Science.gov

Sample records for affect species diversity

  1. Origin matters: diversity affects the performance of alien invasive species but not of native species.

    PubMed

    Sun, Yan; Müller-Schärer, Heinz; Maron, John L; Schaffner, Urs

    2015-06-01

    At local scales, it has often been found that invasibility decreases with increasing resident plant diversity. However, whether resident community diversity similarly resists invasion by alien versus native species is seldom studied. We examined this issue by invading constructed native plant assemblages that varied in species and functional richness with invasive alien or native Asteraceae species. Assemblages were also invaded with spotted knapweed, Centaurea stoebe, a native European aster that has been previously used in diversity-invasibility experiments in North America. We also conducted a field survey to explore the generality of the patterns generated from our experimental study. Both experimental and observational work revealed that increasing diversity reduced the performance of alien but not native invaders. Centaurea stoebe invading its native community performed poorly regardless of resident diversity, whereas in a parallel, previously published study conducted in North America, C. stoebe easily invaded low-diversity but not high-diversity assemblages. Our results suggest that diversity is an attribute of resident communities that makes them more or less susceptible to invasion by novel invasive alien but not native plant species.

  2. Conservation Tillage Affects Species Composition But Not Species Diversity: A Comparative Study in Northern Italy

    NASA Astrophysics Data System (ADS)

    Boscutti, Francesco; Sigura, Maurizia; Gambon, Nadia; Lagazio, Corrado; Krüsi, Bertil O.; Bonfanti, Pierluigi

    2015-02-01

    Conservation tillage (CT) is widely considered to be a practice aimed at preserving several ecosystem functions. In the literature, however, there seems to be no clear pattern with regard to its benefits on species diversity and species composition. In Northern Italy, we compared species composition and diversity of both vascular plants and Carabids under two contrasting tillage systems, i.e., CT and conventional tillage, respectively. We hypothesized a significant positive impact of CT on both species diversity and composition. We also considered the potential influence of crop type. The tillage systems were studied under open field conditions with three types of annual crops (i.e., maize, soybean, and winter cereals), using a split-plot design on pairs of adjacent fields. Linear mixed models were applied to test tillage system, crop, and interaction effects on diversity indices. Plant and Carabids communities were analyzed by multivariate methods (CCA). On the whole, 136 plant and 51 carabid taxa were recorded. The two tillage systems studied did not differ in floristic or carabid diversity. Species composition, by contrast, proved to be characteristic for each combination of tillage system and crop type. In particular, CT fields were characterized by nutrient demanding weeds and the associated Carabids. The differences were especially pronounced in fields with winter cereals. The same was true for the flora and Carabids along the field boundaries. For studying the effects of CT practices on the sustainability of agro-ecosystems, therefore, the focus should be on species composition rather than on diversity measures.

  3. Predator diversity and density affect levels of predation upon strongly interactive species in temperate rocky reefs.

    PubMed

    Guidetti, Paolo

    2007-12-01

    Indirect effects of predators in the classic trophic cascade theory involve the effects of basal species (e.g. primary producers) mediated by predation upon strongly interactive consumers (e.g. grazers). The diversity and density of predators, and the way in which they interact, determine whether and how the effects of different predators on prey combine. Intraguild predation, for instance, was observed to dampen the effects of predators on prey in many ecosystems. In marine systems, species at high trophic levels are particularly susceptible to extinction (at least functionally). The loss of such species, which is mainly attributed to human activities (mostly fishing), is presently decreasing the diversity of marine predators in many areas of the world. Experimental studies that manipulate predator diversity and investigate the effects of this on strongly interactive consumers (i.e. those potentially capable of causing community-wide effects) in marine systems are scant, especially in the rocky sublittoral. I established an experiment that utilised cage enclosures to test whether the diversity and density of fish predators (two sea breams and two wrasses) would affect predation upon juvenile and adult sea urchins, the most important grazers in Mediterranean sublittoral rocky reefs. Changes in species identity (with sea breams producing major effects) and density of predators affected predation upon sea urchins more than changes in species richness per se. Predation upon adult sea urchins decreased in the presence of multiple predators, probably due to interference competition between sea breams and wrasses. This study suggests that factors that influence both fish predator diversity and density in Mediterranean rocky reefs (e.g. fishing and climate change) may have the potential to affect the predators' ability to control sea urchin population density, with possible repercussions for the whole benthic community structure.

  4. Fine-scale urbanization affects Odonata species diversity in ponds of a megacity (Paris, France)

    NASA Astrophysics Data System (ADS)

    Jeanmougin, Martin; Leprieur, Fabien; Loïs, Grégoire; Clergeau, Philippe

    2014-08-01

    Current developments in urban ecology include very few studies focused on pond ecosystems, though ponds are recognized as biodiversity hotspots. Using Odonata as an indicator model, we explored changes in species composition in ponds localized along an urban gradient of a megacity (Paris, France). We then assessed the relative importance of local- and landscape-scale variables in shaping Odonata α-diversity patterns using a model-averaging approach. Analyses were performed for adult (A) and adult plus exuviae (AE) census data. At 26 ponds, we recorded 657 adults and 815 exuviae belonging to 17 Odonata species. The results showed that the Odonata species assemblage composition was not determined by pond localization along the urban gradient. Similarly, pond characteristics were found to be similar among urban, suburban and periurban ponds. The analyses of AE census data revealed that fine-scale urbanization (i.e., increased density of buildings surrounding ponds) negatively affects Odonata α-diversity. In contrast, pond localization along the urban gradient weakly explained the α-diversity patterns. Several local-scale variables, such as the coverage of submerged macrophytes, were found to be significant drivers of Odonata α-diversity. Together, these results show that the degree of urbanization around ponds must be considered instead of pond localization along the urban gradient when assessing the potential impacts of urbanization on Odonata species diversity. This work also indicates the importance of exuviae sampling in understanding the response of Odonata to urbanization.

  5. Tree species diversity affects decomposition through modified micro-environmental conditions across European forests.

    PubMed

    Joly, François-Xavier; Milcu, Alexandru; Scherer-Lorenzen, Michael; Jean, Loreline-Katia; Bussotti, Filippo; Dawud, Seid Muhie; Müller, Sandra; Pollastrini, Martina; Raulund-Rasmussen, Karsten; Vesterdal, Lars; Hättenschwiler, Stephan

    2017-02-09

    Different tree species influence litter decomposition directly through species-specific litter traits, and indirectly through distinct modifications of the local decomposition environment. Whether these indirect effects on decomposition are influenced by tree species diversity is presently not clear. We addressed this question by studying the decomposition of two common substrates, cellulose paper and wood sticks, in a total of 209 forest stands of varying tree species diversity across six major forest types at the scale of Europe. Tree species richness showed a weak but positive correlation with the decomposition of cellulose but not with that of wood. Surprisingly, macroclimate had only a minor effect on cellulose decomposition and no effect on wood decomposition despite the wide range in climatic conditions among sites from Mediterranean to boreal forests. Instead, forest canopy density and stand-specific litter traits affected the decomposition of both substrates, with a particularly clear negative effect of the proportion of evergreen tree litter. Our study suggests that species richness and composition of tree canopies modify decomposition indirectly through changes in microenvironmental conditions. These canopy-induced differences in the local decomposition environment control decomposition to a greater extent than continental-scale differences in macroclimatic conditions.

  6. Urban habitat complexity affects species richness but not environmental filtering of morphologically-diverse ants.

    PubMed

    Ossola, Alessandro; Nash, Michael A; Christie, Fiona J; Hahs, Amy K; Livesley, Stephen J

    2015-01-01

    Habitat complexity is a major determinant of structure and diversity of ant assemblages. Following the size-grain hypothesis, smaller ant species are likely to be advantaged in more complex habitats compared to larger species. Habitat complexity can act as an environmental filter based on species size and morphological traits, therefore affecting the overall structure and diversity of ant assemblages. In natural and semi-natural ecosystems, habitat complexity is principally regulated by ecological successions or disturbance such as fire and grazing. Urban ecosystems provide an opportunity to test relationships between habitat, ant assemblage structure and ant traits using novel combinations of habitat complexity generated and sustained by human management. We sampled ant assemblages in low-complexity and high-complexity parks, and high-complexity woodland remnants, hypothesizing that (i) ant abundance and species richness would be higher in high-complexity urban habitats, (ii) ant assemblages would differ between low- and high-complexity habitats and (iii) ants living in high-complexity habitats would be smaller than those living in low-complexity habitats. Contrary to our hypothesis, ant species richness was higher in low-complexity habitats compared to high-complexity habitats. Overall, ant assemblages were significantly different among the habitat complexity types investigated, although ant size and morphology remained the same. Habitat complexity appears to affect the structure of ant assemblages in urban ecosystems as previously observed in natural and semi-natural ecosystems. However, the habitat complexity filter does not seem to be linked to ant morphological traits related to body size.

  7. Urban habitat complexity affects species richness but not environmental filtering of morphologically-diverse ants

    PubMed Central

    Nash, Michael A.; Christie, Fiona J.; Hahs, Amy K.; Livesley, Stephen J.

    2015-01-01

    Habitat complexity is a major determinant of structure and diversity of ant assemblages. Following the size-grain hypothesis, smaller ant species are likely to be advantaged in more complex habitats compared to larger species. Habitat complexity can act as an environmental filter based on species size and morphological traits, therefore affecting the overall structure and diversity of ant assemblages. In natural and semi-natural ecosystems, habitat complexity is principally regulated by ecological successions or disturbance such as fire and grazing. Urban ecosystems provide an opportunity to test relationships between habitat, ant assemblage structure and ant traits using novel combinations of habitat complexity generated and sustained by human management. We sampled ant assemblages in low-complexity and high-complexity parks, and high-complexity woodland remnants, hypothesizing that (i) ant abundance and species richness would be higher in high-complexity urban habitats, (ii) ant assemblages would differ between low- and high-complexity habitats and (iii) ants living in high-complexity habitats would be smaller than those living in low-complexity habitats. Contrary to our hypothesis, ant species richness was higher in low-complexity habitats compared to high-complexity habitats. Overall, ant assemblages were significantly different among the habitat complexity types investigated, although ant size and morphology remained the same. Habitat complexity appears to affect the structure of ant assemblages in urban ecosystems as previously observed in natural and semi-natural ecosystems. However, the habitat complexity filter does not seem to be linked to ant morphological traits related to body size. PMID:26528416

  8. Does population size affect genetic diversity? A test with sympatric lizard species

    PubMed Central

    Hague, M T J; Routman, E J

    2016-01-01

    Genetic diversity is a fundamental requirement for evolution and adaptation. Nonetheless, the forces that maintain patterns of genetic variation in wild populations are not completely understood. Neutral theory posits that genetic diversity will increase with a larger effective population size and the decreasing effects of drift. However, the lack of compelling evidence for a relationship between genetic diversity and population size in comparative studies has generated some skepticism over the degree that neutral sequence evolution drives overall patterns of diversity. The goal of this study was to measure genetic diversity among sympatric populations of related lizard species that differ in population size and other ecological factors. By sampling related species from a single geographic location, we aimed to reduce nuisance variance in genetic diversity owing to species differences, for example, in mutation rates or historical biogeography. We compared populations of zebra-tailed lizards and western banded geckos, which are abundant and short-lived, to chuckwallas and desert iguanas, which are less common and long-lived. We assessed population genetic diversity at three protein-coding loci for each species. Our results were consistent with the predictions of neutral theory, as the abundant species almost always had higher levels of haplotype diversity than the less common species. Higher population genetic diversity in the abundant species is likely due to a combination of demographic factors, including larger local population sizes (and presumably effective population sizes), faster generation times and high rates of gene flow with other populations. PMID:26306730

  9. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields.

    PubMed

    Martínez, Eliana; Rös, Matthias; Bonilla, María Argenis; Dirzo, Rodolfo

    2015-01-01

    The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity.

  10. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields

    PubMed Central

    Martínez, Eliana; Rös, Matthias; Bonilla, María Argenis; Dirzo, Rodolfo

    2015-01-01

    The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity. PMID:26197473

  11. Prey dispersal rate affects prey species composition and trait diversity in response to multiple predators in metacommunities.

    PubMed

    Howeth, Jennifer G; Leibold, Mathew A

    2010-09-01

    1. Recent studies indicate that large-scale spatial processes can alter local community structuring mechanisms to determine local and regional assemblages of predators and their prey. In metacommunities, this may occur when the functional diversity represented in the regional predator species pool interacts with the rate of prey dispersal among local communities to affect prey species diversity and trait composition at multiple scales. 2. Here, we test for effects of prey dispersal rate and spatially and temporally heterogeneous predation from functionally dissimilar predators on prey structure in pond mesocosm metacommunities. An experimental metacommunity consisted of three pond mesocosm communities supporting two differentially size-selective invertebrate predators and their zooplankton prey. In each metacommunity, two communities maintained constant predation and supported either Gyrinus sp. (Coleoptera) or Notonecta ungulata (Hemiptera) predators generating a spatial prey refuge while the third community supported alternating predation from Gyrinus sp. and N. ungulata generating a temporal prey refuge. Mesocosm metacommunities were connected at either low (0.7% day(-1)) or high (10% day(-1)) planktonic prey dispersal. The diversity, composition and body size of zooplankton prey were measured at local and regional (metacommunity) scales. 3. Metacommunities experiencing the low prey dispersal rate supported the greatest regional prey species diversity (H') and evenness (J'). Neither dispersal rate nor predation regime affected local prey diversity or evenness. The spatial prey refuge at low dispersal maintained the largest difference in species composition and body size diversity between communities under Gyrinus and Notonecta predation, suggesting that species sorting was operating at the low dispersal rate. There was no effect of dispersal rate on species diversity or body size distribution in the temporal prey refuge. 4. The frequency distribution, but not

  12. Factors affecting stem borer parasitoid species diversity and parasitism in cultivated and natural habitats.

    PubMed

    Mailafiya, Duna Madu; Le Ru, Bruno Pierre; Kairu, Eunice Waitherero; Calatayud, Paul-André; Dupas, Stéphane

    2010-02-01

    The effects of biotic and abiotic factors on stem borer parasitoid diversity, abundance, and parasitism were studied in cultivated and natural habitats in four agroecological zones in Kenya. Comparing habitat types, we found partial support for the "natural enemy" hypothesis, whereby, across all localities, parasitoid diversity was higher in more diverse host plant communities in natural habitats, whereas parasitoid abundance was higher in cultivated habitats. For both habitats, parasitoid richness was mainly influenced by stem borer density and/or its interaction with stem borer richness, whereas parasitoid abundance was mainly affected by stem borer abundance. Parasitoid richness was higher in localities (with bimodal rainfall distribution) with increased spatial and temporal availability of host plants that harbored the borers. Across seasons, parasitoid richness was lower in both cultivated and natural habitats in the driest locality, Mtito Andei. Overall, parasitoid diversity was low in Suam and Mtito Andei, where maize cultivation was practiced on a commercial scale and intense grazing activities persist across seasons, respectively. Across localities, habitats, and seasons, stem borer parasitism was positively correlated with parasitoid richness and abundance. Furthermore, the interaction of rainfall and altitude influenced the presence and absence of parasitoids, and consequently, stem borer parasitism. Parasitism was positively and negatively correlated with temperature in cultivated and natural habitats, respectively. Overall, natural habitats seem to serve as important refugia for sustaining parasitoid diversity, which in turn can affect stem borer parasitism in the cereal cropping system.

  13. Do non-native plant species affect the shape of productivity-diversity relationships?

    USGS Publications Warehouse

    Drake, J.M.; Cleland, E.E.; Horner-Devine, M. C.; Fleishman, E.; Bowles, C.; Smith, M.D.; Carney, K.; Emery, S.; Gramling, J.; Vandermast, D.B.; Grace, J.B.

    2008-01-01

    The relationship between ecosystem processes and species richness is an active area of research and speculation. Both theoretical and experimental studies have been conducted in numerous ecosystems. One finding of these studies is that the shape of the relationship between productivity and species richness varies considerably among ecosystems and at different spatial scales, though little is known about the relative importance of physical and biological mechanisms causing this variation. Moreover, despite widespread concern about changes in species' global distributions, it remains unclear if and how such large-scale changes may affect this relationship. We present a new conceptual model of how invasive species might modulate relationships between primary production and species richness. We tested this model using long-term data on relationships between aboveground net primary production and species richness in six North American terrestrial ecosystems. We show that primary production and abundance of non-native species are both significant predictors of species richness, though we fail to detect effects of invasion extent on the shapes of the relationship between species richness and primary production.

  14. Political systems affect mobile and sessile species diversity--a legacy from the post-WWII period.

    PubMed

    Cousins, Sara A O; Kaligarič, Mitja; Bakan, Branko; Lindborg, Regina

    2014-01-01

    Political ideologies, policies and economy affect land use which in turn may affect biodiversity patterns and future conservation targets. However, few studies have investigated biodiversity in landscapes with similar physical properties but governed by different political systems. Here we investigate land use and biodiversity patterns, and number and composition of birds and plants, in the borderland of Austria, Slovenia and Hungary. It is a physically uniform landscape but managed differently during the last 70 years as a consequence of the political "map" of Europe after World War I and II. We used a historical map from 1910 and satellite data to delineate land use within three 10-kilometre transects starting from the point where the three countries meet. There was a clear difference between countries detectable in current biodiversity patterns, which relates to land use history. Mobile species richness was associated with current land use whereas diversity of sessile species was more associated with past land use. Heterogeneous landscapes were positively and forest cover was negatively correlated to bird species richness. Our results provide insights into why landscape history is important to understand present and future biodiversity patterns, which is crucial for designing policies and conservation strategies across the world.

  15. Political Systems Affect Mobile and Sessile Species Diversity – A Legacy from the Post-WWII Period

    PubMed Central

    Cousins, Sara A. O.; Kaligarič, Mitja; Bakan, Branko; Lindborg, Regina

    2014-01-01

    Political ideologies, policies and economy affect land use which in turn may affect biodiversity patterns and future conservation targets. However, few studies have investigated biodiversity in landscapes with similar physical properties but governed by different political systems. Here we investigate land use and biodiversity patterns, and number and composition of birds and plants, in the borderland of Austria, Slovenia and Hungary. It is a physically uniform landscape but managed differently during the last 70 years as a consequence of the political “map” of Europe after World War I and II. We used a historical map from 1910 and satellite data to delineate land use within three 10-kilometre transects starting from the point where the three countries meet. There was a clear difference between countries detectable in current biodiversity patterns, which relates to land use history. Mobile species richness was associated with current land use whereas diversity of sessile species was more associated with past land use. Heterogeneous landscapes were positively and forest cover was negatively correlated to bird species richness. Our results provide insights into why landscape history is important to understand present and future biodiversity patterns, which is crucial for designing policies and conservation strategies across the world. PMID:25084154

  16. Plant invasions differentially affected by diversity and dominant species in native- and exotic-dominated grasslands.

    PubMed

    Xu, Xia; Polley, H Wayne; Hofmockel, Kirsten; Daneshgar, Pedram P; Wilsey, Brian J

    2015-12-01

    Plant invasions are an increasingly serious global concern, especially as the climate changes. Here, we explored how plant invasions differed between native- and novel exotic-dominated grasslands with experimental addition of summer precipitation in Texas in 2009. Exotic species greened up earlier than natives by an average of 18 days. This was associated with a lower invasion rate early in the growing season compared to native communities. However, invasion rate did not differ significantly between native and exotic communities across all sampling times. The predictors of invasion rate differed between native and exotic communities, with invasion being negatively influenced by species richness in natives and by dominant species in exotics. Interestingly, plant invasions matched the bimodal pattern of precipitation in Temple, Texas, and did not respond to the pulse of precipitation during the summer. Our results suggest that we will need to take different approaches in understanding of invasion between native and exotic grasslands. Moreover, with anticipated increasing variability in precipitation under global climate change, plant invasions may be constrained in their response if the precipitation pulses fall outside the normal growing period of invaders.

  17. Environmental parameters affecting the species diversity along the Aliakmon River, North Greece.

    PubMed

    Ilias, Ilias F; Lakis, Christos; Papazafeiriou, Agapi Z

    2008-03-15

    The annual distribution of aquatic and coastal macrophytes in five selected sites along the Aliakmon River was studied from January 2005 to December 2005 in Northern Greece. Soil and water chemical parameters in these sites were also evaluated. A total of 75 taxa were recorded belonging to 37 families and 53 genera. The majority of the macrophytes belonged to coastal plants (76%), whereas the rest of the macrophytes belonged to aquatic plants (24%). Species of the family Asteraceae were dominant among coastal plants, whereas species of the family Potamogetonaceae were dominant among aquatic plants. Soil samples from the site of Dam of Veria had higher pH and electric conductivity (80-100 cm depth), whereas CaCO3 contents were significantly higher in soil samples from the area of P. Prodromos (60-80 cm depth). Most physicochemical water parameters as well as selected soil nutrients and major ionic components showed an increase during the low charge period (fall) compared to with the high charge period (spring), especially in parameters associated with agricultural activity. Furthermore, there was an increase in most examined values moving towards the delta of the river.

  18. Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest

    NASA Astrophysics Data System (ADS)

    Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye

    2016-11-01

    Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest.

  19. Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest

    PubMed Central

    Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye

    2016-01-01

    Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest. PMID:27857198

  20. Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest.

    PubMed

    Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye

    2016-11-18

    Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest.

  1. Tree diversity affects chlorophyll a fluorescence and other leaf traits of tree species in a boreal forest.

    PubMed

    Pollastrini, Martina; Nogales, Ana Garcia; Benavides, Raquel; Bonal, Damien; Finer, Leena; Fotelli, Mariangela; Gessler, Arthur; Grossiord, Charlotte; Radoglou, Kalliopi; Strasser, Reto J; Bussotti, Filippo

    2017-01-18

    An assemblage of tree species with different crown properties creates heterogeneous environments at the canopy level. Changes of functional leaf traits are expected, especially those related to light interception and photosynthesis. Chlorophyll a fluorescence (ChlF) properties in dark-adapted leaves, specific leaf area, leaf nitrogen content (N) and carbon isotope composition (δ(13)C) were measured on Picea abies (L.) H.Karst., Pinus sylvestris L. and Betula pendula Roth. in monospecific and mixed boreal forests in Europe, in order to test whether they were affected by stand species richness and composition. Photosynthetic efficiency, assessed by induced emission of leaf ChlF, was positively influenced in B. pendula by species richness, whereas P. abies showed higher photosynthetic efficiency in monospecific stands. Pinus sylvestris had different responses when it coexisted with P. abies or B. pendula The presence of B. pendula, but not of P. abies, in the forest had a positive effect on the efficiency of photosynthetic electron transport and N in P. sylvestris needles, and the photosynthetic responses were positively correlated with an increase of leaf δ(13)C. These effects on P. sylvestris may be related to high light availability at the canopy level due to the less dense canopy of B. pendula The different light requirements of coexisting species was the most important factor affecting the distribution of foliage in the canopy, driving the physiological responses of the mixed species. Future research directions claim to enhance the informative potential of the methods to analyse the responses of pure and mixed forests to environmental factors, including a broader set of plant species' functional traits and physiological responses.

  2. How variation between individuals affects species coexistence.

    PubMed

    Hart, Simon P; Schreiber, Sebastian J; Levine, Jonathan M

    2016-08-01

    Although the effects of variation between individuals within species are traditionally ignored in studies of species coexistence, the magnitude of intraspecific variation in nature is forcing ecologists to reconsider. Compelling intuitive arguments suggest that individual variation may provide a previously unrecognised route to diversity maintenance by blurring species-level competitive differences or substituting for species-level niche differences. These arguments, which are motivating a large body of empirical work, have rarely been evaluated with quantitative theory. Here we incorporate intraspecific variation into a common model of competition and identify three pathways by which this variation affects coexistence: (1) changes in competitive dynamics because of nonlinear averaging, (2) changes in species' mean interaction strengths because of variation in underlying traits (also via nonlinear averaging) and (3) effects on stochastic demography. As a consequence of the first two mechanisms, we find that intraspecific variation in competitive ability increases the dominance of superior competitors, and intraspecific niche variation reduces species-level niche differentiation, both of which make coexistence more difficult. In addition, individual variation can exacerbate the effects of demographic stochasticity, and this further destabilises coexistence. Our work provides a theoretical foundation for emerging empirical interests in the effects of intraspecific variation on species diversity.

  3. Species interaction mechanisms maintain grassland plant species diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Theory has outpaced empirical research in pursuit of identifying mechanisms maintaining species diversity. Here we demonstrate how data from diversity-ecosystem functioning experiments can be used to test maintenance of diversity theory. We predict that grassland plant diversity can be maintained by...

  4. Does natural variation in diversity affect biotic resistance?

    USGS Publications Warehouse

    Harrison, Susan; Cornell, Howard; Grace, James B.

    2015-01-01

    Theories linking diversity to ecosystem function have been challenged by the widespread observation of more exotic species in more diverse native communities. Few studies have addressed the key underlying process by dissecting how community diversity is shaped by the same environmental gradients that determine biotic and abiotic resistance to new invaders. In grasslands on highly heterogeneous soils, we used addition of a recent invader, competitor removal and structural equation modelling (SEM) to analyse soil influences on community diversity, biotic and abiotic resistance and invader success. Biotic resistance, measured by reduction in invader success in the presence of the resident community, was negatively correlated with species richness and functional diversity. However, in the multivariate SEM framework, biotic resistance was independent of all forms of diversity and was positively affected by soil fertility via community biomass. Abiotic resistance, measured by invader success in the absence of the resident community, peaked on infertile soils with low biomass and high community diversity. Net invader success was determined by biotic resistance, consistent with this invader's better performance on infertile soils in unmanipulated conditions. Seed predation added slightly to biotic resistance without qualitatively changing the results. Soil-related genotypic variation in the invader also did not affect the results. Synthesis. In natural systems, diversity may be correlated with invasibility and yet have no effect on either biotic or abiotic resistance to invasion. More generally, the environmental causes of variation in diversity should not be overlooked when considering the potential functional consequences of diversity.

  5. Genetic calibration of species diversity among North America's freshwater fishes

    PubMed Central

    April, Julien; Mayden, Richard L.; Hanner, Robert H.; Bernatchez, Louis

    2011-01-01

    Freshwater ecosystems are being heavily exploited and degraded by human activities all over the world, including in North America, where fishes and fisheries are strongly affected. Despite centuries of taxonomic inquiry, problems inherent to species identification continue to hamper the conservation of North American freshwater fishes. Indeed, nearly 10% of species diversity is thought to remain undescribed. To provide an independent calibration of taxonomic uncertainty and to establish a more accessible molecular identification key for its application, we generated a standard reference library of mtDNA sequences (DNA barcodes) derived from expert-identified museum specimens for 752 North American freshwater fish species. This study demonstrates that 90% of known species can be delineated using barcodes. Moreover, it reveals numerous genetic discontinuities indicative of independently evolving lineages within described species, which points to the presence of morphologically cryptic diversity. From the 752 species analyzed, our survey flagged 138 named species that represent as many as 347 candidate species, which suggests a 28% increase in species diversity. In contrast, several species of parasitic and nonparasitic lampreys lack such discontinuity and may represent alternative life history strategies within single species. Therefore, it appears that the current North American freshwater fish taxonomy at the species level significantly conceals diversity in some groups, although artificially creating diversity in others. In addition to providing an easily accessible digital identification system, this study identifies 151 fish species for which taxonomic revision is required. PMID:21670289

  6. Genetic calibration of species diversity among North America's freshwater fishes.

    PubMed

    April, Julien; Mayden, Richard L; Hanner, Robert H; Bernatchez, Louis

    2011-06-28

    Freshwater ecosystems are being heavily exploited and degraded by human activities all over the world, including in North America, where fishes and fisheries are strongly affected. Despite centuries of taxonomic inquiry, problems inherent to species identification continue to hamper the conservation of North American freshwater fishes. Indeed, nearly 10% of species diversity is thought to remain undescribed. To provide an independent calibration of taxonomic uncertainty and to establish a more accessible molecular identification key for its application, we generated a standard reference library of mtDNA sequences (DNA barcodes) derived from expert-identified museum specimens for 752 North American freshwater fish species. This study demonstrates that 90% of known species can be delineated using barcodes. Moreover, it reveals numerous genetic discontinuities indicative of independently evolving lineages within described species, which points to the presence of morphologically cryptic diversity. From the 752 species analyzed, our survey flagged 138 named species that represent as many as 347 candidate species, which suggests a 28% increase in species diversity. In contrast, several species of parasitic and nonparasitic lampreys lack such discontinuity and may represent alternative life history strategies within single species. Therefore, it appears that the current North American freshwater fish taxonomy at the species level significantly conceals diversity in some groups, although artificially creating diversity in others. In addition to providing an easily accessible digital identification system, this study identifies 151 fish species for which taxonomic revision is required.

  7. Functional roles affect diversity-succession relationships for boreal beetles.

    PubMed

    Gibb, Heloise; Johansson, Therese; Stenbacka, Fredrik; Hjältén, Joakim

    2013-01-01

    Species diversity commonly increases with succession and this relationship is an important justification for conserving large areas of old-growth habitats. However, species with different ecological roles respond differently to succession. We examined the relationship between a range of diversity measures and time since disturbance for boreal forest beetles collected over a 285 year forest chronosequence. We compared responses of "functional" groups related to threat status, dependence on dead wood habitats, diet and the type of trap in which they were collected (indicative of the breadth of ecologies of species). We examined fits of commonly used rank-abundance models for each age class and traditional and derived diversity indices. Rank abundance distributions were closest to the Zipf-Mandelbrot distribution, suggesting little role for competition in structuring most assemblages. Diversity measures for most functional groups increased with succession, but differences in slopes were common. Evenness declined with succession; more so for red-listed species than common species. Saproxylic species increased in diversity with succession while non-saproxylic species did not. Slopes for fungivores were steeper than other diet groups, while detritivores were not strongly affected by succession. Species trapped using emergence traps (log specialists) responded more weakly to succession than those trapped using flight intercept traps (representing a broader set of ecologies). Species associated with microhabitats that accumulate with succession (fungi and dead wood) thus showed the strongest diversity responses to succession. These clear differences between functional group responses to forest succession should be considered in planning landscapes for optimum conservation value, particularly functional resilience.

  8. Functional Roles Affect Diversity-Succession Relationships for Boreal Beetles

    PubMed Central

    Gibb, Heloise; Johansson, Therese; Stenbacka, Fredrik; Hjältén, Joakim

    2013-01-01

    Species diversity commonly increases with succession and this relationship is an important justification for conserving large areas of old-growth habitats. However, species with different ecological roles respond differently to succession. We examined the relationship between a range of diversity measures and time since disturbance for boreal forest beetles collected over a 285 year forest chronosequence. We compared responses of “functional” groups related to threat status, dependence on dead wood habitats, diet and the type of trap in which they were collected (indicative of the breadth of ecologies of species). We examined fits of commonly used rank-abundance models for each age class and traditional and derived diversity indices. Rank abundance distributions were closest to the Zipf-Mandelbrot distribution, suggesting little role for competition in structuring most assemblages. Diversity measures for most functional groups increased with succession, but differences in slopes were common. Evenness declined with succession; more so for red-listed species than common species. Saproxylic species increased in diversity with succession while non-saproxylic species did not. Slopes for fungivores were steeper than other diet groups, while detritivores were not strongly affected by succession. Species trapped using emergence traps (log specialists) responded more weakly to succession than those trapped using flight intercept traps (representing a broader set of ecologies). Species associated with microhabitats that accumulate with succession (fungi and dead wood) thus showed the strongest diversity responses to succession. These clear differences between functional group responses to forest succession should be considered in planning landscapes for optimum conservation value, particularly functional resilience. PMID:23977350

  9. Species diversity of Trichoderma in Poland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fifteen species of Trichoderma were identified from among 118 strains originating from different regions and ecological niches in Poland. This low number indicates low species diversity of Trichoderma in this Central European region. Using the ITS1-ITS2 regions, 64 strains were positively identified...

  10. Plant Functional Diversity and Species Diversity in the Mongolian Steppe

    PubMed Central

    Liu, Guofang; Xie, Xiufang; Ye, Duo; Ye, Xuehua; Tuvshintogtokh, Indree; Mandakh, Bayart; Huang, Zhenying; Dong, Ming

    2013-01-01

    Background The Mongolian steppe is one of the most important grasslands in the world but suffers from aridization and damage from anthropogenic activities. Understanding structure and function of this community is important for the ecological conservation, but has seldom been investigated. Methodology/Principal Findings In this study, a total of 324 quadrats located on the three main types of Mongolian steppes were surveyed. Early-season perennial forbs (37% of total importance value), late-season annual forbs (33%) and late-season perennial forbs (44%) were dominant in meadow, typical and desert steppes, respectively. Species richness, diversity and plant functional type (PFT) richness decreased from the meadow, via typical to desert steppes, but evenness increased; PFT diversity in the desert and meadow steppes was higher than that in typical steppe. However, above-ground net primary productivity (ANPP) was far lower in desert steppe than in the other two steppes. In addition, the slope of the relationship between species richness and PFT richness increased from the meadow, via typical to desert steppes. Similarly, with an increase in species diversity, PFT diversity increased more quickly in both the desert and typical steppes than that in meadow steppe. Random resampling suggested that this coordination was partly due to a sampling effect of diversity. Conclusions/Significance These results indicate that desert steppe should be strictly protected because of its limited functional redundancy, which its ecological functioning is sensitive to species loss. In contrast, despite high potential forage production shared by the meadow and typical steppes, management of these two types of steppes should be different: meadow steppe should be preserved due to its higher conservation value characterized by more species redundancy and higher spatial heterogeneity, while typical steppe could be utilized moderately because its dominant grass genus Stipa is resistant to

  11. Molecular species identification boosts bat diversity

    PubMed Central

    Mayer, Frieder; Dietz, Christian; Kiefer, Andreas

    2007-01-01

    The lack of obvious morphological differences between species impedes the identification of species in many groups of organisms. Meanwhile, DNA-based approaches are increasingly used to survey biological diversity. In this study we show that sequencing the mitochondrial protein-coding gene NADH dehydrogenase, subunit 1 (nd1) from 534 bats of the Western Palaearctic region corroborates the promise of DNA barcodes in two major respects. First, species described with classical taxonomic tools can be genetically identified with only a few exceptions. Second, substantial sequence divergence suggests an unexpected high number of undiscovered species. PMID:17295921

  12. Population diversity and the portfolio effect in an exploited species.

    PubMed

    Schindler, Daniel E; Hilborn, Ray; Chasco, Brandon; Boatright, Christopher P; Quinn, Thomas P; Rogers, Lauren A; Webster, Michael S

    2010-06-03

    One of the most pervasive themes in ecology is that biological diversity stabilizes ecosystem processes and the services they provide to society, a concept that has become a common argument for biodiversity conservation. Species-rich communities are thought to produce more temporally stable ecosystem services because of the complementary or independent dynamics among species that perform similar ecosystem functions. Such variance dampening within communities is referred to as a portfolio effect and is analogous to the effects of asset diversity on the stability of financial portfolios. In ecology, these arguments have focused on the effects of species diversity on ecosystem stability but have not considered the importance of biologically relevant diversity within individual species. Current rates of population extirpation are probably at least three orders of magnitude higher than species extinction rates, so there is a pressing need to clarify how population and life history diversity affect the performance of individual species in providing important ecosystem services. Here we use five decades of data from Oncorhynchus nerka (sockeye salmon) in Bristol Bay, Alaska, to provide the first quantification of portfolio effects that derive from population and life history diversity in an important and heavily exploited species. Variability in annual Bristol Bay salmon returns is 2.2 times lower than it would be if the system consisted of a single homogenous population rather than the several hundred discrete populations it currently consists of. Furthermore, if it were a single homogeneous population, such increased variability would lead to ten times more frequent fisheries closures. Portfolio effects are also evident in watershed food webs, where they stabilize and extend predator access to salmon resources. Our results demonstrate the critical importance of maintaining population diversity for stabilizing ecosystem services and securing the economies and livelihoods

  13. Ecological mechanisms underlying arthropod species diversity in grasslands.

    PubMed

    Joern, Anthony; Laws, Angela N

    2013-01-01

    Arthropods are an important component of grassland systems, contributing significantly to biodiversity and ecosystem structure and function. Climate, fire, and grazing by large herbivores are important drivers in grasslands worldwide. Arthropod responses to these drivers are highly variable and clear patterns are difficult to find, but responses are largely indirect with respect to changes in resources, species interactions, habitat structure, and habitat heterogeneity resulting from interactions among fire, grazing, and climate. Here, we review these ecological mechanisms influencing grassland arthropod diversity. We summarize hypotheses describing species diversity at local and regional scales and then discuss specific factors that may affect arthropod diversity in grassland systems. These factors include direct and indirect effects of grazing, fire, and climate, species interactions, above- and belowground interactions, and landscape-level effects.

  14. Toward a trophic theory of species diversity.

    PubMed

    Terborgh, John W

    2015-09-15

    Efforts to understand the ecological regulation of species diversity via bottom-up approaches have failed to yield a consensus theory. Theories based on the alternative of top-down regulation have fared better. Paine's discovery of keystone predation demonstrated that the regulation of diversity via top-down forcing could be simple, strong, and direct, yet ecologists have persistently failed to perceive generality in Paine's result. Removing top predators destabilizes many systems and drives transitions to radically distinct alternative states. These transitions typically involve community reorganization and loss of diversity, implying that top-down forcing is crucial to diversity maintenance. Contrary to the expectations of bottom-up theories, many terrestrial herbivores and mesopredators are capable of sustained order-of-magnitude population increases following release from predation, negating the assumption that populations of primary consumers are resource limited and at or near carrying capacity. Predation sensu lato (to include Janzen-Connell mortality agents) has been shown to promote diversity in a wide range of ecosystems, including rocky intertidal shelves, coral reefs, the nearshore ocean, streams, lakes, temperate and tropical forests, and arctic tundra. The compelling variety of these ecosystems suggests that top-down forcing plays a universal role in regulating diversity. This conclusion is further supported by studies showing that the reduction or absence of predation leads to diversity loss and, in the more dramatic cases, to catastrophic regime change. Here, I expand on the thesis that diversity is maintained by the interaction between predation and competition, such that strong top-down forcing reduces competition, allowing coexistence.

  15. Toward a trophic theory of species diversity

    PubMed Central

    Terborgh, John W.

    2015-01-01

    Efforts to understand the ecological regulation of species diversity via bottom-up approaches have failed to yield a consensus theory. Theories based on the alternative of top-down regulation have fared better. Paine’s discovery of keystone predation demonstrated that the regulation of diversity via top-down forcing could be simple, strong, and direct, yet ecologists have persistently failed to perceive generality in Paine’s result. Removing top predators destabilizes many systems and drives transitions to radically distinct alternative states. These transitions typically involve community reorganization and loss of diversity, implying that top-down forcing is crucial to diversity maintenance. Contrary to the expectations of bottom-up theories, many terrestrial herbivores and mesopredators are capable of sustained order-of-magnitude population increases following release from predation, negating the assumption that populations of primary consumers are resource limited and at or near carrying capacity. Predation sensu lato (to include Janzen–Connell mortality agents) has been shown to promote diversity in a wide range of ecosystems, including rocky intertidal shelves, coral reefs, the nearshore ocean, streams, lakes, temperate and tropical forests, and arctic tundra. The compelling variety of these ecosystems suggests that top-down forcing plays a universal role in regulating diversity. This conclusion is further supported by studies showing that the reduction or absence of predation leads to diversity loss and, in the more dramatic cases, to catastrophic regime change. Here, I expand on the thesis that diversity is maintained by the interaction between predation and competition, such that strong top-down forcing reduces competition, allowing coexistence. PMID:26374788

  16. Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest

    PubMed Central

    Xu, Wumei; Liu, Lu; He, Tianhua; Cao, Min; Sha, Liqing; Hu, Yuehua; Li, Qiaoming; Li, Jie

    2016-01-01

    A negative species-genetic diversity correlation (SGDC) could be predicted by the niche variation hypothesis, whereby an increase in species diversity within community reduces the genetic diversity of the co-occurring species because of the reduction in average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of the species within community. We tested these predictions within a 20 ha tropical forest dynamics plot (FDP) in the Xishuangbanna tropical seasonal rainforest. We established 15 plots within the FDP and investigated the soil properties, tree diversity, and genetic diversity of a common tree species Beilschmiedia roxburghiana within each plot. We observed a significant negative correlation between tree diversity and the genetic diversity of B. roxburghiana within the communities. Using structural equation modeling, we further determined that the inter-plot environmental characteristics (soil pH and phosphorus availability) directly affected tree diversity and that the tree diversity within the community determined the genetic diversity of B. roxburghiana. Increased soil pH and phosphorus availability might promote the coexistence of more tree species within community and reduce genetic diversity of B. roxburghiana for the reduced average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of B. roxburghiana within community. PMID:26860815

  17. Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest.

    PubMed

    Xu, Wumei; Liu, Lu; He, Tianhua; Cao, Min; Sha, Liqing; Hu, Yuehua; Li, Qiaoming; Li, Jie

    2016-02-10

    A negative species-genetic diversity correlation (SGDC) could be predicted by the niche variation hypothesis, whereby an increase in species diversity within community reduces the genetic diversity of the co-occurring species because of the reduction in average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of the species within community. We tested these predictions within a 20 ha tropical forest dynamics plot (FDP) in the Xishuangbanna tropical seasonal rainforest. We established 15 plots within the FDP and investigated the soil properties, tree diversity, and genetic diversity of a common tree species Beilschmiedia roxburghiana within each plot. We observed a significant negative correlation between tree diversity and the genetic diversity of B. roxburghiana within the communities. Using structural equation modeling, we further determined that the inter-plot environmental characteristics (soil pH and phosphorus availability) directly affected tree diversity and that the tree diversity within the community determined the genetic diversity of B. roxburghiana. Increased soil pH and phosphorus availability might promote the coexistence of more tree species within community and reduce genetic diversity of B. roxburghiana for the reduced average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of B. roxburghiana within community.

  18. Does species diversity limit productivity in natural grassland communities?

    USGS Publications Warehouse

    Grace, J.B.; Anderson, T.M.; Smith, M.D.; Seabloom, E.; Andelman, S.J.; Meche, G.; Weiher, E.; Allain, L.K.; Jutila, H.; Sankaran, M.; Knops, J.; Ritchie, M.; Willig, M.R.

    2007-01-01

    Theoretical analyses and experimental studies of synthesized assemblages indicate that under particular circumstances species diversity can enhance community productivity through niche complementarity. It remains unclear whether this process has important effects in mature natural ecosystems where competitive feedbacks and complex environmental influences affect diversity-productivity relationships. In this study, we evaluated diversity-productivity relationships while statistically controlling for environmental influences in 12 natural grassland ecosystems. Because diversity-productivity relationships are conspicuously nonlinear, we developed a nonlinear structural equation modeling (SEM) methodology to separate the effects of diversity on productivity from the effects of productivity on diversity. Meta-analysis was used to summarize the SEM findings across studies. While competitive effects were readily detected, enhancement of production by diversity was not. These results suggest that the influence of small-scale diversity on productivity in mature natural systems is a weak force, both in absolute terms and relative to the effects of other controls on productivity. ?? 2007 Blackwell Publishing Ltd/CNRS.

  19. Functional diversity within the Penicillium roqueforti species.

    PubMed

    Gillot, Guillaume; Jany, Jean-Luc; Poirier, Elisabeth; Maillard, Marie-Bernadette; Debaets, Stella; Thierry, Anne; Coton, Emmanuel; Coton, Monika

    2017-01-16

    Penicillium roqueforti is used as a ripening culture for blue cheeses and largely contributes to their organoleptic quality and typical characteristics. Different types of blue cheeses are manufactured and consumed worldwide and have distinct aspects, textures, flavors and colors. These features are well accepted to be due to the different manufacturing methods but also to the specific P. roqueforti strains used. Indeed, inoculated P. roqueforti strains, via their proteolytic and lipolytic activities, have an effect on both blue cheese texture and flavor. In particular, P. roqueforti produces a wide range of flavor compounds and variations in their proportions influence the flavor profiles of this type of cheese. Moreover, P. roqueforti is also characterized by substantial morphological and genetic diversity thus raising the question about the functional diversity of this species. In this context, 55 representative strains were screened for key metabolic properties including proteolytic activity (by determining free NH2 amino groups) and secondary metabolite production (aroma compounds using HS-Trap GC-MS and mycotoxins via LC-MS/Q-TOF). Mini model cheeses were used for aroma production and proteolysis analyses, whereas Yeast Extract Sucrose (YES) agar medium was used for mycotoxin production. Overall, this study highlighted high functional diversity among isolates. Noteworthy, when only P. roqueforti strains isolated from Protected Designation of Origin (PDO) or Protected Geographical Indication (PGI) blue cheeses were considered, a clear relationship between genetic diversity, population structure and the assessed functional traits was shown.

  20. Highlighting Astyanax Species Diversity through DNA Barcoding

    PubMed Central

    Oliveira, Carlos Alexandre Miranda; de Melo, Filipe Augusto Gonçalves; Bertaco, Vinicius de Araújo; de Astarloa, Juan M. Díaz; Rosso, Juan J.; Foresti, Fausto; Oliveira, Claudio

    2016-01-01

    DNA barcoding has been used extensively to solve taxonomic questions and identify new species. Neotropical fishes are found in a wide variety of shapes and sizes, with a large number of species yet to be described, many of which are very difficult to identify. Characidae is the most species-rich family of the Characiformes, and many of its genera are affected by taxonomic uncertainties, including the widely-distributed, species-rich genus Astyanax. In this study, we present an extensive analysis of Astyanax covering almost its entire area of occurrence, based on DNA barcoding. The use of different approaches (ABGD, GMYC and BIN) to the clustering of the sequences revealed ample consistency in the results obtained by the initial cutoff value of 2% divergence for putative species in the Neighbor-Joining analysis using the Kimura-2-parameter model. The results indicate the existence of five Astyanax lineages. Some groups, such as that composed by the trans-Andean forms, are mostly composed of well-defined species, and in others a number of nominal species are clustered together, hampering the delimitation of species, which in many cases proved impossible. The results confirm the extreme complexity of the systematics of the genus Astyanax and show that DNA barcoding can be an useful tool to address these complexes questions. PMID:27992537

  1. Seasonality and predictability shape temporal species diversity.

    PubMed

    Tonkin, Jonathan D; Bogan, Michael T; Bonada, Núria; Rios-Touma, Blanca; Lytle, David A

    2017-01-31

    Temporal environmental fluctuations, such as seasonality, exert strong controls on biodiversity. While the effects of seasonality are well known, the predictability of fluctuations across years may influence seasonality in ways that are less well understood. The ability of a habitat to support unique, non-nested assemblages of species at different times of the year should depend on both seasonality (occurrence of events at specific periods of the year) and predictability (the reliability of event recurrence) of characteristic ecological conditions. Drawing on tools from wavelet analysis and information theory, we develop a framework for quantifying both seasonality and predictability of habitats, and applied this using global long-term rainfall data. Our analysis predicted that temporal beta diversity should be maximized in highly-predictable and highly-seasonal climates, and that low degrees of seasonality, predictability, or both would lower diversity in characteristic ways. Using stream invertebrate communities as a case study, we demonstrated that temporal species diversity, as exhibited by community turnover, was determined by a balance between temporal environmental variability (seasonality) and the reliability of this variability (predictability). Communities in highly-seasonal Mediterranean environments exhibited strong oscillations in community structure, with turnover from one unique community type to another across seasons, whereas communities in aseasonal New Zealand environments fluctuated randomly. Understanding the influence of seasonal and other temporal scales of environmental oscillations on diversity is not complete without a clear understanding of their predictability, and our framework provides tools for examining these trends at a variety of temporal scales, seasonal and beyond. Given the uncertainty of future climates, seasonality and predictability are critical considerations for both basic science and management of ecosystems (e.g. dam

  2. Tree diversity promotes functional dissimilarity and maintains functional richness despite species loss in predator assemblages.

    PubMed

    Schuldt, Andreas; Bruelheide, Helge; Durka, Walter; Michalski, Stefan G; Purschke, Oliver; Assmann, Thorsten

    2014-02-01

    The effects of species loss on ecosystems depend on the community's functional diversity (FD). However, how FD responds to environmental changes is poorly understood. This applies particularly to higher trophic levels, which regulate many ecosystem processes and are strongly affected by human-induced environmental changes. We analyzed how functional richness (FRic), evenness (FEve), and divergence (FDiv) of important generalist predators-epigeic spiders-are affected by changes in woody plant species richness, plant phylogenetic diversity, and stand age in highly diverse subtropical forests in China. FEve and FDiv of spiders increased with plant richness and stand age. FRic remained on a constant level despite decreasing spider species richness with increasing plant species richness. Plant phylogenetic diversity had no consistent effect on spider FD. The results contrast with the negative effect of diversity on spider species richness and suggest that functional redundancy among spiders decreased with increasing plant richness through non-random species loss. Moreover, increasing functional dissimilarity within spider assemblages with increasing plant richness indicates that the abundance distribution of predators in functional trait space affects ecological functions independent of predator species richness or the available trait space. While plant diversity is generally hypothesized to positively affect predators, our results only support this hypothesis for FD-and here particularly for trait distributions within the overall functional trait space-and not for patterns in species richness. Understanding the way predator assemblages affect ecosystem functions in such highly diverse, natural ecosystems thus requires explicit consideration of FD and its relationship with species richness.

  3. Sown species richness and realized diversity can influence functioning of plant communities differently.

    PubMed

    Rychtecká, Terezie; Lanta, Vojtěch; Weiterová, Iva; Lepš, Jan

    2014-08-01

    Biodiversity-ecosystem functioning experiments (BEF) typically manipulate sown species richness and composition of experimental communities to study ecosystem functioning as a response to changes in diversity. If sown species richness is taken as a measure of diversity and aboveground biomass production as a measure of community functioning, then this relationship is usually found to be positive. The sown species richness can be considered the equivalent of a local species pool in natural communities. However, in addition to species richness, realized diversity is also an important community diversity component. Realized diversity is affected by environmental filtering and biotic interactions operating within a community. As both sown species richness and the realized diversity in BEF studies (as well as local species pool vs observed realized richness in natural communities) can differ markedly, so can their effects on the community functioning. We tested this assumption using two data sets: data from a short-term pot experiment and data from the long-term Jena biodiversity plot experiment. We considered three possible predictors of community functioning (aboveground biomass production): sown species richness, realized diversity (defined as inverse of Simpson dominance index), and survivor species richness. Sown species richness affected biomass production positively in all cases. Realized diversity as well as survivor species richness had positive effects on biomass in approximately half of cases. When realized diversity or survivor species richness was tested together with sown species richness, their partial effects were none or negative. Our results suggest that we can expect positive diversity-productivity relationship when the local species pool size is the decisive factor determining realized observed diversity; in other cases, the shape of the diversity-functioning relationship may be quite opposite.

  4. Genetic diversity within a dominant plant outweighs plant species diversity in structuring an arthropod community.

    PubMed

    Crawford, Kerri M; Rudgers, Jennifer A

    2013-05-01

    Plant biodiversity is being lost at a rapid rate. This has spurred much interest in elucidating the consequences of this loss for higher trophic levels. Experimental tests have shown that both plant species diversity and genetic diversity within a plant species can influence arthropod community structure. However, the majority of these studies have been conducted in separate systems, so their relative importance is currently unresolved. Furthermore, potential interactions between the two levels of diversity, which likely occur in natural systems, have not been investigated. To clarify these issues, we conducted three experiments in a freshwater sand dune ecosystem. We (1) independently manipulated plant species diversity, (2) independently manipulated genetic diversity within the dominant plant species, Ammophila breviligulata, and (3) jointly manipulated genetic diversity within the dominant plant and species diversity. We found that genetic diversity within the dominant plant species, Ammophila breviligulata, more strongly influenced arthropod communities than plant species diversity, but this effect was dependent on the presence of other species. In species mixtures, A. breviligulata genetic diversity altered overall arthropod community composition, and arthropod richness and abundance peaked at the highest level of genetic diversity. Positive nonadditive effects of diversity were detected, suggesting that arthropods respond to emergent properties of diverse plant communities. However, in the independent manipulations where A. breviligulata was alone, effects of genetic diversity were weaker, with only arthropod richness responding. In contrast, plant species diversity only influenced arthropods when A. breviligulata was absent, and then only influenced herbivore abundance. In addition to showing that genetic diversity within a dominant plant species can have large effects on arthropod community composition, these results suggest that understanding how species

  5. Affective Education for Gifted, Culturally Diverse Learners

    ERIC Educational Resources Information Center

    Baldwin, Alexinia

    2009-01-01

    Over the years, there has been an ongoing controversy about affective education. Some see it as an important element of good teaching, and some see it as fluff, diminishing academics, and playing into the "feel good" movement. While criticisms may be appropriate in some situations, affective education can play a fundamental role in other…

  6. The effects of island ontogeny on species diversity and phylogeny.

    PubMed

    Valente, Luis M; Etienne, Rampal S; Phillimore, Albert B

    2014-06-07

    A major goal of island biogeography is to understand how island communities are assembled over time. However, we know little about the influence of variable area and ecological opportunity on island biotas over geological timescales. Islands have limited life spans, and it has been posited that insular diversity patterns should rise and fall with an island's ontogeny. The potential of phylogenies to inform us of island ontogenetic stage remains unclear, as we lack a phylogenetic framework that focuses on islands rather than clades. Here, we present a parsimonious island-centric model that integrates phylogeny and ontogeny into island biogeography and can incorporate a negative feedback of diversity on species origination. This framework allows us to generate predictions about species richness and phylogenies on islands of different ages. We find that peak richness lags behind peak island area, and that endemic species age increases with island age on volcanic islands. When diversity negatively affects rates of immigration and cladogenesis, our model predicts speciation slowdowns on old islands. Importantly, we find that branching times of in situ radiations can be informative of an island's ontogenetic stage. This novel framework provides a quantitative means of uncovering processes responsible for island biogeography patterns using phylogenies.

  7. Genetic diversity and species diversity of stream fishes covary across a land-use gradient.

    PubMed

    Blum, Michael J; Bagley, Mark J; Walters, David M; Jackson, Suzanne A; Daniel, F Bernard; Chaloud, Deborah J; Cade, Brian S

    2012-01-01

    Genetic diversity and species diversity are expected to covary according to area and isolation, but may not always covary with environmental heterogeneity. In this study, we examined how patterns of genetic and species diversity in stream fishes correspond to local and regional environmental conditions. To do so, we compared population size, genetic diversity and divergence in central stonerollers (Campostoma anomalum) to measures of species diversity and turnover in stream fish assemblages among similarly sized watersheds across an agriculture-forest land-use gradient in the Little Miami River basin (Ohio, USA). Significant correlations were found in many, but not all, pair-wise comparisons. Allelic richness and species richness were strongly correlated, for example, but diversity measures based on allele frequencies and assemblage structure were not. In-stream conditions related to agricultural land use were identified as significant predictors of genetic diversity and species diversity. Comparisons to population size indicate, however, that genetic diversity and species diversity are not necessarily independent and that variation also corresponds to watershed location and glaciation history in the drainage basin. Our findings demonstrate that genetic diversity and species diversity can covary in stream fish assemblages, and illustrate the potential importance of scaling observations to capture responses to hierarchical environmental variation. More comparisons according to life history variation could further improve understanding of conditions that give rise to parallel variation in genetic diversity and species diversity, which in turn could improve diagnosis of anthropogenic influences on aquatic ecosystems.

  8. Genetic diversity and species diversity of stream fishes covary across a land-use gradient

    USGS Publications Warehouse

    Blum, M.J.; Bagley, M.J.; Walters, D.M.; Jackson, S.A.; Daniel, F.B.; Chaloud, D.J.; Cade, B.S.

    2012-01-01

    Genetic diversity and species diversity are expected to covary according to area and isolation, but may not always covary with environmental heterogeneity. In this study, we examined how patterns of genetic and species diversity in stream fishes correspond to local and regional environmental conditions. To do so, we compared population size, genetic diversity and divergence in central stonerollers (Campostoma anomalum) to measures of species diversity and turnover in stream fish assemblages among similarly sized watersheds across an agriculture-forest land-use gradient in the Little Miami River basin (Ohio, USA). Significant correlations were found in many, but not all, pair-wise comparisons. Allelic richness and species richness were strongly correlated, for example, but diversity measures based on allele frequencies and assemblage structure were not. In-stream conditions related to agricultural land use were identified as significant predictors of genetic diversity and species diversity. Comparisons to population size indicate, however, that genetic diversity and species diversity are not necessarily independent and that variation also corresponds to watershed location and glaciation history in the drainage basin. Our findings demonstrate that genetic diversity and species diversity can covary in stream fish assemblages, and illustrate the potential importance of scaling observations to capture responses to hierarchical environmental variation. More comparisons according to life history variation could further improve understanding of conditions that give rise to parallel variation in genetic diversity and species diversity, which in turn could improve diagnosis of anthropogenic influences on aquatic ecosystems. ?? 2011 Springer-Verlag.

  9. Cascade effects of crop species richness on the diversity of pest insects and their natural enemies.

    PubMed

    Shi, PeiJian; Hui, Cang; Men, XingYuan; Zhao, ZiHua; Ouyang, Fang; Ge, Feng; Jin, XianShi; Cao, HaiFeng; Li, B Larry

    2014-07-01

    Understanding how plant species richness influences the diversity of herbivorous and predatory/parasitic arthropods is central to community ecology. We explore the effects of crop species richness on the diversity of pest insects and their natural enemies. Using data from a four-year experiment with five levels of crop species richness, we found that crop species richness significantly affected the pest species richness, but there were no significant effects on richness of the pests' natural enemies. In contrast, the species richness of pest insects significantly affected their natural enemies. These findings suggest a cascade effect where trophic interactions are strong between adjacent trophic levels, while the interactions between connected but nonadjacent trophic levels are weakened by the intermediate trophic level. High crop species richness resulted in a more stable arthropod community compared with communities in monoculture crops. Our results highlight the complicated cross-trophic interactions and the crucial role of crop diversity in the food webs of agro-ecosystems.

  10. Network Diversity and Affect Dynamics: The Role of Personality Traits

    PubMed Central

    Alshamsi, Aamena; Pianesi, Fabio; Lepri, Bruno; Pentland, Alex; Rahwan, Iyad

    2016-01-01

    People divide their time unequally among their social contacts due to time constraints and varying strength of relationships. It was found that high diversity of social communication, dividing time more evenly among social contacts, is correlated with economic well-being both at macro and micro levels. Besides economic well-being, it is not clear how the diversity of social communication is also associated with the two components of individuals’ subjective well-being, positive and negative affect. Specifically, positive affect and negative affect are two independent dimensions representing the experience (feeling) of emotions. In this paper, we investigate the relationship between the daily diversity of social communication and dynamic affect states that people experience in their daily lives. We collected two high-resolution datasets that capture affect scores via daily experience sampling surveys and social interaction through wearable sensing technologies: sociometric badges for face-to-face interaction and smart phones for mobile phone calls. We found that communication diversity correlates with desirable affect states–e.g. an increase in the positive affect state or a decrease in the negative affect state–for some personality types, but correlates with undesirable affect states for others. For example, diversity in phone calls is experienced as good by introverts, but bad by extroverts; diversity in face-to-face interaction is experienced as good by people who tend to be positive by nature (trait) but bad for people who tend to be not positive by nature. More broadly, the moderating effect of personality type on the relationship between diversity and affect was detected without any knowledge of the type of social tie or the content of communication. This provides further support for the power of unobtrusive sensing in understanding social dynamics, and in measuring the effect of potential interventions designed to improve well-being. PMID:27035904

  11. Network Diversity and Affect Dynamics: The Role of Personality Traits.

    PubMed

    Alshamsi, Aamena; Pianesi, Fabio; Lepri, Bruno; Pentland, Alex; Rahwan, Iyad

    2016-01-01

    People divide their time unequally among their social contacts due to time constraints and varying strength of relationships. It was found that high diversity of social communication, dividing time more evenly among social contacts, is correlated with economic well-being both at macro and micro levels. Besides economic well-being, it is not clear how the diversity of social communication is also associated with the two components of individuals' subjective well-being, positive and negative affect. Specifically, positive affect and negative affect are two independent dimensions representing the experience (feeling) of emotions. In this paper, we investigate the relationship between the daily diversity of social communication and dynamic affect states that people experience in their daily lives. We collected two high-resolution datasets that capture affect scores via daily experience sampling surveys and social interaction through wearable sensing technologies: sociometric badges for face-to-face interaction and smart phones for mobile phone calls. We found that communication diversity correlates with desirable affect states--e.g. an increase in the positive affect state or a decrease in the negative affect state--for some personality types, but correlates with undesirable affect states for others. For example, diversity in phone calls is experienced as good by introverts, but bad by extroverts; diversity in face-to-face interaction is experienced as good by people who tend to be positive by nature (trait) but bad for people who tend to be not positive by nature. More broadly, the moderating effect of personality type on the relationship between diversity and affect was detected without any knowledge of the type of social tie or the content of communication. This provides further support for the power of unobtrusive sensing in understanding social dynamics, and in measuring the effect of potential interventions designed to improve well-being.

  12. [Species diversity of floor bryophyte communities in Bogda Mountains, Xinjiang].

    PubMed

    Zhang, Yuanming; Cao, Tong; Pan, Borong

    2003-06-01

    By means of species similarity coefficient and species diversity index, the characteristics of species diversity of floor bryophyte communities in Bogda Mountain, Xinjiang were studied. The results showed that the bryoflora of Bogda Mountain had the characteristics of richness and complexion. There were 186 floor species (including infraspecies taxa) belonging to 73 genera of 32 families. The species similarity between mountain desert and mountain grassland belt was the highest (0.6809), while that between mountain forest and alpine cushion belt was the lowest (0.1342). The bryophyte community in mountain forest was the ominant one among the floor bryophyte communities. The bryophyte community in mountain forest had the richest species diversity, and the mountain forest was the distribution center of bryophyte diversity and the key area for bryophyte diversity conservation in Bogda Mountain area.

  13. Yeast Diversity and Persistence in Botrytis-Affected Wine Fermentations

    PubMed Central

    Mills, David A.; Johannsen, Eric A.; Cocolin, Luca

    2002-01-01

    Culture-dependent and -independent methods were used to examine the yeast diversity present in botrytis-affected (“botrytized”) wine fermentations carried out at high (∼30°C) and ambient (∼20°C) temperatures. Fermentations at both temperatures possessed similar populations of Saccharomyces, Hanseniaspora, Pichia, Metschnikowia, Kluyveromyces, and Candida species. However, higher populations of non-Saccharomyces yeasts persisted in ambient-temperature fermentations, with Candida and, to a lesser extent, Kluyveromyces species remaining long after the fermentation was dominated by Saccharomyces. In general, denaturing gradient gel electrophoresis profiles of yeast ribosomal DNA or rRNA amplified from the fermentation samples correlated well with the plating data. The direct molecular methods also revealed a Hanseniaspora osmophila population not identified in the plating analysis. rRNA analysis also indicated a large population (>106 cells per ml) of a nonculturable Candida strain in the high-temperature fermentation. Monoculture analysis of the Candida isolate indicated an extreme fructophilic phenotype and correlated with an increased glucose/fructose ratio in fermentations containing higher populations of Candida. Analysis of wine fermentation microbial ecology by using both culture-dependent and -independent methods reveals the complexity of yeast interactions enriched during spontaneous fermentations. PMID:12324335

  14. Diversity of Riparian Plants among and within Species Shapes River Communities

    PubMed Central

    Jackrel, Sara L.; Wootton, J. Timothy

    2015-01-01

    Organismal diversity among and within species may affect ecosystem function with effects transmitting across ecosystem boundaries. Whether recipient communities adjust their composition, in turn, to maximize their function in response to changes in donor composition at these two scales of diversity is unknown. We use small stream communities that rely on riparian subsidies as a model system. We used leaf pack experiments to ask how variation in plants growing beside streams in the Olympic Peninsula of Washington State, USA affects stream communities via leaf subsidies. Leaves from red alder (Alnus rubra), vine maple (Acer cinereus), bigleaf maple (Acer macrophyllum) and western hemlock (Tsuga heterophylla) were assembled in leaf packs to contrast low versus high diversity, and deployed in streams to compare local versus non-local leaf sources at the among and within species scales. Leaves from individuals within species decomposed at varying rates; most notably thin leaves decomposed rapidly. Among deciduous species, vine maple decomposed most rapidly, harbored the least algal abundance, and supported the greatest diversity of aquatic invertebrates, while bigleaf maple was at the opposite extreme for these three metrics. Recipient communities decomposed leaves from local species rapidly: leaves from early successional plants decomposed rapidly in stream reaches surrounded by early successional forest and leaves from later successional plants decomposed rapidly adjacent to later successional forest. The species diversity of leaves inconsistently affected decomposition, algal abundance and invertebrate metrics. Intraspecific diversity of leaf packs also did not affect decomposition or invertebrate diversity. However, locally sourced alder leaves decomposed more rapidly and harbored greater levels of algae than leaves sourced from conspecifics growing in other areas on the Olympic Peninsula, but did not harbor greater aquatic invertebrate diversity. In contrast to

  15. Diversity of Riparian Plants among and within Species Shapes River Communities.

    PubMed

    Jackrel, Sara L; Wootton, J Timothy

    2015-01-01

    Organismal diversity among and within species may affect ecosystem function with effects transmitting across ecosystem boundaries. Whether recipient communities adjust their composition, in turn, to maximize their function in response to changes in donor composition at these two scales of diversity is unknown. We use small stream communities that rely on riparian subsidies as a model system. We used leaf pack experiments to ask how variation in plants growing beside streams in the Olympic Peninsula of Washington State, USA affects stream communities via leaf subsidies. Leaves from red alder (Alnus rubra), vine maple (Acer cinereus), bigleaf maple (Acer macrophyllum) and western hemlock (Tsuga heterophylla) were assembled in leaf packs to contrast low versus high diversity, and deployed in streams to compare local versus non-local leaf sources at the among and within species scales. Leaves from individuals within species decomposed at varying rates; most notably thin leaves decomposed rapidly. Among deciduous species, vine maple decomposed most rapidly, harbored the least algal abundance, and supported the greatest diversity of aquatic invertebrates, while bigleaf maple was at the opposite extreme for these three metrics. Recipient communities decomposed leaves from local species rapidly: leaves from early successional plants decomposed rapidly in stream reaches surrounded by early successional forest and leaves from later successional plants decomposed rapidly adjacent to later successional forest. The species diversity of leaves inconsistently affected decomposition, algal abundance and invertebrate metrics. Intraspecific diversity of leaf packs also did not affect decomposition or invertebrate diversity. However, locally sourced alder leaves decomposed more rapidly and harbored greater levels of algae than leaves sourced from conspecifics growing in other areas on the Olympic Peninsula, but did not harbor greater aquatic invertebrate diversity. In contrast to

  16. Soil phosphorus heterogeneity promotes tree species diversity and phylogenetic clustering in a tropical seasonal rainforest.

