Science.gov

Sample records for affect spontaneous locomotion

  1. Effects of Spontaneous Locomotion on the Cricket's Walking Response to a Wind Stimulus

    NASA Astrophysics Data System (ADS)

    Gras, Heribert; Bartels, Anke

    Tethered walking crickets often respond to single wind puffs (50ms duration) directed from 45° left or right to the abdominal cerci with a short running bout of about 300ms, followed by normal locomotion. To test for an effect of the current behavioral state on the running response, we applied wind stimuli when the insect attained a predefined translatorial and/or rotatorial velocity during spontaneous walking. The latency, duration, and velocity profile of the running bout always proved to be constant, representing a reflexlike all-or-nothing reaction, while the probability of this response was low after even brief standing and increased with the forward speed of spontaneous walking at the moment of stimulation. In contrast, the current rotatorial speed did not affect the stimulus response.

  2. Locomotion in Stroke Subjects: Interactions between Unaffected and Affected Sides

    ERIC Educational Resources Information Center

    Kloter, Evelyne; Wirz, Markus; Dietz, Volker

    2011-01-01

    The aim of this study was to evaluate the sensorimotor interactions between unaffected and affected sides of post-stroke subjects during locomotion. In healthy subjects, stimulation of the tibial nerve during the mid-stance phase is followed by electromyography responses not only in the ipsilateral tibialis anterior, but also in the proximal arm…

  3. Locomotion in stroke subjects: interactions between unaffected and affected sides.

    PubMed

    Kloter, Evelyne; Wirz, Markus; Dietz, Volker

    2011-03-01

    The aim of this study was to evaluate the sensorimotor interactions between unaffected and affected sides of post-stroke subjects during locomotion. In healthy subjects, stimulation of the tibial nerve during the mid-stance phase is followed by electromyography responses not only in the ipsilateral tibialis anterior, but also in the proximal arm muscles of both sides, with larger amplitudes prior to swing over an obstacle compared with normal swing. In post-stroke subjects, the electromyography responses were stronger on both sides when the tibial nerve of the unaffected leg was stimulated compared with stimulation of the affected leg. This difference was more pronounced when stimuli were applied prior to swing over an obstacle than prior to normal swing. This indicates an impaired processing of afferent input from the affected leg resulting in attenuated and little task-modulated reflex responses in the arm muscles on both sides. In contrast, an afferent volley from the unaffected leg resulted in larger electromyography responses, even in the muscles of the affected arm. Arm muscle activations were stronger during swing over an obstacle than during normal swing, with no difference in electromyography amplitudes between the unaffected and affected sides. It is concluded that the deficits of the affected arm are compensated for by influences from the unaffected side. These observations indicate strong mutual influences between unaffected and affected sides during locomotion of post-stroke subjects, which might be used to optimize rehabilitation approaches.

  4. Synaptic plasticity modulates the spontaneous recovery of locomotion after spinal cord hemisection.

    PubMed

    Gulino, Rosario; Dimartino, Massimo; Casabona, Antonino; Lombardo, Salvatore Andrea; Perciavalle, Vincenzo

    2007-01-01

    Several evidences have demonstrated that adult mammals could achieve a wide range of spontaneous sensory-motor recovery after spinal cord injury by means of various forms of neuroplasticity. In this study we evaluated the possibility that after low-thoracic spinal cord hemisection in the adult rat, significant hindlimb locomotor recovery could occur, and that this recovery may be driven, at least in part, by mechanisms of synaptic plasticity. In order to address these issues, we measured the expression levels of synapsin-I and brain-derived neurotrophic factor by Western blotting, at various time points after hemisection and correlated them with the motor performance on a grid walk test. Regression analysis showed that the expression of synapsin-I was strongly correlated with the spontaneous recovery of hindlimb locomotion (R=0.78). Conversely, neither the expression levels of synapsin-I nor the locomotor recovery were associated with the expression of brain-derived neurotrophic factor. Overall results indicate that after spinal cord hemisection, substantial recovery of hindlimb locomotion could occur spontaneously, and that synaptic plasticity within spinal circuitries below the level of the lesion, could be an important mechanism involved in these processes.

  5. Heterogenic feedback between hindlimb extensors in the spontaneously locomoting premammillary cat.

    PubMed

    Ross, Kyla T; Nichols, T Richard

    2009-01-01

    Electrophysiological studies in anesthetized animals have revealed that pathways carrying force information from Golgi tendon organs in antigravity muscles mediate widespread inhibition among other antigravity muscles in the feline hindlimb. More recent evidence in paralyzed or nonparalyzed decerebrate cats has shown that some inhibitory pathways are suppressed and separate excitatory pathways from Golgi tendon organ afferents are opened on the transition from steady force production to locomotor activity. To obtain additional insight into the functions of these pathways during locomotion, we investigated the distribution of force-dependent inhibition and excitation during spontaneous locomotion and during constant force exertion in the premammillary decerebrate cat. We used four servo-controlled stretching devices to apply controlled stretches in various combinations to the gastrocnemius muscles (G), plantaris muscle (PLAN), flexor hallucis longus muscle (FHL), and quadriceps muscles (QUADS) during treadmill stepping and the crossed-extension reflex (XER). We recorded the force responses from the same muscles and were therefore able to evaluate autogenic (intramuscular) and heterogenic (intermuscular) reflexes among this set of muscles. In previous studies using the intercollicular decerebrate cat, heterogenic inhibition among QUADS, G, FHL, and PLAN was bidirectional. During treadmill stepping, heterogenic feedback from QUADS onto G and G onto PLAN and FHL remained inhibitory and was force-dependent. However, heterogenic inhibition from PLAN and FHL onto G, and from G onto QUADS, was weaker than during the XER. We propose that pathways mediating heterogenic inhibition may remain inhibitory under some forms of locomotion on a level surface but that the strengths of these pathways change to result in a proximal to distal gradient of inhibition. The potential contributions of heterogenic inhibition to interjoint coordination and limb stability are discussed.

  6. Marching to the beat of the same drummer: the spontaneous tempo of human locomotion.

    PubMed

    MacDougall, Hamish G; Moore, Steven T

    2005-09-01

    Laboratory studies have suggested that the preferred cadence of walking is approximately 120 steps/min, and the vertical acceleration of the head exhibits a dominant peak at this step frequency (2 Hz). These studies have been limited to short periods of walking along a predetermined path or on a treadmill, and whether such a highly tuned frequency of movement can be generalized to all forms of locomotion in a natural setting is unknown. The aim of this study was to determine whether humans exhibit a preferred cadence during extended periods of uninhibited locomotor activity and whether this step frequency is consistent with that observed in laboratory studies. Head linear acceleration was measured over a 10-h period in 20 subjects during the course of a day, which encompassed a broad range of locomotor (walking, running, cycling) and nonlocomotor (working at a desk, driving a car, riding a bus or subway) activities. Here we show a highly tuned resonant frequency of human locomotion at 2 Hz (SD 0.13) with no evidence of correlation with gender, age, height, weight, or body mass index. This frequency did not differ significantly from the preferred step frequency observed in the seminal laboratory study of Murray et al. (Murray MP, Drought AB, and Kory RC. J Bone Joint Surg 46A: 335-360, 1964). [1.95 Hz (SD 0.19)]. On the basis of the frequency characteristics of otolith-spinal reflexes, which drive lower body movement via the lateral vestibulospinal tract, and otolith-mediated collic and ocular reflexes that maintain gaze when walking, we speculate that this spontaneous tempo of locomotion represents some form of central "resonant frequency" of human movement.

  7. Effects of serotonin-norepinephrine reuptake inhibitors on locomotion and prefrontal monoamine release in spontaneously hypertensive rats.

    PubMed

    Umehara, Masato; Ago, Yukio; Fujita, Kazumi; Hiramatsu, Naoki; Takuma, Kazuhiro; Matsuda, Toshio

    2013-02-28

    Catecholamine neurotransmission in the prefrontal cortex plays a key role in the therapeutic actions of drugs for attention-deficit/hyperactivity disorder (ADHD). Recent clinical studies show that several serotonin-norepinephrine reuptake inhibitors have potential for treating ADHD. In this study, we examined the effects of acute treatment with serotonin-norepinephrine reuptake inhibitors on locomotion and the extracellular levels of monoamines in the prefrontal cortex in spontaneously hypertensive rats (SHR), an animal model of ADHD. Adolescent male SHR exhibited greater horizontal locomotion in an open-field test than male WKY control rats. Psychostimulant methylphenidate (0.3 and 1 mg/kg), the selective norepinephrine reuptake inhibitor atomoxetine (1 and 3 mg/kg), and serotonin-norepinephrine reuptake inhibitors duloxetine (10 mg/kg), venlafaxine (10 and 30 mg/kg) and milnacipran (30 mg/kg) reduced the horizontal activity in SHR, but did not affect in WKY rats. The selective norepinephrine reuptake inhibitor reboxetine (10 mg/kg) and the tricyclic antidepressant desipramine (10 and 30 mg/kg) also reduced the horizontal activity in SHR, whereas the selective serotonin reuptake inhibitor citalopram (30 mg/kg) did not. Microdialysis studies showed that atomoxetine, methylphenidate, duloxetine, venlafaxine, milnacipran, and reboxetine increased the extracellular levels of norepinephrine and dopamine in the prefrontal cortex in SHR. Citalopram did not affect norepinephrine and dopamine levels in the prefrontal cortex, although it increased the serotonin levels. Neither duloxetine nor venlafaxine increased the dopamine levels in the striatum. These findings suggest that serotonin-norepinephrine reuptake inhibitors, similar to methylphenidate and atomoxetine, have potential for ameliorating motor abnormality in the SHR model.

  8. Do altered energy metabolism or spontaneous locomotion ‘mediate’ decelerated senescence?

    PubMed Central

    Arum, Oge; Dawson, John Alexander; Smith, Daniel Larry; Kopchick, John J; Allison, David B; Bartke, Andrzej

    2015-01-01

    That one or multiple measures of metabolic rate may be robustly associated with, or possibly even causative of, the progression of aging-resultant phenotypes such as lifespan is a long-standing, well-known mechanistic hypothesis. To broach this hypothesis, we assessed metabolic function and spontaneous locomotion in two genetic and one dietary mouse models for retarded aging, and subjected the data to mediation analyses to determine whether any metabolic or locomotor trait could be identified as a mediator of the effect of any of the interventions on senescence. We do not test the hypothesis of causality (which would require some experiments), but instead test whether the correlation structure of certain variables is consistent with one possible pathway model in which a proposed mediating variable has a causal role. Results for metabolic measures, including oxygen consumption and respiratory quotient, failed to support this hypothesis; similar negative results were obtained for three behavioral motion metrics. Therefore, our mediation analyses did not find support that any of these correlates of decelerated senescence was a substantial mediator of the effect of either of these genetic alterations (with or without caloric restriction) on longevity. Further studies are needed to relate the examined phenotypic characteristics to mechanisms of aging and control of longevity. PMID:25720347

  9. Changes in infants' affect related to the onset of independent locomotion.

    PubMed

    Whitney, Pamela G; Green, James A

    2011-06-01

    Previous research suggests that after gaining several weeks of independent locomotor experience, infants may show both more negative and more positive affect toward parents. However, this prior work has been based largely on parent report, and no studies have used longitudinal or naturalistic methods to chart changes in infants' affective expressions as they gain locomotor ability. Fifteen infants were observed at home before, during, and after learning to crawl in two naturalistic contexts, free play and dyadic play. Expressions of negative affect during free play decreased after the onset of crawling, but there was no change in expressions of positive affect. At the same time, however, mothers reported an increase in both negative and positive reactivity. These results are discussed in terms of the contexts typically assessed during observations and the different sensitivities of mothers to infants' expressions of affect. Several lines of evidence point to a potential role for independent locomotion in the reorganization of affective expressions.

  10. Mechanisms of spontaneous activity in the developing spinal cord and their relevance to locomotion.

    PubMed

    O'Donovan, M J; Wenner, P; Chub, N; Tabak, J; Rinzel, J

    1998-11-16

    The isolated lumbosacral cord of the chick embryo generates spontaneous episodes of rhythmic activity. Muscle nerve recordings show that the discharge of sartorius (flexor) and femorotibialis (extensor) motoneurons alternates even though the motoneurons are depolarized simultaneously during each cycle. The alternation occurs because sartorius motoneuron firing is shunted or voltage-clamped by its synaptic drive at the time of peak femorotibialis discharge. Ablation experiments have identified a region dorsomedial to the lateral motor column that may be required for the alternation of sartorius and femorotibialis motoneurons. This region overlaps the location of interneurons activated by ventral root stimulation. Wholecell recordings from interneurons receiving short latency ventral root input indicate that they fire at an appropriate time to contribute to the cyclical pause in firing of sartorius motoneurons. Spontaneous activity was modeled by the interaction of three variables: network activity and two activity-dependent forms of network depression. A "slow" depression which regulates the occurrence of episodes and a "fast" depression that controls cycling during an episode. The model successfully predicts several aspects of spinal network behavior including spontaneous rhythmic activity and the recovery of network activity following blockade of excitatory synaptic transmission.

  11. Use of leucocyte migration under agarose to study spontaneous and directed locomotion of leucocytes.

    PubMed Central

    Repo, H; Kostiala, A A; Kosunen, T U

    1978-01-01

    Three different cell attractants, together with the parallel use of the leucocyte migration agarose test (LMAT) and the leading front modification (LFM) of the Boyden chamber technique, were employed in studying whether the maximal migration of normal human polymorphonuclear leucocytes (PMNs) is higher toward an attractant (chemotaxis) than in the same attractant incorporated in the culture media (chemokinesis). Using LMAT, the maximal migration distance toward zymosan activated serum (ZAS) was found to be significantly longer than that under agarose mixed with ZAS, thus indicating a chemotactic effect exerted by ZAS. When bacterial culture filtrate (BCF) and casein were used as attractants, the corresponding difference was not significant, implying that the stimulatory effect of these substances on cell migration could be explained by increased random locomotion (chemokinesis) alone. In LFM, the migration rate was significantly higher along a casein gradient than without a gradient. Using ZAS, however, only chemokinesis could be demonstrated. BCF was found to attract PMNs into membrane filters only in the presence of human serum albumin. These observations give credence to the view that both LMAT and LFM are applicable to the in vitro assessment of chemotaxis and chemokinesis but the attractant of choice for this is different in each of the two methods. Images Figure 1 PMID:359465

  12. Reflex control of locomotion as revealed by stimulation of cutaneous afferents in spontaneously walking premammillary cats.

    PubMed

    Duysens, J

    1977-07-01

    1. Stimulation of different hindlimb nerves in spontaneously walking premammillary cats was used in order to examine the effects of sensory input on the rhythmic motor output. 2. Stimulation of the tibial or sural nerve at low intensities caused the burst of activity in the triceps surae or semimembranosus to be prolonged if stimuli were given during the extension phase. When applied during the flexion phase, the same stimuli shortened the burst of activity in the pretibial flexors and induced an early onset of the extensor activity, except if stimuli were given at the very beginning of the flexion phase, when flexor burst prolongations or rebounds were observed instead. 3. These effects were related to activation of large cutaneous afferents in these nerves since the results could be duplicated by low-intensity stimulation of the tibial nerve at the ankle or by direct stimulation of the pad. 4. In contrast, activation of smaller afferents by high-intensity stimulation resulted prolongations of the flexor burst and/or shortenings of the extensor burst for stimuli applied before or during these bursts, respectively. 5. It was concluded that the large and small cutaneous afferents make, respectively, inhibitory and excitatory connections with the central structure involved in the generation of flexion during walking.

  13. Flexible parasympathetic responses to sadness facilitate spontaneous affect regulation.

    PubMed

    Stange, Jonathan P; Hamilton, Jessica L; Fresco, David M; Alloy, Lauren B

    2017-03-23

    The ability of the parasympathetic nervous system to flexibly adapt to changes in environmental context is thought to serve as a physiological indicator of self-regulatory capacity, and deficits in parasympathetic flexibility appear to characterize affective disorders such as depression. However, whether parasympathetic flexibility (vagal withdrawal to emotional or environmental challenges such as sadness, and vagal augmentation during recovery from sadness) could facilitate the effectiveness of adaptive affect regulation strategies is not known. In a study of 178 undergraduate students, we evaluated whether parasympathetic flexibility in response to a sad film involving loss would enhance the effectiveness of regulatory strategies (reappraisal, distraction, and suppression) spontaneously employed to reduce negative affect during a 2-min uninstructed recovery period following the induction. Parasympathetic reactivity and recovery were indexed by fluctuations in respiratory sinus arrhythmia and high-frequency heart rate variability. Cognitive reappraisal and distraction were more effective in attenuating negative affect among individuals with more parasympathetic flexibility, particularly greater vagal augmentation during recovery, relative to individuals with less parasympathetic flexibility. In contrast, suppression was associated with less attenuation of negative affect, but only among individuals who also had less vagal withdrawal during the sad film. Alternative models provided partial support for reversed directionality, with reappraisal predicting greater parasympathetic recovery, but only when individuals also experienced greater reductions in negative affect. These results suggest that contextually appropriate parasympathetic reactivity and recovery may facilitate the success of affect regulation. Impairments in parasympathetic flexibility could confer risk for affective disorders due to attenuated capacity for effective self-regulation.

  14. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization.

    PubMed

    Zhong, Guisheng; Shevtsova, Natalia A; Rybak, Ilya A; Harris-Warrick, Ronald M

    2012-10-01

    We explored the organization of the spinal central pattern generator (CPG) for locomotion by analysing the activity of spinal interneurons and motoneurons during spontaneous deletions occurring during fictive locomotion in the isolated neonatal mouse spinal cord, following earlier work on locomotor deletions in the cat. In the isolated mouse spinal cord, most spontaneous deletions were non-resetting, with rhythmic activity resuming after an integer number of cycles. Flexor and extensor deletions showed marked asymmetry: flexor deletions were accompanied by sustained ipsilateral extensor activity, whereas rhythmic flexor bursting was not perturbed during extensor deletions. Rhythmic activity on one side of the cord was not perturbed during non-resetting spontaneous deletions on the other side, and these deletions could occur with no input from the other side of the cord. These results suggest that the locomotor CPG has a two-level organization with rhythm-generating (RG) and pattern-forming (PF) networks, in which only the flexor RG network is intrinsically rhythmic. To further explore the neuronal organization of the CPG, we monitored activity of motoneurons and selected identified interneurons during spontaneous non-resetting deletions. Motoneurons lost rhythmic synaptic drive during ipsilateral deletions. Flexor-related commissural interneurons continued to fire rhythmically during non-resetting ipsilateral flexor deletions. Deletion analysis revealed two classes of rhythmic V2a interneurons. Type I V2a interneurons retained rhythmic synaptic drive and firing during ipsilateral motor deletions, while type IIV2a interneurons lost rhythmic synaptic input and fell silent during deletions. This suggests that the type I neurons are components of the RG, whereas the type II neurons are components of the PF network.We propose a computational model of the spinal locomotor CPG that reproduces our experimental results. The results may provide novel insights into the

  15. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization

    PubMed Central

    Zhong, Guisheng; Shevtsova, Natalia A; Rybak, Ilya A; Harris-Warrick, Ronald M

    2012-01-01

    We explored the organization of the spinal central pattern generator (CPG) for locomotion by analysing the activity of spinal interneurons and motoneurons during spontaneous deletions occurring during fictive locomotion in the isolated neonatal mouse spinal cord, following earlier work on locomotor deletions in the cat. In the isolated mouse spinal cord, most spontaneous deletions were non-resetting, with rhythmic activity resuming after an integer number of cycles. Flexor and extensor deletions showed marked asymmetry: flexor deletions were accompanied by sustained ipsilateral extensor activity, whereas rhythmic flexor bursting was not perturbed during extensor deletions. Rhythmic activity on one side of the cord was not perturbed during non-resetting spontaneous deletions on the other side, and these deletions could occur with no input from the other side of the cord. These results suggest that the locomotor CPG has a two-level organization with rhythm-generating (RG) and pattern-forming (PF) networks, in which only the flexor RG network is intrinsically rhythmic. To further explore the neuronal organization of the CPG, we monitored activity of motoneurons and selected identified interneurons during spontaneous non-resetting deletions. Motoneurons lost rhythmic synaptic drive during ipsilateral deletions. Flexor-related commissural interneurons continued to fire rhythmically during non-resetting ipsilateral flexor deletions. Deletion analysis revealed two classes of rhythmic V2a interneurons. Type I V2a interneurons retained rhythmic synaptic drive and firing during ipsilateral motor deletions, while type II V2a interneurons lost rhythmic synaptic input and fell silent during deletions. This suggests that the type I neurons are components of the RG, whereas the type II neurons are components of the PF network. We propose a computational model of the spinal locomotor CPG that reproduces our experimental results. The results may provide novel insights into the

  16. Depletion of TDP-43 affects Drosophila motoneurons terminal synapsis and locomotive behavior.

    PubMed

    Feiguin, Fabian; Godena, Vinay K; Romano, Giulia; D'Ambrogio, Andrea; Klima, Raffaella; Baralle, Francisco E

    2009-05-19

    Pathological modifications in the highly conserved and ubiquitously expressed heterogeneous ribonucleoprotein TDP-43 were recently associated to neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), a late-onset disorder that affects predominantly motoneurons [Neumann, M. et al. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130-133, Sreedharan, J. et al. (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668-1672, Kabashi, E. et al. (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat. Genet. 40, 572-574]. However, the function of TDP-43 in vivo is unknown and a possible direct role in neurodegeneration remains speculative. Here, we report that flies lacking Drosophila TDP-43 appeared externally normal but presented deficient locomotive behaviors, reduced life span and anatomical defects at the neuromuscular junctions. These phenotypes were rescued by expression of the human protein in a restricted group of neurons including motoneurons. Our results demonstrate the role of this protein in vivo and suggest an alternative explanation to ALS pathogenesis that may be more due to the lack of TDP 43 function than to the toxicity of the aggregates.

  17. Disturbance of circadian rhythm in heart rate, blood pressure and locomotive activity at the stroke-onset in malignant stroke-prone spontaneously hypertensive rats.

    PubMed

    Tabuchi, M; Umegaki, K; Ito, T; Suzuki, M; Ikeda, M; Tomita, T

    2001-02-01

    Malignant stroke-prone spontaneously hypertensive rats (M-SHRSP), separated from SHRSP, develop severe hypertension and spontaneously develop stroke at early ages. Using this model of cerebrovascular stroke, influence of stroke-onset on the autonomic nervous system was investigated. Heart rate (HR), systolic and diastolic blood pressures (SBP and DBP) and locomotive activity were monitored during development of stroke using a telemetry system. Stroke-onset was assessed by neurologic symptoms, changes in body weight, fluid intake and serum NOx level. The rat displayed a nocturnal pattern of circadian rhythms. At stroke-onset, mean HR over 24 h increased by 20 to 30 bpm and rapidly increased at post stroke, approximately 100 bpm higher than that at pre stroke. Circadian variation in HR, which was normally 50 bpm higher during night than during day, attenuated at stroke-onset, and it was blunted or reversed at post stroke. BP variation, which was approximately 7 mmHg higher at night than at day, decreased one or two days before stroke-onset and reversed at post stroke, especially in DBP. Insufficient falls in HR and BP during the day mainly accounted for the disturbed circadian variations. Variation of locomotive activity also decreased. These changes serve as reliable and accurate markers for stroke-onset in evaluation of drugs for the prevention and outcome predictions of stroke.

  18. Factors affecting spontaneous resolution of hematuria in childhood nutcracker syndrome.

    PubMed

    Shin, Jae Il; Park, Jee Min; Lee, Soon Min; Shin, Youn Ho; Kim, Ji Hong; Lee, Jae Seung; Kim, Myung Joon

    2005-05-01

    To identify factors affecting spontaneous resolution of hematuria in children with nutcracker syndrome, 20 patients diagnosed as having nutcracker syndrome using renal Doppler ultrasound (US) were analyzed retrospectively. Sixteen patients had microscopic hematuria, and four had gross hematuria at presentation. The mean age was 10.6 years (range 2.5-14 years). All underwent a follow-up Doppler US examination after a mean period of 1.4 years (range 0.5-3.5 years) after the first US was performed, and height and weight were measured at the time of US. At the time of follow-up US, hematuria disappeared in 15 patients and improved in 3. The peak velocity (PV) ratios of the left renal vein (LRV) at the follow-up US decreased significantly when compared to the first US examination (7.74+/-2.64 vs 3.50+/-1.09, p<0.0001), and height (147.4+/-20.1 vs 152.3+/-18.8 cm) and weight (36.1+/-10.9 vs 42.3+/-12.7 kg) increased (p<0.0001). Changes in the PV ratios of the LRV correlated positively with changes in the PV at the aortomesenteric portion (r=0.569, p=0.009). Changes in the PV at the aortomesenteric portion correlated negatively with changes in body mass index (BMI) (r=-0.543, p=0.013). Although spontaneous resolution of hematuria in children with nutcracker syndrome is obscure, our findings suggest the increase in BMI may be a possible hemodynamic factor.

  19. How Temporal and Spatial Aspects of Presenting Visualizations Affect Learning about Locomotion Patterns

    ERIC Educational Resources Information Center

    Imhof, Birgit; Scheiter, Katharina; Edelmann, Jorg; Gerjets, Peter

    2012-01-01

    Two studies investigated the effectiveness of dynamic and static visualizations for a perceptual learning task (locomotion pattern classification). In Study 1, seventy-five students viewed either dynamic, static-sequential, or static-simultaneous visualizations. For tasks of intermediate difficulty, dynamic visualizations led to better…

  20. Rho/Rho-dependent kinase affects locomotion and actin-myosin II activity of Amoeba proteus.

    PubMed

    Kłopocka, W; Redowicz, M J

    2004-10-01

    The highly motile free-living unicellular organism Amoeba proteus has been widely used as a model to study cell motility. However, the molecular mechanisms underlying its unique locomotion are still scarcely known. Recently, we have shown that blocking the amoebae's endogenous Rac- and Rho-like proteins led to distinct and irreversible changes in the appearance of these large migrating cells as well as to a significant inhibition of their locomotion. In order to elucidate the mechanism of the Rho pathway, we tested the effects of blocking the endogenous Rho-dependent kinase (ROCK) by anti-ROCK antibodies and Y-27632, (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide dihydrochloride, a specific inhibitor of ROCK, on migrating amoebae and the effect of the Rho and ROCK inhibition on the actin-activated Mg-ATPase of the cytosolic fraction of the amoebae. Amoebae microinjected with anti-ROCK inhibitors remained contracted and strongly attached to the glass surface and exhibited an atypical locomotion. Despite protruding many pseudopodia that were advancing in various directions, the amoebae could not effectively move. Immunofluorescence studies showed that ROCK-like protein was dispersed throughout the cytoplasm and was also found in the regions of actin-myosin II interaction during both isotonic and isometric contraction. The Mg-ATPase activity was about two- to threefold enhanced, indicating that blocking the Rho/Rho-dependent kinase activated myosin. It is possible then that in contrast to the vertebrate cells, the inactivation of Rho/Rho-dependent kinase in amoebae leads to the activation of myosin II and to the observed hypercontracted cells which cannot exert effective locomotion.

  1. Locomotion in the decerebrate stingray.

    PubMed

    Leonard, R B; Rudomín, P; Droge, M H; Grossman, A E; Willis, W D

    1979-10-01

    Stingrays swim with an active elevation-depression sequence of the pectoral fin resembling an extension-flexion sequence. During forward locomotion this sequence passes caudally along the pectoral fin. Immediately following high decerebration, stingrays are capable of locomotion, and the pattern of muscle activity closely resembles that of intact animals. Spontaneous and midbrain evoked rhythmic motoneuron discharges can be recorded in paralyzed decerebrated animals. In contrast to dogfish sharks, stringrays with high spinal transections do not locomote.

  2. A dictionary of behavioral motifs reveals clusters of genes affecting C. elegans locomotion

    NASA Astrophysics Data System (ADS)

    Brown, Andre; Yemini, Eviatar; Grundy, Laura; Jucikas, Tadas; Schafer, William

    2013-03-01

    Visible phenotypes based on locomotion and posture have played a critical role in understanding the molecular basis of behavior and development in C. elegans and other model organisms. However, it is not known whether these human-defined features capture the most important aspects of behavior for phenotypic comparison nor whether they are sufficient to discover new behaviors. Here we show that four basic shapes, or eigenworms, previously described for wild type worms also capture mutant shapes, and that this representation can be used to build a dictionary of repetitive behavioral motifs in an unbiased way. By measuring the distance between each individual's behavior and the elements in the motif dictionary, we create a fingerprint that can be used to compare mutants to wild type and to each other. This analysis has revealed previously undescribed phenotypes and has allowed clustering of mutants into related groups. Behavioral motifs provide a compact and intuitive representation of behavioral phenotypes.

  3. Locomotive Syndrome: Definition and Management.

    PubMed

    Nakamura, Kozo; Ogata, Toru

    Locomotive syndrome is a condition of reduced mobility due to impairment of locomotive organs. Since upright bipedal walking involves minutely controlled movement patterns, impairment of any aspect of the locomotive organs has the potential to adversely affect it. In addition to trauma, chronic diseases of the locomotive organs, which progress with repeated bouts of acute exacerbations, are common causes of the locomotive syndrome. In Japan's super-aging society, many people are likely to experience locomotive syndrome in the later part of their lives. Exercise intervention is effective in improving motor function, but because the subjects are elderly people with significant degenerative diseases of the locomotor organs, caution should be taken in choosing the type and intensity of exercise. The present review discusses the definition, current burden, diagnosis and interventions pertaining to the locomotive syndrome. The concept and measures are spreading throughout Japan as one of the national health policy targets.

  4. Environmental and cow-related factors affect cow locomotion and can cause misclassification in lameness detection systems.

    PubMed

    Van Nuffel, A; Van De Gucht, T; Saeys, W; Sonck, B; Opsomer, G; Vangeyte, J; Mertens, K C; De Ketelaere, B; Van Weyenberg, S

    2016-09-01

    To tackle the high prevalence of lameness, techniques to monitor cow locomotion are being developed in order to detect changes in cows' locomotion due to lameness. Obviously, in such lameness detection systems, alerts should only respond to locomotion changes that are related to lameness. However, other environmental or cow factors can contribute to locomotion changes not related to lameness and hence, might cause false alerts. In this study the effects of wet surfaces, dark environment, age, production level, lactation and gestation stage on cow locomotion were investigated. Data was collected at Institute for Agricultural and Fisheries Research research farm (Melle, Belgium) during a 5-month period. The gait variables of 30 non-lame and healthy Holstein cows were automatically measured every day. In dark environments and on wet walking surfaces cows took shorter, more asymmetrical strides with less step overlap. In general, older cows had a more asymmetrical gait and they walked slower with more abduction. Lactation stage or gestation stage also showed significant association with asymmetrical and shorter gait and less step overlap probably due to the heavy calf in the uterus. Next, two lameness detection algorithms were developed to investigate the added value of environmental and cow data into detection models. One algorithm solely used locomotion variables and a second algorithm used the same locomotion variables and additional environmental and cow data. In the latter algorithm only age and lactation stage together with the locomotion variables were withheld during model building. When comparing the sensitivity for the detection of non-lame cows, sensitivity increased by 10% when the cow data was added in the algorithm (sensitivity was 70% and 80% for the first and second algorithm, respectively). Hence, the number of false alerts for lame cows that were actually non-lame, decreased. This pilot study shows that using knowledge on influencing factors on cow

  5. Echocardiographic Follow-Up of Patent Foramen Ovale and the Factors Affecting Spontaneous Closure

    PubMed Central

    Yildirim, Ali; Aydin, Alperen; Demir, Tevfik; Aydin, Fatma; Ucar, Birsen; Kilic, Zubeyir

    2016-01-01

    Background The aim of the present study was to evaluate the echocardiographic follow-up of patent foramen ovale, which is considered a potential etiological factor in various diseases, and to determine the factors affecting spontaneous closure. Methods Between January 2000 and June 2012, records of 918 patients with patent foramen ovale were retrospectively reviewed. Patency of less than 3 mm around the fossa ovalis is called patent foramen ovale. Patients with cyanotic congenital heart diseases, severe heart valve disorders and severe hemodynamic left to right shunts were excluded from the study. The patients were divided into three groups based on age; 1 day-1 month in group 1, 1 month-12 months in group 2, and more than 12 months in group 3. Results Of the 918 patients, 564 (61.4%) had spontaneous closure, 328 (35.8%) had patent foramen ovale continued, 15 (1.6%) patients had patent foramen ovale enlarged to 3-5 mm, 6 patients were enlarged to 5-8 mm, and in one patient patent foramen ovale reached to more than 8 mm size. Defect was spontaneously closed in 65.9% of the patients in group 1, 66.7% of the patients in group 2, and 52.3% of the patients in group 3. There was a negative correlation between the age of diagnosis and spontaneous closure (p < 0.05). Gender, prematurity and coexisting malformations such as patent ductus arteriosus and atrial septal aneurysm did not have any effect on spontaneous closure of patent foramen ovale (p > 0.05). However, ventricular septal defect and spontaneous closure of patent foramen ovale had a positive correlation (p < 0.01). No correlation was noted between the existence of atrial septal aneurysm, prematurity, and maturity of the patients. Conclusions The present study demonstrated that spontaneous closure rate of patent foramen ovale is high. Furthermore, a positive correlation was found between spontaneous closure of patent foramen ovale with early diagnosis and small defect size. PMID:27899861

  6. Optimizing Locomotion

    NASA Astrophysics Data System (ADS)

    Hosoi, Anette

    2006-11-01

    In this talk we will discuss two optimization topics related to low Reynolds number locomotion: optimal stroke patterns in linked swimmers and optimal fluid material properties in adhesive locomotion. In contrast to many optimization problems, we do not consider geometry, rather we optimize the swimming kinematics or fluid material properties for a given geometrical configuration. In the first case, we begin by optimizing stroke patterns for Purcell's 3-link swimmer. We model the swimmer as a jointed chain of three slender links moving in an inertialess flow. The swimmer is optimized for both efficiency and speed. In the second case, we analyze the adhesive locomotion used by common gastropods such as snails and slugs. Such organisms crawl on a solid substrate by propagating muscular waves of shear stress on a viscoelastic mucus. Using a simple mechanical model, we derive criteria for favorable fluid material properties to lower the energetic cost of locomotion.

  7. Spontaneous Rupture of the Kidney Affected by Multifocal Papillary Renal Cell Carcinoma

    PubMed Central

    Dell’Atti, Lucio

    2014-01-01

    Papillary renal cell carcinoma (pRCC) represents the second most common type of malignant renal epithelial tumor (represents the 10% of the kidney’s carcinoma) and can be subclassified in the basophile type I and eosinophile type II. We report a clinical case of spontaneous rupture of the kidney affected by multifocal (42 tumors foci) pRCC in a young man 53 years old, without showing earlier specific cancer signs and symptoms. Prognosis for type I pRCC is better than type II pRCC, but it is anyway related to the tumoral grade, to the tumoral stage and to the diagnostic precocity. Signs and symptoms are very similar to those characterizing the more frequent clear cell carcinoma. Nevertheless in the 40% of the cases the lesion is asymptomatic. To our knowledge, this is the first case of spontaneous rupture of the kidney affected by multifocal pRCC in literature without showing earlier specific cancer signs and symptoms. PMID:25568749

  8. [The forensic medical evaluation of traumatic and spontaneous ruptures of the organs affected by the tumours].

    PubMed

    Pigolkin, Yu I; Dolzhansky, O V; Pal'tseva, E M; Shilova, M A; Fedorov, D N; Boeva, S E

    2017-01-01

    The present article was designed to report the results of the analysis of the cases of traumatic and spontaneous ruptures of the organs affected by the tumours based on the original observations and the literature data. It is shown that the probability of the tumour rupture depends on its histological type, localization, the size, and the distance from the capsule of the affected organ, the degree of involvement of the major blood vessels, the severity of the necrotic changes, the presence of cysts in the neoplasm, and the regimens of radio- and chemotherapy. Moreover, the rupture can be facilitated by anticoagulation therapy, intake or oral contraceptives, pregnancy, concomitant diseases, alcoholic intoxication, splenomegaly, and hypocoagulation resulting from dissemination of the neoplastic process or the metastatic lesions of the liver. Even a minimal injury to the skin can provoke the tumour rupture associated with the fatal hemorrhage. A delayed rupture within a few hours or days is possible.

  9. Motor imagery of locomotion with an additional load: actual load experience does not affect differences between physical and mental durations.

    PubMed

    Munzert, Jörn; Blischke, Klaus; Krüger, Britta

    2015-03-01

    Motor imagery relies strongly on motor representations. Currently, it is widely accepted that both the imagery and execution of actions share the same neural representations (Jeannerod, Neuroimage 14:S103-S109, 2001). Comparing mental with actual movement durations opens a window through which to examine motor representations and how they relate to cognitive motor processes. The present experiment examined mental durations reported by participants standing upright who imagined walking either with or without an additional load while actually carrying or not carrying that same load. Results showed a robust effect of longer durations when imagining the additional load during mental walking, whereas physical walking with an additional load did not extend movement durations accordingly. However, experiencing an actual load during imagery did not influence mental durations substantially. This dissociation of load-related effects can be interpreted as being due to an interaction of motor processes and their cognitive representation along with a reduction in neural activity in vestibular and somatosensory areas during imagery of locomotion. It is argued that this effect might be specific to locomotion and not generalize to a broader range of movements.

  10. A survey of affect recognition methods: audio, visual, and spontaneous expressions.

    PubMed

    Zeng, Zhihong; Pantic, Maja; Roisman, Glenn I; Huang, Thomas S

    2009-01-01

    Automated analysis of human affective behavior has attracted increasing attention from researchers in psychology, computer science, linguistics, neuroscience, and related disciplines. However, the existing methods typically handle only deliberately displayed and exaggerated expressions of prototypical emotions despite the fact that deliberate behaviour differs in visual appearance, audio profile, and timing from spontaneously occurring behaviour. To address this problem, efforts to develop algorithms that can process naturally occurring human affective behaviour have recently emerged. Moreover, an increasing number of efforts are reported toward multimodal fusion for human affect analysis including audiovisual fusion, linguistic and paralinguistic fusion, and multi-cue visual fusion based on facial expressions, head movements, and body gestures. This paper introduces and surveys these recent advances. We first discuss human emotion perception from a psychological perspective. Next we examine available approaches to solving the problem of machine understanding of human affective behavior, and discuss important issues like the collection and availability of training and test data. We finally outline some of the scientific and engineering challenges to advancing human affect sensing technology.

  11. The role of current affect, anticipated affect and spontaneous self-affirmation in decisions to receive self-threatening genetic risk information.

    PubMed

    Ferrer, Rebecca A; Taber, Jennifer M; Klein, William M P; Harris, Peter R; Lewis, Katie L; Biesecker, Leslie G

    2015-01-01

    One reason for not seeking personally threatening information may be negative current and anticipated affective responses. We examined whether current (e.g., worry) and anticipated negative affect predicted intentions to seek sequencing results in the context of an actual genomic sequencing trial (ClinSeq®; n = 545) and whether spontaneous self-affirmation mitigated any (negative) association between affect and intentions. Anticipated affective response negatively predicted intentions to obtain and share results pertaining to both medically actionable and non-actionable disease, whereas current affect was only a marginal predictor. The negative association between anticipated affect and intentions to obtain results pertaining to non-actionable disease was weaker in individuals who were higher in spontaneous self-affirmation. These results have implications for the understanding of current and anticipated affect, self-affirmation and consequential decision-making and contribute to a growing body of evidence on the role of affect in medical decisions.

  12. Does epidural analgesia affect the rate of spontaneous obstetric lacerations in normal births?

    PubMed

    Albers, Leah L; Migliaccio, Laura; Bedrick, Edward J; Teaf, Dusty; Peralta, Patricia

    2007-01-01

    The precise relationship between epidural use and genital tract lacerations in normal childbirth is unclear. Data from a clinical trial on measures to lower genital tract trauma in vaginal birth were used for a secondary analysis. The goal was to assess whether epidurals affect the rate of spontaneous obstetric lacerations in normal vaginal births. Maternal characteristics and intrapartum variables were compared in women who did and did not use an epidural in labor, and also in those with and without any sutured lacerations following vaginal birth. Variables that were statistically different in both cases were entered into regression equations for simultaneous adjustment. Epidural use was not an independent predictor of sutured lacerations. Predictors of sutured lacerations included nulliparity, a prolonged second stage, being non-Hispanic white, and an infant birthweight greater than 4000 grams. Elements of midwifery management need further research.

  13. Glyphosate affects the spontaneous motoric activity of intestine at very low doses - in vitro study.

    PubMed

    Chłopecka, Magdalena; Mendel, Marta; Dziekan, Natalia; Karlik, Wojciech

    2014-07-01

    Glyphosate is an active substance of the most popular herbicides worldwide. Its common use results from the belief that it affects exclusively plants. However, studies on glyphosate and its trade formulations reveal that it causes numerous morphological, physiological and biochemical disturbances in cells and organisms of animals, including mammals. Due to the fact that shortly after oral exposure glyphosate is detected in the highest amount in small intestine, the aim of this study was to evaluate the effect of this compound on the spontaneous motoric activity of intestine under in vitro conditions. The experiments were conducted on rat jejunum strips under isotonic conditions. The strips were incubated in buffered (pH 7.35) and non-buffered (pH 5.2) glyphosate solutions ranged from 0.003 to 1.7 g/L. The results indicate that glyphosate applied in buffered solution affects significantly the spontaneous motoric activity of rat isolated jejunum strips. The muscle response is biphasic (miorelaxation accompanied by contraction). The contraction is observed already at a dose of 0.003 g/L and the first significant biphasic reaction at a dose of 0.014 g/L. The incubation of jejunum strips with glyphosate in non-buffered solution (pH 5.2) results in a different reaction. The smooth muscle undergoes only persistent relaxation, which is stronger than the response to glyphosate solution in pH 7.35. Motility disturbances are also observed after glyphosate removal from the incubation solution. The gathered data suggests that glyphosate impairs gastrointestinal strips' motility at concentration that are noticed in human exposed to non-toxic doses of glyphosate.

  14. Pseudo-spontaneous nystagmus: a new sign to diagnose the affected side in lateral semicircular canal benign paroxysmal positional vertigo.

    PubMed

    Asprella-Libonati, G

    2008-04-01

    Early diagnosis of the affected side in Lateral Semicircular Canal Benign Paroxysmal Positional Vertigo is important in effectively applying treatment manoeuvres. This study was performed to examine the frequency of a new clinical sign, pseudo-spontaneous nystagmus, in a large cohort of patients with Lateral Semicircular Canal Benign Paroxysmal Positional Vertigo, comparing its efficacy in the identification of the involved side with that of other diagnostic signs, seated supine positioning nystagmus, and the intensity of the nystagmus evoked by the head yaw test in the supine position. Overall, 293 patients affected by Lateral Semicircular Canal Benign Paroxysmal Positional Vertigo (197 geotropic and 96 apogeotropic forms) were examined. Pseudo-spontaneous nystagmus was observed in 222 patients (76%). After a very slow, repeated horizontal rotation of the head, in the seated position, this percentage increased to 96% (281 patients). The pseudo-spontaneous nystagmus and the seated supine positioning nystagmus always beat in the same direction and both were in accordance in identifying the affected side with the nystagmus evoked by the head yaw test. The differential diagnosis between spontaneous nystagmus and pseudo-spontaneous nystagmus is easily achieved with the head pitch test in the sitting position: the pseudo-spontaneous nystagmus disappears with the head bent forward 30 degrees (neutral position), it reverses its direction with the head bent 60 degrees forward, it returns visible bringing the head in axis with the body and increases its intensity extending the head about 30 degrees backwards. Pseudo-spontaneous nystagmus is an important sign for determining the affected ear in Lateral Semicircular Canal Benign Paroxysmal Positional Vertigo. Early identification of the affected side improves efficacy of treatment and compliance of patients.

  15. Torsional locomotion

    PubMed Central

    Bigoni, D.; Dal Corso, F.; Misseroni, D.; Bosi, F.

    2014-01-01

    One edge of an elastic rod is inserted into a friction-less and fitting socket head, whereas the other edge is subjected to a torque, generating a uniform twisting moment. It is theoretically shown and experimentally proved that, although perfectly smooth, the constraint realizes an expulsive axial force on the elastic rod, which amount is independent of the shape of the socket head. The axial force explains why screwdrivers at high torque have the tendency to disengage from screw heads and demonstrates torsional locomotion along a perfectly smooth channel. This new type of locomotion finds direct evidence in the realization of a ‘torsional gun’, capable of transforming torque into propulsive force. PMID:25383038

  16. Acetate as an active metabolite of ethanol: studies of locomotion, loss of righting reflex, and anxiety in rodents.

    PubMed

    Pardo, Marta; Betz, Adrienne J; San Miguel, Noemí; López-Cruz, Laura; Salamone, John D; Correa, Mercè

    2013-01-01

    IT HAS BEEN POSTULATED THAT A NUMBER OF THE CENTRAL EFFECTS OF ETHANOL ARE MEDIATED VIA ETHANOL METABOLITES: acetaldehyde and acetate. Ethanol is known to produce a large variety of behavioral actions such anxiolysis, narcosis, and modulation of locomotion. Acetaldehyde contributes to some of those effects although the contribution of acetate is less known. In the present studies, rats and mice were used to assess the acute and chronic effects of acetate after central or peripheral administration. Male Sprague-Dawley rats were used for the comparison between central (intraventricular, ICV) and peripheral (intraperitoneal, IP) administration of acute doses of acetate on locomotion. CD1 male mice were used to study acute IP effects of acetate on locomotion, and also the effects of chronic oral consumption of acetate (0, 500, or 1000 mg/l, during 7, 15, 30, or 60 days) on ethanol- (1.0, 2.0, 4.0, or 4.5 g/kg, IP) induced locomotion, anxiolysis, and loss of righting reflex (LORR). In rats, ICV acetate (0.7-2.8 μmoles) reduced spontaneous locomotion at doses that, in the case of ethanol and acetaldehyde, had previously been shown to stimulate locomotion. Peripheral acute administration of acetate also suppressed locomotion in rats (25-100 mg/kg), but not in mice. In addition, although chronic administration of acetate during 15 days did not have an effect on spontaneous locomotion in an open field, it blocked ethanol-induced locomotion. However, ethanol-induced anxiolysis was not affected by chronic administration of acetate. Chronic consumption of acetate (up to 60 days) did not have an effect on latency to, or duration of LORR induced by ethanol, but significantly increased the number of mice that did not achieve LORR. The present work provides new evidence supporting the hypothesis that acetate should be considered a centrally-active metabolite of ethanol that contributes to some behavioral effects of this alcohol, such as motor suppression.

  17. Verbal marking of affect by children with Asperger Syndrome and high functioning autism during spontaneous interactions with family members.

    PubMed

    Müller, Eve; Schuler, Adriana

    2006-11-01

    Verbal marking of affect by older children with Asperger Syndrome (AS) and high functioning autism (HFA) during spontaneous interactions is described. Discourse analysis of AS and HFA and typically developing children included frequency of affective utterances, affective initiations, affective labels and affective explanations, attribution of affective responses to self and others, and positive and negative markers of affect. Findings indicate that children with AS and HFA engaged in a higher proportion of affect marking and provided a higher proportion of affective explanations than typically developing children, yet were less likely to initiate affect marking sequences or talk about the affective responses of others. No significant differences were found between groups in terms of the marking of positive and negative affect.

  18. Spontaneous emotion regulation during evaluated speaking tasks: associations with negative affect, anxiety expression, memory, and physiological responding.

    PubMed

    Egloff, Boris; Schmukle, Stefan C; Burns, Lawrence R; Schwerdtfeger, Andreas

    2006-08-01

    In these studies, the correlates of spontaneously using expressive suppression and cognitive reappraisal during stressful speeches were examined. Spontaneous emotion regulation means that there were no instructions of how to regulate emotions during the speech. Instead, participants indicated after the speech to what extent they used self-motivated expressive suppression or reappraisal during the task. The results show that suppression is associated with less anxiety expression, greater physiological responding, and less memory for the speech while having no impact on negative affect. In contrast, reappraisal has no impact on physiology and memory while leading to less expression and affect. Taken together, spontaneous emotion regulation in active coping tasks has similar consequences as experimentally induced emotion regulation in passive tasks.

  19. Dimethoate affects cholinesterases in Folsomia candida and their locomotion--false negative results of an avoidance behaviour test.

    PubMed

    Pereira, Cecília M S; Novais, Sara C; Soares, Amadeu M V M; Amorim, Mónica J B

    2013-01-15

    The main mode of action of organophosphate insecticides is to inhibit acetylcholinesterase (AChE), which causes neuromuscular paralysis leading ultimately to death. The collembolan Folsomia candida is an important and standard test species in ecotoxicology, where effects on avoidance behaviour are assessed. Being related to insects they represent potential targets of insecticides such as the organophosphate dimethoate. In the present study we exposed F. candida to dimethoate having 2 main aims: 1) to assess the ability of F. candida to avoid it, and 2) to assess its effect on the cholinergic synapses to explore the link. For the latter, several sub-steps were needed: a) to characterise the existing ChE types and b) assess ChE activity (via exposure in vitro and in vivo). No avoidance was observed within the tested concentration range (0-0.32-1-3.2-10-32 mg/kg), in fact an apparent "attraction" (more animals on the spiked side) was observed. As expected, there was a significant decrease of AChE activities (AChE being the main ChE type) with an increase of dimethoate dose (IC(50)=1.4 mg/kg). Further, post-exposure video records showed that organisms were still alive in the spiked soil but lacked the locomotion ability (immobilised). The AChE inhibition correlated positively with immobilisation. Hence, this observation also showed that the apparent "attraction" behaviour observed in the avoidance test is rather a direct effect of not being able to escape due to paralysis hence a false-negative avoidance. This can constitute a confounding factor in an avoidance behaviour test and consequent interpretation, which is not accounted for at present.

  20. Effects of MPEP on locomotion, sensitization and conditioned reward induced by cocaine or morphine.

    PubMed

    Herzig, Volker; Schmidt, Werner J

    2004-12-01

    Exposure to environmental cues is considered a major cause of relapse in detoxified addicts. Recent findings showed an involvement of glutamate in cue-induced relapse and suggest that subtype 5 of metabotropic glutamate receptors (mGluR5) is involved in conditioned drug-reward. The present study applied the conditioned place preference (CPP) paradigm to examine the involvement of mGluR5 in cocaine- and morphine-induced behaviours. Results of previous mice-studies were extended into rats by using the selective mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP). As a result, the evaluated behavioural parameters were dose-relatedly affected by MPEP. Low-dosed MPEP (10 mg/kg, i.p.) did not affect spontaneous locomotion, reduced cocaine-induced hyperlocomotion and produced sensitized locomotion, while showing no effect on sensitized locomotion induced by repeated cocaine or morphine. Low-dosed MPEP did not genuinely block development of cocaine- and morphine-CPP, but rendered CPP expression state-dependent. The medium MPEP-dose (30 mg/kg) was most effective in reducing spontaneous locomotion. The high MPEP-dose (50 mg/kg) was most effective in reducing both body-weight and morphine-CPP expression. Cocaine-CPP expression was not affected by any MPEP-dose. In conclusion, mGluR5 are involved in modulation of spontaneous and cocaine-induced locomotion, in state-dependent learning and in expression of morphine-CPP. Thus, MPEP may be beneficial for relapse prevention in morphine-addicts.

  1. Non-motorized voluntary running does not affect experimental and spontaneous metastasis in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study investigated the effects of non-motorized voluntary running on experimental metastasis of B16BL/6 melanoma and spontaneous metastasis of Lewis lung carcinoma (LLC) in male C57BL/6 mice. After 9 weeks of running, mice (n = 30 per group) received an intravenous injection of B16BL/6 c...

  2. Central command differentially affects aortic and carotid sinus baroreflexes at the onset of spontaneous motor activity.

    PubMed

    Matsukawa, Kanji; Ishii, Kei; Idesako, Mitsuhiro; Ishida, Tomoko; Endo, Kana; Liang, Nan

    2013-12-01

    Our laboratory has recently demonstrated that central command provides selective inhibition of the cardiomotor component of aortic (AOR) baroreflex during exercise, preserving carotid sinus (CS) baroreflex. To further explore the differential effects of central command on the arterial baroreflexes, we surgically separated the AOR and CS baroreflex systems, to identify the input-output relationship of each baroreflex system using brief occlusion of the abdominal aorta in decerebrate cats. Baroreflex sensitivity for heart rate (HR) was estimated from the baroreflex ratio between the pressor and bradycardia responses during aortic occlusion and from the slope of the baroreflex curve between the changes in mean arterial blood pressure (ΔMAP) and ΔHR. Spontaneous motor activity accompanied the abrupt increases in HR and MAP. When aortic occlusion was given at the onset of spontaneous motor activity, the baroreflex ratio was blunted to 11-25% of the preexercise value in either intact or AOR baroreflex. The slope of the ΔMAP-ΔHR curve was similarly attenuated at the onset of spontaneous motor activity to 11-18% of the slope during the preexercise period. In contrast, in the CS baroreflex, the baroreflex ratio and curve slope were not significantly (P>0.05) altered by spontaneous motor activity. An upward shift of the baroreflex curve appeared at the onset of spontaneous motor activity, irrespective of the intact, AOR, and CS baroreflex conditions. Taken together, it is concluded that central command provides selective inhibition for the cardiomotor limb of the aortic baroreflex at the onset of exercise, which in turn contributes to an instantaneous increase in HR.

  3. Resting states affect spontaneous BOLD oscillations in sensory and paralimbic cortex.

    PubMed

    McAvoy, Mark; Larson-Prior, Linda; Nolan, Tracy S; Vaishnavi, S Neil; Raichle, Marcus E; d'Avossa, Giovanni

    2008-08-01

    The brain exhibits spontaneous neural activity that depends on the behavioral state of the organism. We asked whether the blood oxygenation level-dependent (BOLD) signal reflects these modulations. BOLD was measured under three steady-state conditions: while subjects kept their eyes closed, kept their eyes open, or while fixating. The BOLD spectral density was calculated across brain voxels and subjects. Visual, sensory-motor, auditory, and retrosplenial cortex showed modulations of the BOLD spectral density by resting state type. All modulated regions showed greater spontaneous BOLD oscillations in the eyes closed than the eyes open or fixation conditions, suggesting that the differences were endogenously driven. Next, we examined the pattern of correlations between regions whose ongoing BOLD signal was modulated by resting state type. Regional neuronal correlations were estimated using an analytic procedure from the comparison of BOLD-BOLD covariances in the fixation and eyes closed conditions. Most regions were highly correlated with one another, with the exception of the primary visual cortices, which showed low correlations with the other regions. In conclusion, changes in resting state were associated with synchronous modulations of spontaneous BOLD oscillations in cortical sensory areas driven by two spatially overlapping, but temporally uncorrelated signals.

