano-related ritual behavior - the production of maize-impressed lava-spatter agglutinate - was initiated. Little Springs Volcano, about 200 km northwest of Sunset Crater, is a small spatter rampart around a series of vents that produced about 5 km 2 of lava flow fields, about 1 km 2 of land severely affected by ballistic fall, and no significant tephra fall. The small area affected resulted in much less disruption of human activities than at Sunset Crater. Farming was still possible right up to the edge of the lava flows, which became attractive sites for settlements. Most sites along the lava flows have habitation and storage structures at the base of the flow and a series of small, apparently little-used, structures on the blocky lava flow above. These lava surface structures may have been defensive in nature. In addition, trails were constructed on the blocky lava flow surface. These trails, whose access points are difficult to recognize from below, appear to have been used for rapid movement across the flows, and may also have been defensive in nature. Spatter-agglutinate blocks containing ceramic sherds within them, similar to the maize-impressed spatter agglutinate at Sunset Crater, were made at Little Springs and carried to a nearby habitation site. In arid and semiarid lands such as northern Arizona, tephra fall is a mixed blessing. Thick cinder blankets (> 20-30 cm) render land uninhabitable, but thinner (3-8 cm) deposits can serve to conserve soil moisture, regulate soil temperature (thus lengthening the growing season), and, by lowering soil pH, provide a temporary (decades to a century or two) increase in available phosphorus, an important nutrient for growth. The mulch opened up new lands for settlement but likely only lasted for a century or two before reworking reduced its effects.
Li, Yuanyuan; Wen, Hongyu; Chen, Longqian; Yin, Tingting
2014-01-01
The growing concern about the effectiveness of reclamation strategies has motivated the evaluation of soil properties following reclamation. Recovery of belowground microbial community is important for reclamation success, however, the response of soil bacterial communities to reclamation has not been well understood. In this study, PCR-based 454 pyrosequencing was applied to compare bacterial communities in undisturbed soils with those in reclaimed soils using chronosequences ranging in time following reclamation from 1 to 20 year. Bacteria from the Proteobacteria, Chloroflexi, Actinobacteria, Acidobacteria, Planctomycetes and Bacteroidetes were abundant in all soils, while the composition of predominant phyla differed greatly across all sites. Long-term reclamation strongly affected microbial community structure and diversity. Initial effects of reclamation resulted in significant declines in bacterial diversity indices in younger reclaimed sites (1, 8-year-old) compared to the undisturbed site. However, bacterial diversity indices tended to be higher in older reclaimed sites (15, 20-year-old) as recovery time increased, and were more similar to predisturbance levels nearly 20 years after reclamation. Bacterial communities are highly responsive to soil physicochemical properties (pH, soil organic matter, Total N and P), in terms of both their diversity and community composition. Our results suggest that the response of soil microorganisms to reclamation is likely governed by soil characteristics and, indirectly, by the effects of vegetation restoration. Mixture sowing of gramineae and leguminosae herbage largely promoted soil geochemical conditions and bacterial diversity that recovered to those of undisturbed soil, representing an adequate solution for soil remediation and sustainable utilization for agriculture. These results confirm the positive impacts of reclamation and vegetation restoration on soil microbial diversity and suggest that the most important phase of microbial community recovery occurs between 15 and 20 years after reclamation. PMID:25502754