    PubMed

    Xu, Wumei; Ci, Xiuqin; Song, Caiyun; He, Tianhua; Zhang, Wenfu; Li, Qiaoming; Li, Jie

    2016-12-01

    The niche theory predicts that environmental heterogeneity and species diversity are positively correlated in tropical forests, whereas the neutral theory suggests that stochastic processes are more important in determining species diversity. This study sought to investigate the effects of soil nutrient (nitrogen and phosphorus) heterogeneity on tree species diversity in the Xishuangbanna tropical seasonal rainforest in southwestern China. Thirty-nine plots of 400 m(2) (20 × 20 m) were randomly located in the Xishuangbanna tropical seasonal rainforest. Within each plot, soil nutrient (nitrogen and phosphorus) availability and heterogeneity, tree species diversity, and community phylogenetic structure were measured. Soil phosphorus heterogeneity and tree species diversity in each plot were positively correlated, while phosphorus availability and tree species diversity were not. The trees in plots with low soil phosphorus heterogeneity were phylogenetically overdispersed, while the phylogenetic structure of trees within the plots became clustered as heterogeneity increased. Neither nitrogen availability nor its heterogeneity was correlated to tree species diversity or the phylogenetic structure of trees within the plots. The interspecific competition in the forest plots with low soil phosphorus heterogeneity could lead to an overdispersed community. However, as heterogeneity increase, more closely related species may be able to coexist together and lead to a clustered community. Our results indicate that soil phosphorus heterogeneity significantly affects tree diversity in the Xishuangbanna tropical seasonal rainforest, suggesting that deterministic processes are dominant in this tropical forest assembly.

  17. Does plant species co-occurrence influence soil mite diversity?

    PubMed

    St John, Mark G; Wall, Diana H; Behan-Pelletier, Valerie M

    2006-03-01

    Few studies have considered whether plant taxa can be used as predictors of belowground faunal diversity in natural ecosystems. We examined soil mite (Acari) diversity beneath six grass species at the Konza Prairie Biological Station, Kansas, USA. We tested the hypotheses that soil mite species richness, abundance, and taxonomic diversity are greater (1) beneath grasses in dicultures (different species) compared to monocultures (same species), (2) beneath grasses of higher resource quality (lower C:N) compared to lower resource quality, and (3) beneath heterogeneous mixes of grasses (C3 and C4 grasses growing together) compared to homogeneous mixes (C3 or C4 grasses) using natural occurrences of plant species as treatments. This study is the first to examine the interaction between above- and belowground diversity in a natural setting with species-level resolution of a hyper-diverse taxon. Our results indicate that grasses in diculture supported a more species and phylogenetically rich soil mite fauna than was observed for monocultures and that this relationship was significant at depth but not in the upper soil horizon. We noted that mite species richness was not linearly related to grass species richness, which suggests that simple extrapolations of soil faunal diversity based on plant species inventories may underestimate the richness of associated soil mite communities. The distribution of mite size classes in dicultures was considerably different than those for monocultures. There was no difference in soil mite richness between grass combinations of differing resource quality, or resource heterogeneity.

  18. Species pools, community completeness and invasion: disentangling diversity effects on the establishment of native and alien species.

    PubMed

    Bennett, Jonathan A; Riibak, Kersti; Kook, Ene; Reier, Ülle; Tamme, Riin; Guillermo Bueno, C; Pärtel, Meelis

    2016-12-01

    Invasion should decline with species richness, yet the relationship is inconsistent. Species richness, however, is a product of species pool size and biotic filtering. Invasion may increase with richness if large species pools represent weaker environmental filters. Measuring species pool size and the proportion realised locally (completeness) may clarify diversity-invasion relationships by separating environmental and biotic effects, especially if species' life-history stage and origin are accounted for. To test these relationships, we added seeds and transplants of 15 native and alien species into 29 grasslands. Species pool size and completeness explained more variation in invasion than richness alone. Although results varied between native and alien species, seed establishment and biotic resistance to transplants increased with species pool size, whereas transplant growth and biotic resistance to seeds increased with completeness. Consequently, species pools and completeness represent multiple independent processes affecting invasion; accounting for these processes improves our understanding of invasion.

  19. Genetic diversity in widespread species is not congruent with species richness in alpine plant communities.

    PubMed

    Taberlet, Pierre; Zimmermann, Niklaus E; Englisch, Thorsten; Tribsch, Andreas; Holderegger, Rolf; Alvarez, Nadir; Niklfeld, Harald; Coldea, Gheorghe; Mirek, Zbigniew; Moilanen, Atte; Ahlmer, Wolfgang; Marsan, Paolo Ajmone; Bona, Enzo; Bovio, Maurizio; Choler, Philippe; Cieślak, Elżbieta; Colli, Licia; Cristea, Vasile; Dalmas, Jean-Pierre; Frajman, Božo; Garraud, Luc; Gaudeul, Myriam; Gielly, Ludovic; Gutermann, Walter; Jogan, Nejc; Kagalo, Alexander A; Korbecka, Grażyna; Küpfer, Philippe; Lequette, Benoît; Letz, Dominik Roman; Manel, Stéphanie; Mansion, Guilhem; Marhold, Karol; Martini, Fabrizio; Negrini, Riccardo; Niño, Fernando; Paun, Ovidiu; Pellecchia, Marco; Perico, Giovanni; Piękoś-Mirkowa, Halina; Prosser, Filippo; Puşcaş, Mihai; Ronikier, Michał; Scheuerer, Martin; Schneeweiss, Gerald M; Schönswetter, Peter; Schratt-Ehrendorfer, Luise; Schüpfer, Fanny; Selvaggi, Alberto; Steinmann, Katharina; Thiel-Egenter, Conny; van Loo, Marcela; Winkler, Manuela; Wohlgemuth, Thomas; Wraber, Tone; Gugerli, Felix; Vellend, Mark

    2012-12-01

    The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biodiversity, that is, ecosystems, species and genes. Genetic diversity represents evolutionary potential and is important for ecosystem functioning. Unfortunately, genetic diversity in natural populations is hardly considered in conservation strategies because it is difficult to measure and has been hypothesised to co-vary with species richness. This means that species richness is taken as a surrogate of genetic diversity in conservation planning, though their relationship has not been properly evaluated. We tested whether the genetic and species levels of biodiversity co-vary, using a large-scale and multi-species approach. We chose the high-mountain flora of the Alps and the Carpathians as study systems and demonstrate that species richness and genetic diversity are not correlated. Species richness thus cannot act as a surrogate for genetic diversity. Our results have important consequences for implementing the CBD when designing conservation strategies.

  20. Do the rich get richer? Varying effects of tree species identity and diversity on the richness of understory taxa

    USGS Publications Warehouse

    Champagne, Juilette; Paine, C. E. Timothy; Schoolmaster, Donald; Stejskal, Robert; Volařík, Daniel; Šebesta, Jan; Trnka, Filip; Koutecký, Tomáš; Švarc, Petr; Svátek, Martin; Hector, Andy; Matula, Radim

    2016-01-01

    Understory herbs and soil invertebrates play key roles in soil formation and nutrient cycling in forests. Studies suggest that diversity in the canopy and in the understory are positively associated, but these studies often confound the effects of tree species diversity with those of tree species identity and abiotic conditions. We combined extensive field sampling with structural equation modeling to evaluate the simultaneous effects of tree diversity on the species diversity of understory herbs, beetles, and earthworms. The diversity of earthworms and saproxylic beetles was directly and positively associated with tree diversity, presumably because species of both these taxa specialize on certain species of trees. Tree identity also strongly affected diversity in the understory, especially for herbs, likely as a result of interspecific differences in canopy light transmittance or litter decomposition rates. Our results suggest that changes in forest management will disproportionately affect certain understory taxa. For instance, changes in canopy diversity will affect the diversity of earthworms and saproxylic beetles more than changes in tree species composition, whereas the converse would be expected for understory herbs and detritivorous beetles. We conclude that the effects of tree diversity on understory taxa can vary from positive to negative and may affect biogeochemical cycling in temperate forests. Thus, maintaining high diversity in temperate forests can promote the diversity of multiple taxa in the understory.

  1. One species, many terpenes: matching chemical and biological diversity.

    PubMed

    Loreto, Francesco; Bagnoli, Francesca; Fineschi, Silvia

    2009-08-01

    Volatile terpenes have been proposed as chemotaxonomic markers, despite the strong environmental control on their synthesis. To clarify whether chemical profiles match biological diversity, cork oak, a monoterpene-emitting species that has been bred by humans and frequently hybridizes with other oaks, is a useful case-study. Analysis of the available genetic information in cork oak provenances suggests that volatile terpenes might indeed suitably track geographical diversity even at the intraspecific level. Phylogeographical diversity does not reflect chemical diversity in other evergreen oaks that have not been intensively bred. Breeding for productive traits might therefore drive selection for terpene diversity, in turn modulating important adaptive mechanisms against biotic and abiotic stressors.

  2. Plant species loss decreases arthropod diversity and shifts trophic structure.

    PubMed

    Haddad, Nick M; Crutsinger, Gregory M; Gross, Kevin; Haarstad, John; Knops, Johannes M H; Tilman, David

    2009-10-01

    Plant diversity is predicted to be positively linked to the diversity of herbivores and predators in a foodweb. Yet, the relationship between plant and animal diversity is explained by a variety of competing hypotheses, with mixed empirical results for each hypothesis. We sampled arthropods for over a decade in an experiment that manipulated the number of grassland plant species. We found that herbivore and predator species richness were strongly, positively related to plant species richness, and that these relationships were caused by different mechanisms at herbivore and predator trophic levels. Even more dramatic was the threefold increase, from low- to high-plant species richness, in abundances of predatory and parasitoid arthropods relative to their herbivorous prey. Our results demonstrate that, over the long term, the loss of plant species propagates through food webs, greatly decreasing arthropod species richness, shifting a predator-dominated trophic structure to being herbivore dominated, and likely impacting ecosystem functioning and services.

  3. Soil microbial diversity and soil functioning affect competition among grasses in experimental microcosms.

    PubMed

    Bonkowski, Michael; Roy, Jacques

    2005-03-01

    A gradient of microbial diversity in soil was established by inoculating pasteurized soil with microbial populations of different complexity, which were obtained by a combination of soil fumigation and filtering techniques. Four different soil diversity treatments were planted with six different grass species either in monoculture or in polyculture to test how changes of general microbial functions, such as catabolic diversity and nutrient recycling efficiency would affect the performance of the plant communities. Relatively harsh soil treatments were necessary to elicit visible effects on major soil processes such as decomposition and nitrogen cycling due to the high redundancy and resilience of soil microbial communities. The strongest effects of soil diversity manipulations on plant growth occurred in polycultures where interspecific competition between plants was high. In polycultures, soil diversity reduction led to a gradual, linear decline in biomass production of one subordinate grass species (Bromus hordeaceus), which was compensated by increased growth of two intermediate competitors (Aegilops geniculata, B. madritensis). This negative covariance in growth of competing grass species smoothed the effects of soil diversity manipulations at the plant community level. As a result, total shoot biomass production remained constant. Apparently the effects of soil diversity manipulations were buffered because functional redundancy at both, the microbial and the plant community level complemented each other. The results further suggests that small trade-offs in plant fitness due to general functional shifts at the microbial level can be significant for the outcome of competition in plant communities and thus diversity at much larger scales.

  4. Realistic diversity loss and variation in soil depth independently affect community-level plant nitrogen use.

    PubMed

    Selmants, Paul C; Zavaleta, Erika S; Wolf, Amelia A

    2014-01-01

    Numerous experiments have demonstrated that diverse plant communities use nitrogen (N) more completely and efficiently, with implications for how species conservation efforts might influence N cycling and retention in terrestrial ecosystems. However, most such experiments have randomly manipulated species richness and minimized environmental heterogeneity, two design aspects that may reduce applicability to real ecosystems. Here we present results from an experiment directly comparing how realistic and randomized plant species losses affect plant N use across a gradient of soil depth in a native-dominated serpentine grassland in California. We found that the strength of the species richness effect on plant N use did not increase with soil depth in either the realistic or randomized species loss scenarios, indicating that the increased vertical heterogeneity conferred by deeper soils did not lead to greater complementarity among species in this ecosystem. Realistic species losses significantly reduced plant N uptake and altered N-use efficiency, while randomized species losses had no effect on plant N use. Increasing soil depth positively affected plant N uptake in both loss order scenarios but had a weaker effect on plant N use than did realistic species losses. Our results illustrate that realistic species losses can have functional consequences that differ distinctly from randomized losses, and that species diversity effects can be independent of and outweigh those of environmental heterogeneity on ecosystem functioning. Our findings also support the value of conservation efforts aimed at maintaining biodiversity to help buffer ecosystems against increasing anthropogenic N loading.

  5. Do Stacked Species Distribution Models Reflect Altitudinal Diversity Patterns?

    PubMed Central

    Mateo, Rubén G.; Felicísimo, Ángel M.; Pottier, Julien; Guisan, Antoine; Muñoz, Jesús

    2012-01-01

    The objective of this study was to evaluate the performance of stacked species distribution models in predicting the alpha and gamma species diversity patterns of two important plant clades along elevation in the Andes. We modelled the distribution of the species in the Anthurium genus (53 species) and the Bromeliaceae family (89 species) using six modelling techniques. We combined all of the predictions for the same species in ensemble models based on two different criteria: the average of the rescaled predictions by all techniques and the average of the best techniques. The rescaled predictions were then reclassified into binary predictions (presence/absence). By stacking either the original predictions or binary predictions for both ensemble procedures, we obtained four different species richness models per taxa. The gamma and alpha diversity per elevation band (500 m) was also computed. To evaluate the prediction abilities for the four predictions of species richness and gamma diversity, the models were compared with the real data along an elevation gradient that was independently compiled by specialists. Finally, we also tested whether our richness models performed better than a null model of altitudinal changes of diversity based on the literature. Stacking of the ensemble prediction of the individual species models generated richness models that proved to be well correlated with the observed alpha diversity richness patterns along elevation and with the gamma diversity derived from the literature. Overall, these models tend to overpredict species richness. The use of the ensemble predictions from the species models built with different techniques seems very promising for modelling of species assemblages. Stacking of the binary models reduced the over-prediction, although more research is needed. The randomisation test proved to be a promising method for testing the performance of the stacked models, but other implementations may still be developed. PMID

  6. Inventory, differentiation, and proportional diversity: a consistent terminology for quantifying species diversity.

    PubMed

    Jurasinski, Gerald; Retzer, Vroni; Beierkuhnlein, Carl

    2009-02-01

    Almost half a century after Whittaker (Ecol Monogr 30:279-338, 1960) proposed his influential diversity concept, it is time for a critical reappraisal. Although the terms alpha, beta and gamma diversity introduced by Whittaker have become general textbook knowledge, the concept suffers from several drawbacks. First, alpha and gamma diversity share the same characteristics and are differentiated only by the scale at which they are applied. However, as scale is relative--depending on the organism(s) or ecosystems investigated--this is not a meaningful ecological criterion. Alpha and gamma diversity can instead be grouped together under the term "inventory diversity." Out of the three levels proposed by Whittaker, beta diversity is the one which receives the most contradictory comments regarding its usefulness ("key concept" vs. "abstruse concept"). Obviously beta diversity means different things to different people. Apart from the large variety of methods used to investigate it, the main reason for this may be different underlying data characteristics. A literature review reveals that the multitude of measures used to assess beta diversity can be sorted into two conceptually different groups. The first group directly takes species distinction into account and compares the similarity of sites (similarity indices, slope of the distance decay relationship, length of the ordination axis, and sum of squares of a species matrix). The second group relates species richness (or other summary diversity measures) of two (or more) different scales to each other (additive and multiplicative partitioning). Due to that important distinction, we suggest that beta diversity should be split into two levels, "differentiation diversity" (first group) and "proportional diversity" (second group). Thus, we propose to use the terms "inventory diversity" for within-sample diversity, "differentiation diversity" for compositional similarity between samples, and "proportional diversity" for the

  7. [Butterfly species diversity and its conservation in Wuyunjie National Nature Reserve, Hunan Province of China].

    PubMed

    Li, Mi; Zhou, Hong-Chun; Tan, Ji-Cai; Wang, Peng; Liu, Guo-Hua

    2011-06-01

    By using line-transect method, an investigation was conducted on the species diversity of butterfly in Wuyunjie National Nature Reserve, Changde City of Hunan Province from June 2008 to September 2010. Aiming at the main factors including plant species richness (D) , mean elevation (E) , average distance from stream/river (F), and human interference level (K) that affecting the species richness of butterfly in 31 segment-level transects in 4 line-transects, multiple regression analysis was made, and the diversity and similarity of the butterfly communities in the experimental zone, buffer zone, and core zone of the Reserve were compared. A total of 147 butterfly species were collected, belonging to 94 genera and 10 families, among which, 4 species was nationally conserved species. Multiple regression analysis showed that D, E, and K were the three most major factors affecting the distribution of butterfly. The species richness of butterfly had significant positive correlation with D (P < 0.01), and negative correlations with E and K (P < 0.05). The species diversity and evenness index of butterfly were higher in core zone than in experimental zone and buffer zone, dominance index was the highest in experimental zone, and a higher similarity index (0.526) was observed between buffer zone and core zone. To conserve the species diversity of butterfly in the Reserve, efforts should be made to protect the plant species richness, keep the natural forest succession, decrease the human interference properly, and tighten up the management of butterfly habitat.

  8. Effects of topsoil removal on seedling emergence and species diversity

    SciTech Connect

    Winkel, V.K.; Ostler, W.K.

    1994-02-01

    Approximately 800 hectares on the US Department of Energy Nevada Test Site and vicinity are contaminated with Plutonium. As part of a cleanup effort, both the vegetation and the top 5--10 cm of soil may be removed. A study was developed to determine the effects of topsoil removal on seedling emergence and plant species diversity. Trial plots were prepared by removing 5, 10, or 20 cm of topsoil, seeding a mix of nine native species, mulching with straw, and then anchoring the straw with erosion netting. Additional plots (0 topsoil removal treatment) were lightly bladed to remove existing vegetation and then treated as above. Approximately 85 mm of supplemental irrigation was applied to help initiate germination during early spring. Seedling density data of seeded and nonseeded species was collected following emergence, and species diversity was calculated with the Shannon diversity index for the nonseeded species. Densities of seeded species either were unaffected by or increased with increased depth of topsoil removal. In general, densities of nonseeded species decreased with increased depth of topsoil removal. The number of species, species diversity and evenness also decreased with increased depth of topsoil removal. Initial emergence of seeded species is apparently unaffected by topsoil removal at this site.

  9. Loss of diversity in wood-inhabiting fungal communities affects decomposition activity in Norway spruce wood

    PubMed Central

    Valentín, Lara; Rajala, Tiina; Peltoniemi, Mikko; Heinonsalo, Jussi; Pennanen, Taina; Mäkipää, Raisa

    2014-01-01

    Hundreds of wood-inhabiting fungal species are now threatened, principally due to a lack of dead wood in intensively managed forests, but the consequences of reduced fungal diversity on ecosystem functioning are not known. Several experiments have shown that primary productivity is negatively affected by a loss of species, but the effects of microbial diversity on decomposition are less studied. We studied the relationship between fungal diversity and the in vitro decomposition rate of slightly, moderately and heavily decayed Picea abies wood with indigenous fungal communities that were diluted to examine the influence of diversity. Respiration rate, wood-degrading hydrolytic enzymes and fungal community structure were assessed during a 16-week incubation. The number of observed OTUs in DGGE was used as a measure of fungal diversity. Respiration rate increased between early- and late-decay stages. Reduced fungal diversity was associated with lower respiration rates during intermediate stages of decay, but no effects were detected at later stages. The activity of hydrolytic enzymes varied among decay stages and fungal dilutions. Our results suggest that functioning of highly diverse communities of the late-decay stage were more resistant to the loss of diversity than less diverse communities of early decomposers. This indicates the accumulation of functional redundancy during the succession of the fungal community in decomposing substrates. PMID:24904544

  10. Genetic diversity analysis in Piper species (Piperaceae) using RAPD markers.

    PubMed

    Sen, Sandeep; Skaria, Reby; Abdul Muneer, P M

    2010-09-01

    The genetic diversity of eight species of Piper (Piperaceae) viz., P. nigrum, P. longum, P. betle, P. chaba, P. argyrophyllum, P. trichostachyon, P. galeatum, and P. hymenophyllum from Kerala state, India were analyzed by Random amplified polymorphic DNA (RAPD). Out of 22 10-mer RAPD primers screened, 11 were selected for comparative analysis of different species of Piper. High genetic variations were found among different Piper species studied. Among the total of 149 RAPD fragments amplified, 12 bands (8.05%) were found monomorphic in eight species. The remaining 137 fragments were found polymorphic (91.95%). Species-specific bands were found in all eight species studied. The average gene diversity or heterozygosity (H) was 0.33 across all the species, genetic distances ranged from 0.21 to 0.69. The results of this study will facilitate germplasm identification, management, and conservation.

  11. Trophic Niche in a Raptor Species: The Relationship between Diet Diversity, Habitat Diversity and Territory Quality

    PubMed Central

    2015-01-01

    Recent research reports that many populations of species showing a wide trophic niche (generalists) are made up of both generalist individuals and individuals with a narrow trophic niche (specialists), suggesting trophic specializations at an individual level. If true, foraging strategies should be associated with individual quality and fitness. Optimal foraging theory predicts that individuals will select the most favourable habitats for feeding. In addition, the “landscape heterogeneity hypothesis” predicts a higher number of species in more diverse landscapes. Thus, it can be predicted that individuals with a wider realized trophic niche should have foraging territories with greater habitat diversity, suggesting that foraging strategies, territory quality and habitat diversity are inter-correlated. This was tested for a population of common kestrels Falco tinnunculus. Diet diversity, territory occupancy (as a measure of territory quality) and habitat diversity of territories were measured over an 8-year period. Our results show that: 1) territory quality was quadratically correlated with habitat diversity, with the best territories being the least and most diverse; 2) diet diversity was not correlated with territory quality; and 3) diet diversity was negatively correlated with landscape heterogeneity. Our study suggests that niche generalist foraging strategies are based on an active search for different prey species within or between habitats rather than on the selection of territories with high habitat diversity. PMID:26047025

  12. Large herbivores maintain termite-caused differences in herbaceous species diversity patterns.

    PubMed

    Okullo, Paul; Moe, Stein R

    2012-09-01

    Termites and large herbivores affect African savanna plant communities. Both functional groups are also important for nutrient redistribution across the landscape. We conducted an experiment to study how termites and large herbivores, alone and in combination, affect herbaceous species diversity patterns in an African savanna. Herbaceous vegetation on large vegetated Macrotermes mounds (with and without large herbivores) and on adjacent savanna areas (with and without large herbivores) was monitored over three years in Lake Mburo National Park, Uganda. We found substantial differences in species richness, alpha diversity, evenness, and stability between termite mound herbaceous vegetation and adjacent savanna vegetation. Within months of fencing, levels of species richness, evenness, and stability were no longer significantly different between savanna and mounds. However, fencing reduced the cumulative number of species, particularly for forbs, of which 48% of the species were lost. Fencing increased the beta diversity (dissimilarity among plots) on the resource-poor (in terms of both nutrients and soil moisture) savanna areas, while it did not significantly affect beta diversity on the resource-rich termite mounds. While termites cause substantial heterogeneity in savanna vegetation, large herbivores further amplify these differences by reducing beta diversity on the savanna areas. Large herbivores are, however, responsible for the maintenance of a large number of forbs at the landscape level. These findings suggest that the mechanisms underlying the effects of termites and large herbivores on savanna plant communities scale up to shape community structure and dynamics at a landscape level.

  13. Bacterial Community Diversity Harboured by Interacting Species

    PubMed Central

    Bili, Mikaël; Cortesero, Anne Marie; Mougel, Christophe; Gauthier, Jean Pierre; Ermel, Gwennola; Simon, Jean Christophe; Outreman, Yannick; Terrat, Sébastien; Mahéo, Frédérique; Poinsot, Denis

    2016-01-01

    All animals are infected by microbial partners that can be passengers or residents and influence many biological traits of their hosts. Even if important factors that structure the composition and abundance of microbial communities within and among host individuals have been recently described, such as diet, developmental stage or phylogeny, few studies have conducted cross-taxonomic comparisons, especially on host species related by trophic relationships. Here, we describe and compare the microbial communities associated with the cabbage root fly Delia radicum and its three major parasitoids: the two staphylinid beetles Aleochara bilineata and A. bipustulata and the hymenopteran parasitoid Trybliographa rapae. For each species, two populations from Western France were sampled and microbial communities were described through culture independent methods (454 pyrosequencing). Each sample harbored at least 59 to 261 different bacterial phylotypes but was strongly dominated by one or two. Microbial communities differed markedly in terms of composition and abundance, being mainly influenced by phylogenetic proximity but also geography to a minor extent. Surprisingly, despite their strong trophic interaction, parasitoids shared a very low proportion of microbial partners with their insect host. Three vertically transmitted symbionts from the genus Wolbachia, Rickettsia, and Spiroplasma were found in this study. Among them, Wolbachia and Spiroplasma were found in both the cabbage fly and at least one of its parasitoids, which could result from horizontal transfers through trophic interactions. Phylogenetic analysis showed that this hypothesis may explain some but not all cases. More work is needed to understand the dynamics of symbiotic associations within trophic network and the effect of these bacterial communities on the fitness of their hosts. PMID:27258532

  14. Diverse microbial species survive high ammonia concentrations

    NASA Astrophysics Data System (ADS)

    Kelly, Laura C.; Cockell, Charles S.; Summers, Stephen

    2012-04-01

    Planetary protection regulations are in place to control the contamination of planets and moons with terrestrial micro-organisms in order to avoid jeopardizing future scientific investigations relating to the search for life. One environmental chemical factor of relevance in extraterrestrial environments, specifically in the moons of the outer solar system, is ammonia (NH3). Ammonia is known to be highly toxic to micro-organisms and may disrupt proton motive force, interfere with cellular redox reactions or cause an increase of cell pH. To test the survival potential of terrestrial micro-organisms exposed to such cold, ammonia-rich environments, and to judge whether current planetary protection regulations are sufficient, soil samples were exposed to concentrations of NH3 from 5 to 35% (v/v) at -80°C and room temperature for periods up to 11 months. Following exposure to 35% NH3, diverse spore-forming taxa survived, including representatives of the Firmicutes (Bacillus, Sporosarcina, Viridibacillus, Paenibacillus, Staphylococcus and Brevibacillus) and Actinobacteria (Streptomyces). Non-spore forming organisms also survived, including Proteobacteria (Pseudomonas) and Actinobacteria (Arthrobacter) that are known to have environmentally resistant resting states. Clostridium spp. were isolated from the exposed soil under anaerobic culture. High NH3 was shown to cause a reduction in viability of spores over time, but spore morphology was not visibly altered. In addition to its implications for planetary protection, these data show that a large number of bacteria, potentially including spore-forming pathogens, but also environmentally resistant non-spore-formers, can survive high ammonia concentrations.

  15. High-order species interactions shape ecosystem diversity

    PubMed Central

    Bairey, Eyal; Kelsic, Eric D.; Kishony, Roy

    2016-01-01

    Classical theory shows that large communities are destabilized by random interactions among species pairs, creating an upper bound on ecosystem diversity. However, species interactions often occur in high-order combinations, whereby the interaction between two species is modulated by one or more other species. Here, by simulating the dynamics of communities with random interactions, we find that the classical relationship between diversity and stability is inverted for high-order interactions. More specifically, while a community becomes more sensitive to pairwise interactions as its number of species increases, its sensitivity to three-way interactions remains unchanged, and its sensitivity to four-way interactions actually decreases. Therefore, while pairwise interactions lead to sensitivity to the addition of species, four-way interactions lead to sensitivity to species removal, and their combination creates both a lower and an upper bound on the number of species. These findings highlight the importance of high-order species interactions in determining the diversity of natural ecosystems. PMID:27481625

  16. Empirical Relationships between Species Richness, Evenness, and Proportional Diversity.

    PubMed

    Stirling, G; Wilsey, B

    2001-09-01

    Diversity (or biodiversity) is typically measured by a species count (richness) and sometimes with an evenness index; it may also be measured by a proportional statistic that combines both measures (e.g., Shannon-Weiner index or H'). These diversity measures are hypothesized to be positively and strongly correlated, but this null hypothesis has not been tested empirically. We used the results of Caswell's neutral model to generate null relationships between richness (S), evenness (J'), and proportional diversity (H'). We tested predictions of the null model against empirical relationships describing data in a literature survey and in four individual studies conducted across various scales. Empirical relationships between log S or J' and H' differed from the null model when <10 species were tested and in plants, vertebrates, and fungi. The empirical relationships were similar to the null model when >10 and <100 species were tested and in invertebrates. If >100 species were used to estimate diversity, the relation between log S and H' was negative. The strongest predictive models included log S and J'. A path analysis indicated that log S and J' were always negatively related, that empirical observations could not be explained without including indirect effects, and that differences between the partials may indicate ecological effects, which suggests that S and J' act like diversity components or that diversity should be measured using a compound statistic.

  17. Rare species support vulnerable functions in high-diversity ecosystems.

    PubMed

    Mouillot, David; Bellwood, David R; Baraloto, Christopher; Chave, Jerome; Galzin, Rene; Harmelin-Vivien, Mireille; Kulbicki, Michel; Lavergne, Sebastien; Lavorel, Sandra; Mouquet, Nicolas; Paine, C E Timothy; Renaud, Julien; Thuiller, Wilfried

    2013-01-01

    Around the world, the human-induced collapses of populations and species have triggered a sixth mass extinction crisis, with rare species often being the first to disappear. Although the role of species diversity in the maintenance of ecosystem processes has been widely investigated, the role of rare species remains controversial. A critical issue is whether common species insure against the loss of functions supported by rare species. This issue is even more critical in species-rich ecosystems where high functional redundancy among species is likely and where it is thus often assumed that ecosystem functioning is buffered against species loss. Here, using extensive datasets of species occurrences and functional traits from three highly diverse ecosystems (846 coral reef fishes, 2,979 alpine plants, and 662 tropical trees), we demonstrate that the most distinct combinations of traits are supported predominantly by rare species both in terms of local abundance and regional occupancy. Moreover, species that have low functional redundancy and are likely to support the most vulnerable functions, with no other species carrying similar combinations of traits, are rarer than expected by chance in all three ecosystems. For instance, 63% and 98% of fish species that are likely to support highly vulnerable functions in coral reef ecosystems are locally and regionally rare, respectively. For alpine plants, 32% and 89% of such species are locally and regionally rare, respectively. Remarkably, 47% of fish species and 55% of tropical tree species that are likely to support highly vulnerable functions have only one individual per sample on average. Our results emphasize the importance of rare species conservation, even in highly diverse ecosystems, which are thought to exhibit high functional redundancy. Rare species offer more than aesthetic, cultural, or taxonomic diversity value; they disproportionately increase the potential breadth of functions provided by ecosystems across

  18. Habitat fragmentation may not matter to species diversity

    PubMed Central

    Yaacobi, Gal; Ziv, Yaron; Rosenzweig, Michael L

    2007-01-01

    Conservation biologists worry that fragmenting a bloc of natural habitat might reduce its species diversity. However, they also recognize the difficulty and importance of isolating the effect of fragmentation from that of simple loss of area. Using two different methods (species–area curve and Fisher's α index of diversity) to analyse the species diversities of plants, tenebrionid beetles and carabid beetles in a highly fragmented Mediterranean scrub landscape, we decoupled the effect of degree of fragmentation from that of area loss. In this system, fragmentation by itself seems not to have influenced the number of species. Our results, obtained at the scale of hectares, agree with similar results at island and continent scales. PMID:17666380

  19. Global patterns of freshwater species diversity, threat and endemism

    PubMed Central

    Collen, Ben; Whitton, Felix; Dyer, Ellie E; Baillie, Jonathan E M; Cumberlidge, Neil; Darwall, William R T; Pollock, Caroline; Richman, Nadia I; Soulsby, Anne-Marie; Böhm, Monika

    2014-01-01

    Aim Global-scale studies are required to identify broad-scale patterns in the distributions of species, to evaluate the processes that determine diversity and to determine how similar or different these patterns and processes are among different groups of freshwater species. Broad-scale patterns of spatial variation in species distribution are central to many fundamental questions in macroecology and conservation biology. We aimed to evaluate how congruent three commonly used metrics of diversity were among taxa for six groups of freshwater species. Location Global. Methods We compiled geographical range data on 7083 freshwater species of mammals, amphibians, reptiles, fishes, crabs and crayfish to evaluate how species richness, richness of threatened species and endemism are distributed across freshwater ecosystems. We evaluated how congruent these measures of diversity were among taxa at a global level for a grid cell size of just under 1°. Results We showed that although the risk of extinction faced by freshwater decapods is quite similar to that of freshwater vertebrates, there is a distinct lack of spatial congruence in geographical range between different taxonomic groups at this spatial scale, and a lack of congruence among three commonly used metrics of biodiversity. The risk of extinction for freshwater species was consistently higher than for their terrestrial counterparts. Main conclusions We demonstrate that broad-scale patterns of species richness, threatened-species richness and endemism lack congruence among the six freshwater taxonomic groups examined. Invertebrate species are seldom taken into account in conservation planning. Our study suggests that both the metric of biodiversity and the identity of the taxa on which conservation decisions are based require careful consideration. As geographical range information becomes available for further sets of species, further testing will be warranted into the extent to which geographical variation in

  20. Genetic Diversity of the Two Commercial Tetraploid Cotton Species in the Gossypium Diversity Reference Set.

    PubMed

    Hinze, Lori L; Gazave, Elodie; Gore, Michael A; Fang, David D; Scheffler, Brian E; Yu, John Z; Jones, Don C; Frelichowski, James; Percy, Richard G

    2016-05-01

    A diversity reference set has been constructed for the Gossypium accessions in the US National Cotton Germplasm Collection to facilitate more extensive evaluation and utilization of accessions held in the Collection. A set of 105 mapped simple sequence repeat markers was used to study the allelic diversity of 1933 tetraploid Gossypium accessions representative of the range of diversity of the improved and wild accessions of G. hirsutum and G. barbadense. The reference set contained 410 G. barbadense accessions and 1523 G. hirsutum accessions. Observed numbers of polymorphic and private bands indicated a greater diversity in G. hirsutum as compared to G. barbadense as well as in wild-type accessions as compared to improved accessions in both species. The markers clearly differentiated the 2 species. Patterns of diversity within species were observed but not clearly delineated, with much overlap occurring between races and regions of origin for wild accessions and between historical and geographic breeding pools for cultivated accessions. Although the percentage of accessions showing introgression was higher among wild accessions than cultivars in both species, the average level of introgression within individual accessions, as indicated by species-specific bands, was much higher in wild accessions of G. hirsutum than in wild accessions of G. barbadense. The average level of introgression within individual accessions was higher in improved G. barbadense cultivars than in G. hirsutum cultivars. This molecular characterization reveals the levels and distributions of genetic diversity that will allow for better exploration and utilization of cotton genetic resources.

  1. Diversity of Microbial Species Implicated in Keratitis: A Review

    PubMed Central

    Karsten, Elisabeth; Watson, Stephanie Lousie; Foster, Leslie John Ray

    2012-01-01

    Background: Microbial keratitis is an infectious disease of the cornea characterised by inflammation and is considered an ophthalmic emergency requiring immediate attention. While a variety of pathogenic microbes associated with microbial keratitis have been identified, a comprehensive review identifying the diversity of species has not been completed. Methods: A search of peer-reviewed publications including case reports and research articles reporting microorganims implicated in keratitis was conducted. Search engines including PubMed, Scopus and Web of Science with years ranging from 1950-2012 were used. Results: 232 different species from 142 genera, representing 80 families were found to be implicated in microbial keratitis. Fungi exhibited the largest diversity with 144 species from 92 genera. In comparison, 77 species of bacteria from 42 genera, 12 species of protozoa from 4 genera and 4 types of virus were identified as the infectious agents. A comparison of their aetiologies shows reports of similarities between genera. Conclusions: The diversity of microbial species implicated in keratitis has not previously been reported and is considerably greater than suggested by incidence studies. Effective treatment is heavily reliant upon correct identification of the responsible microorganisms. Species identification, the risk factors associated with, and pathogenesis of microbial keratitis will allow the development of improved therapies. This review provides a resource for clinicians and researchers to assist in identification and readily source treatment information. PMID:23248737

  2. Scorpions from Mexico: From Species Diversity to Venom Complexity

    PubMed Central

    Santibáñez-López, Carlos E.; Francke, Oscar F.; Ureta, Carolina; Possani, Lourival D.

    2015-01-01

    Scorpions are among the oldest terrestrial arthropods, which are distributed worldwide, except for Antarctica and some Pacific islands. Scorpion envenomation represents a public health problem in several parts of the world. Mexico harbors the highest diversity of scorpions in the world, including some of the world’s medically important scorpion species. The systematics and diversity of Mexican scorpion fauna has not been revised in the past decade; and due to recent and exhaustive collection efforts as part of different ongoing major revisionary systematic projects, our understanding of this diversity has changed compared with previous assessments. Given the presence of several medically important scorpion species, the study of their venom in the country is also important. In the present contribution, the diversity of scorpion species in Mexico is revised and updated based on several new systematic contributions; 281 different species are recorded. Commentaries on recent venomic, ecological and behavioral studies of Mexican scorpions are also provided. A list containing the most important peptides identified from 16 different species is included. A graphical representation of the different types of components found in these venoms is also revised. A map with hotspots showing the current knowledge on scorpion distribution and areas explored in Mexico is also provided. PMID:26712787

  3. Scorpions from Mexico: From Species Diversity to Venom Complexity.

    PubMed

    Santibáñez-López, Carlos E; Francke, Oscar F; Ureta, Carolina; Possani, Lourival D

    2015-12-24

    Scorpions are among the oldest terrestrial arthropods, which are distributed worldwide, except for Antarctica and some Pacific islands. Scorpion envenomation represents a public health problem in several parts of the world. Mexico harbors the highest diversity of scorpions in the world, including some of the world's medically important scorpion species. The systematics and diversity of Mexican scorpion fauna has not been revised in the past decade; and due to recent and exhaustive collection efforts as part of different ongoing major revisionary systematic projects, our understanding of this diversity has changed compared with previous assessments. Given the presence of several medically important scorpion species, the study of their venom in the country is also important. In the present contribution, the diversity of scorpion species in Mexico is revised and updated based on several new systematic contributions; 281 different species are recorded. Commentaries on recent venomic, ecological and behavioral studies of Mexican scorpions are also provided. A list containing the most important peptides identified from 16 different species is included. A graphical representation of the different types of components found in these venoms is also revised. A map with hotspots showing the current knowledge on scorpion distribution and areas explored in Mexico is also provided.

  4. Measuring β-diversity with species abundance data.

    PubMed

    Barwell, Louise J; Isaac, Nick J B; Kunin, William E

    2015-07-01

    In 2003, 24 presence-absence β-diversity metrics were reviewed and a number of trade-offs and redundancies identified. We present a parallel investigation into the performance of abundance-based metrics of β-diversity. β-diversity is a multi-faceted concept, central to spatial ecology. There are multiple metrics available to quantify it: the choice of metric is an important decision. We test 16 conceptual properties and two sampling properties of a β-diversity metric: metrics should be 1) independent of α-diversity and 2) cumulative along a gradient of species turnover. Similarity should be 3) probabilistic when assemblages are independently and identically distributed. Metrics should have 4) a minimum of zero and increase monotonically with the degree of 5) species turnover, 6) decoupling of species ranks and 7) evenness differences. However, complete species turnover should always generate greater values of β than extreme 8) rank shifts or 9) evenness differences. Metrics should 10) have a fixed upper limit, 11) symmetry (βA,B  = βB,A ), 12) double-zero asymmetry for double absences and double presences and 13) not decrease in a series of nested assemblages. Additionally, metrics should be independent of 14) species replication 15) the units of abundance and 16) differences in total abundance between sampling units. When samples are used to infer β-diversity, metrics should be 1) independent of sample sizes and 2) independent of unequal sample sizes. We test 29 metrics for these properties and five 'personality' properties. Thirteen metrics were outperformed or equalled across all conceptual and sampling properties. Differences in sensitivity to species' abundance lead to a performance trade-off between sample size bias and the ability to detect turnover among rare species. In general, abundance-based metrics are substantially less biased in the face of undersampling, although the presence-absence metric, βsim , performed well overall. Only

  5. Bird species diversity in the padawan limestone area, sarawak.

    PubMed

    Mansor, Mohammad Saiful; Sah, Shahrul Anuar Mohd; Koon, Lim Chan; Rahman, Mustafa Abdul

    2011-12-01

    Bird surveys were conducted in the Padawan Limestone Area for seven days at each of two study sites, Giam and Danu, from August to December 2008. The purpose of the study was to compare the area's bird species richness and abundance of bird species in other limestone areas and in other forest types. The study also compared the species richness and relative abundance of birds in undisturbed and disturbed areas at both study sites. Twenty mist nets were deployed for 12 hours daily. During this study period, direct observations of birds were also made. In all, 80 species from 34 families were recorded at both sites. At Giam, 120 birds were mist-netted. These birds represented 31 species from 16 families. The direct observations at Giam recorded 13 species from 11 families. In the undisturbed area, 21 species from 13 families were mist-netted, whereas in the disturbed area, 21 species from 10 families were mist-netted. In Danu, a total of 48 birds, representing 25 species from 12 families, were mist-netted. The observations at Danu recorded 34 species from 19 families. Twelve species from 7 families were mist-netted in the undisturbed area, whereas 18 species from 11 families were mist-netted in the disturbed area. Statistical analysis showed that the species diversity index differed significantly between undisturbed and disturbed areas.

  6. Bird Species Diversity in the Padawan Limestone Area, Sarawak

    PubMed Central

    Mansor, Mohammad Saiful; Sah, Shahrul Anuar Mohd; Koon, Lim Chan; Rahman, Mustafa Abdul

    2011-01-01

    Bird surveys were conducted in the Padawan Limestone Area for seven days at each of two study sites, Giam and Danu, from August to December 2008. The purpose of the study was to compare the area’s bird species richness and abundance of bird species in other limestone areas and in other forest types. The study also compared the species richness and relative abundance of birds in undisturbed and disturbed areas at both study sites. Twenty mist nets were deployed for 12 hours daily. During this study period, direct observations of birds were also made. In all, 80 species from 34 families were recorded at both sites. At Giam, 120 birds were mist-netted. These birds represented 31 species from 16 families. The direct observations at Giam recorded 13 species from 11 families. In the undisturbed area, 21 species from 13 families were mist-netted, whereas in the disturbed area, 21 species from 10 families were mist-netted. In Danu, a total of 48 birds, representing 25 species from 12 families, were mist-netted. The observations at Danu recorded 34 species from 19 families. Twelve species from 7 families were mist-netted in the undisturbed area, whereas 18 species from 11 families were mist-netted in the disturbed area. Statistical analysis showed that the species diversity index differed significantly between undisturbed and disturbed areas. PMID:24575218

  7. Plants are less negatively affected by flooding when growing in species-rich plant communities.

    PubMed

    Wright, Alexandra J; de Kroon, Hans; Visser, Eric J W; Buchmann, Tina; Ebeling, Anne; Eisenhauer, Nico; Fischer, Christine; Hildebrandt, Anke; Ravenek, Janneke; Roscher, Christiane; Weigelt, Alexandra; Weisser, Wolfgang; Voesenek, Laurentius A C J; Mommer, Liesje

    2017-01-01

    Flooding is expected to increase in frequency and severity in the future. The ecological consequences of flooding are the combined result of species-specific plant traits and ecological context. However, the majority of past flooding research has focused on individual model species under highly controlled conditions. An early summer flooding event in a grassland biodiversity experiment in Jena, Germany, provided the opportunity to assess flooding responses of 60 grassland species in monocultures and 16-species mixtures. We examined plant biomass, species-specific traits (plant height, specific leaf area (SLA), root aerenchyma, starch content) and soil porosity. We found that, on average, plant species were less negatively affected by the flood when grown in higher-diversity plots in July 2013. By September 2013, grasses were unaffected by the flood regardless of plant diversity, and legumes were severely negatively affected regardless of plant diversity. Plants with greater SLA and more root aerenchyma performed better in September. Soil porosity was higher in higher-diversity plots and had a positive effect on plant performance. As floods become more frequent and severe in the future, growing flood-sensitive plants in higher-diversity communities and in soil with greater soil aeration may attenuate the most negative effects of flooding.

  8. Herbivore and predator diversity interactively affect ecosystem properties in an experimental marine community.

    PubMed

    Douglass, James G; Duffy, J Emmett; Bruno, John F

    2008-06-01

    Interacting changes in predator and prey diversity likely influence ecosystem properties but have rarely been experimentally tested. We manipulated the species richness of herbivores and predators in an experimental benthic marine community and measured their effects on predator, herbivore and primary producer performance. Predator composition and richness strongly affected several community and population responses, mostly via sampling effects. However, some predators survived better in polycultures than in monocultures, suggesting complementarity due to stronger intra- than interspecific interactions. Predator effects also differed between additive and substitutive designs, emphasizing that the relationship between diversity and abundance in an assemblage can strongly influence whether and how diversity effects are realized. Changing herbivore richness and predator richness interacted to influence both total herbivore abundance and predatory crab growth, but these interactive diversity effects were weak. Overall, the presence and richness of predators dominated biotic effects on community and ecosystem properties.

  9. Abundant Microsatellite Diversity and Oil Content in Wild Arachis Species

    PubMed Central

    Ren, Xiaoping; Chen, Yuning; Xiao, Yingjie; Zhao, Xinyan; Tang, Mei; Huang, Jiaquan; Upadhyaya, Hari D.; Liao, Boshou

    2012-01-01

    The peanut (Arachis hypogaea) is an important oil crop. Breeding for high oil content is becoming increasingly important. Wild Arachis species have been reported to harbor genes for many valuable traits that may enable the improvement of cultivated Arachis hypogaea, such as resistance to pests and disease. However, only limited information is available on variation in oil content. In the present study, a collection of 72 wild Arachis accessions representing 19 species and 3 cultivated peanut accessions were genotyped using 136 genome-wide SSR markers and phenotyped for oil content over three growing seasons. The wild Arachis accessions showed abundant diversity across the 19 species. A. duranensis exhibited the highest diversity, with a Shannon-Weaver diversity index of 0.35. A total of 129 unique alleles were detected in the species studied. A. rigonii exhibited the largest number of unique alleles (75), indicating that this species is highly differentiated. AMOVA and genetic distance analyses confirmed the genetic differentiation between the wild Arachis species. The majority of SSR alleles were detected exclusively in the wild species and not in A. hypogaea, indicating that directional selection or the hitchhiking effect has played an important role in the domestication of the cultivated peanut. The 75 accessions were grouped into three clusters based on population structure and phylogenic analysis, consistent with their taxonomic sections, species and genome types. A. villosa and A. batizocoi were grouped with A. hypogaea, suggesting the close relationship between these two diploid wild species and the cultivated peanut. Considerable phenotypic variation in oil content was observed among different sections and species. Nine alleles were identified as associated with oil content based on association analysis, of these, three alleles were associated with higher oil content but were absent in the cultivated peanut. The results demonstrated that there is great

  10. Spatial pattern affects diversity-productivity relationships in experimental meadow communities

    NASA Astrophysics Data System (ADS)

    Lamošová, Tereza; Doležal, Jiří; Lanta, Vojtěch; Lepš, Jan

    2010-05-01

    Plant species create aggregations of conspecifics as a consequence of limited seed dispersal, clonal growth and heterogeneous environment. Such intraspecific aggregation increases the importance of intraspecific competition relative to interspecific competition which may slow down competitive exclusion and promote species coexistence. To examine how spatial aggregation impacts the functioning of experimental assemblages of varying species richness, eight perennial grassland species of different growth form were grown in random and aggregated patterns in monocultures, two-, four-, and eight-species mixtures. In mixtures with an aggregated pattern, monospecific clumps were interspecifically segregated. Mixed model ANOVA was used to test (i) how the total productivity and productivity of individual species is affected by the number of species in a mixture, and (ii) how these relationships are affected by spatial pattern of sown plants. The main patterns of productivity response to species richness conform to other studies: non-transgressive overyielding is omnipresent (the productivity of mixtures is higher than the average of its constituent species so that the net diversity, selection and complementarity effects are positive), whereas transgressive overyielding is found only in a minority of cases (average of log(overyielding) being close to zero or negative). The theoretical prediction that plants in a random pattern should produce more than in an aggregated pattern (the distances to neighbours are smaller and consequently the competition among neighbours stronger) was confirmed in monocultures of all the eight species. The situation is more complicated in mixtures, probably as a consequence of complicated interplay between interspecific and intraspecific competition. The most productive species ( Achillea, Holcus, Plantago) were competitively superior and increased their relative productivity with mixture richness. The intraspecific competition of these species is

  11. Distribution and Molecular Diversity of Arborescent Gossypium Species.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mexico is a center of diversity of Gossypium. As currently circumscribed, arborescent Gossypium species (Section Erioxylum) are widely distributed in dry deciduous forests located from the central state of Sinaloa at the north of its range to the eastern state of Oaxaca in the south. However, extens...

  12. Consumer species richness and nutrients interact in determining producer diversity

    PubMed Central

    Groendahl, Sophie; Fink, Patrick

    2017-01-01

    While it is crucial to understand the factors that determine the biodiversity of primary producer communities, the relative importance of bottom-up and top-down control factors is still poorly understood. Using freshwater benthic algal communities in the laboratory as a model system, we find an unimodal relationship between nutrient availability and producer diversity, and that increasing number of consumer species increases producer diversity, but overall grazing decreases algal biodiversity. Interestingly, these two factors interact strongly in determining producer diversity, as an increase in nutrient supply diminishes the positive effect of consumer species richness on producer biodiversity. This novel and thus-far overlooked interaction of bottom-up and top-down control mechanisms of biodiversity may have a pronounced impact on ecosystem functioning and thus have repercussions for the fields of biodiversity conservation and restoration. PMID:28303953

  13. Orbital forcing of deep-sea benthic species diversity

    USGS Publications Warehouse

    Cronin, T. M.; Raymo, M.E.

    1997-01-01

    Explanations for the temporal and spatial patterns of species biodiversity focus on stability-time, disturbance-mosaic (biogenic microhabitat heterogeneity) and competition-predation (biotic interactions) hypotheses. The stability-time hypothesis holds that high species diversity in the deep sea and in the tropics reflects long-term climatic stability. But the influence of climate change on deep-sea diversity has not been studied and recent evidence suggests that deep-sea environments undergo changes in climatically driven temperature and flux of nutrients and organic-carbon during glacial-interglacial cycles. Here we show that Pliocene (2.85-2.40 Myr) deep-sea North Atlantic benthic ostracod (Crustacea) species diversity is related to solar insolation changes caused by 41,000-yr cycles of Earth's obliquity (tilt). Temporal changes in diversity, as measured by the Shannon- Weiner index, H(S), correlate with independent climate indicators of benthic foraminiferal oxygen-isotope ratios (mainly ice volume) and ostracod Mg:Ca ratios (bottomwater temperature). During glacial periods, H(S) = 0.2-0.6, whereas during interglacials, H(S) = 1.2-1.6, which is three to four times as high. The control of deep-sea benthic diversity by cyclic climate change at timescales of 103-104 yr does not support the stability-time hypothesis because it shows that the deep sea is a temporally dynamic environment. Diversity oscillations reflect large-scale response of the benthic community to climatically driven changes in either thermohaline circulation, bottom temperature (or temperature-related factors) and food, and a coupling of benthic diversity to surface productivity.

  14. Beyond 16S rRNA Community Profiling: Intra-Species Diversity in the Gut Microbiota.

    PubMed

    Ellegaard, Kirsten M; Engel, Philipp

    2016-01-01

    Interactions with microbes affect many aspects of animal biology, including immune system development, nutrition and health. In vertebrates, the gut microbiota is dominated by a small subset of phyla, but the species composition within these phyla is typically not conserved. Moreover, several recent studies have shown that bacterial species in the gut are composed of a multitude of strains, which frequently co-exist in their host, and may be host-specific. However, since the study of intra-species diversity is challenging, particularly in the setting of complex, host-associated microbial communities, our current understanding of the distribution, evolution and functional relevance of intra-species diversity in the gut is scarce. In order to unravel how genomic diversity translates into phenotypic diversity, community analyses going beyond 16S rRNA profiling, in combination with experimental approaches, are needed. Recently, the honeybee has emerged as a promising model for studying gut bacterial communities, particularly in terms of strain-level diversity. Unlike most other invertebrates, the honeybee gut is colonized by a remarkably consistent and specific core microbiota, which is dominated by only eight bacterial species. As for the vertebrate gut microbiota, these species are composed of highly diverse strains suggesting that similar evolutionary forces shape gut community structures in vertebrates and social insects. In this review, we outline current knowledge on the evolution and functional relevance of strain diversity within the gut microbiota, including recent insights gained from mammals and other animals such as the honeybee. We discuss methodological approaches and propose possible future avenues for studying strain diversity in complex bacterial communities.

  15. Beyond 16S rRNA Community Profiling: Intra-Species Diversity in the Gut Microbiota

    PubMed Central

    Ellegaard, Kirsten M.; Engel, Philipp

    2016-01-01

    Interactions with microbes affect many aspects of animal biology, including immune system development, nutrition and health. In vertebrates, the gut microbiota is dominated by a small subset of phyla, but the species composition within these phyla is typically not conserved. Moreover, several recent studies have shown that bacterial species in the gut are composed of a multitude of strains, which frequently co-exist in their host, and may be host-specific. However, since the study of intra-species diversity is challenging, particularly in the setting of complex, host-associated microbial communities, our current understanding of the distribution, evolution and functional relevance of intra-species diversity in the gut is scarce. In order to unravel how genomic diversity translates into phenotypic diversity, community analyses going beyond 16S rRNA profiling, in combination with experimental approaches, are needed. Recently, the honeybee has emerged as a promising model for studying gut bacterial communities, particularly in terms of strain-level diversity. Unlike most other invertebrates, the honeybee gut is colonized by a remarkably consistent and specific core microbiota, which is dominated by only eight bacterial species. As for the vertebrate gut microbiota, these species are composed of highly diverse strains suggesting that similar evolutionary forces shape gut community structures in vertebrates and social insects. In this review, we outline current knowledge on the evolution and functional relevance of strain diversity within the gut microbiota, including recent insights gained from mammals and other animals such as the honeybee. We discuss methodological approaches and propose possible future avenues for studying strain diversity in complex bacterial communities. PMID:27708630

  16. Multifaceted diversity-area relationships reveal global hotspots of mammalian species, trait and lineage diversity

    PubMed Central

    Mazel, Florent; Guilhaumon, François; Mouquet, Nicolas; Devictor, Vincent; Gravel, Dominique; Renaud, Julien; Cianciaruso, Marcus Vinicius; Loyola, Rafael Dias; Diniz-Filho, José Alexandre Felizola; Mouillot, David; Thuiller, Wilfried

    2014-01-01

    Aim To define biome-scale hotspots of phylogenetic and functional mammalian biodiversity (PD and FD, respectively) and compare them to ‘classical’ hotspots based on species richness (SR) only. Location Global Methods SR, PD & FD were computed for 782 terrestrial ecoregions using distribution ranges of 4616 mammalian species. We used a set of comprehensive diversity indices unified by a recent framework that incorporates the species relative coverage in each ecoregion. We build large-scale multifaceted diversity-area relationships to rank ecoregions according to their levels of biodiversity while accounting for the effect of area on each diversity facet. Finally we defined hotspots as the top-ranked ecoregions. Results While ignoring species relative coverage led to a relative good congruence between biome top ranked SR, PD and FD hotspots, ecoregions harboring a rich and abundantly represented evolutionary history and functional diversity did not match with top ranked ecoregions defined by species richness. More importantly PD and FD hotspots showed important spatial mismatches. We also found that FD and PD generally reached their maximum values faster than species richness as a function of area. Main conclusions The fact that PD/FD reach faster their maximal value than SR may suggest that the two former facets might be less vulnerable to habitat loss than the latter. While this point is expected, it is the first time that it is quantified at global scale and should have important consequences in conservation. Incorporating species relative coverage into the delineation of multifaceted hotspots of diversity lead to weak congruence between SR, PD and FD hotspots. This means that maximizing species number may fail at preserving those nodes (in the phylogenetic or functional tree) that are relatively abundant in the ecoregion. As a consequence it may be of prime importance to adopt a multifaceted biodiversity perspective to inform conservation strategies at global

  17. Altitudinal Patterns of Species Diversity and Phylogenetic Diversity across Temperate Mountain Forests of Northern China.

    PubMed

    Zhang, Wenxin; Huang, Dizhou; Wang, Renqing; Liu, Jian; Du, Ning

    2016-01-01

    The spatial patterns of biodiversity and their underlying mechanisms have been an active area of research for a long time. In this study, a total of 63 samples (20m × 30m) were systematically established along elevation gradients on Mount Tai and Mount Lao, China. We explored altitudinal patterns of plant diversity in the two mountain systems. In order to understand the mechanisms driving current diversity patterns, we used phylogenetic approaches to detect the spatial patterns of phylogenetic diversity and phylogenetic structure along two elevation gradients. We found that total species richness had a monotonically decreasing pattern and tree richness had a unimodal pattern along the elevation gradients in the two study areas. However, altitudinal patterns in shrub richness and herbs richness were not consistent on the two mountains. At low elevation, anthropogenic disturbances contributed to the increase of plant diversity, especially for shrubs and herbs in understory layers, which are more sensitive to changes in microenvironment. The phylogenetic structure of plant communities exhibited an inverted hump-shaped pattern along the elevation gradient on Mount Tai, which demonstrates that environmental filtering is the main driver of plant community assembly at high and low elevations and inter-specific competition may be the main driver of plant community assembly in the middle elevations. However, the phylogenetic structure of plant communities did not display a clear pattern on Mount Lao where the climate is milder. Phylogenetic beta diversity and species beta diversity consistently increased with increasing altitudinal divergence in the two study areas. However, the altitudinal patterns of species richness did not completely mirror phylogenetic diversity patterns. Conservation areas should be selected taking into consideration the preservation of high species richness, while maximizing phylogenetic diversity to improve the potential for diversification in the

  18. Altitudinal Patterns of Species Diversity and Phylogenetic Diversity across Temperate Mountain Forests of Northern China

    PubMed Central

    Zhang, Wenxin; Huang, Dizhou; Wang, Renqing; Liu, Jian; Du, Ning

    2016-01-01

    The spatial patterns of biodiversity and their underlying mechanisms have been an active area of research for a long time. In this study, a total of 63 samples (20m × 30m) were systematically established along elevation gradients on Mount Tai and Mount Lao, China. We explored altitudinal patterns of plant diversity in the two mountain systems. In order to understand the mechanisms driving current diversity patterns, we used phylogenetic approaches to detect the spatial patterns of phylogenetic diversity and phylogenetic structure along two elevation gradients. We found that total species richness had a monotonically decreasing pattern and tree richness had a unimodal pattern along the elevation gradients in the two study areas. However, altitudinal patterns in shrub richness and herbs richness were not consistent on the two mountains. At low elevation, anthropogenic disturbances contributed to the increase of plant diversity, especially for shrubs and herbs in understory layers, which are more sensitive to changes in microenvironment. The phylogenetic structure of plant communities exhibited an inverted hump-shaped pattern along the elevation gradient on Mount Tai, which demonstrates that environmental filtering is the main driver of plant community assembly at high and low elevations and inter-specific competition may be the main driver of plant community assembly in the middle elevations. However, the phylogenetic structure of plant communities did not display a clear pattern on Mount Lao where the climate is milder. Phylogenetic beta diversity and species beta diversity consistently increased with increasing altitudinal divergence in the two study areas. However, the altitudinal patterns of species richness did not completely mirror phylogenetic diversity patterns. Conservation areas should be selected taking into consideration the preservation of high species richness, while maximizing phylogenetic diversity to improve the potential for diversification in the

  19. Factors affecting antimicrobial susceptibility of Fusobacterium species.

    PubMed Central

    Rowland, M D; Del Bene, V E; Lewis, J W

    1987-01-01

    Fifteen clinical isolates of Fusobacterium species were studied to determine their quality of growth on five agar media, their susceptibility to penicillin, cephalothin, cefoxitin, and cefotaxime, the inoculum effect, and the presence of L forms and beta-lactamase. Wilkins-Chalgren agar supported confluent growth best, but Fusobacterium nucleatum exhibited poor growth on all agar media. Most isolates exhibited poor reproducibility of MIC results with repeated agar dilution testing. However, most isolates were susceptible to all antibiotics at the breakpoint concentrations. No inoculum effect was observed, but preparation of an inoculum at a 0.5 McFarland nephelometric standard produced a lower than expected number of CFU (10(6) CFU) in some isolates. L forms were frequently seen. No beta-lactamase was found. The variability in MICs seen with beta-lactam antibiotics was not found when clindamycin was tested. MIC studies with Fusobacterium spp. may be complicated by poor growth on agar media, poor reproducibility, and small inoculum size. PMID:3494743

  20. Diversity of Fusarium Species from Highland Areas in Malaysia

    PubMed Central

    Manshor, Nurhazrati; Rosli, Hafizi; Ismail, Nor Azliza; Salleh, Baharuddin; Zakaria, Latiffah

    2012-01-01

    Fusarium is a cosmopolitan and highly diversified genus of saprophytic, phytopathogenic and toxigenic fungi. However, the existence and diversity of a few species of Fusarium are restricted to a certain area or climatic condition. The present study was conducted to determine the occurrence and diversity of Fusarium species in tropical highland areas in Malaysia and to compare with those in temperate and subtropical regions. A series of sampling was carried out in 2005 to 2009 at several tropical highland areas in Malaysia that is: Cameron Highlands, Fraser Hills and Genting Highlands in Pahang; Penang Hill in Penang; Gunung Jerai in Kedah; Kundasang and Kinabalu Park in Sabah; Kubah National Park and Begunan Hill in Sarawak. Sampling was done randomly from various hosts and substrates. Isolation of Fusarium isolates was done by using pentachloronitrobenzene (PCNB) agar and 1449 isolates of Fusarium were successfully recovered. Based on morphological characteristics, 20 species of Fusarium were identified. The most prevalent species occurring on the highlands areas was F. solani (66.1%) followed by F. graminearum (8.5%), F. oxysporum (7.8%), F. semitectum (5.7%), F. subglutinans (3.5%) and F. proliferatum (3.4%). Other Fusarium species, namely F. avenaceum, F. camptoceras, F. chlamydosporum, F. compactum, F. crookwellense, F. culmorum, F. decemcellulare, F. equiseti, F. nygamai, F. poae, F. proliferatum, F. sacchari, F. sporotrichioides, F. sterilihyphosum and F. verticillioides accounted for 1% recoveries. The present study was the first report on the occurrences of Fusarium species on highland areas in Malaysia. PMID:24575229

  1. New species from Ethiopia further expands Middle Pliocene hominin diversity.

    PubMed

    Haile-Selassie, Yohannes; Gibert, Luis; Melillo, Stephanie M; Ryan, Timothy M; Alene, Mulugeta; Deino, Alan; Levin, Naomi E; Scott, Gary; Saylor, Beverly Z

    2015-05-28

    Middle Pliocene hominin species diversity has been a subject of debate over the past two decades, particularly after the naming of Australopithecus bahrelghazali and Kenyanthropus platyops in addition to the well-known species Australopithecus afarensis. Further analyses continue to support the proposal that several hominin species co-existed during this time period. Here we recognize a new hominin species (Australopithecus deyiremeda sp. nov.) from 3.3-3.5-million-year-old deposits in the Woranso-Mille study area, central Afar, Ethiopia. The new species from Woranso-Mille shows that there were at least two contemporaneous hominin species living in the Afar region of Ethiopia between 3.3 and 3.5 million years ago, and further confirms early hominin taxonomic diversity in eastern Africa during the Middle Pliocene epoch. The morphology of Au. deyiremeda also reinforces concerns related to dentognathic (that is, jaws and teeth) homoplasy in Plio-Pleistocene hominins, and shows that some dentognathic features traditionally associated with Paranthropus and Homo appeared in the fossil record earlier than previously thought.

  2. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent.

    PubMed

    Tedersoo, Leho; Bahram, Mohammad; Cajthaml, Tomáš; Põlme, Sergei; Hiiesalu, Indrek; Anslan, Sten; Harend, Helery; Buegger, Franz; Pritsch, Karin; Koricheva, Julia; Abarenkov, Kessy

    2016-02-01

    Plant species richness and the presence of certain influential species (sampling effect) drive the stability and functionality of ecosystems as well as primary production and biomass of consumers. However, little is known about these floristic effects on richness and community composition of soil biota in forest habitats owing to methodological constraints. We developed a DNA metabarcoding approach to identify the major eukaryote groups directly from soil with roughly species-level resolution. Using this method, we examined the effects of tree diversity and individual tree species on soil microbial biomass and taxonomic richness of soil biota in two experimental study systems in Finland and Estonia and accounted for edaphic variables and spatial autocorrelation. Our analyses revealed that the effects of tree diversity and individual species on soil biota are largely context dependent. Multiple regression and structural equation modelling suggested that biomass, soil pH, nutrients and tree species directly affect richness of different taxonomic groups. The community composition of most soil organisms was strongly correlated due to similar response to environmental predictors rather than causal relationships. On a local scale, soil resources and tree species have stronger effect on diversity of soil biota than tree species richness per se.