  4. Electrokinetic Locomotion

    NASA Astrophysics Data System (ADS)

    Moran, Jeffrey Lawrence

    occurring in the interfacial layer near the particle/solution interface, which play a key role in the locomotion. The model enables one to understand how the rods' motion depends on the properties of their environment, such as hydrogen peroxide concentration, solution electrical conductivity, and solution viscosity. The numerical simulations are complemented with a scaling analysis based on the governing equations, which makes definite, verifiable predictions of these dependences. One of the most important trends that has been observed experimentally is the significant decrease in speed induced by adding sub-millimolar concentrations of inert electrolyte. It is important to understand the physical reasons for the electrolyte-induced speed decrease, in order to know whether it is fundamental to this propulsion mechanism, or if there is some feasible means to circumvent it. Successful completion of this research will result in an improved understanding of the capabilities, as well as the risks and limits of applicability, of the bimetallic nanomotors for applications in nanotechnology and nanomedicine. Potential applications of the rods include the targeted delivery of drugs in the human body, sensing of chemical impurities in drinking water, and as engines to drive fabrication of microscale structures.

  5. Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces.

    PubMed

    Feng, Jie; Qin, Zhaoqian; Yao, Shuhuai

    2012-04-10

    The coalescence-induced condensate drop motion on some superhydrophobic surfaces (SHSs) has attracted increasing attention because of its potential applications in sustained dropwise condensation, water collection, anti-icing, and anticorrosion. However, an investigation of the mechanism of such self-propelled motion including the factors for designing such SHSs is still limited. In this article, we fabricated a series of superhydrophobic copper surfaces with nanoribbon structures using wet chemical oxidation followed by fluorization treatment. We then systematically studied the influence of surface roughness and the chemical properties of as-prepared surfaces on the spontaneous motion of condensate drops. We quantified the "frequency" of the condensate drop motion based on microscopic sequential images and showed that the trend of this frequency varied with the nanoribbon structure and extent of fluorination. More obvious spontaneous condensate drop motion was observed on surfaces with a higher extent of fluorization and nanostructures possessing sufficiently narrow spacing and higher perpendicularity. We attribute this enhanced drop mobility to the stable Cassie state of condensate drops in the dynamic dropwise condensation process that is determined by the nanoscale morphology and local surface energy.

  6. Cross-Fostering Differentially Affects ADHD-Related Behaviors in Spontaneously Hypertensive Rats

    PubMed Central

    Gauthier, Angela C.; DeAngeli, Nicole E.; Bucci, David J.

    2014-01-01

    Although both genetic and non-genetic factors are known to contribute to the occurrence of Attention-Deficit Hyperactivity/Disorder (ADHD), little is known about how they impact specific symptoms. We used a cross-fostering approach with an established animal model of ADHD, the Spontaneously Hypertensive Rat strain (SHR), to test the influence of genotype and maternal behavior on ADHD-related behaviors. SHRs and their normo-active genetic relative, Wistar Kyoto rats (WKY), were cross-fostered to an unfamiliar dam of either the same or different strain. Behavioral testing took place when the rats reached adulthood. Locomotor hyperactivity was completely dependent on the strain of the offspring. In contrast, social behavior was primarily determined by the strain of the mother, while attentional orienting behavior was influenced by both the strain of the offspring and the strain of the dam. Anxiety-related behavior was influenced by an interaction between offspring and dam strain. PMID:25647439

  7. Oxytocin affects spontaneous neural oscillations in trauma-exposed war veterans

    PubMed Central

    Eidelman-Rothman, Moranne; Goldstein, Abraham; Levy, Jonathan; Weisman, Omri; Schneiderman, Inna; Mankuta, David; Zagoory-Sharon, Orna; Feldman, Ruth

    2015-01-01

    Exposure to combat-related trauma often leads to lifetime functional impairments. Previous research demonstrated the effects of oxytocin (OT) administration on brain regions implicated in post-traumatic stress disorder (PTSD); yet OT’s effects on brain patterns in trauma-exposed veterans have not been studied. In the current study the effects of OT on spontaneous brain oscillatory activity were measured in 43 veterans using magnetoencephalography (MEG): 28 veterans who were exposed to a combat-related trauma and 15 trauma-unexposed controls. Participants participated in two experimental sessions and were administered OT or placebo (PBO) in a double-blind, placebo-control, within-subject design. Following OT/PBO administration, participants underwent a whole-head MEG scan. Plasma and salivary OT levels were assessed each session. Spontaneous brain activity measured during a 2-min resting period was subjected to source-localization analysis. Trauma-exposed veterans showed higher resting-state alpha (8–13 Hz) activity compared to controls in the left dorsolateral prefrontal cortex (dlPFC), specifically in the superior frontal gyrus (SFG) and the middle frontal gyrus (MFG), indicating decreased neural activity in these regions. The higher alpha activity was “normalized” following OT administration and under OT, group differences were no longer found. Increased resting-state alpha was associated with lower baseline plasma OT, reduced salivary OT reactivity, and more re-experiencing symptoms. These findings demonstrate effects of OT on resting-state brain functioning in prefrontal regions subserving working memory and cognitive control, which are disrupted in PTSD. Results raise the possibility that OT, traditionally studied in social contexts, may also enhance performance in cognitive tasks associated with working memory and cognitive control following trauma exposure. PMID:26175673

  8. Positive affective vocalizations during cocaine and sucrose self-administration: a model for spontaneous drug desire in rats.

    PubMed

    Browning, Jenny R; Browning, Douglas A; Maxwell, Alexis O; Dong, Yan; Jansen, Heiko T; Panksepp, Jaak; Sorg, Barbara A

    2011-01-01

    Ultrasonic vocalizations in the 50 kHz range (50 kHz USVs) are emitted by rodents upon activation of positive affective states and appear to be a direct measure of internal emotional and motivational urges to seek rewarding stimuli such as drugs of abuse. Since these behavioral responses do not rely on training for expression, they can be viewed as a "spontaneous" measure of affective state. The goal of the present study was to monitor spontaneous USVs throughout a widely-used cocaine self-administration and reinstatement model of addiction and relapse. To gain insight into the changes in affective state across the different phases of a standard self-administration experiment, we measured 50 kHz USVs in rats during cocaine self-administration and reinstatement, and compared these to sucrose self-administration and reinstatement. During cocaine self-administration, the number of 50 kHz USVs increased over acquisition of self-administration and decreased during extinction. Furthermore, the number of USVs on the first day of acquisition in the cocaine experiment was positively correlated with how rapidly cocaine self-administration was acquired. These findings suggest that the initial affective response to cocaine may be a sensitive predictor of the motivational efficacy of rewarding stimuli and therefore the susceptibility to acquire self-administration of cocaine. Cue- and cocaine-induced reinstatement elevated 50 kHz USVs above extinction levels. Rats trained for sucrose self-administration showed no elevation in USVs during acquisition when USVs were considered over the entire 2 h session, but they did show an elevation in USVs during acquisition when considered over only the first 5 min of the session. As with cocaine-induced reinstatement, sucrose-induced reinstatement produced significantly more USVs compared to the prior extinction day. Taken together, USVs may serve as a sensitive and dynamic non-invasive measure that spontaneously (i.e. without any

  9. Combining Video, Audio and Lexical Indicators of Affect in Spontaneous Conversation via Particle Filtering

    PubMed Central

    Savran, Arman; Cao, Houwei; Shah, Miraj; Nenkova, Ani; Verma, Ragini

    2013-01-01

    We present experiments on fusing facial video, audio and lexical indicators for affect estimation during dyadic conversations. We use temporal statistics of texture descriptors extracted from facial video, a combination of various acoustic features, and lexical features to create regression based affect estimators for each modality. The single modality regressors are then combined using particle filtering, by treating these independent regression outputs as measurements of the affect states in a Bayesian filtering framework, where previous observations provide prediction about the current state by means of learned affect dynamics. Tested on the Audio-visual Emotion Recognition Challenge dataset, our single modality estimators achieve substantially higher scores than the official baseline method for every dimension of affect. Our filtering-based multi-modality fusion achieves correlation performance of 0.344 (baseline: 0.136) and 0.280 (baseline: 0.096) for the fully continuous and word level sub challenges, respectively. PMID:25300451

  10. Acetate as an active metabolite of ethanol: studies of locomotion, loss of righting reflex, and anxiety in rodents

    PubMed Central

    Pardo, Marta; Betz, Adrienne J.; San Miguel, Noemí; López-Cruz, Laura; Salamone, John D.; Correa, Mercè

    2013-01-01

    It has been postulated that a number of the central effects of ethanol are mediated via ethanol metabolites: acetaldehyde and acetate. Ethanol is known to produce a large variety of behavioral actions such anxiolysis, narcosis, and modulation of locomotion. Acetaldehyde contributes to some of those effects although the contribution of acetate is less known. In the present studies, rats and mice were used to assess the acute and chronic effects of acetate after central or peripheral administration. Male Sprague-Dawley rats were used for the comparison between central (intraventricular, ICV) and peripheral (intraperitoneal, IP) administration of acute doses of acetate on locomotion. CD1 male mice were used to study acute IP effects of acetate on locomotion, and also the effects of chronic oral consumption of acetate (0, 500, or 1000 mg/l, during 7, 15, 30, or 60 days) on ethanol- (1.0, 2.0, 4.0, or 4.5 g/kg, IP) induced locomotion, anxiolysis, and loss of righting reflex (LORR). In rats, ICV acetate (0.7–2.8 μmoles) reduced spontaneous locomotion at doses that, in the case of ethanol and acetaldehyde, had previously been shown to stimulate locomotion. Peripheral acute administration of acetate also suppressed locomotion in rats (25–100 mg/kg), but not in mice. In addition, although chronic administration of acetate during 15 days did not have an effect on spontaneous locomotion in an open field, it blocked ethanol-induced locomotion. However, ethanol-induced anxiolysis was not affected by chronic administration of acetate. Chronic consumption of acetate (up to 60 days) did not have an effect on latency to, or duration of LORR induced by ethanol, but significantly increased the number of mice that did not achieve LORR. The present work provides new evidence supporting the hypothesis that acetate should be considered a centrally-active metabolite of ethanol that contributes to some behavioral effects of this alcohol, such as motor suppression. PMID:23847487

  11. Railroad and locomotive technology roadmap.

    SciTech Connect

    Stodolsky, F.; Gaines, L.; Energy Systems

    2003-02-24

    Railroads are important to the U.S. economy. They transport freight efficiently, requiring less energy and emitting fewer pollutants than other modes of surface transportation. While the railroad industry has steadily improved its fuel efficiency--by 16% over the last decade--more can, and needs to, be done. The ability of locomotive manufacturers to conduct research into fuel efficiency and emissions reduction is limited by the small number of locomotives manufactured annually. Each year for the last five years, the two North American locomotive manufacturers--General Electric Transportation Systems and the Electro-Motive Division of General Motors--have together sold about 800 locomotives in the United States. With such a small number of units over which research costs can be spread, outside help is needed to investigate all possible ways to reduce fuel usage and emissions. Because fuel costs represent a significant portion of the total operating costs of a railroad, fuel efficiency has always been an important factor in the design of locomotives and in the operations of a railroad. However, fuel efficiency has recently become even more critical with the introduction of strict emission standards by the U.S. Environmental Protection Agency, to be implemented in stages (Tiers 0, 1, and 2) between 2000 and 2005. Some of the technologies that could be employed to meet the emission standards may negatively affect fuel economy--by as much as 10-15% when emissions are reduced to Tier 1 levels. Lowering fuel economy by that magnitude would have a serious impact on the cost to the consumer of goods shipped by rail, on the competitiveness of the railroad industry, and on this country's dependence on foreign oil. Clearly, a joint government/industry R&D program is needed to help catalyze the development of advanced technologies that will substantially reduce locomotive engine emissions while also improving train system energy efficiency. DOE convened an industry

  12. Factors affecting duration of the expulsive stage of parturition and piglet birth intervals in sows with uncomplicated, spontaneous farrowings.

    PubMed

    van Dijk, A J; van Rens, B T T M; van der Lende, T; Taverne, M A M

    2005-10-15

    Modern pig farming is still confronted with high perinatal piglet losses which are mainly contributed to factors associated with the progress of piglet expulsion. Therefore the aim of this study was to identify sow- and piglet factors affecting the duration of the expulsive stage of farrowing and piglet birth intervals in spontaneous farrowing sows originating from five different breeds. In total 211 litters were investigated. Breed affected duration of the expulsive stage significantly: the shortest duration was found in Large White x Meishan F2 crossbred litters and the longest duration in Dutch Landrace litters. No effect of parity on the duration of the expulsive stage was found. An increase in littersize (P<0.01), an increase in number of stillborn piglets per litter (P<0.05) and a decrease of gestation length (P<0.05, independently of littersize) all resulted in an increased duration of the expulsive stage of farrowing. A curvilinear relationship between birth interval and rank (relative position in the birth order) of the piglets was found. Besides that, piglet birth intervals increased with an increasing birth weight (P<0.001). Stillborn (P<0.01) and posteriorly presented (P<0.05) piglets were delivered after significantly longer birth intervals than liveborn and anteriorly presented piglets. The results on sow- and piglet factors affecting duration of the expulsive stage and piglet birth intervals obtained in this study contribute to an increased insight into (patho) physiological aspects of perinatal mortality in pigs.

  13. Dynamically Stable Legged Locomotion.

    DTIC Science & Technology

    1983-01-27

    forces to be generated at the foot. A finite state sequencer provides the glue that synchronizes the actions uf the three controllers to the ongoing...V., ’Fittlc,1R. Engineering of locomotion in gorilla and man. In Control ofPosau,e and Locomotion, R.B. Stein, K.G. Pearson, R.S. Smith, J.11. Redford

  14. Goal Directed Locomotion and Balance Control in Autistic Children

    ERIC Educational Resources Information Center

    Vernazza-Martin, S.; Martin, N.; Vernazza, A.; Lepellec-Muller, A.; Rufo, M.; Massion, J.; Assaiante, C.

    2005-01-01

    This article focuses on postural anticipation and multi-joint coordination during locomotion in healthy and autistic children. Three questions were addressed: (1) Are gait parameters modified in autistic children? (2) Is equilibrium control affected in autistic children? (3) Is locomotion adjusted to the experimenter-imposed goal? Six healthy…

  15. Effects of Voluntary Locomotion and Calcitonin Gene-Related Peptide on the Dynamics of Single Dural Vessels in Awake Mice

    PubMed Central

    Gao, Yu-Rong

    2016-01-01

    The dura mater is a vascularized membrane surrounding the brain and is heavily innervated by sensory nerves. Our knowledge of the dural vasculature has been limited to pathological conditions, such as headaches, but little is known about the dural blood flow regulation during behavior. To better understand the dynamics of dural vessels during behavior, we used two-photon laser scanning microscopy (2PLSM) to measure the diameter changes of single dural and pial vessels in the awake mouse during voluntary locomotion. Surprisingly, we found that voluntary locomotion drove the constriction of dural vessels, and the dynamics of these constrictions could be captured with a linear convolution model. Dural vessel constrictions did not mirror the large increases in intracranial pressure (ICP) during locomotion, indicating that dural vessel constriction was not caused passively by compression. To study how behaviorally driven dynamics of dural vessels might be altered in pathological states, we injected the vasodilator calcitonin gene-related peptide (CGRP), which induces headache in humans. CGRP dilated dural, but not pial, vessels and significantly reduced spontaneous locomotion but did not block locomotion-induced constrictions in dural vessels. Sumatriptan, a drug commonly used to treat headaches, blocked the vascular and behavioral the effects of CGRP. These findings suggest that, in the awake animal, the diameters of dural vessels are regulated dynamically during behavior and during drug-induced pathological states. SIGNIFICANT STATEMENT The vasculature of the dura has been implicated in the pathophysiology of headaches, but how individual dural vessels respond during behavior, both under normal conditions and after treatment with the headache-inducing peptide calcitonin gene-related peptide (CGRP), is poorly understood. To address these issues, we imaged individual dural vessels in awake mice and found that dural vessels constricted during voluntary locomotion, and

  16. Intrathecal application of cyproheptadine impairs locomotion in intact rats.

    PubMed

    Majczyński, Henryk; Cabaj, Anna; Górska, Teresa

    In intact adult rats, cyproheptadine, a 5-HT2 antagonist, administered intrathecally at the midlumbar segments was found to impair hindlimb locomotor movements during overground locomotion. These effects were dose-dependent; they varied from transient complete hindlimb paraplegia seen at doses of 300 microg/20 microl, to short-lasting trunk instability at doses of 100 microg/20 microl. After the return of overground locomotion, transient abduction of one of the hindlimbs was observed in some animals. These findings demonstrate that the blockade of 5-HT2 receptors affects locomotion in intact rats. Our results provide support for the hypothesis of serotonergic involvement in rat locomotion, which, so far, has been based mainly on the effects of 5-HT2 agonists on the recovery of locomotion in spinal rats.

  17. Fuelcell Prototype Locomotive

    SciTech Connect

    David L. Barnes

    2007-09-28

    An international industry-government consortium is developing a fuelcell hybrid switcher locomotive for commercial railway applications and power-to-grid generation applications. The current phase of this on-going project addresses the practicalities of on-board hydrogen storage, fuelcell technology, and hybridity, all with an emphasis on commercially available products. Through practical evaluation using designs from Vehicle Projects’ Fuelcell-Powered Underground Mine Loader Project, the configuration of the fuelcell switcher locomotive changed from using metal-hydride hydrogen storage and a pure fuelcell power plant to using compressed hydrogen storage, a fuelcell-battery hybrid power plant, and fuelcell stack modules from Ballard Power Systems that have been extensively used in the Citaro bus program in Europe. The new overall design will now use a RailPower battery hybrid Green Goat™ as the locomotive platform. Keeping the existing lead-acid batteries, we will replace the 205 kW diesel gen-set with 225 kW of net fuelcell power, remove the diesel fuel tank, and place 14 compressed hydrogen cylinders, capable of storing 70 kg of hydrogen at 350 bar, on the roof. A detailed design with associated CAD models will allow a complete build of the fuelcell-battery hybrid switcher locomotive in the next funded phase.

  18. Combined cocaine hydrolase gene transfer and anti-cocaine vaccine synergistically block cocaine-induced locomotion.

    PubMed

    Carroll, Marilyn E; Zlebnik, Natalie E; Anker, Justin J; Kosten, Thomas R; Orson, Frank M; Shen, Xiaoyun; Kinsey, Berma; Parks, Robin J; Gao, Yang; Brimijoin, Stephen

    2012-01-01

    Mice and rats were tested for reduced sensitivity to cocaine-induced hyper-locomotion after pretreatment with anti-cocaine antibody or cocaine hydrolase (CocH) derived from human butyrylcholinesterase (BChE). In Balb/c mice, direct i.p. injection of CocH protein (1 mg/kg) had no effect on spontaneous locomotion, but it suppressed responses to i.p. cocaine up to 80 mg/kg. When CocH was injected i.p. along with a murine cocaine antiserum that also did not affect spontaneous locomotion, there was no response to any cocaine dose. This suppression of locomotor activity required active enzyme, as it was lost after pretreatment with iso-OMPA, a selective BChE inhibitor. Comparable results were obtained in rats that developed high levels of CocH by gene transfer with helper-dependent adenoviral vector, and/or high levels of anti-cocaine antibody by vaccination with norcocaine hapten conjugated to keyhole limpet hemocyanin (KLH). After these treatments, rats were subjected to a locomotor sensitization paradigm involving a "training phase" with an initial i.p. saline injection on day 1 followed by 8 days of repeated cocaine injections (10 mg/kg, i.p.). A 15-day rest period then ensued, followed by a final "challenge" cocaine injection. As in mice, the individual treatment interventions reduced cocaine-stimulated hyperactivity to a modest extent, while combined treatment produced a greater reduction during all phases of testing compared to control rats (with only saline pretreatment). Overall, the present results strongly support the view that anti-cocaine vaccine and cocaine hydrolase vector treatments together provide enhanced protection against the stimulatory actions of cocaine in rodents. A similar combination therapy in human cocaine users might provide a robust therapy to help maintain abstinence.

  19. A study to explore locomotion patterns in partial gravity environments

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar L.; Klute, Glenn K.; Moore, Nathan R.

    1992-01-01

    An effort is made to ascertain the factors affecting stability during locomotion in lunar and Martian gravity environments, as well as to establish criteria for the enhancement of stability and traction. The effects of changing both the speed and the pattern of locomotion under three different gravity conditions were investigated. As gravity level increased, vertical and horizontal forces significantly declined; similarities were noted across gravity levels, however, with respect to locomotion speed and pattern changes, where increasing speed enhanced both vertical and horizontal forces. With decreasing gravity, the ratio of horizontal to vertical forces increased significantly.

  20. Advanced robot locomotion.

    SciTech Connect

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

    2007-01-01

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  1. Compliant Synergies in Locomotion

    NASA Astrophysics Data System (ADS)

    Travers, Matthew; Choset, Howie; Goldman @ Georgia Tech. Physics Department Collaboration

    Biological systems appear to have natural mechanisms that allow them to readily compensate for unexpected environmental variations when compared to their mechanical (i.e., robotic) counterparts. We hypothesize that the basis for this discrepancy is almost innate: what biology appears to be born with, built-in mechanisms for coordinating their many degrees of freedom, we struggle to ``program.'' We therefore look toward biology for inspiration. In particular, we are interested in kinematic synergies, low-dimensional representations that explicitly encode the underlying structure of how systems coordinate their internal degrees of freedom to achieve high-level tasks. In this work, we derive parametric representations of kinematic synergies and present a new compliant locomotion control framework that enables the parameters to be directly controlled in response to external disturbances. We present results of this framework implemented on two separate platforms, a snake-like and hexapod robot. Our results show that, using synergies, the locomotion control of these very different systems can be reduced to simple, extremely capable, and common forms, thus offering new insights into both robotic as well as biological locomotion in complex terrains.

  2. Interactions between locomotion and ventilation in tetrapods.

    PubMed

    Boggs, Dona F

    2002-10-01

    Interactions between locomotion and ventilation have now been studied in several species of reptiles, birds and mammals, from a variety of perspectives. Among these perspectives are neural interactions of separate but linked central controllers; mechanical impacts of locomotion upon ventilatory pressures and flows; and the extent to which the latter may affect gas exchange and the energetics of exercise. A synchrony, i.e. 1:1 pattern of coordination, is observed in many running mammals once they achieve galloping speeds, as well as in flying bats, some flying birds and hopping marsupials. Other, non-1:1, patterns of coordination are seen in trotting and walking quadrupeds, as well as running bipedal humans and running and flying birds. There is evidence for an energetic advantage to coordination of locomotor and respiratory cycles for flying birds and running mammals. There is evidence for a mechanical constraint upon ventilation by locomotion for some reptiles (e.g. iguana), but not for others (e.g. varanids and crocodilians). In diving birds the impact of wing flapping or foot paddling on differential air sac pressures enhances gas exchange during the breath hold by improving diffusive and convective movement of air sac oxygen to parabronchi. This paper will review the current state of our knowledge of such influences of locomotion upon respiratory system function.

  3. Cardiac Arrest-Induced Global Brain Hypoxia-Ischemia during Development Affects Spontaneous Activity Organization in Rat Sensory and Motor Thalamocortical Circuits during Adulthood.

    PubMed

    Shoykhet, Michael; Middleton, Jason W

    2016-01-01

    Normal maturation of sensory information processing in the cortex requires patterned synaptic activity during developmentally regulated critical periods. During early development, spontaneous synaptic activity establishes required patterns of synaptic input, and during later development it influences patterns of sensory experience-dependent neuronal firing. Thalamocortical neurons occupy a critical position in regulating the flow of patterned sensory information from the periphery to the cortex. Abnormal thalamocortical inputs may permanently affect the organization and function of cortical neuronal circuits, especially if they occur during a critical developmental window. We examined the effect of cardiac arrest (CA)-associated global brain hypoxia-ischemia in developing rats on spontaneous and evoked firing of somatosensory thalamocortical neurons and on large-scale correlations in the motor thalamocortical circuit. The mean spontaneous and sensory-evoked firing rate activity and variability were higher in CA injured rats. Furthermore, spontaneous and sensory-evoked activity and variability were correlated in uninjured rats, but not correlated in neurons from CA rats. Abnormal activity patterns of ventroposterior medial nucleus (VPm) neurons persisted into adulthood. Additionally, we found that neurons in the entopeduncular nucleus (EPN) in the basal ganglia had lower firing rates yet had higher variability and higher levels of burst firing after injury. Correlated levels of power in local field potentials (LFPs) between the EPN and the motor cortex (MCx) were also disrupted by injury. Our findings indicate that hypoxic-ischemic injury during development leads to abnormal spontaneous and sensory stimulus-evoked input patterns from thalamus to cortex. Abnormal thalamic inputs likely permanently and detrimentally affect the organization of cortical circuitry and processing of sensory information. Hypoxic-ischemic injury also leads to abnormal single neuron and

  4. Cardiac Arrest-Induced Global Brain Hypoxia-Ischemia during Development Affects Spontaneous Activity Organization in Rat Sensory and Motor Thalamocortical Circuits during Adulthood

    PubMed Central

    Shoykhet, Michael; Middleton, Jason W.

    2016-01-01

    Normal maturation of sensory information processing in the cortex requires patterned synaptic activity during developmentally regulated critical periods. During early development, spontaneous synaptic activity establishes required patterns of synaptic input, and during later development it influences patterns of sensory experience-dependent neuronal firing. Thalamocortical neurons occupy a critical position in regulating the flow of patterned sensory information from the periphery to the cortex. Abnormal thalamocortical inputs may permanently affect the organization and function of cortical neuronal circuits, especially if they occur during a critical developmental window. We examined the effect of cardiac arrest (CA)-associated global brain hypoxia-ischemia in developing rats on spontaneous and evoked firing of somatosensory thalamocortical neurons and on large-scale correlations in the motor thalamocortical circuit. The mean spontaneous and sensory-evoked firing rate activity and variability were higher in CA injured rats. Furthermore, spontaneous and sensory-evoked activity and variability were correlated in uninjured rats, but not correlated in neurons from CA rats. Abnormal activity patterns of ventroposterior medial nucleus (VPm) neurons persisted into adulthood. Additionally, we found that neurons in the entopeduncular nucleus (EPN) in the basal ganglia had lower firing rates yet had higher variability and higher levels of burst firing after injury. Correlated levels of power in local field potentials (LFPs) between the EPN and the motor cortex (MCx) were also disrupted by injury. Our findings indicate that hypoxic-ischemic injury during development leads to abnormal spontaneous and sensory stimulus-evoked input patterns from thalamus to cortex. Abnormal thalamic inputs likely permanently and detrimentally affect the organization of cortical circuitry and processing of sensory information. Hypoxic-ischemic injury also leads to abnormal single neuron and

  5. 76 FR 2199 - Locomotive Safety Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    ... analysis for new locomotive electronic systems. FRA believes this proposal will modernize and improve its..., railroad track, signal systems, communications, rolling stock, operating practices, passenger train... requirements for brake, draft, suspension, and electrical systems, and locomotive cabs; and locomotive...

  6. Locomotion: Dealing with friction

    PubMed Central

    Radhakrishnan, V.

    1998-01-01

    To move on land, in water, or in the air, even at constant speed and at the same level, always requires an expenditure of energy. The resistance to motion that has to be overcome is of many different kinds depending on size, speed, and the characteristics of the medium, and is a fascinating subject in itself. Even more interesting are nature’s stratagems and solutions toward minimizing the effort involved in the locomotion of different types of living creatures, and humans’ imitations and inventions in an attempt to do at least as well. PMID:9576902

  7. Forcing contact inhibition of locomotion.

    PubMed

    Roycroft, Alice; Mayor, Roberto

    2015-07-01

    Contact inhibition of locomotion drives a variety of biological phenomenon, from cell dispersion to collective cell migration and cancer invasion. New imaging techniques have allowed contact inhibition of locomotion to be visualised in vivo for the first time, helping to elucidate some of the molecules and forces involved in this phenomenon.

  8. Locomotion in caterpillars.

    PubMed

    van Griethuijsen, L I; Trimmer, B A

    2014-08-01

    Most species of caterpillar move around by inching or crawling. Their ability to navigate in branching three-dimensional structures makes them particularly interesting biomechanical subjects. The mechanism of inching has not been investigated in detail, but crawling is now well understood from studies on caterpillar neural activity, dynamics and structural mechanics. Early papers describe caterpillar crawling as legged peristalsis, but recent work suggests that caterpillars use a tension-based mechanism that helps them to exploit arboreal niches. Caterpillars are not obligate hydrostats but instead use their strong grip to the substrate to transmit forces, in effect using their environment as a skeleton. In addition, the gut which accounts for a substantial part of the caterpillar's weight, moves independently of the body wall during locomotion and may contribute to crawling dynamics. Work-loop analysis of caterpillar muscles shows that they are likely to act both as actuators and energy dissipaters during crawling. Because caterpillar tissues are pseudo-elastic, and locomotion involves large body deformations, moving is energetically inefficient. Possession of a soft body benefits caterpillars by allowing them to grow quickly and to access remote food sources safely.

  9. The Effect of Intermittent Alcohol Vapor or Pulsatile Heroin on Somatic and Negative Affective Indices during Spontaneous Withdrawal in Wistar Rats

    PubMed Central

    Williams, Angela M.; Reis, Daniel J.; Powell, Alexa S.; Neira, Louis J.; Nealey, Kathryn A.; Ziegler, Cole E.; Kloss, Nina; Bilimoria, Jessica L.; Smith, Chelsea E.; Walker, Brendan M.

    2012-01-01

    Rationale Once dependent on alcohol or opioids, negative affect may accompany withdrawal. Dependent individuals are hypothesized to “self-medicate” in order to cope with withdrawal, which promotes escalated drug or alcohol use. Objectives The current study aimed to develop a reliable animal model to assess symptoms that occur during spontaneous alcohol and opioid withdrawal. Methods Dependence was induced using intermittent alcohol exposure or pulsatile heroin delivery and assessed for the presence of withdrawal symptoms during acute withdrawal by measuring somatic signs, behavior in the forced swim test (FST) and air-puff induced 22-kHz ultrasonic vocalizations (USVs). Additional animals subjected to eight weeks of alcohol vapor exposure were evaluated for altered somatic signs, operant alcohol self-administration and 22-kHz USV production, as well as performance in the elevated plus-maze (EPM). Results During spontaneous withdrawal from pulsatile heroin or intermittent alcohol vapor, animals displayed increased somatic withdrawal signs, FST immobility and 22-kHz USV production, but did not show any behavioral change in the EPM unless the duration of exposure was extended to four weeks. Following eight weeks of alcohol vapor exposure, animals displayed somatic withdrawal signs, escalated alcohol self-administration and increased 22-kHz USVs. Conclusions These paradigms provide consistent methods to evaluate the behavioral ramifications, and neurobiological substrates, of alcohol and opioid dependence during spontaneous withdrawal. As immobility in the FST and percent open-arm time in the EPM were dissociable, with 22-kHz USVs paralleling immobility in the FST, assessment of air-puff induced 22-kHz USVs could provide an ethologically-valid alternative to the FST. PMID:22461104

  10. Low concentrations of the organophosphate VX affect spontaneous and evoked transmitter release from hippocampal neurons: toxicological relevance of cholinesterase-independent actions.

    PubMed

    Rocha, E S; Santos, M D; Chebabo, S R; Aracava, Y; Albuquerque, E X

    1999-08-15

    In the present study, the patch-clamp technique was applied to cultured hippocampal neurons to evaluate the effects of the nerve agent VX on evoked and spontaneous postsynaptic currents mediated by gamma-aminobutyric acid (GABA) and glutamate. At 0.01 nM, VX reduced the amplitude of evoked GABAergic currents, and only at concentrations >1 nM did it decrease the amplitude of evoked glutamatergic currents. The effect of VX on GABAergic currents, which was partially reversible upon washing of the neurons with VX-free external solution, could be prevented by the muscarinic antagonist atropine. In contrast, the effect of VX on glutamatergic currents, which was not reversible upon washing, appears to be related to the VX-induced reduction of the amplitude and frequency of repetitively firing by action potentials. In the presence of the Na(+)-channel blocker tetrodotoxin (TTX), VX (>/=10 nM) increased the frequency of GABA- and glutamate-mediated miniature postsynaptic currents (MPSCs). This effect of VX was unrelated to cholinesterase inhibition and was Ca(2+) dependent. The lack of effect of VX on MPSC kinetics indicates that VX-induced alterations of evoked and spontaneous currents are exclusively due to alterations of the transmitter release processes. The ability of VX to affect transmitter release in the brain may underlie some of its neurotoxic effects and may provide the basis for the development of therapeutic countermeasures to treat and/or prevent VX-induced neurotoxicity.

  11. Scaling macroscopic aquatic locomotion

    NASA Astrophysics Data System (ADS)

    Gazzola, Mattia; Argentina, Médéric; Mahadevan, L.

    2014-10-01

    Inertial aquatic swimmers that use undulatory gaits range in length L from a few millimetres to 30 metres, across a wide array of biological taxa. Using elementary hydrodynamic arguments, we uncover a unifying mechanistic principle characterizing their locomotion by deriving a scaling relation that links swimming speed U to body kinematics (tail beat amplitude A and frequency ω) and fluid properties (kinematic viscosity ν). This principle can be simply couched as the power law Re ~ Swα, where Re = UL/ν >> 1 and Sw = ωAL/ν, with α = 4/3 for laminar flows, and α = 1 for turbulent flows. Existing data from over 1,000 measurements on fish, amphibians, larvae, reptiles, mammals and birds, as well as direct numerical simulations are consistent with our scaling. We interpret our results as the consequence of the convergence of aquatic gaits to the performance limits imposed by hydrodynamics.

  12. Scaling macroscopic aquatic locomotion

    NASA Astrophysics Data System (ADS)

    Gazzola, Mattia; Argentina, Mederic; Mahadevan, Lakshminarayanan

    2014-11-01

    Inertial aquatic swimmers that use undulatory gaits range in length L from a few millimeters to 30 meters, across a wide array of biological taxa. Using elementary hydrodynamic arguments, we uncover a unifying mechanistic principle characterizing their locomotion by deriving a scaling relation that links swimming speed U to body kinematics (tail beat amplitude A and frequency ω) and fluid properties (kinematic viscosity ν). This principle can be simply couched as the power law Re ~ Swα , where Re = UL / ν >> 1 and Sw = ωAL / ν , with α = 4 / 3 for laminar flows, and α = 1 for turbulent flows. Existing data from over 1000 measurements on fish, amphibians, larvae, reptiles, mammals and birds, as well as direct numerical simulations are consistent with our scaling. We interpret our results as the consequence of the convergence of aquatic gaits to the performance limits imposed by hydrodynamics.

  13. Optimism and spontaneous self-affirmation are associated with lower likelihood of cognitive impairment and greater positive affect among cancer survivors

    PubMed Central

    Taber, Jennifer M.; Klein, William M. P.; Ferrer, Rebecca A.; Kent, Erin E.; Harris, Peter R.

    2016-01-01

    Background Optimism and self-affirmation promote adaptive coping, goal achievement, and better health. Purpose To examine the associations of optimism and spontaneous self-affirmation (SSA) with physical, mental, and cognitive health and information seeking among cancer survivors. Methods Cancer survivors (n=326) completed the Health Information National Trends Survey 2013, a national survey of U.S. adults. Participants reported optimism, SSA, cognitive and physical impairment, affect, health status, and information seeking. Results Participants higher in optimism reported better health on nearly all indices examined, even when controlling for SSA. Participants higher in SSA reported lower likelihood of cognitive impairment, greater happiness and hopefulness, and greater likelihood of cancer information seeking. SSA remained significantly associated with greater hopefulness and cancer information seeking when controlling for optimism. Conclusions Optimism and SSA may be associated with beneficial health-related outcomes among cancer survivors. Given the demonstrated malleability of self-affirmation, these findings represent important avenues for future research. PMID:26497697

  14. Locomotion speeds of various dinosaurs

    NASA Astrophysics Data System (ADS)

    Dougherty, Mary; Lee, Scott

    2009-03-01

    Most students have a passing curiosity about dinosaurs. Piquing this interest is an excellent tool to engage students. A methodology for estimating the locomotion speed of an animal based upon their footprint tracks is developed. Using this technique, an analysis of the locomotion speeds of various dinosaurs is performed. The tracks studied include 28 theropods (meat-eating dinosaurs), 23 sauropods (the ``long-necked'' herbivores), 28 non-armored, non-sauropod herbivores and 10 armored, non-sauropod herbivores. The theropods show the fastest locomotion speed as well as the greatest variety of speeds while the armored dinosaurs are the slowest.

  15. Locomotion Speeds of Various Dinosaurs

    NASA Astrophysics Data System (ADS)

    Dougherty, M. T.; Lee, S. A.

    2009-04-01

    A methodology for estimating the locomotion speed of an animal based upon their footprint tracks is developed. Using this technique, an analysis of the locomotion speeds of various dinosaurs is performed. The tracks studied include 28 theropods (meat-eating dinosaurs), 23 sauropods (the ``long-necked'' herbivores), 28 non-armored, non-sauropod herbivores and 10 armored, non-sauropod herbivores. The theropods show the fastest locomotion speed as well as the greatest variety of speeds while the armored dinosaurs are the slowest.

  16. Self-improving biped locomotion

    NASA Astrophysics Data System (ADS)

    Teixeira, C.; Costa, L.; Santos, C.

    2013-10-01

    An approach addressing biped locomotion is here introduced. Central Pattern Generators (CPGs) and Dynamic Movement Primitives (DMPs) were combined to easily produce complex trajectories for the joints of a simulated DARwIn-OP. Policy Learning by Weighting Exploration with the Returns (PoWER) was implemented to improve the robot's locomotion through variation of the DMP's parameters. Maximization of the DARwIn-OP's frontal velocity was addressed and results show a velocity improvement of 213%. The results are very promising and demonstrate the approach's flexibility at generating new trajectories for locomotion.

  17. 49 CFR 238.209 - Forward end structure of locomotives, including cab cars and MU locomotives.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cab cars and MU locomotives. 238.209 Section 238.209 Transportation Other Regulations Relating to... locomotives, including cab cars and MU locomotives. (a)(1) The skin covering the forward-facing end of each locomotive, including a cab car and an MU locomotive, shall be: (i) Equivalent to a 1/2-inch steel plate...

  18. 49 CFR 238.209 - Forward end structure of locomotives, including cab cars and MU locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cab cars and MU locomotives. 238.209 Section 238.209 Transportation Other Regulations Relating to... locomotives, including cab cars and MU locomotives. (a)(1) The skin covering the forward-facing end of each locomotive, including a cab car and an MU locomotive, shall be: (i) Equivalent to a 1/2-inch steel plate...

  19. 49 CFR 238.209 - Forward end structure of locomotives, including cab cars and MU locomotives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... cab cars and MU locomotives. 238.209 Section 238.209 Transportation Other Regulations Relating to... locomotives, including cab cars and MU locomotives. (a)(1) The skin covering the forward-facing end of each locomotive, including a cab car and an MU locomotive, shall be: (i) Equivalent to a 1/2-inch steel plate...

  20. Histological Lesions and Cellular Response in the Skin of Alpine Chamois (Rupicapra r. rupicapra) Spontaneously Affected by Sarcoptic Mange

    PubMed Central

    Salvadori, Claudia; Lazzarotti, Camilla; Trogu, Tiziana; Lanfranchi, Paolo

    2016-01-01

    Population dynamics of chamois (genus Rupicapra, subfamily Caprinae) can be influenced by infectious diseases epizootics, of which sarcoptic mange is probably the most severe in the Alpine chamois (Rupicapra rupicapra rupicapra). In this study, skin lesions and cellular inflammatory infiltrates were characterized in 44 Alpine chamois affected by sarcoptic mange. Dermal cellular responses were evaluated in comparison with chamois affected by trombiculosis and controls. In both sarcoptic mange and trombiculosis, a significantly increase of eosinophils, mast cells, T and B lymphocytes, and macrophages was detected. Moreover, in sarcoptic mange significant higher numbers of T lymphocytes and macrophages compared to trombiculosis were observed. Lesions in sarcoptic mange were classified in three grades, according to crusts thickness, correlated with mite counts. Grade 3 represented the most severe form with crust thickness more than 3.5 mm, high number of mites, and severe parakeratosis with diffuse bacteria. Evidence of immediate and delayed hypersensitivity was detected in all three forms associated with diffuse severe epidermal hyperplasia. In grade 3, a significant increase of B lymphocytes was evident compared to grades 1 and 2, while eosinophil counts were significantly higher than in grade 1, but lower than in grade 2 lesions. An involvement of nonprotective Th2 immune response could in part account for severe lesions of grade 3. PMID:27403422

  1. Locomotion in a turbulent world

    NASA Astrophysics Data System (ADS)

    Koehl, M.

    2014-11-01

    When organisms swim or crawl in aquatic habitats, the water through which they travel is usually moving. Therefore, an important part of understanding how aquatic organisms locomote is determining how they interact with the fluctuating turbulent water currents through which they move. The research systems we have been using to address this question are microscopic marine animals swimming in turbulent, wavy water flow or crawling on surfaces in spatially-complex habitats exposed to such flow. Using a combination of field studies, wave-flume experiments, experiments in fluidic devices, and mathematical modeling, we have discovered that small organisms swimming or crawling in turbulent flow are not subjected to steady velocities. The shears, accelerations, and odor concentrations encountered by small swimmers and crawlers fluctuate rapidly, with peaks much higher than mean values. Although microscopic organisms swim slowly relative to ambient water flow, their locomotory behavior in response to the rapidly-fluctuating shears and odors they encounter can affect where they are transported by ambient water movement. Furthermore, the ability of small organisms to walk on surfaces without being dislodged by pulses of rapid flow constrains the microhabitats in which they can forage. Supported by NSF Grant #IOS-0842685.

  2. Proliferation of mouse embryonic stem cell progeny and the spontaneous contractile activity of cardiomyocytes are affected by microtopography.

    PubMed

    Biehl, Jesse K; Yamanaka, Satoshi; Desai, Tejal A; Boheler, Kenneth R; Russell, Brenda

    2009-08-01

    The niche in which stem cells reside and differentiate is a complex physicochemical microenvironment that regulates cell function. The role played by three-dimensional physical contours was studied on cell progeny derived from mouse embryonic stem cells using microtopographies created on PDMS (poly-dimethyl-siloxane) membranes. While markers of differentiation were not affected, the proliferation of heterogeneous mouse embryonic stem cell-derived progeny was attenuated by 15 microm-, but not 5 microm-high microprojections. This reduction was reversed by Rho kinase and myosin light chain kinase inhibition, which diminishes the tension generating ability of stress fibers. Purified cardiomyocytes derived from embryonic stem cells also showed significant blunting of proliferation and increased beating rates compared with cells grown on flat substrates. Thus, proliferation of stem cell-derived progeny appears to be regulated by microtopography through tension-generation of contractility in the third-dimension. These results emphasize the importance of topographic cues in the modulation of stem cell progeny behavior.

  3. Time-dependent RNA degradation affecting cDNA array quality in spontaneous canine tumours sampled using standard surgical procedures.

    PubMed

    Von Euler, Henrik; Khoshnoud, Reza; He, Qimin; Khoshnoud, Aida; Fornander, Tommy; Rutqvist, Lars-Erik; Skog, Sven

    2005-12-01

    Heterogeneous gene expression in tumours and the degradation of RNA when sampling under non-RNAse-free conditions may limit the potential benefit of cDNA array studies. This study examines changes in the integrity of RNA by means of RNA gel electrophoresis at various post-operative intervals on canine mammary tumours (n=10) and malignant lymphoma (n=1). The tumours were cut into pieces (3-5 mm diameter, approximately 50 mg) and kept in tubes without RNAse-free buffer at room temperature. No special precautions were taken to avoid the influences of Rnase; rather, normal surgical procedures were used. We found that total RNA of the mammary tumours started to degrade within 30 min of the operation, and the rate of degradation increased up to 4 h, which was the last time point included in this study. RNA in the lymphoma tumours degraded more rapidly, and was completely degraded at 30 min post-operation. The degradation of mRNA in the mammary tumours, as studied by human cDNA arrays, was heterogeneous, i.e. some mRNA degraded completely, some only partially. This indicates that the mRNA degradation rate varied depending on the type of mRNA. However, since we found that gene expression differs depending on the part of the mammary tumour examined, one cannot exclude that the variation in the mRNA degradation rate may simply reflect heterogeneous gene expression within the tumour. We conclude that RNA integrity is unaffected immediately after sampling under non-RNAse-free conditions; however, the tumour sample should be preserved under RNAse-free conditions within 15 min to avoid RNA degradation. This is a much shorter time interval than previously reported in other similar studies; however, these studies generally treated normal tissue, under which 3-5 h non-RNAse-free conditions have been found not to affect RNA quality.

  4. Group membership affects spontaneous mental representation: failure to represent the out-group in a joint action task.

    PubMed

    McClung, Jennifer Susan; Jentzsch, Ines; Reicher, Stephen David

    2013-01-01

    Predicting others' actions is crucial to successful social interaction. Previous research on joint action, based on a reaction-time paradigm called the Joint Simon Task, suggests that successful joint action stems from the simultaneous representation of the self with the other. Performance on this task provides a read-out of the degree of intrusion from a partner that participants experience from acting jointly compared to acting alone, which in turn is a measure of the degree to which participants mentally represent their co-actors during the task. To investigate the role of perceived group membership in this type of joint action and its influence on the representation of others, we first subjected participants to a minimal group paradigm while manipulating differences in social competition. We then asked participants to do the Joint Simon Task in pairs with an in-group or out-group member. Only participants who acted with an "in-group" partner on the joint task showed altered reaction times compared to when acting alone, presumably a change caused by the simultaneous and automatic representation of their in-group partner. In contrast, participants who acted with an out-group partner were unaffected in their reactions when doing the joint task, showing no evidence of representation of their out-group partner. This effect was present in both the high-competition and low-competition conditions, indicating that the differential effects of group membership on representation during joint action were driven by perceived group membership and independent of the effects of social competition. We concluded that participants failed to represent out-group members as socially relevant agents not based on any personality or situational characteristics, but in reaction only to their status as "other". In this way group membership appears to affect cognition on a very immediate and subconscious level.

  5. The first observation of seasonal affective disorder symptoms in Rhesus macaque.

    PubMed

    Qin, Dongdong; Chu, Xunxun; Feng, Xiaoli; Li, Zhifei; Yang, Shangchuan; Lü, Longbao; Yang, Qing; Pan, Lei; Yin, Yong; Li, Jiali; Xu, Lin; Chen, Lin; Hu, Xintian

    2015-10-01

    Diurnal animals are a better model for seasonal affective disorder (SAD) than nocturnal ones. Previous work with diurnal rodents demonstrated that short photoperiod conditions brought about depression-like behavior. However, rodents are at a large phylogenetic distance from humans. In contrast, nonhuman primates are closely similar to humans, making them an excellent candidate for SAD model. This study made the first attempt to develop SAD in rhesus macaque (Macaca mulatta) and it was found that short photoperiod conditions could lead monkeys to display depressive-like huddling behavior, less spontaneous locomotion, as well as less reactive locomotion. In addition to these depression-related behavioral changes, the physiological abnormalities that occur in patients with SAD, such as weight loss, anhedonia and hypercortisolism, were also observed in those SAD monkeys. Moreover, antidepressant treatment could reverse all of the depression-related symptoms, including depressive-like huddling behavior, less spontaneous locomotion, less reactive locomotion, weight loss, anhedonia and hypercortisolism. For the first time, this study observed the SAD symptoms in rhesus macaque, which would provide an important platform for the understanding of the etiology of SAD as well as developing novel therapeutic interventions in the future.

  6. Loss of Signal Transduction and Inhibition of Lymphocyte Locomotion in a Ground-Based Model of Microgravity

    NASA Technical Reports Server (NTRS)

    Sundaresan, Alamelu; Risin, Diana; Pellis, Neal R.

    1999-01-01

    Inflammatory adherence to, and locomotion through the interstitium is an important component of the immune response. Conditions such as true gravity (TG) and modeled microgravity (MMG) severely inhibit lymphocyte locomotion in vitro through gelled Type I collagen (Pellis et al., 1994, 1997). We used the rotating-wall vessel bioreactor (RWV) as a prototype for modeled microgravity. After observing that lymphocyte locomotion was severely affected in modeled microgravity, we found that polyclonal activation of lymphocytes before exposure to modeled microgravity reversed the locomotion inhibition. Phorbol myristate acetate (PMA) treatment of normal peripheral blood lymphocytes, after exposure to modeled microgravity, restored lymphocyte locomotion by 84%. Calcium ionophore had no effect on modeled microgravity-exposed lymphocytes. Therefore, the signal pathways involving calcium may not be affected by modeled microgravity. However, direct activation of Protein Kinase C (PKC) with PMA was effective in restoring locomotion in modeled microgravity almost comparable to normal levels in lymphocytes cultured in static T flasks. Thus, events either at the level of PKC or upstream are affected by modeled microgravity. Treatment of lymphocytes with mitomycin C prior to exposure to modeled microgravity, followed by PMA, restored locomotion to the same extent as nonmitomycin C-treated lymphocytes exposed to modeled microgravity (80-85%). Therefore 1) new DNA synthesis is not necessary to restore locomotion and 2) traditional activation and locomotion share common pathways up to PKC. Thereafter the signals diverge. Furthermore PMA added immediately before or after initiation of modeled microgravity prevents the loss of lymphocyte locomotion.

  7. Posture effects on spontaneous limb movements, alternated stepping, and the leg extension response in neonatal rats.

    PubMed

    Mendez-Gallardo, Valerie; Roberto, Megan E; Kauer, Sierra D; Brumley, Michele R

    2016-03-01

    The development of postural control is considered an important factor for the expression of coordinated behavior such as locomotion. In the natural setting of the nest, newborn rat pups adapt their posture to perform behaviors of ecological relevance such as those related to suckling. The current study explores the role of posture in the expression of three behaviors in the newborn rat: spontaneous limb activity, locomotor-like stepping behavior, and the leg extension response (LER). One-day-old rat pups were tested in one of two postures--prone or supine--on each of these behavioral measures. Results showed that pups expressed more spontaneous activity while supine, more stepping while prone, and no differences in LER expression between the two postures. Together these findings show that posture affects the expression of newborn behavior patterns in different ways, and suggest that posture may act as a facilitator or a limiting factor in the expression of different behaviors during early development.

  8. 40 CFR 92.511 - Remanufactured locomotives: installation audit requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENGINES Manufacturer and Remanufacturer Production Line Testing and Audit Programs § 92.511 Remanufactured locomotives: installation audit requirements. (a) Remanufacturers of locomotives or locomotive engines shall..., component settings and component installations on randomly chosen locomotives in an engine family....

  9. 40 CFR 92.511 - Remanufactured locomotives: installation audit requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... locomotives: installation audit requirements. (a) Remanufacturers of locomotives or locomotive engines shall...: installation audit requirements. 92.511 Section 92.511 Protection of Environment ENVIRONMENTAL PROTECTION..., component settings and component installations on randomly chosen locomotives in an engine family....

  10. Effect of relocation on locomotion and cleanliness in dairy cows.

    PubMed

    Wilkes, Crafton O; Pence, Kristen J; Hurt, Amanda M; Becvar, Ondrej; Knowlton, Katharine F; McGilliard, Michael L; Gwazdauskas, Francis C

    2008-02-01

    This study was conducted to determine the effect that relocation to a new free stall barn had on locomotion and cleanliness of two breeds of dairy cows. The original facility before relocation had cows housed in an 8-row free stall barn. Cows were allocated in a new 4-row free stall facility: cows of two breeds (n=22 Holsteins and 22 Jerseys) were intermixed in the northwest section. Locomotion (scale 1-5) and cleanliness were scored (scale 1-4). Holsteins and Jerseys had no difference in locomotion score throughout 12 weeks following relocation. A lactation number by date interaction showed cows in third and greater lactations had significantly higher locomotion scores (more lameness) by day 86. Locomotion scores increased across breeds during the 86-d observation period, suggesting cows became lamer. Jerseys had cleaner lower legs than Holsteins (2.9+/-0.1 v. 3.5+/-0.1, respectively). Lactation number affected lower leg cleanliness, with scores decreasing as lactation number increased (3.4 v. 3.3 v. 2.9+/-0.10 for first, second and third and greater lactations, respectively; P<0.01). All cows were cleaner (lower scores) after relocation, suggesting that the new facility improved hygiene.

  11. Spontaneous Fission

    DOE R&D Accomplishments Database

    Segre, Emilio

    1950-11-22

    The first attempt to discover spontaneous fission in uranium was made by [Willard] Libby, who, however, failed to detect it on account of the smallness of effect. In 1940, [K. A.] Petrzhak and [G. N.] Flerov, using more sensitive methods, discovered spontaneous fission in uranium and gave some rough estimates of the spontaneous fission decay constant of this substance. Subsequently, extensive experimental work on the subject has been performed by several investigators and will be quoted in the various sections. [N.] Bohr and [A.] Wheeler have given a theory of the effect based on the usual ideas of penetration of potential barriers. On this project spontaneous fission has been studied for the past several years in an effort to obtain a complete picture of the phenomenon. For this purpose the spontaneous fission decay constants {lambda} have been measured for separated isotopes of the heavy elements wherever possible. Moreover, the number {nu} of neutrons emitted per fission has been measured wherever feasible, and other characteristics of the spontaneous fission process have been studied. This report summarizes the spontaneous fission work done at Los Alamos up to January 1, 1945. A chronological record of the work is contained in the Los Alamos monthly reports.

  12. Using Touch-evoked Response and Locomotion Assays to Assess Muscle Performance and Function in Zebrafish

    PubMed Central

    Williams, Caitlin; Bryson-Richardson, Robert J.