  3. Effects of Previous Land-Use on Plant Species Composition and Diversity in Mediterranean Forests.

    PubMed

    Kouba, Yacine; Martínez-García, Felipe; de Frutos, Ángel; Alados, Concepción L

    2015-01-01

    At some point in their history, most forests in the Mediterranean Basin have been subjected to intensive management or converted to agriculture land. Knowing how forest plant communities recovered after the abandonment of forest-management or agricultural practices (including livestock grazing) provides a basis for investigating how previous land management have affected plant species diversity and composition in forest ecosystems. Our study investigated the consequences of historical "land management" practices on present-day Mediterranean forests by comparing species assemblages and the diversity of (i) all plant species and (ii) each ecological group defined by species' habitat preferences and successional status (i.e., early-, mid-, and late-successional species). We compared forest stands that differed both in land-use history and in successional stage. In addition, we evaluated the value of those stands for biodiversity conservation. The study revealed significant compositional differentiation among stands that was due to among-stand variations in the diversity (namely, species richness and evenness) of early-, intermediate-, and late-successional species. Historical land management has led to an increase in compositional divergences among forest stands and the loss of late-successional forest species.

  4. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent

    PubMed Central

    Tedersoo, Leho; Bahram, Mohammad; Cajthaml, Tomáš; Põlme, Sergei; Hiiesalu, Indrek; Anslan, Sten; Harend, Helery; Buegger, Franz; Pritsch, Karin; Koricheva, Julia; Abarenkov, Kessy

    2016-01-01

    Plant species richness and the presence of certain influential species (sampling effect) drive the stability and functionality of ecosystems as well as primary production and biomass of consumers. However, little is known about these floristic effects on richness and community composition of soil biota in forest habitats owing to methodological constraints. We developed a DNA metabarcoding approach to identify the major eukaryote groups directly from soil with roughly species-level resolution. Using this method, we examined the effects of tree diversity and individual tree species on soil microbial biomass and taxonomic richness of soil biota in two experimental study systems in Finland and Estonia and accounted for edaphic variables and spatial autocorrelation. Our analyses revealed that the effects of tree diversity and individual species on soil biota are largely context dependent. Multiple regression and structural equation modelling suggested that biomass, soil pH, nutrients and tree species directly affect richness of different taxonomic groups. The community composition of most soil organisms was strongly correlated due to similar response to environmental predictors rather than causal relationships. On a local scale, soil resources and tree species have stronger effect on diversity of soil biota than tree species richness per se. PMID:26172210

  5. Effects of species diversity on establishment and coexistence: a phylloplane fungal community model system.

    PubMed

    Stohr, S N; Dighton, J

    2004-10-01

    A model system was devised, evaluating the influence that species diversity (species richness) has on fungal establishment and coexistence. Seven members of the fungal phylloplane community of Vaccinium macrocarpon (American cranberry) were selected to assess how species diversity affected development and coexistence of another community member, Pestalotia vaccinii. Pestalotia was engaged in competitive interactions on 1% Malt Extract Agar (MEA) petri dishes with each of the seven individual saprotrophs (two-way interaction), in random combinations with three of the seven saprotrophs (four-way interaction), and in random combinations with five of the seven saprotrophs (six-way interaction). The saprotrophic fungi used in this study were Aspergillus sp., Alternaria alternata, Cladosporium cladosporoides, Curvularia lunata, Epicoccum purpuracens, Penicillium sp., and Pithomyces chartarum. We hypothesized that species diversity would have a significant impact on the establishment and coexistence of Pestalotia vaccinii in culture. In an effort to minimize density-dependent effects, the number of viable spores employed in the three types of interactions was kept constant. Target spore concentrations of 50 viable spores of P. vaccinii and 50 saprotroph spores were used, regardless of the number of species involved in the interaction. This proved to be a very important factor in the experiment. As our results show, species diversity had little or no effect on the establishment and coexistence of Pestalotia vaccinii; however, spore density played an extremely important role in the establishment and development of fungal propagules in our model.

  6. Woody plant phylogenetic diversity mediates bottom-up control of arthropod biomass in species-rich forests.

    PubMed

    Schuldt, Andreas; Baruffol, Martin; Bruelheide, Helge; Chen, Simon; Chi, Xiulian; Wall, Marcus; Assmann, Thorsten

    2014-09-01

    Global change is predicted to cause non-random species loss in plant communities, with consequences for ecosystem functioning. However, beyond the simple effects of plant species richness, little is known about how plant diversity and its loss influence higher trophic levels, which are crucial to the functioning of many species-rich ecosystems. We analyzed to what extent woody plant phylogenetic diversity and species richness contribute to explaining the biomass and abundance of herbivorous and predatory arthropods in a species-rich forest in subtropical China. The biomass and abundance of leaf-chewing herbivores, and the biomass dispersion of herbivores within plots, increased with woody plant phylogenetic diversity. Woody plant species richness had much weaker effects on arthropods, but interacted with plant phylogenetic diversity to negatively affect the ratio of predator to herbivore biomass. Overall, our results point to a strong bottom-up control of functionally important herbivores mediated particularly by plant phylogenetic diversity, but do not support the general expectation that top-down predator effects increase with plant diversity. The observed effects appear to be driven primarily by increasing resource diversity rather than diversity-dependent primary productivity, as the latter did not affect arthropods. The strong effects of plant phylogenetic diversity and the overall weaker effects of plant species richness show that the diversity-dependence of ecosystem processes and interactions across trophic levels can depend fundamentally on non-random species associations. This has important implications for the regulation of ecosystem functions via trophic interaction pathways and for the way species loss may impact these pathways in species-rich forests.

  7. Are Tree Species Diversity and Genotypic Diversity Effects on Insect Herbivores Mediated by Ants?

    PubMed

    Campos-Navarrete, María José; Abdala-Roberts, Luis; Munguía-Rosas, Miguel A; Parra-Tabla, Víctor

    2015-01-01

    Plant diversity can influence predators and omnivores and such effects may in turn influence herbivores and plants. However, evidence for these ecological feedbacks is rare. We evaluated if the effects of tree species (SD) and genotypic diversity (GD) on the abundance of different guilds of insect herbivores associated with big-leaf mahogany (Swietenia macrophylla) were contingent upon the protective effects of ants tending extra-floral nectaries of this species. This study was conducted within a larger experiment consisting of mahogany monocultures and species polycultures of four species and -within each of these two plot types- mahogany was represented by either one or four maternal families. We selected 24 plots spanning these treatment combinations, 10 mahogany plants/plot, and within each plot experimentally reduced ant abundance on half of the selected plants, and surveyed ant and herbivore abundance. There were positive effects of SD on generalist leaf-chewers and sap-feeders, but for the latter group this effect depended on the ant reduction treatment: SD positively influenced sap-feeders under ambient ant abundance but had no effect when ant abundance was reduced; at the same time, ants had negative effects on sap feeders in monoculture but no effect in polyculture. In contrast, SD did not influence specialist stem-borers or leaf-miners and this effect was not contingent upon ant reduction. Finally, GD did not influence any of the herbivore guilds studied, and such effects did not depend on the ant treatment. Overall, we show that tree species diversity influenced interactions between a focal plant species (mahogany) and ants, and that such effects in turn mediated plant diversity effects on some (sap-feeders) but not all the herbivores guilds studied. Our results suggest that the observed patterns are dependent on the combined effects of herbivore identity, diet breadth, and the source of plant diversity.

  8. Are Tree Species Diversity and Genotypic Diversity Effects on Insect Herbivores Mediated by Ants?

    PubMed Central

    Campos-Navarrete, María José; Abdala-Roberts, Luis; Munguía-Rosas, Miguel A.; Parra-Tabla, Víctor

    2015-01-01

    Plant diversity can influence predators and omnivores and such effects may in turn influence herbivores and plants. However, evidence for these ecological feedbacks is rare. We evaluated if the effects of tree species (SD) and genotypic diversity (GD) on the abundance of different guilds of insect herbivores associated with big-leaf mahogany (Swietenia macrophylla) were contingent upon the protective effects of ants tending extra-floral nectaries of this species. This study was conducted within a larger experiment consisting of mahogany monocultures and species polycultures of four species and –within each of these two plot types– mahogany was represented by either one or four maternal families. We selected 24 plots spanning these treatment combinations, 10 mahogany plants/plot, and within each plot experimentally reduced ant abundance on half of the selected plants, and surveyed ant and herbivore abundance. There were positive effects of SD on generalist leaf-chewers and sap-feeders, but for the latter group this effect depended on the ant reduction treatment: SD positively influenced sap-feeders under ambient ant abundance but had no effect when ant abundance was reduced; at the same time, ants had negative effects on sap feeders in monoculture but no effect in polyculture. In contrast, SD did not influence specialist stem-borers or leaf-miners and this effect was not contingent upon ant reduction. Finally, GD did not influence any of the herbivore guilds studied, and such effects did not depend on the ant treatment. Overall, we show that tree species diversity influenced interactions between a focal plant species (mahogany) and ants, and that such effects in turn mediated plant diversity effects on some (sap-feeders) but not all the herbivores guilds studied. Our results suggest that the observed patterns are dependent on the combined effects of herbivore identity, diet breadth, and the source of plant diversity. PMID:26241962

  9. Natural selection constrains neutral diversity across a wide range of species.

    PubMed

    Corbett-Detig, Russell B; Hartl, Daniel L; Sackton, Timothy B

    2015-04-01

    The neutral theory of molecular evolution predicts that the amount of neutral polymorphisms within a species will increase proportionally with the census population size (Nc). However, this prediction has not been borne out in practice: while the range of Nc spans many orders of magnitude, levels of genetic diversity within species fall in a comparatively narrow range. Although theoretical arguments have invoked the increased efficacy of natural selection in larger populations to explain this discrepancy, few direct empirical tests of this hypothesis have been conducted. In this work, we provide a direct test of this hypothesis using population genomic data from a wide range of taxonomically diverse species. To do this, we relied on the fact that the impact of natural selection on linked neutral diversity depends on the local recombinational environment. In regions of relatively low recombination, selected variants affect more neutral sites through linkage, and the resulting correlation between recombination and polymorphism allows a quantitative assessment of the magnitude of the impact of selection on linked neutral diversity. By comparing whole genome polymorphism data and genetic maps using a coalescent modeling framework, we estimate the degree to which natural selection reduces linked neutral diversity for 40 species of obligately sexual eukaryotes. We then show that the magnitude of the impact of natural selection is positively correlated with Nc, based on body size and species range as proxies for census population size. These results demonstrate that natural selection removes more variation at linked neutral sites in species with large Nc than those with small Nc and provides direct empirical evidence that natural selection constrains levels of neutral genetic diversity across many species. This implies that natural selection may provide an explanation for this longstanding paradox of population genetics.

  10. High genetic diversity in the endangered and narrowly distributed amphibian species Leptobrachium leishanense.

    PubMed

    Zhang, Wei; Luo, Zhenhua; Zhao, Mian; Wu, Hua

    2015-09-01

    Threatened species typically have a small or declining population size, which make them highly susceptible to loss of genetic diversity through genetic drift and inbreeding. Genetic diversity determines the evolutionary potential of a species; therefore, maintaining the genetic diversity of threatened species is essential for their conservation. In this study, we assessed the genetic diversity of the adaptive major histocompatibility complex (MHC) genes in an endangered and narrowly distributed amphibian species, Leptobrachium leishanense in Southwest China. We compared the genetic variation of MHC class I genes with that observed in neutral markers (5 microsatellite loci and cytochrome b gene) to elucidate the relative roles of genetic drift and natural selection in shaping the current MHC polymorphism in this species. We found a high level of genetic diversity in this population at both MHC and neutral markers compared with other threatened amphibian species. Historical positive selection was evident in the MHC class I genes. The higher allelic richness in MHC markers compared with that of microsatellite loci suggests that selection rather than genetic drift plays a prominent role in shaping the MHC variation pattern, as drift can affect all the genome in a similar way but selection directly targets MHC genes. Although demographic analysis revealed no recent bottleneck events in L. leishanense, additional population decline will accelerate the dangerous status for this species. We suggest that the conservation management of L. leishanense should concentrate on maximizing the retention of genetic diversity through preventing their continuous population decline. Protecting their living habitats and forbidding illegal hunting are the most important measures for conservation of L. leishanense.

  11. Natural Selection Constrains Neutral Diversity across A Wide Range of Species

    PubMed Central

    Corbett-Detig, Russell B.; Hartl, Daniel L.; Sackton, Timothy B.

    2015-01-01

    The neutral theory of molecular evolution predicts that the amount of neutral polymorphisms within a species will increase proportionally with the census population size (Nc). However, this prediction has not been borne out in practice: while the range of Nc spans many orders of magnitude, levels of genetic diversity within species fall in a comparatively narrow range. Although theoretical arguments have invoked the increased efficacy of natural selection in larger populations to explain this discrepancy, few direct empirical tests of this hypothesis have been conducted. In this work, we provide a direct test of this hypothesis using population genomic data from a wide range of taxonomically diverse species. To do this, we relied on the fact that the impact of natural selection on linked neutral diversity depends on the local recombinational environment. In regions of relatively low recombination, selected variants affect more neutral sites through linkage, and the resulting correlation between recombination and polymorphism allows a quantitative assessment of the magnitude of the impact of selection on linked neutral diversity. By comparing whole genome polymorphism data and genetic maps using a coalescent modeling framework, we estimate the degree to which natural selection reduces linked neutral diversity for 40 species of obligately sexual eukaryotes. We then show that the magnitude of the impact of natural selection is positively correlated with Nc, based on body size and species range as proxies for census population size. These results demonstrate that natural selection removes more variation at linked neutral sites in species with large Nc than those with small Nc and provides direct empirical evidence that natural selection constrains levels of neutral genetic diversity across many species. This implies that natural selection may provide an explanation for this longstanding paradox of population genetics. PMID:25859758

  12. Parallel responses of species and genetic diversity to El Niño Southern Oscillation-induced environmental destruction.

    PubMed

    Cleary, Daniel F R; Fauvelot, Cécile; Genner, Martin J; Menken, Steph B J; Mooers, Arne Ø

    2006-03-01

    Species diversity within communities and genetic diversity within species are two fundamental levels of biodiversity. Positive relationships between species richness and within-species genetic diversity have recently been documented across natural and semi-natural habitat islands, leading Vellend to suggest a novel macro-ecological pattern termed the species-genetic diversity correlation. We tested whether this prediction holds for areas affected by recent habitat disturbance using butterfly communities in east Kalimantan, Indonesia. Here, we show that both strong spatial and temporal correlations exist between species and allelic richness across rainforest habitats affected by El Niño Southern Oscillation-induced disturbance. Coupled with evidence that changes in species richness are a direct result of local extirpation and lower recruitment, these data suggest that forces governing variation at the two levels operate over parallel and short timescales, with implications for biodiversity recovery following disturbance. Remnant communities may be doubly affected, with reductions in species richness being associated with reductions in genetic diversity within remnant species.

  13. Conservation priority of global Galliformes species based on phylogenetic diversity.

    PubMed

    Chen, Youhua

    2014-06-01

    In this study, based on phylogenetic diversity (PD), I develop a conservation strategy for Galliformes species around the world. A cladogram of 197 Galliformes species derived from a previous study was used for calculating PD metrics. Branch length is an important aspect of the phylogenetic information a tree can convey, but 2 traditionally-used metrics, the number of phylogenetic groups to which a taxon belongs (I) and the proportion that each taxon contributes to the total diversity of the group (W), are fully node-based and do not take branch length into account. Therefore, to measure PD more appropriately, I combined a branch-related metric, pendant edge (P), in addition to I and W. A final combined rank for Galliformes species was obtained by summing the ranks of the 3 metrics. My results showed that the 5% top priority species for conserving evolutionary potential were Galloperdix lunulata, Haematortyx sanguiniceps, Margaroperdix madagarensis, Syrmaticus soemmerringii, Coturnix pectoralis, Polyplectron napoleonis, Alectoris melanocephala, Xenoperdix udzungwensis, Afropavo congensis and Syrmaticus reevesii. The current species priority ranking based on pylogenetic diversity and the official International Union for Conservation of Nature (IUCN) ranking of Galliformes species was significantly correlated when considering the 5 categories of IUCN (critical endangered, endangered, vulnerable, near threatened and least concern). This indicated the feasibility of introducing the PD index into the network of IUCN regional Red List assessment. The 5% top priority countries selected using the complementarity principle possessing diversified Galliformes genetic resources were China, Indonesia, Mexico, India, Colombia, Australia, Brazil, Angola, Congo and Japan (in descending order). China, Indonesia, Mexico, Brazil, India and Colombia are consistently selected among the 4 top priority sets of richness, rarity, endemicity and PD. This result indicated that the priority

  14. Unrecognized coral species diversity masks differences in functional ecology.

    PubMed

    Boulay, Jennifer N; Hellberg, Michael E; Cortés, Jorge; Baums, Iliana B

    2014-02-07

    Porites corals are foundation species on Pacific reefs but a confused taxonomy hinders understanding of their ecosystem function and responses to climate change. Here, we show that what has been considered a single species in the eastern tropical Pacific, Porites lobata, includes a morphologically similar yet ecologically distinct species, Porites evermanni. While P. lobata reproduces mainly sexually, P. evermanni dominates in areas where triggerfish prey on bioeroding mussels living within the coral skeleton, thereby generating asexual coral fragments. These fragments proliferate in marginal habitat not colonized by P. lobata. The two Porites species also show a differential bleaching response despite hosting the same dominant symbiont subclade. Thus, hidden diversity within these reef-builders has until now obscured differences in trophic interactions, reproductive dynamics and bleaching susceptibility, indicative of differential responses when confronted with future climate change.

  15. Unrecognized coral species diversity masks differences in functional ecology

    PubMed Central

    Boulay, Jennifer N.; Hellberg, Michael E.; Cortés, Jorge; Baums, Iliana B.

    2014-01-01

    Porites corals are foundation species on Pacific reefs but a confused taxonomy hinders understanding of their ecosystem function and responses to climate change. Here, we show that what has been considered a single species in the eastern tropical Pacific, Porites lobata, includes a morphologically similar yet ecologically distinct species, Porites evermanni. While P. lobata reproduces mainly sexually, P. evermanni dominates in areas where triggerfish prey on bioeroding mussels living within the coral skeleton, thereby generating asexual coral fragments. These fragments proliferate in marginal habitat not colonized by P. lobata. The two Porites species also show a differential bleaching response despite hosting the same dominant symbiont subclade. Thus, hidden diversity within these reef-builders has until now obscured differences in trophic interactions, reproductive dynamics and bleaching susceptibility, indicative of differential responses when confronted with future climate change. PMID:24335977

  16. Diversity and Significance of Mold Species in Norwegian Drinking Water▿

    PubMed Central

    Hageskal, Gunhild; Knutsen, Ann Kristin; Gaustad, Peter; de Hoog, G. Sybren; Skaar, Ida

    2006-01-01

    In order to determine the occurrence, distribution, and significance of mold species in groundwater- and surface water-derived drinking water in Norway, molds isolated from 273 water samples were identified. Samples of raw water, treated water, and water from private homes and hospital installations were analyzed by incubation of 100-ml membrane-filtered samples on dichloran-18% glycerol agar. The total count (number of CFU per 100 ml) of fungal species and the species diversity within each sample were determined. The identification of mold species was based on morphological and molecular methods. In total, 94 mold species belonging to 30 genera were identified. The mycobiota was dominated by species of Penicillium, Trichoderma, and Aspergillus, with some of them occurring throughout the drinking water system. Several of the same species as isolated from water may have the potential to cause allergic reactions or disease in humans. Other species are common contaminants of food and beverages, and some may cause unwanted changes in the taste or smell of water. The present results indicate that the mycobiota of water should be considered when the microbiological safety and quality of drinking water are assessed. In fact, molds in drinking water should possibly be included in the Norwegian water supply and drinking water regulations. PMID:17028226

  17. Sequence diversity, reproductive isolation and species concepts in Saccharomyces.

    PubMed

    Liti, Gianni; Barton, David B H; Louis, Edward J

    2006-10-01

    Using the biological species definition, yeasts of the genus Saccharomyces sensu stricto comprise six species and one natural hybrid. Previous work has shown that reproductive isolation between the species is due primarily to sequence divergence acted upon by the mismatch repair system and not due to major gene differences or chromosomal rearrangements. Sequence divergence through mismatch repair has also been shown to cause partial reproductive isolation among populations within a species. We have surveyed sequence variation in populations of Saccharomyces sensu stricto yeasts and measured meiotic sterility in hybrids. This allows us to determine the divergence necessary to produce the reproductive isolation seen among species. Rather than a sharp transition from fertility to sterility, which may have been expected, we find a smooth monotonic relationship between diversity and reproductive isolation, even as far as the well-accepted designations of S. paradoxus and S. cerevisiae as distinct species. Furthermore, we show that one species of Saccharomyces--S. cariocanus--differs from a population of S. paradoxus by four translocations, but not by sequence. There is molecular evidence of recent introgression from S. cerevisiae into the European population of S. paradoxus, supporting the idea that in nature the boundary between these species is fuzzy.

  18. Foraminifera Species Richness, Abundance, and Diversity Research in Bolinas, California

    NASA Astrophysics Data System (ADS)

    Brunwin, N.; Ingram, Z.; Mendez, M.; Sandoval, K.

    2015-12-01

    Foraminifera are abundant, diverse, respond rapidly to environmental change, and are present in all marine and estuarine environments, making them important indicator species. A survey of occurrence and distribution of foraminifera in the Bolinas Lagoon, Marin County, California was carried out by Hedman in 1975, but no study since has focused on foraminiferal composition within this important ecosystem. In July 2015, the Careers in Science (CiS) Intern Program collected samples at 12 sites previously examined in the 1975 study. Thirty-six samples were collected from the upper few centimeters of sediment from a variety of intertidal and subtidal environments within the lagoon. Foraminifera from each sample were isolated, identified and species richness, abundance and diversity quantified. Furthermore, comparisons of faunal composition represented in our recent collection and that of Hedman's 1975 report are made.

  19. Phylogeny and Species Diversity of Gulf of California Oysters

    EPA Pesticide Factsheets

    Dataset of DNA sequence data from two mitochondrial loci (COI and 16S) used to infer the phylogeny of oysters in the genus Ostrea along the Pacific coast of North America.This dataset is associated with the following publication:Raith, M., D. Zacherl, E. Pilgrim , and D. Eernisse. Phylogeny and species diversity of Gulf of California oysters (Ostreidae) inferred from mitochondrial DNA. American Malacological Bulletin. American Malacological Society, Arlington, VA, USA, 33(2): 263-283, (2016).

  20. Life history affects how species experience succession in pen shell metacommunities.

    PubMed

    Munguia, Pablo

    2014-04-01

    In nature, very few species are common and broadly distributed. Most species are rare and occupy few sites; this pattern is ubiquitous across habitats and taxa. In spatially structured communities (metacommunities), regional distribution and local abundance may change as the relative effects of within-habitat processes (e.g., species interactions) and among-habitat processes (e.g., dispersal) may vary through succession. A field experiment with the marine benthic inhabitants of pen shells (Atrina rigida) tested how common and rare species respond to succession and metacommunity size. I followed community development through time and partitioned species into sessile and motile based on their natural history. Rare species drive diversity patterns and are influenced by metacommunity size: there are strong abundance-distribution differences between common and rare species in large metacommunities, but motile species show lower rates of change than sessile species. In small metacommunities both common and rare species have similar changes through time; the dichotomous distinction of common and rare species is not present. Edge effects in metacommunities affect species' changes in distribution and abundance. In large metacommunities diversity is higher in edge habitats relative to small metacommunities during early succession. However, edge effects benefit motile species over time in small metacommunities showing a rapid increase in diversity. Individual mobility is sensitive to regional community size and allows individuals to sort among different communities. In contrast, sessile species do not show this edge effect. Metacommunity theory is a useful framework for understanding spatially structured communities, but the natural history of coexisting species cannot be ignored.

  1. Association of Host and Microbial Species Diversity across Spatial Scales in Desert Rodent Communities

    PubMed Central

    Messika, Irit; Cohen, Carmit; Toh, Evelyn; Munro, Daniel; Dong, Qunfeng; Fuqua, Clay; Clay, Keith; Hawlena, Hadas

    2014-01-01

    Relationships between host and microbial diversity have important ecological and applied implications. Theory predicts that these relationships will depend on the spatio-temporal scale of the analysis and the niche breadth of the organisms in question, but representative data on host-microbial community assemblage in nature is lacking. We employed a natural gradient of rodent species richness and quantified bacterial communities in rodent blood at several hierarchical spatial scales to test the hypothesis that associations between host and microbial species diversity will be positive in communities dominated by organisms with broad niches sampled at large scales. Following pyrosequencing of rodent blood samples, bacterial communities were found to be comprised primarily of broad niche lineages. These communities exhibited positive correlations between host diversity, microbial diversity and the likelihood for rare pathogens at the regional scale but not at finer scales. These findings demonstrate how microbial diversity is affected by host diversity at different spatial scales and suggest that the relationships between host diversity and overall disease risk are not always negative, as the dilution hypothesis predicts. PMID:25343259

  2. Association of host and microbial species diversity across spatial scales in desert rodent communities.

    PubMed

    Gavish, Yoni; Kedem, Hadar; Messika, Irit; Cohen, Carmit; Toh, Evelyn; Munro, Daniel; Dong, Qunfeng; Fuqua, Clay; Clay, Keith; Hawlena, Hadas

    2014-01-01

    Relationships between host and microbial diversity have important ecological and applied implications. Theory predicts that these relationships will depend on the spatio-temporal scale of the analysis and the niche breadth of the organisms in question, but representative data on host-microbial community assemblage in nature is lacking. We employed a natural gradient of rodent species richness and quantified bacterial communities in rodent blood at several hierarchical spatial scales to test the hypothesis that associations between host and microbial species diversity will be positive in communities dominated by organisms with broad niches sampled at large scales. Following pyrosequencing of rodent blood samples, bacterial communities were found to be comprised primarily of broad niche lineages. These communities exhibited positive correlations between host diversity, microbial diversity and the likelihood for rare pathogens at the regional scale but not at finer scales. These findings demonstrate how microbial diversity is affected by host diversity at different spatial scales and suggest that the relationships between host diversity and overall disease risk are not always negative, as the dilution hypothesis predicts.

  3. Exotic plant species invade hot spots of native plant diversity

    USGS Publications Warehouse

    Stohlgren, T.J.; Binkley, D.; Chong, G.W.; Kalkhan, M.A.; Schell, L.D.; Bull, K.A.; Otsuki, Y.; Newman, G.; Bashkin, M.; Yowhan, S.

    1999-01-01

    Some theories and experimental studies suggest that areas of low plant species richness may be invaded more easily than areas of high plant species richness. We gathered nested-scale vegetation data on plant species richness, foliar cover, and frequency from 200 1-m2 subplots (20 1000-m2 modified-Whittaker plots) in the Colorado Rockies (USA), and 160 1-m2 subplots (16 1000-m2 plots) in the Central Grasslands in Colorado, Wyoming, South Dakota, and Minnesota (USA) to test the generality of this paradigm. At the 1-m2 scale, the paradigm was supported in four prairie types in the Central Grasslands, where exotic species richness declined with increasing plant species richness and cover. At the 1-m2 scale, five forest and meadow vegetation types in the Colorado Rockies contradicted the paradigm; exotic species richness increased with native-plant species richness and foliar cover. At the 1000-m2 plot scale (among vegetation types), 83% of the variance in exotic species richness in the Central Grasslands was explained by the total percentage of nitrogen in the soil and the cover of native plant species. In the Colorado Rockies, 69% of the variance in exotic species richness in 1000-m2 plots was explained by the number of native plant species and the total percentage of soil carbon. At landscape and biome scales, exotic species primarily invaded areas of high species richness in the four Central Grasslands sites and in the five Colorado Rockies vegetation types. For the nine vegetation types in both biomes, exotic species cover was positively correlated with mean foliar cover, mean soil percentage N, and the total number of exotic species. These patterns of invasibility depend on spatial scale, biome and vegetation type, spatial autocorrelation effects, availability of resources, and species-specific responses to grazing and other disturbances. We conclude that: (1) sites high in herbaceous foliar cover and soil fertility, and hot spots of plant diversity (and

  4. Effects of Previous Land-Use on Plant Species Composition and Diversity in Mediterranean Forests

    PubMed Central

    Kouba, Yacine; Martínez-García, Felipe; de Frutos, Ángel; Alados, Concepción L.

    2015-01-01

    At some point in their history, most forests in the Mediterranean Basin have been subjected to intensive management or converted to agriculture land. Knowing how forest plant communities recovered after the abandonment of forest-management or agricultural practices (including livestock grazing) provides a basis for investigating how previous land management have affected plant species diversity and composition in forest ecosystems. Our study investigated the consequences of historical “land management” practices on present-day Mediterranean forests by comparing species assemblages and the diversity of (i) all plant species and (ii) each ecological group defined by species’ habitat preferences and successional status (i.e., early-, mid-, and late-successional species). We compared forest stands that differed both in land-use history and in successional stage. In addition, we evaluated the value of those stands for biodiversity conservation. The study revealed significant compositional differentiation among stands that was due to among-stand variations in the diversity (namely, species richness and evenness) of early-, intermediate-, and late-successional species. Historical land management has led to an increase in compositional divergences among forest stands and the loss of late-successional forest species. PMID:26397707

  5. Factors affecting plant diversity during post-fire recovery and succession of mediterranean-climate shrublands in California, USA

    USGS Publications Warehouse

    Keeley, J.E.; Fotheringham, C.J.; Baer-Keeley, M.

    2005-01-01

    Plant community diversity, measured as species richness, is typically highest in the early post-fire years in California shrublands. However, this generalization is overly simplistic and the present study demonstrates that diversity is determined by a complex of temporal and spatial effects. Ninety sites distributed across southern California were studied for 5 years after a series of fires. Characteristics of the disturbance event, in this case fire severity, can alter post-fire diversity, both decreasing and increasing diversity, depending on life form. Spatial variability in resource availability is an important factor explaining patterns of diversity, and there is a complex interaction between landscape features and life form. Temporal variability in resource availability affects diversity, and the diversity peak in the immediate post-fire year (or two) appears to be driven by factors different from subsequent diversity peaks. Early post-fire diversity is influenced by life-history specialization, illustrated by species that spend the bulk of their life cycle as a dormant seed bank, which is then triggered to germinate by fire. Resource fluctuations, precipitation in particular, may be associated with subsequent post-fire diversity peaks. These later peaks in diversity comprise a flora that is compositionally different from the immediate post-fire flora, and their presence may be due to mass effects from population expansion of local populations in adjacent burned areas. ?? 2005 Blackwell Publishing Ltd.

  6. Reassessment of Species Diversity of the Subfamily Denticollinae (Coleoptera: Elateridae) through DNA Barcoding

    PubMed Central

    Lee, Seunghwan; Park, In Gyun; Park, Haechul

    2016-01-01

    The subfamily Denticollinae is a taxonomically diverse group in the family Elateridae. Denticollinae includes many morphologically similar species and crop pests, as well as many undescribed species at each local fauna. To construct a rapid and reliable identification system for this subfamily, the effectiveness of molecular species identification was assessed based on 421 cytochrome c oxidase subunit I (COI) sequences of 84 morphologically identified species. Among the 84 morphospecies, molecular species identification of 60 species (71.4%) was consistent with their morphological identifications. Six cryptic and/or pseudocryptic species with large genetic divergence (>5%) were confirmed by their sympatric or allopatric distributions. However, 18 species, including a subspecies, had ambiguous genetic distances and shared overlapping intra- and interspecific genetic distances (range: 2.12%–3.67%) suggesting incomplete lineage sorting, introgression of mitochondrial genome, or affection by endosymbionts, such as Wolbachia infection, between species and simple genetic variation within species. In this study, we propose a conservative threshold of 3.6% for convenient molecular operational taxonomic unit (MOTU) identification in the subfamily Denticollinae based on the results of pairwise genetic distances analyses using neighbor-joining, mothur, Automatic Barcode Gap Discovery analysis, and tree-based species delimitation by Poisson Tree Processes analysis. Using the 3.6% threshold, we identified 87 MOTUs and found 8 MOTUs in the interval between 2.5% to 3.5%. Evaluation of MOTUs identified in this range requires integrative species delimitation, including review of morphological and ecological differences as well as sensitive genetic markers. From this study, we confirmed that COI sequence is useful for reassessing species diversity for polymorphic and polytypic species occurring in sympatric and allopatric distributions, and for a single species having an

  7. Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China

    NASA Astrophysics Data System (ADS)

    Ali, Arshad; Yan, En-Rong; Chen, Han Y. H.; Chang, Scott X.; Zhao, Yan-Tao; Yang, Xiao-Dong; Xu, Ming-Shan

    2016-08-01

    Stand structural diversity, typically characterized by variances in tree diameter at breast height (DBH) and total height, plays a critical role in influencing aboveground carbon (C) storage. However, few studies have considered the multivariate relationships of aboveground C storage with stand age, stand structural diversity, and species diversity in natural forests. In this study, aboveground C storage, stand age, tree species, DBH and height diversity indices, were determined across 80 subtropical forest plots in Eastern China. We employed structural equation modelling (SEM) to test for the direct and indirect effects of stand structural diversity, species diversity, and stand age on aboveground C storage. The three final SEMs with different directions for the path between species diversity and stand structural diversity had a similar goodness of fit to the data. They accounted for 82 % of the variation in aboveground C storage, 55-59 % of the variation in stand structural diversity, and 0.1 to 9 % of the variation in species diversity. Stand age demonstrated strong positive total effects, including a positive direct effect (β = 0.41), and a positive indirect effect via stand structural diversity (β = 0.41) on aboveground C storage. Stand structural diversity had a positive direct effect on aboveground C storage (β = 0.56), whereas there was little total effect of species diversity as it had a negative direct association with, but had a positive indirect effect, via stand structural diversity, on aboveground C storage. The negligible total effect of species diversity on aboveground C storage in the forests under study may have been attributable to competitive exclusion with high aboveground biomass, or a historical logging preference for productive species. Our analyses suggested that stand structural diversity was a major determinant for variations in aboveground C storage in the secondary subtropical forests in Eastern China. Hence, maintaining tree DBH and

  8. Carbon storage potential by four macrophytes as affected by planting diversity in a created wetland.

    PubMed

    Means, Mary M; Ahn, Changwoo; Korol, Alicia R; Williams, Lisa D

    2016-01-01

    Wetland creation has become a commonplace method for mitigating the loss of natural wetlands. Often mitigation projects fail to restore ecosystem services of the impacted natural wetlands. One of the key ecosystem services of newly created wetlands is carbon accumulation/sequestration, but little is known about how planting diversity (PD) affects the ability of herbaceous wetland plants to store carbon in newly created wetlands. Most mitigation projects involve a planting regime, but PD, which may be critical in establishing biologically diverse and ecologically functioning wetlands, is seldom required. Using a set of 34 mesocosms (∼1 m(2) each), we investigated the effects of planting diversity on carbon storage potential of four native wetland plant species that are commonly planted in created mitigation wetlands in Virginia - Carex vulpinoidea, Eleocharis obtusa, Juncus effusus, and Mimulus ringens. The plants were grown under the four distinctive PD treatments [i.e., monoculture (PD 1) through four different species mixture (PD 4)]. Plant biomass was harvested after two growing seasons and analyzed for tissue carbon content. Competition values (CV) were calculated to understand how the PD treatment affected the competitive ability of plants relative to their biomass production and thus carbon storage potentials. Aboveground biomass ranged from 988 g/m(2) - 1515 g/m(2), being greatest in monocultures, but only when compared to the most diverse mixture (p = 0.021). However, carbon storage potential estimates per mesocosm ranged between 344 g C/m(2) in the most diverse mesocosms (PD 4) to 610 g C/m(2) in monoculture ones with no significant difference (p = 0.089). CV of E. obtusa and C. vulpinoidea showed a declining trend when grown in the most diverse mixtures but J. effusus and M. ringens displayed no difference across the PD gradient (p = 0.910). In monocultures, both M. ringens, and J. effusus appeared to store carbon as biomass more

  9. SPECIES COMPOSITION AND DIVERSITY AS REGULATORS OF TEMPORAL VARIABILITY IN BIOMASS PRODUCTION OF TALLGRASS PRAIRIE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species diversity is thought to stabilize functioning of plant communities, although diversity-stability studies have focused on species richness to the neglect of the second component of diversity, species evenness (equitability with which biomass or abundances are distributed among species). An a...

  10. Salivary Microbiome Diversity in Caries-Free and Caries-Affected Children

    PubMed Central

    Jiang, Shan; Gao, Xiaoli; Jin, Lijian; Lo, Edward C. M.

    2016-01-01

    Dental caries (tooth decay) is an infectious disease. Its etiology is not fully understood from the microbiological perspective. This study characterizes the diversity of microbial flora in the saliva of children with and without dental caries. Children (3–4 years old) with caries (n = 20) and without caries (n = 20) were recruited. Unstimulated saliva (2 mL) was collected from each child and the total microbial genomic DNA was extracted. DNA amplicons of the V3-V4 hypervariable region of the bacterial 16S rRNA gene were generated and subjected to Illumina Miseq sequencing. A total of 17 phyla, 26 classes, 40 orders, 80 families, 151 genera, and 310 bacterial species were represented in the saliva samples. There was no significant difference in the microbiome diversity between caries-affected and caries-free children (p > 0.05). The relative abundance of several species (Rothia dentocariosa, Actinomyces graevenitzii, Veillonella sp. oral taxon 780, Prevotella salivae, and Streptococcus mutans) was higher in the caries-affected group than in the caries-free group (p < 0.05). Fusobacterium periodonticum and Leptotrichia sp. oral clone FP036 were more abundant in caries-free children than in caries-affected children (p < 0.05). The salivary microbiome profiles of caries-free and caries-affected children were similar. Salivary counts of certain bacteria such as R. dentocariosa and F. periodonticum may be useful for screening/assessing children’s risk of developing caries. PMID:27898021

  11. Diversity patterns in Iberian Calathus (Coleoptera, Carabidae: Harpalinae): species turnover shows a story overlooked by species richness.

    PubMed

    Gañán, Israel; Baselga, Andrés; Novoa, Francisco

    2008-12-01

    We assessed the relationships between diversity patterns of Iberian Calathus and current environmental gradients or broad-scale spatial constraints, using 50-km grid cells as sampling units. We assessed the completeness of the inventories using nonparametric estimators to avoid spurious results based on sampling biases. We modeled species richness and beta diversity, using spatial position, and 23 topographical, climatic, and geological variables as predictors in regression and constrained analysis of principal coordinates modeling. Geographical situation does not seem to affect Calathus species richness, because no spatial pattern was detected. The environmental variables only explained 23% of the variation in richness. Spatial and environmental predictors explained a large part of the variation in species composition (58%). The fraction shared by both groups of variables was relatively large, but the pure effect of each model was still important. Our results show that it is necessary to assess the completeness of inventories to avoid drawing false conclusions. Also, Iberian Calathus represent a clear example of the need for combined analyses of species richness and beta diversity patterns, because the lack of patterns in the former does not imply the invariance of biotic communities.

  12. Resource heterogeneity, soil fertility, and species diversity: effects of clonal species on plant communities.

    PubMed

    Eilts, J Alexander; Mittelbach, Gary G; Reynolds, Heather L; Gross, Katherine L

    2011-05-01

    Spatial heterogeneity in soil resources is widely thought to promote plant species coexistence, and this mechanism figures prominently in resource-ratio models of competition. However, most experimental studies have found that nutrient enhancements depress diversity regardless of whether nutrients are uniformly or heterogeneously applied. This mismatch between theory and empirical pattern is potentially due to an interaction between plant size and the scale of resource heterogeneity. Clonal plants that spread vegetatively via rhizomes or stolons can grow large and may integrate across resource patches, thus reducing the positive effect of small-scale resource heterogeneity on plant species richness. Many rhizomatous clonal species respond strongly to increased soil fertility, and they have been hypothesized to drive the descending arm of the hump-shaped productivity-diversity relationship in grasslands. We tested whether clonals reduce species richness in a grassland community by manipulating nutrient heterogeneity, soil fertility, and the presence of rhizomatous clonal species in a 6-year field experiment. We found strong and consistent negative effects of clonals on species richness. These effects were greatest at high fertility and when soil resources were applied at a scale at which rhizomatous clonals could integrate across resource patches. Thus, we find support for the hypothesis that plant size and resource heterogeneity interact to determine species diversity.

  13. Transposable elements and small RNAs: Genomic fuel for species diversity

    PubMed Central

    Hoffmann, Federico G; McGuire, Liam P; Counterman, Brian A; Ray, David A

    2015-01-01

    While transposable elements (TE) have long been suspected of involvement in species diversification, identifying specific roles has been difficult. We recently found evidence of TE-derived regulatory RNAs in a species-rich family of bats. The TE-derived small RNAs are temporally associated with the burst of species diversification, suggesting that they may have been involved in the processes that led to the diversification. In this commentary, we expand on the ideas that were briefly touched upon in that manuscript. Specifically, we suggest avenues of research that may help to identify the roles that TEs may play in perturbing regulatory pathways. Such research endeavors may serve to inform evolutionary biologists of the ways that TEs have influenced the genomic and taxonomic diversity around us. PMID:26904375

  14. Transposable elements and small RNAs: Genomic fuel for species diversity.

    PubMed

    Hoffmann, Federico G; McGuire, Liam P; Counterman, Brian A; Ray, David A

    2015-01-01

    While transposable elements (TE) have long been suspected of involvement in species diversification, identifying specific roles has been difficult. We recently found evidence of TE-derived regulatory RNAs in a species-rich family of bats. The TE-derived small RNAs are temporally associated with the burst of species diversification, suggesting that they may have been involved in the processes that led to the diversification. In this commentary, we expand on the ideas that were briefly touched upon in that manuscript. Specifically, we suggest avenues of research that may help to identify the roles that TEs may play in perturbing regulatory pathways. Such research endeavors may serve to inform evolutionary biologists of the ways that TEs have influenced the genomic and taxonomic diversity around us.

  15. Discovering the recondite secondary metabolome spectrum of Salinispora species: a study of inter-species diversity.

    PubMed

    Bose, Utpal; Hewavitharana, Amitha K; Vidgen, Miranda E; Ng, Yi Kai; Shaw, P Nicholas; Fuerst, John A; Hodson, Mark P

    2014-01-01

    Patterns of inter-species secondary metabolite production by bacteria can provide valuable information relating to species ecology and evolution. The complex nature of this chemical diversity has previously been probed via directed analyses of a small number of compounds, identified through targeted assays rather than more comprehensive biochemical profiling approaches such as metabolomics. Insights into ecological and evolutionary relationships within bacterial genera can be derived through comparative analysis of broader secondary metabolite patterns, and this can also eventually assist biodiscovery search strategies for new natural products. Here, we investigated the species-level chemical diversity of the two marine actinobacterial species Salinispora arenicola and Salinispora pacifica, isolated from sponges distributed across the Great Barrier Reef (GBR), via their secondary metabolite profiles using LC-MS-based metabolomics. The chemical profiles of these two species were obtained by UHPLC-QToF-MS based metabolic profiling. The resultant data were interrogated using multivariate data analysis methods to compare their (bio)chemical profiles. We found a high level of inter-species diversity in strains from these two bacterial species. We also found rifamycins and saliniketals were produced exclusively by S. arenicola species, as the main secondary metabolites differentiating the two species. Furthermore, the discovery of 57 candidate compounds greatly increases the small number of secondary metabolites previously known to be produced by these species. In addition, we report the production of rifamycin O and W, a key group of ansamycin compounds, in S. arenicola for the first time. Species of the marine actinobacteria harbour a much wider spectrum of secondary metabolites than suspected, and this knowledge may prove a rich field for biodiscovery as well as a database for understanding relationships between speciation, evolution and chemical ecology.

  16. Discovering the Recondite Secondary Metabolome Spectrum of Salinispora Species: A Study of Inter-Species Diversity

    PubMed Central

    Bose, Utpal; Hewavitharana, Amitha K.; Vidgen, Miranda E.; Ng, Yi Kai; Shaw, P. Nicholas; Fuerst, John A.; Hodson, Mark P.

    2014-01-01

    Patterns of inter-species secondary metabolite production by bacteria can provide valuable information relating to species ecology and evolution. The complex nature of this chemical diversity has previously been probed via directed analyses of a small number of compounds, identified through targeted assays rather than more comprehensive biochemical profiling approaches such as metabolomics. Insights into ecological and evolutionary relationships within bacterial genera can be derived through comparative analysis of broader secondary metabolite patterns, and this can also eventually assist biodiscovery search strategies for new natural products. Here, we investigated the species-level chemical diversity of the two marine actinobacterial species Salinispora arenicola and Salinispora pacifica, isolated from sponges distributed across the Great Barrier Reef (GBR), via their secondary metabolite profiles using LC-MS-based metabolomics. The chemical profiles of these two species were obtained by UHPLC-QToF-MS based metabolic profiling. The resultant data were interrogated using multivariate data analysis methods to compare their (bio)chemical profiles. We found a high level of inter-species diversity in strains from these two bacterial species. We also found rifamycins and saliniketals were produced exclusively by S. arenicola species, as the main secondary metabolites differentiating the two species. Furthermore, the discovery of 57 candidate compounds greatly increases the small number of secondary metabolites previously known to be produced by these species. In addition, we report the production of rifamycin O and W, a key group of ansamycin compounds, in S. arenicola for the first time. Species of the marine actinobacteria harbour a much wider spectrum of secondary metabolites than suspected, and this knowledge may prove a rich field for biodiscovery as well as a database for understanding relationships between speciation, evolution and chemical ecology. PMID

  17. Host plant species affects virulence in monarch butterfly parasites.

    PubMed

    de Roode, Jacobus C; Pedersen, Amy B; Hunter, Mark D; Altizer, Sonia

    2008-01-01

    1. Studies have considered how intrinsic host and parasite properties determine parasite virulence, but have largely ignored the role of extrinsic ecological factors in its expression. 2. We studied how parasite genotype and host plant species interact to determine virulence of the protozoan parasite Ophryocystis elektroscirrha (McLaughlin & Myers 1970) in the monarch butterfly Danaus plexippus L. We infected monarch larvae with one of four parasite genotypes and reared them on two milkweed species that differed in their levels of cardenolides: toxic chemicals involved in predator defence. 3. Parasite infection, replication and virulence were affected strongly by host plant species. While uninfected monarchs lived equally long on both plant species, infected monarchs suffered a greater reduction in their life spans (55% vs. 30%) on the low-cardenolide vs. the high-cardenolide host plant. These life span differences resulted from different levels of parasite replication in monarchs reared on the two plant species. 4. The virulence rank order of parasite genotypes was unaffected by host plant species, suggesting that host plant species affected parasite genotypes similarly, rather than through complex plant species-parasite genotype interactions. 5. Our results demonstrate that host ecology importantly affects parasite virulence, with implications for host-parasite dynamics in natural populations.

  18. Soft Coral Sarcophyton (Cnidaria: Anthozoa: Octocorallia) Species Diversity and Chemotypes

    PubMed Central

    Aratake, Satoe; Tomura, Tomohiko; Saitoh, Seikoh; Yokokura, Ryouma; Kawanishi, Yuichi; Shinjo, Ryuichi; Reimer, James Davis; Tanaka, Junichi; Maekawa, Hideaki

    2012-01-01

    Research on the soft coral genus Sarcophyton extends over a wide range of fields, including marine natural products and the isolation of a number of cembranoid diterpenes. However, it is still unknown how soft corals produce this diverse array of metabolites, and the relationship between soft coral diversity and cembranoid diterpene production is not clear. In order to understand this relationship, we examined Sarcophyton specimens from Okinawa, Japan, by utilizing three methods: morphological examination of sclerites, chemotype identification, and phylogenetic examination of both Sarcophyton (utilizing mitochondrial protein-coding genes MutS homolog: msh1) and their endosymbiotic Symbiodinium spp. (utilizing nuclear internal transcribed spacer of ribosomal DNA: ITS- rDNA). Chemotypes, molecular phylogenetic clades, and sclerites of Sarcophyton trocheliophorum specimens formed a clear and distinct group, but the relationships between chemotypes, molecular phylogenetic clade types and sclerites of the most common species, Sarcophyton glaucum, was not clear. S. glaucum was divided into four clades. A characteristic chemotype was observed within one phylogenetic clade of S. glaucum. Identities of symbiotic algae Symbiodinium spp. had no apparent relation to chemotypes of Sarcophyton spp. This study demonstrates that the complex results observed for S. glaucum are due to the incomplete and complex taxonomy of this species group. Our novel method of identification should help contribute to classification and taxonomic reassessment of this diverse soft coral genus. PMID:22272344

  19. An invader differentially affects leaf physiology of two natives across a gradient in diversity.

    PubMed

    Kittelson, Pamela; Maron, John; Marler, Marilyn

    2008-05-01

    Little is known about how exotics influence the ecophysiology of co-occurring native plants or how invader impact on plant physiology may be mediated by community diversity or resource levels. We measured the effect of the widespread invasive forb spotted knapweed (Centaurea maculosa) on leaf traits (leaf dry matter content, specific leaf area, leaf nitrogen percentage, leaf C:N ratios, and delta13C as a proxy for water use efficiency) of two co-occurring native perennial grassland species, Monarda fistulosa (bee balm) and Koeleria macrantha (Junegrass). The impact of spotted knapweed was assessed across plots that varied in functional diversity and that either experienced ambient rainfall or received supplemental water. Impact was determined by comparing leaf traits between identical knapweed-invaded and noninvaded assemblages. Virtually all M. fistulosa leaf traits were affected by spotted knapweed. Knapweed impact, however, did not scale with its abundance; the impact of knapweed on M. fistulosa was similar across heavily invaded low-diversity assemblages and lightly invaded high-diversity assemblages. In uninvaded assemblages, M. fistulosa delta13C, leaf nitrogen, and C:N ratios were unaffected by native functional group richness, whereas leaf dry matter content significantly increased and specific leaf area significantly decreased across the diversity gradient. The effects of spotted knapweed on K. macrantha were weak; instead native functional group richness strongly affected K. macrantha leaf C:N ratio, delta13C, and specific leaf area, but not leaf dry matter content. Leaf traits for both species changed in response to spotted knapweed or functional richness, and in a manner that may promote slower biomass accumulation and efficient conservation of resources. Taken together, our results show that an invader can alter native plant physiology, but that these effects are not a simple function of how many invaders exist in the community.

  20. Historical habitat connectivity affects current genetic structure in a grassland species.

    PubMed

    Münzbergová, Z; Cousins, S A O; Herben, T; Plačková, I; Mildén, M; Ehrlén, J

    2013-01-01

    Many recent studies have explored the effects of present and past landscape structure on species distribution and diversity. However, we know little about the effects of past landscape structure on distribution of genetic diversity within and between populations of a single species. Here we describe the relationship between present and past landscape structure (landscape connectivity and habitat size estimated from historical maps) and current genetic structure in a perennial herb, Succisa pratensis. We used allozymes as co-dominant markers to estimate genetic diversity and deviation from Hardy-Weinberg equilibrium in 31 populations distributed within a 5 km(2) agricultural landscape. The results showed that current genetic diversity of populations was related to habitat suitability, habitat age, habitat size and habitat connectivity in the past. The effects of habitat age and past connectivity on genetic diversity were in most cases also significant after taking the current landscape structure into account. Moreover, current genetic similarity between populations was affected by past connectivity after accounting for current landscape structure. In both cases, the oldest time layer (1850) was the most informative. Most populations showed heterozygote excess, indicating disequilibrium due to recent gene flow or selection against homozygotes. These results suggest that habitat age and past connectivity are important determinants of distribution of genetic diversity between populations at a scale of a few kilometres. Landscape history may significantly contribute to our understanding of distribution of current genetic structure within species and the genetic structure may be used to better understand landscape history, even at a small scale.

  1. Ex situ cultivation affects genetic structure and diversity in arable plants.

    PubMed

    Brütting, C; Hensen, I; Wesche, K

    2013-05-01

    Worldwide, botanical gardens cultivate around 80,000 taxa, corresponding to approximately one-quarter of all vascular plants. Most cultivated taxa are, however, held in a small number of collections, and mostly only in small populations. Lack of genetic exchange and stochastic processes in small populations make them susceptible to detrimental genetic effects, which should be most severe in annual species, as sowing cycles are often short. In order to assess whether ex situ cultivation affects genetic diversity of annuals, five annual arable species with similar breeding systems were assessed with 42 in situ populations being compared to 20 ex situ populations using a random amplified polymorphic DNA (RAPD) analysis approach. Population sizes tended to be lower under ex situ cultivation and levels of genetic diversity also tended to be lower in four of the five species, with differences being significant in only two. Ex situ populations showed incomplete representation of alleles found in the wild. The duration of cultivation did not indicate any effect on genetic diversity. This implies that cultivation strategies resulted in different genetic structures in the garden populations. Although not unequivocally pronounced, differences nonetheless imply that conservation strategies in the involved gardens may need improvement. One option is cold storage of seeds, a practice that is not currently followed in the studied ex situ collections. This may reflect that the respective gardens focus on displaying living plant populations.

  2. Pollinator diversity affects plant reproduction and recruitment: the tradeoffs of generalization.

    PubMed

    Gómez, José M; Bosch, Jordi; Perfectti, Francisco; Fernández, Juande; Abdelaziz, Mohamed

    2007-09-01

    One outstanding and unsolved challenge in ecology and conservation biology is to understand how pollinator diversity affects plant performance. Here, we provide evidence of the functional role of pollination diversity in a plant species, Erysimum mediohispanicum (Brassicaceae). Pollinator abundance, richness and diversity as well as plant reproduction and recruitment were determined in eight plant populations. We found that E. mediohispanicum was generalized both at the regional and local (population) scale, since its flowers were visited by more than 100 species of insects with very different morphology, size and behaviour. However, populations differed in the degree of generalization. Generalization correlated with pollinator abundance and plant population size, but not with habitat, ungulate damage intensity, altitude or spatial location. More importantly, the degree of generalization had significant consequences for plant reproduction and recruitment. Plants from populations with intermediate generalization produced more seeds than plants from populations with low or high degrees of generalization. These differences were not the result of differences in number of flowers produced per plant. In addition, seedling emergence in a common garden was highest in plants from populations with intermediate degree of generalization. This outcome suggests the existence of an optimal level of generalizations even for generalized plant species.

  3. Simple sequence repeat diversity in diploid and tetraploid Coffea species.

    PubMed

    Moncada, Pilar; McCouch, Susan

    2004-06-01

    Thirty-four fluorescently labeled microsatellite markers were used to assess genetic diversity in a set of 30 Coffea accessions from the CENICAFE germplasm bank in Colombia. The plant material included one sample per accession of seven East African accessions representing five diploid species and 23 wild and cultivated tetraploid accessions of Coffea arabica from Africa, Indonesia, and South America. More allelic diversity was detected among the five diploid species than among the 23 tetraploid genotypes. The diploid species averaged 3.6 alleles/locus and had an average polymorphism information content (PIC) value of 0.6, whereas the wild tetraploids averaged 2.5 alleles/locus and had an average PIC value of 0.3 and the cultivated tetraploids (C. arabica cultivars) averaged 1.9 alleles/locus and had an average PIC value of 0.22. Fifty-five percent of the alleles found in the wild tetraploids were not shared with cultivated C. arabica genotypes, supporting the idea that the wild tetraploid ancestors from Ethiopia could be used productively as a source of novel genetic variation to expand the gene pool of elite C. arabica germplasm.

  4. Environmental diversity as a surrogate for species representation.

    PubMed

    Beier, Paul; de Albuquerque, Fábio Suzart

    2015-10-01

    Because many species have not been described and most species ranges have not been mapped, conservation planners often use surrogates for conservation planning, but evidence for surrogate effectiveness is weak. Surrogates are well-mapped features such as soil types, landforms, occurrences of an easily observed taxon (discrete surrogates), and well-mapped environmental conditions (continuous surrogate). In the context of reserve selection, the idea is that a set of sites selected to span diversity in the surrogate will efficiently represent most species. Environmental diversity (ED) is a rarely used surrogate that selects sites to efficiently span multivariate ordination space. Because it selects across continuous environmental space, ED should perform better than discrete surrogates (which necessarily ignore within-bin and between-bin heterogeneity). Despite this theoretical advantage, ED appears to have performed poorly in previous tests of its ability to identify 50 × 50 km cells that represented vertebrates in Western Europe. Using an improved implementation of ED, we retested ED on Western European birds, mammals, reptiles, amphibians, and combined terrestrial vertebrates. We also tested ED on data sets for plants of Zimbabwe, birds of Spain, and birds of Arizona (United States). Sites selected using ED represented European mammals no better than randomly selected cells, but they represented species in the other 7 data sets with 20% to 84% effectiveness. This far exceeds the performance in previous tests of ED, and exceeds the performance of most discrete surrogates. We believe ED performed poorly in previous tests because those tests considered only a few candidate explanatory variables and used suboptimal forms of ED's selection algorithm. We suggest future work on ED focus on analyses at finer grain sizes more relevant to conservation decisions, explore the effect of selecting the explanatory variables most associated with species turnover, and investigate

  5. Habitats as Complex Odour Environments: How Does Plant Diversity Affect Herbivore and Parasitoid Orientation?

    PubMed Central

    Wäschke, Nicole; Hardge, Kristin; Hancock, Christine; Hilker, Monika; Obermaier, Elisabeth; Meiners, Torsten

    2014-01-01

    Plant diversity is known to affect success of host location by pest insects, but its effect on olfactory orientation of non-pest insect species has hardly been addressed. First, we tested in laboratory experiments the hypothesis that non-host plants, which increase odour complexity in habitats, affect the host location ability of herbivores and parasitoids. Furthermore, we recorded field data of plant diversity in addition to herbivore and parasitoid abundance at 77 grassland sites in three different regions in Germany in order to elucidate whether our laboratory results reflect the field situation. As a model system we used the herb Plantago lanceolata, the herbivorous weevil Mecinus pascuorum, and its larval parasitoid Mesopolobus incultus. The laboratory bioassays revealed that both the herbivorous weevil and its larval parasitoid can locate their host plant and host via olfactory cues even in the presence of non-host odour. In a newly established two-circle olfactometer, the weeviĺs capability to detect host plant odour was not affected by odours from non-host plants. However, addition of non-host plant odours to host plant odour enhanced the weeviĺs foraging activity. The parasitoid was attracted by a combination of host plant and host volatiles in both the absence and presence of non-host plant volatiles in a Y-tube olfactometer. In dual choice tests the parasitoid preferred the blend of host plant and host volatiles over its combination with non-host plant volatiles. In the field, no indication was found that high plant diversity disturbs host (plant) location by the weevil and its parasitoid. In contrast, plant diversity was positively correlated with weevil abundance, whereas parasitoid abundance was independent of plant diversity. Therefore, we conclude that weevils and parasitoids showed the sensory capacity to successfully cope with complex vegetation odours when searching for hosts. PMID:24416354

  6. The diversity of male nuptial coloration leads to species diversity in Lake Victoria cichlids.

    PubMed

    Miyagi, Ryutaro; Terai, Yohey

    2013-01-01

    The amazing coloration shown by diverse cichlid fish not only fascinates aquarium keepers, but also receives great attention from biologists interested in speciation because of its recently-revealed role in their adaptive radiation in an African lake. We review the important role of coloration in the speciation and adaptive evolution of Lake Victoria cichlids, which have experienced adaptive radiation during a very short evolutionary period. Mature male cichlids display their colors during mate choice. The color of their skin reflects light, and the reflected light forms a color signal that is received by the visual system of females. The adaptive divergence of visual perceptions shapes and diverges colorations, to match the adapted visual perceptions. The divergence of visual perception and coloration indicates that the divergence of color signals causes reproductive isolation between species, and this process leads to speciation. Differences in color signals among coexisting species act to maintain reproductive isolation by preventing hybridization. Thus, the diversity of coloration has caused speciation and has maintained species diversity in Lake Victoria cichlids.

  7. Concordance between genetic and species diversity in coral reef fishes across the Pacific Ocean biodiversity gradient.

    PubMed

    Messmer, Vanessa; Jones, Geoffrey P; Munday, Philip L; Planes, Serge

    2012-12-01

    The relationship between genetic diversity and species diversity provides insights into biogeography and historic patterns of evolution and is critical for developing contemporary strategies for biodiversity conservation. Although concordant large-scale clines in genetic and species diversity have been described for terrestrial organisms, whether these parameters co-vary in marine species remains largely unknown. We examined patterns of genetic diversity for 11 coral reef fish species sampled at three locations across the Pacific Ocean species diversity gradient (Australia: ∼1600 species; New Caledonia: ∼1400 species; French Polynesia: ∼800 species). Combined genetic diversity for all 11 species paralleled the decline in species diversity from West to East, with French Polynesia exhibiting lowest total haplotype and nucleotide diversities. Haplotype diversity consistently declined toward French Polynesia in all and nucleotide diversity in the majority of species. The French Polynesian population of most species also exhibited significant genetic differentiation from populations in the West Pacific. A number of factors may have contributed to the general positive correlation between genetic and species diversity, including location and time of species origin, vicariance events, reduced gene flow with increasing isolation, and decreasing habitat area from West to East. However, isolation and habitat area, resulting in reduced population size, are likely to be the most influential.

  8. Conservation of avian diversity in the Sierra Nevada: moving beyond a single-species management focus

    USGS Publications Warehouse

    White, Angela M.; Zipkin, Elise F.; Manley, Patricia N.; Schlesinger, Matthew D.

    2013-01-01

    Background: As a result of past practices, many of the dry coniferous forests of the western United States contain dense, even-aged stands with uncharacteristically high levels of litter and downed woody debris. These changes to the forest have received considerable attention as they elevate concerns regarding the outcome of wildland fire. However, attempts to reduce biomass through fuel reduction (i.e., thinning of trees) are often opposed by public interest groups whose objectives include maintaining habitat for species of concern such as the spotted owl, Strix occidentalis, the northern goshawk, Accipiter gentilis, and the Pacific fisher, Martes pennanti. Whether protection of these upper-trophic level species confers adequate conservation of avian forest diversity is unknown. Methodology and Principal Findings: We use a multi-species occurrence model to estimate the habitat associations of 47 avian species detected at 742 sampling locations within an 880-km2 area in the Sierra Nevada. Our approach, which accounts for variations in detectability of species, estimates occurrence probabilities of all species in a community by linking species occurrence models into one hierarchical community model, thus improving inferences on all species, especially those that are rare or observed infrequently. We address how the avian community is influenced by covariates related to canopy cover, tree size and shrub cover while accounting for the impacts of abiotic variables known to affect species distributions. Conclusions and Significance: Environmental parameters estimated through our approach emphasize the importance of within and between stand-level heterogeneity in meeting biodiversity objectives and suggests that many avian species would increase under more open canopy habitat conditions than those favored by umbrella species of high conservation concern. Our results suggest that a more integrated approach that emphasizes maintaining a diversity of habitats across

  9. Conservation of Avian Diversity in the Sierra Nevada: Moving beyond a Single-Species Management Focus

    PubMed Central

    White, Angela M.; Zipkin, Elise F.; Manley, Patricia N.; Schlesinger, Matthew D.

    2013-01-01

    Background As a result of past practices, many of the dry coniferous forests of the western United States contain dense, even-aged stands with uncharacteristically high levels of litter and downed woody debris. These changes to the forest have received considerable attention as they elevate concerns regarding the outcome of wildland fire. However, attempts to reduce biomass through fuel reduction (i.e., thinning of trees) are often opposed by public interest groups whose objectives include maintaining habitat for species of concern such as the spotted owl, Strix occidentalis, the northern goshawk, Accipiter gentilis, and the Pacific fisher, Martes pennanti. Whether protection of these upper-trophic level species confers adequate conservation of avian forest diversity is unknown. Methodology and Principal Findings We use a multi-species occurrence model to estimate the habitat associations of 47 avian species detected at 742 sampling locations within an 880-km2 area in the Sierra Nevada. Our approach, which accounts for variations in detectability of species, estimates occurrence probabilities of all species in a community by linking species occurrence models into one hierarchical community model, thus improving inferences on all species, especially those that are rare or observed infrequently. We address how the avian community is influenced by covariates related to canopy cover, tree size and shrub cover while accounting for the impacts of abiotic variables known to affect species distributions. Conclusions and Significance Environmental parameters estimated through our approach emphasize the importance of within and between stand-level heterogeneity in meeting biodiversity objectives and suggests that many avian species would increase under more open canopy habitat conditions than those favored by umbrella species of high conservation concern. Our results suggest that a more integrated approach that emphasizes maintaining a diversity of habitats across

  10. Spatial scale and species identity influence the indigenous-alien diversity relationship in springtails.

    PubMed

    Terauds, Aleks; Chown, Steven L; Bergstrom, Dana M

    2011-07-01

    Although theory underlying the invasion paradox, or the change in the relationship between the richness of alien and indigenous species from negative to positive with increasing spatial scale, is well developed and much empirical work on the subject has been undertaken, most of the latter has concerned plants and to a lesser extent marine invertebrates. Here we therefore examine the extent to which the relationships between indigenous and alien species richness change from the local metacommunity to the interaction neighborhood scales, and the influences of abundance, species identity, and environmental favorability thereon, in springtails, a significant component of the soil fauna. Using a suite of modeling techniques, including generalized least squares and geographically weighted regressions to account for spatial autocorrelation or nonstationarity of the data, we show that the abundance and species richness of both indigenous and alien species at the metacommunity scale respond strongly to declining environmental favorability, represented here by altitude. Consequently, alien and indigenous diversity covary positively at this scale. By contrast, relationships are more complex at the interaction neighborhood scale, with the relationship among alien species richness and/or density and the density of indigenous species varying between habitats, being negative in some, but positive in others. Additional analyses demonstrated a strong influence of species identity, with negative relationships identified at the interaction neighborhood scale involving alien hypogastrurid springtails, a group known from elsewhere to have negative effects on indigenous species in areas where they have been introduced. By contrast, diversity relationships were positive with the other alien species. These results are consistent with both theory and previous empirical findings for other taxa, that interactions among indigenous and alien species change substantially with spatial scale and

  11. Acceptable symbiont cell size differs among cnidarian species and may limit symbiont diversity.

    PubMed

    Biquand, Elise; Okubo, Nami; Aihara, Yusuke; Rolland, Vivien; Hayward, David C; Hatta, Masayuki; Minagawa, Jun; Maruyama, Tadashi; Takahashi, Shunichi

    2017-03-21

    Reef-building corals form symbiotic relationships with dinoflagellates of the genus Symbiodinium. Symbiodinium are genetically and physiologically diverse, and corals may be able to adapt to different environments by altering their dominant Symbiodinium phylotype. Notably, each coral species associates only with specific Symbiodinium phylotypes, and consequently the diversity of symbionts available to the host is limited by the species specificity. Currently, it is widely presumed that species specificity is determined by the combination of cell-surface molecules on the host and symbiont. Here we show experimental evidence supporting a new model to explain at least part of the specificity in coral-Symbiodinium symbiosis. Using the laboratory model Aiptasia-Symbiodinium system, we found that symbiont infectivity is related to cell size; larger Symbiodinium phylotypes are less likely to establish a symbiotic relationship with the host Aiptasia. This size dependency is further supported by experiments where symbionts were replaced by artificial fluorescent microspheres. Finally, experiments using two different coral species demonstrate that our size-dependent-infection model can be expanded to coral-Symbiodinium symbiosis, with the acceptability of large-sized Symbiodinium phylotypes differing between two coral species. Thus the selectivity of the host for symbiont cell size can affect the diversity of symbionts in corals.The ISME Journal advance online publication, 21 March 2017; doi:10.1038/ismej.2017.17.

  12. Widespread density-dependent seedling mortality promotes species coexistence in a highly diverse Amazonian rain forest.

    PubMed

    Metz, Margaret R; Sousa, Wayne P; Valencia, Renato

    2010-12-01

    Negative density-dependent mortality can promote species coexistence through a spacing mechanism that prevents species from becoming too locally abundant. Negative density-dependent seedling mortality can be caused by interactions among seedlings or between seedlings and neighboring adults if the density of neighbors affects the strength of competition or facilitates the attack of natural enemies. We investigated the effects of seedling and adult neighborhoods on the survival of newly recruited seedlings for multiple cohorts of known age from 163 species in Yasuni National Park, Ecuador, an ever-wet, hyper-diverse lowland Amazonian rain forest. At local scales, we found a strong negative impact on first-year survival of conspecific seedling densities and adult abundance in multiple neighborhood sizes and a beneficial effect of a local tree neighborhood that is distantly related to the focal seedling. Once seedlings have survived their first year, they also benefit from a more phylogenetically dispersed seedling neighborhood. Across species, we did not find evidence that rare species have an advantage relative to more common species, or a community compensatory trend. These results suggest that the local biotic neighborhood is a strong influence on early seedling survival for species that range widely in their abundance and life history. These patterns in seedling survival demonstrate the role of density-dependent seedling dynamics in promoting and maintaining diversity in understory seedling assemblages. The assemblage-wide impacts of species abundance distributions may multiply with repeated cycles of recruitment and density-dependent seedling mortality and impact forest diversity or the abundance of individual species over longer time scales.

  13. Direct vs. Microclimate-Driven Effects of Tree Species Diversity on Litter Decomposition in Young Subtropical Forest Stands.

    PubMed

    Seidelmann, Katrin N; Scherer-Lorenzen, Michael; Niklaus, Pascal A

    2016-01-01

    Effects of tree species diversity on decomposition can operate via a multitude of mechanism, including alterations of microclimate by the forest canopy. Studying such effects in natural settings is complicated by the fact that topography also affects microclimate and thus decomposition, so that effects of diversity are more difficult to isolate. Here, we quantified decomposition rates of standard litter in young subtropical forest stands, separating effects of canopy tree species richness and topography, and quantifying their direct and micro-climate-mediated components. Our litterbag study was carried out at two experimental sites of a biodiversity-ecosystem functioning field experiment in south-east China (BEF-China). The field sites display strong topographical heterogeneity and were planted with tree communities ranging from monocultures to mixtures of 24 native subtropical tree species. Litter bags filled with senescent leaves of three native tree species were placed from Nov. 2011 to Oct. 2012 on 134 plots along the tree species diversity gradient. Topographic features were measured for all and microclimate in a subset of plots. Stand species richness, topography and microclimate explained important fractions of the variations in litter decomposition rates, with diversity and topographic effects in part mediated by microclimatic changes. Tree stands were 2-3 years old, but nevertheless tree species diversity explained more variation (54.3%) in decomposition than topography (7.7%). Tree species richness slowed litter decomposition, an effect that slightly depended on litter species identity. A large part of the variance in decomposition was explained by tree species composition, with the presence of three tree species playing a significant role. Microclimate explained 31.4% of the variance in decomposition, and was related to lower soil moisture. Within this microclimate effect, species diversity (without composition) explained 8.9% and topography 34.4% of

  14. Direct vs. Microclimate-Driven Effects of Tree Species Diversity on Litter Decomposition in Young Subtropical Forest Stands

    PubMed Central

    Seidelmann, Katrin N.; Scherer-Lorenzen, Michael; Niklaus, Pascal A.

    2016-01-01

    Effects of tree species diversity on decomposition can operate via a multitude of mechanism, including alterations of microclimate by the forest canopy. Studying such effects in natural settings is complicated by the fact that topography also affects microclimate and thus decomposition, so that effects of diversity are more difficult to isolate. Here, we quantified decomposition rates of standard litter in young subtropical forest stands, separating effects of canopy tree species richness and topography, and quantifying their direct and micro-climate-mediated components. Our litterbag study was carried out at two experimental sites of a biodiversity-ecosystem functioning field experiment in south-east China (BEF-China). The field sites display strong topographical heterogeneity and were planted with tree communities ranging from monocultures to mixtures of 24 native subtropical tree species. Litter bags filled with senescent leaves of three native tree species were placed from Nov. 2011 to Oct. 2012 on 134 plots along the tree species diversity gradient. Topographic features were measured for all and microclimate in a subset of plots. Stand species richness, topography and microclimate explained important fractions of the variations in litter decomposition rates, with diversity and topographic effects in part mediated by microclimatic changes. Tree stands were 2–3 years old, but nevertheless tree species diversity explained more variation (54.3%) in decomposition than topography (7.7%). Tree species richness slowed litter decomposition, an effect that slightly depended on litter species identity. A large part of the variance in decomposition was explained by tree species composition, with the presence of three tree species playing a significant role. Microclimate explained 31.4% of the variance in decomposition, and was related to lower soil moisture. Within this microclimate effect, species diversity (without composition) explained 8.9% and topography 34.4% of

  15. Plant species richness drives the density and diversity of Collembola in temperate grassland

    NASA Astrophysics Data System (ADS)

    Sabais, Alexander C. W.; Scheu, Stefan; Eisenhauer, Nico

    2011-05-01

    Declining biodiversity is one of the most important aspects of anthropogenic global change phenomena, but the implications of plant species loss for soil decomposers are little understood. We used the experimental grassland community of the Jena Experiment to assess the response of density and diversity of Collembola to varying plant species richness, plant functional group richness and plant functional group identity. We sampled the experimental plots in spring and autumn four years after establishment of the experimental plant communities. Collembola density and diversity significantly increased with plant species and plant functional group richness highlighting the importance of the singular hypothesis for soil invertebrates. Generally, grasses and legumes beneficially affected Collembola density and diversity, whereas effects of small herbs usually were detrimental. These impacts were largely consistent in spring and autumn. By contrast, in the presence of small herbs the density of hemiedaphic Collembola and the diversity of Isotomidae increased in spring whereas they decreased in autumn. Beneficial impacts of plant diversity as well as those of grasses and legumes were likely due to increased root and microbial biomass, and elevated quantity and quality of plant residues serving as food resources for Collembola. By contrast, beneficial impacts of small herbs in spring probably reflect differences in microclimatic conditions, and detrimental effects in autumn likely were due to low quantity and quality of resources. The results point to an intimate relationship between plants and the diversity of belowground biota, even at small spatial scales, contrasting the findings of previous studies. The pronounced response of soil animals in the present study was presumably due to the fact that plant communities had established over several years. As decomposer invertebrates significantly impact plant performance, changes in soil biota density and diversity are likely

  16. Characterisation of Species and Diversity of Anopheles gambiae Keele Colony

    PubMed Central

    McGeechan, Sion; Inch, Donald; Smart, Graeme; Richterová, Lenka; Mwangi, Jonathan M.

    2016-01-01

    Anopheles gambiae sensu stricto was recently reclassified as two species, An. coluzzii and An. gambiae s.s., in wild-caught mosquitoes, on the basis of the molecular form, denoted M or S, of a marker on the X chromosome. The An. gambiae Keele line is an outbred laboratory colony strain that was developed around 12 years ago by crosses between mosquitoes from 4 existing An. gambiae colonies. Laboratory colonies of mosquitoes often have limited genetic diversity because of small starting populations (founder effect) and subsequent fluctuations in colony size. Here we describe the characterisation of the chromosomal form(s) present in the Keele line, and investigate the diversity present in the colony using microsatellite markers on chromosome 3. We also characterise the large 2La inversion on chromosome 2. The results indicate that only the M-form of the chromosome X marker is present in the Keele colony, which was unexpected given that 3 of the 4 parent colonies were probably S-form. Levels of diversity were relatively high, as indicated by a mean number of microsatellite alleles of 6.25 across 4 microsatellites, in at least 25 mosquitoes. Both karyotypes of the inversion on chromosome 2 (2La/2L+a) were found to be present at approximately equal proportions. The Keele colony has a mixed M- and S-form origin, and in common with the PEST strain, we propose continuing to denote it as an An. gambiae s.s. line. PMID:28033418

  17. Beyond the zebrafish: diverse fish species for modeling human disease

    PubMed Central

    Schartl, Manfred

    2014-01-01

    ABSTRACT In recent years, zebrafish, and to a lesser extent medaka, have become widely used small animal models for human diseases. These organisms have convincingly demonstrated the usefulness of fish for improving our understanding of the molecular and cellular mechanisms leading to pathological conditions, and for the development of new diagnostic and therapeutic tools. Despite the usefulness of zebrafish and medaka in the investigation of a wide spectrum of traits, there is evidence to suggest that other fish species could be better suited for more targeted questions. With the emergence of new, improved sequencing technologies that enable genomic resources to be generated with increasing efficiency and speed, the potential of non-mainstream fish species as disease models can now be explored. A key feature of these fish species is that the pathological condition that they model is often related to specific evolutionary adaptations. By exploring these adaptations, new disease-causing and disease-modifier genes might be identified; thus, diverse fish species could be exploited to better understand the complexity of disease processes. In addition, non-mainstream fish models could allow us to study the impact of environmental factors, as well as genetic variation, on complex disease phenotypes. This Review will discuss the opportunities that such fish models offer for current and future biomedical research. PMID:24271780

  18. Fingerprinting the Asterid Species Using Subtracted Diversity Array Reveals Novel Species-Specific Sequences

    PubMed Central

    Mantri, Nitin; Olarte, Alexandra; Li, Chun Guang; Xue, Charlie; Pang, Edwin C. K.

    2012-01-01

    Background Asterids is one of the major plant clades comprising of many commercially important medicinal species. One of the major concerns in medicinal plant industry is adulteration/contamination resulting from misidentification of herbal plants. This study reports the construction and validation of a microarray capable of fingerprinting medicinally important species from the Asterids clade. Methodology/Principal Findings Pooled genomic DNA of 104 non-asterid angiosperm and non-angiosperm species was subtracted from pooled genomic DNA of 67 asterid species. Subsequently, 283 subtracted DNA fragments were used to construct an Asterid-specific array. The validation of Asterid-specific array revealed a high (99.5%) subtraction efficiency. Twenty-five Asterid species (mostly medicinal) representing 20 families and 9 orders within the clade were hybridized onto the array to reveal its level of species discrimination. All these species could be successfully differentiated using their hybridization patterns. A number of species-specific probes were identified for commercially important species like tea, coffee, dandelion, yarrow, motherwort, Japanese honeysuckle, valerian, wild celery, and yerba mate. Thirty-seven polymorphic probes were characterized by sequencing. A large number of probes were novel species-specific probes whilst some of them were from chloroplast region including genes like atpB, rpoB, and ndh that have extensively been used for fingerprinting and phylogenetic analysis of plants. Conclusions/Significance Subtracted Diversity Array technique is highly efficient in fingerprinting species with little or no genomic information. The Asterid-specific array could fingerprint all 25 species assessed including three species that were not used in constructing the array. This study validates the use of chloroplast genes for bar-coding (fingerprinting) plant species. In addition, this method allowed detection of several new loci that can be explored to solve

  19. A phylogenetic perspective on species diversity, β-diversity and biogeography for the microbial world.

    PubMed

    Barberán, Albert; Casamayor, Emilio O

    2014-12-01

    There is an increasing interest to combine phylogenetic data with distributional and ecological records to assess how natural communities arrange under an evolutionary perspective. In the microbial world, there is also a need to go beyond the problematic species definition to deeply explore ecological patterns using genetic data. We explored links between evolution/phylogeny and community ecology using bacterial 16S rRNA gene information from a high-altitude lakes district data set. We described phylogenetic community composition, spatial distribution, and β-diversity and biogeographical patterns applying evolutionary relatedness without relying on any particular operational taxonomic unit definition. High-altitude lakes districts usually contain a large mosaic of highly diverse small water bodies and conform a fine biogeographical model of spatially close but environmentally heterogeneous ecosystems. We sampled 18 lakes in the Pyrenees with a selection criteria focused on capturing the maximum environmental variation within the smallest geographical area. The results showed highly diverse communities nonrandomly distributed with phylogenetic β-diversity patterns mainly shaped by the environment and not by the spatial distance. Community similarity based on both bacterial taxonomic composition and phylogenetic β-diversity shared similar patterns and was primarily structured by similar environmental drivers. We observed a positive relationship between lake area and phylogenetic diversity with a slope consistent with highly dispersive planktonic organisms. The phylogenetic approach incorporated patterns of common ancestry into bacterial community analysis and emerged as a very convenient analytical tool for direct inter- and intrabiome biodiversity comparisons and sorting out microbial habitats with potential application in conservation studies.

  20. Landscape context affects genetic diversity at a much larger spatial extent than population abundance.

    PubMed

    Jackson, Nathan D; Fahrig, Lenore

    2014-04-01

    Regional landscape context influences the fate of local populations, yet the spatial extent of this influence (called the "scale of effect") is difficult to predict. Thus, a major problem for conservation management is to understand the factors governing the scale of effect such that landscape structure surrounding a focal area is measured and managed at the biologically relevant spatial scale. One unresolved question is whether and how scale of effect may depend on the population response measured (e.g., abundance vs. presence/absence). If scales of effect differ across population outcomes of a given species, management based on one outcome may compromise another, further complicating conservation decision making. Here we used an individual-based simulation model to investigate how scales of effect of landscapes that vary in the amount and fragmentation of habitat differ among three population responses (local abundance, presence/absence, and genetic diversity). We also explored how the population response measured affects the relative importance of habitat amount and fragmentation in shaping local populations, and how dispersal distance mediates the magnitude and spatial scale of these effects. We found that the spatial scale most strongly influencing local populations depended on the outcome measured and was predicted to be small for abundance, medium-sized for presence/absence, and large for genetic diversity. Increasing spatial scales likely resulted from increasing temporal scales over which outcomes were regulated (with local genetic diversity being regulated over the largest number of generations). Thus, multiple generations of dispersal and gene flow linked local population patterns to regional population size. The effects of habitat amount dominated the effects of fragmentation for all three outcomes. Increased dispersal distance strongly reduced abundance, but not presence/absence or genetic diversity. Our results suggest that managing protected species

  1. Decomposers (Lumbricidae, Collembola) affect plant performance in model grasslands of different diversity.

    PubMed

    Partsch, Stephan; Milcu, Alexandru; Scheu, Stefan

    2006-10-01

    Decomposer invertebrates influence soil structure and nutrient mineralization as well as the activity and composition of the microbial community in soil and therefore likely affect plant performance and plant competition. We established model grassland communities in a greenhouse to study the interrelationship between two different functional groups of decomposer invertebrates, Lumbricidae and Collembola, and their effect on plant performance and plant nitrogen uptake in a plant diversity gradient. Common plant species of Central European Arrhenatherion grasslands were transplanted into microcosms with numbers of plant species varying from one to eight and plant functional groups varying from one to four. Separate and combined treatments with earthworms and collembolans were set up. Microcosms contained 15N labeled litter to track N fluxes into plant shoots. Presence of decomposers strongly increased total plant and plant shoot biomass. Root biomass decreased in the presence of collembolans and even more in the presence of earthworms. However, it increased when both animal groups were present. Also, presence of decomposers increased total N concentration and 15N enrichment of grasses, legumes, and small herbs. Small herbs were at a maximum in the combined treatment with earthworms and collembolans. The impact of earthworms and collembolans on plant performance strongly varied with plant functional group identity and plant species diversity and was modified when both decomposers were present. Both decomposer groups generally increased aboveground plant productivity through effects on litter decomposition and nutrient mineralization leading to an increased plant nutrient acquisition. The non-uniform effects of earthworms and collembolans suggest that functional diversity of soil decomposer animals matters and that the interactions between soil animal functional groups affect the structure of plant communities.

  2. Species diversity, structure and dynamics of two populations of an endangered species, Magnolia dealbata (Magnoliaceae).

    PubMed

    Sánchez-Velásquez, Lázaro R; Pineda-López, María del Rosario

    2006-09-01

    Little is known about the ecology and demography of the genus Magnolia. Magnolia dealbata Zucc. is an endangered species endemic to Mexico. Two contrasting populations of M. dealbata (one from the grasslands and other from a secondary cloud forest) were studied. We asked the following questions: (a) Are size structure (diameter at breast height, DBH) and infrutescence production significantly different between the two populations? (b) What are the populations' growth rates (lambda) based on an initial 1987 study? (c) Are the associated species diversity indices of these M. dealbata populations significantly different? The results show no significant differences between the population size structure (p=.094); the growth rates of the populations were 0.992 in grassland and 1.053 in secondary cloud forest. The number of infrutescences produced in year 2001 and DBH relationship were significantly linear (p<.001) in both populations, and there was no significant difference (p>.01) between their slopes. The diversity indices were not significantly different (p>.05), and only 54% of the species were common to both sites. Our study suggests that both populations are relatively stable and that the management history could impact more on the species composition than on the diversity indices.

  3. High levels of genetic diversity and population structure in an endemic and rare species: implications for conservation

    PubMed Central

    Turchetto, Caroline; Segatto, Ana Lúcia A.; Mäder, Geraldo; Rodrigues, Daniele M.; Bonatto, Sandro L.; Freitas, Loreta B.

    2016-01-01

    The analysis of genetic structure and variability of isolated species is of critical importance in evaluating whether stochastic or human-caused factors are affecting rare species. Low genetic diversity compromises the ability of populations to evolve and reduces their chances of survival under environmental changes. Petunia secreta, a rare and endemic species, is an annual and heliophilous herb that is bee-pollinated and easily recognizable by its purple and salverform corolla. It was described as a new species of the Petunia genus in 2005. Few individuals of P. secreta have been observed in nature and little is known about this species. All the natural populations of P. secreta that were found were studied using 15 microsatellite loci, two intergenic plastid sequences and morphological traits. Statistical analysis was performed to describe the genetic diversity of this rare species and the results compared with those of more widespread and frequent Petunia species from the same geographic area to understand whether factors associated with population size could affect rare species of this genus. The results showed that despite its rarity, P. secreta presented high genetic diversity that was equivalent to or even higher than that of widespread Petunia species. It was shown that this species is divided into two evolutionary lineages, and the genetic differentiation indices between them and other congeneric species presented different patterns. The major risk to P. secreta maintenance is its rarity, suggesting the necessity of a preservation programme and more biological and evolutionary studies that handle the two evolutionary lineages independently. PMID:26768602

  4. High levels of genetic diversity and population structure in an endemic and rare species: implications for conservation.

    PubMed

    Turchetto, Caroline; Segatto, Ana Lúcia A; Mäder, Geraldo; Rodrigues, Daniele M; Bonatto, Sandro L; Freitas, Loreta B

    2016-01-13

    The analysis of genetic structure and variability of isolated species is of critical importance in evaluating whether stochastic or human-caused factors are affecting rare species. Low genetic diversity compromises the ability of populations to evolve and reduces their chances of survival under environmental changes. Petunia secreta, a rare and endemic species, is an annual and heliophilous herb that is bee-pollinated and easily recognizable by its purple and salverform corolla. It was described as a new species of the Petunia genus in 2005. Few individuals of P. secreta have been observed in nature and little is known about this species. All the natural populations of P. secreta that were found were studied using 15 microsatellite loci, two intergenic plastid sequences and morphological traits. Statistical analysis was performed to describe the genetic diversity of this rare species and the results compared with those of more widespread and frequent Petunia species from the same geographic area to understand whether factors associated with population size could affect rare species of this genus. The results showed that despite its rarity, P. secreta presented high genetic diversity that was equivalent to or even higher than that of widespread Petunia species. It was shown that this species is divided into two evolutionary lineages, and the genetic differentiation indices between them and other congeneric species presented different patterns. The major risk to P. secreta maintenance is its rarity, suggesting the necessity of a preservation programme and more biological and evolutionary studies that handle the two evolutionary lineages independently.

  5. Earthworm-mycorrhiza interactions can affect the diversity, structure and functioning of establishing model grassland communities.

    PubMed

    Zaller, Johann G; Heigl, Florian; Grabmaier, Andrea; Lichtenegger, Claudia; Piller, Katja; Allabashi, Roza; Frank, Thomas; Drapela, Thomas

    2011-01-01

    Both earthworms and arbuscular mycorrhizal fungi (AMF) are important ecosystem engineers co-occurring in temperate grasslands. However, their combined impacts during grassland establishment are poorly understood and have never been studied. We used large mesocosms to study the effects of different functional groups of earthworms (i.e., vertically burrowing anecics vs. horizontally burrowing endogeics) and a mix of four AMF taxa on the establishment, diversity and productivity of plant communities after a simulated seed rain of 18 grassland species comprising grasses, non-leguminous forbs and legumes. Moreover, effects of earthworms and/or AMF on water infiltration and leaching of ammonium, nitrate and phosphate were determined after a simulated extreme rainfall event (40 l m(-2)). AMF colonisation of all three plant functional groups was altered by earthworms. Seedling emergence and diversity was reduced by anecic earthworms, however only when AMF were present. Plant density was decreased in AMF-free mesocosms when both anecic and endogeic earthworms were active; with AMF also anecics reduced plant density. Plant shoot and root biomass was only affected by earthworms in AMF-free mesocosms: shoot biomass increased due to the activity of either anecics or endogeics; root biomass increased only when anecics were active. Water infiltration increased when earthworms were present in the mesocosms but remained unaffected by AMF. Ammonium leaching was increased only when anecics or a mixed earthworm community was active but was unaffected by AMF; nitrate and phosphate leaching was neither affected by earthworms nor AMF. Ammonium leaching decreased with increasing plant density, nitrate leaching decreased with increasing plant diversity and density. In order to understand the underlying processes of these interactions further investigations possibly under field conditions using more diverse belowground communities are required. Nevertheless, this study demonstrates that

  6. Functional dominance rather than taxonomic diversity and functional diversity mainly affects community aboveground biomass in the Inner Mongolia grassland.

    PubMed

    Zhang, Qing; Buyantuev, Alexander; Li, Frank Yonghong; Jiang, Lin; Niu, Jianming; Ding, Yong; Kang, Sarula; Ma, Wenjing

    2017-03-01

    The relationship between biodiversity and productivity has been a hot topic in ecology. However, the relative importance of taxonomic diversity and functional characteristics (including functional dominance and functional diversity) in maintaining community productivity and the underlying mechanisms (including selection and complementarity effects) of the relationship between diversity and community productivity have been widely controversial. In this study, 194 sites were surveyed in five grassland types along a precipitation gradient in the Inner Mongolia grassland of China. The relationships between taxonomic diversity (species richness and the Shannon-Weaver index), functional dominance (the community-weighted mean of four plant traits), functional diversity (Rao's quadratic entropy), and community aboveground biomass were analyzed. The results showed that (1) taxonomic diversity, functional dominance, functional diversity, and community aboveground biomass all increased from low to high precipitation grassland types; (2) there were significant positive linear relationships between taxonomic diversity, functional dominance, functional diversity, and community aboveground biomass; (3) the effect of functional characteristics on community aboveground biomass is greater than that of taxonomic diversity; and (4) community aboveground biomass depends on the community-weighted mean plant height, which explained 57.1% of the variation in the community aboveground biomass. Our results suggested that functional dominance rather than taxonomic diversity and functional diversity mainly determines community productivity and that the selection effect plays a dominant role in maintaining the relationship between biodiversity and community productivity in the Inner Mongolia grassland.

  7. Ground Layer Plant Species Turnover and Beta Diversity in Southern-European Old-Growth Forests

    PubMed Central

    Sabatini, Francesco Maria; Burrascano, Sabina; Tuomisto, Hanna; Blasi, Carlo

    2014-01-01

    Different assembly processes may simultaneously affect local-scale variation of species composition in temperate old-growth forests. Ground layer species diversity reflects chance colonization and persistence of low-dispersal species, as well as fine-scale environmental heterogeneity. The latter depends on both purely abiotic factors, such as soil properties and topography, and factors primarily determined by overstorey structure, such as light availability. Understanding the degree to which plant diversity in old-growth forests is associated with structural heterogeneity and/or to dispersal limitation will help assessing the effectiveness of silvicultural practices that recreate old-growth patterns and structures for the conservation or restoration of plant diversity. We used a nested sampling design to assess fine-scale species turnover, i.e. the proportion of species composition that changes among sampling units, across 11 beech-dominated old-growth forests in Southern Europe. For each stand, we also measured a wide range of environmental and structural variables that might explain ground layer species turnover. Our aim was to quantify the relative importance of dispersal limitation in comparison to that of stand structural heterogeneity while controlling for other sources of environmental heterogeneity. For this purpose, we used multiple regression on distance matrices at the within-stand extent, and mixed effect models at the extent of the whole dataset. Species turnover was best predicted by structural and environmental heterogeneity, especially by differences in light availability and in topsoil nutrient concentration and texture. Spatial distances were significant only in four out of eleven stands with a relatively low explanatory power. This suggests that structural heterogeneity is a more important driver of local-scale ground layer species turnover than dispersal limitation in southern European old-growth beech forests. PMID:24748155

  8. Ground layer plant species turnover and beta diversity in southern-European old-growth forests.

    PubMed

    Sabatini, Francesco Maria; Burrascano, Sabina; Tuomisto, Hanna; Blasi, Carlo

    2014-01-01

    Different assembly processes may simultaneously affect local-scale variation of species composition in temperate old-growth forests. Ground layer species diversity reflects chance colonization and persistence of low-dispersal species, as well as fine-scale environmental heterogeneity. The latter depends on both purely abiotic factors, such as soil properties and topography, and factors primarily determined by overstorey structure, such as light availability. Understanding the degree to which plant diversity in old-growth forests is associated with structural heterogeneity and/or to dispersal limitation will help assessing the effectiveness of silvicultural practices that recreate old-growth patterns and structures for the conservation or restoration of plant diversity. We used a nested sampling design to assess fine-scale species turnover, i.e. the proportion of species composition that changes among sampling units, across 11 beech-dominated old-growth forests in Southern Europe. For each stand, we also measured a wide range of environmental and structural variables that might explain ground layer species turnover. Our aim was to quantify the relative importance of dispersal limitation in comparison to that of stand structural heterogeneity while controlling for other sources of environmental heterogeneity. For this purpose, we used multiple regression on distance matrices at the within-stand extent, and mixed effect models at the extent of the whole dataset. Species turnover was best predicted by structural and environmental heterogeneity, especially by differences in light availability and in topsoil nutrient concentration and texture. Spatial distances were significant only in four out of eleven stands with a relatively low explanatory power. This suggests that structural heterogeneity is a more important driver of local-scale ground layer species turnover than dispersal limitation in southern European old-growth beech forests.

  9. Trophic interactions and the relationship between species diversity and ecosystem stability.

    PubMed

    Thébault, Elisa; Loreau, Michel

    2005-10-01

    Several theoretical studies propose that biodiversity buffers ecosystem functioning against environmental fluctuations, but virtually all of these studies concern a single trophic level, the primary producers. Changes in biodiversity also affect ecosystem processes through trophic interactions. Therefore, it is important to understand how trophic interactions affect the relationship between biodiversity and the stability of ecosystem processes. Here we present two models to investigate this issue in ecosystems with two trophic levels. The first is an analytically tractable symmetrical plant-herbivore model under random environmental fluctuations, while the second is a mechanistic ecosystem model under periodic environmental fluctuations. Our analysis shows that when diversity affects net species interaction strength, species interactions--both competition among plants and plant-herbivore interactions--have a strong impact on the relationships between diversity and the temporal variability of total biomass of the various trophic levels. More intense plant competition leads to a stronger decrease or a lower increase in variability of total plant biomass, but plant-herbivore interactions always have a destabilizing effect on total plant biomass. Despite the complexity generated by trophic interactions, biodiversity should still act as biological insurance for ecosystem processes, except when mean trophic interaction strength increases strongly with diversity.

  10. Affective responses in tamarins elicited by species-specific music.

    PubMed

    Snowdon, Charles T; Teie, David

    2010-02-23

    Theories of music evolution agree that human music has an affective influence on listeners. Tests of non-humans provided little evidence of preferences for human music. However, prosodic features of speech ('motherese') influence affective behaviour of non-verbal infants as well as domestic animals, suggesting that features of music can influence the behaviour of non-human species. We incorporated acoustical characteristics of tamarin affiliation vocalizations and tamarin threat vocalizations into corresponding pieces of music. We compared music composed for tamarins with that composed for humans. Tamarins were generally indifferent to playbacks of human music, but responded with increased arousal to tamarin threat vocalization based music, and with decreased activity and increased calm behaviour to tamarin affective vocalization based music. Affective components in human music may have evolutionary origins in the structure of calls of non-human animals. In addition, animal signals may have evolved to manage the behaviour of listeners by influencing their affective state.

  11. Diversity of Listeria species in urban and natural environments.

    PubMed

    Sauders, Brian D; Overdevest, Jon; Fortes, Esther; Windham, Katy; Schukken, Ynte; Lembo, Arthur; Wiedmann, Martin

    2012-06-01

    A total of 442 Listeria isolates, including 234 Listeria seeligeri, 80 L. monocytogenes, 74 L. welshimeri, 50 L. innocua, and 4 L. marthii isolates, were obtained from 1,805 soil, water, and other environmental samples collected over 2 years from four urban areas and four areas representing natural environments. Listeria spp. showed similar prevalences in samples from natural (23.4%) and urban (22.3%) environments. While L. seeligeri and L. welshimeri were significantly associated with natural environments (P ≤ 0.0001), L. innocua and L. monocytogenes were significantly associated with urban environments (P ≤ 0.0001). Sequencing of sigB for all isolates revealed 67 allelic types with a higher level of allelic diversity among isolates from urban environments. Some Listeria spp. and sigB allelic types showed significant associations with specific urban and natural areas. Nearest-neighbor analyses also showed that certain Listeria spp. and sigB allelic types were spatially clustered within both natural and urban environments, and there was evidence that these species and allelic types persisted over time in specific areas. Our data show that members of the genus Listeria not only are common in urban and natural environments but also show species- and subtype-specific associations with different environments and areas. This indicates that Listeria species and subtypes within these species may show distinct ecological preferences, which suggests (i) that molecular source-tracking approaches can be developed for Listeria and (ii) that detection of some Listeria species may not be a good indicator for L. monocytogenes.

  12. Cross-Scale Analysis of the Region Effect on Vascular Plant Species Diversity in Southern and Northern European Mountain Ranges

    PubMed Central

    Lenoir, Jonathan; Gégout, Jean-Claude; Guisan, Antoine; Vittoz, Pascal; Wohlgemuth, Thomas; Zimmermann, Niklaus E.; Dullinger, Stefan; Pauli, Harald; Willner, Wolfgang; Grytnes, John-Arvid; Virtanen, Risto; Svenning, Jens-Christian

    2010-01-01

    Background The divergent glacial histories of southern and northern Europe affect present-day species diversity at coarse-grained scales in these two regions, but do these effects also penetrate to the more fine-grained scales of local communities? Methodology/Principal Findings We carried out a cross-scale analysis to address this question for vascular plants in two mountain regions, the Alps in southern Europe and the Scandes in northern Europe, using environmentally paired vegetation plots in the two regions (n = 403 in each region) to quantify four diversity components: (i) total number of species occurring in a region (total γ-diversity), (ii) number of species that could occur in a target plot after environmental filtering (habitat-specific γ-diversity), (iii) pair-wise species compositional turnover between plots (plot-to-plot β-diversity) and (iv) number of species present per plot (plot α-diversity). We found strong region effects on total γ-diversity, habitat-specific γ-diversity and plot-to-plot β-diversity, with a greater diversity in the Alps even towards distances smaller than 50 m between plots. In contrast, there was a slightly greater plot α-diversity in the Scandes, but with a tendency towards contrasting region effects on high and low soil-acidity plots. Conclusions/Significance We conclude that there are strong regional differences between coarse-grained (landscape- to regional-scale) diversity components of the flora in the Alps and the Scandes mountain ranges, but that these differences do not necessarily penetrate to the finest-grained (plot-scale) diversity component, at least not on acidic soils. Our findings are consistent with the contrasting regional Quaternary histories, but we also consider alternative explanatory models. Notably, ecological sorting and habitat connectivity may play a role in the unexpected limited or reversed region effect on plot α-diversity, and may also affect the larger-scale diversity components. For

  13. Diversity and Moral Reasoning: How Negative Diverse Peer Interactions Affect the Development of Moral Reasoning in Undergraduate Students

    ERIC Educational Resources Information Center

    Mayhew, Matthew J.; Engberg, Mark E.

    2010-01-01

    How do interactions with diverse peers affect moral reasoning development? Results from a longitudinal study of 171 students enrolled in an Intergroup Dialogue or Introduction to Sociology course indicate that students who experience more negative interactions with diverse peers report lower developmental gains in moral reasoning, although the…

  14. Vertical differences in species turnover and diversity of amphipod assemblages associated with coralline mats

    NASA Astrophysics Data System (ADS)

    Bueno, M.; Tanaka, M. O.; Flores, A. A. V.; Leite, F. P. P.

    2016-11-01

    Environmental gradients are common in rocky shore habitats and may determine species spatial distributions at different scales. In this study, we tested whether environmental filtering affects amphipod assemblages inhabiting coralline algal mats at different vertical heights in southeastern Brazil. Samples obtained from the upper and lower zones of the infralittoral fringe were used to estimate mat descriptors (algal mass, sediment retention, organic matter contents, grain size and sediment sorting) and describe amphipod assemblages (abundance, species richness and diversity indices). Coralline algal mats and amphipod assemblages were similar between intertidal zones in several aspects. However, a more variable retention of sediment (positively related to algal mass), together with the accumulation of larger grains lower on the shore, likely provide higher habitat heterogeneity that hosts generally more diverse (both α- and β-diversity, as well as higher species turnover) amphipod assemblages in the lower intertidal zone. Poorer assemblages in the upper intertidal zone are dominated by omnivores, while carnivorous species are more often found in richer assemblages in the lower intertidal zone, as predicted by traditional niche theory.

  15. Landscape corridors can increase invasion by an exotic species and reduce diversity of native species.

    PubMed

    Resasco, Julian; Haddad, Nick M; Orrock, John L; Shoemaker, DeWayne; Brudvig, Lars A; Damschen, Ellen I; Tewksbury, Joshua J; Levey, Douglas J

    2014-08-01

    Landscape corridors are commonly used to mitigate negative effects of habitat fragmentation, but concerns persist that they may facilitate the spread of invasive species. In a replicated landscape experiment of open habitat, we measured effects of corridors on the invasive fire ant, Solenopsis invicta, and native ants. Fire ants have two social forms: polygyne, which tend to disperse poorly but establish at high densities, and monogyne, which disperse widely but establish at lower densities. In landscapes dominated by polygyne fire ants, fire ant abundance was higher and native ant diversity was lower in habitat patches connected by corridors than in unconnected patches. Conversely, in landscapes dominated by monogyne fire ants, connectivity had no influence on fire ant abundance and native ant diversity. Polygyne fire ants dominated recently created landscapes, suggesting that these corridor effects may be transient. Our results suggest that corridors can facilitate invasion and they highlight the importance of considering species' traits when assessing corridor utility.

  16. The effect of species diversity on metal adsorption onto bacteria

    NASA Astrophysics Data System (ADS)

    Ginn, Brian R.; Fein, Jeremy B.

    2008-08-01

    In this study, we measure proton, Pb, and Cd adsorption onto the bacteria Deinococcus radiodurans, Thermus thermophilus, Acidiphlium angustum, Flavobacterium aquatile, and Flavobacterium hibernum, and we calculate the thermodynamic stability constants for the important surface complexes. These bacterial species represent a wide genetic diversity of bacteria, and they occupy a wide range of habitats. All of the species, except for A. angustum, exhibit similar proton and metal uptake. The only species tested that exhibits significantly different protonation behavior is A. angustum, an acidophile that grows at significantly lower pH than the other species of this study. We demonstrate that a single, metal-specific, surface complexation model can be used to reasonably account for the acid/base and metal adsorption behaviors of each species. We use a four discrete site non-electrostatic model to describe the protonation of the bacterial functional groups, with averaged p Ka values of 3.1 ± 0.3, 4.8 ± 0.2, 6.7 ± 0.1, and 9.2 ± 0.3, and site concentrations of (1.0 ± 0.17) × 10 -4, (9.0 ± 3.0) × 10 -5, (4.6 ± 1.8) × 10 -5, and (6.1 ± 2.3) × 10 -5 mol of sites per gram wet mass of bacteria, respectively. Adsorption of Cd and Pb onto the bacteria can be accounted for by the formation of complexes with each of the bacterial surface sites. The average log stability constants for Cd complexes with Sites 1-4 are 2.4 ± 0.4, 3.2 ± 0.1, 4.4 ± 0.1, and 5.3 ± 0.1, respectively. The average log stability constants for Pb complexes with Sites 1-4 are 3.3 ± 0.2, 4.5 ± 0.3, 6.5 ± 0.1, and 7.9 ± 0.5, respectively. This study demonstrates that a wide range of bacteria exhibit similar proton and metal adsorption behaviors, and that a single set of averaged acidity constants, site concentrations, and stability constants for metal-bacterial surface complexes yields a reasonable model for the adsorption behavior of many of these species. The differences in adsorption

  17. Remnant Trees Affect Species Composition but Not Structure of Tropical Second-Growth Forest

    PubMed Central

    Sandor, Manette E.; Chazdon, Robin L.

    2014-01-01

    Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2–3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests (“control plots”). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields. PMID:24454700

  18. Remnant trees affect species composition but not structure of tropical second-growth forest.

    PubMed

    Sandor, Manette E; Chazdon, Robin L

    2014-01-01

    Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2-3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests ("control plots"). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields.

  19. Genomes, diversity and resistance gene analogues in Musa species.

    PubMed

    Azhar, M; Heslop-Harrison, J S

    2008-01-01

    Resistance genes (R genes) in plants are abundant and may represent more than 1% of all the genes. Their diversity is critical to the recognition and response to attack from diverse pathogens. Like many other crops, banana and plantain face attacks from potentially devastating fungal and bacterial diseases, increased by a combination of worldwide spread of pathogens, exploitation of a small number of varieties, new pathogen mutations, and the lack of effective, benign and cheap chemical control. The challenge for plant breeders is to identify and exploit genetic resistances to diseases, which is particularly difficult in banana and plantain where the valuable cultivars are sterile, parthenocarpic and mostly triploid so conventional genetic analysis and breeding is impossible. In this paper, we review the nature of R genes and the key motifs, particularly in the Nucleotide Binding Sites (NBS), Leucine Rich Repeat (LRR) gene class. We present data about identity, nature and evolutionary diversity of the NBS domains of Musa R genes in diploid wild species with the Musa acuminata (A), M. balbisiana (B), M. schizocarpa (S), M. textilis (T), M. velutina and M. ornata genomes, and from various cultivated hybrid and triploid accessions, using PCR primers to isolate the domains from genomic DNA. Of 135 new sequences, 75% of the sequenced clones had uninterrupted open reading frames (ORFs), and phylogenetic UPGMA tree construction showed four clusters, one from Musa ornata, one largely from the B and T genomes, one from A and M. velutina, and the largest with A, B, T and S genomes. Only genes of the coiled-coil (non-TIR) class were found, typical of the grasses and presumably monocotyledons. The analysis of R genes in cultivated banana and plantain, and their wild relatives, has implications for identification and selection of resistance genes within the genus which may be useful for plant selection and breeding and also for defining relationships and genome evolution

  20. Regulatory phenotyping reveals important diversity within the species Lactococcus lactis.

    PubMed

    Bachmann, Herwig; Starrenburg, Marjo J C; Dijkstra, Annereinou; Molenaar, Douwe; Kleerebezem, Michiel; Rademaker, Jan L W; van Hylckama Vlieg, Johan E T

    2009-09-01

    The diversity in regulatory phenotypes among a collection of 84 Lactococcus lactis strains isolated from dairy and nondairy origin was explored. The specific activities of five enzymes were assessed in cell extracts of all strains grown in two different media, a nutritionally rich broth and a relatively poor chemically defined medium. The five investigated enzymes, branched chain aminotransferase (BcaT), aminopeptidase N (PepN), X-prolyl dipeptidyl peptidase (PepX), alpha-hydroxyisocaproic acid dehydrogenase (HicDH), and esterase, are involved in nitrogen and fatty acid metabolism and catalyze key steps in the production of important dairy flavor compounds. The investigated cultures comprise 75 L. lactis subsp. lactis isolates (including 7 L. lactis subsp. lactis biovar diacetylactis isolates) and 9 L. lactis subsp. cremoris isolates. All L. lactis subsp. cremoris and 22 L. lactis subsp. lactis (including 6 L. lactis subsp. lactis biovar diacetylactis) cultures originated from a dairy environment. All other cultures originated from (fermented) plant materials and were isolated at different geographic locations. Correlation analysis of specific enzyme activities revealed significantly different regulatory phenotypes for dairy and nondairy isolates. The enzyme activities in the two investigated media were in general poorly correlated and revealed a high degree of regulatory diversity within this collection of closely related strains. To the best of our knowledge, these results represent the most extensive diversity analysis of regulatory phenotypes within a single bacterial species to date. The presented findings underline the importance of the availability of screening procedures for, e.g., industrially relevant enzyme activities in models closely mimicking application conditions. Moreover, they corroborate the notion that regulatory changes are important drivers of evolution.

  1. OryzaGenome: Genome Diversity Database of Wild Oryza Species.

    PubMed

    Ohyanagi, Hajime; Ebata, Toshinobu; Huang, Xuehui; Gong, Hao; Fujita, Masahiro; Mochizuki, Takako; Toyoda, Atsushi; Fujiyama, Asao; Kaminuma, Eli; Nakamura, Yasukazu; Feng, Qi; Wang, Zi-Xuan; Han, Bin; Kurata, Nori

    2016-01-01

    The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype-phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a text-based browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tab-delimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/.

  2. Positive Effects of Plant Genotypic and Species Diversity on Anti-Herbivore Defenses in a Tropical Tree Species

    PubMed Central

    Moreira, Xoaquín; Abdala-Roberts, Luis; Parra-Tabla, Víctor; Mooney, Kailen A.

    2014-01-01

    Despite increasing evidence that plant intra- and inter-specific diversity increases primary productivity, and that such effect may in turn cascade up to influence herbivores, there is little information about plant diversity effects on plant anti-herbivore defenses, the relative importance of different sources of plant diversity, and the mechanisms for such effects. For example, increased plant growth at high diversity may lead to reduced investment in defenses via growth-defense trade-offs. Alternatively, positive effects of plant diversity on plant growth may lead to increased herbivore abundance which in turn leads to a greater investment in plant defenses. The magnitude of trait variation underlying diversity effects is usually greater among species than among genotypes within a given species, so plant species diversity effects on resource use by producers as well as on higher trophic levels should be stronger than genotypic diversity effects. Here we compared the relative importance of plant genotypic and species diversity on anti-herbivore defenses and whether such effects are mediated indirectly via diversity effects on plant growth and/or herbivore damage. To this end, we performed a large-scale field experiment where we manipulated genotypic diversity of big-leaf mahogany (Swietenia macrophylla) and tree species diversity, and measured effects on mahogany growth, damage by the stem-boring specialist caterpillar Hypsipyla grandella, and defensive traits (polyphenolics and condensed tannins in stem and leaves). We found that both forms of plant diversity had positive effects on stem (but not leaf) defenses. However, neither source of diversity influenced mahogany growth, and diversity effects on defenses were not mediated by either growth-defense trade-offs or changes in stem-borer damage. Although the mechanism(s) of diversity effects on plant defenses are yet to be determined, our study is one of the few to test for and show producer diversity effects on

  3. Positive effects of plant genotypic and species diversity on anti-herbivore defenses in a tropical tree species.

    PubMed

    Moreira, Xoaquín; Abdala-Roberts, Luis; Parra-Tabla, Víctor; Mooney, Kailen A

    2014-01-01

    Despite increasing evidence that plant intra- and inter-specific diversity increases primary productivity, and that such effect may in turn cascade up to influence herbivores, there is little information about plant diversity effects on plant anti-herbivore defenses, the relative importance of different sources of plant diversity, and the mechanisms for such effects. For example, increased plant growth at high diversity may lead to reduced investment in defenses via growth-defense trade-offs. Alternatively, positive effects of plant diversity on plant growth may lead to increased herbivore abundance which in turn leads to a greater investment in plant defenses. The magnitude of trait variation underlying diversity effects is usually greater among species than among genotypes within a given species, so plant species diversity effects on resource use by producers as well as on higher trophic levels should be stronger than genotypic diversity effects. Here we compared the relative importance of plant genotypic and species diversity on anti-herbivore defenses and whether such effects are mediated indirectly via diversity effects on plant growth and/or herbivore damage. To this end, we performed a large-scale field experiment where we manipulated genotypic diversity of big-leaf mahogany (Swietenia macrophylla) and tree species diversity, and measured effects on mahogany growth, damage by the stem-boring specialist caterpillar Hypsipyla grandella, and defensive traits (polyphenolics and condensed tannins in stem and leaves). We found that both forms of plant diversity had positive effects on stem (but not leaf) defenses. However, neither source of diversity influenced mahogany growth, and diversity effects on defenses were not mediated by either growth-defense trade-offs or changes in stem-borer damage. Although the mechanism(s) of diversity effects on plant defenses are yet to be determined, our study is one of the few to test for and show producer diversity effects on

  4. Tree species and functional traits but not species richness affect interrill erosion processes in young subtropical forests

    NASA Astrophysics Data System (ADS)

    Seitz, S.; Goebes, P.; Song, Z.; Bruelheide, H.; Härdtle, W.; Kühn, P.; Li, Y.; Scholten, T.

    2016-01-01

    Soil erosion is seriously threatening ecosystem functioning in many parts of the world. In this context, it is assumed that tree species richness and functional diversity of tree communities can play a critical role in improving ecosystem services such as erosion control. An experiment with 170 micro-scale run-off plots was conducted to investigate the influence of tree species and tree species richness as well as functional traits on interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 Mg ha-1 a-1 was calculated. This study provided evidence that different tree species affect interrill erosion differently, while tree species richness did not affect interrill erosion in young forest stands. Thus, different tree morphologies have to be considered, when assessing soil erosion under forest. High crown cover and leaf area index reduced interrill erosion in initial forest ecosystems, whereas rising tree height increased it. Even if a leaf litter cover was not present, the remaining soil surface cover by stones and biological soil crusts was the most important driver for soil erosion control. Furthermore, soil organic matter had a decreasing influence on interrill erosion. Long-term monitoring of soil erosion under closing tree canopies is necessary, and a wide range of functional tree traits should be considered in future research.

  5. Diversity of riceland mosquitoes and factors affecting their occurrence and distribution in Mwea, Kenya.

    PubMed

    Muturi, Ephantus J; Shililu, Josephat I; Jacob, Benjamin G; Mwangangi, Joseph M; Mbogo, Charles M; Githure, John I; Novak, Robert J

    2008-09-01

    Knowledge of mosquito species diversity, occurrence, and distribution is an essential component of vector ecology and a guiding principle to formulation and implementation of integrated vector management programs. A 12-month entomological survey was conducted to determine the diversity of riceland mosquitoes and factors affecting their occurrence and distribution at 3 sites targeted for malaria vector control in Mwea, Kenya. Adult mosquitoes were sampled indoors by pyrethrum spray catch and outdoors by the Centers for Disease Control and Prevention light traps. Mosquitoes were then morphologically identified to species using taxonomic keys. The characteristics of houses sampled for indoor resting mosquitoes, including number of people sleeping in each house the night preceding collection, presence of bed nets, location of the house, size of eaves, wall type, presence of cattle and distance of the house to the cowshed, and proximity to larval habitats, were recorded. Of the 191,378 mosquitoes collected, 95% were identified morphologically to species and comprised 25 species from 5 genera. Common species included Anopheles arabiensis (53.5%), Culex quinquefasciatus (35.5%), An. pharoensis (4.7%), An. coustani (2.5%), and An. funestus (1.6%). Shannon's species diversity and evenness indices did not differ significantly among the 3 study sites. There was a marked house-to-house variation in the average number of mosquitoes captured. The number of people sleeping in the house the night preceding collection, size of eaves, distance to the cowshed, and the nearest larval habitat were significant predictors of occurrence of either or both An. arabiensis and Cx. quinquefasciatus. The peak abundance of An. arabiensis coincided with land preparation and the first few weeks after transplanting of rice seedlings, and that of Cx. quinquefasciatus coincided with land preparation, late stage of rice development, and short rains. After transplanting of rice seedlings, the

  6. Herbivory affects salt marsh succession dynamics by suppressing the recovery of dominant species.

    PubMed

    Daleo, Pedro; Alberti, Juan; Pascual, Jesús; Canepuccia, Alejandro; Iribarne, Oscar

    2014-05-01

    Disturbance can generate heterogeneous environments and profoundly influence plant diversity by creating patches at different successional stages. Herbivores, in turn, can govern plant succession dynamics by determining the rate of species replacement, ultimately affecting plant community structure. In a south-western Atlantic salt marsh, we experimentally evaluated the role of herbivory in the recovery following disturbance of the plant community and assessed whether herbivory affects the relative importance of sexual and clonal reproduction on these dynamics. Our results show that herbivory strongly affects salt marsh secondary succession by suppressing seedlings and limiting clonal colonization of the dominant marsh grass, allowing subordinate species to dominate disturbed patches. These results demonstrate that herbivores can have an important role in salt marsh community structure and function, and can be a key force during succession dynamics.

  7. The evolution of the competition-dispersal trade-off affects α- and β-diversity in a heterogeneous metacommunity.

    PubMed

    Laroche, Fabien; Jarne, Philippe; Perrot, Thomas; Massol, Francois

    2016-04-27

    Difference in dispersal ability is a key driver of species coexistence in metacommunities. However, the available frameworks for interpreting species diversity patterns in natura often overlook trade-offs and evolutionary constraints associated with dispersal. Here, we build a metacommunity model accounting for dispersal evolution and a competition-dispersal trade-off. Depending on the distribution of carrying capacities among communities, species dispersal values are distributed either around a single strategy (evolutionarily stable strategy, ESS), or around distinct strategies (evolutionary branching, EB). We show that limited dispersal generates spatial aggregation of dispersal traits in ESS and EB scenarios, and that the competition-dispersal trade-off strengthens the pattern in the EB scenario. Importantly, individuals in larger (respectively (resp.) smaller) communities tend to harbour lower (resp. higher) dispersal, especially under the EB scenario. We explore how dispersal evolution affects species diversity patterns by comparing those from our model to the predictions of a neutral metacommunity model. The most marked difference is detected under EB, with distinctive values of both α- and β-diversity (e.g. the dissimilarity in species composition between small and large communities was significantly larger than neutral predictions). We conclude that, from an empirical perspective, jointly assessing community carrying capacity with species dispersal strategies should improve our understanding of diversity patterns in metacommunities.

  8. Resolving the roles of body size and species identity in driving functional diversity

    PubMed Central

    Rudolf, Volker H. W.; Rasmussen, Nick L.; Dibble, Christopher J.; Van Allen, Benjamin G.

    2014-01-01

    Efforts to characterize food webs have generated two influential approaches that reduce the complexity of natural communities. The traditional approach groups individuals based on their species identity, while recently developed approaches group individuals based on their body size. While each approach has provided important insights, they have largely been used in parallel in different systems. Consequently, it remains unclear how body size and species identity interact, hampering our ability to develop a more holistic framework that integrates both approaches. We address this conceptual gap by developing a framework which describes how both approaches are related to each other, revealing that both approaches share common but untested assumptions about how variation across size classes or species influences differences in ecological interactions among consumers. Using freshwater mesocosms with dragonfly larvae as predators, we then experimentally demonstrate that while body size strongly determined how predators affected communities, these size effects were species specific and frequently nonlinear, violating a key assumption underlying both size- and species-based approaches. Consequently, neither purely species- nor size-based approaches were adequate to predict functional differences among predators. Instead, functional differences emerged from the synergistic effects of body size and species identity. This clearly demonstrates the need to integrate size- and species-based approaches to predict functional diversity within communities. PMID:24598423

  9. Cryptic diversity in vertebrates: molecular data double estimates of species diversity in a radiation of Australian lizards (Diplodactylus, Gekkota)

    PubMed Central

    Oliver, Paul M.; Adams, Mark; Lee, Michael S.Y.; Hutchinson, Mark N.; Doughty, Paul

    2009-01-01

    A major problem for biodiversity conservation and management is that a significant portion of species diversity remains undocumented (the ‘taxonomic impediment’). This problem is widely acknowledged to be dire among invertebrates and in developing countries; here, we demonstrate that it can be acute even in conspicuous animals (reptiles) and in developed nations (Australia). A survey of mtDNA, allozyme and chromosomal variation in the Australian gecko, genus Diplodactylus, increases overall species diversity estimates from 13 to 29. Four nominal species each actually represent multi-species complexes; three of these species complexes are not even monophyletic. The high proportion of cryptic species discovered emphasizes the importance of continuing detailed assessments of species diversity, even in apparently well-known taxa from industrialized countries. PMID:19324781

  10. Tree diversity and the role of non-host neighbour tree species in reducing fungal pathogen infestation.

    PubMed

    Hantsch, Lydia; Bien, Steffen; Radatz, Stine; Braun, Uwe; Auge, Harald; Bruelheide, Helge

    2014-11-01

    The degree to which plant pathogen infestation occurs in a host plant is expected to be strongly influenced by the level of species diversity among neighbouring host and non-host plant species. Since pathogen infestation can negatively affect host plant performance, it can mediate the effects of local biodiversity on ecosystem functioning.We tested the effects of tree diversity and the proportion of neighbouring host and non-host species with respect to the foliar fungal pathogens of Tilia cordata and Quercus petraea in the Kreinitz tree diversity experiment in Germany. We hypothesized that fungal pathogen richness increases while infestation decreases with increasing local tree diversity. In addition, we tested whether fungal pathogen richness and infestation are dependent on the proportion of host plant species present or on the proportion of particular non-host neighbouring tree species.Leaves of the two target species were sampled across three consecutive years with visible foliar fungal pathogens on the leaf surface being identified macro- and microscopically. Effects of diversity among neighbouring trees were analysed: (i) for total fungal species richness and fungal infestation on host trees and (ii) for infestation by individual fungal species.We detected four and five fungal species on T. cordata and Q. petraea, respectively. High local tree diversity reduced (i) total fungal species richness and infestation of T. cordata and fungal infestation of Q. petraea and (ii) infestation by three host-specialized fungal pathogen species. These effects were brought about by local tree diversity and were independent of host species proportion. In general, host species proportion had almost no effect on fungal species richness and infestation. Strong effects associated with the proportion of particular non-host neighbouring tree species on fungal species richness and infestation were, however, recorded.Synthesis. For the first time, we experimentally demonstrated

  11. Tree diversity and the role of non-host neighbour tree species in reducing fungal pathogen infestation

    PubMed Central

    Hantsch, Lydia; Bien, Steffen; Radatz, Stine; Braun, Uwe; Auge, Harald; Bruelheide, Helge

    2014-01-01

    The degree to which plant pathogen infestation occurs in a host plant is expected to be strongly influenced by the level of species diversity among neighbouring host and non-host plant species. Since pathogen infestation can negatively affect host plant performance, it can mediate the effects of local biodiversity on ecosystem functioning. We tested the effects of tree diversity and the proportion of neighbouring host and non-host species with respect to the foliar fungal pathogens of Tilia cordata and Quercus petraea in the Kreinitz tree diversity experiment in Germany. We hypothesized that fungal pathogen richness increases while infestation decreases with increasing local tree diversity. In addition, we tested whether fungal pathogen richness and infestation are dependent on the proportion of host plant species present or on the proportion of particular non-host neighbouring tree species. Leaves of the two target species were sampled across three consecutive years with visible foliar fungal pathogens on the leaf surface being identified macro- and microscopically. Effects of diversity among neighbouring trees were analysed: (i) for total fungal species richness and fungal infestation on host trees and (ii) for infestation by individual fungal species. We detected four and five fungal species on T. cordata and Q. petraea, respectively. High local tree diversity reduced (i) total fungal species richness and infestation of T. cordata and fungal infestation of Q. petraea and (ii) infestation by three host-specialized fungal pathogen species. These effects were brought about by local tree diversity and were independent of host species proportion. In general, host species proportion had almost no effect on fungal species richness and infestation. Strong effects associated with the proportion of particular non-host neighbouring tree species on fungal species richness and infestation were, however, recorded. Synthesis. For the first time, we experimentally

  12. Genotypic diversity of an invasive plant species promotes litter decomposition and associated processes.

    PubMed

    Wang, Xiao-Yan; Miao, Yuan; Yu, Shuo; Chen, Xiao-Yong; Schmid, Bernhard

    2014-03-01

    Following studies that showed negative effects of species loss on ecosystem functioning, newer studies have started to investigate if similar consequences could result from reductions of genetic diversity within species. We tested the influence of genotypic richness and dissimilarity (plots containing one, three, six or 12 genotypes) in stands of the invasive plant Solidago canadensis in China on the decomposition of its leaf litter and associated soil animals over five monthly time intervals. We found that the logarithm of genotypic richness was positively linearly related to mass loss of C, N and P from the litter and to richness and abundance of soil animals on the litter samples. The mixing proportion of litter from two sites, but not genotypic dissimilarity of mixtures, had additional effects on measured variables. The litter diversity effects on soil animals were particularly strong under the most stressful conditions of hot weather in July: at this time richness and abundance of soil animals were higher in 12-genotype litter mixtures than even in the highest corresponding one-genotype litter. The litter diversity effects on decomposition were in part mediated by soil animals: the abundance of Acarina, when used as covariate in the analysis, fully explained the litter diversity effects on mass loss of N and P. Overall, our study shows that high genotypic richness of S. canadensis leaf litter positively affects richness and abundance of soil animals, which in turn accelerate litter decomposition and P release from litter.

  13. Extensive genetic diversity of Rickettsiales bacteria in multiple mosquito species

    PubMed Central

    Guo, Wen-Ping; Tian, Jun-Hua; Lin, Xian-Dan; Ni, Xue-Bing; Chen, Xiao-Ping; Liao, Yong; Yang, Si-Yuan; Dumler, J. Stephen; Holmes, Edward C.; Zhang, Yong-Zhen

    2016-01-01

    Rickettsiales are important zoonotic pathogens, causing severe disease in humans globally. Although mosquitoes are an important vector for diverse pathogens, with the exception of members of the genus Wolbachia little is known about their role in the transmission of Rickettsiales. Herein, Rickettsiales were identified by PCR in five species of mosquitoes (Anopheles sinensis, Armigeres subalbatus, Aedes albopictus, Culex quinquefasciatus and Cu. tritaeniorhynchus) collected from three Chinese provinces during 2014–2015. Subsequent phylogenetic analyses of the rrs, groEL and gltA genes revealed the presence of Anaplasma, Ehrlichia, Candidatus Neoehrlichia, and Rickettsia bacteria in mosquitoes, comprising nine documented and five tentative species bacteria, as well as three symbionts/endosybionts. In addition, bacteria were identified in mosquito eggs, larvae, and pupae sampled from aquatic environments. Hence, these data suggest that Rickettsiales circulate widely in mosquitoes in nature. Also of note was that Ehrlichia and Rickettsia bacteria were detected in each life stage of laboratory cultured mosquitoes, suggesting that Rickettsiales may be maintained in mosquitoes through both transstadial and transovarial transmission. In sum, these data indicate that mosquitoes may have played an important role in the transmission and evolution of Rickettsiales in nature. PMID:27934910

  14. Immigration rates and species niche characteristics affect the relationship between species richness and habitat heterogeneity in modeled meta-communities.

    PubMed

    Bar-Massada, Avi

    2015-01-01

    The positive relationship between habitat heterogeneity and species richness is a cornerstone of ecology. Recently, it was suggested that this relationship should be unimodal rather than linear due to a tradeoff between environmental heterogeneity and population sizes. Increased environmental heterogeneity will decrease effective habitat sizes, which in turn will increase the rate of local species extinctions. The occurrence of the unimodal richness-heterogeneity relationship at the habitat scale was confirmed in both empirical and theoretical studies. However, it is unclear whether it can occur at broader spatial scales, for meta-communities in diverse and patchy landscapes. Here, I used a spatially explicit meta-community model to quantify the roles of two species-level characteristics, niche width and immigration rates, on the type of the richness-heterogeneity relationship at the landscape scale. I found that both positive and unimodal richness-heterogeneity relationships can occur in meta-communities in patchy landscapes. The type of the relationship was affected by the interactions between inter-patch immigration rates and species' niche widths. Unimodal relationships were prominent in meta-communities comprising species with wide niches but low inter-patch immigration rates. In contrast, meta-communities consisting of species with narrow niches and high immigration rates exhibited positive relationships. Meta-communities comprising generalist species are therefore likely to exhibit unimodal richness-heterogeneity relationships as long as low immigration rates prevent rescue effects and patches are small. The richness-heterogeneity relationship at the landscape scale is dictated by species' niche widths and inter-patch immigration rates. These immigration rates, in turn, depend on the interaction between species dispersal capabilities and habitat connectivity, highlighting the roles of both species traits and landscape structure in generating the richness

  15. Intraspecific functional diversity of common species enhances community stability.

    PubMed

    Wood, Connor M; McKinney, Shawn T; Loftin, Cynthia S

    2017-03-01

    Common species are fundamental to the structure and function of their communities and may enhance community stability through intraspecific functional diversity (iFD). We measured among-habitat and within-habitat iFD (i.e., among- and within-plant community types) of two common small mammal species using stable isotopes and functional trait dendrograms, determined whether iFD was related to short-term population stability and small mammal community stability, and tested whether spatially explicit trait filters helped explain observed patterns of iFD. Southern red-backed voles (Myodes gapperi) had greater iFD than deer mice (Peromyscus maniculatus), both among habitats, and within the plant community in which they were most abundant (their "primary habitat"). Peromyscus maniculatus populations across habitats differed significantly between years and declined 78% in deciduous forests, their primary habitat, as did the overall deciduous forest small mammal community. Myodes gapperi populations were stable across habitats and within coniferous forest, their primary habitat, as was the coniferous forest small mammal community. Generalized linear models representing internal trait filters (e.g., competition), which increase within-habitat type iFD, best explained variation in M. gapperi diet, while models representing internal filters and external filters (e.g., climate), which suppress within-habitat iFD, best explained P. maniculatus diet. This supports the finding that M. gapperi had higher iFD than P. maniculatus and is consistent with the theory that internal trait filters are associated with higher iFD than external filters. Common species with high iFD can impart a stabilizing influence on their communities, information that can be important for conserving biodiversity under environmental change.

  16. Ecosystem engineering effects on species diversity across ecosystems: a meta-analysis.

    PubMed

    Romero, Gustavo Q; Gonçalves-Souza, Thiago; Vieira, Camila; Koricheva, Julia

    2015-08-01

    Ecosystem engineering is increasingly recognized as a relevant ecological driver of diversity and community composition. Although engineering impacts on the biota can vary from negative to positive, and from trivial to enormous, patterns and causes of variation in the magnitude of engineering effects across ecosystems and engineer types remain largely unknown. To elucidate the above patterns, we conducted a meta-analysis of 122 studies which explored effects of animal ecosystem engineers on species richness of other organisms in the community. The analysis revealed that the overall effect of ecosystem engineers on diversity is positive and corresponds to a 25% increase in species richness, indicating that ecosystem engineering is a facilitative process globally. Engineering effects were stronger in the tropics than at higher latitudes, likely because new or modified habitats provided by engineers in the tropics may help minimize competition and predation pressures on resident species. Within aquatic environments, engineering impacts were stronger in marine ecosystems (rocky shores) than in streams. In terrestrial ecosystems, engineers displayed stronger positive effects in arid environments (e.g. deserts). Ecosystem engineers that create new habitats or microhabitats had stronger effects than those that modify habitats or cause bioturbation. Invertebrate engineers and those with lower engineering persistence (<1 year) affected species richness more than vertebrate engineers which persisted for >1 year. Invertebrate species richness was particularly responsive to engineering impacts. This study is the first attempt to build an integrative framework of engineering effects on species diversity; it highlights the importance of considering latitude, habitat, engineering functional group, taxon and persistence of their effects in future theoretical and empirical studies.

  17. Multimillion-year climatic effects on palm species diversity in Africa.

    PubMed

    Blach-Overgaard, Anne; Kissling, W Daniel; Dransfield, John; Balslev, Henrik; Svenning, Jens-Christian

    2013-11-01

    Past climatic changes have caused extinction, speciation, and range dynamics, but assessing the influence of past multimillion-year climatic imprints on present-day biodiversity patterns remains challenging. We analyzed a new continental-scale data set to examine the importance of paleoclimatic effects on current gradients in African palm richness patterns. Using climate reconstructions from the late Miocene (-10 mya), the Pliocene (-3 mya), and the Last Glacial Maximum (0.021 mya), we found that African palm diversity patterns exhibit pronounced historical legacies related to long-term climate change. Notably, pre-Pleistocene paleoprecipitation variables differentially affected current diversity patterns of palms grouped by contrasting habitat requirements. Accounting for present-day environment, rain forest palms exhibit greater species richness in localities where Pliocene precipitation was relatively high, whereas open-habitat palms show higher species richness in areas of relatively low precipitation during the Miocene Epoch. Our results demonstrate that diversity-climate relationships among African palm species include multimillion-year lagged dynamics, i.e., with historical legacies persisting across much longer time periods than commonly recognized.