    2016-01-01

    Zebrafish muscle development is highly conserved with mammalian systems making them an excellent model to study muscle function and disease. Many myopathies affecting skeletal muscle function can be quickly and easily assessed in zebrafish over the first few days of embryogenesis. By 24 hr post-fertilization (hpf), wildtype zebrafish spontaneously contract their tail muscles and by 48 hpf, zebrafish exhibit controlled swimming behaviors. Reduction in the frequency of, or other alterations in, these movements may indicate a skeletal muscle dysfunction. To analyze swimming behavior and assess muscle performance in early zebrafish development, we utilize both touch-evoked escape response and locomotion assays. Touch-evoked escape response assays can be used to assess muscle performance during short burst movements resulting from contraction of fast-twitch muscle fibers. In response to an external stimulus, which in this case is a tap on the head, wildtype zebrafish at 2 days post-fertilization (dpf) typically exhibit a powerful burst swim, accompanied by sharp turns. Our method quantifies skeletal muscle function by measuring the maximum acceleration during a burst swimming motion, the acceleration being directly proportional to the force produced by muscle contraction. In contrast, locomotion assays during early zebrafish larval development are used to assess muscle performance during sustained periods of muscle activity. Using a tracking system to monitor swimming behavior, we obtain an automated calculation of the frequency of activity and distance in 6-day old zebrafish, reflective of their skeletal muscle function. Measurements of swimming performance are valuable for phenotypic assessment of disease models and high-throughput screening of mutations or chemical treatments affecting skeletal muscle function. PMID:27842370

  13. Locomotion: Control from the Periphery?

    PubMed

    Wyart, Claire

    2017-02-20

    Studies of the neural control of locomotion have tended to focus on the modulation of motoneuron firing by premotor neurons; new work indicates that the regulation of synaptic transmission at the neuromuscular junction can also be important, revealing an inverse relationship between input resistance and synaptic output in motoneurons.

  14. Preference for Western diet coadapts in High Runner mice and affects voluntary exercise and spontaneous physical activity in a genotype-dependent manner.

    PubMed

    Acosta, Wendy; Meek, Thomas H; Schutz, Heidi; Dlugosz, Elizabeth M; Garland, Theodore

    2017-02-01

    Do animals evolve (coadapt) to choose diets that positively affect their performance abilities? We addressed this question from a microevolutionary perspective by examining preference for Western diet (WD: high in fat and sugar, but lower in protein) versus standard rodent chow in adults of both sexes from 4 lines of mice selectively bred for high levels of voluntary wheel running (High Runner or HR lines) and 4 non-selected control (C) lines. We also assessed whether food preference or substitution affects physical activity (wheel running and/or spontaneous physical activity [SPA] in the attached home cages). In experiment 1 (generation 56), mice were given 6days of wheel acclimation (as is used routinely to pick breeders in the selection experiment) prior to a 2-day food choice trial. In experiment 2 (generation 56), 17days of wheel acclimation allowed mice to reach a stable level of daily running, followed by a 7-day food-choice trial. In experiment 3 (generation 58), mice had 6days of wheel acclimation with standard chow, after which half were switched to WD for two days. In experiment 1, WD was highly preferred by all mice, with somewhat greater preference in male C mice. In experiment 2, wheel running increased and SPA decreased continuously for the first 14days of adult wheel testing, followed by 3-day plateaus in both. During the subsequent 7-day food choice trial, HR mice of both sexes preferred WD significantly more than did C mice; moreover, wheel running increased in all groups except males from C lines, with the increase being significantly greater in HR than C, while SPA declined further in all groups. In experiment 3, the effect of being switched to WD depended on both linetype and sex. On standard chow, only HR females showed a significant change in wheel running during nights 7+8, increasing by 10%. In contrast, when switched to WD, C females (+28%), HR females (+33%), and HR males (+10%) all significantly increased their daily wheel

  15. Central Pattern Generator for Locomotion: Anatomical, Physiological, and Pathophysiological Considerations

    PubMed Central

    Guertin, Pierre A.

    2013-01-01

    This article provides a perspective on major innovations over the past century in research on the spinal cord and, specifically, on specialized spinal circuits involved in the control of rhythmic locomotor pattern generation and modulation. Pioneers such as Charles Sherrington and Thomas Graham Brown have conducted experiments in the early twentieth century that changed our views of the neural control of locomotion. Their seminal work supported subsequently by several decades of evidence has led to the conclusion that walking, flying, and swimming are largely controlled by a network of spinal neurons generally referred to as the central pattern generator (CPG) for locomotion. It has been subsequently demonstrated across all vertebrate species examined, from lampreys to humans, that this CPG is capable, under some conditions, to self-produce, even in absence of descending or peripheral inputs, basic rhythmic, and coordinated locomotor movements. Recent evidence suggests, in turn, that plasticity changes of some CPG elements may contribute to the development of specific pathophysiological conditions associated with impaired locomotion or spontaneous locomotor-like movements. This article constitutes a comprehensive review summarizing key findings on the CPG as well as on its potential role in Restless Leg Syndrome, Periodic Leg Movement, and Alternating Leg Muscle Activation. Special attention will be paid to the role of the CPG in a recently identified, and uniquely different neurological disorder, called the Uner Tan Syndrome. PMID:23403923

  16. [Locomotive syndrome and frailty. Locomotive syndrome due to the underlying disease of degenerative arthritis].

    PubMed

    Chosa, Etsuo

    2012-04-01

    Japan became a superaging society. We have been putting a new focus on locomotive syndrome and frailty. The prevention and treatment of locomotive syndromes, such as osteoarthritis, degenerative spondylosis, lumbar canal stenosis, osteoporosis, upper extremity diseases, rheumatoid arthritis, and many other disorders of the locomotive organs are important. Because, the locomotive syndrome results in deterioration of the exercise function and loss of mental and physical health. The aim of locomotive syndrome exercises are: to reduce pain, to restore and improve joint function. We need to take a comprehensive approach to locomotive syndrome, including lifestyle modification, muscle exercise, stretching and therapeutic exercise.

  17. User Control of Simulated Locomotion

    DTIC Science & Technology

    2001-01-05

    position at the head to generate the virtual reference position in the virtual environment. Head sensor 34 .enables the viewpoint to move...place paces are easily mapped into stride length and cadences of the paces taken by the virtual reference or body. The system can also be tuned to...elements, the apparatus for interfacing locomotive 3D movements of a user 10 to a reference (or reference-point, point-of correspondence, virtual

  18. Emotion through Locomotion: Gender Impact

    PubMed Central

    Krüger, Samuel; Sokolov, Alexander N.; Enck, Paul; Krägeloh-Mann, Ingeborg; Pavlova, Marina A.

    2013-01-01

    Body language reading is of significance for daily life social cognition and successful social interaction, and constitutes a core component of social competence. Yet it is unclear whether our ability for body language reading is gender specific. In the present work, female and male observers had to visually recognize emotions through point-light human locomotion performed by female and male actors with different emotional expressions. For subtle emotional expressions only, males surpass females in recognition accuracy and readiness to respond to happy walking portrayed by female actors, whereas females exhibit a tendency to be better in recognition of hostile angry locomotion expressed by male actors. In contrast to widespread beliefs about female superiority in social cognition, the findings suggest that gender effects in recognition of emotions from human locomotion are modulated by emotional content of actions and opposite actor gender. In a nutshell, the study makes a further step in elucidation of gender impact on body language reading and on neurodevelopmental and psychiatric deficits in visual social cognition. PMID:24278456

  19. Lizard locomotion on weak sand

    NASA Astrophysics Data System (ADS)

    Goldman, Daniel

    2005-03-01

    Terrestrial animal locomotion in the natural world can involve complex foot-ground interaction; for example, running on sand probes the solid and fluid behaviors of the medium. We study locomotion of desert-dwelling lizard Callisaurus draconoides (length 16 cm, mass=20 g) during rapid running on sand. To explore the role of foot-ground interaction on locomotion, we study the impact of flat disks ( 2 cm diameter, 10 grams) into a deep (800 particle diameters) bed of 250 μm glass spheres of fixed volume fraction φ 0.59, and use a vertical flow of air (a fluidized bed) to change the material properties of the medium. A constant flow Q below the onset of bed fluidization weakens the solid: at fixed φ the penetration depth and time of a disk increases with increasing Q. We measure the average speed, foot impact depth, and foot contact time as a function of material strength. The animal maintains constant penetration time (30 msec) and high speed (1.4 m/sec) even when foot penetration depth varies as we manipulate material strength. The animals compensate for decreasing propulsion by increasing stride frequency.

  20. Stability of underwater periodic locomotion

    NASA Astrophysics Data System (ADS)

    Jing, Fangxu; Kanso, Eva

    2013-07-01

    Most aquatic vertebrates swim by lateral flapping of their bodies and caudal fins. While much effort has been devoted to understanding the flapping kinematics and its influence on the swimming efficiency, little is known about the stability (or lack of) of periodic swimming. It is believed that stability limits maneuverability and body designs/flapping motions that are adapted for stable swimming are not suitable for high maneuverability and vice versa. In this paper, we consider a simplified model of a planar elliptic body undergoing prescribed periodic heaving and pitching in potential flow. We show that periodic locomotion can be achieved due to the resulting hydrodynamic forces, and its value depends on several parameters including the aspect ratio of the body, the amplitudes and phases of the prescribed flapping.We obtain closedform solutions for the locomotion and efficiency for small flapping amplitudes, and numerical results for finite flapping amplitudes. This efficiency analysis results in optimal parameter values that are in agreement with values reported for some carangiform fish. We then study the stability of the (finite amplitude flapping) periodic locomotion using Floquet theory. We find that stability depends nonlinearly on all parameters. Interesting trends of switching between stable and unstable motions emerge and evolve as we continuously vary the parameter values. This suggests that, for live organisms that control their flapping motion, maneuverability and stability need not be thought of as disjoint properties, rather the organism may manipulate its motion in favor of one or the other depending on the task at hand.

  1. Lunar Balance and Locomotion

    NASA Technical Reports Server (NTRS)

    Paloski, William H.

    2008-01-01

    Balance control and locomotor patterns were altered in Apollo crewmembers on the lunar surface, owing, presumably, to a combination of sensory-motor adaptation during transit and lunar surface operations, decreased environmental affordances associated with the reduced gravity, and restricted joint mobility as well as altered center-of-gravity caused by the EVA pressure suits. Dr. Paloski will discuss these factors, as well as the potential human and mission impacts of falls and malcoordination during planned lunar sortie and outpost missions. Learning objectives: What are the potential impacts of postural instabilities on the lunar surface? CME question: What factors affect balance control and gait stability on the moon? Answer: Sensory-motor adaptation to the lunar environment, reduced mechanical and visual affordances, and altered biomechanics caused by the EVA suit.

  2. The Effect of Increasing Mass upon Locomotion

    NASA Technical Reports Server (NTRS)

    DeWitt, John; Hagan, Donald

    2007-01-01

    The purpose of this investigation was to determine if increasing body mass while maintaining bodyweight would affect ground reaction forces and joint kinetics during walking and running. It was hypothesized that performing gait with increased mass while maintaining body weight would result in greater ground reaction forces, and would affect the net joint torques and work at the ankle, knee and hip when compared to gait with normal mass and bodyweight. Vertical ground reaction force was measured for ten subjects (5M/5F) during walking (1.34 m/s) and running (3.13 m/s) on a treadmill. Subjects completed one minute of locomotion at normal mass and bodyweight and at four added mass (AM) conditions (10%, 20%, 30% and 40% of body mass) in random order. Three-dimensional joint position data were collected via videography. Walking and running were analyzed separately. The addition of mass resulted in several effects. Peak impact forces and loading rates increased during walking, but decreased during running. Peak propulsive forces decreased during walking and did not change during running. Stride time increased and hip extensor angular impulse and positive work increased as mass was added for both styles of locomotion. Work increased at a greater rate during running than walking. The adaptations to additional mass that occur during walking are different than during running. Increasing mass during exercise in microgravity may be beneficial to increasing ground reaction forces during walking and strengthening hip musculature during both walking and running. Future study in true microgravity is required to determine if the adaptations found would be similar in a weightless environment.

  3. TGF-beta 1 stimulation of cell locomotion utilizes the hyaluronan receptor RHAMM and hyaluronan

    PubMed Central

    1993-01-01

    TGF-beta is a potent stimulator of motility in a variety of cell types. It has recently been shown that hyaluronan (HA) can directly promote locomotion of cells through interaction with the HA receptor RHAMM. We have investigated the role of RHAMM and HA in TGF-beta-stimulated locomotion and show that TGF-beta triggers the transcription, synthesis and membrane expression of the RHAMM receptor and the secretion of HA coincident with the induction of the locomotory response. This was demonstrated by both incubating cells with exogenous TGF-beta 1 and by stimulating the production of bioactive TGF-beta 1 in tumor cells transfected with TGF-beta 1 under the control of the metallothionein promoter. TGF-beta 1-induced locomotion was suppressed by antibodies that prevented HA/RHAMM interaction, using polyclonal antibodies to either RHAMM fusion protein or RHAMM peptides, or mAbs to purified RHAMM. Peptides corresponding to the HA-binding motif of RHAMM also suppressed TGF-beta 1-induced increases in motility rate. Spontaneous locomotion of fibrosarcoma cells was blocked by neutralizing secreted TGF-beta with panspecific TGF-beta antibodies and by inhibition of TGF- beta 1 secretion with antisense oligonucleotides. Polyclonal anti-RHAMM fusion protein antibodies and peptide from the RHAMM HA-binding motif also suppressed the spontaneous motility rate of fibrosarcoma cells. These data suggest that fibrosarcoma cell locomotion requires TGF-beta, and the pathway by which TGF-beta stimulates locomotion uses the HA receptor RHAMM and HA. PMID:7693717

  4. TGF-beta 1 stimulation of cell locomotion utilizes the hyaluronan receptor RHAMM and hyaluronan.

    PubMed

    Samuel, S K; Hurta, R A; Spearman, M A; Wright, J A; Turley, E A; Greenberg, A H

    1993-11-01

    TGF-beta is a potent stimulator of motility in a variety of cell types. It has recently been shown that hyaluronan (HA) can directly promote locomotion of cells through interaction with the HA receptor RHAMM. We have investigated the role of RHAMM and HA in TGF-beta-stimulated locomotion and show that TGF-beta triggers the transcription, synthesis and membrane expression of the RHAMM receptor and the secretion of HA coincident with the induction of the locomotory response. This was demonstrated by both incubating cells with exogenous TGF-beta 1 and by stimulating the production of bioactive TGF-beta 1 in tumor cells transfected with TGF-beta 1 under the control of the metallothionein promoter. TGF-beta 1-induced locomotion was suppressed by antibodies that prevented HA/RHAMM interaction, using polyclonal antibodies to either RHAMM fusion protein or RHAMM peptides, or mAbs to purified RHAMM. Peptides corresponding to the HA-binding motif of RHAMM also suppressed TGF-beta 1-induced increases in motility rate. Spontaneous locomotion of fibrosarcoma cells was blocked by neutralizing secreted TGF-beta with panspecific TGF-beta antibodies and by inhibition of TGF-beta 1 secretion with antisense oligonucleotides. Polyclonal anti-RHAMM fusion protein antibodies and peptide from the RHAMM HA-binding motif also suppressed the spontaneous motility rate of fibrosarcoma cells. These data suggest that fibrosarcoma cell locomotion requires TGF-beta, and the pathway by which TGF-beta stimulates locomotion uses the HA receptor RHAMM and HA.

  5. Changes in gravity inhibit lymphocyte locomotion through type I collagen

    NASA Technical Reports Server (NTRS)

    Pellis, N. R.; Goodwin, T. J.; Risin, D.; McIntyre, B. W.; Pizzini, R. P.; Cooper, D.; Baker, T. L.; Spaulding, G. F.

    1997-01-01

    Immunity relies on the circulation of lymphocytes through many different tissues including blood vessels, lymphatic channels, and lymphoid organs. The ability of lymphocytes to traverse the interstitium in both nonlymphoid and lymphoid tissues can be determined in vitro by assaying their capacity to locomote through Type I collagen. In an attempt to characterize potential causes of microgravity-induced immunosuppression, we investigated the effects of simulated microgravity on human lymphocyte function in vitro using a specialized rotating-wall vessel culture system developed at the Johnson Space Center. This very low shear culture system randomizes gravitational vectors and provides an in vitro approximation of microgravity. In the randomized gravity of the rotating-wall vessel culture system, peripheral blood lymphocytes did not locomote through Type I collagen, whereas static cultures supported normal movement. Although cells remained viable during the entire culture period, peripheral blood lymphocytes transferred to unit gravity (static culture) after 6 h in the rotating-wall vessel culture system were slow to recover and locomote into collagen matrix. After 72 h in the rotating-wall vessel culture system and an additional 72 h in static culture, peripheral blood lymphocytes did not recover their ability to locomote. Loss of locomotory activity in rotating-wall vessel cultures appears to be related to changes in the activation state of the lymphocytes and the expression of adhesion molecules. Culture in the rotating-wall vessel system blunted the ability of peripheral blood lymphocytes to respond to polyclonal activation with phytohemagglutinin. Locomotory response remained intact when peripheral blood lymphocytes were activated by anti-CD3 antibody and interleukin-2 prior to introduction into the rotating-wall vessel culture system. Thus, in addition to the systemic stress factors that may affect immunity, isolated lymphocytes respond to gravitational changes

  6. 49 CFR 232.105 - General requirements for locomotives.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... equalizing-reservoir leakage can be corrected. On locomotives equipped with electronic brakes, if the system... charge of a locomotive or locomotive consist, an engineer must know that the brakes are in...

  7. 49 CFR 232.105 - General requirements for locomotives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... equalizing-reservoir leakage can be corrected. On locomotives equipped with electronic brakes, if the system... charge of a locomotive or locomotive consist, an engineer must know that the brakes are in...

  8. [Locomotive syndrome and metabolic syndrome].

    PubMed

    Fukushi, Jun-ichi; Iwamoto, Yukihide

    2014-10-01

    The Japanese Orthopedic Association coined the term locomotive syndrome (LS) to designate a condition of elderly people in high risk groups of requiring nursing care because of problems with their musculoskeletal diseases. LS is a socioeconomic concept, and closely associated with osteoporosis, osteoarthritis, and sarcopenia. Recent studies have revealed that metabolic syndrome (MS), a clustering of cardiovascular risk factors, has been related with LS. For example, individuals with MS have a greater risk of osteoarthritis and sarcopenia. Secreted factors from adipose tissue and skeletal muscles, namely, adipokines and myokines, are involved in the association of LS and MS.

  9. Functions of Intermittent Locomotion in Mustached Tamarins (Saguinus mystax)

    PubMed Central

    Heymann, Eckhard W.

    2010-01-01

    Many animals interrupt their moving with brief pauses, which appear to serve several different functions. We examined the function of such intermittent locomotion in wild living mustached tamarins (Saguinus mystax), small arboreal New World primates that form mixed-species groups with saddleback tamarins (Saguinus fuscicollis). We investigated how different environmental and social factors affect pausing during locomotion and used these data to infer the function of this behavior. As measures of intermittent locomotion, we used percentage of time spent pausing and pause rate. We considered 3 possible functions that are not mutually exclusive: increased endurance, route planning, and antipredator vigilance. Mustached tamarins spent on average (mean ± SE) 55.1 ± 1.0% of time pausing, which makes effective resource exploitation more time consuming and needs to be outweighed by correspondingly large benefits. Percentage of time spent pausing decreased in larger mixed-species groups vs. smaller mixed-species groups and decreased with height and in monkeys carrying infants. It was not affected by sex, age, spatial arrangement, or single-species group size. Pause rate increased in individuals traveling independently compared to those traveling in file, but was not affected by other factors. The group size effect in mixed-species groups lends support to the notion that pausing during locomotion is an antipredator tactic that can be reduced in the increased safety of larger groups, but other results suggest that additional functions, particularly route planning, are also of great importance. Benefits in terms of predator confusion and group movement coordination are also likely to play a role and remain a topic for further research. PMID:20949115

  10. 77 FR 21311 - Locomotive Safety Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-09

    ... existing locomotive safety needs and recommending consideration of specific actions useful to advance the...-diagnostic technology and advanced computer control, and that the locomotives were designed by the... actions useful to advance the safety of rail operations. The RSAC established the Working Group to...

  11. Novel locomotion via biological inspiration

    NASA Astrophysics Data System (ADS)

    Quinn, Roger D.; Boxerbaum, Alexander; Palmer, Luther; Chiel, Hillel; Diller, Eric; Hunt, Alexander; Bachmann, Richard

    2011-05-01

    Animal behavioral, physiological and neurobiological studies are providing a wealth of inspirational data for robot design and control. Several very different biologically inspired mobile robots will be reviewed. A robot called DIGbot is being developed that moves independent of the direction of gravity using Distributed Inward Gripping (DIG) as a rapid and robust attachment mechanism observed in climbing animals. DIGbot is an 18 degree of freedom hexapod with onboard power and control systems. Passive compliance in its feet, which is inspired by the flexible tarsus of the cockroach, increases the robustness of the adhesion strategy and enables DIGbot to execute large steps and stationary turns while walking on mesh screens. A Whegs™ robot, inspired by insect locomotion principles, is being developed that can be rapidly reconfigured between tracks and wheel-legs and carry GeoSystems Zipper Mast. The mechanisms that cause it to passively change its gait on irregular terrain have been integrated into its hubs for a compact and modular design. The robot is designed to move smoothly on moderately rugged terrain using its tracks and run on irregular terrain and stairs using its wheel-legs. We are also developing soft bodied robots that use peristalsis, the same method of locomotion earthworms use. We present a technique of using a braided mesh exterior to produce fluid waves of motion along the body of the robot that increase the robot's speed relative to previous designs. The concept is highly scalable, for endoscopes to water, oil or gas line inspection.

  12. Chronic jet lag impairs startle-induced locomotion in Drosophila.

    PubMed

    Vaccaro, Alexandra; Birman, Serge; Klarsfeld, André

    2016-12-01

    Endogenous circadian clocks with ~24-h periodicity are found in most organisms from cyanobacteria to humans. Daylight synchronizes these clocks to solar time. In humans, shift-work and jet lag perturb clock synchronization, and such perturbations, when repeated or chronic, are strongly suspected to be detrimental to healthspan. Here we investigated locomotor aging and longevity in Drosophila melanogaster with genetically or environmentally disrupted clocks. We compared two mutations in period (per, a gene essential for circadian rhythmicity in Drosophila), after introducing them in a common reference genetic background: the arrhythmic per(01), and per(T) which displays robust short 16-h rhythms. Compared to the wild type, both per mutants showed reduced longevity and decreased startle-induced locomotion in aging flies, while spontaneous locomotor activity was not impaired. The per(01) phenotypes were generally less severe than those of per(T), suggesting that chronic jet lag is more detrimental to aging than arrhythmicity in Drosophila. Interestingly, the adjustment of environmental light-dark cycles to the endogenous rhythms of the per(T) mutant fully suppressed the acceleration in the age-related decline of startle-induced locomotion, while it accelerated this decline in wild-type flies. Overall, our results show that chronic jet lag accelerates a specific form of locomotor aging in Drosophila, and that this effect can be alleviated by environmental changes that ameliorate circadian rhythm synchronization.

  13. Data-driven stochastic modelling of zebrafish locomotion.

    PubMed

    Zienkiewicz, Adam; Barton, David A W; Porfiri, Maurizio; di Bernardo, Mario

    2015-11-01

    In this work, we develop a data-driven modelling framework to reproduce the locomotion of fish in a confined environment. Specifically, we highlight the primary characteristics of the motion of individual zebrafish (Danio rerio), and study how these can be suitably encapsulated within a mathematical framework utilising a limited number of calibrated model parameters. Using data captured from individual zebrafish via automated visual tracking, we develop a model using stochastic differential equations and describe fish as a self propelled particle moving in a plane. Based on recent experimental evidence of the importance of speed regulation in social behaviour, we extend stochastic models of fish locomotion by introducing experimentally-derived processes describing dynamic speed regulation. Salient metrics are defined which are then used to calibrate key parameters of coupled stochastic differential equations, describing both speed and angular speed of swimming fish. The effects of external constraints are also included, based on experimentally observed responses. Understanding the spontaneous dynamics of zebrafish using a bottom-up, purely data-driven approach is expected to yield a modelling framework for quantitative investigation of individual behaviour in the presence of various external constraints or biological assays.

  14. Continuum limbed robots for locomotion

    NASA Astrophysics Data System (ADS)

    Mutlu, Alper

    This thesis focuses on continuum robots based on pneumatic muscle technology. We introduce a novel approach to use these muscles as limbs of lightweight legged robots. The flexibility of the continuum legs of these robots offers the potential to perform some duties that are not possible with classical rigid-link robots. Potential applications are as space robots in low gravity, and as cave explorer robots. The thesis covers the fabrication process of continuum pneumatic muscles and limbs. It also provides some new experimental data on this technology. Afterwards, the designs of two different novel continuum robots - one tripod, one quadruped - are introduced. Experimental data from tests using the robots is provided. The experimental results are the first published example of locomotion with tripod and quadruped continuum legged robots. Finally, discussion of the results and how far this technology can go forward is presented.

  15. Excitability changes of ankle extensor group Ia and Ib fibers during fictive locomotion in the cat.

    PubMed

    Dueñas, S H; Rudomin, P

    1988-01-01

    The present study examines the modulation of gastrocnemius-soleus (GS) monosynaptic reflexes as well as the intraspinal threshold changes of GS group I primary afferent terminals ending in the intermediate and motor nuclei during fictive locomotion in high decerebrate cats. The amplitude of the monosynaptic reflexes (MSR's) evoked in the medial gastrocnemius by stimulation of the lateral gastrocnemius nerve was increased during the extensor (E) phase, decreased during the flexion (F) phase of the step cycle and remained transiently increased after spontaneous episodes of fictive stepping. The intraspinal threshold of populations and of single group Ia GS afferent fibers ending in the motor pool, as well as of single Ia and Ib fibers ending in the intermediate nucleus, showed a sustained reduction during the episodes of fictive locomotion with superimposed cyclic changes in phase with the step cycle. During fictive walking and trotting the reduction of the intraspinal threshold of both Ia and Ib fiber terminals was maximal during the middle or late portion of the F-phase. During fictive gallop elicited by stimulation of the superficial peroneus nerve, the decrease in the intraspinal threshold of the Ia afferent fibers occurred however in phase with the activity of the GS motoneurons. During episodes of fictive locomotion slow, sustained negative DC potential shifts lasting tents of seconds, reflecting an increase in the extracellular potassium concentration were recorded at the base of the dorsal horn and in the intermediate nucleus. The present findings support the existence of tonic and phasic depolarization of the intraspinal terminals of GS group Ia and Ib primary afferents during spontaneous fictive locomotion. It is suggested that accumulation of potassium ions in the extracellular space contributes mainly to the sustained depolarization of group I fibers. The phasic depolarization would be mostly due to the activation of specific sets of interneurons and may

  16. Unifying Rules for Aquatic Locomotion

    NASA Astrophysics Data System (ADS)

    Saadat, Mehdi; Domel, August; di Santo, Valentina; Lauder, George; Haj-Hariri, Hossein

    2016-11-01

    Strouhal number, St (=fA/U) , a scaling parameter that relates speed, U, to the tail-beat frequency, f, and tail-beat amplitude, A, has been used many times to describe animal locomotion. It has been observed that swimming animals cruise at 0.2 <=St <=0.4. Using simple dimensional and scaling analyses supported by new experimental evidence of a self-propelled fish-like swimmer, we show that when cruising at minimum hydrodynamic input power, St is predetermined, and is only a function of the shape, i.e. drag coefficient and area. The narrow range for St, 0.2-0.4, has been previously associated with optimal propulsive efficiency. However, St alone is insufficient for deciding optimal motion. We show that hydrodynamic input power (energy usage to propel over a unit distance) in fish locomotion is minimized at all cruising speeds when A* (= A/L), a scaling parameter that relates tail-beat amplitude, A, to the length of the swimmer, L, is constrained to a narrow range of 0.15-0.25. Our analysis proposes a constraint on A*, in addition to the previously found constraint on St, to fully describe the optimal swimming gait for fast swimmers. A survey of kinematics for dolphin, as well as new data for trout, show that the range of St and A* for fast swimmers indeed are constrained to 0.2-0.4 and 0.15-0.25, respectively. Our findings provide physical explanation as to why fast aquatic swimmers cruise with relatively constant tail-beat amplitude at approximately 20 percent of body length, while their swimming speed is linearly correlated with their tail-beat frequency.

  17. 40 CFR 92.214 - Production locomotives and engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Production locomotives and engines. 92... (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Certification Provisions § 92.214 Production locomotives and engines. Any manufacturer or remanufacturer obtaining...

  18. 40 CFR 92.214 - Production locomotives and engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Production locomotives and engines. 92... (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Certification Provisions § 92.214 Production locomotives and engines. Any manufacturer or remanufacturer obtaining...

  19. 40 CFR 92.214 - Production locomotives and engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Production locomotives and engines. 92... (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Certification Provisions § 92.214 Production locomotives and engines. Any manufacturer or remanufacturer obtaining...

  20. 40 CFR 92.214 - Production locomotives and engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Production locomotives and engines. 92... (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Certification Provisions § 92.214 Production locomotives and engines. Any manufacturer or remanufacturer obtaining...

  1. 49 CFR 229.121 - Locomotive cab noise.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Locomotive cab noise. 229.121 Section 229.121... § 229.121 Locomotive cab noise. (a) Performance standards for locomotives. (1) When tested for static noise in accordance with paragraph (a)(3) of this section, all locomotives of each design or model...

  2. 49 CFR 229.121 - Locomotive cab noise.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Locomotive cab noise. 229.121 Section 229.121... § 229.121 Locomotive cab noise. (a) Performance standards for locomotives. (1) When tested for static noise in accordance with paragraph (a)(3) of this section, all locomotives of each design or model...

  3. 49 CFR 229.121 - Locomotive cab noise.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locomotive cab noise. 229.121 Section 229.121... § 229.121 Locomotive cab noise. (a) Performance standards for locomotives. (1) When tested for static noise in accordance with paragraph (a)(3) of this section, all locomotives of each design or model...

  4. 49 CFR 238.223 - Locomotive fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Locomotive fuel tanks. 238.223 Section 238.223... Equipment § 238.223 Locomotive fuel tanks. Locomotive fuel tanks shall comply with either the following or....21: (a) External fuel tanks. External locomotive fuel tanks shall comply with the...

  5. 49 CFR 238.223 - Locomotive fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Locomotive fuel tanks. 238.223 Section 238.223... Equipment § 238.223 Locomotive fuel tanks. Locomotive fuel tanks shall comply with either the following or....21: (a) External fuel tanks. External locomotive fuel tanks shall comply with the...

  6. 49 CFR 230.106 - Steam locomotive frame.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Steam locomotive frame. 230.106 Section 230.106..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.106 Steam locomotive frame. (a) Maintenance...

  7. 49 CFR 230.21 - Steam locomotive number change.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Steam locomotive number change. 230.21 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General Recordkeeping Requirements § 230.21 Steam locomotive number change. When a steam locomotive number is...

  8. 49 CFR 230.106 - Steam locomotive frame.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Steam locomotive frame. 230.106 Section 230.106..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.106 Steam locomotive frame. (a) Maintenance...

  9. 49 CFR 230.106 - Steam locomotive frame.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Steam locomotive frame. 230.106 Section 230.106..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.106 Steam locomotive frame. (a) Maintenance...

  10. 49 CFR 230.21 - Steam locomotive number change.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Steam locomotive number change. 230.21 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General Recordkeeping Requirements § 230.21 Steam locomotive number change. When a steam locomotive number is...

  11. 49 CFR 230.106 - Steam locomotive frame.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Steam locomotive frame. 230.106 Section 230.106..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.106 Steam locomotive frame. (a) Maintenance...

  12. 49 CFR 230.21 - Steam locomotive number change.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Steam locomotive number change. 230.21 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General Recordkeeping Requirements § 230.21 Steam locomotive number change. When a steam locomotive number is...

  13. 49 CFR 230.21 - Steam locomotive number change.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive number change. 230.21 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General Recordkeeping Requirements § 230.21 Steam locomotive number change. When a steam locomotive number is...

  14. 49 CFR 230.21 - Steam locomotive number change.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Steam locomotive number change. 230.21 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General Recordkeeping Requirements § 230.21 Steam locomotive number change. When a steam locomotive number is...

  15. 49 CFR 238.223 - Locomotive fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locomotive fuel tanks. 238.223 Section 238.223... Equipment § 238.223 Locomotive fuel tanks. Locomotive fuel tanks shall comply with either the following or....21: (a) External fuel tanks. External locomotive fuel tanks shall comply with the...

  16. The primate semicircular canal system and locomotion

    PubMed Central

    Spoor, Fred; Garland, Theodore; Krovitz, Gail; Ryan, Timothy M.; Silcox, Mary T.; Walker, Alan

    2007-01-01

    The semicircular canal system of vertebrates helps coordinate body movements, including stabilization of gaze during locomotion. Quantitative phylogenetically informed analysis of the radius of curvature of the three semicircular canals in 91 extant and recently extinct primate species and 119 other mammalian taxa provide support for the hypothesis that canal size varies in relation to the jerkiness of head motion during locomotion. Primate and other mammalian species studied here that are agile and have fast, jerky locomotion have significantly larger canals relative to body mass than those that move more cautiously. PMID:17576932

  17. Warning system against locomotive driving wheel flaccidity

    NASA Astrophysics Data System (ADS)

    Luo, Peng

    2014-09-01

    Causes of locomotive relaxation are discussed. Alarm system against locomotive driving wheel flaccidity is designed by means of techniques of infrared temperature measurement and Hall sensor measurement. The design scheme of the system, the principle of detecting locomotive driving wheel flaccidity with temperature and Hall sensor is introduced, threshold temperature of infrared alarm is determined. The circuit system is designed by microcontroller technology and the software is designed with the assembly language. The experiment of measuring the flaccid displacement with Hall sensor measurement is simulated. The results show that the system runs well with high reliability and low cost, which has a wide prospect of application and popularization.

  18. A scattering approach for locomotion on heterogeneous granular media

    NASA Astrophysics Data System (ADS)

    Zhang, Tingnan; Qian, Feifei; Kamor, Adam; Cvitanovic, Predrag; Goldman, Daniel

    2014-03-01

    Locomotion on homogeneous particulate media has been recently studied using biological and robotic experiment and modeled using multi-particle discrete element simulation and empirical resistive force theory. Little is known about how locomotion is affected when environments are composed of particles with a large distribution of sizes. We study in experiment and a reduced order model, locomotion dynamics when particle sizes are widely separated. A hexapedal robot (~15 cm, ~100 g) interacts with a single boulder (whose size is comparable to the robot) during runs on a substrate of homogeneous, loosely packed poppy seeds. We vary the perpendicular distance between the center of the boulder and the trajectory of the robot's center of mass (CoM) before collision (the impact parameter), and measure the post-collision direction. For fixed impact parameter, the CoM deflection sensitively depends on the boulder contact point and leg phase. Counterintuitively, the interactions are largely attractive; the robot turns towards the scattering center. To understand the long-time dynamics, in a reduced-order model, we treat the scattering angle as a function of only the impact parameter with other effects modeled as noise; we thereby extend the study to an infinite field of boulders. This work is supported by DARPA.

  19. Using a robot to study the evolution of legged locomotion

    NASA Astrophysics Data System (ADS)

    McInroe, Benjamin; Astley, Henry; Goldman, Daniel I.

    2014-03-01

    Throughout history, many organisms have used flipper-like limbs for both aquatic and terrestrial locomotion. Modern examples include mudskippers and sea turtles; extinct examples include walkers such as the early tetrapodIchthyostega. In the transition from an aquatic to a terrestrial environment, early walkers had to adapt to the challenges of locomotion over flowable media like sand and mud. Previously, we discovered that a flipper with an elbow-like joint that could passively flex and extend toward and away from the body aided crawling on dry granular media [Mazouchova et. al. 2013], a result related to the jamming of material behind and beneath the flipper. To gain insight into how an additional degree of freedom of this joint affects flipper-based locomotors, we have built a robotic model with limb-joint morphology inspired by Ichthyostega. We add to our previous limb design a passive degree of freedom that allows for supination/pronation of the flipper about a variable insertion angle. Springs at the joints restore the flippers to equilibrium positions after interaction with the media. We study the crutching locomotion of the robot performing a symmetric gait, varying flipper-joint degrees of freedom and limb cycle frequency. This work was supported by NSF PoLS.

  20. 49 CFR 212.215 - Locomotive inspector.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... four years of experience in locomotive construction or maintenance. A bachelor's degree in mechanical engineering or a related technical specialization may be substituted for two of the four years of...

  1. 49 CFR 212.215 - Locomotive inspector.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... four years of experience in locomotive construction or maintenance. A bachelor's degree in mechanical engineering or a related technical specialization may be substituted for two of the four years of...

  2. 49 CFR 212.215 - Locomotive inspector.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... four years of experience in locomotive construction or maintenance. A bachelor's degree in mechanical engineering or a related technical specialization may be substituted for two of the four years of...

  3. 49 CFR 212.215 - Locomotive inspector.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... four years of experience in locomotive construction or maintenance. A bachelor's degree in mechanical engineering or a related technical specialization may be substituted for two of the four years of...

  4. 49 CFR 212.215 - Locomotive inspector.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... four years of experience in locomotive construction or maintenance. A bachelor's degree in mechanical engineering or a related technical specialization may be substituted for two of the four years of...

  5. 76 FR 8699 - Locomotive Safety Standards; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Railroad Administration 49 CFR Parts 229 and 238 RIN 2130-AC16 Locomotive Safety Standards; Correction AGENCY: Federal Railroad Administration (FRA), DOT. ACTION: Proposed rule; correction....

  6. Chronic intracerebroventricular exposure to beta-amyloid(1-40) impairs object recognition but does not affect spontaneous locomotor activity or sensorimotor gating in the rat.

    PubMed

    Nag, S; Tang, F; Yee, B K

    2001-01-01

    This study examined the cognitive effects of chronic in vivo exposure to beta-amyloid(1-40) via the intracerebroventricular route on two distinct paradigms. The first test evaluated a form of early attentional control referred to as sensorimotor gating in which an antecedent weak prepulse stimulus modulates the reactivity to a subsequent startle-eliciting stimulus. The second test utilized the spontaneous preference for a novel object over that of a familiar one in rats as a measure of object recognition memory. We found that beta-amyloid exposure leads to a severe deficit in the object memory test but spares sensorimotor gating. Moreover, unlike the water maze deficit induced by beta-amyloid (Nag et al., in preparation), the deficit on object recognition was resistant to amelioration by systemic physostigmine treatment at a dose of 0.06 mg/kg per day intraperitoneally. The present results add to previous reports that beta-amyloid exposure can lead to deficits on hippocampal lesion sensitive tasks, suggesting that dysfunction of the rhinal cortices in addition to that of the septohippocampal system is implicated in beta-amyloid-induced behavioral impairments. It therefore lends support to the hypothesis that beta-amyloid exposure can lead to severe impairment across multiple memory systems.

  7. Pharmacogenetic interaction between dexamethasone and Cd36-deficient segment of spontaneously hypertensive rat chromosome 4 affects triacylglycerol and cholesterol distribution into lipoprotein fractions.

    PubMed

    Krupková, Michaela; Sedová, Lucie; Liska, Frantisek; Krenová, Drahomíra; Kren, Vladimír; Seda, Ondrej

    2010-04-16

    Dexamethasone (DEX) is known to induce diabetes and dyslipidemia. We have compared fasting triacylglycerol and cholesterol concentrations across 20 lipoprotein fractions and glucose tolerance in control (standard diet) and DEX-treated 7-month-old males of two rat strains, Brown Norway (BN) and congenic BN.SHR-(Il6-Cd36)/Cub (BN.SHR4). These two inbred strains differ in a defined segment of chromosome 4, originally transferred from the spontaneously hypertensive rat (SHR) including the mutant Cd36 gene, a known target of DEX. Compared to BN, the standard-diet-fed BN.SHR4 showed higher cholesterol and triacylglycerol concentrations across many lipoprotein fractions, particularly in small VLDL and LDL particles. Total cholesterol was decreased by DEX by more than 21% in BN.SHR4 contrasting with the tendency to increase in BN (strain*DEX interaction p = 0.0017). Similar pattern was observed for triacylglycerol concentrations in LDL. The LDL particle size was significantly reduced by DEX in both strains. Also, while control BN and BN.SHR4 displayed comparable glycaemic profiles during oral glucose tolerance test, we observed a markedly blunted DEX induction of glucose intolerance in BN.SHR4 compared to BN. In summary, we report a pharmacogenetic interaction between limited genomic segment with mutated Cd36 gene and dexamethasone-induced glucose intolerance and triacylglycerol and cholesterol redistribution into lipoprotein fractions.

  8. Spontaneous Coronary Artery Dissection

    MedlinePlus

    Spontaneous coronary artery dissection (SCAD) Overview By Mayo Clinic Staff Spontaneous coronary artery dissection — sometimes referred to as SCAD — is an ... the blood vessels in the heart. Spontaneous coronary artery dissection (SCAD) can slow or block blood flow ...

  9. Kinematic determinants of human locomotion.

    PubMed Central

    Borghese, N A; Bianchi, L; Lacquaniti, F

    1996-01-01

    1. The aim of this study was to find kinematic patterns that are invariant across the normal range of locomotion speeds. Subjects walked at different, freely chosen speeds ranging from 0.9 to 2.1 m s-1, while motion and ground reaction forces on the right side of the body were recorded in three-dimensional space. 2. The time course of the anatomical angles of flexion-extension at the hip and ankle was variable not only across subjects, but even from trial to trial in the same subject. By contrast, the time course of the changes in the angles of elevation of each limb segment (pelvis, thigh, shank and foot) relative to the vertical was stereotyped across subjects. 3. To compare the waveforms across speeds, data were scaled in time relative to gait cycle duration. The pattern of ground reaction forces was highly speed dependent. Several distinct families of curves could be recognized in the flexion-extension angles at the hip and ankle. Instead, the waveforms of global length and elevation of the limb, elevation angles of all limb segments and flexion-extension at the knee were invariant with speed. 4. When gait trajectories at all speeds are plotted in the position space defined by the elevation angles of the limb segments, they describe regular loops on a plane. The statistical characteristics of these angular covariations were quantified by means of principal component analysis. The first two principal components accounted together for > 99% of the total experimental variance, and were quantitatively comparable in all subjects. 5. This constraint of planar covariation of the elevation angles is closely reminiscent of that previously described for the control of posture. The existence of laws of intersegmental co-ordination, common to the control of posture and locomotion, presumably assures the maintenance of dynamic equilibrium during forward progression, and the anticipatory adaptation to potentially destabilizing factors by means of co-ordinated kinematic

  10. Characterization of undulatory locomotion in granular media

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei; Pak, On Shun; Elfring, Gwynn

    2015-11-01

    Undulatory locomotion is ubiquitous in nature, from the swimming of flagellated microorganisms in biological fluids, to the slithering of snakes on land, or the locomotion of sandfish lizards in sand. Analysis of locomotion in granular materials is relatively less developed compared with fluids partially due to a lack of validated force models but a recently proposed resistive force theory (RFT) in granular media has been shown useful in studying the locomotion of a sand-swimming lizard. Here we employ this model to investigate the swimming characteristics of an undulating slender filament of both finite and infinite length. For infinite swimmers, similar to results in viscous fluids, the sawtooth waveform is found to be optimal for propulsion speed at a given power consumption. We also compare the swimming characteristics of sinusoidal and sawtooth swimmers with swimming in viscous fluids. More complex swimming dynamics emerge when the assumption of an infinite swimmer is removed. In particular, we characterize the effects of drifting and pitching in terms of propulsion speed and efficiency for a finite sinusoidal swimmer. The results complement our understanding of undulatory locomotion and provide insights into the effective design of locomotive systems in granular media.

  11. Characteristics of undulatory locomotion in granular media

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei; Pak, On Shun; Elfring, Gwynn J.

    2016-03-01

    Undulatory locomotion is ubiquitous in nature and observed in different media, from the swimming of flagellated microorganisms in biological fluids, to the slithering of snakes on land, or the locomotion of sandfish lizards in sand. Despite the similarity in the undulating pattern, the swimming characteristics depend on the rheological properties of different media. Analysis of locomotion in granular materials is relatively less developed compared with fluids partially due to a lack of validated force models but recently a resistive force theory in granular media has been proposed and shown useful in studying the locomotion of a sand-swimming lizard. Here we employ the proposed model to investigate the swimming characteristics of a slender filament, of both finite and infinite length, undulating in a granular medium and compare the results with swimming in viscous fluids. In particular, we characterize the effects of drifting and pitching in terms of propulsion speed and efficiency for a finite sinusoidal swimmer. We also find that, similar to Lighthill's results using resistive force theory in viscous fluids, the sawtooth swimmer is the optimal waveform for propulsion speed at a given power consumption in granular media. The results complement our understanding of undulatory locomotion and provide insights into the effective design of locomotive systems in granular media.

  12. Push-Pull Locomotion for Vehicle Extrication

    NASA Technical Reports Server (NTRS)

    Creager, Colin M.; Johnson, Kyle A.; Plant, Mark; Moreland, Scott J.; Skonieczny, Krzysztof

    2014-01-01

    For applications in which unmanned vehicles must traverse unfamiliar terrain, there often exists the risk of vehicle entrapment. Typically, this risk can be reduced by using feedback from on-board sensors that assess the terrain. This work addressed the situations where a vehicle has already become immobilized or the desired route cannot be traversed using conventional rolling. Specifically, the focus was on using push-pull locomotion in high sinkage granular material. Push-pull locomotion is an alternative mode of travel that generates thrust through articulated motion, using vehicle components as anchors to push or pull against. It has been revealed through previous research that push-pull locomotion has the capacity for generating higher net traction forces than rolling, and a unique optical flow technique indicated that this is the result of a more efficient soil shearing method. It has now been found that pushpull locomotion results in less sinkage, lower travel reduction, and better power efficiency in high sinkage material as compared to rolling. Even when starting from an "entrapped" condition, push-pull locomotion was able to extricate the test vehicle. It is the authors' recommendation that push-pull locomotion be considered as a reliable back-up mode of travel for applications where terrain entrapment is a possibility.

  13. A study of snake-like locomotion through the analysis of a flexible robot model

    PubMed Central

    Cicconofri, Giancarlo; DeSimone, Antonio

    2015-01-01

    We examine the problem of snake-like locomotion by studying a system consisting of a planar inextensible elastic rod with adjustable spontaneous curvature, which provides an internal actuation mechanism that mimics muscular action in a snake. Using a Cosserat model, we derive the equations of motion in two special cases: one in which the rod can only move along a prescribed curve, and one in which the rod is constrained to slide longitudinally without slipping laterally, but the path is not fixed a priori (free-path case). The second setting is inspired by undulatory locomotion of snakes on flat surfaces. The presence of constraints leads in both cases to non-standard boundary conditions that allow us to close and solve the equations of motion. The kinematics and dynamics of the system can be recovered from a one-dimensional equation, without any restrictive assumption on the followed trajectory or the actuation. We derive explicit formulae highlighting the role of spontaneous curvature in providing the driving force (and the steering, in the free-path case) needed for locomotion. We also provide analytical solutions for a special class of serpentine motions, which enable us to discuss the connection between observed trajectories, internal actuation and forces exchanged with the environment. PMID:26807040

  14. Gravitational Effects upon Locomotion Posture

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Bentley, Jason R.; Edwards, W. Brent; Perusek, Gail P.; Samorezov, Sergey

    2008-01-01

    Researchers use actual microgravity (AM) during parabolic flight and simulated microgravity (SM) obtained with horizontal suspension analogs to better understand the effect of gravity upon gait. In both environments, the gravitational force is replaced by an external load (EL) that returns the subject to the treadmill. However, when compared to normal gravity (N), researchers consistently find reduced ground reaction forces (GRF) and subtle kinematic differences (Schaffner et al., 2005). On the International Space Station, the EL is applied by elastic bungees attached to a waist and shoulder harness. While bungees can provide EL approaching body weight (BW), their force-length characteristics coupled with vertical oscillations of the body during gait result in a variable load. However, during locomotion in N, the EL is consistently equal to 100% body weight. Comparisons between AM and N have shown that during running, GRF are decreased in AM (Schaffner et al, 2005). Kinematic evaluations in the past have focussed on joint range of motion rather than joint posture at specific instances of the gait cycle. The reduced GRF in microgravity may be a result of differing hip, knee, and ankle positions during contact. The purpose of this investigation was to compare joint angles of the lower extremities during walking and running in AM, SM, and N. We hypothesized that in AM and SM, joints would be more flexed at heel strike (HS), mid-stance (MS) and toe-off (TO) than in N.

  15. Patterned control of human locomotion

    PubMed Central

    Lacquaniti, Francesco; Ivanenko, Yuri P; Zago, Myrka

    2012-01-01

    There is much experimental evidence for the existence of biomechanical constraints which simplify the problem of control of multi-segment movements. In addition, it has been hypothesized that movements are controlled using a small set of basic temporal components or activation patterns, shared by several different muscles and reflecting global kinematic and kinetic goals. Here we review recent studies on human locomotion showing that muscle activity is accounted for by a combination of few basic patterns, each one timed at a different phase of the gait cycle. Similar patterns are involved in walking and running at different speeds, walking forwards or backwards, and walking under different loading conditions. The corresponding weights of distribution to different muscles may change as a function of the condition, allowing highly flexible control. Biomechanical correlates of each activation pattern have been described, leading to the hypothesis that the co-ordination of limb and body segments arises from the coupling of neural oscillators between each other and with limb mechanical oscillators. Muscle activations need only intervene during limited time epochs to force intrinsic oscillations of the system when energy is lost. PMID:22411012

  16. Passive locomotion in unsteady flows

    NASA Astrophysics Data System (ADS)

    Ghaemi Oskouei, Babak; Kanso, Eva

    2010-11-01

    The passive locomotion of a submerged body in unsteady flow is studied. This work is motivated by recent experimental evidence that live and dead trout exploit vortices in the wake of an oscillating cylinder to swim upstream. We consider a simple model of a rigid body interacting dynamically with idealized wake models. The wake models consist of point vortices periodically introduced into the fluid domain to emulate shedding of vortices from an external un-modeled fixed or moving obstacle producing a "drag" or "thrust" wake, respectively. Both symmetric and staggered vortex configurations are considered. The submerged body is free to move in the plane, that is to say, it is not pinned at a given point. We do not prescribe a background flow, we rather consider the two-way coupled dynamics between the body's motion and the advection of ambient vortices. We show that both circular and elliptical bodies could "swim" passively against the flow by extracting energy from the ambient vortices. We obtain periodic trajectories for the body-vortex system and analyze their linear stability. We propose active feedback control strategies to overcome the instabilities.

  17. Bipedal locomotion in granular media

    NASA Astrophysics Data System (ADS)

    Kingsbury, Mark; Zhang, Tingnan; Goldman, Daniel

    Bipedal walking, locomotion characterized by alternating swing and double support phase, is well studied on ground where feet do not penetrate the substrate. On granular media like sand however, intrusion and extrusion phases also occur. In these phases, relative motion of the two feet requires that one or both feet slip through the material, degrading performance. To study walking in these phases, we designed and studied a planarized bipedal robot (1.6 kg, 42 cm) that walked in a fluidized bed of poppy seeds. We also simulated the robot in a multibody software environment (Chrono) using granular resistive force theory (RFT) to calculate foot forces. In experiment and simulation, the robot experienced slip during the intrusion phase, with the experiment presenting additional slip due to motor control error during the double support phase. This exaggerated slip gave insight (through analysis of ground reaction forces in simulation) into how slip occurs when relative motion exists between the two feet in the granular media, where the foot with higher relative drag forces (from its instantaneous orientation, rotation, relative direction of motion, and depth) remains stationary. With this relationship, we generated walking gaits for the robot to walk with minimal slip.

  18. A Spontaneous Missense Mutation in Branched Chain Keto Acid Dehydrogenase Kinase in the Rat Affects Both the Central and Peripheral Nervous Systems.

    PubMed

    Zigler, J Samuel; Hodgkinson, Colin A; Wright, Megan; Klise, Andrew; Sundin, Olof; Broman, Karl W; Hejtmancik, Fielding; Huang, Hao; Patek, Bonnie; Sergeev, Yuri; Hose, Stacey; Brayton, Cory; Xaiodong, Jiao; Vasquez, David; Maragakis, Nicholas; Mori, Susumu; Goldman, David; Hoke, Ahmet; Sinha, Debasish

    2016-01-01

    A novel mutation, causing a phenotype we named frogleg because its most obvious characteristic is a severe splaying of the hind limbs, arose spontaneously in a colony of Sprague-Dawley rats. Frogleg is a complex phenotype that includes abnormalities in hind limb function, reduced brain weight with dilated ventricles and infertility. Using micro-satellite markers spanning the entire rat genome, the mutation was mapped to a region of rat chromosome 1 between D1Rat131 and D1Rat287. Analysis of whole genome sequencing data within the linkage interval, identified a missense mutation in the branched-chain alpha-keto dehydrogenase kinase (Bckdk) gene. The protein encoded by Bckdk is an integral part of an enzyme complex located in the mitochondrial matrix of many tissues which regulates the levels of the branched-chain amino acids (BCAAs), leucine, isoleucine and valine. BCAAs are essential amino acids (not synthesized by the body), and circulating levels must be tightly regulated; levels that are too high or too low are both deleterious. BCKDK phosphorylates Ser293 of the E1α subunit of the BCKDH protein, which catalyzes the rate-limiting step in the catabolism of the BCAAs, inhibiting BCKDH and thereby, limiting breakdown of the BCAAs. In contrast, when Ser293 is not phosphorylated, BCKDH activity is unchecked and the levels of the BCAAs will decrease dramatically. The mutation is located within the kinase domain of Bckdk and is predicted to be damaging. Consistent with this, we show that in rats homozygous for the mutation, phosphorylation of BCKDH in the brain is markedly decreased relative to wild type or heterozygous littermates. Further, circulating levels of the BCAAs are reduced by 70-80% in animals homozygous for the mutation. The frogleg phenotype shares important characteristics with a previously described Bckdk knockout mouse and with human subjects with Bckdk mutations. In addition, we report novel data regarding peripheral neuropathy of the hind limbs.

  19. A Spontaneous Missense Mutation in Branched Chain Keto Acid Dehydrogenase Kinase in the Rat Affects Both the Central and Peripheral Nervous Systems

    PubMed Central

    Zigler, J. Samuel; Hodgkinson, Colin A.; Wright, Megan; Klise, Andrew; Broman, Karl W.; Huang, Hao; Patek, Bonnie; Sergeev, Yuri; Hose, Stacey; Xaiodong, Jiao; Vasquez, David; Maragakis, Nicholas; Mori, Susumu; Goldman, David; Sinha, Debasish

    2016-01-01

    A novel mutation, causing a phenotype we named frogleg because its most obvious characteristic is a severe splaying of the hind limbs, arose spontaneously in a colony of Sprague-Dawley rats. Frogleg is a complex phenotype that includes abnormalities in hind limb function, reduced brain weight with dilated ventricles and infertility. Using micro-satellite markers spanning the entire rat genome, the mutation was mapped to a region of rat chromosome 1 between D1Rat131 and D1Rat287. Analysis of whole genome sequencing data within the linkage interval, identified a missense mutation in the branched-chain alpha-keto dehydrogenase kinase (Bckdk) gene. The protein encoded by Bckdk is an integral part of an enzyme complex located in the mitochondrial matrix of many tissues which regulates the levels of the branched-chain amino acids (BCAAs), leucine, isoleucine and valine. BCAAs are essential amino acids (not synthesized by the body), and circulating levels must be tightly regulated; levels that are too high or too low are both deleterious. BCKDK phosphorylates Ser293 of the E1α subunit of the BCKDH protein, which catalyzes the rate-limiting step in the catabolism of the BCAAs, inhibiting BCKDH and thereby, limiting breakdown of the BCAAs. In contrast, when Ser293 is not phosphorylated, BCKDH activity is unchecked and the levels of the BCAAs will decrease dramatically. The mutation is located within the kinase domain of Bckdk and is predicted to be damaging. Consistent with this, we show that in rats homozygous for the mutation, phosphorylation of BCKDH in the brain is markedly decreased relative to wild type or heterozygous littermates. Further, circulating levels of the BCAAs are reduced by 70–80% in animals homozygous for the mutation. The frogleg phenotype shares important characteristics with a previously described Bckdk knockout mouse and with human subjects with Bckdk mutations. In addition, we report novel data regarding peripheral neuropathy of the hind limbs

  20. Antidromic discharges in dorsal roots of decerebrate cats. I. Studies at rest and during fictive locomotion.

    PubMed

    Beloozerova, I; Rossignol, S

    1999-10-30

    Spontaneous rhythmic antidromic discharges have previously been recorded in proximal stumps of cut dorsal roots during locomotion (real and fictive). The goals of the present study were to elucidate (1) whether both orthodromic and antidromic discharges occur in the same dorsal root filament and (2) whether orthodromic discharges have an influence upon antidromic discharges of units in the same filament. Unitary activity was recorded in 70 uncut dorsal root filaments (L6-S1) in 15 decerebrate cats using bipolar Ag/AgCl electrodes. Spikes with similar wave shapes were considered to represent the activity of single units. Spike-triggered averaging (STA), local anaesthesia and transection of filaments were used to determine the direction of propagation of spikes. Spikes with different initial electrical polarities were found in most of the filaments and shown to propagate in opposite directions at rest and during fictive locomotion. On average, there were 38%+/-S.D. 23% antidromically discharging units per filament and their mean conduction velocity was 55 m/s+/-S.D. 25 m/s. After blocking orthodromic activity of the whole filament by a transection or local anesthesia applied distally to the recording site, changes were seen in the antidromic discharges of some units suggesting that spontaneous orthodromic discharges normally seen in the filament may influence the antidromic discharges of some units. Moreover, out of 27 antidromic units recorded during fictive locomotion, 12 were rhythmically modulated with peak discharges occurring in various parts of the locomotor cycle. We conclude that, in uncut dorsal roots, there is a normal coexistence of spontaneous orthodromic and antidromic discharges revealed by STA and that there is an interaction between spontaneous orthodromic and antidromic discharges.

  1. Union Pacific Railroad`s LNG locomotive test program

    SciTech Connect

    Grimaila, B.

    1995-12-31

    Union Pacific Railroad is testing LNG in six locomotives through 1997 to determine if the liquefied natural gas technology is right for them. Two of the six LNG test locomotives are switch, or yard, locomotives. These 1,350 horsepower locomotives are the industry`s first locomotives totally fueled by natural gas. They`re being tested in the yard in the Los Angeles area. The other four locomotives are long-haul locomotives fueled by two tenders. These units are duel-fueled, operating on a mixture of LNG and diesel and are being tested primarily on the Los Angeles to North Platte, Nebraska corridor. All the information concerning locomotive emissions, locomotive performance, maintenance requirements, the overall LNG system design and the economic feasibility of the project will be analyzed to determine if UPR should expand, or abandon, the LNG technology.

  2. 40 CFR 92.707 - Notification to locomotive or locomotive engine owners.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... established to protect the public health or welfare from the dangers of air pollution.” (2) A statement that... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Recall...) A description of the adverse effects, if any, that an uncorrected nonconformity would have on...

  3. Relationship between osteology and aquatic locomotion in birds: determining modes of locomotion in extinct Ornithurae.

    PubMed

    Hinić-Frlog, S; Motani, R

    2010-02-01

    The evolutionary history of aquatic invasion in birds would be incomplete without incorporation of extinct species. We show that aquatic affinities in fossil birds can be inferred by multivariate analysis of skeletal features and locomotion of 245 species of extant birds. Regularized discriminant analyses revealed that measurements of appendicular skeletons successfully separated diving birds from surface swimmers and flyers, while also discriminating among different underwater modes of swimming. The high accuracy of this method allows detection of skeletal characteristics that are indicative of aquatic locomotion and inference of such locomotion in bird species with insufficient behavioural information. Statistical predictions based on the analyses confirm qualitative assessments for both foot-propelled (Hesperornithiformes) and wing-propelled (Copepteryx) underwater locomotion in fossil birds. This is the first quantitative inference of underwater modes of swimming in fossil birds, enabling future studies of locomotion in extinct birds and evolutionary transitions among locomotor modes in avian lineage.

  4. Bioinspired laser-operated molecular locomotive.

    PubMed

    Wang, Zhisong

    2004-09-01

    Biomotors kinesin and dynein show us that robust track-walking is possible down to molecular scale. Here I design a laser-powered molecular locomotive that is able to do that on an easily constructed track. The core of the machine is its work cycle that periodically converts optical energy into mechanical work, which is further rectified into processive, directional motion. Thus the molecular locomotive is essentially beyond the famous design of molecular shuttles. Under automated laser operation, the locomotive can move a few mum per second comparable to its biological counterparts. However, this artificial motor is capable of conveniently switchable, dual directional motion in contrast to common unidirectionality of biomotors. The locomotive is also different from the big category of Brownian motors in the sense that move of the locomotive is not a result of biasing pre-existing fluctuations, rather it is directly and decisively driven by optomechanical strokes of the work cycle, generating a pulling force ten times greater than those of biomotors. Being a novel type of molecular motor as well as a powerful molecular engine, this machine will potentially enable automatic, forceful delivery of molecular building blocks with nanometer accuracy. Well within reach of established techniques, its implementation will be a significant advance in nanoscience and nanotechnology.

  5. Evolution of neural controllers for salamanderlike locomotion

    NASA Astrophysics Data System (ADS)

    Ijspeert, Auke J.

    1999-08-01

    This paper presents an experiment in which evolutionary algorithms are used for the development of neural controllers for salamander locomotion. The aim of the experiment is to investigate which kind of neural circuitry can produce the typical swimming and trotting gaits of the salamander, and to develop a synthetic approach to neurobiology by using genetic algorithms as design tool. A 2D bio-mechanical simulation of the salamander's body is developed whose muscle contraction is determined by the locomotion controller simulated as continuous-time neural networks. While the connectivity of the neural circuitry underlying locomotion in the salamander has not been decoded for the moment, the general organization of the designed neural circuits corresponds to that hypothesized by neurobiologist for the real animal. In particular, the locomotion controllers are based on a body central pattern generator (CPG) corresponding to a lamprey-like swimming controller as developed by Ekeberg, and are extended with a limb CPG for controlling the salamander's body. A genetic algorithm is used to instantiate synaptic weights of the connections within the limb CPG and from the limb CPG to the body CPG given a high level description of the desired gaits. A set of biologically plausible controllers are thus developed which can produce a neural activity and locomotion gaits very similar to those observed in the real salamander. By simply varying the external excitation applied to the network, the speed, direction and type of gait can be varied.

  6. The Human Central Pattern Generator for Locomotion.

    PubMed

    Minassian, Karen; Hofstoetter, Ursula S; Dzeladini, Florin; Guertin, Pierre A; Ijspeert, Auke

    2017-03-01

    The ability of dedicated spinal circuits, referred to as central pattern generators (CPGs), to produce the basic rhythm and neural activation patterns underlying locomotion can be demonstrated under specific experimental conditions in reduced animal preparations. The existence of CPGs in humans is a matter of debate. Equally elusive is the contribution of CPGs to normal bipedal locomotion. To address these points, we focus on human studies that utilized spinal cord stimulation or pharmacological neuromodulation to generate rhythmic activity in individuals with spinal cord injury, and on neuromechanical modeling of human locomotion. In the absence of volitional motor control and step-specific sensory feedback, the human lumbar spinal cord can produce rhythmic muscle activation patterns that closely resemble CPG-induced neural activity of the isolated animal spinal cord. In this sense, CPGs in humans can be defined by the activity they produce. During normal locomotion, CPGs could contribute to the activation patterns during specific phases of the step cycle and simplify supraspinal control of step cycle frequency as a feedforward component to achieve a targeted speed. Determining how the human CPGs operate will be essential to advance the theory of neural control of locomotion and develop new locomotor neurorehabilitation paradigms.

  7. [Possible changes in energy-minimizer mechanisms of locomotion due to chronic low back pain - a literature review].

    PubMed

    de Carvalho, Alberito Rodrigo; Andrade, Alexandro; Peyré-Tartaruga, Leonardo Alexandre

    2015-01-01

    One goal of the locomotion is to move the body in the space at the most economical way possible. However, little is known about the mechanical and energetic aspects of locomotion that are affected by low back pain. And in case of occurring some damage, little is known about how the mechanical and energetic characteristics of the locomotion are manifested in functional activities, especially with respect to the energy-minimizer mechanisms during locomotion. This study aimed: a) to describe the main energy-minimizer mechanisms of locomotion; b) to check if there are signs of damage on the mechanical and energetic characteristics of the locomotion due to chronic low back pain (CLBP) which may endanger the energy-minimizer mechanisms. This study is characterized as a narrative literature review. The main theory that explains the minimization of energy expenditure during the locomotion is the inverted pendulum mechanism, by which the energy-minimizer mechanism converts kinetic energy into potential energy of the center of mass and vice-versa during the step. This mechanism is strongly influenced by spatio-temporal gait (locomotion) parameters such as step length and preferred walking speed, which, in turn, may be severely altered in patients with chronic low back pain. However, much remains to be understood about the effects of chronic low back pain on the individual's ability to practice an economic locomotion, because functional impairment may compromise the mechanical and energetic characteristics of this type of gait, making it more costly. Thus, there are indications that such changes may compromise the functional energy-minimizer mechanisms.

  8. Stabilization of cat paw trajectory during locomotion

    PubMed Central

    Klishko, Alexander N.; Farrell, Bradley J.; Beloozerova, Irina N.; Latash, Mark L.

    2014-01-01

    We investigated which of cat limb kinematic variables during swing of regular walking and accurate stepping along a horizontal ladder are stabilized by coordinated changes of limb segment angles. Three hypotheses were tested: 1) animals stabilize the entire swing trajectory of specific kinematic variables (performance variables); and 2) the level of trajectory stabilization is similar between regular and ladder walking and 3) is higher for forelimbs compared with hindlimbs. We used the framework of the uncontrolled manifold (UCM) hypothesis to quantify the structure of variance of limb kinematics in the limb segment orientation space across steps. Two components of variance were quantified for each potential performance variable, one of which affected it (“bad variance,” variance orthogonal to the UCM, VORT) while the other one did not (“good variance,” variance within the UCM, VUCM). The analysis of five candidate performance variables revealed that cats during both locomotor behaviors stabilize 1) paw vertical position during the entire swing (VUCM > VORT, except in mid-hindpaw swing of ladder walking) and 2) horizontal paw position in initial and terminal swing (except for the entire forepaw swing of regular walking). We also found that the limb length was typically stabilized in midswing, whereas limb orientation was not (VUCM ≤ VORT) for both limbs and behaviors during entire swing. We conclude that stabilization of paw position in early and terminal swing enables accurate and stable locomotion, while stabilization of vertical paw position in midswing helps paw clearance. This study is the first to demonstrate the applicability of the UCM-based analysis to nonhuman movement. PMID:24899676

  9. Neural organization of the locomotive oscillator.

    PubMed

    Willner, B E; Miranker, W L; Lu, C P

    1993-01-01

    We study the relation of neural development, organization, and activity to behavior. We provide a model of the locomotive oscillator, a neural system supplying alternating stimulation to extensor and flexor muscles creating an oscillatory motion. We propose a protocol by which this neural system starting from unstructured, unconnected neural populations develops structure and function. The protocol is studied by both computer simulation and mathematical analysis. Our main results are 1. The locomotive oscillator self-organizes and maintains its organization, assuming certain properties of the neural populations. 2. Imperfections disturbing the functional adequacy of the neural populations may lead to the deterioration and disappearance of the oscillatory behavior. 3. The locomotive oscillator may fail to organize if the development is not staged in time.

  10. Locomotion gaits of a rotating cylinder pair

    NASA Astrophysics Data System (ADS)

    van Rees, Wim M.; Novati, Guido; Koumoutsakos, Petros; Mahadevan, L.

    2015-11-01

    Using 2D numerical simulations of the Navier-Stokes equations, we demonstrate that a simple pair of rotating cylinders can display a range of locomotion patterns of biological and engineering interest. Steadily counter-rotating the cylinders causes the pair to move akin to a vortex dipole for low rotation rates, but as the rotational velocity is increased the direction of motion reverses. Unsteady rotations lead to different locomotion gaits that resemble jellyfish (for in-phase rotations) and undulating swimmers (for out-of-phase rotations). The small number of parameters for this simple system allows us to systematically map the phase space of these gaits, and allows us to understand the underlying physical mechanisms using a minimal model with implications for biological locomotion and engineered analogs.

  11. The kinematics of locomotion in caecilians: effects of substrate and body shape.

    PubMed

    Herrel, Anthony; Measey, G John

    2010-06-01

    Caecilians are limbless amphibians that have radiated extensively in the tropics, and have evolved distinct cranial and postcranial specializations associated with a burrowing lifestyle. Some species are recognized as being surface active, whereas others are dedicated burrowers. Previous authors have demonstrated that some caecilians use a hydrostatic mechanism to generate burrowing forces which is dependent on the existence of skin-vertebral independence. It has been hypothesized that skin-vertebral independence may be lost in extremely elongated species, thus affecting their ability to burrow. Here, we use X-ray video to study the kinematics of locomotion in five species of caecilian differing in their degree of body elongation. Animals were filmed moving in or across different substrates imposing different functional demands on the locomotor system. Our data demonstrate that all species have the ability to perform internal concertina locomotion, but indicate differences between species in the kinematics of locomotion with more elongate species showing a smaller degree of skin-vertebral independence. In all species, locomotion was dependent on the substrate and species switched from using lateral undulation on the surface substrates to the use of whole body or internal concertina in wide and narrow tunnels, respectively. When burrowing in soil, all species used a combination of whole-body and internal concertina locomotion. Additional studies on the ability of different species to generate forces are needed to test whether the reduced skin-vertebral independence in elongate forms has resulted in a decreased ability to generate burrows.

  12. 7. Detail of the Grant Locomotive Works Erecting Shop looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Detail of the Grant Locomotive Works Erecting Shop looking southwest showing ruined wall and entrance of a single story addition. - Grant Locomotive Works, Market & Spruce Streets, Paterson, Passaic County, NJ

  13. 19. AERIAL VIEW LOOKING WEST NORTHWEST SHOWING GRANT LOCOMOTIVE WORKS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. AERIAL VIEW LOOKING WEST NORTHWEST SHOWING GRANT LOCOMOTIVE WORKS -- MACHINE SHOP, DANFORTH (COOKE) LOCOMOTIVE AND MACHINE CO., AND GODWIN (HAMIL) MILL. - Great Falls S. U. M. Historic District, Oliver Street, Paterson, Passaic County, NJ

  14. 40 CFR 92.1005 - In-use locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... railroad to schedule the supply of locomotives for testing in such a manner that it minimizes disruption of... schedule the supply of locomotives for testing in such a manner that it minimizes disruption of...

  15. 49 CFR 229.209 - Alternative locomotive crashworthiness designs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Alternative locomotive crashworthiness designs. 229.209 Section 229.209 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY...

  16. The (perceived) meaning of spontaneous thoughts.

    PubMed

    Morewedge, Carey K; Giblin, Colleen E; Norton, Michael I

    2014-08-01

    Spontaneous thoughts, the output of a broad category of uncontrolled and inaccessible higher order mental processes, arise frequently in everyday life. The seeming randomness by which spontaneous thoughts arise might give people good reason to dismiss them as meaningless. We suggest that it is precisely the lack of control over and access to the processes by which they arise that leads people to perceive spontaneous thoughts as revealing meaningful self-insight. Consequently, spontaneous thoughts potently influence judgment. A series of experiments provides evidence supporting two hypotheses. First, we hypothesize that the more a thought is perceived to be spontaneous, the more it is perceived to provide meaningful self-insight. Participants perceived more spontaneous kinds of thought (e.g., intuition) to reveal greater self-insight than did more controlled kinds of thought in Study 1 (e.g., deliberation). In Studies 2 and 3, participants perceived thoughts with the same content and target to reveal greater self-insight when spontaneously rather than deliberately generated (i.e., childhood memories and impressions formed). Second, we hypothesize that the greater self-insight attributed to thoughts that are (perceived to be) spontaneous leads those thoughts to more potently influence judgment. Participants felt more sexually attracted to an attractive person whom they thought of spontaneously than deliberately in Study 4, and reported their commitment to a current romantic relationship would be more affected by the spontaneous rather than deliberate recollection of a good or bad experience with their romantic partner in Study 5.

  17. Propulsion by sinusoidal locomotion: A motion inspired by Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Ulrich, Xialing

    Sinusoidal locomotion is commonly seen in snakes, fish, nematodes, or even the wings of some birds and insects. This doctoral thesis presents the study of sinusoidal locomotion of the nematode C. elegans in experiments and the application of the state-space airloads theory to the theoretical forces of sinusoidal motion. An original MATLAB program has been developed to analyze the video records of C. elegans' movement in different fluids, including Newtonian and non-Newtonian fluids. The experimental and numerical studies of swimming C. elegans has revealed three conclusions. First, though the amplitude and wavelength are varying with time, the motion of swimming C. elegans can still be viewed as sinusoidal locomotion with slips. The average normalized wavelength is a conserved character of the locomotion for both Newtonian and non-Newtonian fluids. Second, fluid viscosity affects the frequency but not the moving speed of C. elegans, while fluid elasticity affects the moving speed but not the frequency. Third, by the resistive force theory, for more elastic fluids the ratio of resistive coefficients becomes smaller. Inspired by the motion of C. elegans and other animals performing sinusoidal motion, we investigated the sinusoidal motion of a thin flexible wing in theory. Given the equation of the motion, we have derived the closed forms of propulsive force, lift and other generalized forces applying on the wing. We also calculated the power required to perform the motion, the power lost due to the shed vortices and the propulsive efficiency. These forces and powers are given as functions of reduced frequency k, dimensionless wavelength z, dimensionless amplitude A/b, and time. Our results show that a positive, time-averaged propulsive force is produced for all k>k0=pi/ z. At k=k0, which implies the moment when the moving speed of the wing is the same as the wave speed of its undulation, the motion reaches a steady state with all forces being zero. If there were no

  18. Locomotion of Paramecium in patterned environments

    NASA Astrophysics Data System (ADS)

    Park, Eun-Jik; Eddins, Aja; Kim, Junil; Yang, Sung; Jana, Saikat; Jung, Sunghwan

    2011-10-01

    Ciliary organisms like Paramecium Multimicronucleatum locomote by synchronized beating of cilia that produce metachronal waves over their body. In their natural environments they navigate through a variety of environments especially surfaces with different topology. We study the effects of wavy surfaces patterned on the PDMS channels on the locomotive abilities of Paramecium by characterizing different quantities like velocity amplitude and wavelength of the trajectories traced. We compare this result with the swimming characteristics in straight channels and draw conclusions about the effects of various patterned surfaces.

  19. Optimizing snake locomotion on an inclined plane.

    PubMed

    Wang, Xiaolin; Osborne, Matthew T; Alben, Silas

    2014-01-01

    We develop a model to study the locomotion of snakes on inclined planes. We determine numerically which snake motions are optimal for two retrograde traveling-wave body shapes, triangular and sinusoidal waves, across a wide range of frictional parameters and incline angles. In the regime of large transverse friction coefficients, we find power-law scalings for the optimal wave amplitudes and corresponding costs of locomotion. We give an asymptotic analysis to show that the optimal snake motions are traveling waves with amplitudes given by the same scaling laws found in the numerics.

  20. Characterization of a Spontaneous Novel Mutation in the NPC2 Gene in a Cat Affected by Niemann Pick Type C Disease

    PubMed Central

    Zampieri, Stefania; Bianchi, Ezio; Cantile, Carlo; Saleri, Roberta; Bembi, Bruno; Dardis, Andrea

    2014-01-01

    Niemann-Pick C disease (NPC) is an autosomal recessive lysosomal storage disorder characterized by accumulation of unesterified cholesterol and other lipids within the lysosomes due to mutation in NPC1 or NPC2 genes. A feline model of NPC carrying a mutation in NPC1 gene has been previously described. We have identified two kittens affected by NPC disease due to a mutation in NPC2 gene. They manifested with tremors at the age of 3 months, which progressed to dystonia and severe ataxia. At 6 months of age cat 2 was unable to stand without assistance and had bilaterally reduced menace response. It died at the age of 10 months. Post-mortem histological analysis of the brain showed the presence of neurons with cytoplasmic swelling and vacuoles, gliosis of the substantia nigra and degeneration of the white matter. Spheroids with accumulation of ubiquitinated aggregates were prominent in the cerebellar cortex. Purkinje cells were markedly reduced in number and they showed prominent intracytoplasmic storage. Scattered perivascular aggregates of lymphocytes and microglial cells proliferation were present in the thalamus and midbrain. Proliferation of Bergmann glia was also observed. In the liver, hepatocytes were swollen because of accumulation of small vacuoles and foamy Kupffer cells were also detected. Foamy macrophages were observed within the pulmonary interstitium and alveoli as well. At 9 months cat 1 was unable to walk, developed seizures and it was euthanized at 21 months. Filipin staining of cultured fibroblasts showed massive storage of unesterified cholesterol. Molecular analysis of NPC1 and NPC2 genes showed the presence of a homozygous intronic mutation (c.82+5G>A) in the NPC2 gene. The subsequent analysis of the mRNA showed that the mutation causes the retention of 105 bp in the mature mRNA, which leads to the in frame insertion of 35 amino acids between residues 28 and 29 of NPC2 protein (p.G28_S29ins35). PMID:25396745

  1. 49 CFR 230.101 - Steam locomotive driving journal boxes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive driving journal boxes. 230.101... Locomotives and Tenders Running Gear § 230.101 Steam locomotive driving journal boxes. (a) Driving journal boxes. Driving journal boxes shall be maintained in a safe and suitable condition for service. Not...

  2. 49 CFR 230.101 - Steam locomotive driving journal boxes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Steam locomotive driving journal boxes. 230.101... Locomotives and Tenders Running Gear § 230.101 Steam locomotive driving journal boxes. (a) Driving journal boxes. Driving journal boxes shall be maintained in a safe and suitable condition for service. Not...

  3. 49 CFR 230.101 - Steam locomotive driving journal boxes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Steam locomotive driving journal boxes. 230.101... Locomotives and Tenders Running Gear § 230.101 Steam locomotive driving journal boxes. (a) Driving journal boxes. Driving journal boxes shall be maintained in a safe and suitable condition for service. Not...

  4. 49 CFR 230.101 - Steam locomotive driving journal boxes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Steam locomotive driving journal boxes. 230.101... Locomotives and Tenders Running Gear § 230.101 Steam locomotive driving journal boxes. (a) Driving journal boxes. Driving journal boxes shall be maintained in a safe and suitable condition for service. Not...

  5. 49 CFR 230.101 - Steam locomotive driving journal boxes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Steam locomotive driving journal boxes. 230.101... Locomotives and Tenders Running Gear § 230.101 Steam locomotive driving journal boxes. (a) Driving journal boxes. Driving journal boxes shall be maintained in a safe and suitable condition for service. Not...

  6. 40 CFR 92.104 - Locomotive and engine testing; overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... restriction within 1 inch of water of the upper limit of a typical engine as installed with clean air filters... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Locomotive and engine testing... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures §...

  7. 49 CFR 229.141 - Body structure, MU locomotives.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Body structure, MU locomotives. 229.141 Section... Cab Equipment § 229.141 Body structure, MU locomotives. (a) MU locomotives built new after April 1... structure. (2) An anti-climbing arrangement shall be applied at each end that is designed so that coupled...

  8. 49 CFR 229.141 - Body structure, MU locomotives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Body structure, MU locomotives. 229.141 Section... Cab Equipment § 229.141 Body structure, MU locomotives. (a) MU locomotives built new after April 1... structure. (2) An anti-climbing arrangement shall be applied at each end that is designed so that coupled...

  9. 49 CFR 229.141 - Body structure, MU locomotives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Body structure, MU locomotives. 229.141 Section... Design Requirements § 229.141 Body structure, MU locomotives. (a) MU locomotives built new after April 1... structure. (2) An anti-climbing arrangement shall be applied at each end that is designed so that coupled...

  10. 49 CFR 229.141 - Body structure, MU locomotives.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Body structure, MU locomotives. 229.141 Section... Cab Equipment § 229.141 Body structure, MU locomotives. (a) MU locomotives built new after April 1... structure. (2) An anti-climbing arrangement shall be applied at each end that is designed so that coupled...

  11. 49 CFR 229.141 - Body structure, MU locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Body structure, MU locomotives. 229.141 Section... Design Requirements § 229.141 Body structure, MU locomotives. (a) MU locomotives built new after April 1... body structure designed to meet or exceed the following minimum specifications: (1) The body...

  12. 40 CFR 92.104 - Locomotive and engine testing; overview.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... restriction within 1 inch of water of the upper limit of a typical engine as installed with clean air filters... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Locomotive and engine testing; overview... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures §...

  13. 40 CFR 92.104 - Locomotive and engine testing; overview.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... restriction within 1 inch of water of the upper limit of a typical engine as installed with clean air filters... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Locomotive and engine testing... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures §...

  14. 40 CFR 1074.12 - Scope of preemption-specific provisions for locomotives and locomotive engines

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... period equivalent in length to 133 percent of the useful life, expressed as MW-hrs (or miles where applicable), beginning at the point at which the locomotive or engine becomes new, those standards or...

  15. 40 CFR 1074.12 - Scope of preemption-specific provisions for locomotives and locomotive engines

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... period equivalent in length to 133 percent of the useful life, expressed as MW-hrs (or miles where applicable), beginning at the point at which the locomotive or engine becomes new, those standards or...

  16. 49 CFR 210.9 - Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars. 210.9 Section 210.9 Transportation Other Regulations... locomotive, rail car, or consist of a locomotive and rail cars. A locomotive, rail car, or consist of...

  17. 49 CFR 210.9 - Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars. 210.9 Section 210.9 Transportation Other Regulations... locomotive, rail car, or consist of a locomotive and rail cars. A locomotive, rail car, or consist of...

  18. 49 CFR 210.9 - Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars. 210.9 Section 210.9 Transportation Other Regulations... locomotive, rail car, or consist of a locomotive and rail cars. A locomotive, rail car, or consist of...

  19. 49 CFR 210.9 - Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars. 210.9 Section 210.9 Transportation Other Regulations... locomotive, rail car, or consist of a locomotive and rail cars. A locomotive, rail car, or consist of...

  20. 49 CFR 210.9 - Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars. 210.9 Section 210.9 Transportation Other Regulations... locomotive, rail car, or consist of a locomotive and rail cars. A locomotive, rail car, or consist of...

  1. Spontaneous healing of spontaneous coronary artery dissection.

    PubMed

    Almafragi, Amar; Convens, Carl; Heuvel, Paul Van Den

    2010-01-01

    Spontaneous coronary artery dissection (SCAD) is a rare cause of acute coronary syndrome and sudden cardiac death. It should be suspected in every healthy young woman without cardiac risk factors, especially during the peripartum or postpartum periods. It is important to check for a history of drug abuse, collagen vascular disease or blunt trauma of the chest. Coronary angiography is essential for diagnosis and early management. We wonder whether thrombolysis might aggravate coronary dissection. All types of treatment (medical therapy, percutaneous intervention or surgery) improve the prognosis without affecting survival times if used appropriately according to the clinical stability and the angiographic features of the involved coronary arteries. Prompt recognition and targeted treatment improve outcomes. We report a case of SCAD in a young female free of traditional cardiovascular risk factors, who presented six hours after thrombolysis for ST elevation myocardial infarction. Coronary angiography showed a dissection of the left anterior descending and immediate branch. She had successful coronary artery bypass grafting, with complete healing of left anterior descending dissection.

  2. Learning in the development of infant locomotion.

    PubMed

    Adolph, K E

    1997-01-01

    Infants master crawling and walking in an environment filled with varied and unfamiliar surfaces. At the same time, infants' bodies and skills continually change. The changing demands of everyday locomotion require infants to adapt locomotion to the properties of the terrain and to their own physical abilities. This Monograph examines how infants acquire adaptive locomotion in a novel task--going up and down slopes. Infants were tested longitudinally from their first week of crawling until several weeks after they began walking. Everyday locomotor experience played a central role in adaptive responding. Over weeks of crawling, infants' judgments became increasingly accurate, and exploration became increasingly efficient. There was no transfer over the transition from crawling to walking. Instead, infants learned, all over again, how to cope with slopes from an upright position. Findings indicate that learning generalized from everyday experience traveling over flat surfaces at home but that learning was specific to infants' typical method of locomotion and vantage point. Moreover, learning was not the result of simple associations between a particular locomotor response and a particular slope. Rather, infants learned to gauge their abilities on-line as they encountered each hill at the start of the trial. Change in locomotor responses and exploratory movements revealed a process of differentiation and selection spurred by changes in infants' everyday experience, body dimensions, and locomotor proficiency on flat ground.

  3. Learning in the Development of Infant Locomotion.

    ERIC Educational Resources Information Center

    Adolph, Karen E.

    1997-01-01

    Examined how infants acquire adaptive locomotion in the novel task of going up and down slopes. Found that infants' judgments became increasingly accurate and exploration became increasingly efficient, with no transfer over the transition from crawling to walking. Infants learned to gauge their abilities on-line as they encountered each hill at…

  4. Passive mechanics in jellyfish-like locomotion

    NASA Astrophysics Data System (ADS)

    Wilson, Megan; Eldredge, Jeff

    2008-11-01

    The aim of this work is to identify possible benefits of passive flexibility in biologically-inspired locomotion. Substantial energy savings are likely achieved in natural locomotion by allowing a mix of actively controlled and passively responsive deformation. The jellyfish is a useful target of study, due to its relatively simple structure and the availability of recent kinematics and flow-field measurements. In this investigation, the jellyfish consists of a two-dimensional articulated system of rigid bodies linked by hinges. The kinematics -- expressed via the hinge angles -- are adapted from experimentally measured motion. The free swimming system is explored via high-fidelity numerical simulation with a viscous vortex particle method with coupled body dynamics. The computational tool allows the arbitrary designation of individual hinges as ``active'' or ``passive,'' to introduce a mix of flexibility into the system. In some cases, replacing an active hinge with a passive spring can enhance the mean swimming speed, thus reducing the power requirements of the system. Varying the stiffness and damping coefficients of the spring yield different locomotive results. The numerical solution is used to compute the finite-time Lyapunov exponents (FTLE) throughout the field. The FTLE fields reveal manifolds in the flow that act as transport barriers, uncovering otherwise unseen geometric characteristics of the flow field that add new insight into the locomotion mechanics.

  5. Dynamic stabilization of rapid hexapedal locomotion.

    PubMed

    Jindrich, Devin L; Full, Robert J

    2002-09-01

    To stabilize locomotion, animals must generate forces appropriate to overcome the effects of perturbations and to maintain a desired speed or direction of movement. We studied the stabilizing mechanism employed by rapidly running insects by using a novel apparatus to perturb running cockroaches (Blaberus discoidalis). The apparatus used chemical propellants to accelerate a small projectile, generating reaction force impulses of less than 10 ms duration. The apparatus was mounted onto the thorax of the insect, oriented to propel the projectile laterally and loaded with propellant sufficient to cause a nearly tenfold increase in lateral velocity relative to maxima observed during unperturbed locomotion. Cockroaches were able to recover from these perturbations in 27+/-12 ms (mean +/- S.D., N=9) when running on a high-friction substratum. Lateral velocity began to decrease 13+/-5 ms (mean +/- S.D., N=11) following the start of a perturbation, a time comparable with the fastest reflexes measured in cockroaches. Cockroaches did not require step transitions to recover from lateral perturbations. Instead, they exhibited viscoelastic behavior in the lateral direction, with spring constants similar to those observed during unperturbed locomotion. The rapid onset of recovery from lateral perturbations supports the possibility that, during fast locomotion, intrinsic properties of the musculoskeletal system augment neural stabilization by reflexes.

  6. 77 FR 23159 - Locomotive Safety Standards; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF TRANSPORTATION Federal Railroad Administration 49 CFR Parts 229 and 238 RIN 2130-AC16 Locomotive Safety Standards; Correction AGENCY: Federal Railroad Administration (FRA), DOT. ACTION: Final rule; correction. SUMMARY:...

  7. 30 CFR 57.6203 - Locomotives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Transportation-Surface.... When explosive material is hauled by trolley locomotive, covered, electrically insulated cars shall...

  8. 30 CFR 57.6203 - Locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Transportation-Surface.... When explosive material is hauled by trolley locomotive, covered, electrically insulated cars shall...

  9. 30 CFR 56.6203 - Locomotives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Transportation § 56.6203... trolley locomotive, covered, electrically insulated cars shall be used....

  10. 30 CFR 56.6203 - Locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Transportation § 56.6203... trolley locomotive, covered, electrically insulated cars shall be used....

  11. Muscle spindle and fusimotor activity in locomotion.

    PubMed

    Ellaway, Peter H; Taylor, Anthony; Durbaba, Rade

    2015-08-01

    Mammals may exhibit different forms of locomotion even within a species. A particular form of locomotion (e.g. walk, run, bound) appears to be selected by supraspinal commands, but the precise pattern, i.e. phasing of limbs and muscles, is generated within the spinal cord by so-called central pattern generators. Peripheral sense organs, particularly the muscle spindle, play a crucial role in modulating the central pattern generator output. In turn, the feedback from muscle spindles is itself modulated by static and dynamic fusimotor (gamma) neurons. The activity of muscle spindle afferents and fusimotor neurons during locomotion in the cat is reviewed here. There is evidence for some alpha-gamma co-activation during locomotion involving static gamma motoneurons. However, both static and dynamic gamma motoneurons show patterns of modulation that are distinct from alpha motoneuron activity. It has been proposed that static gamma activity may drive muscle spindle secondary endings to signal the intended movement to the central nervous system. Dynamic gamma motoneuron drive appears to prime muscle spindle primary endings to signal transitions in phase of the locomotor cycle. These findings come largely from reduced animal preparations (decerebrate) and require confirmation in freely moving intact animals.

  12. Locomotion of C elegans in structured environments

    NASA Astrophysics Data System (ADS)

    Majmudar, Trushant; Keaveny, Eric; Shelley, Michael; Zhang, Jun

    2010-11-01

    Undulatory locomotion of microorganisms like soil-dwelling worms and sperm, in structured environments, is ubiquitous in nature. They navigate complex environments consisting of fluids and obstacles, negotiating hydrodynamic effects and geometrical constraints. Here we report experimental observations on the locomotion of C elegans swimming in arrays of micro-pillars in square lattices, with different lattice spacing. We observe that the worm employs a number of different locomotion strategies depending on the lattice spacing. As observed previously in the literature, we uncover regimes of enhanced locomotion, where the velocity is much higher than the free-swimming velocity. In addition, we also observe changes in frequency, velocity, and the gait of the worm as a function of lattice spacing. We also track the worm over time and find that it exhibits super-diffusive behavior and covers a larger area by utilizing the obstacles. These results may have significant impact on the foraging behavior of the worm in its natural environment. Our experimental approach, in conjunction with modeling and simulations, allows us to disentangle the effects of structure and hydrodynamics for an undulating microorganism.

  13. Energetics and mechanics for partial gravity locomotion.

    PubMed

    Newman, D J; Alexander, H L; Webbon, B W

    1994-09-01

    The role of gravitational acceleration on human locomotion is not clearly understood. It is hypothesized that the mechanics and energetics of locomotion depend upon the prevailing gravity level. A unique human-rated underwater treadmill and an adjustable ballasting harness were used to stimulate partial gravity environments. This study has two research aspects, biomechanics and energetics. Vertical forces which are exerted by subjects on the treadmill-mounted, split-plate force platform show that peak vertical force and stride frequency significantly decrease (p < 0.05) as the gravity level is reduced, while ground contact time is independent of gravity level. A loping gait is employed over a wide range of speeds (approximately 1.5 m/s to approximately 2.3 m/s) suggesting a change in the mechanics for lunar (1/6 G) and Martian (3/8 G) locomotion. As theory predicts, locomotion energy requirements for partial gravity levels are significantly less than at 1 G (p < 0.05).

  14. The role of locomotion in psychological development

    PubMed Central

    Anderson, David I.; Campos, Joseph J.; Witherington, David C.; Dahl, Audun; Rivera, Monica; He, Minxuan; Uchiyama, Ichiro; Barbu-Roth, Marianne

    2013-01-01

    The psychological revolution that follows the onset of independent locomotion in the latter half of the infant's first year provides one of the best illustrations of the intimate connection between action and psychological processes. In this paper, we document some of the dramatic changes in perception-action coupling, spatial cognition, memory, and social and emotional development that follow the acquisition of independent locomotion. We highlight the range of converging research operations that have been used to examine the relation between locomotor experience and psychological development, and we describe recent attempts to uncover the processes that underlie this relation. Finally, we address three important questions about the relation that have received scant attention in the research literature. These questions include: (1) What changes in the brain occur when infants acquire experience with locomotion? (2) What role does locomotion play in the maintenance of psychological function? (3) What implications do motor disabilities have for psychological development? Seeking the answers to these questions can provide rich insights into the relation between action and psychological processes and the general processes that underlie human development. PMID:23888146

  15. Evidence for Motor Simulation in Imagined Locomotion

    ERIC Educational Resources Information Center

    Kunz, Benjamin R.; Creem-Regehr, Sarah H.; Thompson, William B.

    2009-01-01

    A series of experiments examined the role of the motor system in imagined movement, finding a strong relationship between imagined walking performance and the biomechanical information available during actual walking. Experiments 1 through 4 established the finding that real and imagined locomotion differ in absolute walking time. We then tested…

  16. 49 CFR 229.129 - Locomotive horn.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... produces a minimum sound level of 96 dB(A) and a maximum sound level of 110 dB(A) at 100 feet forward of...), or (b)(3) of this section, shall not be required to undergo sound level testing when equipped with a... locomotive horn sound level shall be in accordance with the following requirements: (1) A properly...

  17. 49 CFR 229.129 - Locomotive horn.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... produces a minimum sound level of 96 dB(A) and a maximum sound level of 110 dB(A) at 100 feet forward of...), or (b)(3) of this section, shall not be required to undergo sound level testing when equipped with a... locomotive horn sound level shall be in accordance with the following requirements: (1) A properly...

  18. 49 CFR 229.129 - Locomotive horn.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... produces a minimum sound level of 96 dB(A) and a maximum sound level of 110 dB(A) at 100 feet forward of...), or (b)(3) of this section, shall not be required to undergo sound level testing when equipped with a... locomotive horn sound level shall be in accordance with the following requirements: (1) A properly...

  19. Lizard locomotion in heterogeneous granular media

    NASA Astrophysics Data System (ADS)

    Schiebel, Perrin; Goldman, Daniel

    2014-03-01

    Locomotion strategies in heterogeneous granular environments (common substrates in deserts), are relatively unexplored. The zebra-tailed lizard (C. draconoides) is a useful model organism for such studies owing to its exceptional ability to navigate a variety of desert habitats at impressive speed (up to 50 body-lengths per second) using both quadrapedal and bidepal gaits. In laboratory experiments, we challenge the lizards to run across a field of boulders (2.54 cm diameter glass spheres or 3.8 cm 3D printed spheres) placed in a lattice pattern and embedded in a loosely packed granular medium of 0.3 mm diameter glass particles. Locomotion kinematics of the lizard are recorded using high speed cameras, with and without the scatterers. The data reveals that unlike the lizard's typical quadrupedal locomotion using a diagonal gait, when scatterers are present the lizard is most successful when using a bipedal gait, with a raised center of mass (CoM). We propose that the kinematics of bipedal running in conjunction with the lizard's long toes and compliant hind foot are the keys to this lizard's successful locomotion in the presence of such obstacles. NSF PoLS

  20. Aerodynamic Design of a Locomotive Fairing

    NASA Astrophysics Data System (ADS)

    Stucki, Chad; Maynes, Daniel

    2016-11-01

    Rising fuel cost has motivated increased fuel efficiency of freight trains. At cruising speed, the largest contributing factor to the fuel consumption is the aerodynamic drag. As a result of air stagnation at the front of the train and substantial flow separation behind, the leading locomotive and trailing railcar experience greater drag than intermediate cars. This work introduces the design of streamlined nose fairings to be attached to freight locomotives as a means of reducing the leading locomotive drag. The aerodynamic performance of each fairing design is modeled using a commercial CFD software package. The K-epsilon turbulence model is used, and fluid properties are equivalent to atmospheric air at standard conditions. A selection of isolated screening studies are performed, and a multidimensional regression is used to predict optimal-performing fairing designs. Between screening studies, careful examination of the flow field is performed to inspire subsequent fairing designs. Results are presented for 250 different nose fairings. The best performing fairing geometry predicts a nominal drag reduction of 17% on the lead locomotive in a train set. This drag reduction is expected to result in nearly 1% fuel savings for the entire train.

  1. 49 CFR 1242.60 - Locomotive fuel, electric power purchased/produced for motive power and servicing locomotives...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Locomotive fuel, electric power purchased/produced for motive power and servicing locomotives (accounts XX-51-67, XX-51-68 and XX-51-69). 1242.60 Section...-Transportation § 1242.60 Locomotive fuel, electric power purchased/produced for motive power and...

  2. 49 CFR 1242.60 - Locomotive fuel, electric power purchased/produced for motive power and servicing locomotives...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Locomotive fuel, electric power purchased/produced for motive power and servicing locomotives (accounts XX-51-67, XX-51-68 and XX-51-69). 1242.60 Section...-Transportation § 1242.60 Locomotive fuel, electric power purchased/produced for motive power and...

  3. 49 CFR 1242.60 - Locomotive fuel, electric power purchased/produced for motive power and servicing locomotives...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Locomotive fuel, electric power purchased/produced for motive power and servicing locomotives (accounts XX-51-67, XX-51-68 and XX-51-69). 1242.60 Section...-Transportation § 1242.60 Locomotive fuel, electric power purchased/produced for motive power and...

  4. 49 CFR 1242.60 - Locomotive fuel, electric power purchased/produced for motive power and servicing locomotives...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Locomotive fuel, electric power purchased/produced for motive power and servicing locomotives (accounts XX-51-67, XX-51-68 and XX-51-69). 1242.60 Section...-Transportation § 1242.60 Locomotive fuel, electric power purchased/produced for motive power and...

  5. 49 CFR 1242.60 - Locomotive fuel, electric power purchased/produced for motive power and servicing locomotives...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Locomotive fuel, electric power purchased/produced for motive power and servicing locomotives (accounts XX-51-67, XX-51-68 and XX-51-69). 1242.60 Section...-Transportation § 1242.60 Locomotive fuel, electric power purchased/produced for motive power and...

  6. Delayed and lasting effects of deep brain stimulation on locomotion in Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Beuter, Anne; Modolo, Julien

    2009-06-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by a variety of motor signs affecting gait, postural stability, and tremor. These symptoms can be improved when electrodes are implanted in deep brain structures and electrical stimulation is delivered chronically at high frequency (>100 Hz). Deep brain stimulation (DBS) onset or cessation affects PD signs with different latencies, and the long-term improvements of symptoms affecting the body axis and those affecting the limbs vary in duration. Interestingly, these effects have not been systematically analyzed and modeled. We compare these timing phenomena in relation to one axial (i.e., locomotion) and one distal (i.e., tremor) signs. We suggest that during DBS, these symptoms are improved by different network mechanisms operating at multiple time scales. Locomotion improvement may involve a delayed plastic reorganization, which takes hours to develop, whereas rest tremor is probably alleviated by an almost instantaneous desynchronization of neural activity in subcortical structures. Even if all PD patients develop both distal and axial symptoms sooner or later, current computational models of locomotion and rest tremor are separate. Furthermore, a few computational models of locomotion focus on PD and none exploring the effect of DBS was found in the literature. We, therefore, discuss a model of a neuronal network during DBS, general enough to explore the subcircuits controlling locomotion and rest tremor simultaneously. This model accounts for synchronization and plasticity, two mechanisms that are believed to underlie the two types of symptoms analyzed. We suggest that a hysteretic effect caused by DBS-induced plasticity and synchronization modulation contributes to the different therapeutic latencies observed. Such a comprehensive, generic computational model of DBS effects, incorporating these timing phenomena, should assist in developing a more efficient, faster, durable treatment of

  7. Locomotion and drag in wet and dry granular media

    NASA Astrophysics Data System (ADS)

    Goldman, Daniel; Kuckuk, Robyn; Sharpe, Sarah

    2015-03-01

    Many animals move within substrates such as soil and dry sand; the resistive properties of such granular materials (GM) can depend on water content and compaction, but little is known about how such parameters affect locomotion or the relevant physics of drag and penetration. We developed a system to create homogeneous wet GM of varying moisture content and compaction in quantities sufficient to study the burial and subsurface locomotion of the Ocellated skink (C. ocellatus) a desert-generalist lizard. X-ray imaging revealed that in wet and dry GM the lizard slowly buried (~ 30 seconds) propagating a wave from head to tail, while moving in a start-stop motion. During forward movement, the head oscillated, and the forelimb on the convex side of the body propelled the animal. Although body kinematics (and ``slip'') were similar in both substrates, the burial depth was smaller in wet GM. Penetration and drag force experiments on smooth cylinders revealed that wet GM was ~ 3 × more resistive than dry GM, suggesting that during burial the lizard operated near its maximum force producing capability and was thus constrained by environmental properties. work supported by NSF PoLS.

  8. Loss of signal transduction and inhibition of lymphocyte locomotion in a ground-based model of microgravity

    NASA Technical Reports Server (NTRS)

    Sundaresan, Alamelu; Risin, Diana; Pellis, Neal R.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Inflammatory adherence to, and locomotion through the interstitium is an important component of the immune response. Conditions such as microgravity and modeled microgravity (MMG) severely inhibit lymphocyte locomotion in vitro through gelled type I collagen. We used the NASA rotating wall vessel bioreactor or slow-turning lateral vessel as a prototype for MMG in ground-based experiments. Previous experiments from our laboratory revealed that when lymphocytes (human peripheral blood mononuclear cells [PBMCs]) were first activated with phytohemaglutinin followed by exposure to MMG, locomotory capacity was not affected. In the present study, MMG inhibits lymphocyte locomotion in a manner similar to that observed in microgravity. Phorbol myristate acetate (PMA) treatment of PBMCs restored lost locomotory capacity by a maximum of 87%. Augmentation of cellular calcium flux with ionomycin had no restorative effect. Treatment of lymphocytes with mitomycin C prior to exposure to MMG, followed by PMA, restored locomotion to the same extent as when nonmitomycin C-treated lymphocytes were exposed to MMG (80-87%), suggesting that deoxyribonucleic acid replication is not essential for the restoration of locomotion. Thus, direct activation of protein kinase C (PKC) with PMA was effective in restoring locomotion in MMG comparable to the normal levels seen in Ig cultures. Therefore, in MMG, lymphocyte calcium signaling pathways were functional, with defects occurring at either the level of PKC or upstream of PKC.

  9. Enhanced Spatial Resolution During Locomotion and Heightened Attention in Mouse Primary Visual Cortex

    PubMed Central

    Mineault, Patrick J.; Tring, Elaine; Trachtenberg, Joshua T.

    2016-01-01

    We do not fully understand how behavioral state modulates the processing and transmission of sensory signals. Here, we studied the cortical representation of the retinal image in mice that spontaneously switched between a state of rest and a constricted pupil, and one of active locomotion and a dilated pupil, indicative of heightened attention. We measured the selectivity of neurons in primary visual cortex for orientation and spatial frequency, as well as their response gain, in these two behavioral states. Consistent with prior studies, we found that preferred orientation and spatial frequency remained invariant across states, whereas response gain increased during locomotion relative to rest. Surprisingly, relative gain, defined as the ratio between the gain during locomotion and the gain during rest, was not uniform across the population. Cells tuned to high spatial frequencies showed larger relative gain compared with those tuned to lower spatial frequencies. The preferential enhancement of high-spatial-frequency information was also reflected in our ability to decode the stimulus from population activity. Finally, we show that changes in gain originate from shifts in the operating point of neurons along a spiking nonlinearity as a function of behavioral state. Differences in the relative gain experienced by neurons with high and low spatial frequencies are due to corresponding differences in how these cells shift their operating points between behavioral states. SIGNIFICANCE STATEMENT How behavioral state modulates the processing and transmission of sensory signals remains poorly understood. Here, we show that the mean firing rate and neuronal gain increase during locomotion as a result in a shift of the operating point of neurons. We define relative gain as the ratio between the gain of neurons during locomotion and rest. Interestingly, relative gain is higher in cells with preferences for higher spatial frequencies than those with low

  10. Group I extensor afferents evoke disynaptic EPSPs in cat hindlimb extensor motorneurones during fictive locomotion.

    PubMed Central

    Angel, M J; Guertin, P; Jiménez, T; McCrea, D A

    1996-01-01

    1. Intracellular recording from extensor motoneurones in paralysed decerebrate cats was used to examine the distribution of short-latency non-monosynaptic excitation by group I afferents during fictive locomotion produced by stimulation of the mesencephalic locomotor region (MLR). 2. During the extension but not the flexion phase of fictive locomotion, stimulation of ankle extensor nerves at 1.2-2.0 times threshold evoked excitatory postsynaptic potentials (EPSPs) in motoneurones innervating hip, knee and ankle extensors. Disynaptic EPSPs were also evoked by selective activation of group Ia muscle spindle afferents by muscle stretch. 3. The central latencies of these group I-evoked EPSPs (mean, 1.55 ms) suggest their mediation by a disynaptic pathway with a single interneurone interposed between extensor group I afferents and extensor motoneurones. Disynaptic EPSPs were also evoked during periods of spontaneous locomotion following the cessation of MLR stimulation. 4. Hip extensor motoneurones received disynaptic EPSPs during extension following stimulation of both homonymous and ankle extensor nerves. Stimulation of hip extensor nerves did not evoke disynaptic EPSPs in ankle extensor motoneurones. 5. The appearance of disynaptic EPSPs during extension appears to result from cyclic disinhibition of an unidentified population of excitatory spinal interneurones and not postsynaptic voltage-dependent conductances in motoneurones or phasic presynaptic inhibition of group I afferents during flexion. 6. The reorganization of group I reflexes during fictive locomotion includes the appearance of disynaptic excitation of hip, knee and ankle extensor motoneurones. This excitatory reflex is one of the mechanisms by which group I afferents can enhance extensor activity and increase force production during stance. PMID:8865080

  11. Transient inhibition and long-term facilitation of locomotion by phasic optogenetic activation of serotonin neurons

    PubMed Central

    Correia, Patrícia A; Lottem, Eran; Banerjee, Dhruba; Machado, Ana S; Carey, Megan R; Mainen, Zachary F

    2017-01-01

    Serotonin (5-HT) is associated with mood and motivation but the function of endogenous 5-HT remains controversial. Here, we studied the impact of phasic optogenetic activation of 5-HT neurons in mice over time scales from seconds to weeks. We found that activating dorsal raphe nucleus (DRN) 5-HT neurons induced a strong suppression of spontaneous locomotor behavior in the open field with rapid kinetics (onset ≤1 s). Inhibition of locomotion was independent of measures of anxiety or motor impairment and could be overcome by strong motivational drive. Repetitive place-contingent pairing of activation caused neither place preference nor aversion. However, repeated 15 min daily stimulation caused a persistent increase in spontaneous locomotion to emerge over three weeks. These results show that 5-HT transients have strong and opposing short and long-term effects on motor behavior that appear to arise from effects on the underlying factors that motivate actions. DOI: http://dx.doi.org/10.7554/eLife.20975.001 PMID:28193320

  12. Locomotion of chemically powered autonomous nanowire motors

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Li, Longqiu; Li, Tianlong; Zhang, Guangyu; Sun, Qian

    2015-08-01

    Physical insights on the hydrodynamics and locomotion of self-propelled nanowire motor under nonequilibrium steady state are investigated using finite element method in accordance with hybrid molecular dynamics/multiparticle collision dynamics and rigid body dynamics. Nanowire motor is discretized into finite segments, and forces of solvent molecule acting on the motor are assumed to be the sum of forces acting on all segments of the motor. We show that the locomotion of nanowire motor is mainly determined by the imbalance forces acting on the catalytic and noncatalytic segments. The average velocity along the axis increases significantly as a function of time prior to reaching equilibrium. The length of nanowire motor shows negligible effect on the velocity of the motor. Preliminary experimental results are provided to validate the current model.

  13. Rehinging biflagellar locomotion in a viscous fluid.

    PubMed

    Spagnolie, Saverio E

    2009-10-01

    A means of swimming in a viscous fluid is presented, in which a swimmer with only two links rotates around a joint and then rehinges in a periodic fashion in what is here termed rehinging locomotion. This two-link rigid swimmer is shown to locomote with an efficiency similar to that of Purcell's well-studied three-link swimmer, but with a simpler morphology. The hydrodynamically optimal stroke of an analogous flexible biflagellated swimmer is also considered. The introduction of flexibility is found to increase the swimming efficiency by up to 520% as the body begins to exhibit wavelike dynamics, with an upper bound on the efficiency determined by a degeneracy in the limit of infinite flexibility.