  18. Factors affecting Culicoides species composition and abundance in avian nests.

    PubMed

    Martínez-de la Puente, J; Merino, S; Tomás, G; Moreno, J; Morales, J; Lobato, E; Talavera, S; Sarto I Monteys, V

    2009-08-01

    Mechanisms affecting patterns of vector distribution among host individuals may influence the population and evolutionary dynamics of vectors, hosts and the parasites transmitted. We studied the role of different factors affecting the species composition and abundance of Culicoides found in nests of the blue tit (Cyanistes caeruleus). We identified 1531 females and 2 males of 7 different Culicoides species in nests, with C. simulator being the most abundant species, followed by C. kibunensis, C. festivipennis, C. segnis, C. truncorum, C. pictipennis and C. circumscriptus. We conducted a medicationxfumigation experiment randomly assigning bird's nests to different treatments, thereby generating groups of medicated and control pairs breeding in fumigated and control nests. Medicated pairs were injected with the anti-malarial drug Primaquine diluted in saline solution while control pairs were injected with saline solution. The fumigation treatment was carried out using insecticide solution or water for fumigated and control nests respectively. Brood size was the main factor associated with the abundance of biting midges probably because more nestlings may produce higher quantities of vector attractants. In addition, birds medicated against haemoparasites breeding in non-fumigated nests supported a higher abundance of C. festivipennis than the rest of the groups. Also, we found that the fumigation treatment reduced the abundance of engorged Culicoides in both medicated and control nests, thus indicating a reduction of feeding success produced by the insecticide. These results represent the first evidence for the role of different factors in affecting the Culicoides infracommunity in wild avian nests.

  19. Root-Zone Glyphosate Exposure Adversely Affects Two Ditch Species

    PubMed Central

    Saunders, Lyndsay E.; Koontz, Melissa B.; Pezeshki, Reza

    2013-01-01

    Glyphosate, one of the most applied herbicides globally, has been extensively studied for its effects on non-target organisms. In the field, following precipitation, glyphosate runs off into agricultural ditches where it infiltrates into the soil and thus may encounter the roots of vegetation. These edge-of-field ditches share many characteristics with wetlands, including the ability to reduce loads of anthropogenic chemicals through uptake, transformation, and retention. Different species within the ditches may have a differential sensitivity to exposure of the root zone to glyphosate, contributing to patterns of abundance of ruderal species. The present laboratory experiment investigated whether two species commonly found in agricultural ditches in southcentral United States were affected by root zone glyphosate in a dose-dependent manner, with the objective of identifying a sublethal concentration threshold. The root zone of individuals of Polygonum hydropiperoides and Panicum hemitomon were exposed to four concentrations of glyphosate. Leaf chlorophyll content was measured, and the ratio of aboveground biomass to belowground biomass and survival were quantified. The findings from this study showed that root zone glyphosate exposure negatively affected both species including dose-dependent reductions in chlorophyll content. P. hydropiperdoides showed the greatest negative response, with decreased belowground biomass allocation and total mortality at the highest concentrations tested. PMID:24833234

  20. Above- and below-ground effects of plant diversity depend on species origin: an experimental test with multiple invaders.

    PubMed

    Kuebbing, Sara E; Classen, Aimée T; Sanders, Nathan J; Simberloff, Daniel

    2015-11-01

    Although many plant communities are invaded by multiple nonnative species, we have limited information on how a species' origin affects ecosystem function. We tested how differences in species richness and origin affect productivity and seedling establishment. We created phylogenetically paired native and nonnative plant communities in a glasshouse experiment to test diversity-productivity relationships and responsible mechanisms (i.e. selection or complementarity effects). Additionally, we tested how productivity and associated mechanisms influenced seedling establishment. We used diversity-interaction models to describe how species' interactions influenced diversity-productivity relationships. Communities with more species had higher total biomass than did monoculture communities, but native and nonnative communities diverged in root : shoot ratios and the mechanism responsible for increased productivity: positive selection effect in nonnative communities and positive complementarity effect in native communities. Seedling establishment was 46% lower in nonnative than in native communities and was correlated with the average selection effect. Interspecific interactions contributed to productivity patterns, but the specific types of interactions differed between native and nonnative communities. These results reinforce findings that the diversity-productivity mechanisms in native and nonnative communities differ and are the first to show that these mechanisms can influence seedling establishment and that different types of interactions influence diversity-productivity relationships.

  1. Genetic diversity affects colony survivorship in commercial honey bee colonies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Honey bee (Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirica...

  2. Grazing Intensity Does Not Affect Plant Diversity in Shortgrass Steppe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Responses of livestock gain and forage production to grazing intensity in shortgrass steppe are well-established, but effects on basal cover and plant diversity are less so. A long-term grazing intensity study was initiated on shortgrass steppe at the Central Plains Experimental Range (USDA-Agricult...

  3. How grazing and soil quality affect native and exotic plant diversity in Rocky Mountain grasslands

    USGS Publications Warehouse

    Stohlgren, T.J.; Schell, L.D.; Vanden, Heuvel B.

    1999-01-01

    (adjacent and distant 1000-m2 plots) in the same vegetation type overlapped just 48.6 ?? 3.6%, and the ungrazed plots and distant grazed plots overlapped 49.4 ?? 3.6%. Differences in vegetation and soils between grazed and ungrazed sites were minimal in most cases, but soil characteristics and elevation were strongly correlated with native and exotic plant diversity in the study region. For the 78 1000-m2 plots, 59.4% of the variance in total species richness was explained by percentage of silt (coefficient = 0.647, t = 5.107, P < 0.001), elevation (coefficient = 0.012, t = 5.084, P < 0.001), and total foliar cover (coefficient = 0.110, t = 2.104, P < 0.039). Only 12.8% of the variance in exotic species cover (log10cover) was explained by percentage of clay (coefficient = -0.011, t = -2.878, P < 0.005), native species richness (coefficient = -0.011, t = -2.156, P < 0.034), and log10N (coefficient = 2.827, t = 1.860, P < 0.067). Native species cover and exotic species richness and frequency were also significantly positively correlated with percentage of soil N at the 1000-m2 plot scale. Our research led to five broad generalizations about current levels of grazing in these Rocky Mountain grasslands: (1) grazing probably has little effect on native species richness at landscape scales; (2) grazing probably has little effect on the accelerated spread of most exotic plant species at landscape scales; (3) grazing affects local plant species and life-form composition and cover, but spatial variation is considerable; (4) soil characteristics, climate, and disturbances may have a greater effect on plant species diversity than do current levels of grazing; and (5) few plant species show consistent, directional responses to grazing or cessation of grazing.

  4. Genetic diversity affects colony survivorship in commercial honey bee colonies

    NASA Astrophysics Data System (ADS)

    Tarpy, David R.; vanEngelsdorp, Dennis; Pettis, Jeffrey S.

    2013-08-01

    Honey bee ( Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency ( m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e ≤ 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.

  5. Genetic diversity affects colony survivorship in commercial honey bee colonies.

    PubMed

    Tarpy, David R; Vanengelsdorp, Dennis; Pettis, Jeffrey S

    2013-08-01

    Honey bee (Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency (m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e  ≤ 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e  > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.

  6. Spatio-temporal change in the relationship between habitat heterogeneity and species diversity

    NASA Astrophysics Data System (ADS)

    González-Megías, Adela; Gómez, José María; Sánchez-Piñero, Francisco

    2011-05-01

    Beta diversity plays an important role in mediating species diversity and therefore improves our understanding of species-diversity patterns. One principal theoretical framework exists for such patterns, the "habitat-heterogeneity hypothesis (HHH)", which postulates a positive relationship between species diversity and habitat heterogeneity. Although HHH is widely accepted, spatial and temporal variability has been found in the relationship between diversity and heterogeneity. Species turnover has been proposed as the main factor explaining spatial variation in the relationship between species diversity and habitat heterogeneity. In this study, we tested the role of species turnover in explaining spatial and temporal variability on diversity-heterogeneity relationship in a Mediterranean ecosystem, using beetles as the study organisms. A hierarchical design including different habitats and years was used to test our hypothesis. Using different multivariate analyses, we tested for spatial and temporal variability in beta diversity, and in the beetle diversity-heterogeneity relationship using two diversity indices. Our study showed that beetle composition changed spatially and temporally, although temporal change was evident only between sampling periods but not between years. Notably, there was spatial and temporal change in the relationship between habitat descriptors and beetle diversity. Nevertheless, there was no correlation between the changes in beetle composition with the changes in the habitat-heterogeneity relationships. In this Mediterranean system, spatial and temporal changes in the diversity-heterogeneity relationships cannot be predicted by species turnover, and other mechanisms need to be explored to satisfactorily explain this variability.

  7. Quantifying Species Diversity with a DNA Barcoding-Based Method: Tibetan Moth Species (Noctuidae) on the Qinghai-Tibetan Plateau

    PubMed Central

    Jin, Qian; Han, Huilin; Hu, XiMin; Li, XinHai; Zhu, ChaoDong; Ho, Simon Y. W.; Ward, Robert D.; Zhang, Ai-bing

    2013-01-01

    With the ongoing loss of biodiversity, there is a great need for fast and effective ways to assess species richness and diversity: DNA barcoding provides a powerful new tool for this. We investigated this approach by focusing on the Tibetan plateau, which is one of the world's top biodiversity hotspots. There have been few studies of its invertebrates, although they constitute the vast majority of the region's diversity. Here we investigated species diversity of the lepidopteran family Noctuidae, across different environmental gradients, using measurements based on traditional morphology as well as on DNA barcoding. The COI barcode showed an average interspecific K2P distance of , which is about four times larger than the mean intraspecific distance (). Using six diversity indices, we did not detect any significant differences in estimated species diversity between measurements based on traditional morphology and on DNA barcoding. Furthermore, we found strong positive correlations between them, indicating that barcode-based measures of species diversity can serve as a good surrogate for morphology-based measures in most situations tested. Eastern communities were found to have significantly higher diversity than Western ones. Among 22 environmental factors tested, we found that three (precipitation of driest month, precipitation of driest quarter, and precipitation of coldest quarter) were significantly correlated with species diversity. Our results indicate that these factors could be the key ecological factors influencing the species diversity of the lepidopteran family Noctuidae on the Tibetan plateau. PMID:23741330

  8. Woody species diversity in forest plantations in a mountainous region of Beijing, China: effects of sampling scale and species selection.

    PubMed

    Zhang, Yuxin; Zhang, Shuang; Ma, Keming; Fu, Bojie; Anand, Madhur

    2014-01-01

    The role of forest plantations in biodiversity conservation has gained more attention in recent years. However, most work on evaluating the diversity of forest plantations focuses only on one spatial scale; thus, we examined the effects of sampling scale on diversity in forest plantations. We designed a hierarchical sampling strategy to collect data on woody species diversity in planted pine (Pinus tabuliformis Carr.), planted larch (Larix principis-rupprechtii Mayr.), and natural secondary deciduous broadleaf forests in a mountainous region of Beijing, China. Additive diversity partition analysis showed that, compared to natural forests, the planted pine forests had a different woody species diversity partitioning pattern at multi-scales (except the Simpson diversity in the regeneration layer), while the larch plantations did not show multi-scale diversity partitioning patterns that were obviously different from those in the natural secondary broadleaf forest. Compare to the natural secondary broadleaf forests, the effects of planted pine forests on woody species diversity are dependent on the sampling scale and layers selected for analysis. Diversity in the planted larch forest, however, was not significantly different from that in the natural forest for all diversity components at all sampling levels. Our work demonstrated that the species selected for afforestation and the sampling scales selected for data analysis alter the conclusions on the levels of diversity supported by plantations. We suggest that a wide range of scales should be considered in the evaluation of the role of forest plantations on biodiversity conservation.

  9. Species identity and neighbor size surpass the impact of tree species diversity on productivity in experimental broad-leaved tree sapling assemblages under dry and moist conditions

    PubMed Central

    Lübbe, Torben; Schuldt, Bernhard; Leuschner, Christoph

    2015-01-01

    Species diversity may increase the productivity of tree communities through complementarity (CE) and/or selection effects (SE), but it is not well known how this relationship changes under water limitation. We tested the stress-gradient hypothesis, which predicts that resource use complementarity and facilitation are more important under water-limited conditions. We conducted a growth experiment with saplings of five temperate broad-leaved tree species that were grown in assemblages of variable diversity (1, 3, or 5 species) and species composition under ample and limited water supply to examine effects of species richness and species identity on stand- and tree-level productivity. Special attention was paid to effects of neighbor identity on the growth of target trees in mixture as compared to growth in monoculture. Stand productivity was strongly influenced by species identity while a net biodiversity effect (NE) was significant in the moist treatment (mostly assignable to CE) but of minor importance. The growth performance of some of the species in the mixtures was affected by tree neighborhood characteristics with neighbor size likely being more important than neighbor species identity. Diversity and neighbor identity effects visible in the moist treatment mostly disappeared in the dry treatment, disproving the stress-gradient hypothesis. The mixtures were similarly sensitive to drought-induced growth reduction as the monocultures, which may relate to the decreased CE on growth upon drought in the mixtures. PMID:26579136

  10. Landscape corridors can increase invasion by an exotic species and reduce diversity of native species.

    SciTech Connect

    Resasco, Julian; et al,

    2014-04-01

    Abstract. Landscape corridors are commonly used to mitigate negative effects of habitat fragmentation, but concerns persist that they may facilitate the spread of invasive species. In a replicated landscape experiment of open habitat, we measured effects of corridors on the invasive fire ant, Solenopsis invicta, and native ants. Fire ants have two social forms: polygyne, which tend to disperse poorly but establish at high densities, and monogyne, which disperse widely but establish at lower densities. In landscapes dominated by polygyne fire ants, fire ant abundance was higher and native ant diversity was lower in habitat patches connected by corridors than in unconnected patches. Conversely, in landscapes dominated by monogyne fire ants, connectivity had no influence on fire ant abundance and native ant diversity. Polygyne fire ants dominated recently created landscapes, suggesting that these corridor effects may be transient. Our results suggest that corridors can facilitate invasion and they highlight the importance of considering species’ traits when assessing corridor utility.

  11. The Relationship between Species Diversity and Genetic Structure in the Rare Picea chihuahuana Tree Species Community, Mexico

    PubMed Central

    Simental-Rodríguez, Sergio Leonel; Quiñones-Pérez, Carmen Zulema; Moya, Daniel; Hernández-Tecles, Enrique; López-Sánchez, Carlos Antonio; Wehenkel, Christian

    2014-01-01

    Species diversity and genetic diversity, the most basic elements of biodiversity, have long been treated as separate topics, although populations evolve within a community context. Recent studies on community genetics and ecology have suggested that genetic diversity is not completely independent of species diversity. The Mexican Picea chihuahuana Martínez is an endemic species listed as “Endangered” on the Red List. Forty populations of Chihuahua spruce have been identified. This species is often associated with tree species of eight genera in gallery forests. This rare Picea chihuahuana tree community covers an area no more than 300 ha and has been subject of several studies involving different topics such as ecology, genetic structure and climate change. The overall aim of these studies was to obtain a dataset for developing management tools to help decision makers implement preservation and conservation strategies. However, this unique forest tree community may also represent an excellent subject for helping us to understand the interplay between ecological and evolutionary processes in determining community structure and dynamics. The AFLP technique and species composition data were used together to test the hypothesis that species diversity is related to the adaptive genetic structure of some dominant tree species (Picea chihuahuana, Pinus strobiformis, Pseudotsuga menziesii and Populus tremuloides) of the Picea chihuahuana tree community at fourteen locations. The Hill numbers were used as a diversity measure. The results revealed a significant correlation between tree species diversity and genetic structure in Populus tremuloides. Because the relationship between the two levels of diversity was found to be positive for the putative adaptive AFLP detected, genetic and species structures of the tree community were possibly simultaneously adapted to a combination of ecological or environmental factors. The present findings indicate that interactions

  12. The relationship between species diversity and genetic structure in the rare Picea chihuahuana tree species community, Mexico.

    PubMed

    Simental-Rodríguez, Sergio Leonel; Quiñones-Pérez, Carmen Zulema; Moya, Daniel; Hernández-Tecles, Enrique; López-Sánchez, Carlos Antonio; Wehenkel, Christian

    2014-01-01

    Species diversity and genetic diversity, the most basic elements of biodiversity, have long been treated as separate topics, although populations evolve within a community context. Recent studies on community genetics and ecology have suggested that genetic diversity is not completely independent of species diversity. The Mexican Picea chihuahuana Martínez is an endemic species listed as "Endangered" on the Red List. Forty populations of Chihuahua spruce have been identified. This species is often associated with tree species of eight genera in gallery forests. This rare Picea chihuahuana tree community covers an area no more than 300 ha and has been subject of several studies involving different topics such as ecology, genetic structure and climate change. The overall aim of these studies was to obtain a dataset for developing management tools to help decision makers implement preservation and conservation strategies. However, this unique forest tree community may also represent an excellent subject for helping us to understand the interplay between ecological and evolutionary processes in determining community structure and dynamics. The AFLP technique and species composition data were used together to test the hypothesis that species diversity is related to the adaptive genetic structure of some dominant tree species (Picea chihuahuana, Pinus strobiformis, Pseudotsuga menziesii and Populus tremuloides) of the Picea chihuahuana tree community at fourteen locations. The Hill numbers were used as a diversity measure. The results revealed a significant correlation between tree species diversity and genetic structure in Populus tremuloides. Because the relationship between the two levels of diversity was found to be positive for the putative adaptive AFLP detected, genetic and species structures of the tree community were possibly simultaneously adapted to a combination of ecological or environmental factors. The present findings indicate that interactions between

  13. Avian Species and Functional Diversity in Agricultural Landscapes: Does Landscape Heterogeneity Matter?

    PubMed Central

    2017-01-01

    While the positive relationship between avian diversity and habitat heterogeneity is widely accepted, it is primarily based on observed species richness without accounting for imperfect detection. Other facets of diversity such as functional diversity are also rarely explored. We investigated the avian diversity-landscape heterogeneity relationship in agricultural landscapes by considering two aspects of diversity: taxonomic diversity (species richness) estimated from a multi-species dynamic occupancy model, and functional diversity (functional evenness [FEve] and divergence [FDiv]) based on traits of occurring species. We also assessed how agricultural lands enrolled in a conservation program managed on behalf of declining early successional bird species (hereafter CP38 fields, an agri-environment scheme) influenced avian diversity. We analyzed breeding bird data collected at CP38 fields in Mississippi, USA, during 2010–2012, and two principal components of environmental variables: a gradient of heterogeneity (Shannon’s landscape diversity index) and of the amount of CP38 fields (percent cover of CP38 fields; CP38). FEve did not show significant responses to environmental variables, whereas FDiv responded positively to heterogeneity and negatively to CP38. However, most FDiv values did not significantly differ from random expectations along an environmental gradient. When there was a significant difference, FDiv was lower than that expected. Unlike functional diversity, species richness showed a clear pattern. Species richness increased with increasing landscape heterogeneity but decreased with increasing amounts of CP38 fields. Only one species responded negatively to heterogeneity and positively to CP38. Our results suggest that the relationships between avian diversity and landscape heterogeneity may vary depending on the aspect of diversity considered: strong positive effects of heterogeneity on taxonomic diversity, but weakly positive or non

  14. Avian Species and Functional Diversity in Agricultural Landscapes: Does Landscape Heterogeneity Matter?

    PubMed

    Lee, Myung-Bok; Martin, James A

    2017-01-01

    While the positive relationship between avian diversity and habitat heterogeneity is widely accepted, it is primarily based on observed species richness without accounting for imperfect detection. Other facets of diversity such as functional diversity are also rarely explored. We investigated the avian diversity-landscape heterogeneity relationship in agricultural landscapes by considering two aspects of diversity: taxonomic diversity (species richness) estimated from a multi-species dynamic occupancy model, and functional diversity (functional evenness [FEve] and divergence [FDiv]) based on traits of occurring species. We also assessed how agricultural lands enrolled in a conservation program managed on behalf of declining early successional bird species (hereafter CP38 fields, an agri-environment scheme) influenced avian diversity. We analyzed breeding bird data collected at CP38 fields in Mississippi, USA, during 2010-2012, and two principal components of environmental variables: a gradient of heterogeneity (Shannon's landscape diversity index) and of the amount of CP38 fields (percent cover of CP38 fields; CP38). FEve did not show significant responses to environmental variables, whereas FDiv responded positively to heterogeneity and negatively to CP38. However, most FDiv values did not significantly differ from random expectations along an environmental gradient. When there was a significant difference, FDiv was lower than that expected. Unlike functional diversity, species richness showed a clear pattern. Species richness increased with increasing landscape heterogeneity but decreased with increasing amounts of CP38 fields. Only one species responded negatively to heterogeneity and positively to CP38. Our results suggest that the relationships between avian diversity and landscape heterogeneity may vary depending on the aspect of diversity considered: strong positive effects of heterogeneity on taxonomic diversity, but weakly positive or non

  15. Genetic diversity affects the strength of population regulation in a marine fish.

    PubMed

    Johnson, D W; Freiwald, J; Bernardi, G

    2016-03-01

    Variation is an essential feature of biological populations, yet much of ecological theory treats individuals as though they are identical. This simplifying assumption is often justified by the perception that variation among individuals does not have significant effects on the dynamics of whole populations. However, this perception may be skewed by a historic focus on studying single populations. A true evaluation of the extent to which among-individual variation affects the dynamics of populations requires the study of multiple populations. In this study, we examined variation in the dynamics of populations of a live-bearing, marine fish (black surfperch; Embiotoca jacksoni). In collaboration with an organization of citizen scientists (Reef Check California), we were able to examine the dynamics of eight populations that were distributed throughout approximately 700 km of coastline, a distance that encompasses much of this species' range. We hypothesized that genetic variation within a local population would be related to the intensity of competition and to the strength of population regulation. To test this hypothesis, we examined whether genetic diversity (measured by the diversity of mitochondrial DNA haplotypes) was related to the strength of population regulation. Low-diversity populations experienced strong density dependence in population growth rates and population sizes were regulated much more tightly than they were in high-diversity populations. Mechanisms that contributed to this pattern include links between genetic diversity, habitat use, and spatial crowding. On average, low-diversity populations used less of the available habitat and exhibited greater spatial clustering (and more intense competition) for a given level of density (measured at the scale of the reef). Although the populations we studied also varied with respect to exogenous characteristics (habitat complexity, densities of predators, and interspecific competitors), none of these

  16. Phylogenetic diversity of Rhizobium strains nodulating diverse legume species growing in Ethiopia.

    PubMed

    Degefu, Tulu; Wolde-meskel, Endalkachew; Frostegård, Åsa

    2013-06-01

    The taxonomic diversity of thirty-seven Rhizobium strains, isolated from nodules of leguminous trees and herbs growing in Ethiopia, was studied using multilocus sequence analyses (MLSA) of six core and two symbiosis-related genes. Phylogenetic analysis based on the 16S rRNA gene grouped them into five clusters related to nine Rhizobium reference species (99-100% sequence similarity). In addition, two test strains occupied their own independent branches on the phylogenetic tree (AC86a2 along with R. tibeticum; 99.1% similarity and AC100b along with R. multihospitium; 99.5% similarity). One strain from Milletia ferruginea was closely related (>99%) to the genus Shinella, further corroborating earlier findings that nitrogen-fixing bacteria are distributed among phylogenetically unrelated taxa. Sequence analyses of five housekeeping genes also separated the strains into five well-supported clusters, three of which grouped with previously studied Ethiopian common bean rhizobia. Three of the five clusters could potentially be described into new species. Based on the nifH genes, most of the test strains from crop legumes were closely related to several strains of Ethiopian common bean rhizobia and other symbionts of bean plants (R. etli and R. gallicum sv. phaseoli). The grouping of the test strains based on the symbiosis-related genes was not in agreement with the housekeeping genes, signifying differences in their evolutionary history. Our earlier studies revealing a large diversity of Mesorhizobium and Ensifer microsymbionts isolated from Ethiopian legumes, together with the results from the present analysis of Rhizobium strains, suggest that this region might be a potential hotspot for rhizobial biodiversity.

  17. Cryptic diversity in a fig wasp community-morphologically differentiated species are sympatric but cryptic species are parapatric.

    PubMed

    Darwell, C T; Cook, J M

    2017-02-01

    A key debate in ecology centres on the relative importance of niche and neutral processes in determining patterns of community assembly with particular focus on whether ecologically similar species with similar functional traits are able to coexist. Meanwhile, molecular studies are increasingly revealing morphologically indistinguishable cryptic species with presumably similar ecological roles. Determining the geographic distribution of such cryptic species provides opportunities to contrast predictions of niche vs. neutral models. Discovery of sympatric cryptic species increases alpha diversity and supports neutral models, while documentation of allopatric/parapatric cryptic species increases beta diversity and supports niche models. We tested these predictions using morphological and molecular data, coupled with environmental niche modelling analyses, of a fig wasp community along its 2700-km latitudinal range. Molecular methods increased previous species diversity estimates from eight to eleven species, revealing morphologically cryptic species in each of the four wasp genera studied. Congeneric species pairs that were differentiated by a key morphological functional trait (ovipositor length) coexisted sympatrically over large areas. In contrast, morphologically similar species, with similar ovipositor lengths, typically showed parapatric ranges with very little overlap. Despite parapatric ranges, environmental niche models of cryptic congeneric pairs indicate large regions of potential sympatry, suggesting that competitive processes are important in determining the distributions of ecologically similar species. Niche processes appear to structure this insect community, and cryptic diversity may typically contribute mostly to beta rather than alpha diversity.

  18. GLK gene pairs regulate chloroplast development in diverse plant species.

    PubMed

    Fitter, David W; Martin, David J; Copley, Martin J; Scotland, Robert W; Langdale, Jane A

    2002-09-01

    Chloroplast biogenesis is a complex process that requires close co-ordination between two genomes. Many of the proteins that accumulate in the chloroplast are encoded by the nuclear genome, and the developmental transition from proplastid to chloroplast is regulated by nuclear genes. Here we show that a pair of Golden 2-like (GLK) genes regulates chloroplast development in Arabidopsis. The GLK proteins are members of the GARP superfamily of transcription factors, and phylogenetic analysis demonstrates that the maize, rice and Arabidopsis GLK gene pairs comprise a distinct group within the GARP superfamily. Further phylogenetic analysis suggests that the gene pairs arose through separate duplication events in the monocot and dicot lineages. As in rice, AtGLK1 and AtGLK2 are expressed in partially overlapping domains in photosynthetic tissue. Insertion mutants demonstrate that this expression pattern reflects a degree of functional redundancy as single mutants display normal phenotypes in most photosynthetic tissues. However, double mutants are pale green in all photosynthetic tissues and chloroplasts exhibit a reduction in granal thylakoids. Products of several genes involved in light harvesting also accumulate at reduced levels in double mutant chloroplasts. GLK genes therefore regulate chloroplast development in diverse plant species.

  19. Diverse Thermus species inhabit a single hot spring microbial mat

    NASA Technical Reports Server (NTRS)

    Nold, S. C.; Ward, D. M.

    1995-01-01

    Through an effort to characterize aerobic chemoorganotrophic bacteria in the Octopus Spring cyano-bacterial mat community, we cultivated four Thermus isolates with unique 16S rRNA sequences. Isolates clustered within existing Thermus clades, including those containing Thermus ruber, Thermus aquaticus, and a subgroup closely related to T. aquaticus. One Octopus Spring isolate is nearly identical (99.9% similar) to isolates from Iceland, and two others are closely related to a T. ruber isolated from Russia. Octopus Spring isolates similar to T. aquaticus and T. ruber exhibited optimal growth rates at high (65-70 degrees C) and low (50 degrees C) temperatures, respectively, with the most abundant species best adapted to the temperature of the habitat (50-55 degrees C). Our results display a diversity of Thermus genotypes defined by 16S rRNA within one hot spring microbial community. We suggest that specialization to temperature and perhaps other local environmental features controls the abundance of Thermus populations.

  20. Isolation of Geobacter species from diverse sedimentary environments

    USGS Publications Warehouse

    Coaxes, J.D.; Phillips, E.J.P.; Lonergan, D.J.; Jenter, H.; Lovley, D.R.

    1996-01-01

    In an attempt to better understand the microorganisms responsible for Fe(III) reduction in sedimentary environments, Fe(III)-reducing microorganisms were enriched for and isolated from freshwater aquatic sediments, a pristine deep aquifer, and a petroleum-contaminated shallow aquifer. Enrichments were initiated with acetate or toluene as the electron donor and Fe(III) as the electron acceptor. Isolations were made with acetate or benzoate. Five new strains which could obtain energy for growth by dissimilatory Fe(III) reduction were isolated. All five isolates are gram- negative strict anaerobes which grow with acetate as the electron donor and Fe(III) as the electron acceptor. Analysis of the 16S rRNA sequence of the isolated organisms demonstrated that they all belonged to the genus Geobacter in the delta subdivision of the Proteobacteria. Unlike the type strain, Geobacter metallireducens, three of the five isolates could use H2 as an electron donor fur Fe(III) reduction. The deep subsurface isolate is the first Fe(III) reducer shown to completely oxidize lactate to carbon dioxide, while one of the freshwater sediment isolates is only the second Fe(III) reducer known that can oxidize toluene. The isolation of these organisms demonstrates that Geobacter species are widely distributed in a diversity of sedimentary environments in which Fe(III) reduction is an important process.

  1. Phylogenetic congruence of lichenised fungi and algae is affected by spatial scale and taxonomic diversity.

    PubMed

    Buckley, Hannah L; Rafat, Arash; Ridden, Johnathon D; Cruickshank, Robert H; Ridgway, Hayley J; Paterson, Adrian M

    2014-01-01

    The role of species' interactions in structuring biological communities remains unclear. Mutualistic symbioses, involving close positive interactions between two distinct organismal lineages, provide an excellent means to explore the roles of both evolutionary and ecological processes in determining how positive interactions affect community structure. In this study, we investigate patterns of co-diversification between fungi and algae for a range of New Zealand lichens at the community, genus, and species levels and explore explanations for possible patterns related to spatial scale and pattern, taxonomic diversity of the lichens considered, and the level sampling replication. We assembled six independent datasets to compare patterns in phylogenetic congruence with varied spatial extent of sampling, taxonomic diversity and level of specimen replication. For each dataset, we used the DNA sequences from the ITS regions of both the fungal and algal genomes from lichen specimens to produce genetic distance matrices. Phylogenetic congruence between fungi and algae was quantified using distance-based redundancy analysis and we used geographic distance matrices in Moran's eigenvector mapping and variance partitioning to evaluate the effects of spatial variation on the quantification of phylogenetic congruence. Phylogenetic congruence was highly significant for all datasets and a large proportion of variance in both algal and fungal genetic distances was explained by partner genetic variation. Spatial variables, primarily at large and intermediate scales, were also important for explaining genetic diversity patterns in all datasets. Interestingly, spatial structuring was stronger for fungal than algal genetic variation. As the spatial extent of the samples increased, so too did the proportion of explained variation that was shared between the spatial variables and the partners' genetic variation. Different lichen taxa showed some variation in their phylogenetic congruence

  2. RESOURCE-BASED NICHES PROVIDE A BASIS FOR PLANT SPECIES DIVERSITY AND DOMINANCE IN ARCTIC TUNDRA

    EPA Science Inventory

    Ecologists have long been intrigued by the ways co-occurring species divide limiting resources, and have proposed that such resource partitioning, or niche differentiation, promotes species diversity by reducing competition. Although resource partitioning is an important determi...

  3. Patterns of Tree Species Diversity in Relation to Climatic Factors on the Sierra Madre Occidental, Mexico

    PubMed Central

    Silva-Flores, Ramón; Pérez-Verdín, Gustavo; Wehenkel, Christian

    2014-01-01

    Biological diversity can be defined as variability among living organisms from all sources, including terrestrial organisms, marine and other aquatic ecosystems, and the ecological complexes which they are part of. This includes diversity within species, between species, and of ecosystems. Numerous diversity indices combine richness and evenness in a single expression, and several climate-based explanations have been proposed to explain broad-scale diversity patterns. However, climate-based water-energy dynamics appears to be an essential factor that determines patterns of diversity. The Mexican Sierra Madre Occidental occupies an area of about 29 million hectares and is located between the Neotropical and Holarctic ecozones. It shelters a high diversity of flora, including 24 different species of Pinus (ca. 22% on the whole), 54 species of Quercus (ca. 9–14%), 7 species of Arbutus (ca. 50%) and many other trees species. The objectives of this study were to model how tree species diversity is related to climatic and geographic factors and stand density and to test the Metabolic Theory, Productivity-Diversity Hypothesis, Physiological Tolerance Hypothesis, Mid-Domain Effect, and the Water-Energy Dynamic Theory on the Sierra Madre Occidental, Durango. The results supported the Productivity-Diversity Hypothesis, Physiological Tolerance Hypothesis and Water-Energy Dynamic Theory, but not the Mid-Domain Effect or Metabolic Theory. The annual aridity index was the variable most closely related to the diversity indices analyzed. Contemporary climate was found to have moderate to strong effects on the minimum, median and maximum tree species diversity. Because water-energy dynamics provided a satisfactory explanation for the patterns of minimum, median and maximum diversity, an understanding of this factor is critical to future biodiversity research. Quantile regression of the data showed that the three diversity parameters of tree species are generally higher in cold

  4. Dominant species, rather than diversity, regulates temporal stability of plant communities.

    PubMed

    Sasaki, Takehiro; Lauenroth, William K

    2011-07-01

    A growing body of empirical evidence suggests that the temporal stability of communities typically increases with diversity. The counterview to this is that dominant species, rather than diversity itself, might regulate temporal stability. However, empirical studies that have explicitly examined the relative importance of diversity and dominant species in maintaining community stability have yielded few clear-cut patterns. Here, using a long-term data set, we examined the relative importance of changes in diversity components and dominance hierarchy following the removal of a dominant C4 grass, Bouteloua gracilis, in stabilizing plant communities. We also examined the relationships between the variables of diversity and dominance hierarchy and the statistical components of temporal stability. We found a significant negative relationship between temporal stability and species richness, number of rare species, and relative abundance of rare species, whereas a significant positive relationship existed between temporal stability and relative abundance of the dominant species. Variances and covariances summed over all species significantly increased with increasing species richness, whereas they significantly decreased with increasing relative abundance of dominant species. We showed that temporal stability in a shortgrass steppe plant community was controlled by dominant species rather than by diversity itself. The generality of diversity-stability relationships might be restricted by the dynamics of dominant species, especially when they have characteristics that contribute to stability in highly stochastic systems. A clear implication is that dominance hierarchies and their changes might be among the most important ecological components to consider in managing communities to maintain ecosystem functioning.

  5. Anthropogenic disturbance and landscape patterns affect diversity patterns of aquatic benthic macroinvertebrates

    USGS Publications Warehouse

    Maloney, K.O.; Munguia, P.; Mitchell, R.M.

    2011-01-01

    Measures of species diversity are valuable tools for assessing ecosystem health. However, most assessments have addressed individual sites or regional taxon pools, with few comparisons of differences in assemblage composition within or among regions. We examined the effects of anthropogenic disturbance on local richness (?? diversity) and species turnover (?? diversity) of benthic macroinvertebrates in small streams within and between 2 ecoregions (Northern Piedmont vs Southeastern Plains ecoregions) of the Patuxent River basin (Maryland, USA). Regional species pools did not differ between ecoregions (Piedmont = 166 taxa, Plains = 162 taxa); however, local richness was lower in the Plains (mean = 17.4 taxa/stream) compared to the Piedmont (mean = 22.2 taxa/stream). When streams were categorized into disturbance classes (low, medium, high), local richness did not differ among categories for either region. However, at the entire Patuxent scale, local richness tended to decrease with % impervious cover in a watershed. Variation in species composition, analyzed with nonmetric multidimensional scaling (nMDS), differed significantly between Piedmont and Plains streams, and Plains streams had higher ?? diversity than Piedmont streams. When partitioned by disturbance category and region, ?? diversity differed only between the low-disturbance sites (Plains > Piedmont). Relationships between ?? diversity and environmental variables varied by region. ?? diversity was weakly negatively related to % row-crop cover in a watershed at the entire Patuxent scale. For the Piedmont region, ?? diversity tended to decrease with % forest, % pasture, and % row-crop cover in a watershed. Such negative relationships between ?? diversity and landuse variables indicate a possible homogenization of the assemblage. The incongruence between diversity measures and composition measures, together with differing effects of anthropogenic land use on ?? diversity in the 2 regions, emphasizes the need

  6. Factors affecting the efficient transformation of Colletotrichum species

    USGS Publications Warehouse

    Redman, Regina S.; Rodriguez, Rusty J.

    1994-01-01

    Factors affecting the efficient transformation of Colletotrichum species. Experimental Mycology, 18, 230-246. Twelve isolates representing four species of Colletotrichum were transformed either by enhanced protoplast, restriction enzyme-mediated integration (REMI), or electroporation-mediated protocols. The enhanced protoplast transformation protocol resulted in 100- and 50-fold increases in the transformation efficiencies of Colletotrichum lindemuthianum and C. magna , respectively. REMI transformation involved the use of Hin dIII and vector DNA linearized with HindIII to increase the number of integration events and potential gene disruptions in the fungal genome. Combining the enhanced protoplast and the REMI protocols resulted in a 22-fold increase in the number of hygromycin/nystatin-resistant mutants in C. lindemuthianum . Electroporation-mediated transformation was performed on mycelial fragments and spores of four Colletotrichum species, resulting in efficiencies of up to 1000 transformants/μg DNA. The pHA1.3 vector which confers hygromycin resistance contains telomeric sequences from Fusarium oxysporum , transforms by autonomous replication and genomic integration, and was essential for elevated transformation efficiencies of 100 to 10,000 transformants/μg DNA. Modifications of pHA1.3 occurred during bacterial amplification and post fungal transformation resulting in plasmids capable of significantly elevated transformation efficiencies in C. lindemuthianum.

  7. Tree species identity and functional traits but not species richness affect interrill erosion processes in young subtropical forests

    NASA Astrophysics Data System (ADS)

    Seitz, S.; Goebes, P.; Song, Z.; Bruelheide, H.; Härdtle, W.; Kühn, P.; Li, Y.; Scholten, T.

    2015-06-01

    Soil erosion is seriously threatening ecosystem functioning in many parts of the world. In this context, it is assumed that tree species richness and functional diversity of tree communities can play a critical role in improving ecosystem services such as erosion control. An experiment with 170 micro-scale runoff plots was conducted to investigate the influence of tree species richness and identity as well as tree functional traits on interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 t ha-1 a-1 was calculated. This study provided evidence that different tree species affect interrill erosion, but higher tree species richness did not mitigate soil losses in young forest stands. Thus, different tree morphologies have to be considered, when assessing erosion under forest. High crown cover and leaf area index reduced soil losses in initial forest ecosystems, whereas rising tree height increased them. Even if a leaf litter cover was not present, remaining soil surface cover by stones and biological soil crusts was the most important driver for soil erosion control. Furthermore, soil organic matter had a decreasing influence on soil loss. Long-term monitoring of soil erosion under closing tree canopies is necessary and a wide range of functional tree traits should be taken into consideration in future research.

  8. Measures of School Integration: Comparing Coleman's Index to Measures of Species Diversity.

    ERIC Educational Resources Information Center

    Mercil, Steven Bray; Williams, John Delane

    This study used species diversity indices developed in ecology as a measure of socioethnic diversity, and compared them to Coleman's Index of Segregation. The twelve indices were Simpson's Concentration Index ("ell"), Simpson's Index of Diversity, Hurlbert's Probability of Interspecific Encounter (PIE), Simpson's Probability of…

  9. Does deciduous tree species identity affect carbon storage in temperate soils?

    NASA Astrophysics Data System (ADS)

    Jungkunst, Hermann; Schleuß, Per; Heitkamp, Felix

    2015-04-01

    Forest soils contribute roughly 70 % to the global terrestrial soil organic carbon (SOC) pool and thus play a vital role in the global carbon cycle. It is less clear, however, whether temperate tree species identity affects SOC storage beyond the coarse differentiation between coniferous and deciduous trees. The most important driver for soil SOC storage definitely is the fine mineral fraction (clay and fine silt) because of its high sorption ability. It is difficult to disentangle any additional biotic effects since clay and silt vary considerably in nature. For experimental approaches, the process of soil carbon accumulation is too slow and, therefore, sound results cannot be expected for decades. Here we will present our success to distinguish between the effects of fine particle content (abiotic) and tree species composition (biotic) on the SOC pool in an old-growth broad-leaved forest plots along a tree diversity gradient , i.e., 1- (beech), 3- (plus ash and lime tree)- and 5-(plus maple and hornbeam) species. The particle size fractions were separated first and then the carbon concentrations of each fraction was measured. Hence, the carbon content per unit clay was not calculated, as usually done, but directly measured. As expected, the variation in SOC content was mainly explained by the variations in clay content but not entirely. We found that the carbon concentration per unit clay and fine silt in the subsoil was by 30-35% higher in mixed than in monospecific stands indicating a significant species identity or species diversity effect on C stabilization. In contrast to the subsoil, no tree species effects was identified for the topsoil. Indications are given that the mineral phase was already carbon saturated and thus left no more room for a possible biotic effect. Underlying processes must remain speculative, but we will additionally present our latest microcosm results, including isotopic signatures, to underpin the proposed deciduous tree species

  10. The effect of urbanization on ant abundance and diversity: a temporal examination of factors affecting biodiversity.

    PubMed

    Buczkowski, Grzegorz; Richmond, Douglas S

    2012-01-01

    Numerous studies have examined the effect of urbanization on species richness and most studies implicate urbanization as the major cause of biodiversity loss. However, no study has identified an explicit connection between urbanization and biodiversity loss as the impact of urbanization is typically inferred indirectly by comparing species diversity along urban-rural gradients at a single time point. A different approach is to focus on the temporal rather than the spatial aspect and perform "before and after" studies where species diversity is cataloged over time in the same sites. The current study examined changes in ant abundance and diversity associated with the conversion of natural habitats into urban habitats. Ant abundance and diversity were tracked in forested sites that became urbanized through construction and were examined at 3 time points - before, during, and after construction. On average, 4.3 ± 1.2 unique species were detected in undisturbed plots prior to construction. Ant diversity decreased to 0.7 ± 0.8 species in plots undergoing construction and 1.5 ± 1.1 species in plots 1 year after construction was completed. With regard to species richness, urbanization resulted in the permanent loss of 17 of the 20 species initially present in the study plots. Recovery was slow and only 3 species were present right after construction was completed and 4 species were present 1 year after construction was completed. The second objective examined ant fauna recovery in developed residential lots based on time since construction, neighboring habitat quality, pesticide inputs, and the presence of invasive ants. Ant diversity was positively correlated with factors that promoted ecological recovery and negatively correlated with factors that promoted ecological degradation. Taken together, these results address a critical gap in our knowledge by characterizing the short- and long-term the effects of urbanization on the loss of ant biodiversity.

  11. Two gut community enterotypes recur in diverse bumblebee species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pollinating insects are key to the evolutionary and ecological success of flowering plants and enable much of the diversity in the human diet. Gut microbial communities likely impact pollinators in diverse ways, from nutrition to defense against disease. Honeybees and bumblebees harbor a simple yet ...

  12. Multivariate analysis of morphological diversity among closely related Daucus species and subspecies in Tunisia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Daucus includes about 20-25 species worldwide. Northern Africa represents a major center of diversity of Daucus, with Tunisia thought to contain 11 species and seven subspecies. We assessed morphological diversity from a Daucus germplasm collection of 103 accessions at the National Gene Ba...

  13. Molecular species delimitation methods and population genetics data reveal extensive lineage diversity and cryptic species in Aglaopheniidae (Hydrozoa).

    PubMed

    Postaire, Bautisse; Magalon, Hélène; Bourmaud, Chloé A-F; Bruggemann, J Henrich

    2016-12-01

    A comprehensive inventory of global biodiversity would be greatly improved by automating methods for species delimitation. The Automatic Barcode Gap Discovery method, the Poisson tree processes algorithm and the Generalized mixed Yule-coalescent model have been proposed as means of increasing the rate of biodiversity description using single locus data. We applied these methods to explore the diversity within the Aglaopheniidae, a hydrozoan family with many species widely distributed across tropical and temperate oceans. Our analyses revealed widespread cryptic diversity in this family, almost half of the morpho-species presenting several independent evolutionary lineages, as well as support for cases of synonymy. For two common species of this family, Lytocarpia brevirostris and Macrorhynchia phoenicea, we compared the outputs to clustering analyses based on microsatellite data and to nuclear gene phylogenies. For L. brevirostris, microsatellite data were congruent with results of the species delimitation methods, revealing the existence of two cryptic species with Indo-Pacific distribution. For M. phoenicea, all analyses confirmed the presence of two cryptic species within the South-Western Indian Ocean. Our study suggests that the diversity of Aglaopheniidae might be much higher than assumed, likely related to low dispersal capacities. Sequence-based species delimitation methods seem highly valuable to reveal cryptic diversity in hydrozoans; their application in an integrative framework will be very useful in describing the phyletic diversity of these organisms.

  14. Factors affecting levels of genetic diversity in natural populations.

    PubMed Central

    Amos, W; Harwood, J

    1998-01-01

    Genetic variability is the clay of evolution, providing the base material on which adaptation and speciation depend. It is often assumed that most interspecific differences in variability are due primarily to population size effects, with bottlenecked populations carrying less variability than those of stable size. However, we show that population bottlenecks are unlikely to be the only factor, even in classic case studies such as the northern elephant seal and the cheetah, where genetic polymorphism is virtually absent. Instead, we suggest that the low levels of variability observed in endangered populations are more likely to result from a combination of publication biases, which tend to inflate the level of variability which is considered 'normal', and inbreeding effects, which may hasten loss of variability due to drift. To account for species with large population sizes but low variability we advance three hypotheses. First, it is known that certain metapopulation structures can result in effective population sizes far below the census size. Second, there is increasing evidence that heterozygous sites mutate more frequently than equivalent homozygous sites, plausibly because mismatch repair between homologous chromosomes during meiosis provides extra opportunities to mutate. Such a mechanism would undermine the simple relationship between heterozygosity and effective population size. Third, the fact that related species that differ greatly in variability implies that large amounts of variability can be gained or lost rapidly. We argue that such cases are best explained by rapid loss through a genome-wide selective sweep, and suggest a mechanism by which this could come about, based on forced changes to a control gene inducing coevolution in the genes it controls. Our model, based on meiotic drive in mammals, but easily extended to other systems, would tend to facilitate population isolation by generating molecular incompatabilities. Circumstances can even be

  15. Evolution and Phylogenetic Diversity of Yam Species (Dioscorea spp.): Implication for Conservation and Agricultural Practices.

    PubMed

    Ngo Ngwe, Marie Florence Sandrine; Omokolo, Denis Ndoumou; Joly, Simon

    2015-01-01

    Yams (Dioscorea spp.) consist of approximately 600 species. Presently, these species are threatened by genetic erosion due to many factors such as pest attacks and farming practices. In parallel, complex taxonomic boundaries in this genus makes it more challenging to properly address the genetic diversity of yam and manage its germplasm. As a first step toward evaluating and preserving the genetic diversity yam species, we use a phylogenetic diversity (PD) approach that has the advantage to investigate phylogenetic relationships and test hypotheses of species monophyly while alleviating to the problem of ploidy variation within and among species. The Bayesian phylogenetic analysis of 62 accessions from 7 species from three regions of Cameroon showed that most Dioscorea sections were monophyletic, but species within sections were generally non-monophyletic. The wild species D. praehensilis and cultivated D. cayenensis were the species with the highest PD. At the opposite, D. esculenta has a low PD and future studies should focus on this species to properly address its conservation status. We also show that wild species show a stronger genetic structure than cultivated species, which potentially reflects the management of the yam germplasm by farmers. These findings show that phylogenetic diversity is a promising approach for an initial investigation of genetic diversity in a crop consisting of closely related species.

  16. Factors affecting Archaeal Lipid Compositions of the Sulfolobus Species

    NASA Astrophysics Data System (ADS)

    He, L.; Han, J.; Wei, Y.; Lin, L.; Wei, Y.; Zhang, C.

    2010-12-01

    Temperature is the best known variable affecting the distribution of the archaeal glycerol dibiphytanyl glycerol tetraethers (GDGTs) in marine and freshwater systems. Other variables such as pH, ionic strength, or bicarbonate concentration may also affect archaeal GDGTs in terrestrial systems. Studies of pure cultures can help us pinpoint the specific effects these variables may have on archaeal lipid distribution in natural environments. In this study, three Sulfolobus species (HG4, HB5-2, HB9-6) isolated from Tengchong hot springs (pH 2-3, temperature 73-90°C) in China were used to investigate the effects of temperature, pH, substrate, and type of strain on the composition of GDGTs. Results showed that increase in temperature had negative effects on the relative contents of GDGT-0 (no cyclopentyl rings), GDGT-1 (one cyclopentyl ring), GDGT-2 and GDGT-3 but positive effects on GDGT-4, GDGT-4', GDGT-5 and GDGT-5'. Increase in pH, on the other hand, had negative effects on GDGT-0, GDGT-1, GDGT-4', GDGT-5 and GDGT-5', and positive effects on GDGT-3 and GDGT-4. GDGT-2 remained relatively constant with changing pH. When the HG4 was grown on different substrates, GDGT-5 was five time more abundant in sucrose-grown cultures than in yeast extract- or sulfur- grown cultures, suggesting that carbohydrates may stimulate the production of GDGT-5. For all three species, the ring index (average number of rings) of GDGTs correlated positively with incubation temperature. In HG4, ring index was much lower at optimal pH (3.5) than at other pH values. Ring index of HB5-2 or HB9-6 is higher than that of HG4, suggesting that speciation may affect the degree of cyclization of GDGT of the Sulfolobus. These results indicate that individual archaeal lipids respond differently to changes in environmental variables, which may be also species specific.

  17. Scale-dependent diversity patterns affect spider assemblages of two contrasting forest ecosystems

    NASA Astrophysics Data System (ADS)

    Schuldt, Andreas; Assmann, Thorsten; Schaefer, Matthias

    2013-05-01

    Spiders are important generalist predators in forests. However, differences in assemblage structure and diversity can have consequences for their functional impact. Such differences are particularly evident across latitudes, and their analysis can help to generate a better understanding of region-specific characteristics of predator assemblages. Here, we analyse the relationships between species richness, family richness and functional diversity (FD) as well as α- and β-components of epigeic spider diversity in semi-natural temperate and subtropical forest sites. As expected, within-plot and overall spider species and family richness were higher in the subtropical plots. In contrast, local FD within plots was similar between sites, and differences in FD only became evident at larger spatial scales due to higher species turnover in the subtropical forests. Our study indicates that the functional effects of predator assemblages can change across spatial scales. We discuss how differences in richness and functional diversity between contrasting forest ecosystems can depend on environmental heterogeneity and the effects of species filters acting at local scales. The high turnover observed in the species-rich subtropical forests also requires a more regional perspective for the conservation of the overall diversity and the ecological functions of predators than in less diverse forests, as strategies need to account for the large spatial heterogeneity among plots.

  18. Is tree species diversity or tree species identity the most important driver of European forest soil carbon stocks?

    NASA Astrophysics Data System (ADS)

    Vesterdal, Lars; Muhie Dawud, Seid; Raulund-Rasmussen, Karsten; Finér, Leena; Domisch, Timo

    2016-04-01

    Land management includes the selection of specific tree species and tree species mixtures for European forests. Studies of functional species diversity effects have reported positive effects for aboveground carbon (C) sequestration, but the question remains whether higher soil C stocks could also result from belowground niche differentiation including more efficient root exploitation of soils. We studied topsoil C stocks in tree species diversity gradients established within the FunDivEurope project to explore biodiversity-ecosystem functioning relationships in six European forest types in Finland, Poland, Germany, Romania, Spain and Italy. In the Polish forest type we extended the sampling to also include subsoils. We found consistent but modest effects of species diversity on total soil C stocks (forest floor and 0-20 cm) across the six European forest types. Carbon stocks in the forest floor alone and in the combined forest floor and mineral soil layers increased with increasing tree species diversity. In contrast, there was a strong effect of species identity (broadleaf vs. conifer) and its interaction with site-related factors. Within the Polish forest type we sampled soils down to 40 cm and found that species identity was again the main factor explaining total soil C stock. However, species diversity increased soil C stocks in deeper soil layers (20-40 cm), while species identity influenced C stocks significantly within forest floors and the 0-10 cm layer. Root biomass increased with diversity in 30-40 cm depth, and a positive relationship between C stocks and root biomass in the 30-40 cm layer suggested that belowground niche complementarity could be a driving mechanism for higher root carbon input and in turn a deeper distribution of C in diverse forests. We conclude that total C stocks are mainly driven by tree species identity. However, modest positive diversity effects were detected at the European scale, and stronger positive effects on subsoil C stocks

  19. Phylogenetic congruence of lichenised fungi and algae is affected by spatial scale and taxonomic diversity

    PubMed Central

    Rafat, Arash; Ridden, Johnathon D.; Cruickshank, Robert H.; Ridgway, Hayley J.; Paterson, Adrian M.

    2014-01-01

    The role of species’ interactions in structuring biological communities remains unclear. Mutualistic symbioses, involving close positive interactions between two distinct organismal lineages, provide an excellent means to explore the roles of both evolutionary and ecological processes in determining how positive interactions affect community structure. In this study, we investigate patterns of co-diversification between fungi and algae for a range of New Zealand lichens at the community, genus, and species levels and explore explanations for possible patterns related to spatial scale and pattern, taxonomic diversity of the lichens considered, and the level sampling replication. We assembled six independent datasets to compare patterns in phylogenetic congruence with varied spatial extent of sampling, taxonomic diversity and level of specimen replication. For each dataset, we used the DNA sequences from the ITS regions of both the fungal and algal genomes from lichen specimens to produce genetic distance matrices. Phylogenetic congruence between fungi and algae was quantified using distance-based redundancy analysis and we used geographic distance matrices in Moran’s eigenvector mapping and variance partitioning to evaluate the effects of spatial variation on the quantification of phylogenetic congruence. Phylogenetic congruence was highly significant for all datasets and a large proportion of variance in both algal and fungal genetic distances was explained by partner genetic variation. Spatial variables, primarily at large and intermediate scales, were also important for explaining genetic diversity patterns in all datasets. Interestingly, spatial structuring was stronger for fungal than algal genetic variation. As the spatial extent of the samples increased, so too did the proportion of explained variation that was shared between the spatial variables and the partners’ genetic variation. Different lichen taxa showed some variation in their phylogenetic

  20. Evaluation of Central North American prairie management based on species diversity, life form, and individual species metrics.

    PubMed

    Brudvig, Lars A; Mabry, Catherine M; Miller, James R; Walker, Tracy A

    2007-06-01

    Reintroduction of fire and grazing, alone or in combination, has increasingly been recognized as central to the restoration of North American mixed-grass and tallgrass prairies. Although ecological studies of these systems are abundant, they have generally been observational, or if experimental, have focused on plant species diversity. Species diversity measures alone are not sufficient to inform management, which often has goals associated with life-form groups and individual species. We examined the effects of prescribed fire, light cattle grazing, and a combination of fire and grazing on three vegetation components: species diversity, groups of species categorized by life-form, and individual species. We evaluated how successful these three treatments were in achieving specific management goals for prairies in the Iowa Loess Hills (U.S.A.). The grazing treatment promoted the greatest overall species richness, whereas grazing and burning and grazing treatments resulted in the lowest cover by woody species. Burning alone best achieved the management goals of increasing the cover and diversity of native species and reducing exotic forb and (predominantly exotic) cool-season grass cover. Species-specific responses to treatments appeared idiosyncratic (i.e., within each treatment there existed a set of species attaining their highest frequency) and nearly half of uncommon species were present in only one treatment. Because all management goals were not achieved by any one treatment, we conclude that management in this region may need refining. We suggest that a mosaic of burning and grazing (alone and in combination) may provide the greatest landscape-level species richness; however, this strategy would also likely promote the persistence of exotic species. Our results support the need to consider multiple measures, including species-specific responses, when planning and evaluating management.

  1. Conserving the Stage: Climate Change and the Geophysical Underpinnings of Species Diversity

    PubMed Central

    Anderson, Mark G.; Ferree, Charles E.

    2010-01-01

    Conservationists have proposed methods for adapting to climate change that assume species distributions are primarily explained by climate variables. The key idea is to use the understanding of species-climate relationships to map corridors and to identify regions of faunal stability or high species turnover. An alternative approach is to adopt an evolutionary timescale and ask ultimately what factors control total diversity, so that over the long run the major drivers of total species richness can be protected. Within a single climatic region, the temperate area encompassing all of the Northeastern U.S. and Maritime Canada, we hypothesized that geologic factors may take precedence over climate in explaining diversity patterns. If geophysical diversity does drive regional diversity, then conserving geophysical settings may offer an approach to conservation that protects diversity under both current and future climates. Here we tested how well geology predicts the species diversity of 14 US states and three Canadian provinces, using a comprehensive new spatial dataset. Results of linear regressions of species diversity on all possible combinations of 23 geophysical and climatic variables indicated that four geophysical factors; the number of geological classes, latitude, elevation range and the amount of calcareous bedrock, predicted species diversity with certainty (adj. R2 = 0.94). To confirm the species-geology relationships we ran an independent test using 18,700 location points for 885 rare species and found that 40% of the species were restricted to a single geology. Moreover, each geology class supported 5–95 endemic species and chi-square tests confirmed that calcareous bedrock and extreme elevations had significantly more rare species than expected by chance (P<0.0001), strongly corroborating the regression model. Our results suggest that protecting geophysical settings will conserve the stage for current and future biodiversity and may be a robust

  2. Conserving the stage: climate change and the geophysical underpinnings of species diversity.

    PubMed

    Anderson, Mark G; Ferree, Charles E

    2010-07-14

    Conservationists have proposed methods for adapting to climate change that assume species distributions are primarily explained by climate variables. The key idea is to use the understanding of species-climate relationships to map corridors and to identify regions of faunal stability or high species turnover. An alternative approach is to adopt an evolutionary timescale and ask ultimately what factors control total diversity, so that over the long run the major drivers of total species richness can be protected. Within a single climatic region, the temperate area encompassing all of the Northeastern U.S. and Maritime Canada, we hypothesized that geologic factors may take precedence over climate in explaining diversity patterns. If geophysical diversity does drive regional diversity, then conserving geophysical settings may offer an approach to conservation that protects diversity under both current and future climates. Here we tested how well geology predicts the species diversity of 14 US states and three Canadian provinces, using a comprehensive new spatial dataset. Results of linear regressions of species diversity on all possible combinations of 23 geophysical and climatic variables indicated that four geophysical factors; the number of geological classes, latitude, elevation range and the amount of calcareous bedrock, predicted species diversity with certainty (adj. R(2) = 0.94). To confirm the species-geology relationships we ran an independent test using 18,700 location points for 885 rare species and found that 40% of the species were restricted to a single geology. Moreover, each geology class supported 5-95 endemic species and chi-square tests confirmed that calcareous bedrock and extreme elevations had significantly more rare species than expected by chance (P<0.0001), strongly corroborating the regression model. Our results suggest that protecting geophysical settings will conserve the stage for current and future biodiversity and may be a robust

  3. [Monthly changes and related affecting factors in community structure and diversity of the crab assemblages in central Jiaozhou Bay, China].

    PubMed

    Pang, Zhi-Wei; Xu, Bin-Duo; Ji, Yu-Peng; Ren, Yi-Ping

    2014-02-01

    Based on the monthly bottom trawl surveys in the central area of Jiaozhou Bay from September 2008 to August 2009, monthly changes and related affecting factors in community structure and diversity of the crab assemblages were examined using index of relative importance, ecological diversity indices, multivariate statistical analysis. In total, 18 crab species were caught and they belonged to 11 families, 17 genera. The relative abundance of crab varied dramatically among months, which was high in June, July and August. The dominant species composition of crab assemblage was observed to vary over months dramatically. The dominant species for the whole year was Charybdis bimaculata, and the dominant species in different specific months were C. bimaculata, C. japonica, Portunus trituberculatus, Raphidopus ciliatus and Eucrate crenata. The ranges across months of the Margalef' s species richness index (D), Shannon diversity index (H) and Pielou's evenness index (J) of the crab community structure were 0.54-2.86, 0.06-2.59 and 0.03-0.97, respectively. The diversity indices in winter months were the highest, and the diversity indices in autumn months were higher than in the spring and autumn months. MDS and CLUSTER analyses revealed that three groups/clusters, which were Group I (from May to October), Group, II (April, November and December) and Group III (January, February and March), were identi- fied for crab community during all the year in the central area of Jiaozhou Bay. ANOSIM analysis in community structure indicated that there were extremely significant differences among the groups, significant differences between Group I and Group II or between Group I and Group III, and no significant differences between Group II and Group III. Typifying species in the within-group included C. bimaculata, P. trituberculatus, C. japonica, E. crenata and R. ciliatus, and discriminating species between groups included C. bimaculata, C. japonica and P. trituberculatus. These

  4. How Habitat Change and Rainfall Affect Dung Beetle Diversity in Caatinga, a Brazilian Semi-Arid Ecosystem

    PubMed Central

    Liberal, Carolina Nunes; de Farias, Ângela Maria Isidro; Meiado, Marcos Vinicius; Filgueiras, Bruno K. C.; Iannuzzi, Luciana

    2011-01-01

    The aim of the present study was to evaluate how dung beetle communities respond to both environment and rainfall in the Caatinga, a semi-arid ecosystem in northeastern Brazil. The communities were sampled monthly from May 2006 to April 2007 using pitfall traps baited with human feces in two environments denominated “land use area” and “undisturbed area.” Abundance and species richness were compared between the two environments and two seasons (dry and wet season) using a generalized linear model with a Poisson error distribution. Diversity was compared between the two environments (land use area and undisturbed area) and seasons (dry and wet) using the Two-Way ANOVA test. Non-metric multidimensional scaling was performed on the resemblance matrix of Bray-Curtis distances (with 1000 random restarts) to determine whether disturbance affected the abundance and species composition of the dung beetle communities. Spearman's correlation coefficient was used to determine whether rainfall was correlated with abundance and species richness. A total of 1097 specimens belonging to 13 species were collected. The most abundant and frequent species was Dichotomius geminatus Arrow (Coleoptera: Scarabaeidae). The environment exerted an influence over abundance. Abundance and diversity were affected by season, with an increase in abundance at the beginning of the wet season. The correlation coefficient values were high and significant for abundance and species richness, which were both correlated to rainfall. In conclusion, the restriction of species to some environments demonstrates the need to preserve these areas in order to avoid possible local extinction. Therefore, in extremely seasonable environments, such as the Caatinga, seasonal variation strongly affects dung beetle communities. PMID:22224924

  5. How habitat change and rainfall affect dung beetle diversity in Caatinga, a Brazilian semi-arid ecosystem.

    PubMed

    Liberal, Carolina Nunes; de Farias, Ângela Maria Isidro; Meiado, Marcos Vinicius; Filgueiras, Bruno K C; Iannuzzi, Luciana

    2011-01-01

    The aim of the present study was to evaluate how dung beetle communities respond to both environment and rainfall in the Caatinga, a semi-arid ecosystem in northeastern Brazil. The communities were sampled monthly from May 2006 to April 2007 using pitfall traps baited with human feces in two environments denominated "land use area" and "undisturbed area." Abundance and species richness were compared between the two environments and two seasons (dry and wet season) using a generalized linear model with a Poisson error distribution. Diversity was compared between the two environments (land use area and undisturbed area) and seasons (dry and wet) using the Two-Way ANOVA test. Non-metric multidimensional scaling was performed on the resemblance matrix of Bray-Curtis distances (with 1000 random restarts) to determine whether disturbance affected the abundance and species composition of the dung beetle communities. Spearman's correlation coefficient was used to determine whether rainfall was correlated with abundance and species richness. A total of 1097 specimens belonging to 13 species were collected. The most abundant and frequent species was Dichotomius geminatus Arrow (Coleoptera: Scarabaeidae). The environment exerted an influence over abundance. Abundance and diversity were affected by season, with an increase in abundance at the beginning of the wet season. The correlation coefficient values were high and significant for abundance and species richness, which were both correlated to rainfall. In conclusion, the restriction of species to some environments demonstrates the need to preserve these areas in order to avoid possible local extinction. Therefore, in extremely seasonable environments, such as the Caatinga, seasonal variation strongly affects dung beetle communities.

  6. Multiple and diverse structural changes affect the breakpoint regions of polymorphic inversions across the Drosophila genus.

    PubMed

    Puerma, Eva; Orengo, Dorcas J; Aguadé, Montserrat

    2016-10-26

    Chromosomal polymorphism is widespread in the Drosophila genus, with extensive evidence supporting its adaptive character in diverse species. Moreover, inversions are the major contributors to the genus chromosomal evolution. The molecular characterization of a reduced number of polymorphic inversion breakpoints in Drosophila melanogaster and Drosophila subobscura supports that their inversions would have mostly originated through a mechanism that generates duplications -staggered double-strand breaks- and has thus the potential to contribute to their adaptive character. There is also evidence for inversion breakpoint reuse at different time scales. Here, we have characterized the breakpoints of two inversions of D. subobscura -O4 and O8- involved in complex arrangements that are frequent in the warm parts of the species distribution area. The duplications detected at their breakpoints are consistent with their origin through the staggered-break mechanism, which further supports it as the prevalent mechanism in D. subobscura. The comparative analysis of inversions breakpoint regions across the Drosophila genus has revealed several genes affected by multiple disruptions due not only to inversions but also to single-gene transpositions and duplications.