  14. Locomotion control of hybrid cockroach robots

    PubMed Central

    Sanchez, Carlos J.; Chiu, Chen-Wei; Zhou, Yan; González, Jorge M.; Vinson, S. Bradleigh; Liang, Hong

    2015-01-01

    Natural systems retain significant advantages over engineered systems in many aspects, including size and versatility. In this research, we develop a hybrid robotic system using American (Periplaneta americana) and discoid (Blaberus discoidalis) cockroaches that uses the natural locomotion and robustness of the insect. A tethered control system was firstly characterized using American cockroaches, wherein implanted electrodes were used to apply an electrical stimulus to the prothoracic ganglia. Using this approach, larger discoid cockroaches were engineered into a remotely controlled hybrid robotic system. Locomotion control was achieved through electrical stimulation of the prothoracic ganglia, via a remotely operated backpack system and implanted electrodes. The backpack consisted of a microcontroller with integrated transceiver protocol, and a rechargeable battery. The hybrid discoid roach was able to walk, and turn in response to an electrical stimulus to its nervous system with high repeatability of 60%. PMID:25740855

  15. Using entropy measures to characterize human locomotion.

    PubMed

    Leverick, Graham; Szturm, Tony; Wu, Christine Q

    2014-12-01

    Entropy measures have been widely used to quantify the complexity of theoretical and experimental dynamical systems. In this paper, the value of using entropy measures to characterize human locomotion is demonstrated based on their construct validity, predictive validity in a simple model of human walking and convergent validity in an experimental study. Results show that four of the five considered entropy measures increase meaningfully with the increased probability of falling in a simple passive bipedal walker model. The same four entropy measures also experienced statistically significant increases in response to increasing age and gait impairment caused by cognitive interference in an experimental study. Of the considered entropy measures, the proposed quantized dynamical entropy (QDE) and quantization-based approximation of sample entropy (QASE) offered the best combination of sensitivity to changes in gait dynamics and computational efficiency. Based on these results, entropy appears to be a viable candidate for assessing the stability of human locomotion.

  16. Locomotion control of hybrid cockroach robots.

    PubMed

    Sanchez, Carlos J; Chiu, Chen-Wei; Zhou, Yan; González, Jorge M; Vinson, S Bradleigh; Liang, Hong

    2015-04-06

    Natural systems retain significant advantages over engineered systems in many aspects, including size and versatility. In this research, we develop a hybrid robotic system using American (Periplaneta americana) and discoid (Blaberus discoidalis) cockroaches that uses the natural locomotion and robustness of the insect. A tethered control system was firstly characterized using American cockroaches, wherein implanted electrodes were used to apply an electrical stimulus to the prothoracic ganglia. Using this approach, larger discoid cockroaches were engineered into a remotely controlled hybrid robotic system. Locomotion control was achieved through electrical stimulation of the prothoracic ganglia, via a remotely operated backpack system and implanted electrodes. The backpack consisted of a microcontroller with integrated transceiver protocol, and a rechargeable battery. The hybrid discoid roach was able to walk, and turn in response to an electrical stimulus to its nervous system with high repeatability of 60%.

  17. Different forms of locomotion in the spinal lamprey.

    PubMed

    Hsu, Li-Ju; Orlovsky, Grigori N; Zelenin, Pavel V

    2014-06-01

    Forward locomotion has been extensively studied in different vertebrate animals, and the principal role of spinal mechanisms in the generation of this form of locomotion has been demonstrated. Vertebrate animals, however, are capable of other forms of locomotion, such as backward walking and swimming, sideward walking, and crawling. Do the spinal mechanisms play a principal role in the generation of these forms of locomotion? We addressed this question in lampreys, which are capable of five different forms of locomotion - fast forward swimming, slow forward swimming, backward swimming, forward crawling, and backward crawling. To induce locomotion in lampreys spinalised at the second gill level, we used either electrical stimulation of the spinal cord at different rostrocaudal levels, or tactile stimulation of specific cutaneous receptive fields from which a given form of locomotion could be evoked in intact lampreys. We found that any of the five forms of locomotion could be evoked in the spinal lamprey by electrical stimulation of the spinal cord, and some of them by tactile stimulation. These results suggest that spinal mechanisms in the lamprey, in the absence of phasic supraspinal commands, are capable of generating the basic pattern for all five forms of locomotion observed in intact lampreys. In spinal lampreys, the direction of swimming did not depend on the site of spinal cord stimulation, but on the stimulation strength. The direction of crawling strongly depended on the body configuration. The spinal structures presumably activated by spinal cord stimulation and causing different forms of locomotion are discussed.

  18. Network interneurons underlying ciliary locomotion in Hermissenda.

    PubMed

    Crow, Terry; Jin, Nan Ge; Tian, Lian-Ming

    2013-02-01

    In the nudibranch mollusk Hermissenda, ciliary locomotion contributes to the generation of two tactic behaviors. Light elicits a positive phototaxis, and graviceptive stimulation evokes a negative gravitaxis. Two classes of light-responsive premotor interneurons in the network contributing to ciliary locomotion have been recently identified in the cerebropleural ganglia. Aggregates of type I interneurons receive monosynaptic excitatory (I(e)) or inhibitory (I(i)) input from identified photoreceptors. Type II interneurons receive polysynaptic excitatory (II(e)) or inhibitory (II(i)) input from photoreceptors. The ciliary network also includes type III inhibitory (III(i)) interneurons, which form monosynaptic inhibitory connections with ciliary efferent neurons (CENs). Illumination of the eyes evokes a complex inhibitory postsynaptic potential, a decrease of I(i) spike activity, a complex excitatory postsynaptic potential, and an increase of I(e) spike activity. Here, we characterized the contribution of identified I, II, and III(i) interneurons to the neural network supporting visually guided locomotion. In dark-adapted preparations, light elicited an increase in the tonic spike activity of II(e) interneurons and a decrease in the tonic spike activity of II(i) interneurons. Fluorescent dye-labeled type II interneurons exhibited diverse projections within the circumesophageal nervous system. However, a subclass of type II interneurons, II(e(cp)) and II(i(cp)) interneurons, were shown to terminate within the ipsilateral cerebropleural ganglia and indirectly modulate the activity of CENs. Type II interneurons form monosynaptic or polysynaptic connections with previously identified components of the ciliary network. The identification of a monosynaptic connection between I(e) and III(i) interneurons shown here suggest that they provide a major role in the light-dependent modulation of CEN spike activity underlying ciliary locomotion.

  19. Effect of subtype-selective adenosine receptor antagonists on basal or haloperidol-regulated striatal function: studies of exploratory locomotion and c-Fos immunoreactivity in outbred and A(2A)R KO mice.

    PubMed

    Pardo, M; López-Cruz, L; Valverde, O; Ledent, C; Baqi, Y; Müller, C E; Salamone, J D; Correa, M

    2013-06-15

    Behavioral activation is regulated by dopamine (DA) in striatal areas. At low doses, while typical antipsychotic drugs produce psychomotor slowing, psychostimulants promote exploration. Minor stimulants such as caffeine, which act as adenosine receptor antagonists, can also potentiate behavioral activation. Striatal areas are rich in adenosine and DA receptors, and adenosine A2A receptors are mainly expressed in the striatum where they are co-localized with DA D2 receptors. Adenosine antagonists with different receptor-selectivity profiles were used to study spontaneous or haloperidol-impaired exploration and c-Fos expression in different striatal areas. Because A2A antagonists were expected to be more selective for reversing the effects of the D2 antagonist haloperidol, A2A receptor knockout (A2ARKO) mice were also assessed. CD1 and A2ARKO male mice were tested in an open field and in a running wheel. Only the A1/A2A receptor antagonist theophylline (5.0-15.0 mg/kg) and the A2A antagonist MSX-3 (2.0 mg/kg) increased spontaneous locomotion and rearing. Co-administration of theophylline (10.0-15.0 mg/kg), and MSX-3 (1.0-3.0 mg/kg) reversed haloperidol-induced suppression of locomotion. The A1 antagonist CPT was only marginally effective in reversing the effects of haloperidol. Although adenosine antagonists did not affect c-Fos expression on their own, theophylline and MSX-3, but not CPT, attenuated haloperidol induction of c-Fos expression. A2ARKO mice were resistant to the behavioral effects of haloperidol at intermediate doses (0.1 mg/kg) in the open field and in the running wheel. A2A receptors are important for regulating behavioral activation, and interact with D2 receptors in striatal areas to regulate neural processes involved in exploratory activity.

  20. Trackways Produced by Lungfish During Terrestrial Locomotion

    PubMed Central

    Falkingham, Peter L.; Horner, Angela M.

    2016-01-01

    Some primarily aquatic vertebrates make brief forays onto land, creating traces as they do. A lack of studies on aquatic trackmakers raises the possibility that such traces may be ignored or misidentified in the fossil record. Several terrestrial Actinopterygian and Sarcopterygian species have previously been proposed as possible models for ancestral tetrapod locomotion, despite extant fishes being quite distinct from Devonian fishes, both morphologically and phylogenetically. Although locomotion has been well-studied in some of these taxa, trackway production has not. We recorded terrestrial locomotion of a 35 cm African lungfish (Protopterus annectens; Dipnoi: Sarcopterygii) on compliant sediment. Terrestrial movement in the lungfish is accomplished by planting the head and then pivoting the trunk. Impressions are formed where the head impacts the substrate, while the body and fins produce few traces. The head leaves a series of alternating left-right impressions, where each impact can appear as two separate semi-circular impressions created by the upper and lower jaws, bearing some similarity to fossil traces interpreted as footprints. Further studies of trackways of extant terrestrial fishes are necessary to understand the behavioural repertoire that may be represented in the fossil track record. PMID:27670758

  1. Trackways Produced by Lungfish During Terrestrial Locomotion.

    PubMed

    Falkingham, Peter L; Horner, Angela M

    2016-09-27

    Some primarily aquatic vertebrates make brief forays onto land, creating traces as they do. A lack of studies on aquatic trackmakers raises the possibility that such traces may be ignored or misidentified in the fossil record. Several terrestrial Actinopterygian and Sarcopterygian species have previously been proposed as possible models for ancestral tetrapod locomotion, despite extant fishes being quite distinct from Devonian fishes, both morphologically and phylogenetically. Although locomotion has been well-studied in some of these taxa, trackway production has not. We recorded terrestrial locomotion of a 35 cm African lungfish (Protopterus annectens; Dipnoi: Sarcopterygii) on compliant sediment. Terrestrial movement in the lungfish is accomplished by planting the head and then pivoting the trunk. Impressions are formed where the head impacts the substrate, while the body and fins produce few traces. The head leaves a series of alternating left-right impressions, where each impact can appear as two separate semi-circular impressions created by the upper and lower jaws, bearing some similarity to fossil traces interpreted as footprints. Further studies of trackways of extant terrestrial fishes are necessary to understand the behavioural repertoire that may be represented in the fossil track record.

  2. Disparity and convergence in bipedal archosaur locomotion

    PubMed Central

    Bates, K. T.; Schachner, E. R.

    2012-01-01

    This study aims to investigate functional disparity in the locomotor apparatus of bipedal archosaurs. We use reconstructions of hindlimb myology of extant and extinct archosaurs to generate musculoskeletal biomechanical models to test hypothesized convergence between bipedal crocodile-line archosaurs and dinosaurs. Quantitative comparison of muscle leverage supports the inference that bipedal crocodile-line archosaurs and non-avian theropods had highly convergent hindlimb myology, suggesting similar muscular mechanics and neuromuscular control of locomotion. While these groups independently evolved similar musculoskeletal solutions to the challenges of parasagittally erect bipedalism, differences also clearly exist, particularly the distinct hip and crurotarsal ankle morphology characteristic of many pseudosuchian archosaurs. Furthermore, comparative analyses of muscle design in extant archosaurs reveal that muscular parameters such as size and architecture are more highly adapted or optimized for habitual locomotion than moment arms. The importance of these aspects of muscle design, which are not directly retrievable from fossils, warns against over-extrapolating the functional significance of anatomical convergences. Nevertheless, links identified between posture, muscle moments and neural control in archosaur locomotion suggest that functional interpretations of osteological changes in limb anatomy traditionally linked to postural evolution in Late Triassic archosaurs could be constrained through musculoskeletal modelling. PMID:22112652

  3. Terrain Classification From Body-Mounted Cameras During Human Locomotion.

    PubMed

    Anantrasirichai, Nantheera; Burn, Jeremy; Bull, David

    2015-10-01

    This paper presents a novel algorithm for terrain type classification based on monocular video captured from the viewpoint of human locomotion. A texture-based algorithm is developed to classify the path ahead into multiple groups that can be used to support terrain classification. Gait is taken into account in two ways. Firstly, for key frame selection, when regions with homogeneous texture characteristics are updated, the frequency variations of the textured surface are analyzed and used to adaptively define filter coefficients. Secondly, it is incorporated in the parameter estimation process where probabilities of path consistency are employed to improve terrain-type estimation. When tested with multiple classes that directly affect mobility-a hard surface, a soft surface, and an unwalkable area-our proposed method outperforms existing methods by up to 16%, and also provides improved robustness.

  4. Caenorhabditis elegans exhibit a coupling between the defecation motor program and directed locomotion

    PubMed Central

    Nagy, Stanislav; Huang, Yung-Chi; Alkema, Mark J.; Biron, David

    2015-01-01

    Distinct motor programs can be coupled to refine the repertoire of behavior dynamics. However, mechanisms underlying such coupling are poorly understood. The defecation motor program (DMP) of C. elegans is composed of a succession of body contraction and expulsion steps, performed repeatedly with a period of 50–60 sec. We show that recurring patterns of directed locomotion are executed in tandem with, co-reset, and co-terminate with the DMP cycle. Calcium waves in the intestine and proton signaling were shown to regulate the DMP. We found that genetic manipulations affecting these calcium dynamics regulated the corresponding patterns of directed locomotion. Moreover, we observed the initiation of a recurring locomotion pattern 10 seconds prior to the posterior body contraction, suggesting that the synchronized motor program may initiate prior to the DMP. This study links two multi-step motor programs executed by C. elegans in synchrony, utilizing non-neuronal tissue to drive directed locomotion. PMID:26597056

  5. Neurobiology of Caenorhabditis elegans Locomotion: Where Do We Stand?

    PubMed Central

    Gjorgjieva, Julijana; Biron, David; Haspel, Gal

    2014-01-01

    Animals use a nervous system for locomotion in some stage of their life cycle. The nematode Caenorhabditis elegans, a major animal model for almost all fields of experimental biology, has long been used for detailed studies of genetic and physiological locomotion mechanisms. Of its 959 somatic cells, 302 are neurons that are identifiable by lineage, location, morphology, and neurochemistry in every adult hermaphrodite. Of those, 75 motoneurons innervate body wall muscles that provide the thrust during locomotion. In this Overview, we concentrate on the generation of either forward- or backward-directed motion during crawling and swimming. We describe locomotion behavior, the parts constituting the locomotion system, and the relevant neuronal connectivity. Because it is not yet fully understood how these components combine to generate locomotion, we discuss competing hypotheses and models. PMID:26955070

  6. Spontaneous perseverative turning in rats with radiation-induced hippocampal damage

    SciTech Connect

    Mickley, G.A.; Ferguson, J.L.; Nemeth, T.J.; Mulvihill, M.A.; Alderks, C.E. )

    1989-08-01

    This study found a new behavioral correlate of lesions specific to the dentate granule cell layer of the hippocampus: spontaneous perseverative turning. Irradiation of a portion of the neonatal rat cerebral hemispheres produced hypoplasia of the granule cell layer of the hippocampal dentate gyrus while sparing the rest of the brain. Radiation-induced damage to the hippocampal formation caused rats placed in bowls to spontaneously turn in long, slow bouts without reversals. Irradiated subjects also exhibited other behaviors characteristic of hippocampal damage (e.g., perseveration in spontaneous exploration of the arms of a T-maze, retarded acquisition of a passive avoidance task, and increased horizontal locomotion). These data extend previously reported behavioral correlates of fascia dentata lesions and suggest the usefulness of a bout analysis of spontaneous bowl turning as a measure of nondiscrete-trial spontaneous alternation and a sensitive additional indicator of radiation-induced hippocampal damage.

  7. A contribution about ferrofluid based flow manipulation and locomotion systems

    NASA Astrophysics Data System (ADS)

    Zimmermann, K.; Zeidis, I.; Bohm, V.; Popp, J.

    2009-02-01

    With the background of developing apedal bionic inspired locomotion systems for future application fields like autonomous (swarm) robots, medical engineering and inspection systems, this article presents a selection of locomotion systems with bifluidic flow control using ferrofluid. By controlling the change of shape, position and pressure of the ferrofluid in a secondary low viscous fluid by magnetic fields locomotion of objects or the ferrofluid itself can be realised. The locomotion of an object is caused in the first example by a ferrofluid generated flow of the secondary fluid and in the second and third case by the direct alteration of the ferrofluid position.

  8. The equine neck and its function during movement and locomotion.

    PubMed

    Zsoldos, Rebeka R; Licka, Theresia F

    2015-10-01

    During both locomotion and body movements at stance, the head and neck of the horse are a major craniocaudal and lateral balancing mechanism employing input from the visual, vestibular and proprioceptive systems. The function of the equine neck has recently become the focus of several research groups; this is probably also feeding on an increase of interest in the equine neck in equestrian sports, with a controversial discussion of specific neck positions such as maximum head and neck flexion. The aim of this review is to offer an overview of new findings on the structures and functions of the equine neck, illustrating their interplay. The movement of the neck is based on intervertebral motion, but it is also an integral part of locomotion; this is illustrated by the different neck conformations in the breeds of horses used for various types of work. The considerable effect of the neck movement and posture onto the whole trunk and even the limbs is transmitted via bony, ligamentous and muscular structures. Also, the fact that the neck position can easily be influenced by the rider and/or by the employment of training aids makes it an important avenue for training of new movements of the neck as well as the whole horse. Additionally, the neck position also affects the cervical spinal cord as well as the roots of the spinal nerves; besides the commonly encountered long-term neurological effects of cervical vertebral disorders, short-term changes of neural and muscular function have also been identified in the maximum flexion of the cranial neck and head position. During locomotion, the neck stores elastic energy within the passive tissues such as ligaments, joint capsules and fasciae. For adequate stabilisation, additional muscle activity is necessary; this is learned and requires constant muscle training as it is essential to prevent excessive wear and tear on the vertebral joints and also repetitive or single trauma to the spinal nerves and the spinal cord. The

  9. Speeding up spontaneous disease extinction

    NASA Astrophysics Data System (ADS)

    Khasin, Michael

    2012-02-01

    The dynamics of epidemic in a susceptible population is affected both by the random character of interactions between the individuals and by environmental variations. As a consequence, the sizes of the population groups (infected, susceptible, etc.) fluctuate in the course of evolution of the epidemic. In a small community a rare large fluctuation in the number of infected can result in extinction of the disease. We suggest a novel paradigm of controlling the epidemic, where the control field, such as vaccination, is designed to maximize the rate of spontaneous disease extinction. We show that, for a limited-scope vaccination, the optimal vaccination protocol and its impact on the epidemics have universal features: (i) the vaccine must be applied in pulses, (ii) the spontaneous disease extinction is synchronized with the vaccination. We trace this universality to general properties of the response of large fluctuations to external perturbations.

  10. The cost of incline locomotion in ghost crabs (Ocypode quadrata) of different sizes.

    PubMed

    Tullis, Alexa; Andrus, Scott C

    2011-10-01

    It is well established that the metabolic cost of horizontal locomotion decreases as a regular function of animal body mass, regardless of body form and phylogeny. How body size affects the cost of incline exercise remains much less clear. Studies on vertebrates have led to the hypotheses that the cost of vertical work is independent of body mass and that the added cost of locomoting on inclines is lower for small animals. Studies on vertebrates and a few invertebrates provide evidence both for and against these hypotheses. To gain further insight into the cost of incline exercise, we measured oxygen consumption of small (2.33 ± 0.07 g) and large (46.66 ± 5.33 g) ghost crabs (Ocypode quadrata) locomoting horizontally and up a 20° incline. The slope of the oxygen consumption versus speed relationship (= minimum cost of transport) was not significantly different for small crabs exercising horizontally and on an incline. However, the intercept for incline exercise was significantly higher, indicating that small crabs used more energy during incline exercise than during horizontal exercise. Incline had no effect on the slope or intercept of the oxygen consumption versus speed relationship for large crabs. Our results suggest that the cost of incline locomotion may be large for small animals and that the cost is not independent of body size. Our results add to the growing body of research indicating that body mass is but one factor that determines the cost of incline locomotion and efficiency of vertical work.

  11. Effect of age and severity of cognitive dysfunction on spontaneous activity in pet dogs - part 1: locomotor and exploratory behaviour.

    PubMed

    Rosado, B; González-Martínez, A; Pesini, P; García-Belenguer, S; Palacio, J; Villegas, A; Suárez, M-L; Santamarina, G; Sarasa, M

    2012-11-01

    Age-related cognitive dysfunction syndrome (CDS) has been reported in dogs and it is considered a natural model for Alzheimer's disease in humans. Changes in spontaneous activity (including locomotor and exploratory behaviour) and social responsiveness have been related to the age and cognitive status of kennel-reared Beagle dogs. The aim of this study was to assess the influence of age and severity of CDS on locomotor and exploratory behaviour of privately owned dogs. This is the first part of a two-part report on spontaneous activity in pet dogs. An open-field (OF) test and a curiosity test were administered at baseline and 6 months later to young (1-4 years, n=9), middle-aged (5-8 years, n=9), cognitively unimpaired aged (≥ 9 years, n=31), and cognitively impaired aged ( ≥ 9 years, n=36) animals. Classification of cognitive status was carried out using an owner-based observational questionnaire, and in the cognitively impaired group, the dogs were categorised as having either mild or severe cognitive impairment. Dogs were recorded during sessions in the testing room and the video-recordings were subsequently analysed. The severity of CDS (but not age) influenced locomotion and exploratory behaviour so that the more severe the impairment, the higher the locomotor activity and frequency of corner-directed (aimless) behaviours, and the lower the frequency of door-aimed activities. Curiosity directed toward novel stimuli exhibited an age-dependent decline although severely affected animals displayed more sniffing episodes directed towards the objects. OF activity did not change after 6 months. Testing aged pet dogs for spontaneous behaviour might help to better characterise cognitively affected individuals.

  12. Context-dependent changes in motor control and kinematics during locomotion: modulation and decoupling

    PubMed Central

    Foster, Kathleen L.; Higham, Timothy E.

    2014-01-01

    Successful locomotion through complex, heterogeneous environments requires the muscles that power locomotion to function effectively under a wide variety of conditions. Although considerable data exist on how animals modulate both kinematics and motor pattern when confronted with orientation (i.e. incline) demands, little is known about the modulation of muscle function in response to changes in structural demands like substrate diameter, compliance and texture. Here, we used high-speed videography and electromyography to examine how substrate incline and perch diameter affected the kinematics and muscle function of both the forelimb and hindlimb in the green anole (Anolis carolinensis). Surprisingly, we found a decoupling of the modulation of kinematics and motor activity, with kinematics being more affected by perch diameter than by incline, and muscle function being more affected by incline than by perch diameter. Also, muscle activity was most stereotyped on the broad, vertical condition, suggesting that, despite being classified as a trunk-crown ecomorph, this species may prefer trunks. These data emphasize the complex interactions between the processes that underlie animal movement and the importance of examining muscle function when considering both the evolution of locomotion and the impacts of ecology on function. PMID:24621949

  13. Optimal locomotion of mechanical rectifier systems

    NASA Astrophysics Data System (ADS)

    Blair, Justin T.

    Vehicles utilizing animal locomotion mechanisms may possess increased performance parameters and the ability to overcome more difficult terrain than conventional wheel or propeller driven vehicles. The essential mechanism underlying animal locomotion can be viewed as mechanical rectification that converts periodic body movements to thrust force through interactions with the environment. This dissertation defines a general class of mechanical rectifiers as multi-body systems equipped with such thrust generation mechanisms. A general model is developed from the Euler-Lagrange equation and simplified by assuming small body oscillations around a given nominal posture. The model reveals that the rectifying dynamics can be captured by a bilinear (but not linear) term of body shape variables. An optimal gait problem is formulated for the bilinear rectifier model as a minimization of a quadratic cost function over the set of periodic functions subject to a constraint on the average locomotion velocity. We prove that a globally optimal solution is given by a harmonic gait that can be found by generalized eigenvalue computation with a line search over cycle frequencies. We verify the solution method through case studies of a two dimensional chain of links for which snake-like undulations and jellyfish-like flapping gaits are found to be optimal, and obtain analytical insights into determinants of optimal gaits from a simple disk-mass rectifier system. Lastly, we develop a dynamic model for batoid swimming featuring a 6 degree-of-freedom main body (position and orientation), with independent wing deformation (described as the motion of many discrete points in the body-fixed coordinate frame), and calculate various gaits. Multiple wing shapes and optimality criteria are considered, such as the maximum thrust to deflection ratio or minimum input power, and the resulting gaits are compared.

  14. Coal-fueled diesel locomotive test

    SciTech Connect

    Hsu, B.D.; McDowell, R.E.; Confer, G.L.; Basic, S.L.

    1993-01-01

    The biggest challenges to the development of a commercially-acceptable coal-fueled diesel-electric locomotive are integrating all systems into a working unit that can be operated in railroad service. This involves mainly the following three systems: (1) the multi-cylinder coal-fueled diesel engine, (2) the locomotive and engine controls, and (3) the CWS fuel supply system. Consequently, a workable 12-cylinder coal-fueled diesel engine was considered necessary at this stage to evolve the required locomotive support systems, in addition to gaining valuable multi-cylinder engine operating experience. The CWS fuel used during this project was obtained from Otisca, Inc. (Syracuse, NY). It was prepared from micronized and deashed Kentucky Blue Gem coal to 49.0% coal loading by weight, with less than 1% ash and 5 micron mean diameter particle size. Its higher heating value was analyzed at approximately 34630 kJ/k. Anti-agglomerating additive Triton X-114 was added to the CWS at GE Transportation Systems at 2% of coal weight. The nature of the Otisca CWS fuel makes it inherently more difficult to store, pump, and inject than diesel fuel, since concepts which govern Newtonian or normally viscous liquids do not apply entirely to CWS. Otisca CWS tends to be unstable and to settle in tanks and lines after a period of time, making it necessary to provide a means of agitation during storage. To avoid long term settling problems and to minimize losses, piping velocities were designed to be in the 60-90 m/min range.

  15. Spontaneous closure of stoma.

    PubMed

    Pandit, Narendra; Singh, Harjeet; Kumar, Hemanth; Gupta, Rajesh; Verma, G R

    2016-11-01

    Intestinal loop stoma is a common surgical procedure performed for various benign and malignant abdominal problems, but it rarely undergoes spontaneous closure, without surgical intervention. Two male patients presented to our emergency surgical department with acute abdominal pain. One of them was diagnosed as having rectosigmoid perforation and underwent diversion sigmoid loop colostomy after primary closure of the perforation. The other was a known case of carcinoma of the rectum who had already undergone low anterior resection with covering loop ileostomy; the patient underwent second loop ileostomy, this time for complicated intestinal obstruction. To our surprise, both the loop colostomy and ileostomy closed spontaneously at 8 weeks and 6 weeks, respectively, without any consequences. Spontaneous stoma closure is a rare and interesting event. The exact etiology for spontaneous closure remains unknown, but it may be hypothesized to result from slow retraction of the stoma, added to the concept of a tendency towards spontaneous closure of enterocutaneous fistula.

  16. Toe function and dynamic pressure distribution in ostrich locomotion.

    PubMed

    Schaller, Nina Ursula; D'Août, Kristiaan; Villa, Rikk; Herkner, Bernd; Aerts, Peter

    2011-04-01

    The ostrich is highly specialized in terrestrial locomotion and is the only extant bird that is both didactyl and exhibits a permanently elevated metatarsophalangeal joint. This extreme degree of digitigrady provides an excellent opportunity for the study of phalangeal adaptation towards fast, sustained bipedal locomotion. Data were gathered in a semi-natural setting with hand-raised, cooperative specimens. Dynamic pressure distribution, centre of pressure (CoP) trajectory and the positional inter-relationship of the toes during stance phase were investigated using pedobarography. Walking and running trials shared a J-shaped CoP trajectory with greater localization of CoP origin as speed increased. Slight variations of 4th toe position in walking affect CoP origin and modulation of 4th toe pressure on the substrate allows correction of balance, primarily at the beginning of stance phase at lower speeds. Load distribution patterns differed significantly between slow and fast trials. In walking, the 3rd and particularly the 4th toe exhibited notable variation in load distribution with minor claw participation only at push-off. Running trials yielded a distinctly triangular load distribution pattern defined by the 4th toe tip, the proximal part of the 3rd toe and the claw tip, with the sharp point of the claw providing an essential traction element at push-off. Consistency of CoP trajectory and load distribution at higher speeds arises from dynamic stability effects and may also reflect stringent limitations to degrees of freedom in hindlimb joint articulation that contribute to locomotor efficiency. This novel research could aid in the reconstruction of theropod locomotor modes and offers a systemic approach for future avian pedobarographic investigations.

  17. Biomedical perspectives on locomotion in null gravity

    NASA Technical Reports Server (NTRS)

    Cavanagh, Peter R.

    1989-01-01

    A number of important features of various locomotor activities are discussed, and approaches to the study of these activities in the context of space flight are suggested. In particular, the magnitude of peak forces and the rates of change of force during terrestrial cycling, walking, and running are compared. It is shown that subtle changes in the conditions and techniques of locomotion can have a major influence on the biomechanical consequences to the skeleton. The various hypotheses that identify locomotor exercise as a countermeasure to bone demineralization during weightlessness deserve to be tested with some degree of biomechanical rigor. Various approaches for achieving such scrutiny are discussed.

  18. Hamiltonian mechanics and planar fishlike locomotion

    NASA Astrophysics Data System (ADS)

    Kelly, Scott; Xiong, Hailong; Burgoyne, Will

    2007-11-01

    A free deformable body interacting with a system of point vortices in the plane constitutes a Hamiltonian system. A free Joukowski foil with variable camber shedding point vortices in an ideal fluid according to a periodically applied Kutta condition provides a model for fishlike locomotion which bridges the gap between inviscid analytical models that sacrifice realism for tractability and viscous computational models inaccessible to tools from nonlinear control theory. We frame such a model in the context of Hamiltonian mechanics and describe its relevance both to the study of hydrodynamic interactions within schools of fish and to the realization of model-based control laws for biomimetic autonomous robotic vehicles.

  19. 40 CFR Appendix A to Subpart A of... - Switcher Locomotives

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Switcher Locomotives A Appendix A to Subpart A of Part 201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE... Provisions Pt. 201, Subpt. A, App. A Appendix A to Subpart A of Part 201—Switcher Locomotives Type...

  20. 40 CFR Appendix A to Subpart A of... - Switcher Locomotives

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Switcher Locomotives A Appendix A to Subpart A of Part 201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE... Provisions Pt. 201, Subpt. A, App. A Appendix A to Subpart A of Part 201—Switcher Locomotives Type...

  1. 40 CFR Appendix A to Subpart A of... - Switcher Locomotives

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Switcher Locomotives A Appendix A to Subpart A of Part 201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE... Provisions Pt. 201, Subpt. A, App. A Appendix A to Subpart A of Part 201—Switcher Locomotives Type...

  2. 40 CFR Appendix A to Subpart A of... - Switcher Locomotives

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Switcher Locomotives A Appendix A to Subpart A of Part 201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE... Provisions Pt. 201, Subpt. A, App. A Appendix A to Subpart A of Part 201—Switcher Locomotives Type...

  3. 40 CFR Appendix A to Subpart A of... - Switcher Locomotives

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Switcher Locomotives A Appendix A to Subpart A of Part 201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE... Provisions Pt. 201, Subpt. A, App. A Appendix A to Subpart A of Part 201—Switcher Locomotives Type...

  4. [Transdisciplinary Approach for Sarcopenia. Sarcopenia and Locomotive syndrome].

    PubMed

    Endo, Naoto

    2014-10-01

    Locomotive syndrome refers to a condition under which the elderly has transfer-difficulties by problems of the locomotive organs. Sarcopenia and osteoporosis are a cause of care requirement and bedridden status. To evaluate and manage these disabled elderly with osteoporosis or sarcopenia, multidisciplinary approach is important.

  5. [Preventive and therapeutic approach to the locomotive syndrome].

    PubMed

    Akune, Toru

    2013-01-01

    The locomotive syndrome is a serious health condition that places the elderly at high risk of requiring support and long-term care caused by common age-related musculoskeletal disorders such as osteoporosis, osteoarthritis and sarcopenia. Accumulation of epidemiological evidence is required for the prevention strategy of the locomotive syndrome. Exercise intervention may be useful for the treatment of this condition.

  6. The relationship between transitional motor skills and locomotion.

    PubMed

    Looper, Julia; Talbot, Sara; Link, Allison; Chandler, Lynette

    2015-02-01

    This study explores whether transitional skills and sitting correlate with locomotion onset. The development of eight infants was followed. Most transitional skills correlated with locomotor skills. Sitting and rolling did not. Transitional skills may resemble the control needed for locomotion more closely than sitting.

  7. Job Grading Standard for Locomotive Engineer WG-6004.

    ERIC Educational Resources Information Center

    Civil Service Commission, Washington, DC. Bureau of Policies and Standards.

    The standard is used to grade the nonsupervisory work of operating all types of locomotives and trains to transport supplies, equipment, conveyances, and personnel. The work involves skill in operating locomotives under various conditions, and knowledge of the layout of a track system and the safety, signalling, and track use requirements or…

  8. Locomotion Induced by Spatial Restriction in Adult Drosophila

    PubMed Central

    Xiao, Chengfeng; Robertson, R. Meldrum

    2015-01-01

    Drosophila adults display an unwillingness to enter confined spaces but the behaviors induced by spatial restriction in Drosophila are largely unknown. We developed a protocol for high-throughput analysis of locomotion and characterized features of locomotion in a restricted space. We observed intense and persistent locomotion of flies in small circular arenas (diameter 1.27 cm), whereas locomotion was greatly reduced in large circular arenas (diameter 3.81 cm). The increased locomotion induced by spatial restriction was seen in male flies but not female flies, indicating sexual dimorphism of the response to spatial restriction. In large arenas, male flies increased locomotion in arenas previously occupied by male but not female individuals. In small arenas, such pre-conditioning had no effect on male flies, which showed intense and persistent locomotion similar to that seen in fresh arenas. During locomotion with spatial restriction, wildtype Canton-S males traveled slower and with less variation in speed than the mutant w1118 carrying a null allele of white gene. In addition, wildtype flies showed a stronger preference for the boundary than the mutant in small arenas. Genetic analysis with a series of crosses revealed that the white gene was not associated with the phenotype of boundary preference in wildtype flies. PMID:26351842

  9. Economic assessment of coal-burning locomotives: Topical report

    SciTech Connect

    Not Available

    1986-02-01

    The General Electric Company embarked upon a study to evaluate various alternatives for the design and manufacture a coal fired locomotive considering various prime movers, but retaining the electric drive transmission. The initial study was supported by the Burlington-Northern and Norfolk-Southern railroads, and included the following alternatives: coal fired diesel locomotive; direct fired gas turbine locomotives; direct fired gas turbine locomotive with steam injection; raw coal gasifier gas turbine locomotive; and raw coal fluid bed steam turbine locomotive. All alternatives use the electric drive transmission and were selected for final evaluation. The first three would use a coal water slurry as a fuel, which must be produced by new processing plants. Therefore, use of a slurry would require a significant plant capital investment. The last two would use classified run-of-the-mine (ROM) coal with much less capital expenditure. Coal fueling stations would be required but are significantly lower in capital cost than a coal slurry plant. For any coal fired locomotive to be commercially viable, it must pass the following criteria: be technically feasible and environmentally acceptable; meet railroads' financial expectations; and offer an attractive return to the locomotive manufacturer. These three criteria are reviewed in the report.

  10. 40 CFR 92.104 - Locomotive and engine testing; overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Locomotive and engine testing; overview. 92.104 Section 92.104 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR....104 Locomotive and engine testing; overview. (a) The test procedures described here...

  11. 49 CFR 229.213 - Locomotive manufacturing information.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Locomotive manufacturing information. 229.213 Section 229.213 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Design Requirements § 229.213 Locomotive manufacturing information. (a) Each railroad operating...

  12. 49 CFR 229.213 - Locomotive manufacturing information.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Locomotive manufacturing information. 229.213 Section 229.213 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Design Requirements § 229.213 Locomotive manufacturing information. (a) Each railroad operating...

  13. 49 CFR 229.213 - Locomotive manufacturing information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Locomotive manufacturing information. 229.213 Section 229.213 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Design Requirements § 229.213 Locomotive manufacturing information. (a) Each railroad operating...

  14. 49 CFR 229.213 - Locomotive manufacturing information.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Locomotive manufacturing information. 229.213 Section 229.213 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Design Requirements § 229.213 Locomotive manufacturing information. (a) Each railroad operating...

  15. 49 CFR 229.213 - Locomotive manufacturing information.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locomotive manufacturing information. 229.213 Section 229.213 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Design Requirements § 229.213 Locomotive manufacturing information. (a) Each railroad operating...

  16. 49 CFR 230.106 - Steam locomotive frame.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Tenders Trucks, Frames and Equalizing System § 230.106 Steam locomotive frame. (a) Maintenance and inspection. Frames, decks, plates, tailpieces, pedestals, and braces shall be maintained in a safe and... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive frame. 230.106 Section...

  17. Amoeba proteus displays a walking form of locomotion.

    PubMed

    Cameron, Ivan; Rinaldi, Robert A; Kirby, Gerald; Davidson, David

    2007-08-01

    This report deals with observations on the directional locomotion of amoeba before and after fixation and scanning electron microscopy. The study was aimed at visualization of the stepwise events of directional movements. After the analysis of the data it is proposed that the amoeba undergoes a sequence of movement events that can be defined as a walking form of locomotion.

  18. 49 CFR 229.121 - Locomotive cab noise.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) of this section, a railroad shall not make any alterations that cause the average sound level for that locomotive design or model to exceed: (i) 82 dB(A) if the average sound level for a locomotive design or model is less than 82 dB(A); or (ii) 85 dB(A) if the average sound level for a...

  19. 49 CFR 229.121 - Locomotive cab noise.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) of this section, a railroad shall not make any alterations that cause the average sound level for that locomotive design or model to exceed: (i) 82 dB(A) if the average sound level for a locomotive design or model is less than 82 dB(A); or (ii) 85 dB(A) if the average sound level for a...

  20. Looking north toward Locomotive Shop (2 tracks on left), Car ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking north toward Locomotive Shop (2 tracks on left), Car Shop on right, and flat car in foreground. Note locomotive and car tires leaning on stock shed at left - East Broad Top Railroad & Coal Company, State Route 994, West of U.S. Route 522, Rockhill Furnace, Huntingdon County, PA

  1. 77 FR 30047 - Petition for Alternative Locomotive Crashworthiness Design

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... Federal Railroad Administration Petition for Alternative Locomotive Crashworthiness Design In accordance... design for an electric locomotive, Model ACS-64, built by Siemens Industry, Inc. This request is made in...-0036. The alternative design incorporates crash energy management features, detailed in the...

  2. 40 CFR 1033.230 - Grouping locomotives into engine families.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... families. 1033.230 Section 1033.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Certifying Engine Families § 1033.230 Grouping locomotives into engine families. (a) Divide your product line into engine families of...

  3. 49 CFR 223.11 - Requirements for existing locomotives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Requirements for existing locomotives. 223.11 Section 223.11 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION SAFETY GLAZING STANDARDS-LOCOMOTIVES, PASSENGER CARS AND...

  4. 49 CFR 232.105 - General requirements for locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION BRAKE SYSTEM SAFETY STANDARDS FOR FREIGHT AND OTHER NON-PASSENGER... reservoir on locomotives and related piping shall be zero, unless the system is capable of maintaining the... equalizing-reservoir leakage can be corrected. On locomotives equipped with electronic brakes, if the...

  5. 49 CFR 232.105 - General requirements for locomotives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION BRAKE SYSTEM SAFETY STANDARDS FOR FREIGHT AND OTHER NON-PASSENGER... reservoir on locomotives and related piping shall be zero, unless the system is capable of maintaining the... equalizing-reservoir leakage can be corrected. On locomotives equipped with electronic brakes, if the...

  6. Evolution of microorganism locomotion induced by starvation

    NASA Astrophysics Data System (ADS)

    Sibona, G. J.

    2007-07-01

    The search strategies of many organisms play a fundamental role in their competition to survive in a given environment. In this context, the propulsion systems of microorganisms have evolved during life history, to optimize the suitable use of energy they take from nutrients. Starting from a model for the motion of Brownian objects with internal energy depot, we show that the propulsion system of microorganisms has an optimal regimen while searching for new sources of food. Bacteria with a too low or too high energy expenditure in propulsion, moving in a nutrient-depleted environment, do not reach remote distances. In this sense, the mean square displacement has a maximum for a finite value of the propulsion rate. Species using the most efficient locomotion system have a considerable advantage for survival in hostile environments, a common situation in the ocean. Moreover, we found the existence of a lower size limit for useful locomotion. This suggests that, for organisms whose linear dimensions are below a certain threshold, it is advantageous not to use any propulsion mechanism at all, a result that is in agreement with what is observed in nature.

  7. Locomotion of a flapping flexible plate

    NASA Astrophysics Data System (ADS)

    Hua, Ru-Nan; Zhu, Luoding; Lu, Xi-Yun

    2013-12-01

    The locomotion of a flapping flexible plate in a viscous incompressible stationary fluid is numerically studied by an immersed boundary-lattice Boltzmann method for the fluid and a finite element method for the plate. When the leading-edge of the flexible plate is forced to heave sinusoidally, the entire plate starts to move freely as a result of the fluid-structure interaction. Mechanisms underlying the dynamics of the plate are elucidated. Three distinct states of the plate motion are identified and can be described as forward, backward, and irregular. Which state to occur depends mainly on the heaving amplitude and the bending rigidity of the plate. In the forward motion regime, analysis of the dynamic behaviors of the flapping flexible plate indicates that a suitable degree of flexibility can improve the propulsive performance. Moreover, there exist two kinds of vortex streets in the downstream of the plate which are normal and deflected wake. Further the forward motion is compared with the flapping-based locomotion of swimming and flying animals. The results obtained in the present study are found to be consistent with the relevant observations and measurements and can provide some physical insights into the understanding of the propulsive mechanisms of swimming and flying animals.

  8. Proprioceptive Actuation Design for Dynamic Legged locomotion

    NASA Astrophysics Data System (ADS)

    Kim, Sangbae; Wensing, Patrick; Biomimetic Robotics Lab Team

    Designing an actuator system for highly-dynamic legged locomotion exhibited by animals has been one of the grand challenges in robotics research. Conventional actuators designed for manufacturing applications have difficulty satisfying challenging requirements for high-speed locomotion, such as the need for high torque density and the ability to manage dynamic physical interactions. It is critical to introduce a new actuator design paradigm and provide guidelines for its incorporation in future mobile robots for research and industry. To this end, we suggest a paradigm called proprioceptive actuation, which enables highly- dynamic operation in legged machines. Proprioceptive actuation uses collocated force control at the joints to effectively control contact interactions at the feet under dynamic conditions. In the realm of legged machines, this paradigm provides a unique combination of high torque density, high-bandwidth force control, and the ability to mitigate impacts through backdrivability. Results show that the proposed design provides an impact mitigation factor that is comparable to other quadruped designs with series springs to handle impact. The paradigm is shown to enable the MIT Cheetah to manage the application of contact forces during dynamic bounding, with results given down to contact times of 85ms and peak forces over 450N. As a result, the MIT Cheetah achieves high-speed 3D running up to 13mph and jumping over an 18-inch high obstacle. The project is sponsored by DARPA M3 program.

  9. Sensory feedback in cockroach locomotion: current knowledge and open questions.

    PubMed

    Ayali, A; Couzin-Fuchs, E; David, I; Gal, O; Holmes, P; Knebel, D

    2015-09-01

    The American cockroach, Periplaneta americana, provides a successful model for the study of legged locomotion. Sensory regulation and the relative importance of sensory feedback vs. central control in animal locomotion are key aspects in our understanding of locomotive behavior. Here we introduce the cockroach model and describe the basic characteristics of the neural generation and control of walking and running in this insect. We further provide a brief overview of some recent studies, including mathematical modeling, which have contributed to our knowledge of sensory control in cockroach locomotion. We focus on two sensory mechanisms and sense organs, those providing information related to loading and unloading of the body and the legs, and leg-movement-related sensory receptors, and present evidence for the instrumental role of these sensory signals in inter-leg locomotion control. We conclude by identifying important open questions and indicate future perspectives.

  10. Age-related modifications of muscle synergies and spinal cord activity during locomotion.

    PubMed

    Monaco, Vito; Ghionzoli, Alessio; Micera, Silvestro

    2010-10-01

    Recent findings have shown that neural circuits located in the spinal cord drive muscular activations during locomotion while intermediating between descending signals and peripheral sensory information. This relationship could be modified by the natural aging process. To address this issue, the activity of 12 ipsilateral leg muscles was analyzed in young and elderly people (7 subjects per group) while walking at six different cadences (40-140 steps/min). These signals were used to extract synergies underlying muscle activation and to map the motoneuronal activity of the pools belonging to the lumbosacral enlargement (L(2)-S(2)). The comparison between the two groups showed that neither temporal patterning of motor primitives nor muscles loading synergies seemed to be significantly affected by aging. Conversely, as the cadence increased, spinal maps differ significantly between the groups, showing higher and scattered activity during the whole gait cycle in elders and well-defined bursts in young subjects. The results suggested that motor primitives lead the synchronization of muscle activation mainly depending on the biomechanical demand of the locomotion; hence they are not significantly affected by aging. Nevertheless, at the spinal cord level, biomechanical requirements, peripheral afference, and descending inputs are differently integrated between the two groups, probably reflecting age-related changes of both nervous system and motor control strategies during locomotion.

  11. Analysis of emotionality and locomotion in radio-frequency electromagnetic radiation exposed rats.

    PubMed

    Narayanan, Sareesh Naduvil; Kumar, Raju Suresh; Paval, Jaijesh; Kedage, Vivekananda; Bhat, M Shankaranarayana; Nayak, Satheesha; Bhat, P Gopalakrishna

    2013-07-01

    In the current study the modulatory role of mobile phone radio-frequency electromagnetic radiation (RF-EMR) on emotionality and locomotion was evaluated in adolescent rats. Male albino Wistar rats (6-8 weeks old) were randomly assigned into the following groups having 12 animals in each group. Group I (Control): they remained in the home cage throughout the experimental period. Group II (Sham exposed): they were exposed to mobile phone in switch-off mode for 28 days, and Group III (RF-EMR exposed): they were exposed to RF-EMR (900 MHz) from an active GSM (Global system for mobile communications) mobile phone with a peak power density of 146.60 μW/cm(2) for 28 days. On 29th day, the animals were tested for emotionality and locomotion. Elevated plus maze (EPM) test revealed that, percentage of entries into the open arm, percentage of time spent on the open arm and distance travelled on the open arm were significantly reduced in the RF-EMR exposed rats. Rearing frequency and grooming frequency were also decreased in the RF-EMR exposed rats. Defecation boli count during the EPM test was more with the RF-EMR group. No statistically significant difference was found in total distance travelled, total arm entries, percentage of closed arm entries and parallelism index in the RF-EMR exposed rats compared to controls. Results indicate that mobile phone radiation could affect the emotionality of rats without affecting the general locomotion.

  12. 40 CFR 1033.515 - Discrete-mode steady-state emission tests of locomotives and locomotive engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test... of the air entering the engine after any charge air cooling to within 5 °C of the typical intake manifold air temperature when the engine is operated in the locomotive under similar ambient conditions....

  13. 40 CFR 1033.515 - Discrete-mode steady-state emission tests of locomotives and locomotive engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test... of the air entering the engine after any charge air cooling to within 5 °C of the typical intake manifold air temperature when the engine is operated in the locomotive under similar ambient conditions....

  14. 40 CFR 1033.515 - Discrete-mode steady-state emission tests of locomotives and locomotive engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test... of the air entering the engine after any charge air cooling to within 5 °C of the typical intake manifold air temperature when the engine is operated in the locomotive under similar ambient conditions....

  15. 40 CFR 1033.515 - Discrete-mode steady-state emission tests of locomotives and locomotive engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test... of the air entering the engine after any charge air cooling to within 5 °C of the typical intake manifold air temperature when the engine is operated in the locomotive under similar ambient conditions....

  16. 40 CFR 1033.515 - Discrete-mode steady-state emission tests of locomotives and locomotive engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test... of the air entering the engine after any charge air cooling to within 5 °C of the typical intake manifold air temperature when the engine is operated in the locomotive under similar ambient conditions....

  17. 49 CFR 229.207 - New locomotive crashworthiness design standards and changes to existing FRA-approved locomotive...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false New locomotive crashworthiness design standards and changes to existing FRA-approved locomotive crashworthiness design standards. 229.207 Section 229.207 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL...

  18. Permeation of Polymethoxyflavones into the Mouse Brain and Their Effect on MK-801-Induced Locomotive Hyperactivity

    PubMed Central

    Okuyama, Satoshi; Miyazaki, Kohei; Yamada, Rie; Amakura, Yoshiaki; Yoshimura, Morio; Sawamoto, Atsushi; Nakajima, Mitsunari; Furukawa, Yoshiko

    2017-01-01

    Accumulating data have indicated that citrus polymethoxyflavones (PMFs) have the ability to affect brain function. In the present study, we showed that 3,5,6,7,8,3′,4′-heptamethoxy- flavone (HMF) given intraperitoneally to mice was immediately detected in the brain and that the permeability of the brain tissues to it was significantly higher than that of other citrus PMFs (nobiletin, tangeretin, and natsudaidain). The permeation of these PMFs into the brain well correlated with their abilities to suppress MK-801-induced locomotive hyperactivity, suggesting that HMF had the ability to act directly in the brain. We also obtained data suggesting that the suppressive effect of HMF on MK-801-induced locomotive hyperactivity was mediated by phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) in the hippocampus. PMID:28245567

  19. Spontaneous combustion of hydrogen

    NASA Technical Reports Server (NTRS)

    Nusselt, Wilhelm; Pothmann, PH

    1923-01-01

    It is shown by the author's experiments that hydrogen which escapes to the atmosphere through openings in the system may burn spontaneously if it contains dust. Purely thermal reasoning can not account for the combustion. It seems to be rather an electrical ignition. In order to determine whether the cause of the spontaneous ignition was thermo-chemical, thermo-mechanical, or thermo-electrical, the experiments in this paper were performed.

  20. Soluble Milk Protein Supplementation with Moderate Physical Activity Improves Locomotion Function in Aging Rats

    PubMed Central

    Lafoux, Aude; Baudry, Charlotte; Bonhomme, Cécile; Le Ruyet, Pascale; Huchet, Corinne

    2016-01-01

    Aging is associated with a loss of muscle mass and functional capacity. Present study was designed to compare the impact of specific dairy proteins on muscular function with or without a low-intensity physical activity program on a treadmill in an aged rat model. We investigated the effects of nutritional supplementation, five days a week over a 2-month period with a slow digestible protein, casein or fast digestible proteins, whey or soluble milk protein, on strength and locomotor parameters in sedentary or active aged Wistar RjHan rats (17–19 months of age). An extensive gait analysis was performed before and after protein supplementation. After two months of protein administration and activity program, muscle force was evaluated using a grip test, spontaneous activity using an open-field and muscular mass by specific muscle sampling. When aged rats were supplemented with proteins without exercise, only minor effects of different diets on muscle mass and locomotion were observed: higher muscle mass in the casein group and improvement of stride frequencies with soluble milk protein. By contrast, supplementation with soluble milk protein just after physical activity was more effective at improving overall skeletal muscle function in old rats compared to casein. For active old rats supplemented with soluble milk protein, an increase in locomotor activity in the open field and an enhancement of static and dynamic gait parameters compared to active groups supplemented with casein or whey were observed without any differences in muscle mass and forelimb strength. These results suggest that consumption of soluble milk protein as a bolus immediately after a low intensity physical activity may be a suitable nutritional intervention to prevent decline in locomotion in aged rats and strengthen the interest to analyze the longitudinal aspect of locomotion in aged rodents. PMID:27973615

  1. Shaping appropriate locomotive motor output through interlimb neural pathway within spinal cord in humans.

    PubMed

    Kawashima, Noritaka; Nozaki, Daichi; Abe, Masaki O; Nakazawa, Kimitaka

    2008-06-01

    Direct evidence supporting the contribution of upper limb motion on the generation of locomotive motor output in humans is still limited. Here, we aimed to examine the effect of upper limb motion on locomotor-like muscle activities in the lower limb in persons with spinal cord injury (SCI). By imposing passive locomotion-like leg movements, all cervical incomplete (n = 7) and thoracic complete SCI subjects (n = 5) exhibited locomotor-like muscle activity in their paralyzed soleus muscles. Upper limb movements in thoracic complete SCI subjects did not affect the electromyographic (EMG) pattern of the muscle activities. This is quite natural since neural connections in the spinal cord between regions controlling upper and lower limbs were completely lost in these subjects. On the other hand, in cervical incomplete SCI subjects, in whom such neural connections were at least partially preserved, the locomotor-like muscle activity was significantly affected by passively imposed upper limb movements. Specifically, the upper limb movements generally increased the soleus EMG activity during the backward swing phase, which corresponds to the stance phase in normal gait. Although some subjects showed a reduction of the EMG magnitude when arm motion was imposed, this was still consistent with locomotor-like motor output because the reduction of the EMG occurred during the forward swing phase corresponding to the swing phase. The present results indicate that the neural signal induced by the upper limb movements contributes not merely to enhance but also to shape the lower limb locomotive motor output, possibly through interlimb neural pathways. Such neural interaction between upper and lower limb motions could be an underlying neural mechanism of human bipedal locomotion.

  2. Integrated diversification of locomotion and feeding in labrid fishes.

    PubMed

    Collar, David C; Wainwright, Peter C; Alfaro, Michael E

    2008-02-23

    An organism's performance of any ecological task involves coordination of multiple functional systems. Feeding performance is influenced by locomotor abilities which are used during search and capture of prey, as well as cranial mechanics, which affect prey capture and processing. But, does this integration of functional systems manifest itself during evolution? We asked whether the locomotor and feeding systems evolved in association in one of the most prominent and diverse reef fish radiations, the Labridae. We examined features of the pectoral fins that affect swimming performance and aspects of the skull that describe force and motion of the jaws. We applied a recent phylogeny, calculated independent contrasts for 60 nodes and performed principal components analyses separately on contrasts for fin and skull traits. The major axes of fin and skull diversification are highly correlated; modifications of the skull to amplify the speed of jaw movements are correlated with changes in the pectoral fins that increase swimming speed, and increases in force capacity of the skull are associated with changes towards fins that produce high thrust at slow speeds. These results indicate that the labrid radiation involved a strong connection between locomotion and feeding abilities.

  3. Ground Reaction Forces During Locomotion in Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Davis, B. L.; Cavanagh, Peter R.; Sommer, H. J., III; Wu, G.

    1996-01-01

    Significant losses in bone density and mineral, primarily in the lower extremities have been reported following exposure to weightlessness. Recent investigations suggest that mechanical influences such as bone deformation and strain rate may be critically important in stimulating new bone formation. It was hypothesized that velocity, cadence and harness design would significantly affect lower limb impact forces during treadmill exercise in simulated zero gravity (0G). A ground-based hypogravity simulator was used to investigate which factors affect limb loading during tethered treadmill exercise. A fractional factorial design was used and 12 subjects were studied. The results showed that running on active and passive treadmills in the simulator with a tethering force close to the maximum comfortable level produced similar magnitudes for the peak ground reaction force. It was also found that these maximum forces were significantly lower than those obtained during overground trials, even when the speeds of locomotion in the simulator were 66 % greater than those in 1 G. Cadence had no effect on any of the response variables. The maximum rate of force application (DFDT-Max) was similar for overground running and exercise in simulated 0G, provided that the "weightless subjects ran on a motorized treadmill. These findings have implications for the use of treadmill exercise as a countermeasure for hypokinetic osteoporosis. As the relationship between mechanical factors and osteogenesis becomes better understood, results from human experiments in 0G simulators will help to design in-flight exercise programs that are more closely targeted to generate appropriate mechanical stimuli.

  4. Fish Locomotion: Recent Advances and New Directions

    NASA Astrophysics Data System (ADS)

    Lauder, George V.

    2015-01-01

    Research on fish locomotion has expanded greatly in recent years as new approaches have been brought to bear on a classical field of study. Detailed analyses of patterns of body and fin motion and the effects of these movements on water flow patterns have helped scientists understand the causes and effects of hydrodynamic patterns produced by swimming fish. Recent developments include the study of the center-of-mass motion of swimming fish and the use of volumetric imaging systems that allow three-dimensional instantaneous snapshots of wake flow patterns. The large numbers of swimming fish in the oceans and the vorticity present in fin and body wakes support the hypothesis that fish contribute significantly to the mixing of ocean waters. New developments in fish robotics have enhanced understanding of the physical principles underlying aquatic propulsion and allowed intriguing biological features, such as the structure of shark skin, to be studied in detail.

  5. Hydrodynamics and control of microbial locomotion

    NASA Astrophysics Data System (ADS)

    Dunkel, Jorn; Kantsler, Vasily; Polin, Marco; Wioland, Hugo; Goldstein, Raymond

    2014-03-01

    Interactions between swimming cells, surfaces and fluid flow are essential to many microbiological processes, from the formation of biofilms to the fertilization of human egg cells. Yet, relatively little remains known quantitatively about the physical mechanisms that govern the response of bacteria, algae and sperm cells to flow velocity gradients and solid surfaces. A better understanding of cell-surface and cell-flow interactions promises new biological insights and may advance microfluidic techniques for controlling microbial and sperm locomotion, with potential applications in diagnostics and therapeutic protein synthesis. Here, we report new experimental measurements that quantify surface interactions of bacteria, unicellular green algae and mammalian spermatozoa. These experiments show that the subtle interplay of hydrodynamics and surface interactions can stabilize collective bacterial motion, that direct ciliary contact interactions dominate surface scattering of eukaryotic biflagellate algae, and that rheotaxis combined with steric surface interactions provides a robust long-range navigation mechanism for sperm cells.

  6. Fish locomotion: recent advances and new directions.

    PubMed

    Lauder, George V

    2015-01-01

    Research on fish locomotion has expanded greatly in recent years as new approaches have been brought to bear on a classical field of study. Detailed analyses of patterns of body and fin motion and the effects of these movements on water flow patterns have helped scientists understand the causes and effects of hydrodynamic patterns produced by swimming fish. Recent developments include the study of the center-of-mass motion of swimming fish and the use of volumetric imaging systems that allow three-dimensional instantaneous snapshots of wake flow patterns. The large numbers of swimming fish in the oceans and the vorticity present in fin and body wakes support the hypothesis that fish contribute significantly to the mixing of ocean waters. New developments in fish robotics have enhanced understanding of the physical principles underlying aquatic propulsion and allowed intriguing biological features, such as the structure of shark skin, to be studied in detail.

  7. Adaptation to suspensory locomotion in Australopithecus sediba.

    PubMed

    Rein, Thomas R; Harrison, Terry; Carlson, Kristian J; Harvati, Katerina

    2017-03-01

    Australopithecus sediba is represented by well-preserved fossilized remains from the locality of Malapa, South Africa. Recent work has shown that the combination of features in the limb skeleton of A. sediba was distinct from that of earlier species of Australopithecus, perhaps indicating that this species moved differently. The bones of the arm and forearm indicate that A. sediba was adapted to suspensory and climbing behaviors. We used a geometric morphometric approach to examine ulnar shape, potentially identifying adaptations to forelimb suspensory locomotion in A. sediba. Results indicated suspensory capabilities in this species and a stronger forelimb suspensory signal than has been documented in Australopithecus afarensis. Our study confirms the adaptive significance of functional morphological traits for arboreal movements in the locomotor repertoire of A. sediba and provides important insight into the diversity and mosaic nature of locomotor adaptations among early hominins.

  8. Dynamic legged locomotion in robots and animals

    NASA Astrophysics Data System (ADS)

    Raibert, Marc; Playter, Robert; Ringrose, Robert; Bailey, Dave; Leeser, Karl

    1995-01-01

    This report documents our study of active legged systems that balance actively and move dynamically. The purpose of this research is to build a foundation of knowledge that can lead both to the construction of useful legged vehicles and to a better understanding of how animal locomotion works. In this report we provide an update on progress during the past year. Here are the topics covered in this report: (1) Is cockroach locomotion dynamic? To address this question we created three models of cockroaches, each abstracted at a different level. We provided each model with a control system and computer simulation. One set of results suggests that 'Groucho Running,' a type of dynamic walking, seems feasible at cockroach scale. (2) How do bipeds shift weight between the legs? We built a simple planar biped robot specifically to explore this question. It shifts its weight from one curved foot to the other, using a toe-off and toe-on strategy, in conjunction with dynamic tipping. (3) 3D biped gymnastics: The 3D biped robot has done front somersaults in the laboratory. The robot changes its leg length in flight to control rotation rate. This in turn provides a mechanism for controlling the landing attitude of the robot once airborne. (4) Passively stabilized layout somersault: We have found that the passive structure of a gymnast, the configuration of masses and compliances, can stabilize inherently unstable maneuvers. This means that body biomechanics could play a larger role in controlling behavior than is generally thought. We used a physical 'doll' model and computer simulation to illustrate the point. (5) Twisting: Some gymnastic maneuvers require twisting. We are studying how to couple the biomechanics of the system to its control to produce efficient, stable twisting maneuvers.

  9. Locomotion in simulated microgravity: gravity replacement loads

    NASA Technical Reports Server (NTRS)

    McCrory, Jean L.; Baron, Heidi A.; Balkin, Sandy; Cavanagh, Peter R.

    2002-01-01

    BACKGROUND: When an astronaut walks or runs on a treadmill in microgravity, a subject load device (SLD) is used to return him or her back to the treadmill belt. The gravity replacement load (GRL) in the SLD is transferred, via a harness, to the pelvis and/or the shoulders. This research compared comfort and ground reaction forces during treadmill running in a microgravity locomotion simulator at GRLs of 60%, 80%, and 100% of body weight (BW). Two harness designs (shoulder springs only (SSO) and waist and shoulder springs (WSS)) were used. HYPOTHESES: 1) The 100% BW gravity replacement load conditions would be comfortably tolerated and would result in larger ground reaction forces and loading rates than the lower load conditions, and 2) the WSS harness would be more comfortable than the SSO harness. METHODS: Using the Penn State Zero Gravity Locomotion Simulator (ZLS), 8 subjects ran at 2.0 m x s(-1) (4.5 mph) for 3 min at each GRL setting in each harness. Subjective ratings of harness comfort, ground reaction forces, and GRL data were collected during the final minute of exercise. RESULTS: The 100% BW loading conditions were comfortably tolerated (2.3 on a scale of 0-10), although discomfort increased as the GRL increased. There were no overall differences in perceived comfort between the two harnesses. The loading rates (27.1, 33.8, 39.1 BW x s(-1)) and the magnitudes of the first (1.0, 1.4, 1.6 BW) and second (1.3, 1.7, 1.9 BW) peaks of the ground reaction force increased with increasing levels (60, 80, 100% BW respectively) of GRL. CONCLUSIONS: Subjects were able to tolerate a GRL of 100% BW well. The magnitude of the ground reaction force peaks and the loading rate is directly related to the magnitude of the GRL.

  10. 49 CFR 229.14 - Non-MU control cab locomotives.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Non-MU control cab locomotives. 229.14 Section 229... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS General § 229.14 Non-MU control cab locomotives. On each non-MU control cab locomotive, only those components added to the...

  11. 49 CFR 229.14 - Non-MU control cab locomotives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Non-MU control cab locomotives. 229.14 Section 229... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS General § 229.14 Non-MU control cab locomotives. On each non-MU control cab locomotive, only those components added to the...

  12. 49 CFR 229.14 - Non-MU control cab locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Non-MU control cab locomotives. 229.14 Section 229... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS General § 229.14 Non-MU control cab locomotives. On each non-MU control cab locomotive, only those components added to the...

  13. 49 CFR 229.14 - Non-MU control cab locomotives.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Non-MU control cab locomotives. 229.14 Section 229... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS General § 229.14 Non-MU control cab locomotives. On each non-MU control cab locomotive, only those components added to the...

  14. 49 CFR 229.14 - Non-MU control cab locomotives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Non-MU control cab locomotives. 229.14 Section 229... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS General § 229.14 Non-MU control cab locomotives. On each non-MU control cab locomotive, only those components added to the...

  15. 49 CFR 230.108 - Steam locomotive leading and trailing trucks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive leading and trailing trucks. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.108 Steam locomotive...

  16. 49 CFR 230.108 - Steam locomotive leading and trailing trucks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Steam locomotive leading and trailing trucks. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.108 Steam locomotive...

  17. 49 CFR 230.108 - Steam locomotive leading and trailing trucks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Steam locomotive leading and trailing trucks. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.108 Steam locomotive...

  18. 49 CFR 230.108 - Steam locomotive leading and trailing trucks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Steam locomotive leading and trailing trucks. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.108 Steam locomotive...

  19. 49 CFR 230.108 - Steam locomotive leading and trailing trucks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Steam locomotive leading and trailing trucks. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.108 Steam locomotive...

  20. How to find home backwards? Locomotion and inter-leg coordination during rearward walking of Cataglyphis fortis desert ants.

    PubMed

    Pfeffer, Sarah E; Wahl, Verena L; Wittlinger, Matthias

    2016-07-15

    For insects, flexibility in the performance of terrestrial locomotion is a vital part of facing the challenges of their often unpredictable environment. Arthropods such as scorpions and crustaceans can switch readily from forward to backward locomotion, but in insects this behaviour seems to be less common and, therefore, is only poorly understood. Here we present an example of spontaneous and persistent backward walking in Cataglyphis desert ants that allows us to investigate rearward locomotion within a natural context. When ants find a food item that is too large to be lifted up and to be carried in a normal forward-faced orientation, they will drag the load walking backwards to their home nest. A detailed examination of this behaviour reveals a surprising flexibility of the locomotor output. Compared with forward walks with regular tripod coordination, no main coordination pattern can be assigned to rearward walks. However, we often observed leg-pair-specific stepping patterns. The front legs frequently step with small stride lengths, while the middle and the hind legs are characterized by less numerous but larger strides. But still, these specializations show no rigidly fixed leg coupling, nor are they strictly embedded within a temporal context; therefore, they do not result in a repetitive coordination pattern. The individual legs act as separate units, most likely to better maintain stability during backward dragging.

  1. The activity of spinal commissural interneurons during fictive locomotion in the lamprey.

    PubMed

    Biró, Zoltán; Hill, Russell H; Grillner, Sten

    2008-08-01

    Commissural interneurons in the lamprey coordinate activity of the hemisegmental oscillators to ensure proper left-right alternation during swimming. The activity of interneuronal axons at the ventral commissure was studied together with potential target motoneurons during fictive locomotion in the isolated lamprey spinal cord. To estimate the unperturbed activity of the interneurons, axonal recordings were chosen because soma recordings inevitably will affect the level of membrane depolarization and thereby spike initiation. Of 227 commissural axons recorded during locomotor activity, 14 produced inhibitory and 3 produced excitatory postsynaptic potentials (PSPs) in target motoneurons. The axons typically fired multiple spikes per locomotor cycle, with approximately 10 Hz sustained frequency. The average shortest spike interval in a burst corresponded to an instantaneous frequency of approximately 50 Hz for both the excitatory and inhibitory axons. The maximum number of spikes per locomotor cycle was inversely related to the locomotor frequency, in accordance with previous observations in the spinal hemicord preparation. In axons that fired multiple spikes per cycle, the mean interspike intervals were in the range in which the amplitude of the slow afterhyperpolarization (sAHP) is large, providing further support for the role of the sAHP in spike timing. One hundred ninety-five axons (86%) fired rhythmically during fictive locomotion, with preferred phase of firing distributed over either the segmental locomotor burst phase (40% of axons) or the transitional phase (between bursts; 60%). Thus in lamprey commissural interneurons, we found a broad distribution of firing rates and phases during fictive locomotion.

  2. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment

    SciTech Connect

    Zhang, Chao; Liao, Qiang; Chen, Rong; Zhu, Xun

    2015-06-12

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated.

  3. Automated quantification of locomotion, social interaction, and mate preference in Drosophila mutants.

    PubMed

    Iyengar, Atulya; Imoehl, Jordan; Ueda, Atsushi; Nirschl, Jeffery; Wu, Chun-Fang

    2012-09-01

    Automated tracking methods facilitate screening for and characterization of abnormal locomotion or more complex behaviors in Drosophila. We developed the Iowa Fly Locomotion and Interaction Tracker (IowaFLI Tracker), a MATLAB-based video analysis system, to identify and track multiple flies in a small arena. We report altered motor activity in the K(+) and Na(+) channel mutants, Hk(1) and para(ts1), which had previously been shown to display abnormal larval locomotion. Environmental factors influencing individual behavior, such as available "social space," were studied by using IowaFLI Tracker to simultaneously track multiple flies in the same arena. We found that crowding levels affect individual fly activity, with the total movement of individual flies attenuated around a particular density. This observation may have important implications in the design of activity chambers for studying particular kinds of social interactions. IowaFLI Tracker also directly quantifies social interactions by tracking the amount of time individuals are in proximity to one another-visualized as an "interactogram." This feature enables the development of a "target-preference" assay to study male courtship behavior where males are presented with a choice between two immobilized, decapitated females, and their locomotion and interactions quantified. We used this assay to study the chemosensory mutants olf D (para(olfD), sbl(2)) and Gr32a and their preferences towards virgin or mated females. Male olf D flies showed reduced courtship levels, with no clear preference towards either, whereas Gr32a males preferentially courted with virgin females over mated females in this assay. These initial results demonstrate that IowaFLI Tracker can be employed to explore motor coordination and social interaction phenomena in behavioral mutants of Drosophila.

  4. Spontaneous Perforation of Pyometra

    PubMed Central

    Yildizhan, Begüm; Uyar, Esra; Şişmanoğlu, Alper; Güllüoğlu, Gülfem; Kavak, Zehra N.

    2006-01-01

    Pyometra is the accumulation of purulent material in the uterine cavity. Its reported incidence is 0.01−0.5% in gynecologic patients; however, as far as elderly patients are concerned, its incidence is 13.6% [3]. The most common cause of pyometra is malignant diseases of genital tract and the consequences of their treatment (radiotherapy). Other causes are benign tumors like leiomyoma, endometrial polyps, senile cervicitis, cervical occlusion after surgery, puerperal infections, and congenital cervical anomalies. Spontaneous rupture of the uterus is an extremely rare complication of pyometra. To our knowledge, only 21 cases of spontaneous perforation of pyometra have been reported in English literature since 1980. This paper reports an additional case of spontaneous uterine rupture. PMID:17093350

  5. Biomodal spontaneous fission

    SciTech Connect

    Hulet, E.K. )

    1989-09-26

    Investigations of mass and kinetic-energy distributions from spontaneous fission have been extended in recent years to an isotope of element 104 and, for half-lives, to an isotope of element 108. The results have been surprising in that spontaneous fission half-lives have turned out to be much longer than expected and mass and kinetic- energy distributions were found to abruptly shift away from those of the lighter actinides, showing two modes of fission. These new developments have caused a re-evaluation of our understanding of the fission process, bringing an even deeper appreciation of the role played by nuclear shell effects upon spontaneous fission properties. 16 refs., 10 figs.

  6. 10. Locomotive smoke flue coming through Roundhouse roof with gable ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Locomotive smoke flue coming through Roundhouse roof with gable end of Machine Shop in background. - Central of Georgia Railway, Savannah Repair Shops & Terminal Facilities, Roundhouse, Site Bounded by West Broad, Jones, West Boundary & Hull, Savannah, Chatham County, GA

  7. EXTERIOR VIEW WITH HEART OF DIXIE MUSEUM'S HISTORIC LOCOMOTIVE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW WITH HEART OF DIXIE MUSEUM'S HISTORIC LOCOMOTIVE IN MUSEUM'S POWELL AVENUE YARD (BOTTOM) AND SOUTHERN RAILWAY BOXCAR ON ACTIVE TRACKAGE (ABOVE). - Heart of Dixie Railroad, Rolling Stock, 1800 Block Powell Avenue, Birmingham, Jefferson County, AL

  8. "Shower head" water connection for servicing railroad locomotives, perspective view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    "Shower head" water connection for servicing railroad locomotives, perspective view looking NW across ATSF railyard. - Grand Canyon Village Utilities, Grand Canyon National Park, Grand Canyon Village, Coconino County, AZ

  9. TURNTABLE, WITH ATSF 5021, UNRESTORED 2104 STEAM LOCOMOTIVE, LOOKING EAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TURNTABLE, WITH ATSF 5021, UNRESTORED 2-10-4 STEAM LOCOMOTIVE, LOOKING EAST. CAR MACHINE SHOP IS IN BACKGROUND AND ERECTING/MACHINE SHOP IS AT RIGHT. - Southern Pacific, Sacramento Shops, Turntable, 111 I Street, Sacramento, Sacramento County, CA

  10. Breathing and locomotion: comparative anatomy, morphology and function.

    PubMed

    Klein, Wilfried; Codd, Jonathan R

    2010-08-31

    Using specialized respiratory structures such as gills, lungs and or a tracheal system, animals take up oxygen and release carbon dioxide. The efficiency of gas exchange, however, may be constrained by the morphology of the respiratory organ itself as well as by other aspects of an animal's physiology such as feeding, circulation or locomotion. Herein we discuss some aspects of the functional link between the respiratory and locomotor systems, such as gill morphology of sharks as a factor limiting maximum aerobic scope, respiratory constraints among legless lizards, lung morphology of testudines, trade-offs between locomotion and respiration among birds, reconstruction of the respiratory system of sauropods, respiration of mice during locomotion as well as some aspects of gas exchange among insects. Data covering such a broad spectrum of interactions between the locomotor and respiratory systems shall allow us to place breathing and locomotion into a wider context of evolution of oxygen.

  11. Spontaneous sarcomere dynamics

    NASA Astrophysics Data System (ADS)

    Günther, Stefan; Kruse, Karsten

    2010-12-01

    Sarcomeres are the basic force generating units of striated muscles and consist of an interdigitating arrangement of actin and myosin filaments. While muscle contraction is usually triggered by neural signals, which eventually set myosin motors into motion, isolated sarcomeres can oscillate spontaneously between a contracted and a relaxed state. We analyze a model for sarcomere dynamics, which is based on a force-dependent detachment rate of myosin from actin. Our numerical bifurcation analysis of the spontaneous sarcomere dynamics reveals notably Hopf bifurcations, canard explosions, and gluing bifurcations. We discuss possible implications for experiments.

  12. Spontaneous bilateral tubal pregnancy.

    PubMed

    Wali, Aisha Syed; Khan, Rozilla Sadia

    2012-02-01

    With the increase in incidence of ectopic pregnancy over the decades, bilateral ectopic pregnancy is also increasing. It is usually associated with assisted reproductive techniques (ART) but in recent years few cases of spontaneous bilateral ectopic pregnancy have been reported. Gynaecologists should be aware of this and that ultrasonography has limitations in diagnosis. In cases of ectopic pregnancy where contralateral adnexa is not clearly identified on ultrasound and fertility needs to be conserved, patient should be managed by experts in well equipped centres. A case of spontaneous bilateral tubal pregnancy that remained undiagnosed till laparotomy, is described.

  13. Closed-loop Robots Driven by Short-Term Synaptic Plasticity: Emergent Explorative vs. Limit-Cycle Locomotion.

    PubMed

    Martin, Laura; Sándor, Bulcsú; Gros, Claudius

    2016-01-01

    We examine the hypothesis, that short-term synaptic plasticity (STSP) may generate self-organized motor patterns. We simulated sphere-shaped autonomous robots, within the LPZRobots simulation package, containing three weights moving along orthogonal internal rods. The position of a weight is controlled by a single neuron receiving excitatory input from the sensor, measuring its actual position, and inhibitory inputs from the other two neurons. The inhibitory connections are transiently plastic, following physiologically inspired STSP-rules. We find that a wide palette of motion patterns are generated through the interaction of STSP, robot, and environment (closed-loop configuration), including various forward meandering and circular motions, together with chaotic trajectories. The observed locomotion is robust with respect to additional interactions with obstacles. In the chaotic phase the robot is seemingly engaged in actively exploring its environment. We believe that our results constitute a concept of proof that transient synaptic plasticity, as described by STSP, may potentially be important for the generation of motor commands and for the emergence of complex locomotion patterns, adapting seamlessly also to unexpected environmental feedback. We observe spontaneous and collision induced mode switchings, finding in addition, that locomotion may follow transiently limit cycles which are otherwise unstable. Regular locomotion corresponds to stable limit cycles in the sensorimotor loop, which may be characterized in turn by arbitrary angles of propagation. This degeneracy is, in our analysis, one of the drivings for the chaotic wandering observed for selected parameter settings, which is induced by the smooth diffusion of the angle of propagation.

  14. Closed-loop Robots Driven by Short-Term Synaptic Plasticity: Emergent Explorative vs. Limit-Cycle Locomotion

    PubMed Central

    Martin, Laura; Sándor, Bulcsú; Gros, Claudius

    2016-01-01

    We examine the hypothesis, that short-term synaptic plasticity (STSP) may generate self-organized motor patterns. We simulated sphere-shaped autonomous robots, within the LPZRobots simulation package, containing three weights moving along orthogonal internal rods. The position of a weight is controlled by a single neuron receiving excitatory input from the sensor, measuring its actual position, and inhibitory inputs from the other two neurons. The inhibitory connections are transiently plastic, following physiologically inspired STSP-rules. We find that a wide palette of motion patterns are generated through the interaction of STSP, robot, and environment (closed-loop configuration), including various forward meandering and circular motions, together with chaotic trajectories. The observed locomotion is robust with respect to additional interactions with obstacles. In the chaotic phase the robot is seemingly engaged in actively exploring its environment. We believe that our results constitute a concept of proof that transient synaptic plasticity, as described by STSP, may potentially be important for the generation of motor commands and for the emergence of complex locomotion patterns, adapting seamlessly also to unexpected environmental feedback. We observe spontaneous and collision induced mode switchings, finding in addition, that locomotion may follow transiently limit cycles which are otherwise unstable. Regular locomotion corresponds to stable limit cycles in the sensorimotor loop, which may be characterized in turn by arbitrary angles of propagation. This degeneracy is, in our analysis, one of the drivings for the chaotic wandering observed for selected parameter settings, which is induced by the smooth diffusion of the angle of propagation. PMID:27803661

  15. EXTERIOR VIEW WITH HISTORIC LOCOMOTIVES, COAL AND PASSENGER CARS INCLUDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW WITH HISTORIC LOCOMOTIVES, COAL AND PASSENGER CARS INCLUDING THE WOODWARD IRON COMPANY NO. 38 LOCOMOTIVE AND TENDER LOCATED IN THE HEART OF DIXIE MUSEUM'S POWELL AVENUE YARD AND SOUTHERN RAILROAD BOXCARS ON ACTIVE TRACKS OF BIRMINGHAM'S RAILROAD RESERVATION. IN BACKGROUND AT RIGHT AND CENTER IS THE BIRMINGHAM CITY CENTER. - Heart of Dixie Railroad, Rolling Stock, 1800 Block Powell Avenue, Birmingham, Jefferson County, AL

  16. Locomotion in Lymphocytes is Altered by Differential PKC Isoform Expression

    NASA Technical Reports Server (NTRS)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    1999-01-01

    Lymphocyte locomotion is critical for proper elicitation of the immune response. Locomotion of immune cells via the interstitium is essential for optimal immune function during wound healing, inflammation and infection. There are conditions which alter lymphocyte locomotion and one of them is spaceflight. Lymphocyte locomotion is severely inhibited in true spaceflight (true microgravity) and in rotating wall vessel culture (modeled microgravity). When lymphocytes are activated prior to culture in modeled microgravity, locomotion is not inhibited and the levels are comparable to those of static cultured lymphocytes. When a phorbol ester (PMA) is used in modeled microgravity, lymphocyte locomotion is restored by 87%. This occurs regardless if PMA is added after culture in the rotating wall vessel or during culture. Inhibition of DNA synthesis also does not alter restoration of lymphocyte locomotion by PMA. PMA is a direct activator of (protein kinase C) PKC . When a calcium ionophore, ionomycin is used it does not possess any restorative properties towards locomotion either alone or collectively with PMA. Since PMA brings about restoration without help from calcium ionophores (ionomycin), it is infer-red that calcium independent PKC isoforms are involved. Changes were perceived in the protein levels of PKC 6 where levels of the protein were downregulated at 24,72 and 96 hours in untreated rotated cultures (modeled microgravity) compared to untreated static (1g) cultures. At 48 hours there is an increase in the levels of PKC & in the same experimental set up. Studies on transcriptional and translational patterns of calcium independent isoforms of PKC such as 8 and E are presented in this study.

  17. The Geometry of Locomotive Behavioral States in C. elegans

    PubMed Central

    Bjorness, Theresa; Greene, Robert; You, Young-Jai

    2013-01-01

    We develop a new hidden Markov model-based method to analyze C elegans locomotive behavior and use this method to quantitatively characterize behavioral states. In agreement with previous work, we find states corresponding to roaming, dwelling, and quiescence. However, we also find evidence for a continuum of intermediate states. We suggest that roaming, dwelling, and quiescence may best be thought of as extremes which, mixed in any proportion, define the locomotive repertoire of C elegans foraging and feeding behavior. PMID:23555813

  18. Serotonin Influences Locomotion in the Nudibranch Mollusc Melibe leonina

    PubMed Central

    LEWIS, STEFANIE L.; LYONS, DEBORAH E.; MEEKINS, TIFFANIE L.; NEWCOMB, JAMES M.

    2015-01-01

    Serotonin (5-HT) influences locomotion in many animals, from flatworms to mammals. This study examined the effects of 5-HT on locomotion in the nudibranch mollusc Melibe leonina (Gould, 1852). M. leonina exhibits two modes of locomotion, crawling and swimming. Animals were bath-immersed in a range of concentrations of 5-HT or injected with various 5-HT solutions into the hemolymph and then monitored for locomotor activity. In contrast to other gastropods studied, M. leonina showed no significant effect of 5-HT on the distance crawled or the speed of crawling. However, the highest concentration (10−3 mol l−1 for bath immersion and 10−5 mol l−1 for injection) significantly increased the time spent swimming and the swimming speed. The 5-HT receptor antagonist methysergide inhibited the influence of 5-HT on the overall amount of swimming but not on swimming speed. These results suggest that 5-HT influences locomotion at the behavioral level in M. leonina. In conjunction with previous studies on the neural basis of locomotion in M. leonina, these results also suggest that this species is an excellent model system for investigating the 5-HT modulation of locomotion. PMID:21712224

  19. The coupling of vision with locomotion in cortical blindness.

    PubMed

    Pelah, Adar; Barbur, John; Thurrell, Adrian; Hock, Howard S

    2015-05-01

    Maintaining or modifying the speed and direction of locomotion requires the coupling of the locomotion with the retinal optic flow that it generates. It is shown that this essential behavioral capability, which requires on-line neural control, is preserved in the cortically blind hemifield of a hemianope. In experiments, optic flow stimuli were presented to either the normal or blind hemifield while the patient was walking on a treadmill. Little difference was found between the hemifields with respect to the coupling (i.e. co-dependency) of optic flow detection with locomotion. Even in the cortically blind hemifield, faster walking resulted in the perceptual slowing of detected optic flow, and self-selected locomotion speeds demonstrated behavioral discrimination between different optic flow speeds. The results indicate that the processing of optic flow, and thereby on-line visuo-locomotor coupling, can take place along neural pathways that function without processing in Area V1, and thus in the absence of conscious intervention. These and earlier findings suggest that optic flow and object motion are processed in parallel along with correlated non-visual locomotion signals. Extrastriate interactions may be responsible for discounting the optical effects of locomotion on the perceived direction of object motion, and maintaining visually guided self-motion.

  20. A subset of interneurons required for Drosophila larval locomotion

    PubMed Central

    Yoshikawa, Shingo; Long, Hong; Thomas, John B.

    2015-01-01

    Efforts to define the neural circuits generating locomotor behavior have produced an initial understanding of some of the components within the spinal cord, as well as a basic understanding of several invertebrate motor pattern generators. However, how these circuits are assembled during development is poorly understood. We are defining the neural circuit that generates larval locomotion in the genetically tractable fruit fly Drosophila melanogaster to study locomotor circuit development. Forward larval locomotion involves a stereotyped posterior-to-anterior segmental translocation of body wall muscle contraction and is generated by a relatively small number of identified muscles, motor and sensory neurons, plus an unknown number of the ~270 bilaterally-paired interneurons per segment of the 1st instar larva. To begin identifying the relevant interneurons, we have conditionally inactivated synaptic transmission of interneuron subsets and assayed for the effects on locomotion. From this screen we have identified a subset of 25 interneurons per hemisegment, called the lateral locomotor neurons (LLNs), that are required for locomotion. Both inactivation and constitutive activation of the LLNs disrupt locomotion, indicating that patterned output of the LLNs is required. By expressing a calcium indicator in the LLNs, we found that they display a posterior-to-anterior wave of activity within the CNS corresponding to the segmental translocation of the muscle contraction wave. Identification of the LLNs represents the first step toward elucidating the circuit generating larval locomotion. PMID:26621406

  1. Visuomotor Control of Human Adaptive Locomotion: Understanding the Anticipatory Nature

    PubMed Central

    Higuchi, Takahiro

    2013-01-01

    To maintain balance during locomotion, the central nervous system (CNS) accommodates changes in the constraints of spatial environment (e.g., existence of an obstacle or changes in the surface properties). Locomotion while modifying the basic movement patterns in response to such constraints is referred to as adaptive locomotion. The most powerful means of ensuring balance during adaptive locomotion is to visually perceive the environmental properties at a distance and modify the movement patterns in an anticipatory manner to avoid perturbation altogether. For this reason, visuomotor control of adaptive locomotion is characterized, at least in part, by its anticipatory nature. The purpose of the present article is to review the relevant studies which revealed the anticipatory nature of the visuomotor control of adaptive locomotion. The anticipatory locomotor adjustments for stationary and changeable environment, as well as the spatio-temporal patterns of gaze behavior to support the anticipatory locomotor adjustments are described. Such description will clearly show that anticipatory locomotor adjustments are initiated when an object of interest (e.g., a goal or obstacle) still exists in far space. This review also show that, as a prerequisite of anticipatory locomotor adjustments, environmental properties are accurately perceived from a distance in relation to individual’s action capabilities. PMID:23720647

  2. How animals move: comparative lessons on animal locomotion.

    PubMed

    Schaeffer, Paul J; Lindstedt, Stan L

    2013-01-01

    Comparative physiology often provides unique insights in animal structure and function. It is specifically through this lens that we discuss the fundamental properties of skeletal muscle and animal locomotion, incorporating variation in body size and evolved difference among species. For example, muscle frequencies in vivo are highly constrained by body size, which apparently tunes muscle use to maximize recovery of elastic recoil potential energy. Secondary to this constraint, there is an expected linking of skeletal muscle structural and functional properties. Muscle is relatively simple structurally, but by changing proportions of the few muscle components, a diverse range of functional outputs is possible. Thus, there is a consistent and predictable relation between muscle function and myocyte composition that illuminates animal locomotion. When animals move, the mechanical properties of muscle diverge from the static textbook force-velocity relations described by A. V. Hill, as recovery of elastic potential energy together with force and power enhancement with activation during stretch combine to modulate performance. These relations are best understood through the tool of work loops. Also, when animals move, locomotion is often conveniently categorized energetically. Burst locomotion is typified by high-power outputs and short durations while sustained, cyclic, locomotion engages a smaller fraction of the muscle tissue, yielding lower force and power. However, closer examination reveals that rather than a dichotomy, energetics of locomotion is a continuum. There is a remarkably predictable relationship between duration of activity and peak sustainable performance.

  3. A subset of interneurons required for Drosophila larval locomotion.

    PubMed

    Yoshikawa, Shingo; Long, Hong; Thomas, John B

    2016-01-01

    Efforts to define the neural circuits generating locomotor behavior have produced an initial understanding of some of the components within the spinal cord, as well as a basic understanding of several invertebrate motor pattern generators. However, how these circuits are assembled during development is poorly understood. We are defining the neural circuit that generates larval locomotion in the genetically tractable fruit fly Drosophila melanogaster to study locomotor circuit development. Forward larval locomotion involves a stereotyped posterior-to-anterior segmental translocation of body wall muscle contraction and is generated by a relatively small number of identified muscles, motor and sensory neurons, plus an unknown number of the ~270 bilaterally-paired interneurons per segment of the 1st instar larva. To begin identifying the relevant interneurons, we have conditionally inactivated synaptic transmission of interneuron subsets and assayed for the effects on locomotion. From this screen we have identified a subset of 25 interneurons per hemisegment, called the lateral locomotor neurons (LLNs), that are required for locomotion. Both inactivation and constitutive activation of the LLNs disrupt locomotion, indicating that patterned output of the LLNs is required. By expressing a calcium indicator in the LLNs, we found that they display a posterior-to-anterior wave of activity within the CNS corresponding to the segmental translocation of the muscle contraction wave. Identification of the LLNs represents the first step toward elucidating the circuit generating larval locomotion.

  4. Spontaneous transverse colon volvulus

    PubMed Central

    Sana, Landolsi; Ali, Gassara; Kallel, Helmi; Amine, Baklouti; Ahmed, Saadaoui; Mohamed Ali, Elouer; Wajdi, Chaeib; Saber, Mannaï

    2013-01-01

    We report a case of spontaneous transverse colon volvulus in a young healthy woman. It constitutes an unusual case since it occurred in a young healthy woman with a subacute onset and no aetiological factor has been found. Its diagnosis is still challenging. Prompt recognition with emergency intervention constitutes the key to successful outcome. PMID:23785565

  5. Spontaneous transverse colon volvulus.

    PubMed

    Sana, Landolsi; Ali, Gassara; Kallel, Helmi; Amine, Baklouti; Ahmed, Saadaoui; Ali, Elouer Mohamed; Wajdi, Chaeib; Saber, Mannaï

    2013-01-01

    We report a case of spontaneous transverse colon volvulus in a young healthy woman. It constitutes an unusual case since it occurred in a young healthy woman with a subacute onset and no aetiological factor has been found. Its diagnosis is still challenging. Prompt recognition with emergency intervention constitutes the key to successful outcome.

  6. Spontaneous fulminant gas gangrene.

    PubMed

    Delbridge, M S; Turton, E P L; Kester, R C

    2005-07-01

    Gas gangrene is a rare condition, usually associated with contaminated traumatic injuries. It carries a high rate of mortality and morbidity. A number of studies have implicated non-traumatic gas gangrene and colonic neoplasia. This paper reports a patient who presented spontaneously with Clostridium septicum gas gangrene and an occult caecal carcinoma.

  7. Advanced underground Vehicle Power and Control: The locomotive Research Platform

    SciTech Connect

    Vehicle Projects LLC

    2003-01-28

    Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost to

  8. Intramuscular Pressure Measurement During Locomotion in Humans

    NASA Technical Reports Server (NTRS)

    Ballard, Ricard E.

    1996-01-01

    To assess the usefulness of intramuscular pressure (IMP) measurement for studying muscle function during gait, IMP was recorded in the soleus and tibialis anterior muscles of ten volunteers during, treadmill walking, and running using transducer-tipped catheters. Soleus IMP exhibited single peaks during late-stance phase of walking (181 +/- 69 mmHg, mean +/- S.E.) and running (269 +/- 95 mmHg). Tibialis anterior IMP showed a biphasic response, with the largest peak (90 +/- 15 mmHg during walking and 151 +/- 25 mmHg during running) occurring shortly after heel strike. IMP magnitude increased with gait speed in both muscles. Linear regression of soleus IMP against ankle joint torque obtained by a dynamometer in two subjects produced linear relationships (r = 0.97). Application of these relationships to IMP data yielded estimated peak soleus moment contributions of 0.95-165 Nm/Kg during walking, and 1.43-2.70 Nm/Kg during running. IMP results from local muscle tissue deformations caused by muscle force development and thus, provides a direct, practical index of muscle function during locomotion in humans.

  9. Water surface locomotion in tropical canopy ants.

    PubMed

    Yanoviak, S P; Frederick, D N

    2014-06-15

    Upon falling onto the water surface, most terrestrial arthropods helplessly struggle and are quickly eaten by aquatic predators. Exceptions to this outcome mostly occur among riparian taxa that escape by walking or swimming at the water surface. Here we document sustained, directional, neustonic locomotion (i.e. surface swimming) in tropical arboreal ants. We dropped 35 species of ants into natural and artificial aquatic settings in Peru and Panama to assess their swimming ability. Ten species showed directed surface swimming at speeds >3 body lengths s(-1), with some swimming at absolute speeds >10 cm s(-1). Ten other species exhibited partial swimming ability characterized by relatively slow but directed movement. The remaining species showed no locomotory control at the surface. The phylogenetic distribution of swimming among ant genera indicates parallel evolution and a trend toward negative association with directed aerial descent behavior. Experiments with workers of Odontomachus bauri showed that they escape from the water by directing their swimming toward dark emergent objects (i.e. skototaxis). Analyses of high-speed video images indicate that Pachycondyla spp. and O. bauri use a modified alternating tripod gait when swimming; they generate thrust at the water surface via synchronized treading and rowing motions of the contralateral fore and mid legs, respectively, while the hind legs provide roll stability. These results expand the list of facultatively neustonic terrestrial taxa to include various species of tropical arboreal ants.

  10. Vestibular compensation and orientation during locomotion

    NASA Technical Reports Server (NTRS)

    Raphan, T.; Imai, T.; Moore, S. T.; Cohen, B.

    2001-01-01

    Body, head, and eye movements were studied in three dimensions while walking and turning to determine the role of the vestibular system in directing gaze and maintaining spatial orientation. The body, head, and eyes were represented as three-dimensional coordinate frames, and the movement of these frames was related to a trajectory frame that described the motion of the body on a terrestrial plane. The axis-angle of the body, head, and eye rotation were then compared to the axis-angle of the rotation of the gravitoinertial acceleration (GIA). We inferred the role of the vestibular system during locomotion and the contributions of the VCR and VOR by examining the interrelationship between these coordinate frames. Straight walking induced head and eye rotations in a compensatory manner to the linear accelerations, maintaining head pointing and gaze along the direction of forward motion. Turning generated a combination of compensation and orientation responses. The head leads and steers the turn while the eyes compensate to maintain stable horizontal gaze in space. Saccades shift horizontal gaze as the turn is executed. The head pitches, as during straight walking. It also rolls so that the head tends to align with the orientation of the GIA. Head orientation changes anticipate orientation changes of the GIA. Eye orientation follows the changes in GIA orientation so that the net orientation gaze is closer to the orientation of the GIA. The study indicates that the vestibular system utilizes compensatory and orienting mechanisms to stabilize spatial orientation and gaze during walking and turning.

  11. Legged-locomotion on inclined granular media

    NASA Astrophysics Data System (ADS)

    Rieser, Jennifer; Qian, Feifei; Goldman, Daniel

    Animals traverse a wide variety of complex environments, including situations in which the ground beneath them can yield (e.g. dry granular media in desert dunes). Locomotion strategies that are effective on level granular media can fail when traversing a granular slope. Taking inspiration from successful legged-locomotors in sandy, uneven settings, we explore the ability of a small (15 cm long, 100 g), six-c-shaped legged robot to run uphill in a bed of 1-mm-diameter poppy seeds, using an alternating tripod gait. Our fully automated experiments reveal that locomotor performance can depend sensitively on both environmental parameters such as the inclination angle and volume fraction of the substrate, and robot morphology and control parameters like leg shape, step frequency, and the friction between the feet of the robot and the substrate. We assess performance by measuring the average speed of the robot, and we find that the robot tends to perform better at higher step frequency and lower inclination angles, and that average speed decreases more rapidly with increasing angle for higher step frequency.

  12. Stokesian locomotion in elastic fluids: Experiments

    NASA Astrophysics Data System (ADS)

    Zenit, Roberto; Lauga, Eric

    2010-11-01

    In many instances of biological relevance, self-propelled cells have to swim through non-Newtonian fluids. In order to provide fundamental understanding on the effect of such non-Newtonian stresses on locomotion, we have studied the motion an oscillating magnetic swimmer immersed in both Newtonian and non-Newtonian liquids at small Reynolds numbers. The swimmer is made with a small rare earth (Neodymium-Iron-Boron) magnetic rod (3 mm) to which a flexible tail was glued. This array was immersed in cylindrical container (50 mm diameter) in which the test fluid was contained. A nearly uniform oscillating magnetic field was created with a Helmholtz coil (R=200mm) and a AC power supply. For the Newtonian case, a 30,000 cSt silicon oil was used. In the non-Newtonian case, a fluid with nearly constant viscosity and large first normal stress difference (highly elastic) was used; this fluid was made with Corn syrup with a small amount of polyacrylamide. The swimming speed was measured, for different amplitudes and frequencies, using a digital image analysis. The objective of the present investigation is to determine whether the elastic effects of the fluid improve or not the swimming performance. Some preliminary results will be presented and discussed.

  13. Spinal cord pattern generators for locomotion.

    PubMed

    Dietz, V

    2003-08-01

    It is generally accepted that locomotion in mammals, including humans, is based on the activity of neuronal circuits within the spinal cord (the central pattern generator, CPG). Afferent information from the periphery (i.e. the limbs) influences the central pattern and, conversely, the CPG selects appropriate afferent information according to the external requirement. Both the CPG and the reflexes that mediate afferent input to the spinal cord are under the control of the brainstem. There is increasing evidence that in central motor diseases, a defective utilization of afferent input, in combination with secondary compensatory processes, is involved in typical movement disorders, such as spasticity and Parkinson's disease. Recent studies indicate a plastic behavior of the spinal neuronal circuits following a central motor lesion. This has implications for any rehabilitative therapy that should be directed to take advantage of the plasticity of the central nervous system. The significance of this research is in a better understanding of the pathophysiology underlying movement disorders and the consequences for an appropriate treatment.

  14. Incidental sounds of locomotion in animal cognition.

    PubMed

    Larsson, Matz

    2012-01-01

    The highly synchronized formations that characterize schooling in fish and the flight of certain bird groups have frequently been explained as reducing energy expenditure. I present an alternative, or complimentary, hypothesis that synchronization of group movements may improve hearing perception. Although incidental sounds produced as a by-product of locomotion (ISOL) will be an almost constant presence to most animals, the impact on perception and cognition has been little discussed. A consequence of ISOL may be masking of critical sound signals in the surroundings. Birds in flight may generate significant noise; some produce wing beats that are readily heard on the ground at some distance from the source. Synchronization of group movements might reduce auditory masking through periods of relative silence and facilitate auditory grouping processes. Respiratory locomotor coupling and intermittent flight may be other means of reducing masking and improving hearing perception. A distinct border between ISOL and communicative signals is difficult to delineate. ISOL seems to be used by schooling fish as an aid to staying in formation and avoiding collisions. Bird and bat flocks may use ISOL in an analogous way. ISOL and interaction with animal perception, cognition, and synchronized behavior provide an interesting area for future study.

  15. Leg intramuscular pressures during locomotion in humans

    NASA Technical Reports Server (NTRS)

    Ballard, R. E.; Watenpaugh, D. E.; Breit, G. A.; Murthy, G.; Holley, D. C.; Hargens, A. R.

    1998-01-01

    To assess the usefulness of intramuscular pressure (IMP) measurement for studying muscle function during gait, IMP was recorded in the soleus and tibialis anterior muscles of 10 volunteers during treadmill walking and running by using transducer-tipped catheters. Soleus IMP exhibited single peaks during late-stance phase of walking [181 +/- 69 (SE) mmHg] and running (269 +/- 95 mmHg). Tibialis anterior IMP showed a biphasic response, with the largest peak (90 +/- 15 mmHg during walking and 151 +/- 25 mmHg during running) occurring shortly after heel strike. IMP magnitude increased with gait speed in both muscles. Linear regression of soleus IMP against ankle joint torque obtained by a dynamometer produced linear relationships (n = 2, r = 0.97 for both). Application of these relationships to IMP data yielded estimated peak soleus moment contributions of 0.95-1.65 N . m/kg during walking, and 1.43-2.70 N . m/kg during running. Phasic elevations of IMP during exercise are probably generated by local muscle tissue deformations due to muscle force development. Thus profiles of IMP provide a direct, reproducible index of muscle function during locomotion in humans.

  16. Nematode locomotion in unconfined and confined fluids

    NASA Astrophysics Data System (ADS)

    Bilbao, Alejandro; Wajnryb, Eligiusz; Vanapalli, Siva A.; Blawzdziewicz, Jerzy

    2013-08-01

    The millimeter-long soil-dwelling nematode Caenorhabditis elegans propels itself by producing undulations that propagate along its body and turns by assuming highly curved shapes. According to our recent study [V. Padmanabhan et al., PLoS ONE 7, e40121 (2012), 10.1371/journal.pone.0040121] all these postures can be accurately described by a piecewise-harmonic-curvature model. We combine this curvature-based description with highly accurate hydrodynamic bead models to evaluate the normalized velocity and turning angles for a worm swimming in an unconfined fluid and in a parallel-wall cell. We find that the worm moves twice as fast and navigates more effectively under a strong confinement, due to the large transverse-to-longitudinal resistance-coefficient ratio resulting from the wall-mediated far-field hydrodynamic coupling between body segments. We also note that the optimal swimming gait is similar to the gait observed for nematodes swimming in high-viscosity fluids. Our bead models allow us to determine the effects of confinement and finite thickness of the body of the nematode on its locomotion. These effects are not accounted for by the classical resistive-force and slender-body theories.

  17. Stability versus maneuverability in aquatic locomotion.

    PubMed

    Weihs, Daniel

    2002-02-01

    The dictionary definition of stability as "Firmly established, not easily to be changed" immediately indicates the conflict between stability and maneuverability in aquatic locomotion. The present paper addresses several issues resulting from these opposing requirements. Classical stability theory for bodies moving in fluids is based on developments in submarine and airship motions. These have lateral symmetry, in common with most animals. This enables the separation of the equations of motion into two sets of 3 each. The vertical (longitudinal) set, which includes motions in the axial (surge), normal (heave) and pitching directions, can thus be separated from the lateral-horizontal plane which includes yaw, roll and sideslip motions. This has been found useful in the past for longitudinal stability studies based on coasting configurations but is not applicable to the analysis of turning, fast starts and vigorous swimming, where the lateral symmetry of the fish body is broken by bending motions. The present paper will also examine some of the aspects of the stability vs. maneuverability tradeoff for these asymmetric motions. An analysis of the conditions under which the separation of equations of motions into vertical and horizontal planes is justified, and a definition of the equations to be used in cases where this separation is not accurate enough is presented.

  18. Epidemiology of Locomotive Organ Disorders and Symptoms: An Estimation Using the Population-Based Cohorts in Japan.

    PubMed

    Yoshimura, Noriko; Nakamura, Kozo

    Although locomotive organ diseases such as osteoporotic fractures and osteoarthritis are major reasons for disability and require support, little information is available regarding the epidemiology of musculoskeletal dysfunction and its symptoms including knee pain and lumbar pain in Japan. The research on osteoarthritis/osteoporosis against disability (ROAD) study is a prospective cohort study that aims at elucidating the environmental and genetic background for locomotive organ diseases, and has been ongoing since 2005. In this review, epidemiological indices such as prevalence of locomotive organ diseases including knee osteoarthritis, lumbar spondylosis, and osteoporosis were clarified using baseline survey results of the ROAD study. The number of subjects with such diseases was estimated. In addition, 3-year follow-up data from the ROAD study revealed the effect of osteoarthritis on the occurrence of osteoporosis, and vice versa. The prevalences of osteoarthritis and osteoporosis were shown to be high. Also, the large estimates of patients with these conditions suggest that urgent strategies are needed for addressing locomotive organ diseases that cause disability in the elderly. We also clarified the prevalence of knee pain, lumbar pain, and their co-existence using the survey results of the longitudinal cohorts of motor system organ study. We found that both knee pain and lumbar pain were prevalent in 12.2 % of the total population and the presence of knee pain affected lumbar pain, and vice versa.

  19. Natural variation in Drosophila stressed locomotion meets or exceeds variation caused by hsp70 mutation: analysis of behavior and performance.

    PubMed

    Bettencourt, Brian R; Drohan, Brian W; Ireland, Andrea T; Santhanam, Mahalakshmi; Smrtic, Mary Beth; Sullivan, Erin M

    2009-05-01

    Thermotolerance involves more than life or death. Investigating the complexity of this trait will aid identification of its genetic contributors. We examined variation in thermally stressed walking behavior and performance in natural Drosophila melanogaster strains and strains mutant for the heat shock protein Hsp70, to determine which aspects of locomotion are affected by heat shock and genotype. We developed software for the large-scale capture, analysis, and visualization of locomotion, and determined: (1) Heat shock and thermal pretreatment significantly and differentially impact fly locomotor behavior and performance. (2) Stressed locomotion traits vary extensively among natural strains. (3) Interactions among treatments, strains, and traits are substantial and often counterintuitive. (4) Hsp70 overexpressing flies are faster and more basally thermoprotected in performance than Hsp70 null flies, but null flies are more unidirectional. (5) Natural variation in most stressed locomotion traits exceeds that caused by Hsp70 mutation, reveals uncoupling between thermoprotection of behavior and performance, and suggests significant genetic variation for trait-specific modifiers of thermotolerance.

  20. 49 CFR 222.27 - How does this rule affect pedestrian grade crossings?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... crossings? 222.27 Section 222.27 Transportation Other Regulations Relating to Transportation (Continued...-RAIL GRADE CROSSINGS Use of Locomotive Horns § 222.27 How does this rule affect pedestrian grade... locomotive horn shall be sounded in accordance with § 222.21 of this part. Where State law requires...

  1. 49 CFR 222.25 - How does this rule affect private highway-rail grade crossings?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... grade crossings? 222.25 Section 222.25 Transportation Other Regulations Relating to Transportation... HIGHWAY-RAIL GRADE CROSSINGS Use of Locomotive Horns § 222.25 How does this rule affect private highway... private highway-rail grade crossings, the locomotive horn shall be sounded in accordance with § 222.21...

  2. 49 CFR 222.27 - How does this rule affect pedestrian grade crossings?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... crossings? 222.27 Section 222.27 Transportation Other Regulations Relating to Transportation (Continued...-RAIL GRADE CROSSINGS Use of Locomotive Horns § 222.27 How does this rule affect pedestrian grade... locomotive horn shall be sounded in accordance with § 222.21 of this part. Where State law requires...

  3. 49 CFR 222.25 - How does this rule affect private highway-rail grade crossings?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... grade crossings? 222.25 Section 222.25 Transportation Other Regulations Relating to Transportation... HIGHWAY-RAIL GRADE CROSSINGS Use of Locomotive Horns § 222.25 How does this rule affect private highway... private highway-rail grade crossings, the locomotive horn shall be sounded in accordance with § 222.21...

  4. 40 CFR 201.27 - Procedures for: (1) Determining applicability of the locomotive load cell test stand standard and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a...

  5. 40 CFR 201.27 - Procedures for: (1) Determining applicability of the locomotive load cell test stand standard and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a...

  6. 40 CFR 201.27 - Procedures for: (1) Determining applicability of the locomotive load cell test stand standard and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a...

  7. 40 CFR 201.27 - Procedures for: (1) Determining applicability of the locomotive load cell test stand standard and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a...

  8. 40 CFR 201.27 - Procedures for: (1) Determining applicability of the locomotive load cell test stand standard and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a...

  9. The behavioral space of zebrafish locomotion and its neural network model

    NASA Astrophysics Data System (ADS)

    Girdhar, Kiran; Benitez-Jones, Maria; Thi, Ha Pham; Nelson, Mark; Gruebele, Martin; Chemla, Yann

    2014-03-01

    How does one describe quantitatively the complex motion of vertebrates? To answer this question, we investigated a model system for vertebrate locomotion: zebrafish swimming. We performed a quantitative analysis of all stereotyped behavioral swimming patterns of zebrafish larvae: spontaneous swimming, escape response to stimulus, and prey tracking. Previous attempts to analyze zebrafish swimming motion quantitatively have imposed many arbitrary parameters. Here, we instead used a parameter-independent method that produces an orthogonal set of ``eigen-shapes'' of fish backbones to describe swimming motion in a low-dimensional space. We show that a linear combination of only three such ``eigen-shapes'' is sufficient to describe 97% of zebrafish shapes. Moreover, stereotyped swimming behaviors fall on two low-dimensional attractors embedded in this three dimensional behavioral space. We also show using a two-dimensional correlation analysis that ``scoots'' and ``R-turns,'' which were previously described as discrete behavioral states, in fact represent extrema in a continuum in this low-dimensional behavioral space. To understand the neural basis of the behavior, we have also developed a neural network model of spontaneous swimming of fish larvae. We present a set of neural parameters such as synaptic conductance, stimulus amplitude that produces swimming behavior and reconstructed the low-dimensional behavioral space obtained from experimental results.