  7. Multiple and diverse structural changes affect the breakpoint regions of polymorphic inversions across the Drosophila genus

    PubMed Central

    Puerma, Eva; Orengo, Dorcas J.; Aguadé, Montserrat

    2016-01-01

    Chromosomal polymorphism is widespread in the Drosophila genus, with extensive evidence supporting its adaptive character in diverse species. Moreover, inversions are the major contributors to the genus chromosomal evolution. The molecular characterization of a reduced number of polymorphic inversion breakpoints in Drosophila melanogaster and Drosophila subobscura supports that their inversions would have mostly originated through a mechanism that generates duplications —staggered double-strand breaks— and has thus the potential to contribute to their adaptive character. There is also evidence for inversion breakpoint reuse at different time scales. Here, we have characterized the breakpoints of two inversions of D. subobscura —O4 and O8— involved in complex arrangements that are frequent in the warm parts of the species distribution area. The duplications detected at their breakpoints are consistent with their origin through the staggered-break mechanism, which further supports it as the prevalent mechanism in D. subobscura. The comparative analysis of inversions breakpoint regions across the Drosophila genus has revealed several genes affected by multiple disruptions due not only to inversions but also to single-gene transpositions and duplications. PMID:27782210

  8. The relationship between regional and local species diversity in marine benthic communities: A global perspective

    PubMed Central

    Witman, Jon D.; Etter, Ron J.; Smith, Franz

    2004-01-01

    The number of species coexisting in ecological communities must be a consequence of processes operating on both local and regional scales. Although a great deal of experimental work has been devoted to local causes of diversity, little is known about the effects of regional processes on local diversity and how they contribute to global diversity patterns in marine systems. We tested the effects of latitude and the richness of the regional species pool on the species richness of local epifaunal invertebrate communities by sampling the diversity of local sites in 12 independent biogeographic regions from 62°S to 63°N latitude. Both regional and local species richness displayed significant unimodal patterns with latitude, peaking at low latitudes and decreasing toward high latitudes. The latitudinal diversity gradient was represented at the scale of local sites because local species richness was positively and linearly related to regional species richness. The richness of the regional species pool explained 73-76% of local species richness. On a global scale, the extent of regional influence on local species richness was nonrandom—the proportion of regional biota represented in local epifaunal communities increased significantly from low to high latitudes. The strong effect of the regional species pool implies that patterns of local diversity in temperate, tropical, and high-latitude marine benthic communities are influenced by processes operating on larger spatiotemporal scales than previously thought. PMID:15501917

  9. Estimating species diversity and distribution in the era of Big Data: to what extent can we trust public databases?

    PubMed Central

    Maldonado, Carla; Molina, Carlos I.; Zizka, Alexander; Persson, Claes; Taylor, Charlotte M.; Albán, Joaquina; Chilquillo, Eder; Antonelli, Alexandre

    2015-01-01

    Abstract Aim Massive digitalization of natural history collections is now leading to a steep accumulation of publicly available species distribution data. However, taxonomic errors and geographical uncertainty of species occurrence records are now acknowledged by the scientific community – putting into question to what extent such data can be used to unveil correct patterns of biodiversity and distribution. We explore this question through quantitative and qualitative analyses of uncleaned versus manually verified datasets of species distribution records across different spatial scales. Location The American tropics. Methods As test case we used the plant tribe Cinchoneae (Rubiaceae). We compiled four datasets of species occurrences: one created manually and verified through classical taxonomic work, and the rest derived from GBIF under different cleaning and filling schemes. We used new bioinformatic tools to code species into grids, ecoregions, and biomes following WWF's classification. We analysed species richness and altitudinal ranges of the species. Results Altitudinal ranges for species and genera were correctly inferred even without manual data cleaning and filling. However, erroneous records affected spatial patterns of species richness. They led to an overestimation of species richness in certain areas outside the centres of diversity in the clade. The location of many of these areas comprised the geographical midpoint of countries and political subdivisions, assigned long after the specimens had been collected. Main conclusion Open databases and integrative bioinformatic tools allow a rapid approximation of large‐scale patterns of biodiversity across space and altitudinal ranges. We found that geographic inaccuracy affects diversity patterns more than taxonomic uncertainties, often leading to false positives, i.e. overestimating species richness in relatively species poor regions. Public databases for species distribution are valuable and should be

  10. Diversity in wild apple species of Chinese origin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Malus collection in the USDA-ARS National Plant Germplasm System has twelve wild species of apple collected from China at the Plant Genetic Resources Unit (PGRU) in Geneva, NY. Between 8 and 148 individual trees represent each species. The assignment of seedling trees to specific species has be...

  11. Frog species richness, composition and beta-diversity in coastal Brazilian restinga habitats.

    PubMed

    Rocha, C F D; Hatano, F H; Vrcibradic, D; Van Sluys, M

    2008-02-01

    We studied the species richness and composition of frogs in 10 restinga habitats (sand dune environments dominated by herbaceous and shrubby vegetation) along approximately 1500 km of coastal areas of three Brazilian States: Rio de Janeiro (Grumari, Maricá, Massambaba, Jurubatiba and Grussaí), Espírito Santo (Praia das Neves and Setiba) and Bahia (Prado and Trancoso). We estimated beta-diversity and similarity among areas and related these parameters to geographic distance between areas. All areas were surveyed with a similar sampling procedure. We found 28 frog species belonging to the families Hylidae, Microhylidae, Leptodactylidae and Bufonidae. Frogs in restingas were in general nocturnal with no strictly diurnal species. The richest restinga was Praia das Neves (13 species), followed by Grussaí and Trancoso (eight species in each). The commonest species in the restingas was Scinax alter (found in eight restingas), followed by Aparasphenodon brunoi (seven areas). Our data shows that richness and composition of frog communities vary consistently along the eastern Brazilian coast and, in part, the rate of species turnover is affected by the distance among areas. Geographic distance explained approximately 12% of species turnover in restingas and about 9.5% of similarity among frog assemblages. Although geographic distance somewhat affects frog assemblages, other factors (e.g. historical factors, disturbances) seem to be also involved in explaining present frog assemblage composition in each area and species turnover among areas. The frog fauna along restinga habitats was significantly nested (matrix community temperature = 26.13 degrees; p = 0.007). Our data also showed that the most hospitable restinga was Praia das Neves and indicated that this area should be protected as a conservation unit. Frog assemblage of each area seems to partially represent a nested subset of the original assemblage, although we should not ignore the importance of historical

  12. Peripheral circadian clocks are diversely affected by adrenalectomy.

    PubMed

    Soták, M; Bryndová, J; Ergang, P; Vagnerová, K; Kvapilová, P; Vodička, M; Pácha, J; Sumová, A

    2016-01-01

    Glucocorticoids are considered to synchronize the rhythmicity of clock genes in peripheral tissues; however, the role of circadian variations of endogenous glucocorticoids is not well defined. In the present study, we examined whether peripheral circadian clocks were impaired by adrenalectomy. To achieve this, we tested the circadian rhythmicity of core clock genes (Bmal1, Per1-3, Cry1, RevErbα, Rora), clock-output genes (Dbp, E4bp4) and a glucocorticoid- and clock-controlled gene (Gilz) in liver, jejunum, kidney cortex, splenocytes and visceral adipose tissue (VAT). Adrenalectomy did not affect the phase of clock gene rhythms but distinctly modulated clock gene mRNA levels, and this effect was partially tissue-dependent. Adrenalectomy had a significant inhibitory effect on the level of Per1 mRNA in VAT, liver and jejunum, but not in kidney and splenocytes. Similarly, adrenalectomy down-regulated mRNA levels of Per2 in splenocytes and VAT, Per3 in jejunum, RevErbα in VAT and Dbp in VAT, kidney and splenocytes, whereas the mRNA amounts of Per1 and Per2 in kidney and Per3 in VAT and splenocytes were up-regulated. On the other hand, adrenalectomy had minimal effects on Rora and E4bp4 mRNAs. Adrenalectomy also resulted in decreased level of Gilz mRNA but did not alter the phase of its diurnal rhythm. Collectively, these findings suggest that adrenalectomy alters the mRNA levels of core clock genes and clock-output genes in peripheral organs and may cause tissue-specific modulations of their circadian profiles, which are reflected in changes of the amplitudes but not phases. Thus, the circulating corticosteroids are necessary for maintaining the high-amplitude rhythmicity of the peripheral clocks in a tissue-specific manner.

  13. Tree species diversity interacts with elevated CO2 to induce a greater root system response.

    PubMed

    Smith, Andrew R; Lukac, Martin; Bambrick, Michael; Miglietta, Franco; Godbold, Douglas L

    2013-01-01

    As a consequence of land-use change and the burning of fossil fuels, atmospheric concentrations of CO2 are increasing and altering the dynamics of the carbon cycle in forest ecosystems. In a number of studies using single tree species, fine root biomass has been shown to be strongly increased by elevated CO2 . However, natural forests are often intimate mixtures of a number of co-occurring species. To investigate the interaction between tree mixture and elevated CO2 , Alnus glutinosa, Betula pendula and Fagus sylvatica were planted in areas of single species and a three species polyculture in a free-air CO2 enrichment study (BangorFACE). The trees were exposed to ambient or elevated CO2 (580 μmol mol(-1) ) for 4 years. Fine and coarse root biomass, together with fine root turnover and fine root morphological characteristics were measured. Fine root biomass and morphology responded differentially to the elevated CO2 at different soil depths in the three species when grown in monocultures. In polyculture, a greater response to elevated CO2 was observed in coarse roots to a depth of 20 cm, and fine root area index to a depth of 30 cm. Total fine root biomass was positively affected by elevated CO2 at the end of the experiment, but not by species diversity. Our data suggest that existing biogeochemical cycling models parameterized with data from species grown in monoculture may be underestimating the belowground response to global change.

  14. Effects of chytridiomycosis on hematopoietic tissue in the spleen, kidney and bone marrow in three diverse amphibian species.

    PubMed

    Brannelly, Laura A; Webb, Rebecca J; Skerratt, Lee F; Berger, Lee

    2016-10-01

    One of the major causes of amphibian population decline is the deadly fungal pathogen Batrachochytrium dendrobatidis, Bd Research on pathogenesis and host immunity aims to inform development of targeted conservation interventions. Studies examining global host immune responses as well as effects on lymphocytes in vitro suggest that Bd infection causes immunosuppression. However, it is unknown which hematopoietic tissues are affected and if these effects differ among host species. We investigated the effect of experimental Bd infection on three diverse amphibian species by quantifying the amount of hematopoietic tissue in the spleen, bone marrow and kidney. Upon Bd infection, hematopoietic tissue in the kidney tended to be depleted, while the spleen appeared unaffected. The bone marrow in highly susceptible species was depleted, whereas an increase in hematopoietic tissue was observed in the more resistant species. Our study demonstrates that species and hematopoietic tissues behave differently in response to Bd infection, and may be related to the species' susceptibility to infection.

  15. Latitudinal species diversity gradient of marine zooplankton for the last three million years

    USGS Publications Warehouse

    Yasuhara, Moriaki; Hunt, Gene; Dowsett, Harry J.; Robinson, Marci M.; Stoll, Danielle K.

    2012-01-01

    High tropical and low polar biodiversity is one of the most fundamental patterns characterising marine ecosystems, and the influence of temperature on such marine latitudinal diversity gradients is increasingly well documented. However, the temporal stability of quantitative relationships among diversity, latitude and temperature is largely unknown. Herein we document marine zooplankton species diversity patterns at four time slices [modern, Last Glacial Maximum (18 000 years ago), last interglacial (120 000 years ago), and Pliocene (~3.3–3.0 million years ago)] and show that, although the diversity-latitude relationship has been dynamic, diversity-temperature relationships are remarkably constant over the past three million years. These results suggest that species diversity is rapidly reorganised as species' ranges respond to temperature change on ecological time scales, and that the ecological impact of future human-induced temperature change may be partly predictable from fossil and paleoclimatological records.

  16. Biotic homogenization and changes in species diversity across human-modified ecosystems

    PubMed Central

    Smart, Simon M; Thompson, Ken; Marrs, Robert H; Le Duc, Mike G; Maskell, Lindsay C; Firbank, Leslie G

    2006-01-01

    Changing land use and the spread of ‘winning’ native or exotic plants are expected to lead to biotic homogenization (BH), in which previously distinct plant communities become progressively more similar. In parallel, many ecosystems have recently seen increases in local species (α-) diversity, yet γ-diversity has continued to decline at larger scales. Using national ecological surveillance data for Great Britain, we quantify relationships between change in α-diversity and between-habitat homogenizations at two levels of organization: species composition and plant functional traits. Across Britain both increases and decreases in α-diversity were observed in small random sampling plots (10–200 m2) located within a national random sample of 1 km square regions. As α-diversity declined (spatially in 1978 or temporally between 1978 and 1998), plant communities became functionally more similar, but species-compositional similarity declined. Thus, different communities converged on a narrower range of winning trait syndromes, but species identities remained historically contingent, differentiating a mosaic of residual species-poor habitat patches within each 1 km square. The reverse trends in β-diversity occurred where α-diversity increased. When impacted by the same type and intensity of environmental change, directions of change in α-diversity are likely to depend upon differences in starting productivity and disturbance. This is one reason why local diversity change and BH across habitats are not likely to be consistently coupled. PMID:17002952

  17. Biotic homogenization and changes in species diversity across human-modified ecosystems.

    PubMed

    Smart, Simon M; Thompson, Ken; Marrs, Robert H; Le Duc, Mike G; Maskell, Lindsay C; Firbank, Leslie G

    2006-10-22

    Changing land use and the spread of 'winning' native or exotic plants are expected to lead to biotic homogenization (BH), in which previously distinct plant communities become progressively more similar. In parallel, many ecosystems have recently seen increases in local species (alpha-) diversity, yet gamma-diversity has continued to decline at larger scales. Using national ecological surveillance data for Great Britain, we quantify relationships between change in alpha-diversity and between-habitat homogenizations at two levels of organization: species composition and plant functional traits. Across Britain both increases and decreases in alpha-diversity were observed in small random sampling plots (10-200m2) located within a national random sample of 1km square regions. As alpha-diversity declined (spatially in 1978 or temporally between 1978 and 1998), plant communities became functionally more similar, but species-compositional similarity declined. Thus, different communities converged on a narrower range of winning trait syndromes, but species identities remained historically contingent, differentiating a mosaic of residual species-poor habitat patches within each 1km square. The reverse trends in beta-diversity occurred where alpha-diversity increased. When impacted by the same type and intensity of environmental change, directions of change in alpha-diversity are likely to depend upon differences in starting productivity and disturbance. This is one reason why local diversity change and BH across habitats are not likely to be consistently coupled.

  18. Weed Diversity Affects Soybean and Maize Yield in a Long Term Experiment in Michigan, USA.

    PubMed

    Ferrero, Rosana; Lima, Mauricio; Davis, Adam S; Gonzalez-Andujar, Jose L

    2017-01-01

    Managing production environments in ways that promote weed community diversity may enhance both crop production and the development of a more sustainable agriculture. This study analyzed data of productivity of maize (corn) and soybean in plots in the Main Cropping System Experiment (MCSE) at the W. K. Kellogg Biological Station Long-Term Ecological Research (KBS-LTER) in Michigan, USA, from 1996 to 2011. We used models derived from population ecology to explore how weed diversity, temperature, and precipitation interact with crop yields. Using three types of models that considered internal and external (climate and weeds) factors, with additive or non-linear variants, we found that changes in weed diversity were associated with changes in rates of crop yield increase over time for both maize and soybeans. The intrinsic capacity for soybean yield increase in response to the environment was greater under more diverse weed communities. Soybean production risks were greatest in the least weed diverse systems, in which each weed species lost was associated with progressively greater crop yield losses. Managing for weed community diversity, while suppressing dominant, highly competitive weeds, may be a helpful strategy for supporting long term increases in soybean productivity. In maize, there was a negative and non-additive response of yields to the interaction between weed diversity and minimum air temperatures. When cold temperatures constrained potential maize productivity through limited resources, negative interactions with weed diversity became more pronounced. We suggest that: (1) maize was less competitive in cold years allowing higher weed diversity and the dominance of some weed species; or (2) that cold years resulted in increased weed richness and prevalence of competitive weeds, thus reducing crop yields. Therefore, we propose to control dominant weed species especially in the years of low yield and extreme minimum temperatures to improve maize yields

  19. Weed Diversity Affects Soybean and Maize Yield in a Long Term Experiment in Michigan, USA

    PubMed Central

    Ferrero, Rosana; Lima, Mauricio; Davis, Adam S.; Gonzalez-Andujar, Jose L.

    2017-01-01

    Managing production environments in ways that promote weed community diversity may enhance both crop production and the development of a more sustainable agriculture. This study analyzed data of productivity of maize (corn) and soybean in plots in the Main Cropping System Experiment (MCSE) at the W. K. Kellogg Biological Station Long-Term Ecological Research (KBS-LTER) in Michigan, USA, from 1996 to 2011. We used models derived from population ecology to explore how weed diversity, temperature, and precipitation interact with crop yields. Using three types of models that considered internal and external (climate and weeds) factors, with additive or non-linear variants, we found that changes in weed diversity were associated with changes in rates of crop yield increase over time for both maize and soybeans. The intrinsic capacity for soybean yield increase in response to the environment was greater under more diverse weed communities. Soybean production risks were greatest in the least weed diverse systems, in which each weed species lost was associated with progressively greater crop yield losses. Managing for weed community diversity, while suppressing dominant, highly competitive weeds, may be a helpful strategy for supporting long term increases in soybean productivity. In maize, there was a negative and non-additive response of yields to the interaction between weed diversity and minimum air temperatures. When cold temperatures constrained potential maize productivity through limited resources, negative interactions with weed diversity became more pronounced. We suggest that: (1) maize was less competitive in cold years allowing higher weed diversity and the dominance of some weed species; or (2) that cold years resulted in increased weed richness and prevalence of competitive weeds, thus reducing crop yields. Therefore, we propose to control dominant weed species especially in the years of low yield and extreme minimum temperatures to improve maize yields

  20. Species diversity and distribution patterns of the ants of Amazonian Ecuador.

    PubMed

    Ryder Wilkie, Kari T; Mertl, Amy L; Traniello, James F A

    2010-10-01

    Ants are among the most diverse, abundant and ecologically significant organisms on earth. Although their species richness appears to be greatest in the New World tropics, global patterns of ant diversity and distribution are not well understood. We comprehensively surveyed ant diversity in a lowland primary rainforest in Western Amazonia, Ecuador using canopy fogging, pitfall traps, baits, hand collecting, mini-Winkler devices and subterranean probes to sample ants. A total of 489 ant species comprising 64 genera in nine subfamilies were identified from samples collected in only 0.16 square kilometers. The most species-rich genera were Camponotus, Pheidole, Pseudomyrmex, Pachycondyla, Brachymyrmex, and Crematogaster. Camponotus and Pseudomyrmex were most diverse in the canopy, while Pheidole was most diverse on the ground. The three most abundant ground-dwelling ant genera were Pheidole, Solenopsis and Pyramica. Crematogaster carinata was the most abundant ant species in the canopy; Wasmannia auropunctata was most abundant on the ground, and the army ant Labidus coecus was the most abundant subterranean species. Ant species composition among strata was significantly different: 80% of species were found in only one stratum, 17% in two strata, and 3% in all three strata. Elevation and the number of logs and twigs available as nest sites were significant predictors of ground-dwelling ant species richness. Canopy species richness was not correlated with any ecological variable measured. Subterranean species richness was negatively correlated with depth in the soil. When ant species were categorized using a functional group matrix based on diet, nest-site preference and foraging ecology, the greatest diversity was found in Omnivorous Canopy Nesters. Our study indicates ant species richness is exceptionally high at Tiputini. We project 647-736 ant species in this global hotspot of biodiversity. Considering the relatively small area surveyed, this region of western

  1. Expanding the Species and Chemical Diversity of Penicillium Section Cinnamopurpurea

    PubMed Central

    Peterson, Stephen W.; Jurjević, Željko; Frisvad, Jens C.

    2015-01-01

    A set of isolates very similar to or potentially conspecific with an unidentified Penicillium isolate NRRL 735, was assembled using a BLAST search of ITS similarity among described (GenBank) and undescribed Penicillium isolates in our laboratories. DNA was amplified from six loci of the assembled isolates and sequenced. Two species in section Cinnamopurpurea are self-compatible sexual species, but the asexual species had polymorphic loci suggestive of sexual reproduction and variation in conidium size suggestive of ploidy level differences typical of heterothallism. Accordingly we use genealogical concordance analysis, a technique valid only in heterothallic organisms, for putatively asexual species. Seven new species were revealed in the analysis and are described here. Extrolite analysis showed that two of the new species, P. colei and P. monsserratidens produce the mycotoxin citreoviridin that has demonstrated pharmacological activity against human lung tumors. These isolates could provide leads in pharmaceutical research. PMID:25853891

  2. Season and light affect constitutive defenses of understory shrub species against folivorous insects

    NASA Astrophysics Data System (ADS)

    Karolewski, Piotr; Giertych, Marian J.; Żmuda, Michał; Jagodziński, Andrzej M.; Oleksyn, Jacek

    2013-11-01

    Understory shrubs contribute to overall species diversity, providing habitat and forage for animals, influence soil chemistry and forest microclimate. However, very little is known about the chemical defense of various shrub species against folivorous insects. Using six shrub species, we tested how seasonal changes and light conditions affect their constitutive defense to insect damage. We monitored leaf perforation, concentrations of total phenols, condensed tannins, nitrogen (N), and total nonstructural carbohydrates (TNC). Leaf damage caused by insects was low in Sambucus nigra, Cornus sanguinea, and Frangula alnus, intermediate in Corylus avellana and Prunus serotina, and high in Prunus padus. Leaves of all the species, when growing in high light conditions, had high concentrations of defense metabolites. Except for C. avellana, leaves of the other shrub species growing in full sun were less injured than those in shade. This may be due to higher concentrations of defense metabolites and lower concentrations of nitrogen. Similar patterns of the effects of light on metabolites studied and N were observed for leaves with varying location within the crown of individual shrubs (from the top of the south direction to the bottom of the north), as for leaves from shrubs growing in full sun and shrubs in the shade of canopy trees. A probable cause of the greater damage of more sunlit leaves of C. avellana was the fact that they were herbivorized mostly by Altica brevicollis, a specialist insect that prefers plant tissues with a high TNC level and is not very sensitive to a high level of phenolic compounds.

  3. Cross-Species Affective Neuroscience Decoding of the Primal Affective Experiences of Humans and Related Animals

    PubMed Central

    Panksepp, Jaak

    2011-01-01

    Background The issue of whether other animals have internally felt experiences has vexed animal behavioral science since its inception. Although most investigators remain agnostic on such contentious issues, there is now abundant experimental evidence indicating that all mammals have negatively and positively-valenced emotional networks concentrated in homologous brain regions that mediate affective experiences when animals are emotionally aroused. That is what the neuroscientific evidence indicates. Principal Findings The relevant lines of evidence are as follows: 1) It is easy to elicit powerful unconditioned emotional responses using localized electrical stimulation of the brain (ESB); these effects are concentrated in ancient subcortical brain regions. Seven types of emotional arousals have been described; using a special capitalized nomenclature for such primary process emotional systems, they are SEEKING, RAGE, FEAR, LUST, CARE, PANIC/GRIEF and PLAY. 2) These brain circuits are situated in homologous subcortical brain regions in all vertebrates tested. Thus, if one activates FEAR arousal circuits in rats, cats or primates, all exhibit similar fear responses. 3) All primary-process emotional-instinctual urges, even ones as complex as social PLAY, remain intact after radical neo-decortication early in life; thus, the neocortex is not essential for the generation of primary-process emotionality. 4) Using diverse measures, one can demonstrate that animals like and dislike ESB of brain regions that evoke unconditioned instinctual emotional behaviors: Such ESBs can serve as ‘rewards’ and ‘punishments’ in diverse approach and escape/avoidance learning tasks. 5) Comparable ESB of human brains yield comparable affective experiences. Thus, robust evidence indicates that raw primary-process (i.e., instinctual, unconditioned) emotional behaviors and feelings emanate from homologous brain functions in all mammals (see Appendix S1), which are regulated by higher

  4. Hidden diversity in the Podarcis tauricus (Sauria, Lacertidae) species subgroup in the light of multilocus phylogeny and species delimitation.

    PubMed

    Psonis, Nikolaos; Antoniou, Aglaia; Kukushkin, Oleg; Jablonski, Daniel; Petrov, Boyan; Crnobrnja-Isailović, Jelka; Sotiropoulos, Konstantinos; Gherghel, Iulian; Lymberakis, Petros; Poulakakis, Nikos

    2017-01-01

    The monophyletic species subgroup of Podarcis tauricus is distributed in the western and southern parts of the Balkans, and includes four species with unresolved and unstudied inter- and intra-specific phylogenetic relationships. Using sequence data from two mitochondrial and three nuclear genes and applying several phylogenetic methods and species delimitation approaches to an extensive dataset, we have reconstructed the phylogeny of the Podarcis wall lizards in the Balkans, and re-investigated the taxonomic status of the P. tauricus species subgroup. Multilocus analyses revealed that the aforementioned subgroup consists of five major clades, with P. melisellensis as its most basal taxon. Monophyly of P. tauricus sensu stricto is not supported, with one of the subspecies (P. t. ionicus) displaying great genetic diversity (hidden diversity or cryptic species). It comprises five, geographically distinct, subclades with genetic distances on the species level. Species delimitation approaches revealed nine species within the P. tauricus species subgroup (P. melisellensis, P. gaigeae, P. milensis, and six in the P. tauricus complex), underlining the necessity of taxonomic re-evaluation. We thus synonymize some previously recognized subspecies in this subgroup, elevate P. t. tauricus and P. g. gaigeae to the species level and suggest a distinct Albanian-Greek clade, provisionally named as the P. ionicus species complex. The latter clade comprises five unconfirmed candidate species that call for comprehensive studies in the future.

  5. Complete Genome Sequences of 12 Species of Stable Defined Moderately Diverse Mouse Microbiota 2

    PubMed Central

    Uchimura, Yasuhiro; Wyss, Madeleine; Brugiroux, Sandrine; Limenitakis, Julien P.; Stecher, Bärbel; McCoy, Kathy D.

    2016-01-01

    We report here the complete genome sequences of 12 bacterial species of stable defined moderately diverse mouse microbiota 2 (sDMDMm2) used to colonize germ-free mice with defined microbes. Whole-genome sequencing of these species was performed using the PacBio sequencing platform yielding circularized genome sequences of all 12 species. PMID:27634994

  6. Burning reveals cryptic diversity and promotes coexistence of native species in a restored California prairie

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grassland and prairie restoration projects in California often result in long-term establishment of only a few native plant species, even when they begin with a diverse palette of species. A likely explanation for the disappearance of certain native species over time is that they are outcompeted by ...

  7. Links between tree species, symbiotic fungal diversity and ecosystem functioning in simplified tropical ecosystems.

    PubMed

    Lovelock, Catherine E; Ewel, John J

    2005-07-01

    We studied the relationships among plant and arbuscular mycorrhizal (AM) fungal diversity, and their effects on ecosystem function, in a series of replicate tropical forestry plots in the La Selva Biological Station, Costa Rica. Forestry plots were 12 yr old and were either monocultures of three tree species, or polycultures of the tree species with two additional understory species. Relationships among the AM fungal spore community, host species, plant community diversity and ecosystem phosphorus-use efficiency (PUE) and net primary productivity (NPP) were assessed. Analysis of the relative abundance of AM fungal spores found that host tree species had a significant effect on the AM fungal community, as did host plant community diversity (monocultures vs polycultures). The Shannon diversity index of the AM fungal spore community differed significantly among the three host tree species, but was not significantly different between monoculture and polyculture plots. Over all the plots, significant positive relationships were found between AM fungal diversity and ecosystem NPP, and between AM fungal community evenness and PUE. Relative abundance of two of the dominant AM fungal species also showed significant correlations with NPP and PUE. We conclude that the AM fungal community composition in tropical forests is sensitive to host species, and provide evidence supporting the hypothesis that the diversity of AM fungi in tropical forests and ecosystem NPP covaries.

  8. SSRs are useful to assess genetic diversity among Lagerstroemia species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The most recent and widely accepted taxonomic revision of Lagerstroemia occurred in 1969 and is based on morphological characters. As described, the genus is split into three sections and includes more than 50 species, several of which are grown for lumber in Asia and the Philippines. Three species,...

  9. Genetic diversity of wild European and Mediterranean pear species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many pear species are native to Europe, the Middle East, and Northern Africa. These seemingly distinct species readily hybridize resulting in nomenclatures that do not reflect their phylogenetic history. We have used microsatellite and chloroplast sequence markers as well as phenotypic traits to dif...

  10. DOES NITROGEN PARTITIONING PROMOTE SPECIES DIVERSITY IN ARCTIC TUSSOCK TUNDRA?

    EPA Science Inventory

    We used 15N soil-labeling techniques to examine how the dominant species in a N-limited, tussock tundra plant community partitioned soil N, and how such partitioning may contribute to community organization. The five most productive species were well differentiated with respect ...

  11. Unequal Contribution of Widespread and Narrow-Ranged Species to Botanical Diversity Patterns

    PubMed Central

    Raes, Niels; Wieringa, Jan J.; Sosef, Marc S. M.

    2016-01-01

    In conservation studies, solely widespread species are often used as indicators of diversity patterns, but narrow-ranged species can show different patterns. Here, we assess how well subsets of narrow-ranged, widespread or randomly selected plant species represent patterns of species richness and weighted endemism in Gabon, tropical Africa. Specifically, we assess the effect of using different definitions of widespread and narrow-ranged and of the information content of the subsets. Finally, we test if narrow-ranged species are overrepresented in species-rich areas. Based on distribution models of Gabonese plant species, we defined sequential subsets from narrow-ranged-to-widespread, widespread-to-narrow-ranged, and 100 randomly arranged species sequences using the range sizes of species in tropical Africa and within Gabon. Along these sequences, correlations between subsets and the total species richness and total weighted endemism patterns were computed. Random species subsets best represent the total species richness pattern, whereas subsets of narrow-ranged species best represent the total weighted endemism pattern. For species ordered according to their range sizes in tropical Africa, subsets of narrow-ranged species represented the total species richness pattern better than widespread species subsets did. However, the opposite was true when range sizes were truncated by the Gabonese national country borders. Correcting for the information content of the subset results in a skew of the sequential correlations, its direction depending on the range-size frequency distribution. Finally, we find a strong, positive, non-linear relation between weighted endemism and total species richness. Observed differences in the contribution of narrow-ranged, widespread and randomly selected species to species richness and weighted endemism patterns can be explained by the range-size frequency distribution and the use of different definitions of widespread or narrow-ranged. We

  12. Saturating effects of species diversity on life-history evolution in bacteria.

    PubMed

    Fiegna, Francesca; Scheuerl, Thomas; Moreno-Letelier, Alejandra; Bell, Thomas; Barraclough, Timothy G

    2015-09-22

    Species interactions can play a major role in shaping evolution in new environments. In theory, species interactions can either stimulate evolution by promoting coevolution or inhibit evolution by constraining ecological opportunity. The relative strength of these effects should vary as species richness increases, and yet there has been little evidence for evolution of component species in communities. We evolved bacterial microcosms containing between 1 and 12 species in three different environments. Growth rates and yields of isolates that evolved in communities were lower than those that evolved in monocultures, consistent with recent theory that competition constrains species to specialize on narrower sets of resources. This effect saturated or reversed at higher levels of richness, consistent with theory that directional effects of species interactions should weaken in more diverse communities. Species varied considerably, however, in their responses to both environment and richness levels. Mechanistic models and experiments are now needed to understand and predict joint evolutionary dynamics of species in diverse communities.

  13. Macroparasite community of the Eurasian red squirrel (Sciurus vulgaris): poor species richness and diversity.

    PubMed

    Romeo, Claudia; Pisanu, Benoît; Ferrari, Nicola; Basset, Franck; Tillon, Laurent; Wauters, Lucas A; Martinoli, Adriano; Saino, Nicola; Chapuis, Jean-Louis

    2013-10-01

    The Eurasian red squirrel (Sciurus vulgaris) is the only naturally occurring tree squirrel throughout its range. We aim at improving current knowledge on its macroparasite fauna, expecting that it will have a poor parasite diversity because in species that have no sympatric congeners parasite richness should be lower than in hosts sharing their range with several closely related species, where host-switching events and lateral transmission are promoted. We examined gastro-intestinal helminth and ectoparasite communities (excluding mites) of, respectively, 147 and 311 red squirrel roadkills collected in four biogeographic regions in Italy and France. As expected, the macroparasite fauna was poor: we found five species of nematodes and some unidentified cestodes, three fleas, two sucking lice and two hard ticks. The helminth community was dominated by a single species, the oxyurid Trypanoxyuris (Rodentoxyuris) sciuri (prevalence, 87%; mean abundance, 373 ± 65 worms/host). Its abundance varied among seasons and biogeographic regions and increased with body mass in male hosts while decreased in females. The most prevalent ectoparasites were the flea Ceratophyllus (Monopsyllus) sciurorum (28%), whose presence was affected by season, and the generalist tick Ixodes (Ixodes) ricinus that was found only in France (34%). All the other helminths and arthropod species were rare, with prevalence below 10%. However, the first record of Strongyloides robustus, a common nematode of North American Eastern grey squirrels (S. carolinensis), in two red squirrels living in areas where this alien species co-inhabits, deserves further attention, since low parasite richness could result in native red squirrels being particularly vulnerable to parasite spillover.

  14. The relationship between satellite-derived indices and species diversity across African savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Mapfumo, Ratidzo B.; Murwira, Amon; Masocha, Mhosisi; Andriani, R.

    2016-10-01

    The ability to use remotely sensed diversity is important for the management of ecosystems at large spatial extents. However, to achieve this, there is still need to develop robust methods and approaches that enable large-scale mapping of species diversity. In this study, we tested the relationship between species diversity measured in situ with the Normalized Difference Vegetation Index (NDVI) and the Coefficient of Variation in the NDVI (CVNDVI) derived from high and medium spatial resolution satellite data at dry, wet and coastal savanna woodlands. We further tested the effect of logging on NDVI along the transects and between transects as disturbance may be a mechanism driving the patterns observed. Overall, the results of this study suggest that high tree species diversity is associated with low and high NDVI and at intermediate levels is associated with low tree species diversity and NDVI. High tree species diversity is associated with high CVNDVI and vice versa and at intermediate levels is associated with high tree species diversity and CVNDVI.

  15. Selection of multiple umbrella species for functional and taxonomic diversity to represent urban biodiversity.

    PubMed

    Sattler, T; Pezzatti, G B; Nobis, M P; Obrist, M K; Roth, T; Moretti, M

    2014-04-01

    Surrogates, such as umbrella species, are commonly used to reduce the complexity of quantifying biodiversity for conservation purposes. The presence of umbrella species is often indicative of high taxonomic diversity; however, functional diversity is now recognized as an important metric for biodiversity and thus should be considered when choosing umbrella species. We identified umbrella species associated with high taxonomic and functional biodiversity in urban areas in Switzerland. We analyzed 39,752 individuals of 574 animal species from 96 study plots and 1397 presences of 262 plant species from 58 plots. Thirty-one biodiversity measures of 7 taxonomic groups (plants, spiders, bees, ground beetles, lady bugs, weevils and birds) were included in within- and across-taxa analyses. Sixteen measures were taxonomical (species richness and species diversity), whereas 15 were functional (species traits including mobility, resource use, and reproduction). We used indicator value analysis to identify umbrella species associated with single or multiple biodiversity measures. Many umbrella species were indicators of high biodiversity within their own taxonomic group (from 33.3% in weevils to 93.8% in birds), to a lesser extent they were indicators across taxa. Principal component analysis revealed that umbrella species for multiple measures of biodiversity represented different aspects of biodiversity, especially with respect to measures of taxonomic and functional diversity. Thus, even umbrella species for multiple measures of biodiversity were complementary in the biodiversity aspects they represented. Thus, the choice of umbrella species based solely on taxonomic diversity is questionable and may not represent biodiversity comprehensively. Our results suggest that, depending on conservation priorities, managers should choose multiple and complementary umbrella species to assess the state of biodiversity.

  16. A spider species complex revealed high cryptic diversity in South China caves.

    PubMed

    Zhang, Yuanyuan; Li, Shuqiang

    2014-10-01

    Cryptic species, which are an important component of biodiversity, have rarely been studied in South China karst. We investigated cryptic diversity in the cave species complex Telema cucurbitina, which has a narrow niche but widespread distribution among multiple caves. We sampled another 15 populations (caves) in addition to the population from the type locality. Phylogenetic results indicated that individuals from the same cave constituted well-supported clades. Species diversity within this species complex was assessed in a coalescent framework, first with a Bayesian extension of the general mixed Yule coalescent (bGMYC) model and a Bayesian species delimitation method (BPP). Both species delimitation methods identified each cave population as a separate species. We propose that each cave population within this species complex was a separate evolving lineage and therefore 16 OTUs were recovered based on our molecular data despite their high morphological similarities. We also propose that the unrecognized organism's diversity within South China caves might be extremely large considering our case. Furthermore, our work reveals that species discovery of cave organisms by morphological data has a high probability of underestimating hidden diversity. Our work also highlights the need for conservation strategies to protect this largely neglected diversity of cave organisms.

  17. Levels of genetic diversity and taxonomic status of Epinephelus species in United Arab Emirates fish markets.

    PubMed

    Ketchum, Remi N; Dieng, Mame M; Vaughan, Grace O; Burt, John A; Idaghdour, Youssef

    2016-04-30

    Understanding the patterns of genetic diversity of fish species is essential for marine conservation and management. This is particularly important in the Arabian Gulf where marine life is subject to extreme environmental conditions that could impact genetic diversity. Here we assess genetic diversity of the most commercially important fish in the United Arab Emirates; groupers (Epinephelus spp.). Sequencing of 973 bp mitochondrial DNA from 140 tissue samples collected in four main fish markets revealed 58 haplotypes clustered within three groups. Data analysis revealed the presence of three distinct Epinephelus species being marketed as one species (hammour): Epinephelus coioides, Epinephelus areolatus and Epinephelus bleekeri. We report species-specific genetic markers and demonstrate that all three species exhibit relatively low levels of genetic variation, reflecting the effect of overfishing and environmental pressures. In light of the genetic evidence presented here, conservation and management of groupers in the UAE warrant the implementation of species-specific measures.

  18. Phylogenetic diversity of plants alters the effect of species richness on invertebrate herbivory.

    PubMed

    Dinnage, Russell

    2013-01-01

    Long-standing ecological theory proposes that diverse communities of plants should experience a decrease in herbivory. Yet previous empirical examinations of this hypothesis have revealed that plant species richness increases herbivory in just as many systems as it decreases it. In this study, I ask whether more insight into the role of plant diversity in promoting or suppressing herbivory can be gained by incorporating information about the evolutionary history of species in a community. In an old field system in southern Ontario, I surveyed communities of plants and measured levels of leaf damage on 27 species in 38 plots. I calculated a measure of phylogenetic diversity (PSE) that encapsulates information about the amount of evolutionary history represented in each of the plots and looked for a relationship between levels of herbivory and both species richness and phylogenetic diversity using a generalized linear mixed model (GLMM) that could account for variation in herbivory levels between species. I found that species richness was positively associated with herbivore damage at the plot-level, in keeping with the results from several other recent studies on this question. On the other hand, phylogenetic diversity was associated with decreased herbivory. Importantly, there was also an interaction between species richness and phylogenetic diversity, such that plots with the highest levels of herbivory were plots which had many species but only if those species tended to be closely related to one another. I propose that these results are the consequence of interactions with herbivores whose diets are phylogenetically specialized (for which I introduce the term cladophage), and how phylogenetic diversity may alter their realized host ranges. These results suggest that incorporating a phylogenetic perspective can add valuable additional insight into the role of plant diversity in explaining or predicting levels of herbivory at a whole-community scale.

  19. Historical factors shaped species diversity and composition of Salix in eastern Asia

    NASA Astrophysics Data System (ADS)

    Wang, Qinggang; Su, Xiangyan; Shrestha, Nawal; Liu, Yunpeng; Wang, Siyang; Xu, Xiaoting; Wang, Zhiheng

    2017-02-01

    Ambient energy, niche conservatism, historical climate stability and habitat heterogeneity hypothesis have been proposed to explain the broad-scale species diversity patterns and species compositions, while their relative importance have been controversial. Here, we assessed the relative contributions of contemporary climate, historical climate changes and habitat heterogeneity in shaping Salix species diversity and species composition in whole eastern Asia as well as mountains and lowlands using linear regressions and distance-based redundancy analyses, respectively. Salix diversity was negatively related with mean annual temperature. Habitat heterogeneity was more important than contemporary climate in shaping Salix diversity patterns, and their relative contributions were different in mountains and lowlands. In contrast, the species composition was strongly influenced by contemporary climate and historical climate change than habitat heterogeneity, and their relative contributions were nearly the same both in mountains and lowlands. Our findings supported niche conservatism and habitat heterogeneity hypotheses, but did not support ambient energy and historical climate stability hypotheses. The diversity pattern and species composition of Salix could not be well-explained by any single hypothesis tested, suggesting that other factors such as disturbance history and diversification rate may be also important in shaping the diversity pattern and composition of Salix species.

  20. Historical factors shaped species diversity and composition of Salix in eastern Asia.

    PubMed

    Wang, Qinggang; Su, Xiangyan; Shrestha, Nawal; Liu, Yunpeng; Wang, Siyang; Xu, Xiaoting; Wang, Zhiheng

    2017-02-08

    Ambient energy, niche conservatism, historical climate stability and habitat heterogeneity hypothesis have been proposed to explain the broad-scale species diversity patterns and species compositions, while their relative importance have been controversial. Here, we assessed the relative contributions of contemporary climate, historical climate changes and habitat heterogeneity in shaping Salix species diversity and species composition in whole eastern Asia as well as mountains and lowlands using linear regressions and distance-based redundancy analyses, respectively. Salix diversity was negatively related with mean annual temperature. Habitat heterogeneity was more important than contemporary climate in shaping Salix diversity patterns, and their relative contributions were different in mountains and lowlands. In contrast, the species composition was strongly influenced by contemporary climate and historical climate change than habitat heterogeneity, and their relative contributions were nearly the same both in mountains and lowlands. Our findings supported niche conservatism and habitat heterogeneity hypotheses, but did not support ambient energy and historical climate stability hypotheses. The diversity pattern and species composition of Salix could not be well-explained by any single hypothesis tested, suggesting that other factors such as disturbance history and diversification rate may be also important in shaping the diversity pattern and composition of Salix species.

  1. Historical factors shaped species diversity and composition of Salix in eastern Asia

    PubMed Central

    Wang, Qinggang; Su, Xiangyan; Shrestha, Nawal; Liu, Yunpeng; Wang, Siyang; Xu, Xiaoting; Wang, Zhiheng

    2017-01-01

    Ambient energy, niche conservatism, historical climate stability and habitat heterogeneity hypothesis have been proposed to explain the broad-scale species diversity patterns and species compositions, while their relative importance have been controversial. Here, we assessed the relative contributions of contemporary climate, historical climate changes and habitat heterogeneity in shaping Salix species diversity and species composition in whole eastern Asia as well as mountains and lowlands using linear regressions and distance-based redundancy analyses, respectively. Salix diversity was negatively related with mean annual temperature. Habitat heterogeneity was more important than contemporary climate in shaping Salix diversity patterns, and their relative contributions were different in mountains and lowlands. In contrast, the species composition was strongly influenced by contemporary climate and historical climate change than habitat heterogeneity, and their relative contributions were nearly the same both in mountains and lowlands. Our findings supported niche conservatism and habitat heterogeneity hypotheses, but did not support ambient energy and historical climate stability hypotheses. The diversity pattern and species composition of Salix could not be well-explained by any single hypothesis tested, suggesting that other factors such as disturbance history and diversification rate may be also important in shaping the diversity pattern and composition of Salix species. PMID:28176816

  2. Temporal latitudinal-gradient dynamics and tropical instability of deep-sea species diversity

    USGS Publications Warehouse

    Yasuhara, Moriaki; Hunt, G.; Cronin, T. M.; Okahashi, H.

    2009-01-01

    A benthic microfaunal record from the equatorial Atlantic Ocean over the past four glacial-interglacial cycles was investigated to understand temporal dynamics of deep-sea latitudinal species diversity gradients (LSDGs). The results demonstrate unexpected instability and high amplitude fluctuations of species diversity in the tropical deep ocean that are correlated with orbital-scale oscillations in global climate: Species diversity is low during glacial and high during interglacial periods. This implies that climate severely influences deep-sea diversity, even at tropical latitudes, and that deep-sea LSDGs, while generally present for the last 36 million years, were weakened or absent during glacial periods. Temporally dynamic LSDGs and unstable tropical diversity require reconsideration of current ecological hypotheses about the generation and maintenance of biodiversity as they apply to the deep sea, and underscore the potential vulnerability and conservation importance of tropical deep-sea ecosystems.

  3. Species-specific mercury bioaccumulation in a diverse fish community.

    PubMed

    Donald, David B; Wissel, Björn; Anas, M U Mohamed

    2015-12-01

    Mercury bioaccumulation models developed for fish provide insight into the sources and transfer of Hg within ecosystems. Mercury concentrations were assessed for 16 fish species of the western reach of Lake Diefenbaker, Saskatchewan, Canada. For top predators (northern pike, Esox Lucius; walleye, Sander vitreum), Hg concentrations were positively correlated to δ(15)N, and δ(15)N to fish age, suggesting that throughout life these fish fed on organisms with increasingly higher trophic values and Hg concentrations. However, fish mass and/or age were the principal parameters related to Hg concentrations for most species. For 9 common species combined, individual variation in Hg concentration was explained in declining order of importance by fish mass, trophic position (δ(15)N), and fish age. Delta (15)N value was not the leading variable related to Hg concentration for the assemblage, probably because of the longevity of lower--trophic-level species (3 species ≥ 20 yr), substantial overlap in Hg concentration and δ(15)N values for large-bodied fish up to 3000 g, and complex relationships between Hg concentration and δ(15)N among species. These results suggest that the quantity of food (and Hg) consumed each year and converted to fish mass, the quantity of Hg bioaccumulated over years and decades, and trophic position were significant determinants of Hg concentration in Lake Diefenbaker fish.

  4. Plot shape effects on plant species diversity measurements

    USGS Publications Warehouse

    Keeley, Jon E.; Fotheringham, C.J.

    2005-01-01

    Abstract. Question: Do rectangular sample plots record more plant species than square plots as suggested by both empirical and theoretical studies?Location: Grasslands, shrublands and forests in the Mediterranean-climate region of California, USA.Methods: We compared three 0.1-ha sampling designs that differed in the shape and dispersion of 1-m2 and 100-m2 nested subplots. We duplicated an earlier study that compared the Whittaker sample design, which had square clustered subplots, with the modified Whittaker design, which had dispersed rectangular subplots. To sort out effects of dispersion from shape we used a third design that overlaid square subplots on the modified Whittaker design. Also, using data from published studies we extracted species richness values for 400-m2 subplots that were either square or 1:4 rectangles partially overlaid on each other from desert scrub in high and low rainfall years, chaparral, sage scrub, oak savanna and coniferous forests with and without fire.Results: We found that earlier empirical reports of more than 30% greater richness with rectangles were due to the confusion of shape effects with spatial effects, coupled with the use of cumulative number of species as the metric for comparison. Average species richness was not significantly different between square and 1:4 rectangular sample plots at either 1- or 100-m2. Pairwise comparisons showed no significant difference between square and rectangular samples in all but one vegetation type, and that one exhibited significantly greater richness with squares. Our three intensive study sites appear to exhibit some level of self-similarity at the scale of 400 m2, but, contrary to theoretical expectations, we could not detect plot shape effects on species richness at this scale.Conclusions: At the 0.1-ha scale or lower there is no evidence that plot shape has predictable effects on number of species recorded from sample plots. We hypothesize that for the mediterranean

  5. Soil-occupancy effects of invasive and native grassland plant species on composition and diversity of mycorrhizal associations

    USGS Publications Warehouse

    Jordan, Nicholas R.; Aldrich-Wolfe, Laura; Huerd, Sheri C.; Larson, Diane L.; Muehlbauer, Gary

    2012-01-01

    Diversified grasslands that contain native plant species can produce biofuels, support sustainable grazing systems, and produce other ecosystem services. However, ecosystem service production can be disrupted by invasion of exotic perennial plants, and these plants can have soil-microbial “legacies” that may interfere with establishment and maintenance of diversified grasslands even after effective management of the invasive species. The nature of such legacies is not well understood, but may involve suppression of mutualisms between native species and soil microbes. In this study, we tested the hypotheses that legacy effects of invasive species change colonization rates, diversity, and composition of arbuscular-mycorrhizal fungi (AMF) associated with seedlings of co-occurring invasive and native grassland species. In a glasshouse, experimental soils were conditioned by cultivating three invasive grassland perennials, three native grassland perennials, and a native perennial mixture. Each was grown separately through three cycles of growth, after which we used T-RFLP analysis to characterize AMF associations of seedlings of six native perennial and six invasive perennial species grown in these soils. Legacy effects of soil conditioning by invasive species did not affect AMF richness in seedling roots, but did affect AMF colonization rates and the taxonomic composition of mycorrhizal associations in seedling roots. Moreover, native species were more heavily colonized by AMF and roots of native species had greater AMF richness (number of AMF operational taxonomic units per seedling) than did invasive species. The invasive species used to condition soil in this experiment have been shown to have legacy effects on biomass of native seedlings, reducing their growth in this and a previous similar experiment. Therefore, our results suggest that successful plant invaders can have legacies that affect soil-microbial associations of native plants and that these effects

  6. Parametric scaling from species to growth-form diversity: an interesting analogy with multifractal functions.

    PubMed

    Ricotta, Carlo; Pacini, Alessandra; Avena, Giancarlo

    2002-01-01

    We propose a measure of divergence from species to life-form diversity aimed at summarizing the ecological similarity among different plant communities without losing information on traditional taxonomic diversity. First, species and life-form relative abundances within a given plant community are determined. Next, using Rényi's generalized entropy, the diversity profiles of the analyzed community are computed both from species and life-form relative abundances. Finally, the speed of decrease from species to life-form diversity is obtained by combining the outcome of both profiles. Interestingly, the proposed measure shows some formal analogies with multifractal functions developed in statistical physics for the analysis of spatial patterns. As an application for demonstration, a small data set from a plant community sampled in the archaeological site of Paestum (southern Italy) is used.

  7. [Species diversity of bryophytes in West Tianmu Mountain of Zhejiang Province].

    PubMed

    Li, Fenxia; Wang, Youfang; Liu, Li; Yang, Shuzhen

    2006-02-01

    In this paper, an investigation was made on the bryophytes at different altitudes of West Tianmu Mountain, with their species composition, similarity, and alpha- and beta-diversities. The results showed that at altitude 1100 m, the bryophytes under deciduous broad-leaved forest had the highest species number and richness, and the highest similarity with the bryophytes under deciduous broad-leaved shrub at 1300 m. The beta diversity index at altitude 800-1100 m was the largest, suggesting an obvious change and alternation of bryophyte species there. At altitude 1100 m, the species diversity of bryophytes was the highest, where should be the key area for bryophyte diversity conservation in West Tianmu Mountain.

  8. Seasonality and Locality Affect the Diversity of Anopheles gambiae and Anopheles coluzzii Midgut Microbiota from Ghana

    PubMed Central

    Gendrin, Mathilde; Pels, Nana Adjoa P.; Yeboah-Manu, Dorothy; Christophides, George K.; Wilson, Michael D.

    2016-01-01

    Symbiotic bacteria can have important implications in the development and competence of disease vectors. In Anopheles mosquitoes, the composition of the midgut microbiota is largely influenced by the larval breeding site, but the exact factors shaping this composition are currently unknown. Here, we examined whether the proximity to urban areas and seasons have an impact on the midgut microbial community of the two major malaria vectors in Africa, An. coluzzii and An. gambiae. Larvae and pupae were collected from selected habitats in two districts of Ghana during the dry and rainy season periods. The midgut microbiota of adults that emerged from these collections was determined by 454-pyrosequencing of the 16S ribosomal DNA. We show that in both mosquito species, Shewanellaceae constituted on average of 54% and 73% of the midgut microbiota from each site in the dry and rainy season, respectively. Enterobacteriaceae was found in comparatively low abundance below 1% in 22/30 samples in the dry season, and in 25/38 samples in the rainy season. Our data indicate that seasonality and locality significantly affect both the diversity of microbiota and the relative abundance of bacterial families with a positive impact of dry season and peri-urban settings. PMID:27322614

  9. High phylogenetic diversity is preserved in species-poor high-elevation temperate moth assemblages

    PubMed Central

    Zou, Yi; Sang, Weiguo; Hausmann, Axel; Axmacher, Jan Christoph

    2016-01-01

    Understanding the diversity and composition of species assemblages and identifying underlying biotic and abiotic determinants represent great ecological challenges. Addressing some of these issues, we investigated the α-diversity and phylogenetic composition of species-rich geometrid moth (Lepidoptera: Geometridae) assemblages in the mature temperate forest on Changbai Mountain. A total of 9285 geometrid moths representing 131 species were collected, with many species displaying wide elevational distribution ranges. Moth α-diversity decreased monotonously, while the standardized effect size of mean pairwise phylogenetic distances (MPD) and phylogenetic diversity (PD) increased significantly with increasing elevation. At high elevations, the insect assemblages consisted largely of habitat generalists that were individually more phylogenetically distinct from co-occurring species than species in assemblages at lower altitudes. This could hint at higher speciation rates in more favourable low-elevation environments generating a species-rich geometrid assemblage, while exclusion of phylogenetically closely related species becomes increasingly important in shaping moth assemblages at higher elevations. Overall, it appears likely that high-elevation temperate moth assemblages are strongly resilient to environmental change, and that they contain a much larger proportion of the genetic diversity encountered at low-elevation assemblages in comparison to tropical geometrid communities. PMID:26979402

  10. High phylogenetic diversity is preserved in species-poor high-elevation temperate moth assemblages

    NASA Astrophysics Data System (ADS)

    Zou, Yi; Sang, Weiguo; Hausmann, Axel; Axmacher, Jan Christoph

    2016-03-01

    Understanding the diversity and composition of species assemblages and identifying underlying biotic and abiotic determinants represent great ecological challenges. Addressing some of these issues, we investigated the α-diversity and phylogenetic composition of species-rich geometrid moth (Lepidoptera: Geometridae) assemblages in the mature temperate forest on Changbai Mountain. A total of 9285 geometrid moths representing 131 species were collected, with many species displaying wide elevational distribution ranges. Moth α-diversity decreased monotonously, while the standardized effect size of mean pairwise phylogenetic distances (MPD) and phylogenetic diversity (PD) increased significantly with increasing elevation. At high elevations, the insect assemblages consisted largely of habitat generalists that were individually more phylogenetically distinct from co-occurring species than species in assemblages at lower altitudes. This could hint at higher speciation rates in more favourable low-elevation environments generating a species-rich geometrid assemblage, while exclusion of phylogenetically closely related species becomes increasingly important in shaping moth assemblages at higher elevations. Overall, it appears likely that high-elevation temperate moth assemblages are strongly resilient to environmental change, and that they contain a much larger proportion of the genetic diversity encountered at low-elevation assemblages in comparison to tropical geometrid communities.

  11. High phylogenetic diversity is preserved in species-poor high-elevation temperate moth assemblages.

    PubMed

    Zou, Yi; Sang, Weiguo; Hausmann, Axel; Axmacher, Jan Christoph

    2016-03-16

    Understanding the diversity and composition of species assemblages and identifying underlying biotic and abiotic determinants represent great ecological challenges. Addressing some of these issues, we investigated the α-diversity and phylogenetic composition of species-rich geometrid moth (Lepidoptera: Geometridae) assemblages in the mature temperate forest on Changbai Mountain. A total of 9285 geometrid moths representing 131 species were collected, with many species displaying wide elevational distribution ranges. Moth α-diversity decreased monotonously, while the standardized effect size of mean pairwise phylogenetic distances (MPD) and phylogenetic diversity (PD) increased significantly with increasing elevation. At high elevations, the insect assemblages consisted largely of habitat generalists that were individually more phylogenetically distinct from co-occurring species than species in assemblages at lower altitudes. This could hint at higher speciation rates in more favourable low-elevation environments generating a species-rich geometrid assemblage, while exclusion of phylogenetically closely related species becomes increasingly important in shaping moth assemblages at higher elevations. Overall, it appears likely that high-elevation temperate moth assemblages are strongly resilient to environmental change, and that they contain a much larger proportion of the genetic diversity encountered at low-elevation assemblages in comparison to tropical geometrid communities.

  12. Species diversity in the Antrodia crassa group (Polyporales, Basidiomycota).

    PubMed

    Spirin, Viacheslav; Runnel, Kadri; Vlasák, Josef; Miettinen, Otto; Põldmaa, Kadri

    2015-12-01

    Antrodia is a polyphyletic genus, comprising brown-rot polypores with annual or short-lived perennial resupinate, dimitic basidiocarps. Here we focus on species that are closely related to Antrodia crassa, and investigate their phylogeny and species delimitation using geographic, ecological, morphological and molecular data (ITS and LSU rDNA, tef1). Phylogenetic analyses distinguished four clades within the monophyletic group of eleven conifer-inhabiting species (five described herein): (1)A. crassa s. str. (boreal Eurasia), Antrodia cincta sp. nova (North America) and Antrodia cretacea sp. nova (holarctic), all three being characterized by inamyloid skeletal hyphae that dissolve quickly in KOH solution; (2) Antrodia ignobilis sp. nova, Antrodia sitchensis and Antrodia sordida from North America, and Antrodia piceata sp. nova (previously considered conspecific with A. sitchensis) from Eurasia, possessing amyloid skeletal hyphae; (3) Antrodia ladiana sp. nova from the southern part of the USA, Antrodia pinea from East Asia, and Antrodia ferox - so far known from subtropical North America, but here reported also from Eurasia. These three species have inamyloid hyphae and narrow basidiospores; (4) the North American Antrodia pini-cubensis, sharing similar morphological characters with A. pinea, forming a separate clade. The habitat data indicate that several species are threatened by intensive forestry.

  13. Diversity of small RNAs expressed in Pseudomonas species.

    PubMed

    Gómez-Lozano, María; Marvig, Rasmus L; Molina-Santiago, Carlos; Tribelli, Paula M; Ramos, Juan-Luis; Molin, Søren

    2015-04-01

    RNA sequencing (RNA-seq) has revealed several hundreds of previously undetected small RNAs (sRNAs) in all bacterial species investigated, including strains of Pseudomonas aeruginosa, Pseudomonas putida and Pseudomonas syringae. Nonetheless, only little is known about the extent of conservation of expressed sRNAs across strains and species. In this study, we have used RNA-seq to identify sRNAs in P. putida DOT-T1E and Pseudomonas extremaustralis 14-3b. This is the first strain of P. extremaustralis and the second strain of P. putida to have their transcriptomes analysed for sRNAs, and we identify the presence of around 150 novel sRNAs in each strain. Furthermore, we provide a comparison based on sequence conservation of all the sRNAs detected by RNA-seq in the Pseudomonas species investigated so far. Our results show that the extent of sRNA conservation across different species is very limited. In addition, when comparing the sRNAs expressed in different strains of the same species, we observe that numerous sRNAs exhibit a strain-specific expression pattern. These results support the idea that the evolution of most bacterial sRNAs is rapid, which limits the extent of both interspecies and intraspecies conservation.

  14. Diversity and Distribution of Freshwater Amphipod Species in Switzerland (Crustacea: Amphipoda)

    PubMed Central

    Altermatt, Florian; Alther, Roman; Fišer, Cene; Jokela, Jukka; Konec, Marjeta; Küry, Daniel; Mächler, Elvira; Stucki, Pascal; Westram, Anja Marie

    2014-01-01

    Amphipods are key organisms in many freshwater systems and contribute substantially to the diversity and functioning of macroinvertebrate communities. Furthermore, they are commonly used as bioindicators and for ecotoxicological tests. For many areas, however, diversity and distribution of amphipods is inadequately known, which limits their use in ecological and ecotoxicological studies and handicaps conservation initiatives. We studied the diversity and distribution of amphipods in Switzerland (Central Europe), covering four major drainage basins, an altitudinal gradient of>2,500 m, and various habitats (rivers, streams, lakes and groundwater). We provide the first provisional checklist and detailed information on the distribution and diversity of all amphipod species from Switzerland. In total, we found 29 amphipod species. This includes 16 native and 13 non-native species, one of the latter (Orchestia cavimana) reported here for the first time for Switzerland. The diversity is compared to neighboring countries. We specifically discuss species of the genus Niphargus, which are often receiving less attention. We also found evidence of an even higher level of hidden diversity, and the potential occurrence of further cryptic species. This diversity reflects the biogeographic past of Switzerland, and suggests that amphipods are ideally suited to address questions on endemism and adaptive radiations, post-glaciation re-colonization and invasion dynamics as well as biodiversity-ecosystem functioning relationships in aquatic systems. PMID:25354099

  15. Diversity and distribution of freshwater amphipod species in Switzerland (Crustacea: Amphipoda).

    PubMed

    Altermatt, Florian; Alther, Roman; Fišer, Cene; Jokela, Jukka; Konec, Marjeta; Küry, Daniel; Mächler, Elvira; Stucki, Pascal; Westram, Anja Marie

    2014-01-01

    Amphipods are key organisms in many freshwater systems and contribute substantially to the diversity and functioning of macroinvertebrate communities. Furthermore, they are commonly used as bioindicators and for ecotoxicological tests. For many areas, however, diversity and distribution of amphipods is inadequately known, which limits their use in ecological and ecotoxicological studies and handicaps conservation initiatives. We studied the diversity and distribution of amphipods in Switzerland (Central Europe), covering four major drainage basins, an altitudinal gradient of>2,500 m, and various habitats (rivers, streams, lakes and groundwater). We provide the first provisional checklist and detailed information on the distribution and diversity of all amphipod species from Switzerland. In total, we found 29 amphipod species. This includes 16 native and 13 non-native species, one of the latter (Orchestia cavimana) reported here for the first time for Switzerland. The diversity is compared to neighboring countries. We specifically discuss species of the genus Niphargus, which are often receiving less attention. We also found evidence of an even higher level of hidden diversity, and the potential occurrence of further cryptic species. This diversity reflects the biogeographic past of Switzerland, and suggests that amphipods are ideally suited to address questions on endemism and adaptive radiations, post-glaciation re-colonization and invasion dynamics as well as biodiversity-ecosystem functioning relationships in aquatic systems.

  16. Genotypic and Phenotypic Diversity Does Not Affect Productivity and Drought Response in Competitive Stands of Trifolium repens.

    PubMed

    Huber, Heidrun; During, Heinjo J; Bruine de Bruin, Fabienne; Vermeulen, Peter J; Anten, Niels P R

    2016-01-01

    Clonal plants can form dense canopies in which plants of different genetic origin are competing for the uptake of essential resources. The competitive relationships among these clones are likely to be affected by extreme environmental conditions, such as prolonged drought spells, which are predicted to occur more frequently due to global climate change. This, in turn, may alter characteristics of the ecological system and its associated functioning. We hypothesized that the relative success of individual clones will depend on the size of the ramets as ramets with larger leaves and longer petioles (large ramets) were predicted to have a competitive advantage in terms of increased light interception over smaller-sized ramets. Under drier conditions the relative performances of genotypes were expected to change leading to a change in genotype ranking. We also hypothesized that increased genotypic and phenotypic diversity will increase stand performance and resistance to drought. These hypotheses and the mechanisms responsible for shifts in competitive relationships were investigated by subjecting genotypes of the important pasture legume Trifolium repens to competition with either genetically identical clones, genetically different but similarly sized clones, or genetically as well as morphologically different clones under well-watered and dry conditions. Competitive relationships were affected by ramet size with large genotypes outperforming small genotypes in diverse stands in terms of biomass production. However, large genotypes also produced relatively fewer ramets than small genotypes and could not benefit in terms of clonal reproduction from competing with smaller genotypes, indicating that evolutionary shifts in genotype composition will depend on whether ramet size or ramet number is under selection. In contrast to our hypotheses, diversity did not increase stand performance under different selection regimes and genotype ranking was hardly affected by soil

  17. Evolving entities: towards a unified framework for understanding diversity at the species and higher levels

    PubMed Central

    Barraclough, Timothy G.

    2010-01-01

    Current approaches to studying the evolution of biodiversity differ in their treatment of species and higher level diversity patterns. Species are regarded as the fundamental evolutionarily significant units of biodiversity, both in theory and in practice, and extensive theory explains how they originate and evolve. However, most species are still delimited using qualitative methods that only relate indirectly to the underlying theory. In contrast, higher level patterns of diversity have been subjected to rigorous quantitative study (using phylogenetics), but theory that adequately explains the observed patterns has been lacking. Most evolutionary analyses of higher level diversity patterns have considered non-equilibrium explanations based on rates of diversification (i.e. exponentially growing clades), rather than equilibrium explanations normally used at the species level and below (i.e. constant population sizes). This paper argues that species level and higher level patterns of diversity can be considered within a common framework, based on equilibrium explanations. It shows how forces normally considered in the context of speciation, namely divergent selection and geographical isolation, can generate evolutionarily significant units of diversity above the level of reproductively isolated species. Prospects for the framework to answer some unresolved questions about higher level diversity patterns are discussed. PMID:20439282

  18. Diversity of Fusarium species and mycotoxins contaminating pineapple.

    PubMed

    Stępień, Łukasz; Koczyk, Grzegorz; Waśkiewicz, Agnieszka

    2013-08-01

    Pineapple (Ananas comosus var. comosus) is an important perennial crop in tropical and subtropical areas. It may be infected by various Fusarium species, contaminating the plant material with mycotoxins. The aim of this study was to evaluate Fusarium species variability among the genotypes isolated from pineapple fruits displaying fungal infection symptoms and to evaluate their mycotoxigenic abilities. Forty-four isolates of ten Fusarium species were obtained from pineapple fruit samples: F. ananatum, F. concentricum, F. fujikuroi, F. guttiforme, F. incarnatum, F. oxysporum, F. polyphialidicum, F. proliferatum, F. temperatum and F. verticillioides. Fumonisins B1-B3, beauvericin (BEA) and moniliformin (MON) contents were quantified by high-performance liquid chromatography (HPLC) in pineapple fruit tissue. Fumonisins are likely the most dangerous metabolites present in fruit samples (the maximum FB1 content was 250 μg g(-1) in pineapple skin and 20 μg ml(-1) in juice fraction). In both fractions, BEA and MON were of minor significance. FUM1 and FUM8 genes were identified in F. fujikuroi, F. proliferatum, F. temperatum and F. verticillioides. Cyclic peptide synthase gene (esyn1 homologue) from the BEA biosynthetic pathway was identified in 40 isolates of eight species. Based on the gene-specific polymerase chain reaction (PCR) assays, none of the isolates tested were found to be able to produce trichothecenes or zearalenone.

  19. Croatian mayflies (Insecta, Ephemeroptera): species diversity and distribution patterns

    PubMed Central

    Vilenica, Marina; Gattolliat, Jean-Luc; Mihaljević, Zlatko; Sartori, Michel

    2015-01-01

    Abstract Knowledge of the mayfly biodiversity in the Balkan Peninsula is still far from complete. Compared to the neighbouring countries, the mayfly fauna in Croatia is very poorly known. Situated at the crossroads of central and Mediterranean Europe and the Balkan Peninsula, Croatia is divided into two ecoregions: Dinaric western Balkan and Pannonian lowland. Mayflies were sampled between 2003 and 2013 at 171 sites, and a total of 66 species was recorded. Combined with the literature data, the Croatian mayfly fauna reached a total of 79 taxa. Of these, 29 species were recorded for the first time in Croatia while 15 species were not previously recorded in Dinaric western Balkan ecoregion. Based on the mayfly assemblage, sampling sites were first structured by ecoregion and then by habitat type. In comparison with the surrounding countries, the Croatian mayfly fauna is the most similar to the Hungarian and Bosnian fauna. Some morphologically interesting taxa such as Baetis cf. nubecularis Eaton, 1898 and Rhithrogena from the diaphana group were recorded. Ephemera cf. parnassiana Demoulin, 1958, the species previously recorded only from Greece, was also recorded. PMID:26478701

  20. Genetic diversity and conservation implications of four Cupressus species in China as revealed by microsatellite markers.

    PubMed

    Lu, Xu; Xu, Haiyan; Li, Zhonghu; Shang, Huiying; Adams, Robert P; Mao, Kangshan

    2014-04-01

    Understanding the extent and distribution of genetic diversity is crucial for the conservation and management of endangered species. Cupressus chengiana, C. duclouxiana, C. gigantea, and C. funebris are four ecologically and economically important species in China. We investigated their genetic diversity, population structure, and extant effective population size (35 populations, 484 individuals) employing six pairs of nuclear microsatellite markers (selected from 53). Their genetic diversity is moderate among conifers, and genetic differentiation among populations is much lower in C. gigantea than in the other three species; the estimated effective population size was largest for C. chengiana, at 1.70, 2.91, and 3.91 times the estimates for C. duclouxiana, C. funebris, and C. gigantea, respectively. According to Bayesian clustering analysis, the most plausible population subdivision scheme within species is two groups in C. chengiana, three groups in C. duclouxiana, and a single group for both C. funebris and C. gigantea. We propose a conservation strategy for these cypress species.

  1. Diversity and Activity of Lysobacter Species from Disease Suppressive Soils

    PubMed Central

    Gómez Expósito, Ruth; Postma, Joeke; Raaijmakers, Jos M.; De Bruijn, Irene

    2015-01-01

    The genus Lysobacter includes several species that produce a range of extracellular enzymes and other metabolites with activity against bacteria, fungi, oomycetes, and nematodes. Lysobacter species were found to be more abundant in soil suppressive against the fungal root pathogen Rhizoctonia solani, but their actual role in disease suppression is still unclear. Here, the antifungal and plant growth-promoting activities of 18 Lysobacter strains, including 11 strains from Rhizoctonia-suppressive soils, were studied both in vitro and in vivo. Based on 16S rRNA sequencing, the Lysobacter strains from the Rhizoctonia-suppressive soil belonged to the four species Lysobacter antibioticus, Lysobacter capsici, Lysobacter enzymogenes, and Lysobacter gummosus. Most strains showed strong in vitro activity against R. solani and several other pathogens, including Pythium ultimum, Aspergillus niger, Fusarium oxysporum, and Xanthomonas campestris. When the Lysobacter strains were introduced into soil, however, no significant and consistent suppression of R. solani damping-off disease of sugar beet and cauliflower was observed. Subsequent bioassays further revealed that none of the Lysobacter strains was able to promote growth of sugar beet, cauliflower, onion, and Arabidopsis thaliana, either directly or via volatile compounds. The lack of in vivo activity is most likely attributed to poor colonization of the rhizosphere by the introduced Lysobacter strains. In conclusion, our results demonstrated that Lysobacter species have strong antagonistic activities against a range of pathogens, making them an important source for putative new enzymes and antimicrobial compounds. However, their potential role in R. solani disease suppressive soil could not be confirmed. In-depth omics'–based analyses will be needed to shed more light on the potential contribution of Lysobacter species to the collective activities of microbial consortia in disease suppressive soils. PMID:26635735

  2. Species richness - Energy relationships and dung beetle diversity across an aridity and trophic resource gradient

    NASA Astrophysics Data System (ADS)

    Tshikae, B. Power; Davis, Adrian L. V.; Scholtz, Clarke H.

    2013-05-01

    Understanding factors that drive species richness and turnover across ecological gradients is important for insect conservation planning. To this end, we studied species richness - energy relationships and regional versus local factors that influence dung beetle diversity in game reserves along an aridity and trophic resource gradient in the Botswana Kalahari. Dung beetle species richness, alpha diversity, and abundance declined with increasing aridity from northeast to southwest and differed significantly between dung types (pig, elephant, cattle, sheep) and carrion (chicken livers). Patterns of between-study area species richness on ruminant dung (cattle, sheep) differed to other bait types. Patterns of species richness between bait types in two southwest study areas differed from those in four areas to the northeast. Regional species turnover between study areas was higher than local turnover between bait types. Patterns of southwest to northeast species loss showed greater consistency than northeast to southwest losses from larger assemblages. Towards the southwest, similarity to northeast assemblages declined steeply as beta diversity increased. High beta diversity and low similarity at gradsect extremes resulted from two groups of species assemblages showing either northeast or southwest biogeographical centres. The findings are consistent with the energy hypothesis that indicates insect species richness in lower latitudes is indirectly limited by declining water variables, which drive reduced food resources (lower energy availability) represented, here, by restriction of large mammals dropping large dung types to the northeast and dominance of pellet dropping mammals in the arid southwest Kalahari. The influence of theoretical causal mechanisms is discussed.

  3. The Hydrological Regimes Brought by the Three Gorges Project Affected Riparian Vegetation Distribution and Diversity in 2009 and 2010

    NASA Astrophysics Data System (ADS)

    Miao, Ling-Feng; Liu, Wei-Wei; Yang, Fan

    2017-01-01

    Post-dam riparian vegetations affected by the new hydrological regimes in the Three Gorges Reservoir (TGR) were investigated in 2009 and 2010, respectively. The investigation in 2009 showed that about 231 vascular plant species belonging to 169 genera of 61 families were distributed in the water-level-fluctuation zone (WLFZ) of the (TGR). Three vegetation types, including Chuanjiang, Gorge, and other vegetation types, were classified efficiently via cluster analysis. Alpha diversity analysis indicated that species richness gradually decreased with decreasing elevation. Beta diversity analysis indicated that high environment heterogeneity was existed between the lower section and the other two sections, and environment homogeneity was also existed between middle section and upper section. Using the analysis of the field growth in the 2009 and 2010 field surveys as bases, we proposed a list of perennial herb species and woody species that may potentially occurred in the WLFZ of the TGR. In addition, we predicted plant community structural changes in the different altitude sections of WLFZ in the future.

  4. Exploring species and site contributions to beta diversity in stream insect assemblages.

    PubMed

    Heino, Jani; Grönroos, Mira

    2017-01-01

    It was recently suggested that beta diversity can be partitioned into contributions of single sites to overall beta diversity (LCBD) or into contributions of individual species to overall beta diversity (SCBD). We explored the relationships of LCBD and SCBD to site and species characteristics, respectively, in stream insect assemblages. We found that LCBD was mostly explained by variation in species richness, with a negative relationship being detected. SCBD was strongly related to various species characteristics, such as occupancy, abundance, niche position and niche breadth, but was only weakly related to biological traits of species. In particular, occupancy and its quadratic terms showed a very strong unimodal relationship with SCBD, suggesting that intermediate species in terms of site occupancy contribute most to beta diversity. Our findings of unravelling the contributions of sites or species to overall beta diversity are of high importance to community ecology, conservation and bioassessment using stream insect assemblages, and may bear some overall generalities to be found in other organism groups.

  5. Legume Diversity Patterns in West Central Africa: Influence of Species Biology on Distribution Models

    PubMed Central

    de la Estrella, Manuel; Mateo, Rubén G.; Wieringa, Jan J.; Mackinder, Barbara; Muñoz, Jesús

    2012-01-01

    Objectives Species Distribution Models (SDMs) are used to produce predictions of potential Leguminosae diversity in West Central Africa. Those predictions are evaluated subsequently using expert opinion. The established methodology of combining all SDMs is refined to assess species diversity within five defined vegetation types. Potential species diversity is thus predicted for each vegetation type respectively. The primary aim of the new methodology is to define, in more detail, areas of species richness for conservation planning. Methodology Using Maxent, SDMs based on a suite of 14 environmental predictors were generated for 185 West Central African Leguminosae species, each categorised according to one of five vegetation types: Afromontane, coastal, non-flooded forest, open formations, or riverine forest. The relative contribution of each environmental variable was compared between different vegetation types using a nonparametric Kruskal-Wallis analysis followed by a post-hoc Kruskal-Wallis Paired Comparison contrast. Legume species diversity patterns were explored initially using the typical method of stacking all SDMs. Subsequently, five different ensemble models were generated by partitioning SDMs according to vegetation category. Ecological modelers worked with legume specialists to improve data integrity and integrate expert opinion in the interpretation of individual species models and potential species richness predictions for different vegetation types. Results/Conclusions Of the 14 environmental predictors used, five showed no difference in their relative contribution to the different vegetation models. Of the nine discriminating variables, the majority were related to temperature variation. The set of variables that played a major role in the Afromontane species diversity model differed significantly from the sets of variables of greatest relative important in other vegetation categories. The traditional approach of stacking all SDMs indicated overall

  6. Ranking Mammal Species for Conservation and the Loss of Both Phylogenetic and Trait Diversity

    PubMed Central

    Redding, David W.; Mooers, Arne O.

    2015-01-01

    The 'edge of existence' (EDGE) prioritisation scheme is a new approach to rank species for conservation attention that aims to identify species that are both isolated on the tree of life and at imminent risk of extinction as defined by the World Conservation Union (IUCN). The self-stated benefit of the EDGE system is that it effectively captures unusual 'unique' species, and doing so will preserve the total evolutionary history of a group into the future. Given the EDGE metric was not designed to capture total evolutionary history, we tested this claim. Our analyses show that the total evolutionary history of mammals preserved is indeed much higher if EDGE species are protected than if at-risk species are chosen randomly. More of the total tree is also protected by EDGE species than if solely threat status or solely evolutionary distinctiveness were used for prioritisation. When considering how much trait diversity is captured by IUCN and EDGE prioritisation rankings, interestingly, preserving the highest-ranked EDGE species, or indeed just the most threatened species, captures more total trait diversity compared to sets of randomly-selected at-risk species. These results suggest that, as advertised, EDGE mammal species contribute evolutionary history to the evolutionary tree of mammals non-randomly, and EDGE-style rankings among endangered species can also capture important trait diversity. If this pattern holds for other groups, the EDGE prioritisation scheme has greater potential to be an efficient method to allocate scarce conservation effort. PMID:26630179

  7. DRD4 dopamine receptor allelic diversity in various primate species

    SciTech Connect

    Adamson, M.; Higley, D.; O`Brien, S.

    1994-09-01

    The DRD4 dopamine receptor is uniquely characterized by a 48 bp repeating segment within the coding region, located in exon III. Different DRD4 alleles are produced by the presence of additional 48 bp repeats, each of which adds 16 amino acids to the length of the 3rd intracytoplasmic loop of the receptor. The DRD4 receptor is therefore an intriguing candidate gene for behaviors which are influenced by dopamine function. In several human populations, DRD4 alleles with 2-8 and 10 repeats have previously been identified, and the 4 and 7 repeat alleles are the most abundant. We have determined DRD4 genotypes in the following nonhuman primate species: chimpanzee N=2, pygmy chimpanzee N=2, gorilla N=4, siamang N=2, Gelada baboon N=1, gibbon N=1, orangutan (Bornean and Sumatran) N=62, spider monkey N=4, owl monkey N=1, Colobus monkey N=1, Patas monkey N=1, ruffed lemur N=1, rhesus macaque N=8, and vervet monkey N=28. The degree of DRD4 polymorphism and which DRD4 alleles were present both showed considerable variation across primate species. In contrast to the human, rhesus macaque monkeys were monomorphic. The 4 and 7 repeat allels, highly abundant in the human, may not be present in certain other primates. For example, the four spider monkeys we studied showed the 7, 8 and 9 repeat length alleles and the only gibbon we analyzed was homozygous for the 9 repeat allele (thus far not observed in the human). Genotyping of other primate species and sequencing of the individual DRD4 repeat alleles in different species may help us determine the ancestral DRD4 repeat length and identify connections between DRD4 genotype and phenotype.

  8. [On the Features of Embryonic Cleavage in Diverse Fish Species].

    PubMed

    Desnitskiy, A G

    2015-01-01

    Literature on the earliest steps of fish embryogenesis (including a number of "non-model" species) has been considered. The main attention has been paid to the loss of cleavage division synchrony and the first latitudinal cleavage furrow. In teleostean embryos, the features of their meroblastic cleavage are not rigidly associated with egg size. The midblastula transition (in a form clearly enough) occurs in some chondrostean and teleostean fishes, but it has not been detected in the representatives of sarcopterygian and chondrichthyan fishes.

  9. Species diversity and persistence in restored and remnant tallgrass prairies of North America: a function of species' life history, habitat type, or sampling bias?

    PubMed

    Summerville, Keith S

    2008-05-01

    1. The re-assembly of native animal communities in restored landscapes is a relatively unexplored phenomenon for many taxa. Specifically, ecologists lack the ability to generalize about how species traits, habitat size, habitat type (here, remnant prairie vs. restored grassland), and temporal variation interact to affect species diversity or species' persistence probabilities. 2. To investigate these relationships, moth communities from 10 prairie remnants and restorations were sampled over a 3-year interval and a combination of NMDS ordination, logistic regression, and repeated measures anova were used to test hypotheses regarding how life history variables and habitat characteristics determine the degree to which restored habitats develop a moth fauna similar to remnants. 3. Within sampling years, restored tallgrass prairies that were >or= 7 years old possessed lepidopteran species assemblages that were generally similar to those in prairie remnants. Community similarity, however, was driven by common moth species likely to also occur in the surrounding agricultural habitat. Species persistence was significantly influenced by a series of trait combinations identified using principal components analysis. Temporal variation independent of habitat type or patch size was the most significant determination of variation in species composition among sites. 4. These results suggest that lepidopteran persistence in restored landscapes is at least partially determined by species' life history attributes. The correlation between sampling year and species richness suggests that both weather effects on species voltinism and interannual differences in sampling bias may make it difficult for land managers to detect changes in species abundance following disturbance or habitat management. 5. Species may not necessarily possess specific life history traits that reduce extinction risk or enhance recolonization probabilities in the highly modified agricultural landscape of the

  10. Genetic diversity of the two commercial tetraploid cotton species in the Gossypium Diversity Reference Set

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A diversity reference set has been constructed for the Gossypium accessions in the U.S. National Cotton Germplasm Collection to facilitate more extensive evaluation and utilization of accessions held in the Collection. A set of 105 mapped simple sequence repeat markers were used to study the alleli...

  11. Decoupling factors affecting plant diversity and cover on extensive green roofs.

    PubMed

    MacIvor, J Scott; Margolis, Liat; Puncher, Curtis L; Carver Matthews, Benjamin J

    2013-11-30

    Supplemental irrigation systems are often specified on green roofs to ensure plant cover and growth, both important components of green roof performance and aesthetics. Properties of the growing media environment too can alter the assemblage of plant species able to thrive. In this study we determine how plant cover, above ground biomass and species diversity are influenced by irrigation and growing media. Grass and forb vegetative cover and biomass were significantly greater in organic based growing media but there was no effect of supplemental irrigation, with two warm season grasses dominating in those treatments receiving no supplemental irrigation. On the other hand, plant diversity declined without irrigation in organic media, and having no irrigation in inorganic growing media resulted in almost a complete loss of cover. Sedum biomass was less in inorganic growing media treatments and species dominance shifted when growing media organic content increased. Our results demonstrate that supplemental irrigation is required to maintain plant diversity on an extensive green roof, but not necessarily plant cover or biomass. These results provide evidence that planting extensive green roofs with a mix of plant species can ensure the survival of some species; maintaining cover and biomass when supplemental irrigation is turned off to conserve water, or during extreme drought.

  12. Functional-diversity indices can be driven by methodological choices and species richness.

    PubMed

    Poos, Mark S; Walker, Steven C; Jackson, Donald A

    2009-02-01

    Functional diversity is an important concept in community ecology because it captures information on functional traits absent in measures of species diversity. One popular method of measuring functional diversity is the dendrogram-based method, FD. To calculate FD, a variety of methodological choices are required, and it has been debated about whether biological conclusions are sensitive to such choices. We studied the probability that conclusions regarding FD were sensitive, and that patterns in sensitivity were related to alpha and beta components of species richness. We developed a randomization procedure that iteratively calculated FD by assigning species into two assemblages and calculating the probability that the community with higher FD varied across methods. We found evidence of sensitivity in all five communities we examined, ranging from a probability of sensitivity of 0 (no sensitivity) to 0.976 (almost completely sensitive). Variations in these probabilities were driven by differences in alpha diversity between assemblages and not by beta diversity. Importantly, FD was most sensitive when it was most useful (i.e., when differences in alpha diversity were low). We demonstrate that trends in functional-diversity analyses can be largely driven by methodological choices or species richness, rather than functional trait information alone.

  13. Insufficient sampling to identify species affected by turbine collisions

    USGS Publications Warehouse

    Beston, Julie A.; Diffendorfer, James E.; Loss, Scott

    2015-01-01

    We compared the number of avian species detected and the sampling effort during fatality monitoring at 50 North American wind facilities. Facilities with short intervals between sampling events and high effort detected more species, but many facilities appeared undersampled. Species accumulation curves for 2 wind facilities studied for more than 1 year had yet to reach an asymptote. The monitoring effort that is typically invested is likely inadequate to identify all of the species killed by wind turbines. This may understate impacts for rare species of conservation concern that collide infrequently with turbines but suffer disproportionate consequences from those fatalities. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  14. Insufficient Sampling to Identify Species Affected by Turbine Collisions

    PubMed Central

    Beston, Julie A; Diffendorfer, Jay E; Loss, Scott

    2015-01-01

    We compared the number of avian species detected and the sampling effort during fatality monitoring at 50 North American wind facilities. Facilities with short intervals between sampling events and high effort detected more species, but many facilities appeared undersampled. Species accumulation curves for 2 wind facilities studied for more than 1 year had yet to reach an asymptote. The monitoring effort that is typically invested is likely inadequate to identify all of the species killed by wind turbines. This may understate impacts for rare species of conservation concern that collide infrequently with turbines but suffer disproportionate consequences from those fatalities. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. PMID:25914425

  15. Plant community and target species affect responses to restoration strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increases in Kentucky bluegrass and smooth brome on northern Great Plains rangelands have the potential to negatively impact ecosystem function, lower plant diversity and alter seasonal forage distribution, but control strategies are lacking in the region. A project was initiated on a heavily invad...

  16. Alterations of phytoplankton assemblages treated with chlorinated hydrocarbons: effects of dominant species sensitivity and initial diversity.

    PubMed

    Bácsi, István; Gonda, Sándor; B-Béres, Viktória; Novák, Zoltán; Nagy, Sándor Alex; Vasas, Gábor

    2015-05-01

    Changes in composition of phytoplankton assemblages due to short-chained chlorinated hydrocarbons (tetrachloroethane, tetrachloroethylene and trichloroethylene) were studied in microcosm experiments with different initial diversities. Diversity decreased further during treatments in the less diverse 2011 summer assemblages, dominated by the euglenid Trachelomonas volvocinopsis (its relative abundance was nearly 70 %). Diversity did not change significantly during treatments in the more diverse 2012 summer assemblages, dominated by cryptomonads (their relative abundance was 40 %). The dominant Trachelomonas volvocinopsis in 2011, due to its insensitivity to the treatment and presumably high competition skills, filled released habitats occurring when sensitive species were not detectable any more. In contrast, cryptomonads were extremely sensitive to the treatments, their abundance decreased under detection limit in the treated assemblages, regardless of diversity conditions. Our results showed that population dynamics of dominant species determine the response to the contamination of the entire community, if these species display high resistance or resilience. If the dominant species was highly sensitive and recovered slowly, compensatory growth of rare species maintained high levels of ecosystem performance.

  17. Effects of Fishing and Regional Species Pool on the Functional Diversity of Fish Communities

    PubMed Central

    Martins, Gustavo M.; Arenas, Francisco; Neto, Ana I.; Jenkins, Stuart R.

    2012-01-01

    The potential population and community level impacts of fishing have received considerable attention, but little is known about how fishing influences communities’ functional diversity at regional scales. We examined how estimates of functional diversity differed among 25 regions of variable richness and investigated the functional consequences of removing species targeted by commercial fisheries. Our study shows that fishing leads to substantial losses in functional diversity. The magnitude of such loss was, however, reduced in the more speciose regions. Moreover, the removal of commercially targeted species caused a much larger reduction in functional diversity than expected by random species deletions, which was a consequence of the selective nature of fishing for particular species traits. Results suggest that functional redundancy is spatially variable, that richer biotas provide some degree of insurance against the impact of fishing on communities’ functional diversity and that fishing predominantly selects for particular species traits. Understanding how fishing impacts community functional diversity is key to predict its effects for biodiversity as well as ecosystem functioning. PMID:22952950

  18. Effects of fishing and regional species pool on the functional diversity of fish communities.

    PubMed

    Martins, Gustavo M; Arenas, Francisco; Neto, Ana I; Jenkins, Stuart R

    2012-01-01

    The potential population and community level impacts of fishing have received considerable attention, but little is known about how fishing influences communities' functional diversity at regional scales. We examined how estimates of functional diversity differed among 25 regions of variable richness and investigated the functional consequences of removing species targeted by commercial fisheries. Our study shows that fishing leads to substantial losses in functional diversity. The magnitude of such loss was, however, reduced in the more speciose regions. Moreover, the removal of commercially targeted species caused a much larger reduction in functional diversity than expected by random species deletions, which was a consequence of the selective nature of fishing for particular species traits. Results suggest that functional redundancy is spatially variable, that richer biotas provide some degree of insurance against the impact of fishing on communities' functional diversity and that fishing predominantly selects for particular species traits. Understanding how fishing impacts community functional diversity is key to predict its effects for biodiversity as well as ecosystem functioning.

  19. Linking environmental drivers with amphibian species diversity in ponds from subtropical grasslands.

    PubMed

    Gonçalves, Darlene S; Crivellari, Lucas B; Conte, Carlos Eduardo

    2015-09-01

    Amphibian distribution patterns are known to be influenced by habitat diversity at breeding sites. Thus, breeding sites variability and how such variability influences anuran diversity is important. Here, we examine which characteristics at breeding sites are most influential on anuran diversity in grasslands associated with Araucaria forest, southern Brazil, especially in places at risk due to anthropic activities. We evaluate the associations between habitat heterogeneity and anuran species diversity in nine body of water from September 2008 to March 2010, in 12 field campaigns in which 16 species of anurans were found. Of the seven habitat descriptors we examined, water depth, pond surface area and distance to the nearest forest fragment explained 81% of total species diversity. Water depth, margin vegetation type, surface area and distance to the next body of water explained between 31-74% of the variance in abundance of nine of the 16 species. Thus, maintenance of body of water, of the vegetation along the water edge and natural forest fragments in the grasslands, along with fire control (used to renovation of pasture), are fundamentally important for the maintenance of anuran species diversity through the conservation of their breeding sites.

  20. Species diversity and environmental determinants of aquatic and terrestrial communities invaded by Alternanthera philoxeroides.

    PubMed

    Wu, Hao; Carrillo, Juli; Ding, Jianqing

    2017-03-01

    The impact of invasive species on native biodiversity varies across environments, with invasion effects of amphibious plant species across terrestrial and aquatic systems especially poorly understood. In this study, we established 29 terrestrial plots and 23 aquatic plots which were invaded by the alien plant alligator weed, Alternanthera philoxeroides in Southern China. We measured α-species diversity (Shannon-Wiener and Simpson index), species richness and evenness, species cover and the importance value (a comprehensive index of cover, height and abundance) of A. philoxeroides in invaded communities in both aquatic and terrestrial habitats. We recorded seven environmental factors (longitude, latitude, elevation above sea level, temperature, precipitation, ammonia and nitrate) across habitats. We then used Redundancy Analysis (RDA) to determine which factors best explain A. philoxeroides invasion in either environment type. We found that terrestrial habitats had greater species diversity (Shannon index) than aquatic habitats, and the biotic resistance of aquatic plant communities to the A. philoxeroides invasion was weaker than terrestrial plant communities. Accumulated ammonia improved some indices of species diversity (Shannon-Weiner, Simpson) and evenness, but decreased species cover of A. philoxeroides in both aquatic and terrestrial environments. Precipitation increased species richness in terrestrial habitats but decreased richness in aquatic habitats. Precipitation increased A. philoxeroides cover in both environment types, while elevated nitrate increased A. philoxeroides cover in terrestrial habitats only. In aquatic habitats, species richness increased but A. philoxeroides cover decreased with increasing longitude. Our study indicates that increased precipitation may accelerate A. philoxeroides spread across aquatic and terrestrial habitats, while reducing nitrate inputs could inhibit terrestrial A. philoxeroides invasion. Aquatic communities appear to

  1. Crop Species Diversity Changes in the United States: 1978–2012

    PubMed Central

    Aguilar, Jonathan; Gramig, Greta G.; Hendrickson, John R.; Archer, David W.; Forcella, Frank; Liebig, Mark A.

    2015-01-01

    Anecdotal accounts regarding reduced US cropping system diversity have raised concerns about negative impacts of increasingly homogeneous cropping systems. However, formal analyses to document such changes are lacking. Using US Agriculture Census data, which are collected every five years, we quantified crop species diversity from 1978 to 2012, for the contiguous US on a county level basis. We used Shannon diversity indices expressed as effective number of crop species (ENCS) to quantify crop diversity. We then evaluated changes in county-level crop diversity both nationally and for each of the eight Farm Resource Regions developed by the National Agriculture Statistics Service. During the 34 years we considered in our analyses, both national and regional ENCS changed. Nationally, crop diversity was lower in 2012 than in 1978. However, our analyses also revealed interesting trends between and within different Resource Regions. Overall, the Heartland Resource Region had the lowest crop diversity whereas the Fruitful Rim and Northern Crescent had the highest. In contrast to the other Resource Regions, the Mississippi Portal had significantly higher crop diversity in 2012 than in 1978. Also, within regions there were differences between counties in crop diversity. Spatial autocorrelation revealed clustering of low and high ENCS and this trend became stronger over time. These results show that, nationally counties have been clustering into areas of either low diversity or high diversity. Moreover, a significant trend of more counties shifting to lower rather than to higher crop diversity was detected. The clustering and shifting demonstrates a trend toward crop diversity loss and attendant homogenization of agricultural production systems, which could have far-reaching consequences for provision of ecosystem system services associated with agricultural systems as well as food system sustainability. PMID:26308552

  2. Plant Species Diversity and Distribution in Pastures of the Northeastern USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grazed pastures in the northeastern United contain far more than planted forage species. These species may contribute to forage production, but they may also detract from forage production or palatability. As the first step toward identifying the role of plant diversity in forage systems, we collect...

  3. Operational Tree Species Mapping in a Diverse Tropical Forest with Airborne Imaging Spectroscopy

    PubMed Central

    Baldeck, Claire A.; Asner, Gregory P.; Martin, Robin E.; Anderson, Christopher B.; Knapp, David E.; Kellner, James R.; Wright, S. Joseph

    2015-01-01

    Remote identification and mapping of canopy tree species can contribute valuable information towards our understanding of ecosystem biodiversity and function over large spatial scales. However, the extreme challenges posed by highly diverse, closed-canopy tropical forests have prevented automated remote species mapping of non-flowering tree crowns in these ecosystems. We set out to identify individuals of three focal canopy tree species amongst a diverse background of tree and liana species on Barro Colorado Island, Panama, using airborne imaging spectroscopy data. First, we compared two leading single-class classification methods—binary support vector machine (SVM) and biased SVM—for their performance in identifying pixels of a single focal species. From this comparison we determined that biased SVM was more precise and created a multi-species classification model by combining the three biased SVM models. This model was applied to the imagery to identify pixels belonging to the three focal species and the prediction results were then processed to create a map of focal species crown objects. Crown-level cross-validation of the training data indicated that the multi-species classification model had pixel-level producer’s accuracies of 94–97% for the three focal species, and field validation of the predicted crown objects indicated that these had user’s accuracies of 94–100%. Our results demonstrate the ability of high spatial and spectral resolution remote sensing to accurately detect non-flowering crowns of focal species within a diverse tropical forest. We attribute the success of our model to recent classification and mapping techniques adapted to species detection in diverse closed-canopy forests, which can pave the way for remote species mapping in a wider variety of ecosystems. PMID:26153693

  4. Difficulties with estimating and interpreting species pools and the implcations for understanding patterns of diversity

    USGS Publications Warehouse

    Grace, J.B.

    2001-01-01

    Evidence has been accumulating that species pools play a major role in regulating variations in small-scale diversity. However, our ability to unambiguously estimate and interpret species pools remains a major impediment to understanding the processes that control patterns of diversity. Two main approaches have been employed to evaluate the relationships between species pools and species diversity. The direct approach has been to estimate the actual sizes of species pools by sampling discrete areas at larger spatial scales and then relating these estimates to samples taken at smaller scales. The indirect approach has been to search for correlations between abiotic environmental factors and patterns of diversity that are indicative of gradients in species pools. Both of these approaches have substantial predictive capability but also have limitations that impair our ability to draw unambiguous interpretations about causal factors. A primary difficulty for the direct approach is in deciding which species in the larger pool of potential species are actually capable of living in a sample. In this regard, the indirect approach requires fewer assumptions and has the ability to detect previously unsuspected gradients in species pools. As with the direct approach, assessing the causes for observed gradients in species pools remains a limitation for the indirect approach. Consideration of experimental studies of potential niches suggests that it may be valuable to distinguish between potential and observed species pools if the role of competitive exclusion is to be fully assessed. This paper concludes by arguing for (1) an increased use of multivariate studies that examine the effects of species pools indirectly and (2) further experimental studies designed to determine potential species pools.

  5. Soil fertility increases with plant species diversity in a long-term biodiversity experiment.

    PubMed

    Dybzinski, Ray; Fargione, Joseph E; Zak, Donald R; Fornara, Dario; Tilman, David

    2008-11-01

    Most explanations for the positive effect of plant species diversity on productivity have focused on the efficiency of resource use, implicitly assuming that resource supply is constant. To test this assumption, we grew seedlings of Echinacea purpurea in soil collected beneath 10-year-old, experimental plant communities containing one, two, four, eight, or 16 native grassland species. The results of this greenhouse bioassay challenge the assumption of constant resource supply; we found that bioassay seedlings grown in soil collected from experimental communities containing 16 plant species produced 70% more biomass than seedlings grown in soil collected beneath monocultures. This increase was likely attributable to greater soil N availability, which had increased in higher diversity communities over the 10-year-duration of the experiment. In a distinction akin to the selection/complementarity partition commonly made in studies of diversity and productivity, we further determined whether the additive effects of functional groups or the interactive effects of functional groups explained the increase in fertility with diversity. The increase in bioassay seedling biomass with diversity was largely explained by a concomitant increase in N-fixer, C4 grass, forb, and C3 grass biomass with diversity, suggesting that the additive effects of these four functional groups at higher diversity contributed to enhance N availability and retention. Nevertheless, diversity still explained a significant amount of the residual variation in bioassay seedling biomass after functional group biomass was included in a multiple regression, suggesting that interactions also increased fertility in diverse communities. Our results suggest a mechanism, the fertility effect, by which increased plant species diversity may increase community productivity over time by increasing the supply of nutrients via both greater inputs and greater retention.

  6. Vegetation in Bangalore's Slums: Composition, Species Distribution, Density, Diversity, and History

    NASA Astrophysics Data System (ADS)

    Gopal, Divya; Nagendra, Harini; Manthey, Michael

    2015-06-01

    There is widespread acknowledgement of the need for biodiversity and greening to be part of urban sustainability efforts. Yet we know little about greenery in the context of urban poverty, particularly in slums, which constitute a significant challenge for inclusive development in many rapidly growing cities. We assessed the composition, density, diversity, and species distribution of vegetation in 44 slums of Bangalore, India, comparing these to published studies on vegetation diversity in other land-use categories. Most trees were native to the region, as compared to other land-use categories such as parks and streets which are dominated by introduced species. Of the most frequently encountered tree species, Moringa oleifera and Cocos nucifera are important for food, while Ficus religiosa plays a critical cultural and religious role. Tree density and diversity were much lower in slums compared to richer residential neighborhoods. There are also differences in species preferences, with most plant (herb, shrub and vines) species in slums having economic, food, medicinal, or cultural use, while the species planted in richer residential areas are largely ornamental. Historic development has had an impact on species distribution, with older slums having larger sized tree species, while recent slums were dominated by smaller sized tree species with greater economic and food use. Extensive focus on planting trees and plant species with utility value is required in these congested neighborhoods, to provide livelihood support.

  7. Biomass and morphology of fine roots in temperate broad-leaved forests differing in tree species diversity: is there evidence of below-ground overyielding?

    PubMed

    Meinen, Catharina; Hertel, Dietrich; Leuschner, Christoph

    2009-08-01

    Biodiversity effects on ecosystem functioning in forests have only recently attracted increasing attention. The vast majority of studies in forests have focused on above-ground responses to differences in tree species diversity, while systematic analyses of the effects of biodiversity on root systems are virtually non-existent. By investigating the fine root systems in 12 temperate deciduous forest stands in Central Europe, we tested the hypotheses that (1) stand fine root biomass increases with tree diversity, and (2) 'below-ground overyielding' of species-rich stands in terms of fine root biomass is the consequence of spatial niche segregation of the roots of different species. The selected stands represent a gradient in tree species diversity on similar bedrock from almost pure beech forests to medium-diverse forests built by beech, ash, and lime, and highly-diverse stands dominated by beech, ash, lime, maple, and hornbeam. We investigated fine root biomass and necromass at 24 profiles per stand and analyzed species differences in fine root morphology by microscopic analysis. Fine root biomass ranged from 440 to 480 g m(-2) in the species-poor to species-rich stands, with 63-77% being concentrated in the upper 20 cm of the soil. In contradiction to our two hypotheses, the differences in tree species diversity affected neither stand fine root biomass nor vertical root distribution patterns. Fine root morphology showed marked distinctions between species, but these root morphological differences did not lead to significant differences in fine root surface area or root tip number on a stand area basis. Moreover, differences in species composition of the stands did not alter fine root morphology of the species. We conclude that 'below-ground overyielding' in terms of fine root biomass does not occur in the species-rich stands, which is most likely caused by the absence of significant spatial segregation of the root systems of these late-successional species.

  8. Declining diversity in abandoned grasslands of the carpathian mountains: do dominant species matter?

    PubMed

    Csergő, Anna Mária; Demeter, László; Turkington, Roy

    2013-01-01

    Traditional haymaking has created exceptionally high levels of plant species diversity in semi-natural grasslands of the Carpathian Mountains (Romania), the maintenance of which is jeopardized by recent abandonment and subsequent vegetation succession. We tested the hypothesis that the different life history strategies of dominant grasses cause different patterns of diversity loss after abandonment of traditional haymaking in two types of meadow. Although diversity loss rate was not significantly different, the mechanism of loss depended on the life history of dominant species. In meadows co-dominated by competitive stress-tolerant ruderals, diversity loss occurred following the suppression of dominant grasses by tall forbs, whereas in meadows dominated by a stress-tolerant competitor, diversity loss resulted from increased abundance and biomass of the dominant grass. We conclude that management for species conservation in abandoned grasslands should manipulate the functional turnover in communities where the dominant species is a weaker competitor, and abundance and biomass of dominant species in communities where the dominant species is the stronger competitor.

  9. Reforestation of bottomland hardwoods and the issue of woody species diversity

    USGS Publications Warehouse

    Allen, J.A.

    1997-01-01

    Bottomland hardwood forests in the southcentral United States have been cleared extensively for agriculture, and many of the remaining forests are fragmented and degraded. During the last decade, however, approximately 75,000 ha of land-mainly agricultural fields-have been replanted or contracted for replanting, with many more acres likely to be reforested in the near future. The approach used in most reforestation projects to date has been to plant one to three overstory tree species, usually Quercus spp. (oaks), and to rely on natural dispersal for the establishment of other woody species. I critique this practice by two means. First, a brief literature review demonstrates that moderately high woody species diversity occurs in natural bottomland hardwood forests in the region. This review, which relates diversity to site characteristics, serves as a basis for comparison with stands established by means of current reforestation practices. Second, I reevaluate data on the invasion of woody species from an earlier study of 10 reforestation projects in Mississippi,with the goal of assessing the likelihood that stands with high woody species diversity will develop. I show that natural invasion cannot always be counted on to produce a diverse stand, particularly on sites more than about 60 m from an existing forest edge. I then make several recommendations for altering current reforestation pactices in order to establish stands with greater woody species diversity, a more natural appearance,and a more positive environmental impact at scales larger than individual sites.

  10. Species diversity of ectoparasitic chigger mites (Acari: Prostigmata) on small mammals in Yunnan Province, China.

    PubMed

    Peng, Pei-Ying; Guo, Xian-Guo; Ren, Tian-Guang; Song, Wen-Yu; Dong, Wen-Ge; Fan, Rong

    2016-09-01

    Chigger mites are a large group of arthropods and the larvae of mites are ectoparasites. Some species of ectoparasitic mites (larvae) can be the transmitting vectors of tsutsugamushi disease (scrub typhus). Yunnan Province is located in the southwest of China with complicated topographic landform and high biodiversity, where there are five zoogeographical subregions. Rodents and some other small mammals were trapped and examined for ectoparasitic chigger mites in 29 investigation sites in Yunnan during 2001-2013. From 13,760 individuals and 76 species of small mammal hosts, we collected 274 species of mites, which were identified as comprising 26 genera in two families. The species diversity of chigger mites (274 species) in the present study were not only much higher than that from other provinces of China but also largely exceeded that recorded from other regions and countries in the world. Of the five zoogeographical subregions, both the species diversity and Shannon-Weiner's diversity of mites were the highest in subregion II (southern subregion of Hengduan Mountains) with middle altitudes and middle latitude. Both the species diversity of mites and Shannon-Wiener diversity index showed a parabolic tendency from the low altitude (<500 m) to the high altitude (>3500 m) along the vertical gradients with the peak occurring in the middle-altitude regions (2000-2500 m). Of four dominant hosts, the species richness of mites was highest on Eothenomys miletus (S = 165) and Shannon-Wiener diversity index was highest on Rattus norvegicus (H = 3.13). Along latitude gradients, species richness of chigger mites increased first and then decreased, peaking at 25° to 26° N with 193 mite species. The geographical location, complex topography, and landscape with diverse small mammal hosts in Yunnan Province have contributed to the extremely high species diversity of mites in the province. The large sampling size of small mammal hosts in a wide geographical scope

  11. Does bird species diversity vary among forest types? A local-scale test in Southern Chile

    NASA Astrophysics Data System (ADS)

    Fontúrbel, Francisco E.; Jiménez, Jaime E.

    2014-10-01

    Birds are the most diverse vertebrate group in Chile, characterized by low species turnover at the country-size scale (high alpha but low beta diversities), resembling an island biota. We tested whether this low differentiation is valid at a local scale, among six forest habitat types. We detected 25 bird species; avifauna composition was significantly different among habitat types, with five species accounting for 60 % of the dissimilarity. We found a higher level of bird assemblage differentiation across habitats at the local scale than has been found at the country-size scale. Such differentiation might be attributed to structural differences among habitats.

  12. Antigenic diversity is generated by distinct evolutionary mechanisms in African trypanosome species.

    PubMed

    Jackson, Andrew P; Berry, Andrew; Aslett, Martin; Allison, Harriet C; Burton, Peter; Vavrova-Anderson, Jana; Brown, Robert; Browne, Hilary; Corton, Nicola; Hauser, Heidi; Gamble, John; Gilderthorp, Ruth; Marcello, Lucio; McQuillan, Jacqueline; Otto, Thomas D; Quail, Michael A; Sanders, Mandy J; van Tonder, Andries; Ginger, Michael L; Field, Mark C; Barry, J David; Hertz-Fowler, Christiane; Berriman, Matthew

    2012-02-28

    Antigenic variation enables pathogens to avoid the host immune response by continual switching of surface proteins. The protozoan blood parasite Trypanosoma brucei causes human African trypanosomiasis ("sleeping sickness") across sub-Saharan Africa and is a model system for antigenic variation, surviving by periodically replacing a monolayer of variant surface glycoproteins (VSG) that covers its cell surface. We compared the genome of Trypanosoma brucei with two closely related parasites Trypanosoma congolense and Trypanosoma vivax, to reveal how the variant antigen repertoire has evolved and how it might affect contemporary antigenic diversity. We reconstruct VSG diversification showing that Trypanosoma congolense uses variant antigens derived from multiple ancestral VSG lineages, whereas in Trypanosoma brucei VSG have recent origins, and ancestral gene lineages have been repeatedly co-opted to novel functions. These historical differences are reflected in fundamental differences between species in the scale and mechanism of recombination. Using phylogenetic incompatibility as a metric for genetic exchange, we show that the frequency of recombination is comparable between Trypanosoma congolense and Trypanosoma brucei but is much lower in Trypanosoma vivax. Furthermore, in showing that the C-terminal domain of Trypanosoma brucei VSG plays a crucial role in facilitating exchange, we reveal substantial species differences in the mechanism of VSG diversification. Our results demonstrate how past VSG evolution indirectly determines the ability of contemporary parasites to generate novel variant antigens through recombination and suggest that the current model for antigenic variation in Trypanosoma brucei is only one means by which these parasites maintain chronic infections.

  13. Removing the confounding effect of habitat specialization reveals the stabilizing contribution of diversity to species variability.

    PubMed Central

    Kolasa, Jurek; Li, Bai-Lian

    2003-01-01

    Earlier studies have found that diversity, S, stabilizes the relative variability of combined biomass or abundance of species making up a community. However, the effect of S on variability of constituent species has been elusive. We hypothesize that the proportion of specialists increases with S and, because specialists are more variable, this shift in composition will mask the stabilizing effect of S on populations of species making up a community. The test uses data on variability and ecological specialization of species in 49 natural rock pool invertebrate communities. Initial analyses produced inconclusive results similar to earlier studies. However, when variability owing to species' specialization was factored out, S reduced species' abundance variability, although not in all communities. Our study explains why the stabilizing effect of diversity on populations has not been found earlier. PMID:14667382

  14. Invasive plants have scale-dependent effects on diversity by altering species-area relationships.

    PubMed

    Powell, Kristin I; Chase, Jonathan M; Knight, Tiffany M

    2013-01-18

    Although invasive plant species often reduce diversity, they rarely cause plant extinctions. We surveyed paired invaded and uninvaded plant communities from three biomes. We reconcile the discrepancy in diversity loss from invaders by showing that invaded communities have lower local richness but steeper species accumulation with area than that of uninvaded communities, leading to proportionately fewer species loss at broader spatial scales. We show that invaders drive scale-dependent biodiversity loss through strong neutral sampling effects on the number of individuals in a community. We also show that nonneutral species extirpations are due to a proportionately larger effect of invaders on common species, suggesting that rare species are buffered against extinction. Our study provides a synthetic perspective on the threat of invasions to biodiversity loss across spatial scales.

  15. Diversity and enzyme activity of Penicillium species associated with macroalgae in Jeju Island.

    PubMed

    Park, Myung Soo; Lee, Seobihn; Oh, Seung-Yoon; Cho, Ga Youn; Lim, Young Woon

    2016-10-01

    A total of 28 strains of 19 Penicillium species were isolated in a survey of extracellular enzyme-producing fungi from macroalgae along the coast of Jeju Island of Korea. Penicillium species were identified based on morphological and β-tubulin sequence analyses. In addition, the halo-tolerance and enzyme activity of all strains were evaluated. The diversity of Penicillium strains isolated from brown algae was higher than the diversity of strains isolated from green and red algae. The commonly isolated species were Penicillium antarcticum, P. bialowiezense, P. brevicompactum, P. crustosum, P. oxalicum, P. rubens, P. sumatrense, and P. terrigenum. While many strains showed endoglucanase, β-glucosidase, and protease activity, no alginase activity was detected. There was a positive correlation between halo-tolerance and endoglucanase activity within Penicillium species. Among 19 Penicillium species, three species-P. kongii, P. olsonii, and P. viticola-have not been previously recorded in Korea.

  16. Genetic diversity and chemical polymorphism of some Thymus species.

    PubMed

    Rustaiee, Ali Reza; Yavari, Alireza; Nazeri, Vahideh; Shokrpour, Majid; Sefidkon, Fatemeh; Rasouli, Musa

    2013-06-01

    To ascertain whether there are chemical and genetic relationships among some Thymus species and also to determine correlation between these two sets of data, the essential-oil composition and genetic variability of six populations of Thymus including: T. daenensis ČELAK. (two populations), T. fallax FISCH. & C.A.MEY., T. fedtschenkoi RONNIGER, T. migricus KLOKOV & DES.-SHOST., and T. vulgaris L. were analyzed by GC and GC/MS, and also by randomly amplified polymorphic DNA (RAPD). Thus, 27 individuals were analyzed using 16 RAPD primers, which generated 264 polymorphic scorable bands and volatiles isolated by distillation extraction were subjected to GC and GC/MS analyses. The yields of oils ranged from 2.1 to 3.8% (v/w), and 34 components were identified, amounting to a total percentage of 97.8-99.9%. RAPD Markers allowed a perfect distinction between the different species based on their distinctive genetic background. However, they did not show identical clustering with the volatile-oil profiles.

  17. Diversity of Cercopithifilaria species in dogs from Portugal

    PubMed Central

    2014-01-01

    Background Filarioids belonging to the genus Cercopithifilaria (Spirurida: Onchocercidae) have been described in dogs in association with Rhipicephalus sanguineus group ticks, which act as their biological vectors. This study represents the first investigation on Cercopithifilaria spp. in dogs from Portugal. Findings Dogs (n = 102) from the Algarve region (south of Portugal) were sampled by skin snip collection and tissues were left to soak overnight in saline solution. Sediments were observed under a light microscope and the detected microfilariae identified according to their morphology. Twenty-four dogs (23.5%) were found infected with at least one species of Cercopithifilaria, namely C. bainae (9.8%), C. grassii (3.9%) and Cercopithifilaria sp. II sensu Otranto et al., 2013 (13.7%). Results were confirmed by molecular amplification of partial cytochrome c oxidase subunit I and 12S rRNA genes and sequence analysis. Co-infections with more than one Cercopithifilaria species were detected in 3.9% of the animals. Conclusions This is the first report of Cercopithifilaria spp. in dogs from Portugal. The estimated level of infection with C. bainae, C. grassii and Cercopithifilaria sp. II suggests that these filarioids are prevalent in the canine population of southern Portugal. PMID:24898125

  18. Endophytic Phomopsis species: host range and implications for diversity estimates.

    PubMed

    Murali, T S; Suryanarayanan, T S; Geeta, R

    2006-07-01

    Foliar endophyte assemblages of teak trees growing in dry deciduous and moist deciduous forests of Nilgiri Biosphere Reserve were compared. A species of Phomopsis dominated the endophyte assemblages of teak, irrespective of the location of the host trees. Internal transcribed spacer sequence analysis of 11 different Phomopsis isolates (ten from teak and one from Cassia fistula) showed that they fall into two groups, which are separated by a relatively long branch that is strongly supported. The results showed that this fungus is not host restricted and that it continues to survive as a saprotroph in teak leaf, possibly by exploiting senescent leaves as well as the litter. Although the endophyte assemblage of a teak tree growing about 500 km from the forests was also dominated by a Phomopsis sp., it separated into a different group based on internal transcribed spacer sequence analysis. Our results with an endophytic Phomopsis sp. reinforce the earlier conclusions reached by others for pathogenic Phomopsis sp., i.e., that this fungus is not host specific, and the species concept of Phomopsis needs to be redefined.

  19. Impact of resource availability on species composition and diversity in freshwater nematodes.

    PubMed

    Michiels, Iris C; Traunspurger, Walter

    2005-01-01

    This study investigates the long-term effects of resource availability in a freshwater nematode community. We carried out a mesocosm experiment where natural nematode communities were exposed to nutrient addition/depletion over 2 years. Compared to the nutrient-addition treatment, species richness and diversity were strongly reduced upon nutrient depletion. The functional group of bacterial feeders particularly suffered severely from nutrient depletion. The decrease in diversity of bacterial feeders was linked to reduced species richness and diversity of large omnivorous species, as predicted by trophic-dynamic models. Tilman's (1976) statement, that under low nutrient levels the best competitor dominates the system, was applicable in our system. Upon nutrient depletion, resource depletion led to a monoculture of 1 small bacterial feeder, but even after 2 years of resource depletion, up to 16 species still coexisted. Our results provide strong evidence that freshwater nematode systems can be regulated by nutrient competition.

  20. The challenge of accurately documenting bee species richness in agroecosystems: bee diversity in eastern apple orchards.

    PubMed

    Russo, Laura; Park, Mia; Gibbs, Jason; Danforth, Bryan

    2015-09-01

    Bees are important pollinators of agricultural crops, and bee diversity has been shown to be closely associated with pollination, a valuable ecosystem service. Higher functional diversity and species richness of bees have been shown to lead to higher crop yield. Bees simultaneously represent a mega-diverse taxon that is extremely challenging to sample thoroughly and an important group to understand because of pollination services. We sampled bees visiting apple blossoms in 28 orchards over 6 years. We used species rarefaction analyses to test for the completeness of sampling and the relationship between species richness and sampling effort, orchard size, and percent agriculture in the surrounding landscape. We performed more than 190 h of sampling, collecting 11,219 specimens representing 104 species. Despite the sampling intensity, we captured <75% of expected species richness at more than half of the sites. For most of these, the variation in bee community composition between years was greater than among sites. Species richness was influenced by percent agriculture, orchard size, and sampling effort, but we found no factors explaining the difference between observed and expected species richness. Competition between honeybees and wild bees did not appear to be a factor, as we found no correlation between honeybee and wild bee abundance. Our study shows that the pollinator fauna of agroecosystems can be diverse and challenging to thoroughly sample. We demonstrate that there is high temporal variation in community composition and that sites vary widely in the sampling effort required to fully describe their diversity. In order to maximize pollination services provided by wild bee species, we must first accurately estimate species richness. For researchers interested in providing this estimate, we recommend multiyear studies and rarefaction analyses to quantify the gap between observed and expected species richness.

  1. The diversity of antibacterial compounds of Terminalia species (Combretaceae).

    PubMed

    Shinde, S L; Junne, S B; Wadje, S S; Baig, M M V

    2009-11-15

    The antibacterial activity of acetone, hexane, dichloromethane leaf extract of five Terminalia species (Terminalia alata Heyne ex Roth., Terminalia arjuna (Roxb.) Wt. and Am., Terminalia bellerica (Gaertn.) Roxb., Terminalia catappa L. and Terminalia chebula Retz.) were tested by Agar-well-diffusion method against human pathogens E. coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus and Staphylococcus epidermidis. The Rf values and relative activities of separated compounds were tested. Hexane and dichloromethane extracts have shown more antibacterial components than the acetone extract indicating the non-polar character of the antibacterial compounds. The non-polar character of the antibacterial compounds was confirmed from the Rf values. It indicated that the antibacterial activity was not due to tannins. Terminalia catappa found to possess the compounds which are more antibacterial. Terminalia arjuna and T. catappa plants were found most promising for isolating antibacterial compounds.

  2. Different Effects of Regional Species Pool on Plant Diversity between Forest and Grassland Biomes in Arid Northwest China.

    PubMed

    Li, Liping; Liu, Yining; Wang, Xiangping; Fang, Jingyun; Wang, Qingchun; Zhang, Bengang; Xiao, Peigen; Mohammat, Anwar; Terwei, André

    2015-01-01

    Species pool hypothesis is broadly known and frequently tested in various regions and vegetation types. However it has not been tested in the arid Xinjiang region of China due to lack of data. Here with systematic data from references and field survey, we comprehensively examined species pool hypothesis in this region. Took species richness in 0.1° × 0.1° grid cells as regional species richness (RSR) which were obtained from the distribution maps of vascular plant species, and took species diversity of 190 and 103 plots in forest and grassland biomes across Xinjiang as local species richness (LSR), together with the digitalized soil pH and climate data, we tested the species pool hypothesis in this region. We found that: (1) the average RSR was higher in mountains than that in basins and it was negatively correlated with soil pH in mountains while positively correlated with soil pH in basins in Xinjiang; (2) RSR showed a positive correlation with mean annual precipitation (MAP) while showed a hump-shaped pattern with mean annual temperature (MAT); and the changing patterns of LSR were different for forest and grassland along the geographical and climate gradients; (3) LSR of forest was more affected by RSR than by climate, while on the contrary, LSR of grassland was more affected by climate than by RSR. Our results validated the species pool hypothesis in revealing that RSR had a significant role in shaping LSR patterns in addition to climate. We concluded that the relative effects of climate vs. RSR on LSR differed markedly between the forest and grassland communities across Xinjiang. Our results also showed that RSR revealed a contrasting relationship with soil pH in mountains and in basins, which might reflect differences in evolutionary processes of various habitats. In summary, our research systematically analyzed the correlation of species richness in regional and local scales in Xinjiang which provides more insights into the understanding of species pool

  3. Mesozoic marine tetrapod diversity: mass extinctions and temporal heterogeneity in geological megabiases affecting vertebrates.

    PubMed

    Benson, Roger B J; Butler, Richard J; Lindgren, Johan; Smith, Adam S

    2010-03-22

    The fossil record is our only direct means for evaluating shifts in biodiversity through Earth's history. However, analyses of fossil marine invertebrates have demonstrated that geological megabiases profoundly influence fossil preservation and discovery, obscuring true diversity signals. Comparable studies of vertebrate palaeodiversity patterns remain in their infancy. A new species-level dataset of Mesozoic marine tetrapod occurrences was compared with a proxy for temporal variation in the volume and facies diversity of fossiliferous rock (number of marine fossiliferous formations: FMF). A strong correlation between taxic diversity and FMF is present during the Cretaceous. Weak or no correlation of Jurassic data suggests a qualitatively different sampling regime resulting from five apparent peaks in Triassic-Jurassic diversity. These correspond to a small number of European formations that have been the subject of intensive collecting, and represent 'Lagerstätten effects'. Consideration of sampling biases allows re-evaluation of proposed mass extinction events. Marine tetrapod diversity declined during the Carnian or Norian. However, the proposed end-Triassic extinction event cannot be recognized with confidence. Some evidence supports an extinction event near the Jurassic/Cretaceous boundary, but the proposed end-Cenomanian extinction is probably an artefact of poor sampling. Marine tetrapod diversity underwent a long-term decline prior to the Cretaceous-Palaeogene extinction.

  4. Plant Functional Diversity Can Be Independent of Species Diversity: Observations Based on the Impact of 4-Yrs of Nitrogen and Phosphorus Additions in an Alpine Meadow.

    PubMed

    Li, Wei; Cheng, Ji-Min; Yu, Kai-Liang; Epstein, Howard E; Guo, Liang; Jing, Guang-Hua; Zhao, Jie; Du, Guo-Zhen

    2015-01-01

    Past studies have widely documented the decrease in species diversity in response to addition of nutrients, however functional diversity is often independent from species diversity. In this study, we conducted a field experiment to examine the effect of nitrogen and phosphorus fertilization ((NH4)2 HPO4) at 0, 15, 30 and 60 g m-2 yr-1 (F0, F15, F30 and F60) after 4 years of continuous fertilization on functional diversity and species diversity, and its relationship with productivity in an alpine meadow community on the Tibetan Plateau. To this purpose, three community-weighted mean trait values (specific leaf area, SLA; mature plant height, MPH; and seed size, SS) for 30 common species in each fertilization level were determined; three components of functional diversity (functional richness, FRic; functional evenness, FEve; and Rao's index of quadratic entropy, FRao) were quantified. Our results showed that: (i) species diversity sharply decreased, but functional diversity remained stable with fertilization; (ii) community-weighted mean traits (SLA and MPH) had a significant increase along the fertilization level; (iii) aboveground biomass was not correlated with functional diversity, but it was significantly correlated with species diversity and MPH. Our results suggest that decreases in species diversity due to fertilization do not result in corresponding changes in functional diversity. Functional identity of species may be more important than functional diversity in influencing aboveground productivity in this alpine meadow community, and our results also support the mass ratio hypothesis; that is, the traits of the dominant species influenced the community biomass production.

  5. Plant Functional Diversity Can Be Independent of Species Diversity: Observations Based on the Impact of 4-Yrs of Nitrogen and Phosphorus Additions in an Alpine Meadow

    PubMed Central

    Li, Wei; Cheng, Ji-Min; Yu, Kai-Liang; Epstein, Howard E.; Guo, Liang; Jing, Guang-Hua; Zhao, Jie; Du, Guo-Zhen

    2015-01-01

    Past studies have widely documented the decrease in species diversity in response to addition of nutrients, however functional diversity is often independent from species diversity. In this study, we conducted a field experiment to examine the effect of nitrogen and phosphorus fertilization ((NH4)2 HPO4) at 0, 15, 30 and 60 g m-2 yr-1 (F0, F15, F30 and F60) after 4 years of continuous fertilization on functional diversity and species diversity, and its relationship with productivity in an alpine meadow community on the Tibetan Plateau. To this purpose, three community-weighted mean trait values (specific leaf area, SLA; mature plant height, MPH; and seed size, SS) for 30 common species in each fertilization level were determined; three components of functional diversity (functional richness, FRic; functional evenness, FEve; and Rao’s index of quadratic entropy, FRao) were quantified. Our results showed that: (i) species diversity sharply decreased, but functional diversity remained stable with fertilization; (ii) community-weighted mean traits (SLA and MPH) had a significant increase along the fertilization level; (iii) aboveground biomass was not correlated with functional diversity, but it was significantly correlated with species diversity and MPH. Our results suggest that decreases in species diversity due to fertilization do not result in corresponding changes in functional diversity. Functional identity of species may be more important than functional diversity in influencing aboveground productivity in this alpine meadow community, and our results also support the mass ratio hypothesis; that is, the traits of the dominant species influenced the community biomass production. PMID:26295345

  6. Covariance in species diversity and facilitation among non-interactive parasite taxa: all against the host.

    PubMed

    Krasnov, B R; Mouillot, D; Khokhlova, I S; Shenbrot, G I; Poulin, R

    2005-10-01

    Different parasite taxa exploit different host resources and are often unlikely to interact directly. It is unclear, however, whether the diversity of any given parasite taxon is indirectly influenced by that of other parasite taxa on the same host. Some components of host immune defences may operate simultaneously against all kinds of parasites, whereas investment by the host in specific defences against one type of parasite may come at the expense of defence against other parasites. We investigated the relationships between the species diversity of 4 higher taxa of ectoparasites (fleas, sucking lice, mesostigmatid mites, and ixodid ticks), and between the species richness of ectoparasites and endoparasitic helminths, across different species of rodent hosts. Our analyses used 2 measures of species diversity, species richness and taxonomic distinctness, and controlled for the potentially confounding effects of sampling effort and phylogenetic relationships among host species. We found positive pairwise correlations between the species richness of fleas, mites and ticks; however, there was no association between species richness of any of these 3 groups and that of lice. We also found a strong positive relationship between the taxonomic distinctness of ecto- and endoparasite assemblages across host species. These results suggest the existence of a process of apparent facilitation among unrelated taxa in the organization of parasite communities. We propose explanations based on host immune responses, involving acquired cross-resistance to infection and interspecific variation in immunocompetence among hosts, to account for these patterns.

  7. Patterns of orchid bee species diversity and turnover among forested plateaus of central Amazonia.

    PubMed

    Antonini, Yasmine; Machado, Carolina de Barros; Galetti, Pedro Manoel; Oliveira, Marcio; Dirzo, Rodolfo; Fernandes, Geraldo Wilson

    2017-01-01

    The knowledge of spatial pattern and geographic beta-diversity is of great importance for biodiversity conservation and interpreting ecological information. Tropical forests, especially the Amazon Rainforest, are well known for their high species richness and low similarity in species composition between sites, both at local and regional scales. We aimed to determine the effect and relative importance of area, isolation and climate on species richness and turnover in orchid bee assemblages among plateaus in central Brazilian Amazonia. Variance partitioning techniques were applied to assess the relative effects of spatial and environmental variables on bee species richness, phylogeny and composition. We hypothesized that greater abundance and richness of orchid bees would be found on larger plateaus, with a set of core species occurring on all of them. We also hypothesized that smaller plateaus would possess lower phylogenetic diversity. We found 55 bee species distributed along the nine sampling sites (plateaus) with 17 of them being singletons. There was a significant decrease in species richness with decreasing size of plateaus, and a significant decrease in the similarity in species composition with greater distance and climatic variation among sampling sites. Phylogenetic diversity varied among the sampling sites but was directly related to species richness. Although not significantly related to plateau area, smaller or larger PDFaith were observed in the smallest and the largest plateaus, respectively.

  8. Genetic diversity of Cosmos species revealed by RAPD and ISSR markers.

    PubMed

    Rodríguez-Bernal, A; Piña-Escutia, J L; Vázquez-García, L M; Arzate-Fernández, A M

    2013-12-04

    The genus Cosmos is native of America and is constituted by 34 species; 28 of them are endemic of Mexico. The cosmos are used as a nematicide, antimalarial, and antioxidative agent. The aim of this study was to estimate the genetic diversity among 7 cosmos species based on random amplified polymorphic DNA (RAPD) and inter-simple sequences repeats (ISSR) markers. With RAPD markers, the obtained polymorphism was 91.7 % and the genetic diversity was 0.33, whereas these values were 65.6%, and 0.22 from ISSR markers, respectively, indicating the presence of high genetic diversity among the Cosmos species that were analyzed. The unweighted pair group method with arithmetic mean dendrograms that were obtained with both markers were notably similar, revealing 2 clusters and indicating a clear genetic differentiation among the Cosmos species that were assessed. The first cluster comprised the species Cosmos sulphureus, Cosmos pacificus, and Cosmos diversifolius, while the second cluster included the species Cosmos purpureus, Cosmos crithmifolius, Cosmos bipinnatus, and Cosmos parviflorus. Besides this, the Cosmos species were clustered according to their collection sites. The Mantel test corroborates the correlation between the genetic distance and the geographic altitude of each Cosmos species. The results suggest that it is necessary to preserve the Cosmos species in their natural habitat in addition to the germoplasm collection for ex situ conservation.

  9. Genetic diversity of invasive species in the Great Lakes versus their Eurasian source populations: insights for risk analysis.

    PubMed

    Stepien, Carol A; Brown, Joshua E; Neilson, Matthew E; Tumeo, Mark A

    2005-08-01

    Combining DNA variation data and risk assessment procedures offers important diagnostic and monitoring tools for evaluating the relative success of exotic species invasions. Risk assessment may allow us to understand how the numbers of founding individuals, genetic variants, population sources, and introduction events affect successful establishment and spread. This is particularly important in habitats that are "hotbeds" for invasive species--such as the North American Great Lakes. This study compares genetic variability and its application to risk assessment within and among three Eurasian groups and five species that successfully invaded the Great Lakes during the mid 1980s through early 1990s; including zebra and quagga mussels, round and tubenose gobies, and the ruffe. DNA sequences are compared from exotic and native populations in order to evaluate the role of genetic diversity in invasions. Close relatives are also examined, since they often invade in concert and several are saline tolerant and are likely to spread to North American estuaries. Results show that very high genetic diversity characterizes the invasions of all five species, indicating that they were founded by very large numbers of propagules and underwent no founder effects. Genetic evidence points to multiple invasion sources for both dreissenid and goby species, which appears related to especially rapid spread and widespread colonization success in a variety of habitats. In contrast, results show that the ruffe population in the Great Lakes originated from a single founding population source from the Elbe River drainage. Both the Great Lakes and the Elbe River populations of ruffe have similar genetic diversity levels--showing no founder effect, as in the other invasive species. In conclusion, high genetic variability, large numbers of founders, and multiple founding sources likely significantly contribute to the risk of an exotic species introduction's success and persistence.