  10. Spontaneous nephrocutaneous fistula.

    PubMed

    Antunes, Alberto A; Calado, Adriano A; Falcão, Evandro

    2004-01-01

    Spontaneous renal fistula to the skin is rare. The majority of cases develop in patients with antecedents of previous renal surgery, renal trauma, renal tumors, and chronic urinary tract infection with abscess formation. We report the case of a 62-year old woman, who complained of urine leakage through the skin in the lumbar region for 2 years. She underwent a fistulography that revealed drainage of contrast agent to the collecting system and images suggesting renal lithiasis on this side. The patient underwent simple nephrectomy on this side and evolved without intercurrences in the post-operative period. Currently, the occurrence of spontaneous renal and perirenal abscesses is extremely rare, except in patients with diabetes, neoplasias and immunodepression in general.

  11. Spontaneous recovery from acalculia.

    PubMed

    Basso, Anna; Caporali, Alessandra; Faglioni, Pietro

    2005-01-01

    A topic much considered in research on acalculia was its relationship with aphasia. Far less attention has been given to the natural course of acalculia. In this retrospective study, we examined the relationship between aphasia and acalculia in an unselected series of 98 left-brain-damaged patients and the spontaneous recovery from acalculia in 92 acalculic patients with follow-up. There was a significant association between aphasia and acalculia although 19 participants exhibited aphasia with no acalculia and six acalculia with no aphasia. We observed significant improvement between a first examination carried out between 1 and 5 months post-onset and a second examination carried out between 3 and 11 months later (mean: 5 months). The mechanisms of spontaneous recovery are discussed.

  12. Spontaneous Transomental Hernia

    PubMed Central

    Lee, Seung Hun

    2016-01-01

    A transomental hernia through the greater or lesser omentum is rare, accounting for approximately 4% of internal hernias. Transomental hernias are generally reported in patients aged over fifty. In such instances, acquired transomental hernias are usual, are commonly iatrogenic, and result from surgical interventions or from trauma or peritoneal inflammation. In rare cases, such as the one described in this study, internal hernias through the greater or lesser omentum occur spontaneously as the result of senile atrophy without history of surgery, trauma, or inflammation. A transomental hernia has a high postoperative mortality rate of 30%, and emergency diagnosis and treatment are critical. We report a case of a spontaneous transomental hernia of the small intestine causing intestinal obstruction. An internal hernia with strangulation of the small bowel in the lesser sac was suspected from the image study. After an emergency laparotomy, a transomental hernia was diagnosed. PMID:26962535

  13. [Spontaneous pneumothorax in children].

    PubMed

    Michel, J L

    2000-03-01

    Spontaneous pneumothorax is rare in childhood. Before 12 years of age the main underlying pathologies are asthma, cystic malformations, post infectious bullae, and infectious pneumoniae. After 12 years of age it is mainly associated with cystic fibrosis and constitutional slim morphology. Symptoms vary according to the extent of lung collapse and the diagnosis is confirmed on chest X rays. In mildly symptomatic pneumothorax, spontaneous resolution is achieved within few days. When cardiorespiratory difficulties are present, mechanical evacuation of air from the pleural cavity is necessary through a tube drainage maintained until complete pulmonary reexpansion. Surgical treatment is indicated in case of persisting air leakage after one week of efficient drainage, large cystic malformation or post infectious bullae, recurring or bilateral pneumothorax.

  14. Spontaneous Perforation of Pyometra

    PubMed Central

    Singh, Ahanthem Santa; Bhaphiralyne, Wankhar

    2016-01-01

    Pyometra is collection of purulent material which occurs when there is interference with its normal drainage. It is an uncommon condition with incidence of 0.1 to 0.5% of all gynecological patients. Spontaneous rupture of uterus is an extremely rare complication of pyometra. A 65-year-old lady presented with pain abdomen and purulent vaginal discharge. Preoperative diagnosis of pyometra was made by magnetic resonance imaging (MRI). Laparotomy followed by peritoneal lavage and repair of perforation was performed. Although spontaneously perforated pyometra is rare, the condition must be borne in mind with regard to elderly women with acute abdominal pain. Preoperative diagnosis of perforated pyometra is absolutely essential. Computed tomography (CT) and MRI are diagnostic tools. In selected cases conservative approach at surgery can be opted. PMID:27152313

  15. Spontaneous Perforation of Pyometra.

    PubMed

    Sharma, Nalini; Singh, Ahanthem Santa; Bhaphiralyne, Wankhar

    2016-04-01

    Pyometra is collection of purulent material which occurs when there is interference with its normal drainage. It is an uncommon condition with incidence of 0.1 to 0.5% of all gynecological patients. Spontaneous rupture of uterus is an extremely rare complication of pyometra. A 65-year-old lady presented with pain abdomen and purulent vaginal discharge. Preoperative diagnosis of pyometra was made by magnetic resonance imaging (MRI). Laparotomy followed by peritoneal lavage and repair of perforation was performed. Although spontaneously perforated pyometra is rare, the condition must be borne in mind with regard to elderly women with acute abdominal pain. Preoperative diagnosis of perforated pyometra is absolutely essential. Computed tomography (CT) and MRI are diagnostic tools. In selected cases conservative approach at surgery can be opted.

  16. Spontaneous Rupture of Pyometra

    PubMed Central

    Mallah, Fatemeh; Eftekhar, Tahere; Naghavi-Behzad, Mohammad

    2013-01-01

    Spontaneous perforation is a very rare complication of pyometra. The clinical findings of perforated pyometra are similar to perforation of the gastrointestinal tract and other causes of acute abdomen. In most cases, a correct and definite diagnosis can be made only by laparotomy. We report two cases of diffuse peritonitis caused by spontaneous perforated pyometra. The first case is a 78-year-old woman with abdominal pain for which laparotomy was performed because of suspected incarcerated hernia. The second case is a 61-year-old woman with abdominal pain for which laparotomy was performed because of symptoms of peritonitis. At laparotomy of both cases, 1 liter of pus with the source of uterine was found in the abdominal cavity. The ruptured uterine is also detected. More investigations revealed no malignancy as the reason of the pyometra. PMID:24024054

  17. Spontaneous Iliopsoas Tendon Tear

    PubMed Central

    Rodriguez, Mary; Patnaik, Soumya; Wang, Peter

    2016-01-01

    Hip pain is one of the most common reasons for the elderly to present to the emergency department, and the differential diagnosis spectrum is vast. Iliopsoas injury is a relatively uncommon condition that may present with hip or groin pain. It is usually seen in athletes due to trauma, particularly flexion injuries. However, spontaneous iliopsoas tendon tear is extremely rare, and only a small number of cases have been reported; it has an estimated prevalence of 0.66% in individuals from 7 to 95 years. Risk factors include aging, use of steroids, and chronic diseases. Magnetic resonance imaging (MRI) using its high soft-tissue contrast resolution remains the most valuable imaging modality. A prompt diagnosis and treatment, which is usually conservative, is important to improve the quality of life in this group of patients. We describe a case of spontaneous iliopsoas tendon tear in an elderly woman. PMID:26929854

  18. Spontaneous ileostomy closure

    PubMed Central

    Alyami, Mohammad S.; Lundberg, Peter W.; Cotte, Eddy G.; Glehen, Olivier J.

    2016-01-01

    Iatrogenic ileostomies are routinely placed during colorectal surgery for the diversion of intestinal contents to permit healing of the distal anastomosis prior to elective reversal. We present an interesting case of spontaneous closure of a diverting ileostomy without any adverse effects to the patient. A 65-year-old woman, positive for hereditary non-polyposis colorectal cancer type-I, with locally invasive cancer of the distal colon underwent en-bloc total colectomy, hysterectomy, and bilateral salpingoophorectomy with creation of a proximal loop ileostomy. The ostomy temporarily closed without reoperation at 10 weeks, after spontaneously reopening, it definitively closed, again without surgical intervention at 18 weeks following the original surgery. This rare phenomenon has occurred following variable colorectal pathology and is poorly understood, particularly in patients with aggressive disease and adjunct perioperative interventions. PMID:27279518

  19. Arachnoid cyst spontaneous rupture.

    PubMed

    Marques, Inês Brás; Vieira Barbosa, José

    2014-01-01

    Arachnoid cysts are benign congenital cerebrospinal fluid collections, usually asymptomatic and diagnosed incidentally in children or adolescents. They may become symptomatic after enlargement or complications, frequently presenting with symptoms of intracranial hypertension. We report an unusual case of progressive refractory headache in an adult patient due to an arachnoid cyst spontaneous rupture. Although clinical improvement occurred with conservative treatment, the subdural hygroma progressively enlarged and surgical treatment was ultimately needed. Spontaneous rupture is a very rare complication of arachnoid cysts. Accumulation of cerebrospinal fluid accumulation in the subdural space causes sustained intracranial hypertension that may be life-threatening and frequently requires surgical treatment. Patients with arachnoid cysts must be informed on their small vulnerability to cyst rupture and be aware that a sudden and severe headache, especially if starting after minor trauma or a Valsalva manoeuvre, always requires medical evaluation.

  20. Spontaneous Pneumomediastinum in Labor

    PubMed Central

    Benlamkadem, Said; Labib, Smael; Harandou, Mustapha

    2017-01-01

    Spontaneous pneumomediastinum and subcutaneous emphysema also known as Hamman's syndrome is a very rare complication of labor that is often related to the valsalva maneuver during the labor. In most case, Hamman's syndrome is a self-limiting condition, rarely complicated unless there are underlying respiratory diseases. Chest X-ray can be a useful early diagnostic technique in severe clinical presentation. We report an uneventful pregnancy in a primigravid parturient, which was complicated in the late second stage of labor by the development of subcutaneous emphysema, pneumomediastinum, and mild pneumothorax. Spontaneous recovery occurred after four days of conservative management. This condition shows the major interest of labor analgesia especially locoregional techniques. PMID:28316849

  1. Spontaneous spinal epidural abscess.

    PubMed

    Ellanti, P; Morris, S

    2011-10-01

    Spinal epidural abscess is an uncommon entity, the frequency of which is increasing. They occur spontaneously or as a complication of intervention. The classical triad of fever, back pain and neurological symptoms are not always present. High index of suspicion is key to diagnosis. Any delay in diagnosis and treatment can have significant neurological consequences. We present the case of a previously well man with a one month history of back pain resulting from an epidural abscess.

  2. Vitamin D receptor signaling enhances locomotive ability in mice.

    PubMed

    Sakai, Sadaoki; Suzuki, Miho; Tashiro, Yoshihito; Tanaka, Keisuke; Takeda, Satoshi; Aizawa, Ken; Hirata, Michinori; Yogo, Kenji; Endo, Koichi

    2015-01-01

    Bone fractures markedly reduce quality of life and life expectancy in elderly people. Although osteoporosis increases bone fragility, fractures frequently occur in patients with normal bone mineral density. Because most fractures occur on falling, preventing falls is another focus for reducing bone fractures. In this study, we investigated the role of vitamin D receptor (VDR) signaling in locomotive ability. In the rotarod test, physical exercise enhanced locomotive ability of wild-type (WT) mice by 1.6-fold, whereas exercise did not enhance locomotive ability of VDR knockout (KO) mice. Compared with WT mice, VDR KO mice had smaller peripheral nerve axonal diameter and disordered AChR morphology on the extensor digitorum longus muscle. Eldecalcitol (ED-71, ELD), an analog of 1,25(OH)2 D3 , administered to rotarod-trained C57BL/6 mice enhanced locomotor performance compared with vehicle-treated nontrained mice. The area of AChR cluster on the extensor digitorum longus was greater in ELD-treated mice than in vehicle-treated mice. ELD and 1,25(OH)2 D3 enhanced expression of IGF-1, myelin basic protein, and VDR in rat primary Schwann cells. VDR signaling regulates neuromuscular maintenance and enhances locomotive ability after physical exercise. Further investigation is required, but Schwann cells and the neuromuscular junction are targets of vitamin D3 signaling in locomotive ability.

  3. System design of a large fuel cell hybrid locomotive

    NASA Astrophysics Data System (ADS)

    Miller, A. R.; Hess, K. S.; Barnes, D. L.; Erickson, T. L.

    Fuel cell power for locomotives combines the environmental benefits of a catenary-electric locomotive with the higher overall energy efficiency and lower infrastructure costs of a diesel-electric. A North American consortium, a public-private partnership, is developing a prototype hydrogen-fueled fuel cell-battery hybrid switcher locomotive for urban and military-base rail applications. Switcher locomotives are used in rail yards for assembling and disassembling trains and moving trains from one point to another. At 127 tonnes (280,000 lb), continuous power of 250 kW from its (proton exchange membrane) PEM fuel cell prime mover, and transient power well in excess of 1 MW, the hybrid locomotive will be the heaviest and most powerful fuel cell land vehicle yet. This fast-paced project calls for completion of the vehicle itself near the end of 2007. Several technical challenges not found in the development of smaller vehicles arise when designing and developing such a large fuel cell vehicle. Weight, center of gravity, packaging, and safety were design factors leading to, among other features, the roof location of the lightweight 350 bar compressed hydrogen storage system. Harsh operating conditions, especially shock loads during coupling to railcars, require component mounting systems capable of absorbing high energy. Vehicle scale-up by increasing mass, density, or power presents new challenges primarily related to issues of system layout, hydrogen storage, heat transfer, and shock loads.

  4. Locomotion of neutrally buoyant fish with flexible caudal fin.

    PubMed

    Iosilevskii, Gil

    2016-06-21

    Historically, burst-and-coast locomotion strategies have been given two very different explanations. The first one was based on the assumption that the drag of an actively swimming fish is greater than the drag of the same fish in motionless glide. Fish reduce the cost of locomotion by swimming actively during a part of the swimming interval, and gliding through the remaining part. The second one was based on the assumption that muscles perform efficiently only if their contraction rate exceeds a certain threshold. Fish reduce the cost of locomotion by using an efficient contraction rate during a part of the swimming interval, and gliding through the remaining part. In this paper, we suggest yet a third explanation. It is based on the assumption that propulsion efficiency of a swimmer can increase with thrust. Fish reduce the cost of locomotion by alternating high thrust, and hence more efficient, bursts with passive glides. The paper presents a formal analysis of the respective burst-and-coast strategy, shows that the locomotion efficiency can be practically as high as the propulsion efficiency during burst, and shows that the other two explanations can be considered particular cases of the present one.

  5. Enhanced sensory sampling precedes self-initiated locomotion in an electric fish.

    PubMed

    Jun, James J; Longtin, André; Maler, Leonard

    2014-10-15

    Cortical activity precedes self-initiated movements by several seconds in mammals; this observation has led into inquiries on the nature of volition. Preparatory neural activity is known to be associated with decision making and movement planning. Self-initiated locomotion has been linked to increased active sensory sampling; however, the precise temporal relationship between sensory acquisition and voluntary movement initiation has not been established. Based on long-term monitoring of sensory sampling activity that is readily observable in freely behaving pulse-type electric fish, we show that heightened sensory acquisition precedes spontaneous initiation of swimming. Gymnotus sp. revealed a bimodal distribution of electric organ discharge rate (EODR) demonstrating down- and up-states of sensory sampling and neural activity; movements only occurred during up-states and up-states were initiated before movement onset. EODR during voluntary swimming initiation exhibited greater trial-to-trial variability than the sound-evoked increases in EODR. The sampling variability declined after voluntary movement onset as previously observed for the neural variability associated with decision making in primates. Spontaneous movements occurred randomly without a characteristic timescale, and no significant temporal correlation was found between successive movement intervals. Using statistical analyses of spontaneous exploratory behaviours and associated preparatory sensory sampling increase, we conclude that electric fish exhibit key attributes of volitional movements, and that voluntary behaviours in vertebrates may generally be preceded by increased sensory sampling. Our results suggest that comparative studies of the neural basis of volition may therefore be possible in pulse-type electric fish, given the substantial homologies between the telencephali of teleost fish and mammals.

  6. Coordination and modulation of locomotion pattern generators in Drosophila larvae: effects of altered biogenic amine levels by the tyramine beta hydroxlyase mutation.

    PubMed

    Fox, Lyle E; Soll, David R; Wu, Chun-Fang

    2006-02-01

    Forward locomotion of Drosophila melanogaster larvae is composed of rhythmic waves of contractions that are thought to be produced by segmentally organized central pattern generators. We present a systematic description of spike activity patterns during locomotive contraction waves in semi-intact wild-type and mutant larval preparations. We have shown previously that Tbetah(nM18) mutants, with altered levels of octopamine and tyramine, have a locomotion deficit. By recording en passant from the segmental nerves, we investigated the coordination of the neuronal activity driving contraction waves of the abdominal body-wall muscles. Rhythmic bursts of activity that occurred concurrently with locomotive waves were frequently observed in wild-type larvae but were rarely seen in Tbetah(nM18) mutants. These centrally generated patterned activities were eliminated in the distal stumps of both wild-type and Tbetah(nM18) larvae after severing the segmental nerve from the CNS. Patterned activities persisted in the proximal stumps deprived of sensory feedback from the periphery. Simultaneous recordings demonstrated a delay in the bursting activity between different segments, with greater delay for segments that were farther apart. In contrast, bilateral recordings within a single segment revealed a well synchronized activity pattern in nerves innervating each hemisegment in both wild-type and Tbetah(nM18) larvae. Significantly, rhythmic patterns of bursts and waves could be evoked in Tbetah(nM18) mutants by head or tail stimulation despite their highly irregular spontaneous activities. These observations suggest a role of the biogenic amines in the initiation and modulation of motor pattern generation. The technique presented here can be readily extended to examine the locomotion motor program of other mutants.

  7. Role of phosphodiesterase-4 on ethanol elicited locomotion and narcosis.

    PubMed

    Baliño, Pablo; Ledesma, Juan Carlos; Aragon, Carlos M G

    2016-02-01

    The cAMP signaling pathway has emerged as an important modulator of the pharmacological effects of ethanol. In this respect, the cAMP-dependent protein kinase has been shown to play an important role in the modulation of several ethanol-induced behavioral actions. Cellular levels of cAMP are maintained by the activity of adenylyl cyclases and phosphodiesterases. In the present work we have focused on ascertaining the role of PDE4 in mediating the neurobehavioral effects of ethanol. For this purpose, we have used the selective PDE4 inhibitor Ro 20-1724. This compound has been proven to enhance cellular cAMP response by PDE4 blockade and can be administered systemically. Swiss mice were injected intraperitoneally (i.p.) with Ro 20-1724 (0-5 mg/kg; i.p.) at different time intervals before ethanol (0-4 g/kg; i.p.) administration. Immediately after the ethanol injection, locomotor activity, loss of righting reflex, PKA footprint and enzymatic activity were assessed. Pretreatment with Ro 20-1724 increased ethanol-induced locomotor stimulation in a dose-dependent manner. Doses that increased locomotor stimulation did not modify basal locomotion or the suppression of motor activity produced by high doses of this alcohol. Ro 20-1724 did not alter the locomotor activation produced by amphetamine or cocaine. The time of loss of righting reflex evoked by ethanol was increased after pretreatment with Ro 20-1724. This effect was selective for the narcotic effects of ethanol since Ro 20-1724 did not affect pentobarbital-induced narcotic effects. Moreover, Ro 20-1724 administration increased the PKA footprint and enzymatic activity response elicited by ethanol. These data provide further evidence of the key role of the cAMP signaling pathway in the central effects of ethanol.

  8. CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion.

    PubMed

    Kucia, Magda; Jankowski, Kacper; Reca, Ryan; Wysoczynski, Marcin; Bandura, Laura; Allendorf, Daniel J; Zhang, Jin; Ratajczak, Janina; Ratajczak, Mariusz Z

    2004-03-01

    Chemokines, small pro-inflammatory chemoattractant cytokines, that bind to specific G-protein-coupled seven-span transmembrane receptors present on plasma membranes of target cells are the major regulators of cell trafficking. In addition some chemokines have been reported to modulate cell survival and growth. Moreover, compelling evidence is accumulating that cancer cells may employ several mechanisms involving chemokine-chemokine receptor axes during their metastasis that also regulate the trafficking of normal cells. Of all the chemokines, stromal-derived factor-1 (SDF-1), an alpha-chemokine that binds to G-protein-coupled CXCR4, plays an important and unique role in the regulation of stem/progenitor cell trafficking. First, SDF-1 regulates the trafficking of CXCR4+ haemato/lymphopoietic cells, their homing/retention in major haemato/lymphopoietic organs and accumulation of CXCR4+ immune cells in tissues affected by inflammation. Second, CXCR4 plays an essential role in the trafficking of other tissue/organ specific stem/progenitor cells expressing CXCR4 on their surface, e.g., during embryo/organogenesis and tissue/organ regeneration. Third, since CXCR4 is expressed on several tumour cells, these CXCR4 positive tumour cells may metastasize to the organs that secrete/express SDF-1 (e.g., bones, lymph nodes, lung and liver). SDF-1 exerts pleiotropic effects regulating processes essential to tumour metastasis such as locomotion of malignant cells, their chemoattraction and adhesion, as well as plays an important role in tumour vascularization. This implies that new therapeutic strategies aimed at blocking the SDF-1-CXCR4 axis could have important applications in the clinic by modulating the trafficking of haemato/lymphopoietic cells and inhibiting the metastatic behaviour of tumour cells as well. In this review, we focus on a role of the SDF-1-CXCR4 axis in regulating the metastatic behaviour of tumour cells and discuss the molecular mechanisms that are essential

  9. Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion II

    NASA Astrophysics Data System (ADS)

    Lee, Scott

    2015-03-01

    In the second paper1 of this series, the effect of transverse femoral stresses due to locomotion in theropod dinosaurs of different sizes was examined for the case of an unchanging leg geometry. Students are invariably thrilled to learn about theropod dinosaurs, and this activity applies the concepts of torque and stress to the issue of theropod locomotion. In this paper, our model calculation of Ref. 1 is extended to incorporate the fact that larger animals run with straighter legs. As in Ref. 1, students use geometric data for the femora of theropod dinosaurs to analyze their locomotion abilities. This can either be an in-class activity or given as a homework problem. Larger theropods are found to be less athletic in their movements than smaller theropods since the stresses in the femora of large theropods are closer to breaking their legs than smaller theropods.

  10. A PHYSIOLOGIST'S PERSPECTIVE ON ROBOTIC EXOSKELETONS FOR HUMAN LOCOMOTION.

    PubMed

    Ferris, Daniel P; Sawicki, Gregory S; Daley, Monica A

    2007-09-01

    Technological advances in robotic hardware and software have enabled powered exoskeletons to move from science fiction to the real world. The objective of this article is to emphasize two main points for future research. First, the design of future devices could be improved by exploiting biomechanical principles of animal locomotion. Two goals in exoskeleton research could particularly benefit from additional physiological perspective: 1) reduction in the metabolic energy expenditure of the user while wearing the device, and 2) minimization of the power requirements for actuating the exoskeleton. Second, a reciprocal potential exists for robotic exoskeletons to advance our understanding of human locomotor physiology. Experimental data from humans walking and running with robotic exoskeletons could provide important insight into the metabolic cost of locomotion that is impossible to gain with other methods. Given the mutual benefits of collaboration, it is imperative that engineers and physiologists work together in future studies on robotic exoskeletons for human locomotion.

  11. Small step or giant leap? Human locomotion on Mars.

    PubMed

    Hawkey, Adam

    2004-01-01

    Human locomotion on Mars will be considerably different from on Earth. Optimum walking speeds will be approximately 30% lower and transitioning from a walk to a run will occur at a speed 25% slower. Peak vertical forces will be reduced by as much as 50%, and although ground contact time will remain constant with locomotion in 1 g, stride length and stride time will increase. During running on Mars airborne time will increase by approximately 80% in comparison to running on the Earth. On Mars, half as much energy will be required to travel the equivalent distance on Earth and it will be 65% more economical to run rather than to walk. Crews will, therefore, find themselves using a loping gait--a running-like action, with a slight upper body lean and an extended aerial phase, an unfamiliar gait in terrestrial locomotion.

  12. Zero-Gravity Locomotion Simulators: New Ground-Based Analogs for Microgravity Exercise Simulation

    NASA Technical Reports Server (NTRS)

    Perusek, Gail P.; DeWitt, John K.; Cavanagh, Peter R.; Grodsinsky, Carlos M.; Gilkey, Kelly M.

    2007-01-01

    pneumatic subject load device to apply a near constant gravity-replacement load to the test subject during exercise, and is currently used in conjunction with the General Clinical Research Center for evaluating exercise protocols using a bedrest analog. The enhanced ZLS (eZLS) at NASA Glenn Research Center features an offloaded treadmill that floats on a thin film of air and interfaces to a force reaction frame via variably-compliant isolators, or vibration isolation system. The isolators can be configured to simulate compliant interfaces to the vehicle, which affects mechanical loading to crewmembers during exercise, and has been used to validate system dynamic models for new countermeasures equipment designs, such as the second International Space Station treadmill slated for use in 2010. In the eZLS, the test subject and exercise device can be pitched at the appropriate angle for partial gravity simulations, such as lunar gravity (1/6th earth gravity). On both the eZLS and the NASA-Johnson Space Center standalone ZLS installed at the University of Texas Medical Branch in Galveston, Texas, USA, the subject's body weight relative to the treadmill is controlled via a linear motor subject load device (LM-SLD). The LM-SLD employs a force-feedback closed-loop control system to provide a relatively constant force to the test subject during locomotion, and is set and verified for subject safety prior to each session. Locomotion data were collected during parabolic flight and on the eZLS. The purpose was to determine the similarities and differences between locomotion in actual and simulated microgravity. Subjects attained greater amounts of hip flexion during walking and running during parabolic flight. During running, subjects had greater hip range of motion. Trunk motion was significantly less on the eZLS than during parabolic flight. Peak impact forces, loading rate, and impulse were greater on the eZLS than during parabolic while walking with a low external load (EL) and

  13. Effects of aging on behavior and leg kinematics during locomotion in two species of cockroach.

    PubMed

    Ridgel, A L; Ritzmann, R E; Schaefer, P L

    2003-12-01

    Aging is often associated with locomotor deficits. Behavior in aged Blaberus discoidalis cockroaches was analyzed during horizontal walking, climbing, righting and inclined walking. Adult animals showed a decrease in spontaneous locomotion with increasing age. Tarsal abnormalities, termed 'tarsus catch', were often present in aged individuals. In 'tarsus catch', the prothoracic leg catches on the mesothoracic leg during the swing phase. This deficit causes alterations of the gait, but animals are able to regain a tripod gait after the perturbation. The tibio-tarsal joint angle in individuals with 'tarsus catch' was significantly less than in intact animals. Structural defects were consistently associated with 'tarsus catch'. The tracheal tubes in the tarsus and around the tibio-tarsal joint were often discolored and the tarsal pads were hardened in aged cockroaches. All aged individuals were able to climb. However, prior to climbing, some animals with 'tarsus catch' failed to show postural changes that are normally seen in young animals. Aged individuals can right as rapidly as 1-week-old adults. However, animals with 'tarsus catch' take longer to right than aged intact individuals. Old cockroaches have difficulty climbing an incline of 45 degrees, and leg slipping is extensive. Slipping may be caused by tarsal degeneration, but animals that are unsuccessful in inclined walking often show uncoordinated gaits during the attempt. Escape behavior was examined in aged American cockroaches (Periplaneta americana). They do not show normal escape. However, after decapitation, escape movements return, suggesting that degeneration in head ganglia may actually interfere with escape. These findings provide evidence for age-related changes both in the periphery and in the central nervous system of cockroaches and stress the importance of multi-level approaches to the study of locomotion.

  14. Towards a general neural controller for quadrupedal locomotion.

    PubMed

    Maufroy, Christophe; Kimura, Hiroshi; Takase, Kunikatsu

    2008-05-01

    Our study aims at the design and implementation of a general controller for quadruped locomotion, allowing the robot to use the whole range of quadrupedal gaits (i.e. from low speed walking to fast running). A general legged locomotion controller must integrate both posture control and rhythmic motion control and have the ability to shift continuously from one control method to the other according to locomotion speed. We are developing such a general quadrupedal locomotion controller by using a neural model involving a CPG (Central Pattern Generator) utilizing ground reaction force sensory feedback. We used a biologically faithful musculoskeletal model with a spine and hind legs, and computationally simulated stable stepping motion at various speeds using the neuro-mechanical system combining the neural controller and the musculoskeletal model. We compared the changes of the most important locomotion characteristics (stepping period, duty ratio and support length) according to speed in our simulations with the data on real cat walking. We found similar tendencies for all of them. In particular, the swing period was approximately constant while the stance period decreased with speed, resulting in a decreasing stepping period and duty ratio. Moreover, the support length increased with speed due to the posterior extreme position that shifted progressively caudally, while the anterior extreme position was approximately constant. This indicates that we succeeded in reproducing to some extent the motion of a cat from the kinematical point of view, even though we used a 2D bipedal model. We expect that such computational models will become essential tools for legged locomotion neuroscience in the future.

  15. Postural dependence of human locomotion during gait initiation

    PubMed Central

    Mille, Marie-Laure; Simoneau, Martin

    2014-01-01

    The initiation of human walking involves postural motor actions for body orientation and balance stabilization that must be effectively integrated with locomotion to allow safe and efficient transport. Our ability to coordinately adapt these functions to environmental or bodily changes through error-based motor learning is essential to effective performance. Predictive compensations for postural perturbations through anticipatory postural adjustments (APAs) that stabilize mediolateral (ML) standing balance normally precede and accompany stepping. The temporal sequencing between these events may involve neural processes that suppress stepping until the expected stability conditions are achieved. If so, then an unexpected perturbation that disrupts the ML APAs should delay locomotion. This study investigated how the central nervous system (CNS) adapts posture and locomotion to perturbations of ML standing balance. Healthy human adults initiated locomotion while a resistance force was applied at the pelvis to perturb posture. In experiment 1, using random perturbations, step onset timing was delayed relative to the APA onset indicating that locomotion was withheld until expected stability conditions occurred. Furthermore, stepping parameters were adapted with the APAs indicating that motor prediction of the consequences of the postural changes likely modified the step motor command. In experiment 2, repetitive postural perturbations induced sustained locomotor aftereffects in some parameters (i.e., step height), immediate but rapidly readapted aftereffects in others, or had no aftereffects. These results indicated both rapid but transient reactive adaptations in the posture and gait assembly and more durable practice-dependent changes suggesting feedforward adaptation of locomotion in response to the prevailing postural conditions. PMID:25231611

  16. Track train dynamics analysis and test program: Locomotive dynamic characterization summary

    NASA Technical Reports Server (NTRS)

    Berry, R. L.

    1982-01-01

    Locomotive mechanical characteristics, track perturbations, and operational characteristics involving experimentally determined suspension system parameters are analyzed. Suspension bearings, shock absorbers, pads, and two- and three- axle trucks are comparatively evaluated with respect to locomotive design.

  17. Locomotive Emission and Engine Idle Reduction Technology Demonstration Project

    SciTech Connect

    John R. Archer

    2005-03-14

    In response to a United States Department of Energy (DOE) solicitation, the Maryland Energy Administration (MEA), in partnership with CSX Transportation, Inc. (CSXT), submitted a proposal to DOE to support the demonstration of Auxiliary Power Unit (APU) technology on fifty-six CSXT locomotives. The project purpose was to demonstrate the idle fuel savings, the Nitrous Oxide (NOX) emissions reduction and the noise reduction capabilities of the APU. Fifty-six CSXT Baltimore Division locomotives were equipped with APUs, Engine Run Managers (ERM) and communications equipment to permit GPS tracking and data collection from the locomotives. Throughout the report there is mention of the percent time spent in the State of Maryland. The fifty-six locomotives spent most of their time inside the borders of Maryland and some spent all their time inside the state borders. Usually when a locomotive traveled beyond the Maryland State border it was into an adjoining state. They were divided into four groups according to assignment: (1) Power Unit/Switcher Mate units, (2) Remote Control units, (3) SD50 Pusher units and (4) Other units. The primary data of interest were idle data plus the status of the locomotive--stationary or moving. Also collected were main engine off, idling or working. Idle data were collected by county location, by locomotive status (stationary or moving) and type of idle (Idle 1, main engine idling, APU off; Idle 2, main engine off, APU on; Idle 3, main engine off, APU off; Idle 4, main engine idle, APU on). Desirable main engine idle states are main engine off and APU off or main engine off and APU on. Measuring the time the main engine spends in these desirable states versus the total time it could spend in an engine idling state allows the calculation of Percent Idle Management Effectiveness (%IME). IME is the result of the operation of the APU plus the implementation of CSXT's Warm Weather Shutdown Policy. It is difficult to separate the two. The units

  18. Preferred and Energetically Optimal Transition Speeds During Backward Human Locomotion

    PubMed Central

    Hreljac, Alan; Imamura, Rodney; Escamilla, Rafael F.; Casebolt, Jeffrey; Sison, Mitell

    2005-01-01

    Some aspects of backward locomotion are similar to forward locomotion, while other aspects are not related to their forward counterpart. The backward preferred transition speed (BPTS) has never been directly compared to the energetically optimal transition speed (EOTS), nor has it been compared to the preferred transition speed (PTS) during forward locomotion. The purpose of this study was to determine whether the BPTS occurs at the EOTS, and to examine the relationship between the backward and forward preferred gait transition speeds. The preferred backward and forward transition speeds of 12 healthy, young subjects (7 males, 5 females) were determined after subjects were familiarized with forward and backward treadmill locomotion. On a subsequent day, subjects walked backward at speeds of 70, 80, 90, 100, and 110% of the BPTS and ran backward at speeds of 60, 75, 90, 100, and 120% of the BPTS while VO2 and RPE data were collected. After subtracting standing VO2, exercise VO2 was normalized to body mass and speed. For each subject, energy-speed curves for walking and running were fit to the normalized data points. The intersection of these curves was defined as the EOTS which was compared to the BPTS using a paired t-test (p < 0.05). RPE and VO2 at the BPTS were also compared between walking and running conditions, and the correlation between BPTS and PTS was calculated. The EOTS (1.85 ± 0.09 m·s-1) was significantly greater than the BPTS (1.63 ± 0.11 m·s-1). Even though RPE was equal for walking and running at the BPTS, VO2 was significantly greater when running. There was a strong correlation (r = 0.82) between the BPTS and the PTS. Similar to forward locomotion, the determinants of the BPTS must include factors other than metabolic energy. The gait transition during backward locomotion exhibits several similarities to its forward counterpart. Key Points The backward preferred transition speed (1.63 ± 0.11 m·s-1) was significantly less than the

  19. Biorobotics: using robots to emulate and investigate agile locomotion.

    PubMed

    Ijspeert, Auke J

    2014-10-10

    The graceful and agile movements of animals are difficult to analyze and emulate because locomotion is the result of a complex interplay of many components: the central and peripheral nervous systems, the musculoskeletal system, and the environment. The goals of biorobotics are to take inspiration from biological principles to design robots that match the agility of animals, and to use robots as scientific tools to investigate animal adaptive behavior. Used as physical models, biorobots contribute to hypothesis testing in fields such as hydrodynamics, biomechanics, neuroscience, and prosthetics. Their use may contribute to the design of prosthetic devices that more closely take human locomotion principles into account.

  20. Injection nozzle materials for a coal-fueled diesel locomotive

    SciTech Connect

    Mehan, R.L.; Leonard, G.L.; Johnson, R.N.; Lavigne, R.G.

    1990-12-31

    In order to identify materials resistant to coal water mixture (CWM) erosive wear, a number of materials were evaluated using both orifice slurry and dry air erosion tests. Both erosion tests ranked materials in the same order, and the most erosion resistant material identified was sintered diamond compact. Based on operation using CWM in a single-cylinder locomotive test, superhard nozzle materials such as diamond, cubic boron nitride, and perhaps TiB{sub 2} were found to be necessary in order to obtain a reasonable operating life. An injection nozzle using sintered diamond compacts was designed and built, and has operated successfully in a CWM fired locomotive engine.

  1. Decoding the organization of spinal circuits that control locomotion

    PubMed Central

    Kiehn, Ole

    2016-01-01

    Unravelling the functional operation of neuronal networks and linking cellular activity to specific behavioural outcomes are among the biggest challenges in neuroscience. In this broad field of research, substantial progress has been made in studies of the spinal networks that control locomotion. Through united efforts using electrophysiological and molecular genetic network approaches and behavioural studies in phylogenetically diverse experimental models, the organization of locomotor networks has begun to be decoded. The emergent themes from this research are that the locomotor networks have a modular organization with distinct transmitter and molecular codes and that their organization is reconfigured with changes to the speed of locomotion or changes in gait. PMID:26935168

  2. Optimization of stable quadruped locomotion using mutual information

    NASA Astrophysics Data System (ADS)

    Silva, Pedro; Santos, Cristina P.; Polani, Daniel

    2013-10-01

    Central Pattern Generators (CPG)s have been widely used in the field of robotics to address the task of legged locomotion generation. The adequate configuration of these structures for a given platform can be accessed through evolutionary strategies, according to task dependent selection pressures. Information driven evolution, accounts for information theoretical measures as selection pressures, as an alternative to a fully task dependent selection pressure. In this work we exploit this concept and evaluate the use of mean Mutual Information, as a selection pressure towards a CPG configuration capable of faster, yet more coordinated and stabler locomotion than when only a task dependent selection pressure is used.

  3. Economic aspects of advanced coal-fired gas turbine locomotives

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Bonzo, B. B.; Houser, B. C.

    1983-01-01

    Increases in the price of such conventional fuels as Diesel No. 2, as well as advancements in turbine technology, have prompted the present economic assessment of coal-fired gas turbine locomotive engines. A regenerative open cycle internal combustion gas turbine engine may be used, given the development of ceramic hot section components. Otherwise, an external combustion gas turbine engine appears attractive, since although its thermal efficiency is lower than that of a Diesel engine, its fuel is far less expensive. Attention is given to such a powerplant which will use a fluidized bed coal combustor. A life cycle cost analysis yields figures that are approximately half those typical of present locomotive engines.

  4. Spontaneous cerebrospinal fluid rhinorrhea.

    PubMed

    Yerkes, S A; Thompson, D H; Fisher, W S

    1992-07-01

    The diagnosis of CSF rhinorrhea requires the performance of a thorough history and physical examination. Often no objective findings can be found and further evaluation will be required. In our experience, metrizamide CT cisternography yields the most information for localization of the fistula. When indicated, patients can be protected against meningitis by using prophylactic antibiotics for 4-6 weeks to allow a fistula to close spontaneously. If the fistula fails to close during this time, surgical closure with dural or muscle graft with or without waxing of the bone is the treatment of choice.

  5. 40 CFR 201.24 - Procedures for measurement at a 30 meter (100 feet) distance of the noise from locomotive and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... meter (100 feet) distance of the noise from locomotive and rail car operations and locomotive load cell... locomotive and rail car operations and locomotive load cell test stands. (a) Microphone positions. (1) The... measured. (b) Stationary locomotive and locomotive load cell test stand tests. (1) For...

  6. 40 CFR 201.24 - Procedures for measurement at a 30 meter (100 feet) distance of the noise from locomotive and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... meter (100 feet) distance of the noise from locomotive and rail car operations and locomotive load cell... locomotive and rail car operations and locomotive load cell test stands. (a) Microphone positions. (1) The... measured. (b) Stationary locomotive and locomotive load cell test stand tests. (1) For...

  7. 40 CFR 201.24 - Procedures for measurement at a 30 meter (100 feet) distance of the noise from locomotive and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... meter (100 feet) distance of the noise from locomotive and rail car operations and locomotive load cell... locomotive and rail car operations and locomotive load cell test stands. (a) Microphone positions. (1) The... measured. (b) Stationary locomotive and locomotive load cell test stand tests. (1) For...

  8. 40 CFR 201.24 - Procedures for measurement at a 30 meter (100 feet) distance of the noise from locomotive and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... meter (100 feet) distance of the noise from locomotive and rail car operations and locomotive load cell... locomotive and rail car operations and locomotive load cell test stands. (a) Microphone positions. (1) The... measured. (b) Stationary locomotive and locomotive load cell test stand tests. (1) For...

  9. 40 CFR 201.24 - Procedures for measurement at a 30 meter (100 feet) distance of the noise from locomotive and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... meter (100 feet) distance of the noise from locomotive and rail car operations and locomotive load cell... locomotive and rail car operations and locomotive load cell test stands. (a) Microphone positions. (1) The... measured. (b) Stationary locomotive and locomotive load cell test stand tests. (1) For...

  10. Performance limits of low-temperature, continuous locomotion are exceeded when locomotion is intermittent in the ghost crab.

    PubMed

    Weinstein, R B; Full, R J

    1998-01-01

    Since a decline in temperature decreases aerobic capacity and slows the kinetics of exercise-to-rest transitions in ectotherms, we manipulated body temperature to better understand the performance limits of intermittent locomotion. Distance capacity (i.e., the total distance traveled before fatigue) of the ghost crab, Ocypode quadrata, was determined during acute exposure to 15 degrees C inside a treadmill-respirometer. Instead of exacerbating the near-paralyzing effects of low body temperature resulting from the frequent transitions, intermittent locomotion allowed animals to exceed the performance limits measured during steady-state locomotion. At low temperature, distance capacity for continuous locomotion at 0.04 m s(-1) (83% maximum aerobic speed) was 60 m. When 30 s of exercise at 0.08 m s(-1) (166% maximum aerobic speed) was alternated with 30 s of rest, distance capacity increased to 271 m, 4.5-fold greater than continuous locomotion at the same average speed (83% maximum aerobic speed). A 30-s pause following a 30-s exercise period was sufficient for maintaining low lactate concentrations in muscle and for partial resynthesis of arginine phosphate. A greater dependency on nonoxidative metabolism due to slowed oxygen uptake kinetics at low temperature resulted in a decreased duration of the critical exercise period, which increased performance relative to that measured at higher temperatures (30 s at 15 degrees C vs. 120 s at 24 degrees C). Despite the ghost crab's limited aerobic capacity at 15 degrees C, distance capacity during intermittent locomotion at low temperature can be comparable to that of a crab moving continuously at a body temperature 10 degrees C warmer. While endurance capacity is generally correlated with maximum aerobic speed, we have demonstrated that both locomotor behavior and body temperature must be considered when characterizing performance limits.

  11. 40 CFR 201.16 - Standard for locomotive load cell test stands.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Standard for locomotive load cell test... Interstate Rail Carrier Operations Standards § 201.16 Standard for locomotive load cell test stands. (a) Effective January 15, 1984, no carrier subject to this reguation shall operate locomotive load cell...

  12. 40 CFR 201.16 - Standard for locomotive load cell test stands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Standard for locomotive load cell test... Interstate Rail Carrier Operations Standards § 201.16 Standard for locomotive load cell test stands. (a) Effective January 15, 1984, no carrier subject to this reguation shall operate locomotive load cell...

  13. 40 CFR 201.16 - Standard for locomotive load cell test stands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Standard for locomotive load cell test... Interstate Rail Carrier Operations Standards § 201.16 Standard for locomotive load cell test stands. (a) Effective January 15, 1984, no carrier subject to this reguation shall operate locomotive load cell...

  14. 49 CFR 229.9 - Movement of non-complying locomotives.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... lite locomotive or a dead locomotive after the carrier has complied with the following: (1) A qualified... lite or dead within a yard, at speeds not in excess of 10 miles per hour, without meeting the... is responsible to insure that the movement may be safely made. (d) A dead locomotive may not...

  15. 49 CFR 229.9 - Movement of non-complying locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... lite locomotive or a dead locomotive after the carrier has complied with the following: (1) A qualified person shall determine— (i) That it is safe to move the locomotive; and (ii) The maximum speed and other... restrictions, if any; (vi) The destination; and (vii) The signature of the person making the...

  16. 49 CFR 230.12 - Movement of non-complying steam locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... Cars essential to the movement of the steam locomotive and tender(s), including tool cars and a bunk... the engineer in charge of the defective steam locomotive and, if towed, the engineer in charge of the... movement, and notify in writing the engineer in charge of the defective steam locomotive and, if towed,...

  17. 49 CFR 230.12 - Movement of non-complying steam locomotives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... Cars essential to the movement of the steam locomotive and tender(s), including tool cars and a bunk... the engineer in charge of the defective steam locomotive and, if towed, the engineer in charge of the... movement, and notify in writing the engineer in charge of the defective steam locomotive and, if towed,...

  18. 40 CFR 1033.650 - Incidental use exemption for Canadian and Mexican locomotives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Mexican locomotives. 1033.650 Section 1033.650 Protection of Environment ENVIRONMENTAL PROTECTION... Provisions § 1033.650 Incidental use exemption for Canadian and Mexican locomotives. You may ask us to exempt... exempt locomotives that will not operate more than 25 miles from the border and will operate in...

  19. 40 CFR 1033.650 - Incidental use exemption for Canadian and Mexican locomotives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and Mexican locomotives. 1033.650 Section 1033.650 Protection of Environment ENVIRONMENTAL PROTECTION... Provisions § 1033.650 Incidental use exemption for Canadian and Mexican locomotives. You may ask us to exempt... exempt locomotives that will not operate more than 25 miles from the border and will operate in...

  20. 40 CFR 1033.650 - Incidental use exemption for Canadian and Mexican locomotives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and Mexican locomotives. 1033.650 Section 1033.650 Protection of Environment ENVIRONMENTAL PROTECTION... Provisions § 1033.650 Incidental use exemption for Canadian and Mexican locomotives. You may ask us to exempt... exempt locomotives that will not operate more than 25 miles from the border and will operate in...

  1. 40 CFR 1033.650 - Incidental use exemption for Canadian and Mexican locomotives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and Mexican locomotives. 1033.650 Section 1033.650 Protection of Environment ENVIRONMENTAL PROTECTION... Provisions § 1033.650 Incidental use exemption for Canadian and Mexican locomotives. You may ask us to exempt... exempt locomotives that will not operate more than 25 miles from the border and will operate in...

  2. 40 CFR 1033.650 - Incidental use exemption for Canadian and Mexican locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Mexican locomotives. 1033.650 Section 1033.650 Protection of Environment ENVIRONMENTAL PROTECTION... Provisions § 1033.650 Incidental use exemption for Canadian and Mexican locomotives. You may ask us to exempt... exempt locomotives that will not operate more than 25 miles from the border and will operate in...

  3. 40 CFR 201.16 - Standard for locomotive load cell test stands.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Standard for locomotive load cell test... Interstate Rail Carrier Operations Standards § 201.16 Standard for locomotive load cell test stands. (a) Effective January 15, 1984, no carrier subject to this reguation shall operate locomotive load cell...

  4. 40 CFR 201.16 - Standard for locomotive load cell test stands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Standard for locomotive load cell test... Interstate Rail Carrier Operations Standards § 201.16 Standard for locomotive load cell test stands. (a) Effective January 15, 1984, no carrier subject to this reguation shall operate locomotive load cell...

  5. 40 CFR 1033.640 - Provisions for repowered and refurbished locomotives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... parts consistent with the specifications of the Federal Railroad Administration. Otherwise, determine... provisions as other remanufactured locomotives, with the following exceptions: (1) Switch locomotives. (i) Prior to January 1, 2015, remanufactured Tier 0 switch locomotives that are deemed to be refurbished...

  6. 40 CFR 1033.640 - Provisions for repowered and refurbished locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... parts consistent with the specifications of the Federal Railroad Administration. Otherwise, determine... provisions as other remanufactured locomotives, with the following exceptions: (1) Switch locomotives. (i) Prior to January 1, 2015, remanufactured Tier 0 switch locomotives that are deemed to be refurbished...

  7. 49 CFR 230.12 - Movement of non-complying steam locomotives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Movement of non-complying steam locomotives. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General General Inspection Requirements § 230.12 Movement of non-complying steam locomotives. (a)...

  8. 49 CFR 230.12 - Movement of non-complying steam locomotives.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Movement of non-complying steam locomotives. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General General Inspection Requirements § 230.12 Movement of non-complying steam locomotives. (a)...

  9. 49 CFR 230.12 - Movement of non-complying steam locomotives.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Movement of non-complying steam locomotives. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General General Inspection Requirements § 230.12 Movement of non-complying steam locomotives. (a)...

  10. 49 CFR 231.17 - Specifications common to all steam locomotives.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Specifications common to all steam locomotives... Specifications common to all steam locomotives. (a) Hand brakes. (1) Hand brakes will not be required on...) Locomotives having headlights which can not be safely and conveniently reached from pilot-beam or steam...

  11. 49 CFR 223.17 - Identification of equipped locomotives, passenger cars and cabooses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cars and cabooses. 223.17 Section 223.17 Transportation Other Regulations Relating to Transportation...-LOCOMOTIVES, PASSENGER CARS AND CABOOSES Specific Requirements § 223.17 Identification of equipped locomotives, passenger cars and cabooses. Each locomotive, passenger car and caboose that is fully equipped with...

  12. 49 CFR 223.17 - Identification of equipped locomotives, passenger cars and cabooses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cars and cabooses. 223.17 Section 223.17 Transportation Other Regulations Relating to Transportation...-LOCOMOTIVES, PASSENGER CARS AND CABOOSES Specific Requirements § 223.17 Identification of equipped locomotives, passenger cars and cabooses. Each locomotive, passenger car and caboose that is fully equipped with...

  13. 49 CFR 223.17 - Identification of equipped locomotives, passenger cars and cabooses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cars and cabooses. 223.17 Section 223.17 Transportation Other Regulations Relating to Transportation...-LOCOMOTIVES, PASSENGER CARS AND CABOOSES Specific Requirements § 223.17 Identification of equipped locomotives, passenger cars and cabooses. Each locomotive, passenger car and caboose that is fully equipped with...

  14. 49 CFR 223.17 - Identification of equipped locomotives, passenger cars and cabooses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cars and cabooses. 223.17 Section 223.17 Transportation Other Regulations Relating to Transportation...-LOCOMOTIVES, PASSENGER CARS AND CABOOSES Specific Requirements § 223.17 Identification of equipped locomotives, passenger cars and cabooses. Each locomotive, passenger car and caboose that is fully equipped with...

  15. 49 CFR 222.21 - When must a locomotive horn be used?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false When must a locomotive horn be used? 222.21 Section 222.21 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... of Locomotive Horns § 222.21 When must a locomotive horn be used? (a) Except as provided in this...

  16. 49 CFR 222.21 - When must a locomotive horn be used?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false When must a locomotive horn be used? 222.21 Section 222.21 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... of Locomotive Horns § 222.21 When must a locomotive horn be used? (a) Except as provided in this...

  17. The temporal dynamics of the effects of monoacylglycerol lipase blockade on locomotion, anxiety, and body temperature.

    PubMed

    Aliczki, Mano; Balogh, Zoltan; Tulogdi, Aron; Haller, Jozsef

    2012-08-01

    Studies with the monoacylglycerol lipase blocker JZL184 have suggested that enhanced 2-arachidonoylglycerol signaling suppresses locomotion, lowers body temperature, and decreases anxiety. Although the neurochemical effects of JZL184 develop within 30 min, its behavioral and autonomic effects have been studied much later. To clarify temporal dynamics, we studied the effects of intraperitoneal injections of JZL184 in mice on home-cage locomotion and body temperature for 120 min using in-vivo biotelemetry. We also studied the effects of 4, 8, and 16 mg/kg JZL184 in the open field and elevated plus maze at various time points. In the home cage, JZL184 blunted injection-induced body temperature increases but exerted no long-term effects. Vehicle injections increased the duration of rapid movements whereas the duration of motionless periods was decreased, a pattern also abolished by JZL184. Although the highest dose exerted a mild long-term effect on the relative duration of motionless periods, JZL184 seemed to have phasic rather than tonic effects in the home cage. By contrast, open field and plus maze behavior was affected 80 and 120 min but not 40 min after treatments, which may indicate tonic rather than phasic effects in these tests. Our findings confirm earlier reports of a mild anxiolytic effect of JZL184, but surprisingly, the compound markedly and dose dependently increased locomotion in the open field in both CD1 and C57BL/6J mice. These findings are difficult to reconcile at present, but suggest that the effects of monoacylglycerol lipase inhibition are more complex than previously believed and may depend strongly on as yet unidentified factors such as environmental conditions, the time of testing, species/strains, etc.

  18. Perturbations of ground support alter posture and locomotion coupling during step initiation in Parkinson's disease.

    PubMed

    Rogers, Mark W; Hilliard, Marjorie Johnson; Martinez, Katherine M; Zhang, Yunhui; Simuni, Tanya; Mille, Marie-Laure

    2011-02-01

    During the initiation of stepping, anticipatory postural adjustments (APAs) for lateral weight transfer and propulsion normally precede the onset of locomotion. In Parkinson's disease (PD), impaired step initiation typically involves altered APA ground force production with delayed step onset and deficits in stepping performance. If, as in stance and gait, sensory information about lower limb load is important for the control of stepping, then perturbations influencing loading conditions could affect the step initiation process. This study investigated the influence of changes in lower limb loading during step initiation in patients with PD and healthy control subjects. Participants performed rapid self-triggered step initiation with the impending single stance limb positioned over a pneumatically actuated platform. In perturbation trials, the stance limb ground support surface was either moved vertically downward (DROP) or upward (ELEVATE) by 1.5 cm shortly after the onset of the APA phase. Overall, PD patients demonstrated a longer APA duration, longer time to first step onset, and slower step speed than controls. In both groups, the DROP perturbation reinforced the intended APA kinetic changes for lateral weight transfer and resulted in a significant reduction in APA duration, increase in peak amplitude, and earlier time to first step onset compared with other conditions. During ELEVATE trials that opposed the intended weight transfer forces both groups rapidly adapted their stepping to preserve standing stability by decreasing step length and duration, and increasing step height and foot placement laterally. The findings suggested that sensory information associated with limb load and/or foot pressure modulates the spatial and temporal parameters of posture and locomotion components of step initiation in interaction with a centrally generated feedforward mode of neural control. Moreover, impaired step initiation in PD may at least acutely be enhanced by

  19. Knockdown of monocarboxylate transporter 8 (mct8) disturbs brain development and locomotion in zebrafish.

    PubMed

    de Vrieze, Erik; van de Wiel, Sandra M W; Zethof, Jan; Flik, Gert; Klaren, Peter H M; Arjona, Francisco J

    2014-06-01

    Allan-Herndon-Dudley syndrome (AHDS) is an inherited disorder of brain development characterized by severe psychomotor retardation. This X-linked disease is caused by mutations in the monocarboxylate transporter 8 (MCT8), an important thyroid hormone transporter in brain neurons. MCT8-knockout mice lack the 2 major neurological symptoms of AHDS, namely locomotor problems and cognitive impairment. The pathological mechanism explaining the symptoms is still obscure, and no cure for this condition is known. The development of an animal model that carries MCT8-related neurological symptoms is warranted. We have employed morpholino-based gene knockdown to create zebrafish deficient for mct8. Knockdown of mct8 results in specific symptoms in the thyroid axis and brain. The mct8-morphants showed impaired locomotor behavior and brain development. More specifically, we observed maldevelopment of the cerebellum and mid-hindbrain boundary and apoptotic clusters in the zebrafish brain. The mRNA expression of zebrafish orthologs of mammalian TSH, thyroid hormone transporters, and deiodinases was altered in mct8 morphants. In particular, deiodinase type 3 gene expression was consistently up-regulated in zebrafish mct8 morphants. The thyroid hormone metabolite tetrac, but not T3, partly ameliorated the affected phenotype and locomotion disability of morphant larvae. Our results show that mct8 knockdown in zebrafish larvae results in disturbances in the thyroid axis, brain, and locomotion behavior, which is congruent with the clinical aspect of impaired locomotion and cognition in patients with AHDS. Taken together, the zebrafish is a suitable animal model for the study of the pathophysiology of AHDS.