  10. An ecological paradox: high species diversity and low position of the upper forest line in the Andean Depression

    PubMed Central

    Peters, Thorsten; Braeuning, Achim; Muenchow, Jannes; Richter, Michael

    2014-01-01

    Systematic investigations of the upper forest line (UFL) primarily concentrate on mid and high latitudes of the Northern Hemisphere, whereas studies of Neotropical UFLs are still fragmentary. This article outlines the extraordinary high tree diversity at the UFL within the Andean Depression and unravels the links between the comparatively low position of the local UFL, high tree-species diversity, and climate. On the basis of Gentry′s rapid inventory methodology for the tropics, vegetation sampling was conducted at 12 UFL sites, and local climate (temperature, wind, precipitation, and soil moisture) was investigated at six sites. Monotypic forests dominated by Polylepis were only found at the higher located margins of the Andean Depression while the lower situated core areas were characterized by a species-rich forest, which lacked the elsewhere dominant tree-species Polylepis. In total, a remarkably high tree-species number of 255 tree species of 40 different plant families was found. Beta-diversity was also high with more than two complete species turnovers. A non-linear relationship between the floristic similarity of the investigated study sites and elevation was detected. Temperatures at the investigated study sites clearly exceeded 5.5°C, the postulated threshold value for the upper tree growth limit in the tropics. Instead, quasi-permanent trade winds, high precipitation amounts, and high soil water contents affect the local position of the UFL in a negative way. Interestingly, most of the above-mentioned factors are also contributing to the high species richness. The result is a combination of a clearly marked upper forest line depression combined with an extraordinary forest line complexity, which was an almost unknown paradox. PMID:25360255

  11. Tree species diversity mitigates disturbance impacts on the forest carbon cycle.

    PubMed

    Pedro, Mariana Silva; Rammer, Werner; Seidl, Rupert

    2015-03-01

    Biodiversity fosters the functioning and stability of forest ecosystems and, consequently, the provision of crucial ecosystem services that support human well-being and quality of life. In particular, it has been suggested that tree species diversity buffers ecosystems against the impacts of disturbances, a relationship known as the "insurance hypothesis". Natural disturbances have increased across Europe in recent decades and climate change is expected to amplify the frequency and severity of disturbance events. In this context, mitigating disturbance impacts and increasing the resilience of forest ecosystems is of growing importance. We have tested how tree species diversity modulates the impact of disturbance on net primary production and the total carbon stored in living biomass for a temperate forest landscape in Central Europe. Using the simulation model iLand to study the effect of different disturbance regimes on landscapes with varying levels of tree species richness, we found that increasing diversity generally reduces the disturbance impact on carbon storage and uptake, but that this effect weakens or even reverses with successional development. Our simulations indicate a clear positive relationship between diversity and resilience, with more diverse systems experiencing lower disturbance-induced variability in their trajectories of ecosystem functioning. We found that positive effects of tree species diversity are mainly driven by an increase in functional diversity and a modulation of traits related to recolonization and resource usage. The results of our study suggest that increasing tree species diversity could mitigate the effects of intensifying disturbance regimes on ecosystem functioning and improve the robustness of forest carbon storage and the role of forests in climate change mitigation.

  12. Species diversity, selectivity, and habitat associations of small mammals from coastal California

    USGS Publications Warehouse

    Fellers, Gary M.

    1994-01-01

    Species diversity and habitat associations were documented for small mammals along 16 transects in a semiarid part of coastal California. Peromyscus were the most abundant, comprising 45.3% of all captures, followed by Dipodomys (21.2%), Neotoma (15.1%), and Perognathus (15.0%). Five additional genera made up the remaining captures (3.4%). Peromyscus truei and Perognathus californicus were both common and widespread, accounting for 42.1% of all captures. Both species were found on all but one transect. Neotoma lepida, the third most common species, was captured on rock transects 96% of the time. Dipodomys elephantinus was the fifth most common species, and was found exclusively in chamise chaparral. Species diversity (H') averaged 1.22 and ranged from 0.33 on a chamise chaparral transect to 1.74 on another chamise chaparral transect which crossed the edge of a burn. Nearly all transects demonstrated this same trend for diversity to vary widely both within and between habitats, indicating that local conditions were more of an influence on diversity than broad habitat types. Selectivity, averaged across the ten most common species, was only 0.06, indicating that habitat selectivity was quite low. The most geographically widespread species, Peromyscus maniculatus, was the least selective (0.03), whereas the two species with the smallest geographic ranges, D. venustus and D. elephantinus, showed the greatest habitat selectivity (0.11 and 0.20, respectively). These values are much lower than those reported from short-term studies and suggest that, like species diversity, brief studies may not accurately reflect community-level interactions.

  13. Genetic diversity and structure of the threatened species Sinopodophyllum hexandrum (Royle) Ying.

    PubMed

    Liu, W; Wang, J; Yin, D X; Yang, M; Wang, P; Han, Q S; Ma, Q Q; Liu, J J; Wang, J X

    2016-06-10

    Sinopodophyllum hexandrum is an important medicinal plant that has been listed as an endangered species, making the conservation of its genetic diversity a priority. Therefore, the genetic diversity and population structure of S. hexandrum was investigated through inter-simple sequence repeat analysis of eight natural populations. Eleven selected primers generated 141 discernible fragments. The percentage of polymorphic bands was 37.59% at the species level, and 7.66-24.32% at the population level. Genetic diversity of S. hexandrum was low within populations (average HE = 0.0366), but higher at the species level (HE = 0.0963). Clear structure and high genetic differentiation were detected between populations using unweighted pair groups mean arithmetic and principle coordinate analysis. Clustering approaches clustered the eight sampled populations into three major groups, and AMOVA confirmed there to be significant variation between populations (63.27%). Genetic differentiation may have arisen through limited gene flow (Nm = 0.3317) in this species. Isolation by distance among populations was determined by comparing genetic distance versus geographical distance using the Mantel test. The results revealed no correlation between spatial pattern and geographic location. Given the low within-population genetic diversity, high differentiation among populations, and the increasing anthropogenic pressure on this species, in situ conservation measures, in addition to sampling and ex situ preservation, are recommended to preserve S. hexandrum populations and to retain their genetic diversity.

  14. [Changes of species diversity and productivity in relation to soil properties in sandy grassland in Horqin Sand Land].

    PubMed

    Zuo, Xiao-an; Zhao, Xue-yong; Zhao, Ha-lin; Li, Yu-qiang; Guo, Yi-rui; Zhao, Yu-ping

    2007-05-01

    This study provided the analysis of changes of species diversity and productivity in relation to soil properties in six typical habitats (wet meadow, dry grassland, fixed dune, semi-fixed dune, semi- shifted dune, and shifted dune) in Horqin Sand Land. The changes of vegetation and soil properties, following the degraded process of sandy grassland, show the following trends: (1) productivity decreases gradually, (2) species diversity changes in a pattern of near-formal distribution, firstly increases from wet meadow, dry grassland, to fixed dune (at the peak), and then decreases from semi-fixed dune, semi-shifted dune, to shifted dune, while (3) contents of soil fine sand, silt, soil organic carbon, total nitrogen, and electrical conductivity, decrease consistently. Ordination technique of canonical correspondence analysis (CCA) was used to examine the relationship between the vegetation pattern and soil parameters. Results show that soil organic carbon, total nitrogen, available nitrogen, available potassium, soil water content, pH and electrical conductivity are main factors of vegetation pattern in this area. These factors are closely related to the first two canonical axes, accounting for 40% of the species-soil properties relationship, and soil nutrient is the key factor for determining the distributions of the major vegetation type and pattern. Furthermore, the correlation between species diversity or ecological dominance of the communities and gradient of soil factors is significant, shows that changes of species diversity and productivity are affected by soil nutrients, soil water content, pH and electrical conductivity. The regression model of productivity and soil property reveals that soil nutrient is the key factor to community productivity, accounting for 86.73% of the relationship between productivity-soil properties.

  15. Shifts in bacterial communities of two caribbean reef-building coral species affected by white plague disease

    PubMed Central

    Cárdenas, Anny; Rodriguez-R, Luis M; Pizarro, Valeria; Cadavid, Luis F; Arévalo-Ferro, Catalina

    2012-01-01

    Coral reefs are deteriorating at an alarming rate mainly as a consequence of the emergence of coral diseases. The white plague disease (WPD) is the most prevalent coral disease in the southwestern Caribbean, affecting dozens of coral species. However, the identification of a single causal agent has proved problematic. This suggests more complex etiological scenarios involving alterations in the dynamic interaction between environmental factors, the coral immune system and the symbiotic microbial communities. Here we compare the microbiome of healthy and WPD-affected corals from the two reef-building species Diploria strigosa and Siderastrea siderea collected at the Tayrona National Park in the Caribbean of Colombia. Microbiomes were analyzed by combining culture-dependent methods and pyrosequencing of 16S ribosomal DNA (rDNA) V5-V6 hypervariable regions. A total of 20 410 classifiable 16S rDNA sequences reads were obtained including all samples. No significant differences in operational taxonomic unit diversity were found between healthy and affected tissues; however, a significant increase of Alphaproteobacteria and a concomitant decrease in the Beta- and Gammaproteobacteria was observed in WPD-affected corals of both species. Significant shifts were also observed in the orders Rhizobiales, Caulobacteriales, Burkholderiales, Rhodobacterales, Aleteromonadales and Xanthomonadales, although they were not consistent between the two coral species. These shifts in the microbiome structure of WPD-affected corals suggest a loss of community-mediated growth control mechanisms on bacterial populations specific for each holobiont system. PMID:21955993

  16. Evaluating Functional Diversity: Missing Trait Data and the Importance of Species Abundance Structure and Data Transformation

    PubMed Central

    Bryndová, Michala; Kasari, Liis; Norberg, Anna; Weiss, Matthias; Bishop, Tom R.; Luke, Sarah H.; Sam, Katerina; Le Bagousse-Pinguet, Yoann; Lepš, Jan; Götzenberger, Lars; de Bello, Francesco

    2016-01-01

    Functional diversity (FD) is an important component of biodiversity that quantifies the difference in functional traits between organisms. However, FD studies are often limited by the availability of trait data and FD indices are sensitive to data gaps. The distribution of species abundance and trait data, and its transformation, may further affect the accuracy of indices when data is incomplete. Using an existing approach, we simulated the effects of missing trait data by gradually removing data from a plant, an ant and a bird community dataset (12, 59, and 8 plots containing 62, 297 and 238 species respectively). We ranked plots by FD values calculated from full datasets and then from our increasingly incomplete datasets and compared the ranking between the original and virtually reduced datasets to assess the accuracy of FD indices when used on datasets with increasingly missing data. Finally, we tested the accuracy of FD indices with and without data transformation, and the effect of missing trait data per plot or per the whole pool of species. FD indices became less accurate as the amount of missing data increased, with the loss of accuracy depending on the index. But, where transformation improved the normality of the trait data, FD values from incomplete datasets were more accurate than before transformation. The distribution of data and its transformation are therefore as important as data completeness and can even mitigate the effect of missing data. Since the effect of missing trait values pool-wise or plot-wise depends on the data distribution, the method should be decided case by case. Data distribution and data transformation should be given more careful consideration when designing, analysing and interpreting FD studies, especially where trait data are missing. To this end, we provide the R package “traitor” to facilitate assessments of missing trait data. PMID:26881747

  17. Evaluating Functional Diversity: Missing Trait Data and the Importance of Species Abundance Structure and Data Transformation.

    PubMed

    Májeková, Maria; Paal, Taavi; Plowman, Nichola S; Bryndová, Michala; Kasari, Liis; Norberg, Anna; Weiss, Matthias; Bishop, Tom R; Luke, Sarah H; Sam, Katerina; Le Bagousse-Pinguet, Yoann; Lepš, Jan; Götzenberger, Lars; de Bello, Francesco

    2016-01-01

    Functional diversity (FD) is an important component of biodiversity that quantifies the difference in functional traits between organisms. However, FD studies are often limited by the availability of trait data and FD indices are sensitive to data gaps. The distribution of species abundance and trait data, and its transformation, may further affect the accuracy of indices when data is incomplete. Using an existing approach, we simulated the effects of missing trait data by gradually removing data from a plant, an ant and a bird community dataset (12, 59, and 8 plots containing 62, 297 and 238 species respectively). We ranked plots by FD values calculated from full datasets and then from our increasingly incomplete datasets and compared the ranking between the original and virtually reduced datasets to assess the accuracy of FD indices when used on datasets with increasingly missing data. Finally, we tested the accuracy of FD indices with and without data transformation, and the effect of missing trait data per plot or per the whole pool of species. FD indices became less accurate as the amount of missing data increased, with the loss of accuracy depending on the index. But, where transformation improved the normality of the trait data, FD values from incomplete datasets were more accurate than before transformation. The distribution of data and its transformation are therefore as important as data completeness and can even mitigate the effect of missing data. Since the effect of missing trait values pool-wise or plot-wise depends on the data distribution, the method should be decided case by case. Data distribution and data transformation should be given more careful consideration when designing, analysing and interpreting FD studies, especially where trait data are missing. To this end, we provide the R package "traitor" to facilitate assessments of missing trait data.

  18. Regional diversity reverses the negative impacts of an alien predator on local species-poor communities.

    PubMed

    Loewen, Charlie J G; Vinebrooke, Rolf D

    2016-10-01

    Species diversity is often an implicit source of biological insurance for communities against the impacts of novel perturbations, such as the introduction of an invasive species. High environmental heterogeneity (e.g., a mountainous gradient) is expected to beget greater regional species diversity and variation in functional traits related to environmental tolerances. Thus, heterogeneous metacommunities are expected to provide more tolerant colonists that buffer stressed local communities in the absence of dispersal limitation. We tested the hypothesis that importation of a regional zooplankton pool assembled from a diverse array of lakes and ponds lessens the impacts of a novel predator on local species-poor alpine communities by increasing response diversity (i.e., diversity of tolerances to environmental change) as mediated by variation in functional traits related to predator evasion. We also tested whether impacts varied with temperature, as warming may modify (e.g., dampen or amplify) invasion effects. An eight-week factorial experiment ([fishless vs. introduced Oncorhynchus mykiss (rainbow trout)] × [ambient temperature vs. heated] × [local vs. local + regional species pool]) was conducted using 32 1,000-L mesocosms. Associations between experimental treatments and species functional traits were tested by R-mode linked to Q-mode (RLQ) and fourth-corner analyses. Although the introduced predator suppressed local species richness and community biomass, colonization by several montane zooplankters reversed these negative effects, resulting in increased species diversity and production. Invasion resistance was unaffected by higher temperatures, which failed to elicit any significance impacts on the community. We discovered that the smaller body sizes of imported species drove functional overcompensation (i.e., increased production) in invaded communities. The observed ecological surprise showed how regionally sourced biodiversity from a highly

  19. Glacial refugia and modern genetic diversity of 22 western North American tree species

    PubMed Central

    Roberts, David R.; Hamann, Andreas

    2015-01-01

    North American tree species, subspecies and genetic varieties have primarily evolved in a landscape of extensive continental ice and restricted temperate climate environments. Here, we reconstruct the refugial history of western North American trees since the last glacial maximum using species distribution models, validated against 3571 palaeoecological records. We investigate how modern subspecies structure and genetic diversity corresponds to modelled glacial refugia, based on a meta-analysis of allelic richness and expected heterozygosity for 473 populations of 22 tree species. We find that species with strong genetic differentiation into subspecies had widespread and large glacial refugia, whereas species with restricted refugia show no differentiation among populations and little genetic diversity, despite being common over a wide range of environments today. In addition, a strong relationship between allelic richness and the size of modelled glacial refugia (r2 = 0.55) suggest that population bottlenecks during glacial periods had a pronounced effect on the presence of rare alleles. PMID:25761711

  20. Elevated CO2 and plant species diversity interact to slow root decomposition

    SciTech Connect

    De Graaff, Marie-Anne; Schadt, Christopher Warren; Rula, Kelly L; Six, Johan W U A; Schweitzer, Jennifer A; Classen, Aimee T

    2011-01-01

    Changes in plant species diversity can result in synergistic increases in decomposition rates, while elevated atmospheric CO2 can slow the decomposition rates; yet it remains unclear how diversity and changes in atmospheric CO2 may interact to alter root decomposition. To investigate how elevated CO2 interacts with changes in root-litter diversity to alter decomposition rates, we conducted a 120-day laboratory incubation. Roots from three species (Trifolium repens, Lespedeza cuneata, and Festuca pratense) grown under ambient or elevated CO2 were incubated individually or in combination in soils that were exposed to ambient or elevated CO2 for five years. Our experiment resulted in two main findings: (1) Roots from T. repens and L. cuneata, both nitrogen (N) fixers, grown under elevated CO2 treatments had significantly slower decomposition rates than similar roots grown under ambient CO2 treatments; but the decomposition rate of F. pratense roots (a non-N-fixing species) was similar regardless of CO2 treatment. (2) Roots of the three species grown under ambient CO2 and decomposed in combination with each other had faster decomposition rates than when they were decomposed as single species. However, roots of the three species grown under elevated CO2 had similar decomposition rates when they were incubated alone or in combination with other species. These data suggest that if elevated CO2 reduces the root decomposition rate of even a few species in the community, it may slow root decomposition of the entire plant community.

  1. Population expansion and individual age affect endoparasite richness and diversity in a recolonising large carnivore population

    PubMed Central

    Lesniak, Ines; Heckmann, Ilja; Heitlinger, Emanuel; Szentiks, Claudia A.; Nowak, Carsten; Harms, Verena; Jarausch, Anne; Reinhardt, Ilka; Kluth, Gesa; Hofer, Heribert; Krone, Oliver

    2017-01-01

    The recent recolonisation of the Central European lowland (CEL) by the grey wolf (Canis lupus) provides an excellent opportunity to study the effect of founder events on endoparasite diversity. Which role do prey and predator populations play in the re-establishment of endoparasite life cycles? Which intrinsic and extrinsic factors control individual endoparasite diversity in an expanding host population? In 53 individually known CEL wolves sampled in Germany, we revealed a community of four cestode, eight nematode, one trematode and 12 potential Sarcocystis species through molecular genetic techniques. Infections with zoonotic Echinococcus multilocularis, Trichinella britovi and T. spiralis occurred as single cases. Per capita endoparasite species richness and diversity significantly increased with population size and changed with age, whereas sex, microsatellite heterozygosity, and geographic origin had no effect. Tapeworm abundance (Taenia spp.) was significantly higher in immigrants than natives. Metacestode prevalence was slightly higher in ungulates from wolf territories than from control areas elsewhere. Even though alternative canid definitive hosts might also play a role within the investigated parasite life cycles, our findings indicate that (1) immigrated wolves increase parasite diversity in German packs, and (2) prevalence of wolf-associated parasites had declined during wolf absence and has now risen during recolonisation. PMID:28128348

  2. Population expansion and individual age affect endoparasite richness and diversity in a recolonising large carnivore population

    NASA Astrophysics Data System (ADS)

    Lesniak, Ines; Heckmann, Ilja; Heitlinger, Emanuel; Szentiks, Claudia A.; Nowak, Carsten; Harms, Verena; Jarausch, Anne; Reinhardt, Ilka; Kluth, Gesa; Hofer, Heribert; Krone, Oliver

    2017-01-01

    The recent recolonisation of the Central European lowland (CEL) by the grey wolf (Canis lupus) provides an excellent opportunity to study the effect of founder events on endoparasite diversity. Which role do prey and predator populations play in the re-establishment of endoparasite life cycles? Which intrinsic and extrinsic factors control individual endoparasite diversity in an expanding host population? In 53 individually known CEL wolves sampled in Germany, we revealed a community of four cestode, eight nematode, one trematode and 12 potential Sarcocystis species through molecular genetic techniques. Infections with zoonotic Echinococcus multilocularis, Trichinella britovi and T. spiralis occurred as single cases. Per capita endoparasite species richness and diversity significantly increased with population size and changed with age, whereas sex, microsatellite heterozygosity, and geographic origin had no effect. Tapeworm abundance (Taenia spp.) was significantly higher in immigrants than natives. Metacestode prevalence was slightly higher in ungulates from wolf territories than from control areas elsewhere. Even though alternative canid definitive hosts might also play a role within the investigated parasite life cycles, our findings indicate that (1) immigrated wolves increase parasite diversity in German packs, and (2) prevalence of wolf-associated parasites had declined during wolf absence and has now risen during recolonisation.

  3. Population expansion and individual age affect endoparasite richness and diversity in a recolonising large carnivore population.

    PubMed

    Lesniak, Ines; Heckmann, Ilja; Heitlinger, Emanuel; Szentiks, Claudia A; Nowak, Carsten; Harms, Verena; Jarausch, Anne; Reinhardt, Ilka; Kluth, Gesa; Hofer, Heribert; Krone, Oliver

    2017-01-27

    The recent recolonisation of the Central European lowland (CEL) by the grey wolf (Canis lupus) provides an excellent opportunity to study the effect of founder events on endoparasite diversity. Which role do prey and predator populations play in the re-establishment of endoparasite life cycles? Which intrinsic and extrinsic factors control individual endoparasite diversity in an expanding host population? In 53 individually known CEL wolves sampled in Germany, we revealed a community of four cestode, eight nematode, one trematode and 12 potential Sarcocystis species through molecular genetic techniques. Infections with zoonotic Echinococcus multilocularis, Trichinella britovi and T. spiralis occurred as single cases. Per capita endoparasite species richness and diversity significantly increased with population size and changed with age, whereas sex, microsatellite heterozygosity, and geographic origin had no effect. Tapeworm abundance (Taenia spp.) was significantly higher in immigrants than natives. Metacestode prevalence was slightly higher in ungulates from wolf territories than from control areas elsewhere. Even though alternative canid definitive hosts might also play a role within the investigated parasite life cycles, our findings indicate that (1) immigrated wolves increase parasite diversity in German packs, and (2) prevalence of wolf-associated parasites had declined during wolf absence and has now risen during recolonisation.

  4. Using species abundance distribution models and diversity indices for biogeographical analyses

    NASA Astrophysics Data System (ADS)

    Fattorini, Simone; Rigal, François; Cardoso, Pedro; Borges, Paulo A. V.

    2016-01-01

    We examine whether Species Abundance Distribution models (SADs) and diversity indices can describe how species colonization status influences species community assembly on oceanic islands. Our hypothesis is that, because of the lack of source-sink dynamics at the archipelago scale, Single Island Endemics (SIEs), i.e. endemic species restricted to only one island, should be represented by few rare species and consequently have abundance patterns that differ from those of more widespread species. To test our hypothesis, we used arthropod data from the Azorean archipelago (North Atlantic). We divided the species into three colonization categories: SIEs, archipelagic endemics (AZEs, present in at least two islands) and native non-endemics (NATs). For each category, we modelled rank-abundance plots using both the geometric series and the Gambin model, a measure of distributional amplitude. We also calculated Shannon entropy and Buzas and Gibson's evenness. We show that the slopes of the regression lines modelling SADs were significantly higher for SIEs, which indicates a relative predominance of a few highly abundant species and a lack of rare species, which also depresses diversity indices. This may be a consequence of two factors: (i) some forest specialist SIEs may be at advantage over other, less adapted species; (ii) the entire populations of SIEs are by definition concentrated on a single island, without possibility for inter-island source-sink dynamics; hence all populations must have a minimum number of individuals to survive natural, often unpredictable, fluctuations. These findings are supported by higher values of the α parameter of the Gambin mode for SIEs. In contrast, AZEs and NATs had lower regression slopes, lower α but higher diversity indices, resulting from their widespread distribution over several islands. We conclude that these differences in the SAD models and diversity indices demonstrate that the study of these metrics is useful for

  5. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients

    USGS Publications Warehouse

    Spasojevic, Marko J.; Grace, James B.; Harrison, Susan; Damschen, Ellen Ingman

    2013-01-01

    1. The physiological tolerance hypothesis proposes that plant species richness is highest in warm and/or wet climates because a wider range of functional strategies can persist under such conditions. Functional diversity metrics, combined with statistical modeling, offer new ways to test whether diversity-environment relationships are consistent with this hypothesis. 2. In a classic study by R. H. Whittaker (1960), herb species richness declined from mesic (cool, moist, northerly) slopes to xeric (hot, dry, southerly) slopes. Building on this dataset, we measured four plant functional traits (plant height, specific leaf area, leaf water content and foliar C:N) and used them to calculate three functional diversity metrics (functional richness, evenness, and dispersion). We then used a structural equation model to ask if ‘functional diversity’ (modeled as the joint responses of richness, evenness, and dispersion) could explain the observed relationship of topographic climate gradients to species richness. We then repeated our model examining the functional diversity of each of the four traits individually. 3. Consistent with the physiological tolerance hypothesis, we found that functional diversity was higher in more favorable climatic conditions (mesic slopes), and that multivariate functional diversity mediated the relationship of the topographic climate gradient to plant species richness. We found similar patterns for models focusing on individual trait functional diversity of leaf water content and foliar C:N. 4. Synthesis. Our results provide trait-based support for the physiological tolerance hypothesis, suggesting that benign climates support more species because they allow for a wider range of functional strategies.

  6. Neighborhood diversity of large trees shows independent species patterns in a mixed dipterocarp forest in Sri Lanka.

    PubMed

    Punchi-Manage, Ruwan; Wiegand, Thorsten; Wiegand, Kerstin; Getzin, Stephan; Huth, Andreas; Gunatilleke, C V Savitri; Gunatilleke, I A U Nimal

    2015-07-01

    Interactions among neighboring individuals influence plant performance and should create spatial patterns in local community structure. In order to assess the role of large trees in generating spatial patterns in local species richness, we used the individual species-area relationship (ISAR) to evaluate the species richness of trees of different size classes (and dead trees) in circular neighborhoods with varying radius around large trees of different focal species. To reveal signals of species interactions, we compared the ISAR function of the individuals of focal species with that of randomly selected nearby locations. We expected that large trees should strongly affect the community structure of smaller trees in their neighborhood, but that these effects should fade away with increasing size class. Unexpectedly, we found that only few focal species showed signals of species interactions with trees of the different size classes and that this was less likely for less abundant focal species. However, the few and relatively weak departures from independence were consistent with expectations of the effect of competition for space and the dispersal syndrome on spatial patterns. A noisy signal of competition for space found for large trees built up gradually with increasing life stage; it was not yet present for large saplings but detectable for intermediates. Additionally, focal species with animal-dispersed seeds showed higher species richness in their neighborhood than those with gravity- and gyration-dispersed seeds. Our analysis across the entire ontogeny from recruits to large trees supports the hypothesis that stochastic effects dilute deterministic species interactions in highly diverse communities. Stochastic dilution is a consequence of the stochastic geometry of biodiversity in species-rich communities where the identities of the nearest neighbors of a given plant are largely unpredictable. While the outcome of local species interactions is governed for each

  7. Species diversity vs. morphological disparity in the light of evolutionary developmental biology

    PubMed Central

    Minelli, Alessandro

    2016-01-01

    Background Two indicators of a clade’s success are its diversity (number of included species) and its disparity (extent of morphospace occupied by its members). Many large genera show high diversity with low disparity, while others such as Euphorbia and Drosophila are highly diverse but also exhibit high disparity. The largest genera are often characterized by key innovations that often, but not necessarily, coincide with their diagnostic apomorphies. In terms of their contribution to speciation, apomorphies are either permissive (e.g. flightlessness) or generative (e.g. nectariferous spurs). Scope Except for Drosophila, virtually no genus among those with the highest diversity or disparity includes species currently studied as model species in developmental genetics or evolutionary developmental biology (evo-devo). An evo-devo approach is, however, potentially important to understand how diversity and disparity could rapidly increase in the largest genera currently accepted by taxonomists. The most promising directions for future research and a set of key questions to be addressed are presented in this review. Conclusions From an evo-devo perspective, the evolution of clades with high diversity and/or disparity can be addressed from three main perspectives: (1) evolvability, in terms of release from previous constraints and of the presence of genetic or developmental conditions favouring multiple parallel occurrences of a given evolutionary transition and its reversal; (2) phenotypic plasticity as a facilitator of speciation; and (3) modularity, heterochrony and a coupling between the complexity of the life cycle and the evolution of diversity and disparity in a clade. This simple preliminary analysis suggests a set of topics that deserve priority for scrutiny, including the possible role of saltational evolution in the origination of high diversity and/or disparity, the predictability of morphological evolution following release from a former constraint, and

  8. Deconstructing responses of dragonfly species richness to area, nutrients, water plant diversity and forestry.

    PubMed

    Honkanen, Merja; Sorjanen, Aili-Maria; Mönkkönen, Mikko

    2011-06-01

    Understanding large-scale variation in species richness in relation to area, energy, habitat heterogeneity and anthropogenic disturbance has been a major task in ecology. Ultimately, variation in species richness results from variation in individual species occupancies. We studied whether the individual species occupancy patterns are determined by the same candidate factors as total species richness. We sampled 26 boreal forest ponds for dragonflies (Odonata) and studied the effects of shoreline length, water vascular plant species density (WVPSD), availability of nutrients, intensity of forestry, amount of Sphagnum peat cover and pH on dragonfly species richness and individual dragonfly species. WVPSD and pH had a strong positive effect on species richness. Removal of six dragonfly species experiencing strongest responses to WVPSD cancelled the relationship between species richness and WVPSD. By contrast, removal of nine least observed species did not affect the relationship between WVPSD and species richness. Thus, our results showed that relatively common species responding strongly to WVPSD shaped the observed species richness pattern whereas the effect of least observed, often rare, species was negligible. Also, our results support the view that, despite of the great impact of energy on species richness at large spatial scales, habitat heterogeneity can still have an effect on species richness in smaller scales, even overriding the effects of area.

  9. Functional Diversity of Boreal Bog Plant Species Decreases Seasonal Variation of Ecosystem Carbon Sink Function

    NASA Astrophysics Data System (ADS)

    Korrensalo, A.

    2015-12-01

    Species diversity has been found to decrease the temporal variance of productivity of a plant community, and diversity in species responses to environmental factors seems to make a plant community more stable in changing conditions. Boreal bogs are nutrient poor peatland ecosystems where the number of plant species is low but the species differ greatly in their growth form. In here we aim to assess the role of the variation in photosynthesis between species for the temporal variation in ecosystem carbon sink function. To quantify the photosynthetic properties and their seasonal variation for different bog plant species we measured photosynthetic parameters and stress-inducing chlorophyll fluorescence of vascular plant and Sphagnum moss species in a boreal bog over a growing season. We estimated monthly gross photosynthesis (PG) of the whole study site based on species level light response curves and leaf area development. The estimated PG was further compared with a gross primary production (GPP) estimate measured by eddy covariance (EC) technique. The sum of upscaled PG estimates agreed well with the GPP estimate measured by the EC technique. The contributions of the species and species groups to the ecosystem level PG changed over the growing season. The sharp mid-summer peak in sedge PG was balanced by more stable PG of evergreen shrubs and Sphagna. Species abundance rather than differences in photosynthetic properties between species and growth forms determined the most productive plants on the ecosystem scale. Sphagna had lower photosynthesis and clorophyll fluorescence than vascular plants but were more productive on the ecosystem scale throughout the growing season due to their high areal coverage. These results show that the diversity of growth forms stabilizes the seasonal variation of the ecosystem level PG in an ombrotrophic bog ecosystem. This may increase the resilience of the ecosystem to changing environmental conditions.

  10. Differential effects of plant diversity on functional trait variation of grass species

    PubMed Central

    Gubsch, Marlén; Buchmann, Nina; Schmid, Bernhard; Schulze, Ernst-Detlef; Lipowsky, Annett; Roscher, Christiane

    2011-01-01

    Background and Aims Functional trait differences and trait adjustment in response to influences of the biotic environment could reflect niche partitioning among species. In this study, we tested how variation in above-ground plant traits, chosen as indicators for light and nitrogen acquisition and use, differs among taxonomically closely related species (Poaceae) to assess their potential for niche segregation at increasing plant diversity. Methods Traits of 12 grass species were measured in experimental grasslands (Jena Experiment) of varying species richness (from 1 to 60) and presence of particular functional groups (grasses, legumes, tall herbs and small herbs). Key Results Grass species increased shoot and leaf length, investment into supporting tissue (stem mass fraction) and specific leaf area as well as reduced foliar δ13C values with increasing species richness, indicating higher efforts for light acquisition. These species-richness effects could in part be explained by a higher probability of legume presence in more diverse communities. Leaf nitrogen concentrations increased and biomas s : N ratios in shoots decreased when grasses grew with legumes, indicating an improved nitrogen nutrition. Foliar δ15N values of grasses decreased when growing with legumes suggesting the use of depleted legume-derived N, while decreasing δ15N values with increasing species richness indicated a shift in the uptake of different N sources. However, efforts to optimize light and nitrogen acquisition by plastic adjustment of traits in response to species richness and legume presence, varied significantly among grass species. It was possible to show further that trait adjustment of grass species increased niche segregation in more diverse plant communities but that complementarity through niche separation may differ between light and nutrient acquisition. Conclusions The results suggest that even among closely related species such as grasses different strategies are used to

  11. Measuring size and composition of species pools: a comparison of dark diversity estimates.

    PubMed

    de Bello, Francesco; Fibich, Pavel; Zelený, David; Kopecký, Martin; Mudrák, Ondřej; Chytrý, Milan; Pyšek, Petr; Wild, Jan; Michalcová, Dana; Sádlo, Jiří; Šmilauer, Petr; Lepš, Jan; Pärtel, Meelis

    2016-06-01

    Ecological theory and biodiversity conservation have traditionally relied on the number of species recorded at a site, but it is agreed that site richness represents only a portion of the species that can inhabit particular ecological conditions, that is, the habitat-specific species pool. Knowledge of the species pool at different sites enables meaningful comparisons of biodiversity and provides insights into processes of biodiversity formation. Empirical studies, however, are limited due to conceptual and methodological difficulties in determining both the size and composition of the absent part of species pools, the so-called dark diversity. We used >50,000 vegetation plots from 18 types of habitats throughout the Czech Republic, most of which served as a training dataset and 1083 as a subset of test sites. These data were used to compare predicted results from three quantitative methods with those of previously published expert estimates based on species habitat preferences: (1) species co-occurrence based on Beals' smoothing approach; (2) species ecological requirements, with envelopes around community mean Ellenberg values; and (3) species distribution models, using species environmental niches modeled by Biomod software. Dark diversity estimates were compared at both plot and habitat levels, and each method was applied in different configurations. While there were some differences in the results obtained by different methods, particularly at the plot level, there was a clear convergence, especially at the habitat level. The better convergence at the habitat level reflects less variation in local environmental conditions, whereas variation at the plot level is an effect of each particular method. The co-occurrence agreed closest the expert estimate, followed by the method based on species ecological requirements. We conclude that several analytical methods can estimate species pools of given habitats. However, the strengths and weaknesses of different methods

  12. Water-level fluctuations and metapopulation dynamics as drivers of genetic diversity in populations of three Tanganyikan cichlid fish species

    PubMed Central

    Nevado, B; Mautner, S; Sturmbauer, C; Verheyen, E

    2013-01-01

    Understanding how genetic variation is generated and maintained in natural populations, and how this process unfolds in a changing environment, remains a central issue in biological research. In this work, we analysed patterns of genetic diversity from several populations of three cichlid species from Lake Tanganyika in parallel, using the mitochondrial DNA control region. We sampled populations inhabiting the littoral rocky habitats in both very deep and very shallow areas of the lake. We hypothesized that the former would constitute relatively older, more stable and genetically more diverse populations, because they should have been less severely affected by the well-documented episodes of dramatic water-level fluctuations. In agreement with our predictions, populations of all three species sampled in very shallow shorelines showed traces of stronger population growth than populations of the same species inhabiting deep shorelines. However, contrary to our working hypothesis, we found a significant trend towards increased genetic diversity in the younger, demographically less stable populations inhabiting shallow areas, in comparison with the older and more stable populations inhabiting the deep shorelines. We interpret this finding as the result of the establishment of metapopulation dynamics in the former shorelines, by the frequent perturbation and reshuffling of individuals between populations due to the lake-level fluctuations. The repeated succession of periods of allopatric separation and secondary contact is likely to have further increased the rapid pace of speciation in lacustrine cichlids. PMID:23837841

  13. Forest species diversity reduces disease risk in a generalist plant pathogen invasion

    USGS Publications Warehouse

    Haas, Sarah E.; Hooten, Mevin B.; Rizzo, David M.; Meentemeyer, Ross K.

    2011-01-01

    Empirical evidence suggests that biodiversity loss can increase disease transmission, yet our understanding of the 'diversity-disease hypothesis' for generalist pathogens in natural ecosystems is limited. We used a landscape epidemiological approach to examine two scenarios regarding diversity effects on the emerging plant pathogen Phytophthora ramorum across a broad, heterogeneous ecoregion: (1) an amplification effect exists where disease risk is greater in areas with higher plant diversity due to the pathogen's wide host range, or (2) a dilution effect where risk is reduced with increasing diversity due to lower competency of alternative hosts. We found evidence for pathogen dilution, whereby disease risk was lower in sites with higher species diversity, after accounting for potentially confounding effects of host density and landscape heterogeneity. Our results suggest that although nearly all plants in the ecosystem are hosts, alternative hosts may dilute disease transmission by competent hosts, thereby buffering forest health from infectious disease.

  14. Generic and functional diversity in endophytic actinomycetes from wild Compositae plant species at South Sinai - Egypt.

    PubMed

    El-Shatoury, Sahar A; El-Kraly, Omnia A; Trujillo, Martha E; El-Kazzaz, Waleed M; El-Din, El-Sayeda Gamal; Dewedar, Ahmed

    2013-09-01

    The diversity of culturable endophytic actinomycetes associated with wild Compositae plants is scantily explored. In this study, one hundred and thirty one endophytic actinobacteria were isolated from ten Compositae plant species collected from South Sinai in Egypt. Microscopic and chemotaxonomic investigation of the isolates indicated fourteen genera. Rare genera, such as Microtetraspora, and Intrasporangium, which have never been previously reported to be endophytic, were identified. Each plant species accommodated between three to eight genera of actinobacteria and unidentified strains were recovered from seven plant species. The generic diversity analysis of endophytic assemblages grouped the plant species into three main clusters, representing high, moderate and low endophytic diversity. The endophytes showed high functional diversity, based on forty four catabolic and plant growth promotion traits; providing some evidence that such traits could represent key criteria for successful residence of endophytes in the endosphere. Stress-tolerance traits were more predictive measure of functional diversity differences between the endophyte assemblages (Shannon's index, p = 0.01). The results indicate a potential prominent role of endophytes for their hosts and emphasize the potency of plant endosphere as a habitat for actinobacteria with promising future applications.

  15. Transcriptome Sequencing of Diverse Peanut (Arachis) Wild Species and the Cultivated Species Reveals a Wealth of Untapped Genetic Variability

    PubMed Central

    Chopra, Ratan; Burow, Gloria; Simpson, Charles E.; Chagoya, Jennifer; Mudge, Joann; Burow, Mark D.

    2016-01-01

    To test the hypothesis that the cultivated peanut species possesses almost no molecular variability, we sequenced a diverse panel of 22 Arachis accessions representing Arachis hypogaea botanical classes, A-, B-, and K- genome diploids, a synthetic amphidiploid, and a tetraploid wild species. RNASeq was performed on pools of three tissues, and de novo assembly was performed. Realignment of individual accession reads to transcripts of the cultivar OLin identified 306,820 biallelic SNPs. Among 10 naturally occurring tetraploid accessions, 40,382 unique homozygous SNPs were identified in 14,719 contigs. In eight diploid accessions, 291,115 unique SNPs were identified in 26,320 contigs. The average SNP rate among the 10 cultivated tetraploids was 0.5, and among eight diploids was 9.2 per 1000 bp. Diversity analysis indicated grouping of diploids according to genome classification, and cultivated tetraploids by subspecies. Cluster analysis of variants indicated that sequences of B genome species were the most similar to the tetraploids, and the next closest diploid accession belonged to the A genome species. A subset of 66 SNPs selected from the dataset was validated; of 782 SNP calls, 636 (81.32%) were confirmed using an allele-specific discrimination assay. We conclude that substantial genetic variability exists among wild species. Additionally, significant but lesser variability at the molecular level occurs among accessions of the cultivated species. This survey is the first to report significant SNP level diversity among transcripts, and may explain some of the phenotypic differences observed in germplasm surveys. Understanding SNP variants in the Arachis accessions will benefit in developing markers for selection. PMID:27729436

  16. Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest

    PubMed Central

    2013-01-01

    Background In stark contrast to the wealth of detail about C. elegans developmental biology and molecular genetics, biologists lack basic data for understanding the abundance and distribution of Caenorhabditis species in natural areas that are unperturbed by human influence. Methods Here we report the analysis of dense sampling from a small, remote site in the Amazonian rain forest of the Nouragues Natural Reserve in French Guiana. Results Sampling of rotting fruits and flowers revealed proliferating populations of Caenorhabditis, with up to three different species co-occurring within a single substrate sample, indicating remarkable overlap of local microhabitats. We isolated six species, representing the highest local species richness for Caenorhabditis encountered to date, including both tropically cosmopolitan and geographically restricted species not previously isolated elsewhere. We also documented the structure of within-species molecular diversity at multiple spatial scales, focusing on 57 C. briggsae isolates from French Guiana. Two distinct genetic subgroups co-occur even within a single fruit. However, the structure of C. briggsae population genetic diversity in French Guiana does not result from strong local patterning but instead presents a microcosm of global patterns of differentiation. We further integrate our observations with new data from nearly 50 additional recently collected C. briggsae isolates from both tropical and temperate regions of the world to re-evaluate local and global patterns of intraspecific diversity, providing the most comprehensive analysis to date for C. briggsae population structure across multiple spatial scales. Conclusions The abundance and species richness of Caenorhabditis nematodes is high in a Neotropical rainforest habitat that is subject to minimal human interference. Microhabitat preferences overlap for different local species, although global distributions include both cosmopolitan and geographically restricted

  17. Karyotype Diversity and Evolutionary Trends in Armored Catfish Species of the Genus Harttia (Siluriformes: Loricariidae).

    PubMed

    Blanco, Daniel Rodrigues; Vicari, Marcelo Ricardo; Lui, Roberto Laridondo; Traldi, Josiane Baccarin; Bueno, Vanessa; Martinez, Juliana de Fátima; Brandão, Heleno; Oyakawa, Osvaldo Takeshi; Moreira Filho, Orlando

    2017-04-01

    Most species of the genus Harttia inhabits the headwaters of small tributaries, but some species are restricted to the main channel of some rivers. This feature, combined with limited dispersal ability, leads to the formation of small isolated populations with reduced gene flow. Currently, there are 23 taxonomically defined and recognized species, and 17 of these are found in Brazil, distributed in several hydrographic basins. Despite this diversity, few chromosomal data for the species belonging to this genus are found in the literature. Thus, this study analyzed, by classical and molecular cytogenetics methodologies, the chromosomal diversity of this genus, to discuss the processes that are involved in the evolution and karyotype differentiation of the species of the group. Seven species of Harttia were analyzed: H. kronei, H. longipinna, H. gracilis, H. punctata, H. loricariformis, H. torrenticola, and H. carvalhoi. The chromosomal diversity found in these species includes different diploid and fundamental numbers, distinct distribution of several repetitive sequences, the presence of supernumerary chromosomes in H. longipinna and multiple sex chromosome systems of the type XX/XY1Y2 in H. carvalhoi and X1X1X2X2/X1X2Y in H. punctata. Lastly, our data highlight the genus Harttia as an excellent model for evolutionary studies.

  18. Large-scale patterns in morphological diversity and species assemblages in Neotropical Triatominae (Heteroptera: Reduviidae)

    PubMed Central

    Fergnani, Paula Nilda; Ruggiero, Adriana; Ceccarelli, Soledad; Menu, Frédéric; Rabinovich, Jorge

    2013-01-01

    We analysed the spatial variation in morphological diversity (MDiv) and species richness (SR) for 91 species of Neotropical Triatominae to determine the ecological relationships between SR and MDiv and to explore the roles that climate, productivity, environmental heterogeneity and the presence of biomes and rivers may play in the structuring of species assemblages. For each 110 km x 110 km-cell on a grid map of America, we determined the number of species (SR) and estimated the mean Gower index (MDiv) based on 12 morphological attributes. We performed bootstrapping analyses of species assemblages to identify whether those assemblages were more similar or dissimilar in their morphology than expected by chance. We applied a multi-model selection procedure and spatial explicit analyses to account for the association of diversity-environment relationships. MDiv and SR both showed a latitudinal gradient, although each peaked at different locations and were thus not strictly spatially congruent. SR decreased with temperature variability and MDiv increased with mean temperature, suggesting a predominant role for ambient energy in determining Triatominae diversity. Species that were more similar than expected by chance co-occurred near the limits of the Triatominae distribution in association with changes in environmental variables. Environmental filtering may underlie the structuring of species assemblages near their distributional limits. PMID:24402152

  19. Diversity and biogeography of a species-rich ant fauna of the Australian seasonal tropics.

    PubMed

    Andersen, Alan N; Hoffmann, Benjamin D; Oberprieler, Stefanie

    2016-09-15

    Although ants are an ecologically dominant and extensively studied faunal group throughout the tropics, there is a poor understanding of tropical ant diversity and distribution at large spatial scales. Here we use a collection developed from 3 decades of ant surveys to present the first analysis of ant diversity and biogeography of a large tropical region. Our objective was to document the species richness, composition, and biogeographic distributions of the ant fauna of the 400 000 km(2) "Top End" of Australia's Northern Territory. The known Top End ant fauna comprises 901 native species from 59 genera. The richest genera are Pheidole (90 species), Melophorus (83), Monomorium (83), Camponotus (71), Meranoplus (63), Polyrhachis (57), Rhytidoponera (50), Tetramorium (43), Cerapachys (32), and Iridomyrmex (31). The fauna is the center of diverse radiations within species-groups of genera such as Meranoplus, Rhytidoponera, and Leptogenys. It also includes IndoMalayan species that have likely bypassed the normal dispersal route into Australia through Cape York Peninsula in North Queensland. Faunistic similarity with other regions of far northern Australia is associated more with rainfall than with geographic proximity. Most (60%) of Top End ant species have not been recorded elsewhere, and, despite uncertainties relating to species delimitation and sampling intensity, this appears to be a credible estimate of the level of endemism. Such exceptionally high endemism can be attributed to the Top End's geographic isolation from other regions of northern Australia with comparably high rainfall.

  20. Large-scale patterns in morphological diversity and species assemblages in Neotropical Triatominae (Heteroptera: Reduviidae).

    PubMed

    Fergnani, Paula Nilda; Ruggiero, Adriana; Ceccarelli, Soledad; Menu, Frédéric; Rabinovich, Jorge

    2013-12-01

    We analysed the spatial variation in morphological diversity (MDiv) and species richness (SR) for 91 species of Neotropical Triatominae to determine the ecological relationships between SR and MDiv and to explore the roles that climate, productivity, environmental heterogeneity and the presence of biomes and rivers may play in the structuring of species assemblages. For each 110 km x 110 km-cell on a grid map of America, we determined the number of species (SR) and estimated the mean Gower index (MDiv) based on 12 morphological attributes. We performed bootstrapping analyses of species assemblages to identify whether those assemblages were more similar or dissimilar in their morphology than expected by chance. We applied a multi-model selection procedure and spatial explicit analyses to account for the association of diversity-environment relationships. MDiv and SR both showed a latitudinal gradient, although each peaked at different locations and were thus not strictly spatially congruent. SR decreased with temperature variability and MDiv increased with mean temperature, suggesting a predominant role for ambient energy in determining Triatominae diversity. Species that were more similar than expected by chance co-occurred near the limits of the Triatominae distribution in association with changes in environmental variables. Environmental filtering may underlie the structuring of species assemblages near their distributional limits.

  1. The Evolutionary History of the Arabidopsis arenosa Complex: Diverse Tetraploids Mask the Western Carpathian Center of Species and Genetic Diversity

    PubMed Central

    Schmickl, Roswitha; Paule, Juraj; Klein, Johannes; Marhold, Karol; Koch, Marcus A.

    2012-01-01

    The Arabidopsis arenosa complex is closely related to the model plant Arabidopsis thaliana. Species and subspecies in the complex are mainly biennial, predominantly outcrossing, herbaceous, and with a distribution range covering most parts of latitudes and the eastern reaches of Europe. In this study we present the first comprehensive evolutionary history of the A. arenosa species complex, covering its natural range, by using chromosome counts, nuclear AFLP data, and a maternally inherited marker from the chloroplast genome [trnL intron (trnL) and trnL/F intergenic spacer (trnL/F-IGS) of tRNALeu and tRNAPhe, respectively]. We unravel the broad-scale cytogeographic and phylogeographic patterns of diploids and tetraploids. Diploid cytotypes were exclusively found on the Balkan Peninsula and in the Carpathians while tetraploid cytotypes were found throughout the remaining distribution range of the A. arenosa complex. Three centers of genetic diversity were identified: the Balkan Peninsula, the Carpathians, and the unglaciated Eastern and Southeastern Alps. All three could have served as long-term refugia during Pleistocene climate oscillations. We hypothesize that the Western Carpathians were and still are the cradle of speciation within the A. arenosa complex due to the high species number and genetic diversity and the concurrence of both cytotypes there. PMID:22880083

  2. Multiscale Mapping of Species Diversity under Changed Land-Use Using Imaging Spectroscopy.

    PubMed

    Paz-Kagan, Tarin; Caras, Tamir; Herrmann, Ittai; Shachak, Moshe; Karnieli, Arnon

    2017-03-28

    Land-use changes are one of the most important factors causing environmental transformations and species diversity alterations. The aim of the current study was to develop a geoinformatics-based framework to quantify alpha and beta diversity indices in two sites in Israel with different land-uses, i.e., an agricultural system of fruit orchards, an afforestation system of planted groves, and an unmanaged system of groves. The framework comprises four scaling steps: (1) classification of a tree species distribution (SD) map using imaging spectroscopy (IS) at a pixel size of 1 m; (2) estimation of local species richness by calculating the alpha diversity index for 30-m grid cells; (3) calculation of beta diversity for different land-use categories and sub-categories at different sizes; and (4) calculation of the beta diversity difference between the two sites. The SD was classified based on a hyperspectral image with 448 bands within the 380-2500 nm spectral range and a spatial resolution of 1 m. Twenty-three tree species were classified with high overall accuracy values of 82.57 and 86.93% for the two sites. Significantly high values of the alpha index characterize the unmanaged land-use, and the lowest values were calculated for the agricultural land-use. In addition, high values of alpha indices were found at the borders between the polygons related to the "edge-effect" phenomenon, whereas low alpha indices were found in areas with high invasion species rates. The beta index value, calculated for 58 polygons, was significantly lower in the agricultural land-use. The suggested framework of this study succeeded in quantifying land-use effects on tree species distribution, evenness, and richness. IS and spatial statistics techniques offer an opportunity to study woody plant species variation with a multiscale approach that is useful for managing land-use, especially under increasing environmental changes. This article is protected by copyright. All rights reserved.

  3. Distribution and Diversity of Pathogenic Leptospira Species in Peri-domestic Surface Waters from South Central Chile

    PubMed Central

    Mason, Meghan R.; Encina, Carolina; Sreevatsan, Srinand; Muñoz-Zanzi, Claudia

    2016-01-01

    Background Leptospirosis is a neglected zoonosis affecting animals and humans caused by infection with Leptospira. The bacteria can survive outside of hosts for long periods of time in soil and water. While identification of Leptospira species from human cases and animal reservoirs are increasingly reported, little is known about the diversity of pathogenic Leptospira species in the environment and how surveillance of the environment might be used for monitoring and controlling disease. Methods and Findings Water samples (n = 104) were collected from the peri-domestic environment of 422 households from farms, rural villages, and urban slums participating in a broader study on the eco-epidemiology of leptospirosis in the Los Rios Region, Chile, between October 2010 and April 2012. The secY region of samples, previously detected as pathogenic Leptospira by PCR, was amplified and sequenced. Sequences were aligned using ClustalW in MEGA, and a minimum spanning tree was created in PHYLOViZ using the goeBURST algorithm to assess sequence similarity. Sequences from four clinical isolates, 17 rodents, and 20 reference strains were also included in the analysis. Overall, water samples contained L. interrogans, L. kirschneri, and L. weilii, with descending frequency. All species were found in each community type. The distribution of the species differed by the season in which the water samples were obtained. There was no evidence that community-level prevalence of Leptospira in dogs, rodents, or livestock influenced pathogen diversity in the water samples. Conclusions This study reports the presence of pathogenic Leptospira in the peri-domestic environment of households in three community types and the differences in Leptospira diversity at the community level. Systematic environmental surveillance of Leptospira can be used for detecting changes in pathogen diversity and to identify and monitor contaminated areas where an increased risk of human infection exists. PMID

  4. Comparative analysis of microsatellites in five different antagonistic Trichoderma species for diversity assessment.

    PubMed

    Rai, Shalini; Kashyap, Prem Lal; Kumar, Sudheer; Srivastava, Alok Kumar; Ramteke, Pramod W

    2016-01-01

    Microsatellites provide an ideal molecular markers system to screen, characterize and evaluate genetic diversity of several fungal species. Currently, there is very limited information on the genetic diversity of antagonistic Trichoderma species as determined using a range of molecular markers. In this study, expressed and whole genome sequences available in public database were used to investigate the occurrence, relative abundance and relative density of SSRs in five different antagonistic Trichoderma species: Trichoderma atroviride, T. harzianum, T. reesei, T. virens and T. asperellum. Fifteen SSRs loci were used to evaluate genetic diversity of twenty isolates of Trichoderma spp. from different geographical regions of India. Results indicated that relative abundance and relative density of SSRs were higher in T. asperellum followed by T. reesei and T. atroviride. Tri-nucleotide repeats (80.2%) were invariably the most abundant in all species. The abundance and relative density of SSRs were not influenced by the genome sizes and GC content. Out of eighteen primer sets, only 15 primer pairs showed successful amplification in all the test species. A total of 24 alleles were detected and five loci were highly informative with polymorphism information content values greater than 0.40, these markers provide useful information on genetic diversity and population genetic structure, which, in turn, can exploit for establishing conservation strategy for antagonistic Trichoderma isolates.

  5. Genetic Diversity in Lens Species Revealed by EST and Genomic Simple Sequence Repeat Analysis.

    PubMed

    Dikshit, Harsh Kumar; Singh, Akanksha; Singh, Dharmendra; Aski, Muraleedhar Sidaram; Prakash, Prapti; Jain, Neelu; Meena, Suresh; Kumar, Shiv; Sarker, Ashutosh

    2015-01-01

    Low productivity of pilosae type lentils grown in South Asia is attributed to narrow genetic base of the released cultivars which results in susceptibility to biotic and abiotic stresses. For enhancement of productivity and production, broadening of genetic base is essentially required. The genetic base of released cultivars can be broadened by using diverse types including bold seeded and early maturing lentils from Mediterranean region and related wild species. Genetic diversity in eighty six accessions of three species of genus Lens was assessed based on twelve genomic and thirty one EST-SSR markers. The evaluated set of genotypes included diverse lentil varieties and advanced breeding lines from Indian programme, two early maturing ICARDA lines and five related wild subspecies/species endemic to the Mediterranean region. Genomic SSRs exhibited higher polymorphism in comparison to EST SSRs. GLLC 598 produced 5 alleles with highest gene diversity value of 0.80. Among the studied subspecies/species 43 SSRs detected maximum number of alleles in L. orientalis. Based on Nei's genetic distance cultivated lentil L. culinaris subsp. culinaris was found to be close to its wild progenitor L. culinaris subsp. orientalis. The Prichard's structure of 86 genotypes distinguished different subspecies/species. Higher variability was recorded among individuals within population than among populations.

  6. Amphibian Diversity and Threatened Species in a Severely Transformed Neotropical Region in Mexico

    PubMed Central

    Meza-Parral, Yocoyani; Pineda, Eduardo

    2015-01-01

    Many regions around the world concentrate a large number of highly endangered species that have very restricted distributions. The mountainous region of central Veracruz, Mexico, is considered a priority area for amphibian conservation because of its high level of endemism and the number of threatened species. The original tropical montane cloud forest in the region has been dramatically reduced and fragmented and is now mainly confined to ravines and hillsides. We evaluated the current situation of amphibian diversity in the cloud forest fragments of this region by analyzing species richness and abundance, comparing assemblage structure and species composition, examining the distribution and abundance of threatened species, and identifying the local and landscape variables associated with the observed amphibian diversity. From June to October 2012 we sampled ten forest fragments, investing 944 person-hours of sampling effort. A total of 895 amphibians belonging to 16 species were recorded. Notable differences in species richness, abundance, and assemblage structure between forest fragments were observed. Species composition between pairs of fragments differed by an average of 53%, with the majority (58%) resulting from species replacement and the rest (42%) explained by differences in species richness. Half of the species detected are under threat of extinction according to the International Union for Conservation of Nature, and although their distribution and abundance varied markedly, there were also ubiquitous and abundant species, along with rare species of restricted distribution. The evident heterogeneity of the ten study sites indicates that to conserve amphibians in a mountainous region such as this one it is necessary to protect groups of fragments which represent the variability of the system. Both individually and together cloud forest fragments are very important to conservation because each remnant is inhabited by several threatened species, some of

  7. Amphibian diversity and threatened species in a severely transformed neotropical region in Mexico.

    PubMed

    Meza-Parral, Yocoyani; Pineda, Eduardo

    2015-01-01

    Many regions around the world concentrate a large number of highly endangered species that have very restricted distributions. The mountainous region of central Veracruz, Mexico, is considered a priority area for amphibian conservation because of its high level of endemism and the number of threatened species. The original tropical montane cloud forest in the region has been dramatically reduced and fragmented and is now mainly confined to ravines and hillsides. We evaluated the current situation of amphibian diversity in the cloud forest fragments of this region by analyzing species richness and abundance, comparing assemblage structure and species composition, examining the distribution and abundance of threatened species, and identifying the local and landscape variables associated with the observed amphibian diversity. From June to October 2012 we sampled ten forest fragments, investing 944 person-hours of sampling effort. A total of 895 amphibians belonging to 16 species were recorded. Notable differences in species richness, abundance, and assemblage structure between forest fragments were observed. Species composition between pairs of fragments differed by an average of 53%, with the majority (58%) resulting from species replacement and the rest (42%) explained by differences in species richness. Half of the species detected are under threat of extinction according to the International Union for Conservation of Nature, and although their distribution and abundance varied markedly, there were also ubiquitous and abundant species, along with rare species of restricted distribution. The evident heterogeneity of the ten study sites indicates that to conserve amphibians in a mountainous region such as this one it is necessary to protect groups of fragments which represent the variability of the system. Both individually and together cloud forest fragments are very important to conservation because each remnant is inhabited by several threatened species, some of

  8. Rapid Diversity Loss of Competing Animal Species in Well-Connected Landscapes

    PubMed Central

    Schippers, Peter; Hemerik, Lia; Baveco, Johannes M.; Verboom, Jana

    2015-01-01

    Population viability of a single species, when evaluated with metapopulation based landscape evaluation tools, always increases when the connectivity of the landscape increases. However, when interactions between species are taken into account, results can differ. We explore this issue using a stochastic spatially explicit meta-community model with 21 competing species in five different competitive settings: (1) weak, coexisting competition, (2) neutral competition, (3) strong, excluding competition, (4) hierarchical competition and (5) random species competition. The species compete in randomly generated landscapes with various fragmentation levels. With this model we study species loss over time. Simulation results show that overall diversity, the species richness in the entire landscape, decreases slowly in fragmented landscapes whereas in well-connected landscapes rapid species losses occur. These results are robust with respect to changing competitive settings, species parameters and spatial configurations. They indicate that optimal landscape configuration for species conservation differs between metapopulation approaches, modelling species separately and meta-community approaches allowing species interactions. The mechanism behind this is that species in well-connected landscapes rapidly outcompete each other. Species that become abundant, by chance or by their completive strength, send out large amounts of dispersers that colonize and take over other patches that are occupied by species that are less abundant. This mechanism causes rapid species loss. In fragmented landscapes the colonization rate is lower, and it is difficult for a new species to establish in an already occupied patch. So, here dominant species cannot easily take over patches occupied by other species and higher diversity is maintained for a longer time. These results suggest that fragmented landscapes have benefits for species conservation previously unrecognized by the landscape ecology

  9. RESTORING SPECIES RICHNESS AND DIVERSITY IN A RUSSIAN KNAPWEED (ACROPTILON REPENS)-INFESTED RIPARIAN PLANT COMMUNITY USING HERBICIDES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species richness and diversity are important indicators of ecosystem function and may be related to plant community resistance to invasion by non-indigenous species. Knowledge about the influence of various strategies on species richness and diversity is central to making wise invasive plant manage...

  10. Temperature dependence, spatial scale, and tree species diversity in eastern Asia and North America

    PubMed Central

    Wang, Zhiheng; Brown, James H.; Tang, Zhiyao; Fang, Jingyun

    2009-01-01

    The increase of biodiversity from poles to equator is one of the most pervasive features of nature. For 2 centuries since von Humboldt, Wallace, and Darwin, biogeographers and ecologists have investigated the environmental and historical factors that determine the latitudinal gradient of species diversity, but the underlying mechanisms remain poorly understood. The recently proposed metabolic theory of ecology (MTE) aims to explain ecological patterns and processes, including geographical patterns of species richness, in terms of the effects of temperature and body size on the metabolism of organisms. Here we use 2 comparable databases of tree distributions in eastern Asia and North America to investigate the roles of environmental temperature and spatial scale in shaping geographical patterns of species diversity. We find that number of species increases exponentially with environmental temperature as predicted by the MTE, and so does the rate of spatial turnover in species composition (slope of the species-area relationship). The magnitude of temperature dependence of species richness increases with spatial scale. Moreover, the relationship between species richness and temperature is much steeper in eastern Asia than in North America: in cold climates at high latitudes there are more tree species in North America, but the reverse is true in warmer climates at lower latitudes. These patterns provide evidence that the kinetics of ecological and evolutionary processes play a major role in the latitudinal pattern of biodiversity. PMID:19628692

  11. Genetic Diversity of Neotropical Myotis (Chiroptera: Vespertilionidae) with an Emphasis on South American Species

    PubMed Central

    Larsen, Roxanne J.; Genoways, Hugh H.; Khan, Faisal Ali Anwarali; Larsen, Peter A.; Wilson, Don E.; Baker, Robert J.

    2012-01-01

    Background Cryptic morphological variation in the Chiropteran genus Myotis limits the understanding of species boundaries and species richness within the genus. Several authors have suggested that it is likely there are unrecognized species-level lineages of Myotis in the Neotropics. This study provides an assessment of the diversity in New World Myotis by analyzing cytochrome-b gene variation from an expansive sample ranging throughout North, Central, and South America. We provide baseline genetic data for researchers investigating phylogeographic and phylogenetic patterns of Myotis in these regions, with an emphasis on South America. Methodology and Principal Findings Cytochrome-b sequences were generated and phylogenetically analyzed from 215 specimens, providing DNA sequence data for the most species of New World Myotis to date. Based on genetic data in our sample, and on comparisons with available DNA sequence data from GenBank, we estimate the number of species-level genetic lineages in South America alone to be at least 18, rather than the 15 species currently recognized. Conclusions Our findings provide evidence that the perception of lower species richness in South American Myotis is largely due to a combination of cryptic morphological variation and insufficient sampling coverage in genetic-based systematic studies. A more accurate assessment of the level of diversity and species richness in New World Myotis is not only helpful for delimiting species boundaries, but also for understanding evolutionary processes within this globally distributed bat genus. PMID:23056352

  12. Stochastic changes affect Solanum wild species following autopolyploidization

    PubMed Central

    Carputo, Domenico

    2013-01-01

    Polyploidy is very common within angiosperms, and several studies are in progress to ascertain the effects of early polyploidization at the molecular, physiological, and phenotypic level. Extensive studies are available only in synthetic allopolyploids. By contrast, less is known about the consequences of autopolyploidization. The current study aimed to assess the occurrence and extent of genetic, epigenetic, and anatomical changes occurring after oryzaline-induced polyploidization of Solanum commersonii Dunal and Solanum bulbocastanum Dunal, two diploid (2n=2×=24) potato species widely used in breeding programmes. Microsatellite analysis showed no polymorphisms between synthetic tetraploids and diploid progenitors. By contrast, analysis of DNA methylation levels indicated that subtle alterations at CG and CHG sites were present in tetraploids of both species. However, no change occurred concurrently in all tetraploids analysed with respect to their diploid parent, revealing a stochastic trend in the changes observed. The morpho-anatomical consequences of polyploidization were studied in leaf main veins and stomata. With only a few exceptions, analyses showed no clear superiority of tetraploids in terms of leaf thickness and area, vessel number, lumen size and vessel wall thickness, stomata pore length and width, guard cell width, and stomatal density compared with their diploid progenitors. These results are consistent with the hypothesis that there are no traits systematically associated with autopolyploidy. PMID:23307917

  13. The contribution of seed dispersers to tree species diversity in tropical rainforests

    PubMed Central

    Kakishima, Satoshi; Morita, Satoru; Yoshida, Katsuhiko; Ishida, Atsushi; Hayashi, Saki; Asami, Takahiro; Ito, Hiromu; Miller, Donald G.; Uehara, Takashi; Mori, Shigeta; Hasegawa, Eisuke; Matsuura, Kenji; Kasuya, Eiiti; Yoshimura, Jin

    2015-01-01

    Tropical rainforests are known for their extreme biodiversity, posing a challenging problem in tropical ecology. Many hypotheses have been proposed to explain the diversity of tree species, yet our understanding of this phenomenon remains incomplete. Here, we consider the contribution of animal seed dispersers to the species diversity of trees. We built a multi-layer lattice model of trees whose animal seed dispersers are allowed to move only in restricted areas to disperse the tree seeds. We incorporated the effects of seed dispersers in the traditional theory of allopatric speciation on a geological time scale. We modified the lattice model to explicitly examine the coexistence of new tree species and the resulting high biodiversity. The results indicate that both the coexistence and diversified evolution of tree species can be explained by the introduction of animal seed dispersers. PMID:26587246

  14. Loss of Rare Fish Species from Tropical Floodplain Food Webs Affects Community Structure and Ecosystem Multifunctionality in a Mesocosm Experiment

    PubMed Central

    Pendleton, Richard M.; Hoeinghaus, David J.; Gomes, Luiz C.; Agostinho, Angelo A.

    2014-01-01

    Experiments with realistic scenarios of species loss from multitrophic ecosystems may improve insight into how biodiversity affects ecosystem functioning. Using 1000 L mesocoms, we examined effects of nonrandom species loss on community structure and ecosystem functioning of experimental food webs based on multitrophic tropical floodplain lagoon ecosystems. Realistic biodiversity scenarios were developed based on long-term field surveys, and experimental assemblages replicated sequential loss of rare species which occurred across all trophic levels of these complex food webs. Response variables represented multiple components of ecosystem functioning, including nutrient cycling, primary and secondary production, organic matter accumulation and whole ecosystem metabolism. Species richness significantly affected ecosystem