  20. Physiologic Responses to Motorized and Non-Motorized Locomotion Utilizing the International Space Station Treadmill

    NASA Technical Reports Server (NTRS)

    Smith, Cassie; Lee, Stuart MC; Laughlin, Mitzi; Loehr, James; Norcross, Jason; DeWitt, John; Hagan, R. D.

    2006-01-01

    Treadmill locomotion is used onboard the International Space Station (ISS) as a countermeasure to the effects of prolonged weightlessness. The treadmill operates in two modes: motorized (T-M) and non-motorized (T-NM). Little is known about the potential physiologic differences between modes which may affect countermeasure exercise prescription. PURPOSE: To quantify heart rate (HR), oxygen consumption (VO2), perceived exertion (RPE), and blood lactate (BLa) during T-M and T-NM locomotion at 2 and 4 mph in normal ambulatory subjects. METHODS: Twenty subjects (10 men, 10 women; 31+/-5 yr, 172+/-10 cm, 68+/-13 kg, mean SD) with a treadmill peakVO2 of 45.5+/-5.4 ml/kg/min (mean+/-SD) exercised on the ground-based ISS treadmill. Following a familiarization session in each mode, subjects completed two data collection sessions, T-M and T-NM in random order, at 2 and 4 mph. Subjects attempted to complete 5 min of exercise at each speed; if they could not maintain the speed, the trial was discontinued. At least 5 minutes of rest separated each speed trial, and at least 48 hrs separated each session. VO2 was measured continuously (metabolic gas analysis), while HR (HR monitor) and RPE (Borg Chart, 6-20 scale) were recorded each min. Not all subjects completed 5 min during each condition, therefore the mean of the min 3 and 4 was taken as representative of steady-state. BLa was measured (finger stick) within 2 min post-exercise. Paired t-tests were used to test for differences (p<0.05) between treadmill modes within the same speed. RESULTS: All twenty subjects completed at least 4 min of exercise during all conditions, except T-NM 4 mph when only 11 subjects completed the minimum exercise duration. VO2, HR, RPE and BLa were significantly higher during T-NM locomotion at both speeds.

  1. Dynamics of entanglement between two atomic samples with spontaneous scattering

    SciTech Connect

    Di Lisi, Antonio; De Siena, Silvio; Illuminati, Fabrizio

    2004-07-01

    We investigate the effects of spontaneous scattering on the evolution of entanglement of two atomic samples, probed by phase-shift measurements on optical beams interacting with both samples. We develop a formalism of conditional quantum evolutions and present a wave function analysis implemented in numerical simulations of the state vector dynamics. This method allows us to track the evolution of entanglement and to compare it with the predictions obtained when spontaneous scattering is neglected. We provide numerical evidence that the interferometric scheme to entangle atomic samples is only marginally affected by the presence of spontaneous scattering and should thus be robust even in more realistic situations.

  2. Order in Spontaneous Behavior

    PubMed Central

    Maye, Alexander; Hsieh, Chih-hao; Sugihara, George; Brembs, Björn

    2007-01-01

    Brains are usually described as input/output systems: they transform sensory input into motor output. However, the motor output of brains (behavior) is notoriously variable, even under identical sensory conditions. The question of whether this behavioral variability merely reflects residual deviations due to extrinsic random noise in such otherwise deterministic systems or an intrinsic, adaptive indeterminacy trait is central for the basic understanding of brain function. Instead of random noise, we find a fractal order (resembling Lévy flights) in the temporal structure of spontaneous flight maneuvers in tethered Drosophila fruit flies. Lévy-like probabilistic behavior patterns are evolutionarily conserved, suggesting a general neural mechanism underlying spontaneous behavior. Drosophila can produce these patterns endogenously, without any external cues. The fly's behavior is controlled by brain circuits which operate as a nonlinear system with unstable dynamics far from equilibrium. These findings suggest that both general models of brain function and autonomous agents ought to include biologically relevant nonlinear, endogenous behavior-initiating mechanisms if they strive to realistically simulate biological brains or out-compete other agents. PMID:17505542

  3. Locomotion, physical development, and brain myelination in rats treated with ionizing radiation in utero

    SciTech Connect

    Zaman, M.S.

    1989-01-01

    Effects of ionizing radiation on the emergence of locomotion skill and some physical development parameters were studied in laboratory rats (Fisher F-344 inbred strain). Rats were treated with 3 different doses of radiation (150 R, 15 R, and 6.8 R) delivered on the 20th day of the prenatal life. Results indicated that relatively moderate (15 R) to high (150 R) doses of radiation have effects on certain locomotion and physical development parameters. Exposure to 150 R affected pivoting, cliff-avoidance, upper jaw tooth eruption, body weight, and organs, such as brain, cerebral cortex, ovary, kidney, heart and spleen weights. Other parameters, such as negative geotaxis, eye opening, and lower jaw tooth eruption appeared to be affected in the 150 R treated animals. Exposure to 15 R affected pivoting and cliff-avoidance parameters. The cerebral cortex weight of the 15 R treated animals was found to be reduced at the age of day 30. Exposure to 6.8 R had no adverse effects on these parameters. Prenatal exposure to 150 R of radiation reduced the cerebral cortex weight by 22.07% at 30 days of age, and 20.15% at 52 days of age which caused a reduction in cerebral cortex myelin content by 20.16, and 22.89% at the ages of day 30 and day 52 respectively. Exposure to 150 R did not affect the myelin content of the cerebellum or the brain stem; or the myelin concentration (mg myelin/g brain tissue weight) of the cerebral cortex, cerebellum, and the brain stem. Exposure to 15 R, and 6.8 R did not affect either the myelin content or the myelin concentration of these brain areas.

  4. 40 CFR 1033.335 - Remanufactured locomotives: installation audit requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... settings and component installations on randomly chosen locomotives in an engine family. (a) You must... least five percent of your annual production per model year per installer or ten per engine family per... (combined for all of your engine families). (c) The audit should be completed as soon as is practical...

  5. Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion II

    ERIC Educational Resources Information Center

    Lee, Scott

    2015-01-01

    In the second paper of this series, the effect of transverse femoral stresses due to locomotion in theropod dinosaurs of different sizes was examined for the case of an unchanging leg geometry. Students are invariably thrilled to learn about theropod dinosaurs, and this activity applies the concepts of torque and stress to the issue of theropod…

  6. Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion

    ERIC Educational Resources Information Center

    Lee, Scott

    2015-01-01

    In our first article on scaling in theropod dinosaurs, the longitudinal stress in the leg bones due to supporting the weight of the animal was studied and found not to control the dimensions of the femur. As a continuation of our study of elasticity in dinosaur bones, we now examine the transverse stress in the femur due to locomotion and find…

  7. Human locomotion and workload for simulated lunar and Martian environments.

    PubMed

    Newman, D J; Alexander, H L

    1993-08-01

    Human locomotion in simulated lunar and Martian environments is investigated. A unique human-rated underwater treadmill and an adjustable ballasting harness simulate partial gravity in order to better understand how gravity determines the biomechanics and energetics of human locomotion. This study has two research aspects, biomechanics and energetics. The fundamental biomechanics measurements are continuously recorded vertical forces as exerted by subjects of the treadmill which is instrumented with a force platform. Experimental results indicate that peak vertical force and stride frequency decrease as the gravity level is reduced. Foot contact time is independent of gravity level. Oxygen uptake measurements, VO2, constitute the energetics, or workload, data for this study. As theory predicts, locomotion energy requirements for lunar (1/6-g) and Martian (3/8-g) gravity levels are significantly less than at 1-g. The observed variation in workload with gravity level is nonmonotonic, however, in over half the subject population. The hypothesis is offered that energy expenditure increases for lunar, as compared with Martian, locomotion due to the subject "wasting energy" for stability and posture control in simulated lunar gravity. Biomechanics data could influence advanced spacesuit design and planetary habitat design, while workload data will help define oxygen requirements for planetary life support systems.

  8. 1. RESTORED GLOVER LOCOMOTIVE #81421 JUST WEST OF MARIETTA SQUARE; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. RESTORED GLOVER LOCOMOTIVE #81421 JUST WEST OF MARIETTA SQUARE; 36 INCH GAUGE 2-6-0, BUILT 1-3-17. RETURNED FOR REPAIR AND RESALE IN 1923, LAST OFFERED FOR SALE IN 1931 FOR $750. - Glover Machine Works, 651 Butler Street, Marietta, Cobb County, GA

  9. 49 CFR 236.509 - Two or more locomotives coupled.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING THE INSTALLATION... Train Stop, Train Control and Cab Signal Systems Standards § 236.509 Two or more locomotives coupled. The automatic train stop, train control or cab signal apparatus shall be arranged so that when two...

  10. 49 CFR 236.509 - Two or more locomotives coupled.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING THE INSTALLATION... Train Stop, Train Control and Cab Signal Systems Standards § 236.509 Two or more locomotives coupled. The automatic train stop, train control or cab signal apparatus shall be arranged so that when two...

  11. 49 CFR 236.509 - Two or more locomotives coupled.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING THE INSTALLATION... Train Stop, Train Control and Cab Signal Systems Standards § 236.509 Two or more locomotives coupled. The automatic train stop, train control or cab signal apparatus shall be arranged so that when two...

  12. 49 CFR 236.509 - Two or more locomotives coupled.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING THE INSTALLATION... Train Stop, Train Control and Cab Signal Systems Standards § 236.509 Two or more locomotives coupled. The automatic train stop, train control or cab signal apparatus shall be arranged so that when two...

  13. 49 CFR 236.509 - Two or more locomotives coupled.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING THE INSTALLATION... Train Stop, Train Control and Cab Signal Systems Standards § 236.509 Two or more locomotives coupled. The automatic train stop, train control or cab signal apparatus shall be arranged so that when two...

  14. 49 CFR 231.30 - Locomotives used in switching service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... be used to perform any switching service after September 30, 1979 except passenger car switching... classification of cars according to commodity or destination; assembling of cars for train movements; changing the position of cars for purposes of loading, unloading, or weighing, placing of locomotives and...

  15. 49 CFR 231.30 - Locomotives used in switching service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... be used to perform any switching service after September 30, 1979 except passenger car switching... classification of cars according to commodity or destination; assembling of cars for train movements; changing the position of cars for purposes of loading, unloading, or weighing, placing of locomotives and...

  16. 49 CFR 231.30 - Locomotives used in switching service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... be used to perform any switching service after September 30, 1979 except passenger car switching... classification of cars according to commodity or destination; assembling of cars for train movements; changing the position of cars for purposes of loading, unloading, or weighing, placing of locomotives and...

  17. 21st Century Locomotive Technology: Quarterly Technical Status Report 28

    SciTech Connect

    Lembit Salasoo; Ramu Chandra

    2010-02-19

    Thermal testing of a subscale locomotive sodium battery module was initiated.to validate thermal models. The hybrid trip optimizer problem was formulated. As outcomes of this project, GE has proceeded to commercialize trip optimizer technology, and has initiated work on a state-of-the-art battery manufacturing plant for high energy density, sodium-based batteries.

  18. Optimization of two- and three-link snakelike locomotion

    NASA Astrophysics Data System (ADS)

    Jing, Fangxu; Alben, Silas

    2013-02-01

    We analyze two- and three-link planar snakelike locomotion and optimize the motion for efficiency. The locomoting system consists of two or three identical inextensible links connected via hinge joints, and the angles between the links are actuated as prescribed periodic functions of time. An essential feature of snake locomotion is frictional anisotropy: The forward, backward, and transverse coefficients of friction differ. The dynamics are studied analytically and numerically for small and large amplitudes of the internal angles. Efficiency is defined as the ratio between distance traveled and the energy expended within one period, i.e., the inverse of the cost of locomotion. The optimal set of coefficients of friction to maximize efficiency consists of a large backward coefficient of friction and a small transverse coefficient of friction, compared to the forward coefficient of friction. For the two-link case with a symmetrical motion, efficiency is maximized when the internal angle amplitude is approximately π/2 for a sufficiently large transverse coefficient. For the three-link case, the efficiency-maximizing paths are triangles in the parameter space of internal angles.

  19. Improved Usability of Locomotion Devices Using Human-Centric Taxonomy

    DTIC Science & Technology

    2009-03-01

    2. Internal Structure ................................................................... 39 3. The Payload...usability limitations simply by their location in the taxonomic structure . B. MOTIVATION While studies continue to develop locomotion devices, many do so...insight into the usability of a device simply by the its location within the taxonomic structure . The following list summarizes the taxa of the proposed

  20. More than a locomotive organelle: flagella in Escherichia coli.

    PubMed

    Zhou, Mingxu; Yang, Yang; Chen, Panlin; Hu, Huijie; Hardwidge, Philip R; Zhu, Guoqiang

    2015-11-01

    The flagellum is a locomotive organelle that allows bacteria to respond to chemical gradients. This review summarizes the current knowledge regarding Escherichia coli flagellin variants and the role of flagella in bacterial functions other than motility, including the relationship between flagella and bacterial virulence.

  1. Drosophila melanogaster (fruit fly) locomotion during a sounding rocket flight

    NASA Astrophysics Data System (ADS)

    Miller, Mark S.; Keller, Tony S.

    2008-05-01

    The locomotor activity of young Drosophila melanogaster (fruit fly) was studied during a Nike-Orion sounding rocket flight, which included a short-duration microgravity exposure. An infrared monitoring system was used to determine the activity level, instantaneous velocity, and continuous velocity of 240 (120 male, 120 female) fruit flies. Individual flies were placed in chambers that limit their motion to walking. Chambers were oriented both vertically and horizontally with respect to the rocket's longitudinal axis. Significant changes in Drosophila locomotion patterns were observed throughout the sounding rocket flight, including launch, microgravity exposure, payload re-entry, and after ocean impact. During the microgravity portion of the flight (3.8 min), large increases in all locomotion measurements for both sexes were observed, with some measurements doubling compared to pad (1 G) data. Initial effects of microgravity were probably delayed due to large accelerations from the payload despining immediately before entering microgravity. The results indicate that short-duration microgravity exposure has a large effect on locomotor activity for both males and females, at least for a short period of time. The locomotion increases may explain the increased male aging observed during long-duration exposure to microgravity. Studies focusing on long-duration microgravity exposure are needed to confirm these findings, and the relationship of increased aging and locomotion.

  2. Using Computational and Mechanical Models to Study Animal Locomotion

    PubMed Central

    Miller, Laura A.; Goldman, Daniel I.; Hedrick, Tyson L.; Tytell, Eric D.; Wang, Z. Jane; Yen, Jeannette; Alben, Silas

    2012-01-01

    Recent advances in computational methods have made realistic large-scale simulations of animal locomotion possible. This has resulted in numerous mathematical and computational studies of animal movement through fluids and over substrates with the purpose of better understanding organisms’ performance and improving the design of vehicles moving through air and water and on land. This work has also motivated the development of improved numerical methods and modeling techniques for animal locomotion that is characterized by the interactions of fluids, substrates, and structures. Despite the large body of recent work in this area, the application of mathematical and numerical methods to improve our understanding of organisms in the context of their environment and physiology has remained relatively unexplored. Nature has evolved a wide variety of fascinating mechanisms of locomotion that exploit the properties of complex materials and fluids, but only recently are the mathematical, computational, and robotic tools available to rigorously compare the relative advantages and disadvantages of different methods of locomotion in variable environments. Similarly, advances in computational physiology have only recently allowed investigators to explore how changes at the molecular, cellular, and tissue levels might lead to changes in performance at the organismal level. In this article, we highlight recent examples of how computational, mathematical, and experimental tools can be combined to ultimately answer the questions posed in one of the grand challenges in organismal biology: “Integrating living and physical systems.” PMID:22988026

  3. Moving Without Wheels: Educational Experiments in Robot Design and Locomotion

    DTIC Science & Technology

    2008-01-01

    Novel locomotion Lecture material presented comparative anatomies commenting on joint placement and limb lengths and the resulting effects on the...Figure 4: Six-legged walking robot. Designed for stability and speed. Figure 5: Turtle -like robot, designed for power. Figure 6

  4. Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion

    PubMed Central

    Guo, Yanmeng; Wang, Yuping; Zhang, Wei; Meltzer, Shan; Zanini, Damiano; Yu, Yue; Li, Jiefu; Cheng, Tong; Guo, Zhenhao; Wang, Qingxiu; Jacobs, Julie S.; Sharma, Yashoda; Eberl, Daniel F.; Göpfert, Martin C.; Jan, Lily Yeh; Jan, Yuh Nung; Wang, Zuoren

    2016-01-01

    Drosophila larval locomotion, which entails rhythmic body contractions, is controlled by sensory feedback from proprioceptors. The molecular mechanisms mediating this feedback are little understood. By using genetic knock-in and immunostaining, we found that the Drosophila melanogaster transmembrane channel-like (tmc) gene is expressed in the larval class I and class II dendritic arborization (da) neurons and bipolar dendrite (bd) neurons, both of which are known to provide sensory feedback for larval locomotion. Larvae with knockdown or loss of tmc function displayed reduced crawling speeds, increased head cast frequencies, and enhanced backward locomotion. Expressing Drosophila TMC or mammalian TMC1 and/or TMC2 in the tmc-positive neurons rescued these mutant phenotypes. Bending of the larval body activated the tmc-positive neurons, and in tmc mutants this bending response was impaired. This implicates TMC’s roles in Drosophila proprioception and the sensory control of larval locomotion. It also provides evidence for a functional conservation between Drosophila and mammalian TMCs. PMID:27298354

  5. 3. DETAIL OF INVERTED MINE LOCOMOTIVE OR "MOTOR," USED FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DETAIL OF INVERTED MINE LOCOMOTIVE OR "MOTOR," USED FOR SURFACE HAULAGE OF MINE CARS, LOOKING SOUTHWEST; NOTE GEARING - Nuttallburg Mine Complex, Main Mine, North side of New River, 2.7 miles upstream from Fayette Landing, Lookout, Fayette County, WV

  6. Effect of rubber flooring on cow locomotion and gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to evaluate the effect of 2 dairy cow housing systems on cow locomotion and expression of genes associated with lameness, during the dry and peri-parturient period. Cows were assigned to free-stall housing with either rubber (RUB; n=13) or concrete (CON; n=14) at the feed-f...

  7. Energetic Extremes in Aquatic Locomotion by Coral Reef Fishes

    PubMed Central

    Fulton, Christopher J.; Johansen, Jacob L.; Steffensen, John F.

    2013-01-01

    Underwater locomotion is challenging due to the high friction and resistance imposed on a body moving through water and energy lost in the wake during undulatory propulsion. While aquatic organisms have evolved streamlined shapes to overcome such resistance, underwater locomotion has long been considered a costly exercise. Recent evidence for a range of swimming vertebrates, however, has suggested that flapping paired appendages around a rigid body may be an extremely efficient means of aquatic locomotion. Using intermittent flow-through respirometry, we found exceptional energetic performance in the Bluelined wrasse Stethojulis bandanensis, which maintains tuna-like optimum cruising speeds (up to 1 metre s−1) while using 40% less energy than expected for their body size. Displaying an exceptional aerobic scope (22-fold above resting), streamlined rigid-body posture, and wing-like fins that generate lift-based thrust, S. bandanensis literally flies underwater to efficiently maintain high optimum swimming speeds. Extreme energetic performance may be key to the colonization of highly variable environments, such as the wave-swept habitats where S. bandanensis and other wing-finned species tend to occur. Challenging preconceived notions of how best to power aquatic locomotion, biomimicry of such lift-based fin movements could yield dramatic reductions in the power needed to propel underwater vehicles at high speed. PMID:23326566

  8. Energetic extremes in aquatic locomotion by coral reef fishes.

    PubMed

    Fulton, Christopher J; Johansen, Jacob L; Steffensen, John F

    2013-01-01

    Underwater locomotion is challenging due to the high friction and resistance imposed on a body moving through water and energy lost in the wake during undulatory propulsion. While aquatic organisms have evolved streamlined shapes to overcome such resistance, underwater locomotion has long been considered a costly exercise. Recent evidence for a range of swimming vertebrates, however, has suggested that flapping paired appendages around a rigid body may be an extremely efficient means of aquatic locomotion. Using intermittent flow-through respirometry, we found exceptional energetic performance in the Bluelined wrasse Stethojulis bandanensis, which maintains tuna-like optimum cruising speeds (up to 1 metre s(-1)) while using 40% less energy than expected for their body size. Displaying an exceptional aerobic scope (22-fold above resting), streamlined rigid-body posture, and wing-like fins that generate lift-based thrust, S. bandanensis literally flies underwater to efficiently maintain high optimum swimming speeds. Extreme energetic performance may be key to the colonization of highly variable environments, such as the wave-swept habitats where S. bandanensis and other wing-finned species tend to occur. Challenging preconceived notions of how best to power aquatic locomotion, biomimicry of such lift-based fin movements could yield dramatic reductions in the power needed to propel underwater vehicles at high speed.

  9. Fish locomotion: insights from both simple and complex mechanical models

    NASA Astrophysics Data System (ADS)

    Lauder, George

    2015-11-01

    Fishes are well-known for their ability to swim and maneuver effectively in the water, and recent years have seen great progress in understanding the hydrodynamics of aquatic locomotion. But studying freely-swimming fishes is challenging due to difficulties in controlling fish behavior. Mechanical models of aquatic locomotion have many advantages over studying live animals, including the ability to manipulate and control individual structural or kinematic factors, easier measurement of forces and torques, and the ability to abstract complex animal designs into simpler components. Such simplifications, while not without their drawbacks, facilitate interpretation of how individual traits alter swimming performance and the discovery of underlying physical principles. In this presentation I will discuss the use of a variety of mechanical models for fish locomotion, ranging from simple flexing panels to complex biomimetic designs incorporating flexible, actively moved, fin rays on multiple fins. Mechanical devices have provided great insight into the dynamics of aquatic propulsion and, integrated with studies of locomotion in freely-swimming fishes, provide new insights into how fishes move through the water.

  10. Locomotive assignment problem with train precedence using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Noori, Siamak; Ghannadpour, Seyed Farid

    2012-07-01

    This paper aims to study the locomotive assignment problem which is very important for railway companies, in view of high cost of operating locomotives. This problem is to determine the minimum cost assignment of homogeneous locomotives located in some central depots to a set of pre-scheduled trains in order to provide sufficient power to pull the trains from their origins to their destinations. These trains have different degrees of priority for servicing, and the high class of trains should be serviced earlier than others. This problem is modeled using vehicle routing and scheduling problem where trains representing the customers are supposed to be serviced in pre-specified hard/soft fuzzy time windows. A two-phase approach is used which, in the first phase, the multi-depot locomotive assignment is converted to a set of single depot problems, and after that, each single depot problem is solved heuristically by a hybrid genetic algorithm. In the genetic algorithm, various heuristics and efficient operators are used in the evolutionary search. The suggested algorithm is applied to solve the medium sized numerical example to check capabilities of the model and algorithm. Moreover, some of the results are compared with those solutions produced by branch-and-bound technique to determine validity and quality of the model. Results show that suggested approach is rather effective in respect of quality and time.

  11. 13. VIEW OF RAILROAD EXHIBIT AT EL PORTAL. SHAY LOCOMOTIVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF RAILROAD EXHIBIT AT EL PORTAL. SHAY LOCOMOTIVE IS FROM THE HETCH HETCHY RAILROAD. CABOOSE IS FROM THE YOSEMITE VALLEY RAILROAD. FOREST ROAD IN FOREGROUND IS THE ALIGNMENT OF THE YOSEMITE VALLEY RAILROAD. LOOKING W. GIS: N-37 40 27.0 / W-119 47 10.5 - Yosemite National Park Roads & Bridges, Yosemite Village, Mariposa County, CA

  12. Locomotion pattern and trunk musculoskeletal architecture among Urodela.

    PubMed

    Omura, Ayano; Ejima, Ken-Ichiro; Honda, Kazuya; Anzai, Wataru; Taguchi, Yuki; Koyabu, Daisuke; Endo, Hideki

    2015-04-01

    We comparatively examined the trunk musculature and prezygapophyseal angle of mid-trunk vertebra in eight urodele species with different locomotive modes (aquatic Siren intermedia, Amphiuma tridactylum, Necturus maculosus and Andrias japonicus; semi-aquatic Cynops pyrrhogaster, Cynops ensicauda; and terrestrial Hynobius nigrescens, Hynobius lichenatus and Ambystoma tigrinum). We found that the more terrestrial species were characterized by larger dorsal and abdominal muscle weight ratios compared with those of the more aquatic species, whereas muscle ratios of the lateral hypaxial musculature were larger in the more aquatic species. The lateral hypaxial muscles were thicker in the more aquatic species, whereas the M. rectus abdominis was more differentiated in the more terrestrial species. Our results suggest that larger lateral hypaxial muscles function for lateral bending during underwater locomotion in aquatic species. Larger dorsalis and abdominal muscles facilitate resistance against sagittal extension of the trunk, stabilization and support of the ventral contour line against gravity in terrestrial species. The more aquatic species possessed a more horizontal prezygapophyseal angle for more flexible lateral locomotion. In contrast, the more terrestrial species have an increasingly vertical prezygapophyseal angle to provide stronger column support against gravity. Thus, we conclude trunk structure in urodeles differs clearly according to their locomotive modes.

  13. 40 CFR 1033.335 - Remanufactured locomotives: installation audit requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Remanufacturer Production Line Testing and Audit Programs § 1033.335 Remanufactured locomotives: installation... 208 and 213 of the Clean Air Act. Our production-line auditing conformed completely with the... least five percent of your annual production per model year per installer or ten per engine family...

  14. 40 CFR 1033.335 - Remanufactured locomotives: installation audit requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Remanufacturer Production Line Testing and Audit Programs § 1033.335 Remanufactured locomotives: installation... 208 and 213 of the Clean Air Act. Our production-line auditing conformed completely with the... least five percent of your annual production per model year per installer or ten per engine family...

  15. 40 CFR 1033.335 - Remanufactured locomotives: installation audit requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Remanufacturer Production Line Testing and Audit Programs § 1033.335 Remanufactured locomotives: installation... 208 and 213 of the Clean Air Act. Our production-line auditing conformed completely with the... least five percent of your annual production per model year per installer or ten per engine family...

  16. 40 CFR 1033.335 - Remanufactured locomotives: installation audit requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Remanufacturer Production Line Testing and Audit Programs § 1033.335 Remanufactured locomotives: installation... 208 and 213 of the Clean Air Act. Our production-line auditing conformed completely with the... least five percent of your annual production per model year per installer or ten per engine family...

  17. 16. Joe Murphy, Jr., Photographer, circa 190914 LOCOMOTIVE NO. 148 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Joe Murphy, Jr., Photographer, circa 1909-14 LOCOMOTIVE NO. 148 STEAMS UP LITTLE RIVER GORGE, CA. 1909-14. LITTLE RIVER ROAD WAS CONSTRUCTED OVER THIS RIGHT OF WAY IN 1932. - Great Smoky Mountains National Park Roads & Bridges, Gatlinburg, Sevier County, TN

  18. Current problems: New similiquid lubricant for locomotive gears

    SciTech Connect

    Shibryaev, S.B.; Nesterov, A.V.; Seregina, I.E.

    1995-01-01

    The development of a formula for a new, domestically manufactured, semiliquid lubricant is described. The lubricant is for traction gears of locomotives and motorized cars of multiple-unit trains that will ensure year-round operation. Scientific principles have been used in selecting additives and in increasing the effectiveness of the additives by means of oxygen-containing synthetic oils.

  19. Gaze Stabilization During Locomotion Requires Full Body Coordination

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Miller, C. A.; Houser, J.; Richards, J. T.; Bloomberg, J. J.

    2001-01-01

    Maintaining gaze stabilization during locomotion places substantial demands on multiple sensorimotor subsystems for precise coordination. Gaze stabilization during locomotion requires eye-head-trunk coordination (Bloomberg, et al., 1997) as well as the regulation of energy flow or shock-wave transmission through the body at high impact phases with the support surface (McDonald, et al., 1997). Allowing these excessive transmissions of energy to reach the head may compromise gaze stability. Impairments in these mechanisms may lead to the oscillopsia and decreased dynamic visual acuity seen in crewmembers returning from short and long duration spaceflight, as well as in patients with vestibular disorders (Hillman, et al., 1999). Thus, we hypothesize that stabilized gaze during locomotion results from full-body coordination of the eye-head-trunk system combined with the lower limb apparatus. The goal of this study was to determine how multiple, interdependent full- body sensorimotor subsystems aiding gaze stabilization during locomotion are functionally coordinated, and how they adaptively respond to spaceffight.

  20. A Field Test of Festinger's Substitute Locomotion Theory.

    ERIC Educational Resources Information Center

    Stewart, Lea P.; Gudykunst, William B.

    1986-01-01

    Provides evidence for rejecting Festinger's Substitute Locomotion Theory of organizational communication. Demonstrates a clear difference between formal and informal channels of upward communication. Indicates that high mobility individuals communicate significantly more with their supervisors than low mobility individuals and that males…

  1. Kinematic Differences Between Motorized and Nonmotorized Treadmill Locomotion

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Bentley, Jason R.; Lee, Stuart M. C.; Norcross, Jason; Smith, Cassie; Hagan, R. Donald

    2006-01-01

    There are few scientific publications comparing human locomotion between motorized and nonmotorized treadmills. Lakomy (1987) and Gamble et al (1988) reported that forward lean is greater on a nonmotorized treadmill to aid in the generation of horizontal force necessary for belt propulsion, but there are no data concerning lower limb kinematics. During long-term spaceflight, astronauts use locomotive exercise to mitigate the physiological effects caused by long-term exposure to microgravity. A critical decision for mission planners concerns the requirements for a treadmill to be used during potential trips to the Moon and Mars. Treadmill operation in an un-powered configuration could reduce mission resource demands, but also may impact the efficacy of treadmill exercise countermeasures. To ascertain the most appropriate type of treadmill to be used, it is important to understand biomechanical differences between motorized (M) and nonmotorized (NM) locomotion. The purpose of this evaluation was to test for differences in lower limb kinematics that occur during M and NM treadmill locomotion at two speeds. It was hypothesized that hip and knee joint angle trajectories would differ between the conditions.

  2. 15. Photocopied August 1978. LOCOMOTIVE CRANE IN THE ROCK CUT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photocopied August 1978. LOCOMOTIVE CRANE IN THE ROCK CUT, AUGUST 21, 1900. LOADING DUMP CARS. A STEAM SHOVEL LOADING DUMP CARS IS VISIBLE IN THE LEFT BACKGROUND. (61) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  3. Simulations of Unsteady Aquatic Locomotion: From Unsteadiness in Straight-Line Swimming to Fast-Starts.

    PubMed

    Borazjani, Iman

    2015-10-01

    Unsteady aquatic locomotion is not an exception, but rather how animals often swim. It includes fast-starts (C-start or S-start), escape maneuvers, turns, acceleration/deceleration, and even during steady locomotion the swimming speed fluctuates, i.e., there is unsteadiness. Here, a review of the recent work on unsteady aquatic locomotion with emphasis on numerical simulations is presented. The review is started by an overview of different theoretical and numerical methods that have been used for unsteady swimming, and then the insights provided by these methods on (1) unsteadiness in straight-line swimming and (2) unsteady fast-starts and turns are discussed. The swimming speed's unsteady fluctuations during straight-line swimming are typically less than 3% of the average swimming speed, but recent simulations show that body shape affects fluctuations more than does body kinematics, i.e., changing the shape of the body generates larger fluctuations than does changing its kinematics. For fast-starts, recent simulations show that the best motion to maximize the distance traveled from rest are similar to the experimentally observed C-start maneuvers. Furthermore, another set of simulations, which are validated against measurements of flow in experiments with live fish, investigate the role of fins during the C-start. The simulations showed that most of the force is generated by the body of the fish (not by fins) during the first stage of the C-start when the fish bends itself into the C-shape. However, in the second stage, when it rapidly bends out of the C-shape, more than 70% of the instantaneous hydrodynamic force is produced by the tail. The effect of dorsal and anal fins was less than 5% of the instantaneous force in both stages, except for a short period of time (2 ms) just before the second stage. Therefore, the active control and the erection of the anal/dorsal fins might be related to retaining the stability of the sunfish against roll and pitch during the C

  4. Spontaneous coronary artery dissection.

    PubMed

    Giacoppo, Daniele; Capodanno, Davide; Dangas, George; Tamburino, Corrado

    2014-07-15

    Spontaneous coronary artery dissection (SCAD) is a relatively rare and unexplored type of coronary disease. Although atherosclerosis, hormonal changes during pregnancy and connective tissue disorders might represent a sufficiently convincing explanation for some patients with SCAD, the many remaining cases display only a weak relationship with these causes. While on one side the clinical heterogeneity of SCAD masks a full understanding of their underlying pathophysiologic process, on the other side paucity of data and misleading presentations hamper the quick diagnosis and optimal management of this condition. A definite diagnosis of SCAD can be significantly facilitated by endovascular imaging techniques. In fact, intravascular ultrasound (IVUS) and optical coherence tomography (OCT) overcome the limitations of coronary angiography providing detailed endovascular morphologic information. In contrast, optimal treatment strategies for SCAD still represent a burning controversial question. Herein, we review the published data examining possible causes and investigating the best therapy for SCAD in different clinical scenarios.

  5. Separation of Propulsive and Adhesive Traction Stresses in Locomoting Keratocytes

    PubMed Central

    Oliver, Tim; Dembo, Micah; Jacobson, Ken

    1999-01-01

    Strong, actomyosin-dependent, pinching tractions in steadily locomoting (gliding) fish keratocytes revealed by traction imaging present a paradox, since only forces perpendicular to the direction of locomotion are apparent, leaving the actual propulsive forces unresolved. When keratocytes become transiently “stuck” by their trailing edge and adopt a fibroblast-like morphology, the tractions opposing locomotion are concentrated into the tail, leaving the active pinching and propulsive tractions clearly visible under the cell body. Stuck keratocytes can develop ∼1 mdyn (10,000 pN) total propulsive thrust, originating in the wings of the cell. The leading lamella develops no detectable propulsive traction, even when the cell pulls on its transient tail anchorage. The separation of propulsive and adhesive tractions in the stuck phenotype leads to a mechanically consistent hypothesis that resolves the traction paradox for gliding keratocytes: the propulsive tractions driving locomotion are normally canceled by adhesive tractions resisting locomotion, leaving only the pinching tractions as a resultant. The resolution of the traction pattern into its components specifies conditions to be met for models of cytoskeletal force production, such as the dynamic network contraction model (Svitkina, T.M., A.B. Verkhovsky, K.M. McQuade, and G.G. Borisy. 1997. J. Cell Biol. 139:397–415). The traction pattern associated with cells undergoing sharp turns differs markedly from the normal pinching traction pattern, and can be accounted for by postulating an asymmetry in contractile activity of the opposed lateral wings of the cell. PMID:10225959

  6. A proposal for the definition of terms related to locomotion of leukocytes and other cells*

    PubMed Central

    1980-01-01

    There is currently much confusion of terms relating to locomotion of leukocytes and other cells. Standardized and precise use of terms is, however, indispensable for analysis of the basic mechanisms controlling such locomotion. The present proposal is intended to serve as a basis for a standardized system of reporting locomotor behaviour of leukocytes and other cells and their responses to environmental stimuli. Definitions of the terms random locomotion, directional locomotion, chemotaxis, chemokinesis, and intrinsic locomotor capacity are proposed. Examples are given to demonstrate the application of the terms in the experimental and clinical analysis of cell locomotion. PMID:6968255

  7. Chronic mild stress induces variations in locomotive behavior and metabolic rates in high fat fed rats.

    PubMed

    García-Díaz, D F; Campion, J; Milagro, F I; Lomba, A; Marzo, F; Martínez, J A

    2007-12-01

    Chronic mild stress (CMS) has been often associated to the pathogenesis of many diseases including obesity. Indeed, visceral obesity has been linked to the development of metabolic syndrome features and constitutes a serious risk factor for cardiovascular diseases and diabetes. In order to study possible mechanistic relationships between stress and the onset of obesity, we developed during 11 weeks a model of high-fat dietary intake (cafeteria diet) together with a CMS regimen in male Wistar rats. During the experimental period, basal metabolism by indirect calorimetry, rectal temperature, food intake, and locomotive markers were specifically analyzed. After 77 days, animals were sacrificed and body, adiposity and plasma biochemical profiles were also examined. As expected, cafeteria diet in unstressed animals induced a significative increase in body weight, adiposity, and insulin resistance markers. Locomotive variables, specifically distance, rearing and meander, were significantly increased by CMS on the first weeks of stress. Moreover, this model of CMS in Wistar rats increased significantly energy expenditure, and apparently interplayed with the dietary treatment on the muscle weight/fat weight ratio. In summary, this chronic stress model did not affected weight gain in control and high fat fed animals, but induced an interaction concerning the metabolic muscle/fat repartitioning.

  8. Chronological requirements of TDP-43 function in synaptic organization and locomotive control.

    PubMed

    Romano, Giulia; Klima, Raffaella; Buratti, Emanuele; Verstreken, Patrik; Baralle, Francisco E; Feiguin, Fabian

    2014-11-01

    Alterations in TDP-43 are commonly found in patients suffering from amyotrophic lateral sclerosis (ALS) and the genetic suppression of the conserved homologue in Drosophila (TBPH) provokes alterations in the functional organization of motoneuron synaptic terminals, resulting in locomotive defects and reduced life span. To gain more insight into this pathological process, it is of fundamental importance to establish when during the fly life cycle the lack of TBPH affects motoneuron activity and whether this is a reversible phenomenon. To achieve this, we conditionally expressed the endogenous protein in TBPH minus Drosophila neurons and found that TBPH is a short lived protein permanently required for Drosophila motility and synaptic assembly through the direct modulation of vesicular proteins, such as Syntaxin 1A, indicating that synaptic transmission defects are early pathological consequences of TBPH dysfunction in vivo. Importantly, TBPH late induction is able to recover synaptogenesis and locomotion in adult flies revealing an unexpected late-stage functional and structural neuronal plasticity. These observations suggest that late therapeutic approaches based on TDP-43 functionality may also be successful for the human pathology.

  9. Investigating locomotion of dairy cows by use of high speed cinematography.

    PubMed

    Herlin, A H; Drevemo, S

    1997-05-01

    The longterm influence of management systems on the locomotion of 17 dairy cows was investigated by high speed cinematography (100 frames/s) and kinematic analysis. Angular patterns and hoof trajectories of the left fore- and hindlimbs are presented and statistics made of occurring minimum and maximum angles. At the recording, 3 cows had been kept in tie-stalls (TI) and 6 cows in cubicles (CI) for a consecutive time of about 2.5 years while 8 cows had been kept on grass for about 3 months. Four of the grazing cows had earlier been kept in cubicles (CG) and 4 in tie-stalls (TG) during earlier off grazing seasons together with TI and CI cows. The CI cows had a smaller maximum angle of the elbow joint compared to TI, TG and CG cows. The hock joint angle of the CI cows was less flexed during the stance phase than in TI and CG cows while the minimum angle during the swing phase was greater in the TI and CI cows compared to TG and CG cows. Pastured cows (TG and CG) had a less pronounced flexion of the fetlock joint angle during the stance compared to cows kept indoors (TI and CI). The results suggest that slatted floor and lack of exercise during summer grazing may affect locomotion. This is indicated by restrictions in the movements of the elbow and hock joints and in less fetlock joint flexion at full support.

  10. Gliding locomotion of manta rays, killer whales and swordfish near the water surface.

    PubMed

    Zhan, Jie-Min; Gong, Ye-Jun; Li, Tian-Zeng

    2017-03-24

    The hydrodynamic performance of the locomotive near the water surface is impacted by its geometrical shape. For marine animals, their geometrical shape is naturally selective; thus, investigating gliding locomotion of marine animal under the water surface may be able to elucidate the influence of the geometrical shape. We investigate three marine animals with specific geometries: the killer whale is fusiform shaped; the manta ray is flat and broad-winged; and the swordfish is best streamlined. The numerical results are validated by the measured drag coefficients of the manta ray model in a towing tank. The friction drag of the three target models are very similar; the body shape affected form drag coefficient is order as swordfish < killer whale < manta ray; the induced wave breaking upon the body of the manta ray performs different to killer whale and swordfish. These bio-inspired observations provide a new and in-depth understanding of the shape effects on the hydrodynamic performances near the free surface.

  11. Utilization of granular solidification during terrestrial locomotion of hatchling sea turtles

    PubMed Central

    Mazouchova, Nicole; Gravish, Nick; Savu, Andrei; Goldman, Daniel I.

    2010-01-01

    Biological terrestrial locomotion occurs on substrate materials with a range of rheological behaviour, which can affect limb-ground interaction, locomotor mode and performance. Surfaces like sand, a granular medium, can display solid or fluid-like behaviour in response to stress. Based on our previous experiments and models of a robot moving on granular media, we hypothesize that solidification properties of granular media allow organisms to achieve performance on sand comparable to that on hard ground. We test this hypothesis by performing a field study examining locomotor performance (average speed) of an animal that can both swim aquatically and move on land, the hatchling Loggerhead sea turtle (Caretta caretta). Hatchlings were challenged to traverse a trackway with two surface treatments: hard ground (sandpaper) and loosely packed sand. On hard ground, the claw use enables no-slip locomotion. Comparable performance on sand was achieved by creation of a solid region behind the flipper that prevents slipping. Yielding forces measured in laboratory drag experiments were sufficient to support the inertial forces at each step, consistent with our solidification hypothesis. PMID:20147312

  12. Pelvic and thigh musculature in frogs (Anura) and origin of anuran jumping locomotion

    PubMed Central

    Přikryl, Tomáš; Aerts, Peter; Havelková, Pavla; Herrel, Anthony; Roček, Zbyněk

    2009-01-01

    Comparative analysis of the anuran pelvic and thigh musculoskeletal system revealed that the thigh extensors, responsible for the initial phase of jump, the propulsive stroke in swimming and, if used asynchronously, also for walking, are least affected by the transformations observed between anurans and their temnospondyl ancestors (as reflected in contemporary caudates). The iliac shaft and urostyle, two of the most important anuran apomorphies, represent skeletal support for muscles that are mostly protractors of the femur or are important in attaining a crouching position, a necessary prerequisite for rapid escape. All of these muscles originate or insert on the iliac shaft. As the orientation of the pubis, ischium and ilium is the same in anurans, caudates and by inference also in their temnospondyl ancestors, it is probable that the pelvis was shifted from the sacral vertebra posteriorly along the reduced and stiffened tail (urostyle) by the elongation of the illiac shaft. Thus, the original vertical orientation of the ilium was maintained (which is also demonstrated by stable origins of the glutaeus maximus, iliofemoralis and iliofibularis on the tuber superius) and the shaft itself is a new structure. A review of functional analysis of anuran locomotion suggests some clear differences from that in caudates, suggesting that terrestrial jumping may have been a primary locomotor activity, from which other types of anuran locomotion are derived. PMID:19166476

  13. A dynamical systems analysis of afferent control in a neuromechanical model of locomotion: I. Rhythm generation

    NASA Astrophysics Data System (ADS)

    Spardy, Lucy E.; Markin, Sergey N.; Shevtsova, Natalia A.; Prilutsky, Boris I.; Rybak, Ilya A.; Rubin, Jonathan E.

    2011-10-01

    Locomotion in mammals is controlled by a spinal central pattern generator (CPG) coupled to a biomechanical limb system, with afferent feedback to the spinal circuits and CPG closing the control loop. We have considered a simplified model of this system, in which the CPG establishes a rhythm when a supra-spinal activating drive is present and afferent signals from a single-joint limb feed back to affect CPG operation. Using dynamical system methods, in a series of two papers we analyze the mechanisms by which this model produces oscillations, and the characteristics of these oscillations, in the closed- and open-loop regimes. In this first paper, we analyze the phase transition mechanisms operating within the CPG and use the results to explain how afferent feedback allows oscillations to occur at a wider range of drive values to the CPG than the range over which oscillations occur in the CPG without feedback, and then to comment on why stronger feedback leads to faster oscillations. Linking these transitions to structures in the phase plane associated with the limb segment clarifies how increased weights of afferent feedback to the CPG can restore locomotion after removal of supra-spinal drive to simulate spinal cord injury.

  14. Planning of spatially-oriented locomotion following focal brain damage in humans: A pilot study.

    PubMed

    Hicheur, Halim; Boujon, Carole; Wong, Cuebong; Pham, Quang-Cuong; Annoni, Jean-Marie; Bihl, Titus

    2016-03-15

    Motor impairments in human gait following stroke or focal brain damage are well documented. Here, we investigated whether stroke and/or focal brain damage also affect the navigational component of spatially oriented locomotion. Ten healthy adult participants and ten adult brain-damaged patients had to walk towards distant targets from different starting positions (with vision or blindfolded). No instructions as to which the path to follow were provided to them. We observed very similar geometrical forms of paths across the two groups of participants and across visual conditions. This spatial stereotypy of whole-body displacements was observed following brain damage, even in the most severely impaired (hemiparetic) patients. This contrasted with much more variability at the temporal level. In particular, healthy participants and non-hemiparetic patients varied their walking speed according to curvature changes along the path. On the contrary, the walking speed profiles were not stereotypical and were not systematically constrained by path geometry in hemiparetic patients where it was associated with different stepping behaviors. These observations confirm the dissociation between cognitive and motor aspects of gait recovery post-stroke. The impact of these findings on the understanding of the functional and anatomical organization of spatially-oriented locomotion and for rehabilitation purposes is discussed and contextualized in the light of recent advances in electrophysiological studies.

  15. Dynamics of underwater legged locomotion: modeling and experiments on an octopus-inspired robot.

    PubMed

    Calisti, M; Corucci, F; Arienti, A; Laschi, C

    2015-07-30

    This paper studies underwater legged locomotion (ULL) by means of a robotic octopus-inspired prototype and its associated model. Two different types of propulsive actions are embedded into the robot model: reaction forces due to leg contact with the ground and hydrodynamic forces such as the drag arising from the sculling motion of the legs. Dynamic parameters of the model are estimated by means of evolutionary techniques and subsequently the model is exploited to highlight some distinctive features of ULL. Specifically, the separation between the center of buoyancy (CoB)/center of mass and density affect the stability and speed of the robot, whereas the sculling movements contribute to propelling the robot even when its legs are detached from the ground. The relevance of these effects is demonstrated through robotic experiments and model simulations; moreover, by slightly changing the position of the CoB in the presence of the same feed-forward activation, a number of different behaviors (i.e. forward and backward locomotion at different speeds) are achieved.

  16. Pelvic and thigh musculature in frogs (Anura) and origin of anuran jumping locomotion.

    PubMed

    Prikryl, Tomás; Aerts, Peter; Havelková, Pavla; Herrel, Anthony; Rocek, Zbynek

    2009-01-01

    Comparative analysis of the anuran pelvic and thigh musculoskeletal system revealed that the thigh extensors, responsible for the initial phase of jump, the propulsive stroke in swimming and, if used asynchronously, also for walking, are least affected by the transformations observed between anurans and their temnospondyl ancestors (as reflected in contemporary caudates). The iliac shaft and urostyle, two of the most important anuran apomorphies, represent skeletal support for muscles that are mostly protractors of the femur or are important in attaining a crouching position, a necessary prerequisite for rapid escape. All of these muscles originate or insert on the iliac shaft. As the orientation of the pubis, ischium and ilium is the same in anurans, caudates and by inference also in their temnospondyl ancestors, it is probable that the pelvis was shifted from the sacral vertebra posteriorly along the reduced and stiffened tail (urostyle) by the elongation of the illiac shaft. Thus, the original vertical orientation of the ilium was maintained (which is also demonstrated by stable origins of the glutaeus maximus, iliofemoralis and iliofibularis on the tuber superius) and the shaft itself is a new structure. A review of functional analysis of anuran locomotion suggests some clear differences from that in caudates, suggesting that terrestrial jumping may have been a primary locomotor activity, from which other types of anuran locomotion are derived.

  17. Influence of person- and situation-specific characteristics on collision avoidance behavior in human locomotion.

    PubMed

    Knorr, Alexander G; Willacker, Lina; Hermsdörfer, Joachim; Glasauer, Stefan; Krüger, Melanie

    2016-09-01

    In everyday situations, pedestrians deploy successful strategies to avoid collisions with other persons crossing their paths. In this study, 2 experiments were conducted to investigate to what extent personal or situational characteristics affect role attribution and contribution to successful collision avoidance in human locomotion. Pairs of subjects walked at their natural speed from a start to a goal point. Walking paths were defined in such a way that subjects would collide halfway on their trajectory, if they did not actively avoid colliding by speed or path adjustments. In the first experiment, we investigated whether crossing order, path, and speed adjustments correlate with subject-specific parameters, such as gender, height, and personality traits. It is interesting that individuals' collision avoidance behavior was not correlated with any of these factors. In the second experiment, initial walking speed and heading were used to predict the crossing order. It was found that these 2 parameters are sufficient to estimate future role attribution with 95% confidence already 2.5 m before the crossing; that is, even before any collision avoidance behavior is initiated. In sum, this suggests that collision avoidance strategies in human locomotion are based on situational rather than on personal characteristics. These situational characteristics result in role attributions, which are highly predictable within and across pairs of pedestrians, whereby the role-dependent contribution of the pedestrian giving way is of greater relevance for successful collision avoidance. (PsycINFO Database Record

  18. A Locomotion Intent Prediction System Based on Multi-Sensor Fusion

    PubMed Central

    Chen, Baojun; Zheng, Enhao; Wang, Qining

    2014-01-01

    Locomotion intent prediction is essential for the control of powered lower-limb prostheses to realize smooth locomotion transitions. In this research, we develop a multi-sensor fusion based locomotion intent prediction system, which can recognize current locomotion mode and detect locomotion transitions in advance. Seven able-bodied subjects were recruited for this research. Signals from two foot pressure insoles and three inertial measurement units (one on the thigh, one on the shank and the other on the foot) are measured. A two-level recognition strategy is used for the recognition with linear discriminate classifier. Six kinds of locomotion modes and ten kinds of locomotion transitions are tested in this study. Recognition accuracy during steady locomotion periods (i.e., no locomotion transitions) is 99.71% ± 0.05% for seven able-bodied subjects. During locomotion transition periods, all the transitions are correctly detected and most of them can be detected before transiting to new locomotion modes. No significant deterioration in recognition performance is observed in the following five hours after the system is trained, and small number of experiment trials are required to train reliable classifiers. PMID:25014097

  19. Self-regulatory mode (locomotion and assessment), well-being (subjective and psychological), and exercise behavior (frequency and intensity) in relation to high school pupils’ academic achievement

    PubMed Central

    Jimmefors, Alexander; Mousavi, Fariba; Adrianson, Lillemor; Rosenberg, Patricia; Archer, Trevor

    2015-01-01

    Background. Self-regulation is the procedure implemented by an individual striving to reach a goal and consists of two inter-related strategies: assessment and locomotion. Moreover, both subjective and psychological well-being along exercise behaviour might also play a role on adolescents academic achievement. Method. Participants were 160 Swedish high school pupils (111 boys and 49 girls) with an age mean of 17.74 (sd = 1.29). We used the Regulatory Mode Questionnaire to measure self-regulation strategies (i.e., locomotion and assessment). Well-being was measured using Ryff’s Psychological Well-Being Scales short version, the Temporal Satisfaction with Life Scale, and the Positive Affect and Negative Affect Schedule. Exercise behaviour was self-reported using questions pertaining to frequency and intensity of exercise compliance. Academic achievement was operationalized through the pupils’ mean value of final grades in Swedish, Mathematics, English, and Physical Education. Both correlation and regressions analyses were conducted. Results. Academic achievement was positively related to assessment, well-being, and frequent/intensive exercise behaviour. Assessment was, however, negatively related to well-being. Locomotion on the other hand was positively associated to well-being and also to exercise behaviour. Conclusions. The results suggest a dual (in)direct model to increase pupils’ academic achievement and well-being—assessment being directly related to higher academic achievement, while locomotion is related to frequently exercising and well-being, which in turn, increase academic achievement. PMID:25861553

  20. Spontaneous Ejaculations Associated with Aripiprazole

    PubMed Central

    EĞİLMEZ, Oğuzhan; ÇELİK, Mustafa; KALENDEROĞLU, Aysun

    2016-01-01

    Sexual side effects are common with antipsychotic use. Spontaneous ejaculations without sexual arousal have been previously described with several typical and atypical antipsychotics. We report the case of a man who had spontaneous ejaculations after stopping risperidone and starting 30 mg/day aripiprazole. Spontaneous ejaculations ceased 3 days after decreasing the aripiprazole dose to 15 mg/day. He denied sexual fantasies or increased sexual desire during the period in which he had spontaneous ejaculations. The partial agonistic effect of aripiprazole on D2 receptors may have augmented the mesolimbic dopaminergic pathway, which was suppressed by risperidone, causing spontaneous ejaculations in this patient. Serotoninergic effects of aripiprazole should also be considered. This unusual side effect should be questioned, particularly in patients who recieve aripiprazole after D2-blocking antipsychotics; otherwise, this side effect may cause embarrassement and noncompliance. PMID:28360773